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Management summary  
The production facility of TOMRA in Apeldoorn is responsible for the production of the backroom of 
bottle deposit systems. The backroom corresponds to elements located behind collecting devices of 
empty drinking packages, which are tailor-made and can differ per customer, making the production 
environment make-to-order (MTO). The facility of TOMRA located in Apeldoorn often experiences 
production related problems. Among other things, high workloads and inventory shortages make up 
for these production problems. These problems are mainly caused by the fact that the production 
capacity is currently not fully considered in production planning activities at TOMRA. More specifically, 
optimizing due date assignments to incoming orders is of great relevance, where customers currently 
determine the due dates. As TOMRA does not have detailed capacity overviews, they have little saying 
in providing feedback on the requested due dates and almost always comply with the customers’ 
requests, resulting in heavy workload fluctuations. Therefore, the main research question is the 
following:  

 
“How to optimize the combined process of assigning due dates with spreading the workload of 

incoming orders? 
 

An analysis of the current situation shows that there is need for a tactical level capacity planning at 
TOMRA. This is because TOMRA is very dependent on their ERP system in the way of operating. This 
system currently lists necessary production activities per production department based on the earliest 
due date, resulting in waiting until the very last moment to produce required backroom elements. 
Moreover, because the ERP system does not consider required and available production capacity for 
the workload of incoming orders, the current way of operating causes large workload fluctuations.  
 
From the literature, we identify relevant methods that are capable of assigning due dates in a MTO 
environment. Especially finite loading methods can help in assigning due dates whilst considering 
available and occupied capacity. However, the finite loading methods do not generate an optimal 
spread of the existing and incoming workloads, as the purpose of these methods is to solely assign due 
dates to orders and not the optimal loading of resources. Because of this, we identify capacity planning 
methods from the literature, which provide us insights into techniques such as imposing tardiness to 
orders and allowing nonregular capacity usage, to optimize the workload spread of orders.  
 
Using the knowledge from the literature, we develop a finite loading model that is capable of 
optimizing due date assignments to incoming order requests based on a weekly timeframe. We fit the 
model to our problem setting with multiple production departments, where customers have a desired 
due date and no incoming orders are refused. The model considers imposing tardiness to existing 
orders that have not been completed yet to fit an incoming order in the production capacity. 
Moreover, we consider the usage of nonregular capacity in this process. In addition, we develop a 
sample average approximation (SAA) inspired approach that is capable of determining release dates 
of operations that require one or multiple materials with stochastic external lead times. The SAA 
method also assesses the feasibility of loading these operations into a certain week to obtain a service 
level.  
 
The solution approach for solving the model in our setting consists of an approximate method to obtain 
good quality model solutions in a timely manner by means of heuristics. In total, we consider 6 
construction heuristics that can generate initial solutions to our problem, namely FL, CFL, HL, UFL, UCL 
and UHL. These construction heuristics follow concepts of forward and backward loading to fit the 
workload of incoming order requests in available production capacity. Moreover, we include two 
improvement heuristics that can improve on initial solutions, namely an adapted version of steepest 
descent (ASD) and simulated annealing (SA).  
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In order to find the best solution approach in our problem setting at TOMRA, we develop an 
experimental design that evaluates the performances of the approaches based on 4 problem instances. 
These problem instances contain existing orders from different, but recent moments in time. Each 
problem instance requires loading of 4 different incoming orders that all request a due date during a 
peak demand period.  
 
From the experiment results, we conclude that the HL approach shows the overall best performance 
in terms of objective value. This approach loads the operations within an incoming order either 
forward or backward, depending on the preferences of the customer and production department. 
Moreover, both forward loading approaches (FL and UFL) show poor performance related to the 
service levels as a result of their way of loading the operations. Using only the HL construction heuristic 
provides already good quality solutions. However, by applying an improvement heuristic, the objective 
values can be improved. This is done by modifying some loading periods of order operations, to better 
fit the workload of an incoming order within available production capacity. ASD shows similar 
performances related to the SA improvement heuristic, however does so in less computation time, 
making this approach superior with its current parameters in our problem setting.  
 
Finally, we recommend TOMRA to implement the HL approach for loading the workloads of their 
incoming orders in the future and recommend to apply the ASD improvement heuristic to enhance the 
quality of solutions in a timely manner.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

v 
 

Table of Contents 
Preface............................................................................................................................................................. ii  

Management summary .................................................................................................................................. iii 

1. Introduction ................................................................................................................................................. 1 

1.1 Company description ............................................................................................................................ 1 

1.2 Problem identification........................................................................................................................... 1 

1.3 Research design .................................................................................................................................... 3 

2. Current situation ......................................................................................................................................... 6 

2.1 Production processes ............................................................................................................................ 6 

2.2 Planning and scheduling activities ...................................................................................................... 10 

2.3 Conclusion on current situation .......................................................................................................... 13 

3. Literature review ....................................................................................................................................... 14 

3.1 Production environments ................................................................................................................... 14 

3.2 Due date assignment methods ........................................................................................................... 15 

3.3 Tactical level capacity planning ........................................................................................................... 21 

3.4 Production uncertainties ..................................................................................................................... 24 

3.5 Heuristics ............................................................................................................................................. 25 

3.6 Literature review summary ................................................................................................................. 29 

4. Modeling approach ................................................................................................................................... 31 

4.1 Model outline ...................................................................................................................................... 31 

4.2 Model assumptions and simplifications .............................................................................................. 36 

4.3 Model formulation .............................................................................................................................. 37 

4.4 Stochastic external lead times ............................................................................................................ 43 

4.5 Model approach conclusion ................................................................................................................ 45 

5. Solution design .......................................................................................................................................... 46 

5.1 Loading of incoming order .................................................................................................................. 47 

5.2 Improving the initial solution .............................................................................................................. 61 

5.3 Solution design conclusion .................................................................................................................. 64 

6. Experimental design .................................................................................................................................. 65 

6.1 Experiment setting .............................................................................................................................. 65 

6.2 Experiment results .............................................................................................................................. 69 

6.3 Experimental design conclusion .......................................................................................................... 74 

7. Conclusion and discussion ......................................................................................................................... 75 

7.1 Conclusion ........................................................................................................................................... 75 

7.2 Recommendations .............................................................................................................................. 76 

7.3 Limitations and future research .......................................................................................................... 76 

7.4 Academic relevance ............................................................................................................................ 77 

References ..................................................................................................................................................... 78 

Appendices .................................................................................................................................................... 81 





 

1 
 

1. Introduction  
This chapter provides an introduction to the company at issue, namely TOMRA, as well as the purpose 
of this research. Section 1.1 describes the company TOMRA. Section 1.2 presents the problem 
statement including the action problem, problem cluster and core problem selection. Section 1.3 
introduces the research design, consisting of the research scope as well as research and knowledge 
questions. 
 

1.1 Company description 
At TOMRA, systems are developed and created that help in transforming companies into more 
profitable and sustainable businesses. A large part of the activities that TOMRA carries out deal with 
the disposal of drinking packages. TOMRA is market leader in the field of packaging intake by offering 
solutions to collect, sort and process empty bottles and cans through bottle deposit systems. Every 
year, approximately 40 billion drinking packages are collected with the use of the systems developed 
by TOMRA, after which the packages can be recycled. The developed bottle deposit systems, with the 
corresponding digital tools and services, can provide a user-friendly way for recycling drinking 
packages.  
 
The facility of TOMRA located in Apeldoorn is responsible for the design and production of the 
backroom of bottle deposit systems that are being used within supermarket branches all over Europe. 
The backroom consists of elements located behind the collecting device, which can differ per customer 
based on specific wishes, intake volume and allocated space. Within the production facility of TOMRA 
in Apeldoorn, the three main elements of these backroom systems are produced, namely tables, roller 
belts and conveyors that together are essential parts for sorting and the disposal of drinking packages. 
These attributes are tailor-made per customer to optimally utilize the available space.   
 
TOMRA produces the backroom elements of the bottle deposit systems once there is demand. The 
main reason for this way of producing is that the developed backroom systems can vary significantly 
per supermarket establishment.   
 

1.2 Problem identification 
Within this section, we address relevant production related problems that occur at TOMRA. First, the 
formulation of the main problem that TOMRA currently faces, namely the action problem of the 
research, takes place. Next, we provide a problem cluster, showing the relationships between the 
identified problems. Afterwards, we select the core problem stating the main focus of this research.  
 

1.2.1 Action problem 
Within the facility of TOMRA in Apeldoorn, problems currently occur within the production 
department during peak demand periods. Demand for the bottle deposit systems takes place during 
the entire year. Various times per year, highly increased demand periods occur, causing problems on 
the workplace to arise, where a tremendous amount of overtime working hours must be made in order 
to meet the demand. Based on the situation that TOMRA currently encounters, an action problem can 
be defined.  
 
According to Heerkens and van Winden (2017), an action problem describes the discrepancy between 
norm and reality as perceived by the problem owner. The problem owner at stake is TOMRA in 
Apeldoorn. In reality, various problems occur during peak demand periods, such as often working in 
overtime or not meeting due dates because of inventory shortages. TOMRA wants to prevent these 
problems in the future, meaning that they want to be able to cope well with the production of the 
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backroom systems during peak demand periods. There is a clear discrepancy between the norm and 
reality present, making the action problem of this research the following:  
 

“The production facility of TOMRA in Apeldoorn is not able to cope well with the demand of the 
backroom elements of the bottle deposit systems during peak demand periods” 

 
 

1.2.2 Problem cluster  
Figure 1.1 shows a problem cluster, consisting of current problems related to the production of the 
backroom for the bottle deposit systems as well as the relations between the problems. The problem 
cluster is based on interviews and having verbal contact with the employees of TOMRA within the 
production and sales departments. Three types of problems can be seen within the problem cluster, 
namely regular problems, core problems and the previously designated action problem.  
 

 
The central action problem is that TOMRA is not able to cope well with highly increased demand 
periods. These increased demand periods are, for instance, caused by the development of new bottle 
deposit systems, which can provide new ways for the recycling of drinking packages.  
 
As of right now, the production capacity is not considered in detail for planning related activities. When 
receiving production orders from supermarkets, the production capacity is not fully taken into account 
for setting up due dates for these orders. TOMRA lets their customers determine due dates for placed 
orders caused by a lack of their capacity insights. Subsequently, the production capacity and 
production workload at the workplace are not distributed accordingly.  
 
During peak demand periods, many (large) production orders occur resulting into great increases 
within the workloads because of the current due date policy. The workloads also increase, since 
TOMRA is not able to scale up the production process in a short time span. This is because production 
expansion in terms of increased space and extra personnel is difficult to achieve in the short term.  
 
Furthermore, inventory shortages regularly take place in several steps of the production process during 
increased demand periods. These shortages can disrupt and delay the production of the backroom 
systems and result in not meeting the set due dates. The inventory shortages may also occur due to 
delayed lead times of suppliers.  
 
 

Figure 1.1; Problem cluster 
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1.2.3 Core problem selection 
The problem cluster depicted in Figure 1.1 contains multiple core problems. Core problems are found 
in the roots of the problem cluster, directly causing other problems (Heerkens & van Winden, 2017). 
The selection of the core problem is a crucial step of this research, as solving the core problem helps 
to tackle the action problem. Altogether, two different candidate core problems can be identified for 
TOMRA: 
 

1. Not able to scale up the production    
2. Production capacity not considered in detail for planning activities  

 
To be able to select the core problem that is the focus of this research, we investigate both candidate 
core problems in more detail. Tackling the first candidate core problem, namely not being able to scale 
up the production, will help TOMRA with coping better with the production during the peak demand 
periods. However, since TOMRA still experiences various inefficiencies in their current way of planning 
and assigning due dates, they are aware that tackling the first identified core problem would be a 
temporary solution. That is why it is convenient to focus on the second identified core problem during 
this research. Considering the production capacity for planning related activities could prevent the 
need of suddenly scaling up the production. Summarizing, solving the second candidate core problem 
would have the largest positive impact in the production of the backroom element in the future. 
Therefore, the following core problem is selected and is the focus of this research: 
 

“The production capacity is currently not considered in detail for production planning activities” 
 

1.3 Research design 

This section provides the approach of the research to solve the selected core problem. First, we state 
the research scope, where we outline the focus of the research more specifically. In addition, we 
formulate research questions, from which the answers are necessary steps in solving the core problem.  
 

1.3.1 Research scope  
As the identified core problem relates to including a detailed production capacity overview to produce 
of the backroom elements for bottle deposit systems, we define a research scope. Especially optimizing 
both the assignment of appropriate due dates and spreading the workload whilst taking the production 
capacity into consideration is deemed relevant by TOMRA. In addition, inventory shortages are seen 
as a drastic problem that can disrupt the production. The purpose of this research is to solve the core 
problem, where both of these identified important elements are the focus.  
 
Next to the production of the backroom systems, the TOMRA facility in Apeldoorn also accounts for 
maintenance, cleaning and repair operations to provide service and support to their customers. The 
scope of this research is related to the main production process of TOMRA, generating most of the 
output. This main production process takes places at three different departments, which can produce 
independently of each other to realize a collective output. Figure 1.2 visualizes an overview of the 
production processes and their relations.  
 
All three main production departments have many items and materials involved to generate the 
desired output. It is not feasible to consider all items during this research. Because of this, we consider 
only the items or materials that TOMRA identifies as the most important or the items where shortages 
often occur.  
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1.3.2 Research questions 
To solve the proposed core problem, the following main research question is formulated and indicates 
the aim of the research:  
 

“How to optimize the combined process of assigning due dates with spreading the workload of 
incoming orders? 

 
To be able to solve the identified main research question, we split the main research question into 
multiple more specific research questions.  
 
The first research question aims to analyze the current production process at TOMRA in detail. 
Information on the necessary steps to complete an order is useful to create a better understanding of 
the production methods. Besides, it is relevant to understand how production schedules are 
constructed as well as which software systems are available and in use of supporting the production 
processes. Chapter 2 provides an answer to the following research question and sub research 
questions:  
 

1) How does TOMRA currently operate to manufacture the backroom of the bottle deposit 
systems?  

I) What are the production processes and how are these related?  
II) How are production schedules currently constructed?  
III) Which software system(s) is/are used during the production and how are these 

related?  

The next research question aims to translate the problem at hand into related problems within the 
literature to acquire relevant knowledge. This part is the theoretical framework for the research. We 
address existing relevant methods for due date generation within the literature. In addition, we 
research literature regarding the construction of a tactical level planning. In Chapter 3, the literature 
provides answers to the following research question and sub research questions:  

2) Which solution methods are available within the literature on using production capacity for 
setting realistic due dates?  

I) Which methods to generate due dates exist within the literature?  
II) Which methods within the literature are able to generate a tactical level production 

plan to spread the workload of incoming orders? 

Figure 1.2; Production processes overview 
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The purpose of the following research question is to develop a model that are able to fill in the 
identified literature gap. This part requires some of the knowledge found within the theoretical 
framework to develop a model capable of assigning due dates of incoming customer orders and spread 
the workload. The model should take into account the production capacity in order to generate 
insights. Besides, since TOMRA desires to diminish the occurrence of inventory shortages during 
production activities, the model should incorporate an approach for this. We treat these aspects, the 
research question and sub research questions in Chapter 4.  

3) How can a model be developed that is able to optimize production due date assignments in 
the setting at TOMRA? 

I) How can the production capacity be considered?  
II) How can the model diminish the inventory shortages during the production? 

 
Subsequently, the next research question aims to identify solution approaches for the developed 
model. In Chapter 5, we develop the solution approaches based on findings within the literature with 
the purpose to eventually find the best approach.  
 

4) Which solution approaches are capable of solving the model for the combined due date 
assignment and workload spreading problem at TOMRA? 

I) How can solutions for the previously developed model be constructed?  
 
At last, we aim to identify the best solution approach from the alternatives developed beforehand. We 
select the best performing solution approach based on various experimental designs. For this, 
experiments need to be designed and results should follow. Chapter 6 outlines the following research 
question and sub research questions: 
 

5) Which solution approach performs best based on several experiments?  
I) How to design appropriate experiments? 
II) What are the experimental results per alternative?  
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2. Current situation  
This chapter outlines the current production process and way of operating for the production of the 
backroom for bottle deposit systems. First, the steps necessary for the table production, roller belt 
production and conveyor production to come to a desired end product are described in Section 2.1. 
Section 2.2 provides a description of the IT system in use as well as an overview of the current way of 
assigning due dates and planning and scheduling activities of the production steps. At last, Section 2.3 
presents a conclusion to this chapter.  
  

2.1 Production processes  
This section provides an overview of the products made and production activities during the main 
production processes. Sections 2.1.1, 2.1.2 and 2.1.3 discuss the production activities of the tables, 
roller belts and conveyors respectively.  
 

2.1.1 Table production 
Tables are an essential part of the backroom of bottle deposit systems. A table is situated right behind 
the bottle deposit device, where a user disposes empty drinking packages. The table is the first element 
of the backroom and guides drinking packages from the deposit device towards a further destination. 
At TOMRA, tables are being produced in all kinds of shapes and sizes and differ per supermarket. This 
makes the tables customizable and is the reason that tables are being produced once an order arrives. 
The exact specifications of each required table per order are stated and mentioned when an order 
arrives. Both the shape and type of table affect its production time, for instance the production of a 
large table consists of a higher workload.  
 
A couple of standard table shapes can be 
identified, namely a straight table and an L-shaped 
table. A straight table transports the drinking 
packages in a straight line and requires the lowest 
work effort to be made. Figure 2.1 visualizes an 
example of a straight table with crate rack within a 
backroom system. Moreover, an L-shaped table 
has an angle of 90 degrees and can transport the 
drinking packages towards a different direction. 
An L-shaped table automatically needs more than 
one engine, as two belts realize movement along 
the L-shaped table. This makes workload to 
produce an L-shaped table to be higher. 
 
TOMRA offers possibilities for two different types of backroom support systems. These systems are 
named EasyPac and Multipac and can be viewed in Figures 2.2 and 2.3 respectively. An EasyPac 
machine is able to automatically sort PET bottles and cans and makes them compact. A MultiPac 
machine is an extension of the EasyPac system and can do this for two bottle collecting devices at once. 
The facility of TOMRA in Apeldoorn does not produce these machines. Both the EasyPac and MultiPac 
machines are produced at the headquarters in Norway. The EasyPac and MultiPac machines can either 
be delivered directly towards the customers or first needs to come towards the facility in Apeldoorn 
after which it gets delivered together with the backroom elements. This way of delivering depends on 
the country of origin of the customer.    

Figure 2.1; Example table in backroom setting 



 

7 
 

 
The tables behind an MultiPac system has significant differences in comparison with tables suited 
behind EasyPac systems. An example of such a difference is that tables suited for the MultiPac systems 
have additional holes to fit the machines. Nevertheless, the table assembly becomes more challenging 
and takes longer for such tables. Therefore, tables for the MultiPac systems take remarkably longer to 
produce, especially when these tables also have an L-shape.  
 

2.1.2 Roller belt production  
Roller belts form an essential part of the backroom of the bottle deposit systems. Roller belts can guide 
empty drinking packages and handed-in crates towards further parts of the backroom for collection. 
TOMRA assembles these roller belts by hand within a separate production department.  
 
The roller belts consist of one or multiple so-called ‘mats’. Each mat 
consists of eight rolls, which are put into a frame to complete a single 
mat. The roller belts are being produced in lengths of two meter, one 
meter, half a meter and a quarter of a meter. These lengths require four 
mats, two mats, one and one half a mat for their production 
respectively. Figure 2.4 shows an example of a roller belt consisting of 
several mats.  
 
Additionally, the empty drinking packages sometimes need to be guided 
towards a different direction within the backroom of the bottle deposit 
systems for optimal space allocation. TOMRA makes corners of roller 
belt for these occasions, allowing the empty drinking packages to take 
turns within the backroom. Corners of 90 degrees, 45 degrees and 30 
degrees are being produced to realize the turns. Figure 2.5 provides a 
visualisation of a 90 degree corner.  
 
At the roller belt department, a variety of other standardized product are produced as well that can 
help with guiding empty drinking packages towards further places for sorting and collecting. Most of 
these products consist of automated roller belts, capable of transporting empty drinking packages in 
a more controller manner or towards different elevation levels.  Table 2.1 provides an overview of the 
items produced at the roller belt production department, including a brief description as well as the 
variants per product type.   
 
 
 

Figure 2.2; EasyPac machine Figure 2.3; MultiPac machine 

Figure 2.4; Roller belt 

Figure 2.5; 90 degree corner 
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Table 2.1; Roller belt production overview 

Product name Description Variants 

Roller belt 
Transport empty drinking packages and 
crates on so-called ‘mats’ by means of gravity 

▪ 2m 
▪ 1.5m 
▪ 1m 
▪ 0.5m 

Corner 
Change direction of roller belt within the 
backroom 

▪ 30 degrees 
▪ 45 degrees 
▪ 90 degrees 

German Corner 
Similar to regular corner, but contains an 
adaptation to the design that only applies to 
corners from German orders 

▪ 30 degrees 
▪ 45 degrees 
▪ 90 degrees 

Elevator belt  
Lift items on roller belts to transport the 
items further via gravity 

▪ 2m 
▪ 1.5m 
▪ 1m 
▪ 0.5m 

Elevator belt start/stop 
Similar to a regular elevator belt, but includes 
a built-in start/stop system  

▪ 2m 
▪ 1.5m 
▪ 1m 
▪ 0.5m 

PET elevator belt 
Guides sorted empty PET bottles towards a 
collecting location or bag 

▪ 160mm width 
▪ 470mm width 

Merger 
Guide handed-in crates from a deposit 
machine towards the roller belts 

▪ Single size 1.75m 

V2 Conveyor 
Situated immediately after the bottle deposit 
system and is capable of transporting empty 
drinking packages  

▪ Single size 1 m 

Eco-Wall 
Deposit system for a diversity of recyclable 
materials such as batteries or lamps 

▪ T8/T9 600 
▪ T9 E+L+B 
▪ T9 300 

 
All products that require production at the roller belt department are being produced within 
standardized formats, as previously described. This allows the roller belt parts to be produced all the 
time so that they are being made to stock. In other words, the roller belts can be produced before an 
order arrives (if time allows this) and are stored within the finished goods warehouse. The exact 
number and types of roller belt needed to complete an order is available. So, to fulfil an order, the 
required roller belts can be picked within the finished goods warehouse to deliver these parts together 
with the other backroom elements. It can also occur that orders contain of only parts from the roller 
belt department.   
 

2.1.3 Conveyors production   
An incoming order often requires the production of one or multiple conveyors. Conveyors are able to 
guide the empty drinking packages in a more controlled manner compared to the roller belts. 
Conveyors consist of an automated belt, which is able to transport the empty drinking packages 
towards different heights. TOMRA assembles these conveyors by hand from a set of raw materials. 
The conveyors are of different lengths and heights, which are specified roughly beforehand by their 
customers. Especially the length is of great influence on the production time. Because of these 
differences within the conveyors, TOMRA produces the conveyors only when an order arrives. In total, 
TOMRA produces five products at the conveyor department, four conveyor types and one additional 
product that enhances user-friendliness during disposing empty drinking packages.  
 
Table 2.2 provides a brief description per produced product at the conveyor department.  
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Table 2.2; Overview of produced elements at the conveyors department 

Product name Description Figure 

Z-shape 
Can elevate empty drinking packages 
towards a different height in a Z-shape 
(see Figure 2.6) 

 

Feeder 
Transports large quantities of drinking 
packages towards a different height (see 
Figure 2.7) 

 

Pre-feeder 

Allows for transportation of large 
quantities of empty drinking packages 
towards further stages (see Figure 2.8). 
As the name implies, often situated 
before a feeder conveyor 

 

Depot 
Is able to guide empty drinking packages 
towards a different height, where there 
is no flat part located at the top 

N.A. 

Wash & Waste 

Washing sink and disposal bin in the 
shape of bottle deposit device to 
enhance user friendliness (see Figure 
2.9) 

 

  
Customers often order one or multiple conveyors often together elements from the table and roller 
belt department to create a complete backroom system. However, sometimes orders occur consisting 
of solely products that require production at the conveyor department.   

Figure 2.6; Z-Shape conveyor example 

Figure 2.7; Feeder conveyor example 

Figure 2.8; Pre-feeder conveyor example 

Figure 2.9; Wash and Waste 
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2.2 Planning and scheduling activities 
This section outlines how TOMRA manages its incoming orders to generate a production plan of the 
production departments. First, we provide an overview of the IT system that TOMRA uses to supports 
its production processes in Section 2.2.1. In addition, we discuss the current way TOMRA plans and 
schedules the incoming orders. A distinction is made between two different scheduling levels, namely 
planning on tactical level and on operational level which are described in Sections 2.2.2 and 2.2.3 
respectively.  
 

2.2.1 IT system 
TOMRA uses IFS as the ERP system for their production processes. IFS contains information regarding 
all the incoming orders. For each order, the system knows the different backroom elements required 
(table, roller belt and/or conveyor). The production specifications are derived from the bill-of-materials 
of the order element. This way, the system directly knows which materials are required to complete 
every element of an order. IFS also couples the assigned due dates of an order to the different order 
elements, so that an overview can be created on which backroom elements require soon production.  
 
IFS currently lists the production activities that can be worked on per department at a specific moment 
in time, where the activity with the earliest due date is listed at the top. TOMRA puts a lot of trust in 
this system and only sees the production steps of an order when the due date approaches, i.e., when 
the production activities are located at the top of the list. It is noticeable that currently, the order due 
date is coupled to all elements of that specific order. Consequently, production on an order takes place 
when the due date approaches which results into problems during peak demand periods.  
 
Furthermore, IFS acts as an inventory control system, as the system allows TOMRA to see how many 
items are in stock for each raw material as well as for the finished goods. The items on stock for each 
product are changed when a part of an order is transferred or set to complete. The system knows the 
materials required for the completed order part or element, so that the inventory levels are updated. 
Operational managers and some employees can indicate complete orders elements within the system.  
 
Additionally, the system automatically indicates when materials needed for production activities reach 
a certain reorder point. When this happens, TOMRA orders the required material(s) from their 
suppliers, where the number of items ordered is based on an order-up-to level. However, the 
operational managers at TOMRA also monitor the inventory for materials themselves. By looking 
currently approximately 120 days ahead in time, which is flexible and can change over time, the 
managers assess whether to order new materials. They do this on daily basis by observing the current 
inventory levels, orders within the system and outstanding orders that are not delivered yet.   
 
Figure 2.10 provides a simplified overview of the way in which IFS supports the production activities at 
TOMRA.  
 

Figure 2.10; Overview IT system support 
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However, IFS does not provide some sort of feedback on the feasibility of the assigned order due dates. 
This implies that the system does not consider external delivery times from the suppliers of raw 
materials for assessing the due date feasibility. This can result in materials not being available when 
the due date is approaching or when production is scheduled. Especially for stochastic external lead 
times, this often can cause inventory shortages and not meeting due dates.  

 

2.2.2 Tactical level  
The way a tactical level production plan is generated by TOMRA is that order due dates determine the 
outline of the schedule. When orders arrive, customers have the most saying into the order due date 
during the order negotiation, which are often stated a couple of months ahead in time. TOMRA does 
have some control in this process if they feel that this will not fit within their current production 
capacity or with respect to their suppliers, however this control is minor. To maintain a strong 
competitive position within the market and to satisfy the needs of customers, TOMRA wants to hold 
on to the proposed due dates as much as possible. However, TOMRA does want to have more saying 
into when a due date is feasible or not by means of capacity related overviews.  
 

When a due date is assigned for a certain order, the tactical level plan is more or less complete. In 
order words, the tactical level plan is completely based on the due dates of the incoming orders. These 
assigned due dates give an outline on when which order will be produced. As mentioned before, the 
ERP system lists the required production activities per department based on the order due date. Since 
TOMRA focuses a lot on this ERP system, orders are being produced close to their due date instead of 
spreading (part of) the workload towards earlier periods.  
 

As the ERP system does not consider required and available capacity, problems are likely to arise. For 
instance, one can imagine that the production workloads suddenly can increase significantly when 
relatively large orders have due dates close to each other or when there are many order due dates 
within a short time span.  
 

Figure 2.11 visualizes an overview of the workload spread for the table production of the year 2022 
from available data. This figure shows the total number of tables produced per week. Neglecting the 
production during the first and last weeks of the year, large fluctuations in the workload per week 
occur. As TOMRA produces only produces the tables when due date approach and assigns these due 
dates in a non-optimal manner, the workload is not spread evenly throughout the weeks.  
 

Figure 2.11; Workload spread table production 2022 
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In addition, as a consequence of waiting to produce the backroom elements until just before the 
assigned due date and having no capacity related insights, TOMRA can never provide earlier due dates 
to customer orders then the ones that their clients request. On the other side, TOMRA does not refuse 
customer orders to maintain a strong market position, customer satisfaction and good relationships. 
This all can result in a significant rise in the workloads in a short time period. Employees at the 
workplace often work in overtime to be able to finish all orders on time during these workload 
intensive periods. The costs of working in overtime, however, do not transfer over into the prices 
charged for customer orders. This indicates that costs of working in overtime are for TOMRA 
themselves.  
 
There are, however, two important reasons why some production activities only take place close to 
their due date. The first of which being that TOMRA has limited space within their finished-goods 
warehouse, where finishing production activities well ahead of the due dates would result in storage 
related problems. Especially for the tailor-made products that TOMRA produces at the table and 
conveyor departments, it is not desired to finish production early.  
 
Secondly, at TOMRA, there is a clear distinction between Dutch orders and foreign orders. The TOMRA 
facility in Apeldoorn receives and handles order requests from Dutch clients. When such a request 
arrives, TOMRA has limited information regarding the exact specifications of the order. For the 
requested standardizes elements of the roller belt department, TOMRA knows the number and 
specifications of the corresponding roller belt elements within an order at the moment of its arrival. 
However, when it comes to tables and conveyors that Dutch customers request, TOMRA only knows 
the number of tables or conveyors included within an order and has a general idea of the types 
requested. TOMRA knows the exact specifications regarding sizes and shapes of tables and conveyors 
within Dutch orders only about one week before the customer-requested due date. This is because all 
Dutch customers finalize the table and conveyor designs together with TOMRA after several checks on 
the designs at the location of the backroom installation.  
 
The TOMRA facility in Apeldoorn does not directly receive order requests from foreign customers, as 
these arrive at foreign TOMRA locations. These foreign TOMRA departments stay in close contact with 
foreign customers and finalize the order specifications together with their customers. After this has 
been done, the foreign TOMRA department requests a foreign order to the production facility in 
Apeldoorn, where all exact order specifications are known and production can commence 
immediately. However, due to the first reason, these foreign orders are often produced close to their 
assigned due date.    
 
The two reasons for the production of orders close to their due dates suggest the importance for 
optimizing due date assignments for incoming orders. Namely for a well-coordinated production and 
prevention of production capacity related issues.  
 

2.2.3 Operational level  
Approximately one week before the individual due dates of the tables and conveyors of a single order, 
an operational production schedule is constructed by the operations managers. So, production of an 
order only takes place a week before the stated individual product deadlines. During peak demand 
periods, production starts especially late as a consequence of the busy schedule and the scheduling 
per week approach. If a large order occurs, then part of the order is scheduled a couple of days earlier 
to spread a part of the workload. The operational managers know that they should start earlier on 
these large orders, as they have a rough idea what types and sizes of order are approaching their due 
dates and feel like they might run into trouble if they wait with the production of these large orders. 
 

Additionally, the production of tables and sometimes conveyors for Dutch clients can take place at 
most a couple of days before the customer requested due dates, which is different from other (foreign) 
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customers. As mentioned before, the reason for this is that the backroom design for Dutch clients need 
to be checked first at location, which often takes place at a very late stage. The operational production 
schedule is made by hand with logical thinking as the way of scheduling.  
 

The operational schedule allows for products of different orders to be produced non-sequentially. For 
instance, products for different orders can be produced in parallel on multiple workstations.  
Furthermore, the operational managers try to schedule the production of workload heavy systems in 
the beginning of each week. Again, no scientific reasoning lies behind this, only that employees will 
have most energy to work on the largest tables and conveyors at the beginning of each week.  
 

An overview of the way of planning at TOMRA on a tactical level an operational level can be seen in 
Table 2.3.  
 

Table 2.3; Overview of scheduling levels 

Level By whom Task Time horizon 

Tactical Customers  Assigning order due dates  Monthly 

Operational Operational managers Determining job sequences Weekly  
 
 

2.3 Conclusion on current situation 
The production process of the backroom elements of TOMRA consists of three main production 
departments: table production, roller belt production and conveyor production. Tables and conveyors 
can only be produced once an order arrives due to customizability of these elements. In addition, parts 
from the roller belt production department are standardized and can be produced upfront.  
 

From the current way of operating, it becomes clear that there is a need for proper due date 
assignment of incoming orders as well as a need to spread workloads. TOMRA is very dependent on 
their ERP system, which lists the necessary productions based on the earliest due date. However, this 
ERP system does not consider required and available capacity. This results in capacity related issues 
during peak demand periods, since TOMRA waits until the very last moment to produce asked 
elements. This implies that, next to optimizing order due date assignments, the workloads should be 
spread more evenly on a tactical level.  
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3. Literature review 
Within this chapter, we provide a literature review related to the combined due date generation and 
workload spread problem. This chapter forms the theoretical framework of the research. Section 3.1 
provides an overview of different types of production environments and elaborates on the required 
activities in the context of TOMRA. Section 3.2 addresses due date assignment methods from the 
literature. Section 3.3 discusses relevant tactical level resource allocation methods. In Section 3.4, we 
elaborate on ways to cope with production uncertainties in the context of this research. Section 3.5 
presents an overview of heuristics to tackle optimization problems. At last, Section 3.6 provides a 
summary of the literature review.   
 

3.1 Production environments 
Various types of production environments follow from the literature. Lager (2003) makes a general 
distinction between four different types of manufacturing environments, namely make-to-stock (MTS), 
assemble-to-order (ATO), make-to-order (MTO) and engineer-to-order (ETO). MTS concerns with 
standardized products in which production planning can be based on forecasted demand. On the other 
hand, ETO engineers and produces customizable products from scratch which differ per customer. 
MTO consists of producing customized products, where some or all of the necessary production to 
complete an order takes place after receiving the order (Saniuk & Waszkowski, 2016). ATO assembles 
the customer orders from standardized products and are seen as a combination of MTS and MTO 
production environments.  
 

The production environment of TOMRA can be seen as make-to-order (MTO) manufacturing, as the 
production of tables and conveyors only take place after a customer places an order. Since TOMRA is 
situated within MTO manufacturing, this type of environment is applicable for this research. 
 
Figure 3.1 provides a hierarchical framework for planning activities in such a MTO environment. This 
framework depicts planning activities related to multiple time horizons. The strategic level deals with 
activities in the long term (e.g. one or multiple years ahead), whilst the tactical level considers decisions 
in the mid-term (e.g. multiple weeks or months ahead) and the operational level deals with decisions 
in the short-term (e.g. on a daily or weekly basis).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Decisions such as the quotation of due dates and assigning available production capacities towards 
orders (resource capacity loading) are located on under the resource capacity planning header at the 
tactical level on the framework. This implies that resource capacity planning should serve as input to 
assign due dates and spread the workloads of incoming orders on the resources appropriately. In order 
words, it is especially relevant to consider the production capacity in making such decisions.  

Figure 3.1; Hierarchical planning framework applied to MTO (Hans et al., 2007) 
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3.2 Due date assignment methods 
This section discusses due date assignment methods found within the literature. First, Section 3.1.1 
treats a general view on how due date assignment problems are solved. Next, Section 3.1.2 talks about 
due date assignment models from the literature that are focused on production environments similar 
to TOMRA. At last, Section 3.1.3 discusses several relevant finite loading methods that are capable of 
assigning due dates.   
 

3.2.1 General view on due date assignment  
The topic of due date assignment, also referred to as due date quotation, is well-discussed within the 
literature. Assigning advantageous due dates for customer orders and timely delivery of goods to 
customers is an important aspect in production environments and is said to enhance customer 
satisfaction and provide a competitive advantage (Sha & Liu, 2004). More specifically, in order to avoid 
tardiness penalties, with the possibility of losing customers, production companies are under 
increasing pressure to assign attainable due dates (Jing, 2013). On the other hand, promising due dates 
too far in the future may not be acceptable by customers, forcing a company to offer price discounts 
to retain business or resulting in lost sales (Jing, 2013). Due date assignment can thus be seen as 
challenge where a trade-off occurs between assigning short due dates to incoming orders and 
preventing tardiness penalties for not meeting due dates.  
 
There exist plenty model variants for due date assignment, where assigning due dates is considered a 
necessary step for scheduling problems in production environments. After due dates are assigned, a 
production schedule is often constructed to meet these established due dates, indicating that assigning 
due dates often goes hand in hand with creating a production schedule (Ng et al., 2003).  
 
Gordon et al. (2002) introduce several relevant due date assigning methods. The most found relevant 
models are addressed. First of all, Gordon et al. (2002) discusses due date assignment based on the 
total work content (TWK) of an incoming production order. This is a convenient and relatively simple 
model, where larger production orders are assigned a due date further in time. The TWK due date 
assignment method assigns due date 𝑑𝑖  order 𝑖 based on the release date 𝑟𝑖. This release date indicates 
the first possible start time of an order, i.e., when all required materials of an order are available for 
production. A multiple of the order processing time 𝑝𝑖  is added to the release date in the TWK method 
in the following manner:  
 

𝑑𝑖 = 𝑟𝑖 + 𝑘𝑝𝑖 
 
The constant 𝑘 > 0 represents a common multiple. This constant has to be determined in order to 
define the due dates for each order. The job release date 𝑟𝑖 causes jobs only to be produced once its 
desired raw materials are available to start the production.  
 
In addition, Gordon et al. (2002) mention due date assignment based on the number of operations 
(NOP) required to complete a job. Within this model, jobs requiring more operations to be completed 
are assigned a due date further in time. The NOP due date assignment method assigns due date 𝑑𝑖  to 
order 𝑖 based on a multiple of a constant model parameter 𝑘 > 0 and the number of operations 
required 𝑀𝑖 to complete order 𝑖 as follows:  
 

𝑑𝑖 = 𝑟𝑖 + 𝑘𝑀𝑖 
 
At last, Gordon et al. (2002) discusses a due date assignment method based on common slack (SLK). 
Here, due dates are assigned according to a sum of the release dates 𝑟𝑖, processing times 𝑝𝑖  and a 
common slack value 𝑞 in the following way:  
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𝑑𝑖 = 𝑟𝑖 + 𝑝𝑖 + 𝑞 
 
The common slack factor stimulates consistency when, for instance, all jobs have to be delivered to 
the same customer.  
 
The methods discussed by Gordon et al. (2002) are relatively simple and indicate that the assignment 
of a due date depends on the workload of an order as well as when an order or job can start its 
production. Moreover, these models are especially useful when due date assignment decisions are 
necessary in the context of scheduling problems, where order sequencing can be addressed based on 
the assigned due dates. However, in the specific production environment of TOMRA, these models 
cannot directly be considered useful.    
 

3.2.2 Due date assignment in MTO  
Not many due date assignment methods in the context of MTO manufacturing are available within the 
literature due to production uncertainties and complex production systems. According to Zorzini et al. 
(2008), the higher the product complexity and customization degree, the more workload-based 
methods and detailed analyses are needed to assign due dates.  
 
First, due dates in MTO production environments can be assigned based on the bottleneck operation. 
Production processes in MTO manufacturing can be dominated by a bottleneck operation stage (Ten 
Kate, 1994). This bottleneck operation can be used to assigned due dates, since the throughput of an 
entire production facility can depend on the bottleneck process. Park et al., (1999) propose a Heuristic 
Delivery Due Date Algorithm (HDDDA), allowing decision makers to find reliable due dates for each 
production order in a MTO environment by considering the residual capacity of the bottleneck 
operation. The heuristic introduced by Park et al. (1999) assigns a target production date to an order, 
after which a production starting date is determined via backwards scheduling of the order. If this 
starting date precedes the order release date, then the target production date is changed, otherwise 
the starting date is feasible. Next, the workload of the bottleneck process is compared with the 
maximum capacity of this bottleneck process. If the workload of the bottleneck process is less than its 
maximum capacity, then the due date is easily determined, otherwise the heuristic changes the target 
production date and starts again.  
 
Due dates in a MTO manufacturing environment can, moreover, be assigned based on the total 
production capacity. Production capacity can be considered for due date assignment decisions by 
looking at resource availabilities, previously accepted orders as well as their production progression 
(Guhlich et al., 2015). This implies that a detailed capacity overview is necessary for these decisions. 
Moreover, Guhlich et al. (2015) state that decisions on due dates should occur directly after an order 
has arrived.  
 
Corti et al. (2006) propose a capacity-driven model to verify the feasibility of proposed due dates of 
customers and establish reliable due dates in a MTO environment. The method compares the 
requested capacity of an incoming order with the actual available capacity. A proposed due date can 
either be stated feasible or infeasible by the model based on two capacity checks. In detail, once a due 
date is proposed, the earliest release date (ERD) and last operation completion date (LOCD) are known. 
The ERD is obtained by adding the maximum delivery lead time estimated of the needed materials to 
the arrival date of the order request. While the LOCD equals the due date minus the expected time for 
quality control and order finalizing steps. Two schedules are constructed via forward and backward 
scheduling for an incoming order. When applying forward scheduling, the available capacity is 
allocated starting from the earliest release date and first operation based on average production times 
(Zorzini et al., 2008). Whilst backwards planning allocates the available capacity starting from the set 
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due date and last operation of the production cycle based on average production times (Zorzini et al., 
2008). These methods create the following lower and upper bounds for each operation 𝑗 of order 𝑖: 
 

- The earliest starting date (𝐸𝑆𝐷𝑖𝑗); 

- The earliest completion date (𝐸𝐶𝐷𝑖𝑗); 

- The last starting date (𝐿𝑆𝐷𝑖𝑗); 

- The last completion date (𝐿𝐶𝐷𝑖𝑗); 

 
These bounds are used to calculate the capacity that is requested on each production process in a 
relevant time horizon. This is done by adding the overlap between different orders to indicate if an 
order due date is feasible based on a critical index. This critical index indicates whether a resource will 
be overloaded, i.e., the maximum capacity is likely to be exceeded. Per time horizon, which could be 
one or multiple weeks, the possible maximum and minimum requested capacity on a certain resource 
𝑠 as well as the available capacity on this resource are determined to form the critical index.   
 
In addition, MTO production environments cope with various uncertainties during the order 
acceptance stage according to Wullink et al. (2004). In this paper, uncertainty with respect to used 
materials, total work content, tool requirements, production times and resource availabilities are 
considered. As the order information is available in detail for TOMRA during the order acceptance, 
there are no uncertainties with regard to the materials required for an order. Variabilities lie within 
the production times as well as for external lead times of raw material. Song et al. (2002) develop a 
method of assigning due dates taking into account uncertainties in production times. This method 
assigns a due date for an order when the probability of completing the order before the due date is 
equal to a certain service target level 𝜆.  
 

𝐹𝑤(𝑑𝑖) = 𝜆,  
 
where 𝐹𝑤(𝑑𝑖) indicates the cumulative probability distribution of the completion time of order 𝑖 with 
due date 𝑑𝑖. This cumulative probability distribution is the convolution of the truncated cumulative 
distributions of the production stages (operations to complete an order). Distributions such as 
exponential or normal are assumed for the processing times of every operation 𝑗 required for 
completing order 𝑖. These convolutions, however, depend on many underlying assumptions making 
the results highly dependent on the choice of distribution.  
 

3.2.3 Finite loading methods 
Finite loading models combine due date setting with capacity planning and consider workloads of 
incoming orders for this process. Finite loading methods assume a fixed capacity available and do not 
permit overloads. Various finite loading models existing are capable of assigning due dates in a MTO 
environment. 
 
The way finite loading methods work is that, first, the planning horizon is broken down into 𝑇 equal 
length time buckets with capacity norm or maximum regular capacity 𝑄𝑠𝑡 for resource 𝑠 in period 𝑡. 
An incoming order 𝑖 arrives with its corresponding operations 𝑗, which need to be loaded into the time 
buckets. The operations of an order are added (loaded) to the existing workload 𝑊𝐿𝑠𝑡 of resource 𝑠 in 
period 𝑡. Each operation 𝑗 of an order 𝑖 has a processing time 𝑝𝑖𝑗, so when an operation is loaded into 

a time bucket, its workload increases by this processing time. Finite loading methods have as output 
due dates 𝑑𝑖𝑗  that indicate the due date of operation 𝑗 of order 𝑖. The due date of the entire order is 

equal to the due date of the last loaded operation of that order.  
 
Thürer et al. (2013) discuss a finite loading approach that considers the concept of forward scheduling 
in assigning due dates, namely Forward Finite Loading (FFL). Note that there is a difference between 
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scheduling and loading, since loading assigns work to a set of resources but does not directly indicate 
in detail when and in which order operations are carried out. The FFL method determines due dates in 
a stepwise manner by fitting required operations of an order to remaining capacity. Figure 3.2 
visualizes an example of loading workloads within a periodic loading framework. Starting with the first 
operation of a job, this operation is loaded on resource 𝑠 if there is enough capacity to load the full 
workload of this operation in period 𝑡. Otherwise formulated, if 𝑊𝐿𝑠𝑡 + 𝑝𝑖𝑗 ≤ 𝑄𝑠𝑡, then the operation 

if fully loaded into that period. If there is not enough capacity available in the corresponding period, 
then the next period (𝑡 + 1) is considered until the operation can be loaded fully into a single period. 
Note that 𝑑𝑖𝑗  is the end of the time period in which operation 𝑗 of order 𝑖 is loaded. However, this does 

not necessarily have to be the case, as different choices can be made for setting the due date. For 
instance, one can include some form of slack, where 𝑑𝑖𝑗  is some time after the time bucket of the last 

loaded operation instead. At last, 𝑑𝑖0 indicates the release date time of an order.  
 
If there are precedence relationships applicable, i.e., another operation or production step needs to 
take place beforehand, then time periods after the due date of that previous operation are considered 
for loading the operation. More specifically, an operation can only be loaded from 𝑑𝑖𝑗−1 onwards if 

precedence relations apply, where 𝑑𝑖𝑗−1 indicates the due date of the preceding operation. The due 

date of such an operation is then the end of the first time period in which the operation with processing 
time 𝑝𝑖𝑗  can be loaded.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
The FFL model has several limitations. First, the operations cannot be partially loaded into multiple 
time buckets. This implies that a processing time can never exceed the capacity norm. In addition, the 
due date of a job is set to the last loaded time bucket. Since it is unknown which loaded operation will 
be produced first, the due dates might be overestimated.  
 
To overcome the partial loading limitation (i.e. operations must be fully loading into a single time 
bucket) of the FFL approach, Robinson and Moses (2006) introduce a search procedure that allows for 
partially loaded operations. For an operation 𝑗 of order 𝑖 , the number of time bucket intervals required 
(𝑏𝑖𝑗) can simply be determined as follows: 
 

𝑏𝑖𝑗 = [
𝑝𝑖𝑗

𝐺
] 

 
where 𝑝𝑖𝑗  is the corresponding processing time and 𝐺 indicates the time bucket size (granularity). 𝑏𝑖𝑗 

is rounded up to assess the required number of time bucket intervals. If the number of time bucket 
intervals required equals one (𝑏𝑖𝑗 = 1), then the search procedure locates the earliest available single 

interval to insert the task. If the number of time bucket intervals is more than one (𝑏𝑖𝑗 > 1), then the 

search procedure looks for availability across multiple contiguous intervals.  

Figure 3.2; Finite Forward Loading (Thürer et al., 2013) 
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The first advantage of the method from Robinson and Moses (2006) is that by limiting the number of 
time buckets in which operations can be loaded, it prevents the operations of the same job from begin 
spread out in a large number of time periods. In addition, the method schedules the operations in 
consecutive intervals if more than one interval is required.  
 
There exist ways to deviate from the capacity norm limitation of the FFL, as stated by Nyhuis and Filho 
(2002). They state that forward scheduling can determine the due date from the current date, however 
capacity must be adjusted if this due date violates the desired customer due date. Thürer et al. (2013) 
discuss a Forward Finite Loading method that considers schedule deviations (FFLSD). Here, schedule 
deviations, rather called backlogs, are defined as the workload that should have been completed minus 
the actual complete load. This backlog is distributed over the time buckets. If the backlog is positive, 
then the backlog hours fill the available capacity gaps starting from the first bucket (earliest job release 
date). On the other hand, if the backlog is negative, the workload loaded in the time buckets is reduced 
and the available capacity is increased.  
 
Next to the discussed FFL method, Thürer and Stevenson (2019) discuss a Backward Finite Loading 
method (BFL). This method uses the concept of backwards scheduling in order to operation due dates 
to incoming orders. When applying BPL, a due date for an order is already available, after which loading 
takes place backwards from this already quoted due date to determine when every operation can take 
place. The goal of BPL is to assign operation starting dates 𝑟𝑖𝑗 for operation 𝑗 of order 𝑖.  

 
Starting with the last operation of a job, this operation is loaded on resource 𝑠 during period 𝑡 if there 
is enough capacity to load the full workload of this operation in this period (𝑊𝐿𝑠𝑡 + 𝑝𝑖𝑗 ≤  𝑄𝑠𝑡). If 

there is not enough capacity available in period 𝑡, then a next period is considered until fully loaded. 
The release time 𝑟𝑖𝑗 on resource 𝑠 is equal to the start of the period where the first operation is loaded. 

If precedence relationships are applicable, then the release time of the next operation (𝑟𝑖𝑗+1) should 

occur after the release time of the previous operation plus its processing time (𝑟𝑖𝑗 + 𝑝𝑖𝑗).  

 
Nyhuis and Filho (2002) mention that backwards scheduling calculates the order release date by means 
of backwards scheduling from the customer due date. However, if this calculated release date lies in 
the past or is an unacceptable date for the customer, then capacity needs to be adjusted.  
 
Bertrand (1983) discusses another finite loading method, namely the Cumulative Forwards Finite 
Loading (CFFL) method. This approach is similar to the FFL method, however a cumulative load is 
applicable. This implies that cumulative capacity within a time bucket at a resource is used to load the 
workloads of order. This cumulative load allows for operations to be spread out over multiple time 
buckets, where the load of each operation contributes to the cumulative load until a capacity norm is 
reached.  
 
To load operation 𝑗 of an order 𝑖 and a certain resource 𝑠 , we search for period 𝑡 in which all following 
periods can fully load this operation (𝑊𝐿𝑠𝑡∗ + 𝑝𝑖𝑗 ≤  𝑄𝑠𝑡∗ , where 𝑡∗ = 𝑡, 𝑡 + 1, … , 𝑇). Once this period 

𝑡 is found, the required operation is loaded into all subsequent period 𝑡∗. The due date of operation 𝑗 
of order 𝑖 (𝑑𝑖𝑗) is equal to the start of period 𝑡 plus an arbitrarily selected 0.25 times the length of the 

period. Once again, 𝑑𝑖0 indicates the release date time of an order and if precedence relationships 
applicable between jobs, then only time periods after the due date of that previous operation are 
considered.  
 
Variants of the CFFL method exist that are capable of deviating from the existing capacity. Thürer et 
al. (2013) mention a Cumulative Forward Finite Loading method that considers schedule deviations 
(CFFLSD). Just like the previously discussed FFLSD method, the CFFLSD approach uses the idea of 
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backlogs to deviate from the capacity norms. Figure 3.3 visualizes this approach within a cumulative 
loading framework.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.3; Cumulative Finite Forward Loading (Thürer et al., 2013) 
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3.3 Tactical level capacity planning 
This section outlines knowledge from the literature regarding resource allocation to spread workloads 
taking into consideration the production capacity. Section 3.2.1 discusses (near)optimal capacity 
planning methods. Section 3.2.2 addresses commonly used objective functions for the capacity 
planning methods.  
 
The assignment of due dates is often directly related with the construction of a production schedule. 
Due dates are often assigned during the order acceptance stage, after which is tactical level planning 
is made, where a tactical planning is concerned with allocating available resources to arriving orders 
as efficiently as possible (Wullink et al., 2004).  
 

3.3.1 Capacity planning methods 
Several methods exist within the literature that can spread the workload of incoming orders efficiently 
by assigning the capacity of resources. Decisions regarding capacity assignment and the use of regular 
and non-regular capacity are usually made at the rough-cut capacity planning (RCCP) level (de Boer, 
1998).  
 
De Boer (1998) proposes a RCCP approach for multiple projects with given order characteristics (such 
as due dates). Here, a set of 𝑁 work packages or jobs (𝑗 = 1, … , 𝑁) that should be planned on 𝑆 
available resources (𝑠 = 1, … , 𝑆). Here a work package or job relates to an operation as part of an 
order. The time horizon is divided into 𝑇 time buckets of one week, where 𝑇 is large enough to 
potentially process all work packages. Each resource 𝑠 has 𝑄𝑠𝑡 hours capacity available in every time 
bucket. Moreover, each work package 𝑗 requires 𝑞𝑗𝑠 capacity on resource 𝑠 for its processing. At most 

a fraction 
1

𝑝𝑗
 of work package 𝑗 can be performed in any time bucket, where �̂�𝑗  indicates the minimum 

duration of work package 𝑗. Besides, work package 𝑗 has release date 𝑟𝑗 and due date 𝑑𝑗, so work 

package 𝑗 cannot start before 𝑟𝑗 and should be finished before 𝑑𝑗 + 1. In addition, precedence 

relationships between work packages can be included, where a set of direct predecessors 𝑃𝑗 must be 

completed before work package 𝑗 can begin.  
 
A proportion 𝑥𝑗𝑡 of package 𝑗 in time bucket 𝑡 is performed and should be decided, where an equal 

fraction is spent on work package 𝑗 in week 𝑡 on all resources. An adaptation of this exists, as 
mentioned by Gademann and Schutten (2005), where a fraction 𝑥𝑗𝑠𝑡 of package 𝑗 on resource 𝑠 in time 

bucket 𝑡 should be decided (not necessary an equal fraction spent on all resources).  
 
Two main variants of the RCCP problem can be identified from de Boer (1998): 
1) The resource driven RCCP problem, where no nonregular capacity use of resources is allowed and 
the objective is to minimize the maximum job lateness. Figure 3.4 provides an example of a resource 
driven RCCP problem solution, where jobs with durations are all scheduled within the boundaries of 
the maximum capacity.  
 
 
 
 
 
 
 
 
 
 
 

Figure 3.4; Resource driven RCCP example from de Boer (1998) 
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2) The time-driven RCCP problem, where nonregular capacity may be used to meet the order deadlines 
and the objective is to minimize the usage of nonregular capacity. Figure 3.5 gives an example of a 
time driven RCCP solution configuration, in which some jobs are scheduled outside the boundaries of 
the maximum capacity in order to meet due dates.  
 
 
 
 
 
 
 
 
 
 
 
 
There exist multiple heuristics that can find solutions to the RCCP problem variants. De Boer (1998) 
provides an incremental capacity planning algorithm (ICPA) for the time driven RCCP problem. Besides 
Gademann and Schutten (2005) propose several heuristics for the RCCP problem. They categorize the 
heuristics in constructive heuristics, heuristics that convert to a feasible solution and heuristics that 
can improve on feasible solutions.  
 
Next to the RCCP problem, Hans (2001) mentions a resource loading problem capable of optimal 
resource allocation. Within this approach, both regular and nonregular capacity can be allocated, 
making it a combination between the resource driven approach and time driven approach discussed 
previously. The aim of the resource loading problem is to minimize the costs of nonregular capacity 
usage (working in overtime of hiring temporary staff) and the costs of lateness of jobs.  
 
The proposed resource loading problem by Hans (2001) is stated to be NP hard. Therefore, Hans (2001) 
proposes a branch-and-price technique that can solve the mixed integer linear programming (ILP) 
model of the resource problem. This branch-and-price technique is a combination between branch-
and-and column generation to find feasible solutions for the problem.  
 

3.3.2 Capacity planning objectives  
The capacity planning methods discussed above can efficiently spread the workload on resources on a 
tactical level according to various objective functions. We discuss these objective functions in more 
detail within this subsection. Besides, we discuss other relevant objectives as identified from the 
literature.  
 
The resource driven RCCP problem strives to allocate workload to resources in such a way that the 
lateness of a job is minimized, where a job relates to an operation of an order. Job lateness 𝐿𝑗 is defined 

as 𝐶𝑗 − 𝑑𝑗, with job completion time 𝐶𝑗 and due date 𝑑𝑗. In addition, job tardiness 𝑇𝑗 can be written as 

𝑚𝑎𝑥{0, 𝐶𝑗 − 𝑑𝑗}. These two measures can form multiple objective functions as mentioned by de Boer 

(1998) and Hans (2001): 
 

• Average tardiness : 
1

𝑁
∑ 𝑇𝑗

𝑁
𝑗=1  

• Maximum tardiness : 𝑚𝑎𝑥
𝑗=1,…,𝑁

𝑇𝑗 

• Number of tardy jobs : ∑ 𝑣(𝐿𝑗)𝑁
𝑗=1 , where 𝑣(𝑥) =  {

1, 𝑖𝑓 𝑥 > 0    
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

• Average lateness :  
1

𝑁
∑ 𝐿𝑗

𝑁
𝑗=1  

Figure 3.5; Time driven RCCP example from de Boer (1998) 
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• Maximum lateness : 𝑚𝑎𝑥
𝑗=1,…,𝑁

𝐿𝑗 

 
For the resource driven RCCP problem formulation, the objective is to minimize the maximum lateness 
of all related jobs.  
 
The time driven RCCP problem aims to minimize the costs of the use of nonregular capacity. Gademann 
and Schutten (2005) formulate the objective function of the time driven RCCP in the following way: 
 

𝑚𝑖𝑛 ∑ ∑ 𝑐𝑠𝑡𝑈𝑠𝑡

𝑆

𝑠=1

𝑇

𝑡=1

 

 
where there are 𝑇 time buckets, 𝑆 resources and one unit of nonregular capacity usage 𝑈𝑠𝑡  on resource 
s during week 𝑡 has a cost of 𝑐𝑠𝑡. The goal is to minimize the costs of nonregular capacity usage 𝑐𝑠𝑡𝑈𝑠𝑡 
on all resources over all time buckets. However, de Boer (1998) argues that organizations also want to 
avoid peaks in the capacity usage. Therefore, the paper suggests to squaring the nonregular capacity 

usage on resource 𝑠 during week 𝑡 instead (𝑈𝑠𝑡
2 ).  

 
In addition to minimizing lateness, tardiness, the costs of nonregular capacity usage or a combination 
between them as proposed by Hans (2001). Gordon et al. (2002) suggest that one should also include 
costs for completing an order or job too early. In this paper, they define job earliness as 

𝑚𝑎𝑥{0, 𝑑𝑗 − 𝐶𝑗}, where 𝑑𝑗 indicates the due date and 𝐶𝑗 the completion time of job 𝑗.  
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3.4 Production uncertainties  
This section discusses production uncertainties that commonly take place in a MTO production 
environments. Section 3.4.1 addresses variabilities in the lead time of suppliers. Moreover, Section 
3.4.2 elaborates on ways to deal with processing times variability in a scheduling context.  
 

3.4.1 Lead time variability 
Variability might occur within external lead times of suppliers from needed raw materials. External 
lead time variability results in uncertain release dates of orders (Wullink et al., 2004), which can cause 
production related issues such as not meeting due dates. Every reasonable effort should be made in 
order to eliminate lead time variability, however often external lead time variability relates to 
uncertain shipping times or inconsistent suppliers (Silver et al., 2021).  
 
Silver et al. (2021) mention the application of external lead time distributions to cope with the external 
lead time variability. For this, estimates of the mean 𝐸(𝐿) and variance 𝑉𝑎𝑟(𝐿) of the external lead 
time length are necessary to determine. These parameters can be determined via data analysis, where 
often a Normal distribution follows. However, according to Silver et al. (2021), when the ratio of 

standard deviation of the external lead time length and expected external lead time demand 
√𝑣𝑎𝑟(𝐿)

𝐸(𝐿)
 

becomes large, then a Gamma distribution is more appropriate. The main reason for this is that 
otherwise negative values of the lead time length might occur.  
 
However, if no clear external lead time distribution is distinguishable, then sampling method by means 
of Monte Carlo simulation are applicable to cope with lead time variability. Shapiro (2003) mentions 
the sample average approximation (SAA) method that is capable of solving stochastic optimization 
problems. The idea behind this approach is that scenarios are randomly sampled, where the objective 
function consists of the expected value over all scenarios (Shapiro, 2003). The objective function 
converges to the true (optimal) value if the number of scenarios approach infinity, as this is not 
feasible, the method uses a smaller number of scenarios to approximate the value. In addition, 
Pagnoncelli et al. (2009) discuss a way to solve stochastic optimization problems using SAA where the 
uncertainty lies within the constraints instead. This is applicable when it is desired to acquire a feasible 
solution, where different scenarios can test the feasibility.  
 

3.4.2 Processing time variability 
Variability of processing times is a common characteristic of MTO production environments. Here, the 
challenge is to estimate the processing times of (aspect of) incoming orders as precise as possible to 
avoid capacity related issues.  
 
A way to cope with variable or uncertain processing times is to estimate them by means of a probability 
distribution. Shen and Zhu (2018) assume production processing times to follow a normal distribution 
for a parallel machine scheduling problem. Moreover, Goren and Sabuncuoglu (2009) assume 
processing times to be distributed according to a uniform distribution in the context of a single 
machine scheduling problem.  
 
Machine learning techniques can also be applied to deal with processing time variabilities in a 
scheduling context. Techniques such as using artificial neural networks or regression are especially 
relevant when it comes to this (Yamashiro & Nonaka, 2021). These machine learning techniques can 
estimate processing times from a set of input parameters. Input parameters can relate to the type of 
products produced, order sizes or steps required. In addition to machine learning techniques, data 
mining can also serve to estimate order processing times from the order attributes (Öztürk et al., 2006). 
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3.5 Heuristics 
Finding exact and optimal solutions for capacity planning problems in manageable computational 
times is not feasible for large problem instances (de Boer, 1998; Gademann & Schutten, 2005). In order 
to find good or near-optimal solutions in reasonable computational times, approximate methods, also 
called heuristics, are often of use (Aickelin & Clark, 2011). The literature highlights two main categories 
of heuristics, namely construction heuristics and improvement heuristics. We discuss promising 
construction and improvement heuristics for our problem in Sections 3.5.1 and 3.5.2 respectively. At 
last, Section 3.5.3 highlights relevant neighborhood operators for the problem at hand.  
 

3.5.1 Construction heuristics  
Construction heuristics can make complete solutions from scratch in an efficient manner. This type of 
heuristic starts with an empty solution and iteratively adds solution elements to extend the solution 
until a complete feasible solution is reached (Sörensen et al., 2018). Often, a priority rule or otherwise 
called greedy selection rule determines which element(s) to add in each iteration (Sörensen et al., 
2018). In a scheduling context, elements can for instance refer to jobs or operations that need to be 
assigned to a set of resources or machines. These jobs can iteratively be scheduled on the available 
resources within a construction heuristic to form a complete solution. This can be done based on a 
wide range of priority rules, such as First Come First Served (FCFS), Earliest Due Date (EDD), Shortest 
Processing Time (SPT) etcetera (Ruiz, 2015).  
 
Some types of construction heuristics, such as dynamic programming, are even capable of generating 
optimal solutions by recursively constructing solutions. In addition, construction heuristics allow no 
backtracking. This implies that an element cannot be removed from a solution once this part of the 
solution is selected (Radar, 2010). 
 

3.5.2 Improvement heuristics  
Improvement heuristics aim to find a better solution from a feasible starting solution in an iterative 
manner. This is done by constructing neighborhood solutions, where neighborhood solutions can be 
constructed by modifying the current solution to a certain extent. Section 3.5.3 addresses several 
relevant ways in which a neighborhood solution can be constructed. Several improvement heuristics 
exists that can cope with neighborhood solutions in various ways, where eventually the best found 
solutions is returned.  
 
The steepest descent heuristic searches within the neighborhood 𝑁(𝑥) of a certain feasible solution 𝑥 
to find solution 𝑥′ with the best objective value. If such a solution 𝑥′ exists, then this best neighbor 
solution is selected and the process is repeated. The main advantage of the steepest descent heuristic 
is that is it capable of finding better solutions relatively fast (Pirlot, 1996). There are some drawbacks 
to this steepest descent heuristic, since first, the best found solution is likely to be a local optimum 
instead of the desired global optimum as depicted in Figure 3.6. This is because the quality of the best 
found solution greatly depends on factors such as the initial solution, the way a neighborhood solution 
is chosen or the neighborhood for each feasible solution (Pirlot, 1996; Rader, 2010). Moreover, the 
steepest descent heuristic stops once a local optimum is found, so the heuristic stops if there is no 
improving solution within the neighborhood.   
 
There are heuristics that can avoid being stuck at local optima. These so-called metaheuristics can 
balance intensification and diversification to overcome the local optima (Radar, 2010). Intensification 
refers to exploiting areas with promising solution characteristics, whereas diversification allows 
exploration of a wider area of possible worse neighborhood solutions. Steepest descent focuses on 
intensification, however metaheuristics can balance between the two.   
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Simulated annealing (SA) is such a metaheuristic capable of escaping local optima by allowing hill-
climbing moves (Henderson et al., 2003). The general idea of SA is that the algorithm starts with 
diversification and ends with intensification. The way SA works is that neighborhood solutions are 
constantly constructed for a prespecified number of iterations (Markov chain length). A constructed 
neighborhood solution 𝑥’ is accepted when its objective is better than the current solution 𝑥. If such a 
solution is accepted, then the heuristic searches in the neighborhood of the accepted solution for other 
solutions during the next iteration. However, when a neighborhood solution 𝑥’ is worse, the solution 
is accepted with a certain probability. This acceptance probability depends on the difference in 
objective value between the two solutions (𝑓(𝑥) − 𝑓(𝑥′)) as well as the progression of the heuristic 
represented by temperature 𝑇. The temperature level decreases after the Markov chain length, which 
often happens by means of cooling factor 𝛼 (where 𝑇 becomes 𝛼𝑇 ). This lower temperature results in 
lower acceptance probabilities of neighborhood solutions. In other words, the process of decreasing 
the temperature results in more intensification and less diversification as the heuristic progresses. 
After decreasing the temperature, the algorithm starts again with the construction of neighborhood 
solutions for the duration of the Markov chain length, but now with the lower temperature. In addition, 
the overall best found solution is stored throughout running the algorithm and updated if a better 
solution is found.  
 
The heuristic stops when a certain condition is met. This condition can be a certain temperature level, 
a prespecified number of iterations or when the current solution does not change after a prespecified 
number of iterations (Radar, 2020).  
 
Figure 3.7 provides an overview on how the SA heuristic works.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.6; Local and global optima visualization (Tahasozgen, 2021) 

Generate initial solution x 
Set x* = x  
While stopping condition not met: 
       For m = 0 to MarkovLength                     
 x’ = random solution in N(x)  
 If f(x’) is better than f(x): 
  x = x’ 
  If f(x’) is better than f(x*) 
   x* = x’ 
  End 

 Elseif random number(0,1) ≤  e
f(x)−f൫x′൯

T  
  x = x’ 
 End 
       End 
       Update T 
End  
Result = x* 

 
Figure 3.7; Simulated annealing heuristic 
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The choice for the parameters of the SA heuristic, namely the Markov chain length, the initial 
temperature level, the way of updating the temperature and the stopping condition is referred to as 
the cooling scheme.  
 
Tabu search (TS) is another type of metaheuristic, where memory is used to escape from local optima 
(Glover & Laguna, 1993). TS applies the sample principle as local search, where the best neighborhood 
solution is selected until a local optimum is reached. TS can move away from these local optima, as 
recent solutions are put on a tabu list and cannot be selected until they are removed from this list. This 
limits the neighborhood of the solution and prevents cycling behavior to recently visited solutions 
(Radar, 2010). Already visited solutions can be removed from the tabu list if the list exceeds a specified 
maximum length, indicating how long solutions are kept in memory. In summary, the best solution 
that is not on the tabu list is selected from the neighborhood of the current solution.  
 
Solution characteristics are commonly stored on the tabu list, since storing entire solutions can be 
impractical due to large solution sizes (Radar, 2010). Many solutions can have the stored solutions 
characteristics on the tabu list, including the global optimum. To prevent making better solution tabu, 
an aspiration criterion can be implemented that allows tabu moves to be used. Such a criteria could 
be that a tabu move may be used if it results in a better solution than the current best found solution. 
Note that TS stores the overall best found solution as well.  
 
The heuristic stops when a certain stopping criterion is met, which can be a prespecified number of 
iterations or a maximum running time (Glover & Laguna, 1993).  
 
Figure 3.8 shows an outline on the way the TS heuristic operates.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Generate initial solution x 
Set x* = x  
Tabu list = Ø 
While stopping condition not met: 
       Generate neighbor solutions from N(x) 
       For x̂ in neighbor solutions               
 If x̂ ∉ Tabu list and f(x̂) is better than f(x) 
  x = x̂ 
 Elseif Aspiration criterion met 
  x = x̂ 
 End 
       End 
       If  f(x) is better than f(x*) 
              x* = x 
       End 
       Add x to Tabu list  
       If Tabu list length > Max Tabu list length 
              Remove last from Tabu list  
       End  
End  
Result = x* 

  
Figure 3.8; Tabu search heuristic 
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3.5.3 Neighborhood operators   
The choice of using an appropriate neighborhood operator or neighborhood search technique that is 
capable of generating neighborhood solutions is crucial for the performance of improvement heuristics 
(Glover, 2003). One or multiple neighborhood operators define the neighborhood structure, which is 
the set of solutions that can be reached from current solution 𝑥 in one single step of the algorithm 
(Glover, 2003). In addition, a neighborhood is connected when the used neighborhood operator(s) can 
convert any solution configuration into another solution, including a global optimum, within a finite 
number of iterations.  
 
Table 3.1 shows the found relevant neighborhood operators that are identified from the papers of 
Glover (2003), Guo et al. (2014) and Krim et al. (2019) in the context of scheduling jobs or operations 
of orders onto a set of resources or machines.  
 
Table 3.1; Overview neighborhood operators in scheduling context 

Neighborhood operator Definition 

Swap operator 

The neighborhood structure of the swap operators consists of all 
solutions that can be obtained by swapping jobs with each other 
within a schedule. This implies that the swap operator maintains the 
positions within the schedule, where only the type of job changes. 
This operator allows that all jobs can be swapped with each other to 
generate a new neighborhood solution.   

Consecutive swap operator 
The consecutive swap operator obtains neighborhood solutions by 
only allowing swaps between consecutive scheduled jobs. 

Pairwise swap operator 
This type of operator generates neighborhood solutions in a similar 
way as the swap operator, but swaps a pair of consecutive 
scheduled jobs rather than a single job.  

Move operator 

The neighborhood structure of this type of operator consists of all 
solutions that can be obtained by removing a job and moving the job 
into another position within the current schedule. This operator 
allows a job to be moved in between two other jobs.  

Couple move operator 
This type of operator is similar to the move operator, however, 
moves a pair of consecutive scheduled jobs to another position 
within the schedule to obtain neighborhood solutions.  

Inverse sequence operator 
The neighborhood structure of the inverse sequence operators is 
made out of all solutions that can be obtained by selecting two jobs 
and inversing the sequence in between.  

 
Note that some actions of the neighborhood operators might result into infeasible solutions. 
Therefore, verifying the feasibility of (neighborhood) solutions that are obtained via neighborhood 
operators is of great importance.  
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3.6 Literature review summary  
The production environment of TOMRA can be identified as MTO. This implies that decisions such as 
the assignment of due dates or capacity to resources should be made whilst considering the production 
capacity.  
 
The identified due date assignment methods in this chapter can help with the process of assigning due 
dates to incoming orders. The discussed methods from Gordon et al. (2002) are relatively simple and 
cannot be used directly, since these methods do not consider production capacities in setting due 
dates. However, from these methods, it becomes clear that the order due date is highly dependent on 
the workloads as well as the time at which the production can begin. 
 
We identified due date assignment methods applicable in a MTO environment. First, the algorithm 
proposed by Park et al. (1999) assigns due dates based on the bottleneck operation, but it does not 
consider required and available capacity on all resources. Moreover, the method from Corti et al. 
(2006) consists of some relevant bounds to calculate the requested capacity for every production 
process to check the feasibility of already quoted order due dates. This method, however, is not able 
to generate order due dates. Furthermore, Song et al. (2002) use cumulative probability distributions 
of processing times to deal with production uncertainties for assigning due dates. As the process of 
establishing these probability distributions as well as the results depend on many underlying 
assumptions, these are not desirable for usage. Nevertheless, the proposed idea of using a certain 
service target level to deal with uncertainties within the production is considered useful.  
 
Especially the finite loading methods are deemed relevant, since these methods consider available and 
occupied capacity for assigning due dates. From the identified methods, the FFL model and shows solid 
performance on the lead time and tardiness of incoming orders after a simulation study conducted by 
Thürer and Stevenson (2019). Another reason for preferring the FFL method is that this method can 
generate a clear overview of the loaded operations per week. In addition, Robinson and Moses (2006) 
describe a way to spread out the loaded operations over multiple weeks. This approach is not directly 
useful, but the idea that operations can be loaded into multiple consecutive intervals can make the FFL 
method more convenient to use.  
 
The finite loading methods, however, are not capable of optimally planning the required workloads on 
the resources. That is why we address methods that can efficiently construct a tactical level capacity 
plan. The methods discussed from de Boer (1998), Hans (2001) and Gademann & Schutten (2005) are 
able to construct such a plan for a set of orders with (pre)defined characteristics. However, as the 
customers of TOMRA arrive one by one, due dates should be assigned in the same manner. Within the 
literature, an approach that is capable of assigning an individual order due date whilst optimally 
(re)allocating capacity on a set of resources is lacking. Nevertheless, the discussed approaches mention 
some relevant aspects, where nonregular capacity can be used to meet order due dates. Additionally, 
we address several objective functions for the construction a tactical level capacity plan. The literature 
makes a distinction between lateness, tardiness and the use of nonregular capacity, which are all 
considered helpful.  
 
Production uncertainties play a big role in MTO environments. We address literature related to the 
variability in external lead times from suppliers of raw materials as well as variability in production 
times. When it comes to the uncertain production times, uncertainties take place at the table 
production and conveyor production in terms of sizes and shapes. Machine learning techniques 
mentioned by Yamashiro and Nonaka (2021), such as regression are especially relevant for determining 
production times (or workloads) for these products from a set of order characteristics. Silver et al. 
(2021) address ways to assign distributions to the external lead times from supplies of raw materials, 
which is a way to incorporate uncertainty. Moreover, the SAA method from Shapiro (2003) and 
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Pagnoncelli et al. (2009) are especially relevant for solving stochastic optimization problems when no 
clear distributions are appliable. However, the incorporation of external lead time variability of 
necessary raw materials into due date assignment and/or spreading the workload of an incoming order 
is not available within the literature.  
 
As all previously identified capacity planning problems are unlikely to find an optimal solution in 
reasonable computational time, we identify a set of heuristics from the literature. Construction 
heuristics can construct feasible solutions from an empty solution by means of a greedy selection rule 
(Sörensen et al., 2018). These heuristics are relevant to efficiently construct a feasible solution from 
an empty solution. In addition, we address three types of improvement heuristics from the literature, 
namely steepest descent, simulated annealing and tabu search. The latter two can escape from local 
optima and are, therefore, more likely to result into a better solution (Henderson et al., 2003; Glover 
& Laguna, 1993). The overall best approach for a type of heuristic and the way to construct 
neighborhood solutions for the problem setting at TOMRA is hard to identify from the literature.  
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4. Modeling approach   
This chapter describes the modeling approach of the research. Section 4.1 presents an outline of the 
purpose of the model and discusses decisions that we make to transform the problem at hand into a 
model. Section 4.2 highlights the modeling assumptions applicable. In Section 4.3 we present the 
deterministic model formulation including model constraints and the objective. Section 4.4 discusses 
a way to incorporate stochastic external lead times within the model formulation. At last, Section 4.5 
provides a conclusion to the chapter.  

4.1 Model outline  
This section provides an outline of the model that we construct for solving the combined due date 
assignment and workload spreading problem at TOMRA. We mention the purpose of the model 
together with a global outline on how to realize this. Besides, we globally discuss the thoughts behind 
the model approach as well as decisions that we make to model the problem at hand.  
 
The main purpose of the model is to optimize due date assignment to incoming orders of customers. 
The model should make these tactical-level decisions based on the required production capacity of an 
incoming order as well as on already occupied production capacity of existing orders that have not 
been completed yet. To realize this, it might be beneficial to impose lateness to the due dates of 
existing orders or make use of nonregular production capacity, i.e., working in overtime or temporary 
hiring extra staff to increase the capacity. This implies that, as a consequence, our approach regulates 
the spread of the workloads on a set of resources.  
 
The finite loading methods from the literature discussed in Chapter 3 can help us in realizing the 
purpose. These methods are the most applicable when it comes to assigning due dates to incoming 
orders whilst considering required and occupied production capacities (Thürer et al., 2013). The way 
finite loading methods work is that workloads of incoming orders are loaded within certain time 
periods. This loading occupies capacity within such a period and the maximum capacity cannot be 
exceeded. These methods look in which periods the workloads of incoming orders can be loaded, 
where the last loaded period determines its due date.  
 
However, we require some adaptions to the finite loading methods from the literature for the problem 
at hand. For instance, these methods only allow the workloads of entire orders to be loaded within a 
single certain time period and does so if there is enough capacity available. This implies that the finite 
loading methods do not consider an optimal spread of the workloads. There is a variant that allows 
loading the workload within multiple time periods when this workload exceeds the maximum capacity 
(Robinson & Moses, 2006). Nevertheless, the finite loading methods still do not generate an optimal 
spread of the existing and incoming workloads, as the purpose of the method is solely to generate due 
dates and not the optimal loading of resources.  
 
Methods that can spread the workload of a set of orders efficiently are capacity planning methods 
related to RCCP problems that we discussed in Chapter 3. These methods consider the use of 
nonregular capacity to meet deadlines (time-driven) as well as imposing lateness to the due dates of 
existing orders (resource-driven) for spreading the workloads. The overall objective for these RCCP 
problems is to minimize the use of nonregular capacity, the costs of lateness of orders or a combination 
of the two (Hans, 2001). The principles of both the resource-driven and time-driven RCCP problems 
can be used during due date assignment of incoming orders.  
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4.1.1 Workload representation 
The modeling approach that we discuss within this research assigns due dates to incoming orders and 
does so by loading the incoming workload of an order to a set of resources in an efficient manner. This 
workload loading is done in such a manner that the approach also considers reloading the existing 
workloads of already arrived orders to create loading opportunities for the incoming order. As 
mentioned in Chapter 3, there is a clear difference between loading and scheduling. This is because 
loading assigns workloads of individual orders to a set of resources but does not directly indicate in 
detail when and in which order these workloads are carried out. Eventually, the outcome should 
provide an outline of the loaded workloads of individual orders over various time periods. This can 
provide insights on a tactical level related to available capacities, extending due dates and the usage 
of overtime.  
 
Within this subsection, we introduce the way in which we represent workloads that we use during our 
modeling approach. While doing so, we use visualizations to bring across ideas behind the model. In 
further stages of our research, we continue to use visualizations with the same workload 
representation that we introduce here.  
 
Customers make order requests, which have a certain workload that can be translated into a 
production duration, from which the amount depends on the order request. Moreover, when a 
customer requests an order, there are already orders, each with their own workloads, within the 
system that have not been completed yet. Orders consist of one or multiple operations, which we 
define as the different requested elements that together account for the entire order request. In the 
setting of TOMRA, such an operation could be a tailor-made table or conveyor. This implies that we 
disregard the different steps it takes to complete the operations themselves, i.e., all steps it takes to 
complete an operation together belong to the same single operation. The workload of every individual 
operation within an order together form the total workload of such an order. Figure 4.1 depicts an 
example of the workload of an order. The order within this figure consists of four operations, each with 
their own individual workload, that together account for the total workload of the order.  
 

 
Orders can consist of multiple operations, each of which requires production at a distinct resource. We 
refer to a production department instead of resource for the remaining of this research, where each 
department has their own production capacity. Since an operation only requires production at one 
department in our setting, we separate the total workload of an order into the workload per 
production department. The workload of an order at a certain production department, thus, depends 
on the operations that require production at this department. We state the workloads of orders or 
operations within orders as hours in our approach, as, in our view, this provides sufficient detail to 
load workloads related to production capacities on a tactical level.   
 
For representing and loading the workloads of orders at a production department, we can make use 
of the loading frameworks from the literature. These loading frameworks represent the available 
production capacity as well as the capacity that is occupied by workloads of orders during a time period 

Figure 4.1; Workload of an order 
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at a certain department. Within these frameworks, time periods or time buckets make up for the 
horizontal axis and the workload represents the vertical axis (see Figure 4.2).  
 
We identified two loading frameworks within the literature, namely a periodic framework and a 
cumulative framework. The periodic framework, mentioned by Thürer et al. (2013), represents the 
production capacity per time period at a department. On the other hand, the cumulative framework 
represents the cumulative capacity per time period at a department (Bertrand, 1983). Figure 4.2 
provides an example of the periodic framework (left within the figure) and the cumulative framework 
(right within the figure). This example visualizes the workloads of five loaded orders, each with a 
different coloring, and their corresponding operations by means of the workloads representation from 
Figure 4.1. Every order is loaded into a single time period for simplicity, where a department has a 
certain maximum capacity during every time period.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Within the literature, both these frameworks are applied to finite loading methods where the entire 
workload of an order must be loaded into a single time period (Bertrand, 1983; Thürer et al., 2013; 
Thürer & Stevenson, 2019). Within this setting, the cumulative framework has as advantage that it 
accounts for more interaction between successive periodic planned workloads. This implies that within 
the cumulative framework, workloads are not exactly linked to a certain period and can be carried out 
in other periods as well. Where the order loaded into period 1 in the periodic loading framework in 
Figure 4.2 should be carried out in this first period, the cumulative framework allows this order to be 
carried out in later periods as well. This advantage can result in more loading opportunities, as period 
5 has more capacity available in the cumulative framework within Figure 4.2 compared to the periodic 
framework.  
 
However, the cumulative framework representation can easily become cluttered when there are many 
orders loaded, whereas the periodic framework gives a clear overview of the loaded orders per period. 
Moreover, the advantage of the cumulative framework is mainly due to the specific setting within the 
literature, where the workload of an order must be loaded into a single period. The only variant for 
this is that it can be allowed to spread the workload of orders over multiple periods if the workload of 
a single order exceeds total capacity of a period (Robinson & Moses, 2006). Within our setting, we also 
include the possibility of loading operations of an order in different periods. We elaborate on the exact 
ways in which we load the workloads of orders in Chapter 5. Besides, TOMRA desires to have a clear 
overview of which exact orders or operations of order occupy the capacity within a certain period. 
Because of these reasons, we choose to use the periodic framework for loading workloads of orders in 
further stages of this research.  

Figure 4.2; Loading frameworks periodic (left) and cumulative (right) 
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4.1.2 Loading decisions 
The purpose of the model is that it should help in deciding the best way of when to load which 
workloads of orders per department. This relates to loading the incoming order as well as possible 
reloading of already existing orders. Figure 4.3 provides a simplified example on choices that a solution 
approach for solving the model should consider. This figure illustrates two solution instances, where 
the workloads of multiple orders are loaded within a periodic loading framework containing multiple 
time periods 𝑡 with a regular capacity and maximum overtime hours (which are the same for all periods 
here). These time periods are set to weeks with a time horizon dependent on the loaded workloads in 
the future. A reason for this is that we identified, from the literature in Section 3.1, that decisions such 
as assigning due dates and resource capacity loading should occur at the tactical level (multiple weeks 
or months ahead). A choice could also have been to use time periods of days instead, however, this 
provides too much detail, especially when loading further ahead in time. Moreover, we consider weeks 
instead of days as TOMRA desires to be flexible with scheduling operations of orders on a daily basis 
and wants the possibility to decide this themselves. 
 

 
Within the figure, each color box represents the workload of a different order with its individual 
operations that is loaded within a certain period at this department 𝑠. As explained before, the size 
(height) of each order relates to its workload or production time. The different shades of blue boxes in 
the figure indicate already loaded orders at a certain production department over multiple time 
periods. The green box relates to the workload of the incoming order.  
 
The solution instance on the left in Figure 4.3 loads the entire workload of the incoming order in a 
single period. However, it is also a possibility to spread the workload of the incoming order over 
multiple time periods. The instance on the right in Figure 4.3 depicts this principle, where we split the 
workload of the incoming order and load it in two different time periods.  
 
We identify two options when it comes to splitting the workloads of orders, either we split the total 
workload of an order based on its operations or allow splitting the operations themselves. Figure 4.4 
visualizes these two options.  

Figure 4.3; Model loading choices 
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The previously discussed example from Figure 4.3 uses the approach where we split the workload of 
an incoming order at its exact operations (left situation in Figure 4.4). The main advantage of this 
approach is that this way, operations are coupled to specific periods instead of possibly spreading 
individual operations over multiple periods. The advantage of splitting the operations themselves is 
that this way, we can regulate the capacity usage by splitting the workloads more accurately. However, 
allowing splitting the operations themselves could mean that we should investigate the earliest 
moments when parts of the operations can commence its production instead of the entire operation. 
Because of these reasons, we decide to split the workload of an order based on its operations for our 
approach.    
 
The previously discussed example from Figure 4.3 does not consider that other orders can be reloaded 
as well, which can be very useful for creating opportunities to load the incoming order in other periods. 
Figure 4.5 provides a simplified example for the same setting as before, however this time, an already 
loaded order is reloaded as well. The example illustrates that the incoming order can now be loaded 
in an earlier period. Because of this, we can possibly provide an earlier due date to the incoming order, 
however we increase the workloads by means of using nonregular capacity in two of the three 
visualized periods to realize this. The model should provide us insights into the best way of loading the 
orders, where the model considers costs or penalties for several aspects such as using nonregular 
capacity or assigning an earlier or later due date.  
 

 
 
 
 
 

Figure 4.4; Splitting workloads by operations (left) and splitting operations (right) 

Figure 4.5; Model reloading choice 
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4.2 Model assumptions and simplifications 
This section mentions the assumptions and simplifications that we make during the modeling 
approach. These assumptions and simplifications influence the way we solve the problem at the 
research company.  
 
We consider the following model assumptions for the arrival of customer orders: 
 
▪ Customers make order requests one at a time, where each customer proposes a customer-

requested due date for their order. We moreover assume that the incoming orders arrive 
independently without patterns, unrelated to the demand of other customers. 

▪ Customer orders are never rejected when they arrive. This implies that when customers arrive at 
TOMRA with order requests, due dates should always be assigned to the incoming customer orders. 

 
For the way of operating to complete orders, we make the following assumptions: 
 
▪ The production capacity can only be increased by working in overtime. We do not consider 

nonregular capacity by means of temporary hiring staff or outsourcing production activities. 
▪ We make no distinctions between employees that are responsible for the production at TOMRA.  

Each employee on the work floor works on a fulltime basis to the standards of TOMRA during a 
week. This also implies that every employee has the same maximum numbers of overtime hours in 
a week. 

▪ The employees at the production departments complete operations from orders without 
interruptions or failures. In other words, we do not consider production breakdowns at the work 
floor for the processing times. 

▪ Operations should be loaded into one single week. 
▪ The workload of individual operations never exceed the combined regular and nonregular capacity 

of any week. 
▪ Operations require production at one single department. 
▪ There are not precedence relationships between different operations within orders. 
 
We consider the assumptions below for the costs that we incorporate within the model: 
 
▪ If customer-requested due dates or already assigned due dates are not met, we charge costs, where 

we regard all customers the same and make no distinction between different customers. This 
implies that the costs included for tardiness of orders are the same for every customer. 

▪ Costs included for working in overtime are fixed and the same for every department and for every 
time period. 

▪ The earliness costs related to assigning a due date that precedes the customer-requested due date 
can differ per customer. This is because customers might already have coordinated storage or 
transport planned based on their request when they arrive, meaning that they do not desire an 
earlier due date. On the other hand, it might occur that customers see benefits in an earlier due 
date. We assume that the preferences of customers related the earliness are known at the moment 
of an order arrival. 

▪ The earliness costs related to finishing all the production activities of an order before the already 
assigned due date of that order can differ per production department. For some departments, it 
might be desired to finish the production early to account for small order requests at that 
department for other customers. However, earliness can also be undesired for a certain 
department as this can result in large storages of finished products. 
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4.3 Model formulation  
Within this section, we formulate the deterministic model regarding the problem at hand. We address 
the model sets, parameters and variables. Moreover, we state and elaborate in detail on the model 
constraints and objective function.  
 

4.3.1 Problem setting  
During the arrival of a new customer order request, we have a set 𝑁 consisting of orders (index 𝑖), each 
with their own operations 𝑗 from the set 𝐽𝑖 to be loaded on a set of departments 𝑆 (index 𝑠). Each 
operation 𝑗 requires production at department 𝑦𝑗  (where 𝑦𝑗 ∈ 𝑆). We refer to the hours it takes to 

finish an operation as its processing time 𝑝𝑗, which make up the workload of an individual operation. 

We divide the time horizon in time periods of one week, where the set 𝑇 (index 𝑡) contains the future 
time periods.  
 
We make a division between the incoming order, which we denote by 𝑖′, and the existing orders that 
have not been completed yet (𝑖 ≠ 𝑖′). The incoming order has a customer-requested due date in 
period 𝑐𝑑𝑖′  and each existing order 𝑖 has an already assigned due date in period 𝑎𝑑𝑖.  
 
Right before the new incoming order request, each operation 𝑗 in order 𝑖 was loaded in period 𝑧𝑗. The 

periods where these operations are loaded can change to fit the workload of the incoming order 
efficiently. Let 𝑥𝑗 denote the period where operation 𝑗 is loaded after the arrival of a new order 

request. 𝑥𝑗 cannot precede its release date 𝑟𝑗, indicating the first possible period for producing 

operation 𝑗. Moreover, for the operations that are part of orders that have an already assigned due 
date within a frozen period, which are periods within the set 𝐻 (index ℎ) indicating the first |𝐻| periods 
within 𝑇, we do not allow loading them in other periods than the initial 𝑧𝑗.  

 
The 𝑥𝑗 variable results in loading workloads of individual operations (𝑝𝑗  hours) at the corresponding 

departments 𝑦𝑗  in certain time periods. We indicate to the total hours of workload at department 𝑠 

during period 𝑡 by 𝑊𝐿𝑠𝑡. During the process of loading operations, we consider a regular capacity of 
𝑄𝑠𝑡 hours and maximum nonregular capacity of 𝑀𝑂𝑠𝑡 hours at department 𝑠 during period 𝑡.  
 
From 𝑊𝐿𝑠𝑡, we can derive the nonregular capacity usage 𝑈𝑠𝑡. Here we impose costs 𝐶𝑂 for using 
overtime of 𝑈𝑠𝑡  raised to the power of integer exponent 𝐸𝑥𝑝, where higher values of this exponent 
result in solutions favoring the utilization of less overtime across multiple periods rather than of having 
large fluctuations in the overtime hours per period.  
 
From 𝑥𝑗 we can derive the first and last loaded periods of a single order at each production department 

(𝑏𝑖𝑠 and 𝑐𝑖𝑠 respectively). The last loaded operation of an order at all department can provide 
information regarding the due date each order 𝑖, namely 𝑑𝑖. Here we introduce a slack of 𝑞 periods, 
where we assign due date of order 𝑖 (𝑑𝑖) 𝑞 periods after max

𝑠
{𝑐𝑖𝑠}. Furthermore, from 𝑏𝑖𝑠 and 𝑐𝑖𝑠, we 

can derive the time span in which operations 𝑗 within each order 𝑖 are loaded per production 
department. We impose cost 𝑆𝐶 of spreading the operations an order over multiple periods at a 
department.  
 
The due date of incoming order 𝑖′ (𝑑𝑖′) provides feedback on the customer-requested due date 𝑐𝑑𝑖′ . 
More specifically, we can derive possible tardiness 𝑅𝑇𝑖′  or earliness 𝑅𝐸𝑖′  related to 𝑐𝑑𝑖′ , with costs 
𝑅𝐶𝑇 and 𝑅𝐶𝐸𝑖′  respectively. Additionally, the resulting due dates of the existing orders 𝑑𝑖  can cause 
tardiness 𝐴𝑇𝑖 or earliness within a production department 𝐴𝐸𝑖𝑠 related to already assigned due dates 
𝑎𝑑𝑖. For the existing orders, we include cost 𝐴𝐶𝑇 for tardiness and 𝐴𝐶𝐸𝑠 for earliness.  
 
Below, we provide an overview of the mentioned model sets, parameters and variables.  



 

38 
 

Set Description 

𝑆 Set of production departments indexed by s, and 𝑆 = {1, … , |𝑆|} 
𝑇 Set of future time periods considered indexed by 𝑡, and 𝑇 = {0, … , |𝑇|} 
𝐻 Set of frozen time periods indexed by ℎ, 𝐻 ⊂ 𝑇, and 𝐻 = {0, … , |𝐻|} 
𝑁 Set of orders indexed by 𝑖, and 𝑁 = {1, … , |𝑁|} 
𝐽 Set of all operations 
𝐽𝑖 Set of operations required for order 𝑖 indexed by 𝑗, and 𝐽𝑖 ⊆ 𝐽 

 
Parameter Description 

𝑦𝑗  Department to produce operation 𝑗, where 𝑦𝑗 ∈ 𝑆 

𝑝𝑗  Processing time of operation 𝑗 

𝑟𝑗 Release date of operation 𝑗 

𝑧𝑗 Period where operation 𝑗 is loaded before arrival of new order 

𝑐𝑑𝑖′  Customer-requested due date of incoming order 𝑖′ 
𝑎𝑑𝑖  Already assigned due date of order 𝑖 

𝑊𝐿𝑠𝑡  Total workload at department 𝑠 in period 𝑡 
𝑄𝑠𝑡 Maximum regular capacity of department 𝑠 in period 𝑡 

𝑀𝑂𝑠𝑡 Maximum overtime hours at department 𝑠 in period 𝑡 
𝑞 Slack denoted in periods for assigning due dates 

𝐸𝑥𝑝 Integer exponent of overtime hours  
𝑅𝐶𝑇 Cost of exceeding a customer-requested due date 

𝑅𝐶𝐸𝑖′  Cost of preceding the customer-requested due date of order incoming 𝑖′ 
𝐶𝑂 Cost of one hour of overtime at any department during a period 

𝐴𝐶𝑇 Cost of exceeding an already assigned due date 
𝐴𝐶𝐸𝑠 Cost of preceding an already assigned due date at department 𝑠 

𝑆𝐶 Cost of loading the workload of an order over multiple periods at a 
department 

 
Decision variables Description  

𝑑𝑖  Due date of order 𝑖 
𝑥𝑗 Period where operation 𝑗 in order 𝑖 is loaded after arrival of new order 

𝑏𝑖𝑠 First time period in which any part of order 𝑖 is loaded at department 𝑠 
𝑐𝑖𝑠 Last time period in which any part of order 𝑖 is loaded at department 𝑠 

𝑅𝑇𝑖′  Tardiness on customer-requested due date of incoming order 𝑖′ 
𝑅𝐸𝑖′  Earliness on customer-requested due date of incoming order 𝑖′ 
𝐴𝑇𝑖 Tardiness on already assigned due date of order 𝑖  
𝐴𝐸𝑖𝑠 Earliness on already assigned due date of order 𝑖 at department 𝑠 
𝑈𝑠𝑡  Hours of nonregular capacity usage at department 𝑠 in period 𝑡  
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4.3.2 Model constraints 
The model has several constraints, on which we elaborate on here.  
 

𝑥𝑗 = 𝑧𝑗 
 

∀𝑖 ∈ 𝑁|𝑎𝑑𝑖 ≤ |𝐻|, ∀𝑗 ∈ 𝐽 (1) 

 
Constraint (1) restricts reloading of orders within the frozen periods. These periods are the first couple 
of periods within the model and orders in these periods may already have been scheduled in the short 
term with everything arranged for the production. The set 𝐻 with index ℎ contains the time periods 
that fall under the frozen periods. So, we fix the already loaded orders within these periods at the 
moment of a new order arrival. This implies that we restrict operations of orders that have an already 
assigned due date within a frozen period to their original loading periods. To make sure that we do not 
restrict the incoming order 𝑖′, its already assigned due date (𝑎𝑑𝑖′) should initially lie outside the frozen 
periods. 
 

𝑥𝑗 ≥ 𝑟𝑗 
 

∀𝑖 ∈ 𝑁, ∀𝑗 ∈ 𝐽  (2) 

 
Model constraint (2) guarantees that operations of orders can only be loaded in periods when the raw 
materials are available for production activities. We indicate the earliest moment of production of 
operation 𝑗 within order 𝑖 as its release date 𝑟𝑗. These release dates are equal to periods within the 

model and can differ per operation within an order.  
 

𝑊𝐿𝑠𝑡 ≤ 𝑄𝑠𝑡 + 𝑀𝑂𝑠𝑡 
 

∀𝑠 ∈ 𝑆, ∀𝑡 ∈ 𝑇  (3) 

𝑊𝐿𝑠𝑡 = ∑ ∑ 𝑝𝑗

𝑗∈𝐽𝑖|𝑦𝑗=𝑠 𝑖∈𝑁|𝑥𝑗=𝑡

  
∀𝑠 ∈ 𝑆, ∀𝑡 ∈ 𝑇  (4) 

  
Constraints (3) and (4) indicate that the loaded workload of orders within time periods cannot exceed 
the maximum regular capacity and maximum overtime of the time period at a certain department. 
Both the maximum capacity 𝑄𝑠𝑡 and the maximum overtime hours 𝑀𝑂𝑠𝑡 depend on the number of 
employees that are available during period 𝑡 at department 𝑠. The loaded workload, 𝑊𝐿𝑠𝑡, depends 
on the existing, already loaded, order operations in period 𝑡 at department 𝑠. More specifically, 𝑊𝐿𝑠𝑡 
depends on the processing times of these operations of orders. The processing times of the individual 
operations are an input for the model and should be known (or estimated) at the time of the order 
arrival.  
 

𝑏𝑖𝑠 = min
𝑗∈𝐽𝑖|𝑦𝑗=𝑠

{𝑥𝑗}  
∀𝑖 ∈ 𝑁, ∀𝑠 ∈ 𝑆  (5) 

𝑐𝑖𝑠 = max 
𝑗∈𝐽𝑖|𝑦𝑗=𝑠

{𝑥𝑗}  
∀𝑖 ∈ 𝑁, ∀𝑠 ∈ 𝑆  (6) 

 
Constraints (5) and (6) determine the first and last loaded time period of order 𝑖 at department 𝑠. The 
model can determine these variables by means of the periods where the operations of the orders are 
loaded after the arrival of a new order (𝑥𝑗). More specifically, the first loaded time period of an order 

at a department is the lowest 𝑥𝑗 from the operations 𝑗 in order 𝑖 that require production at department 

𝑠 (𝑦𝑗 = 𝑠). The last loaded time period of an order at a department, then, becomes the highest 𝑥𝑗 from 

the operations in the order at the department.  
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𝑑𝑖 = max
𝑠

{𝑐𝑖𝑠} + 𝑞 
 

∀𝑖 ∈ 𝑁  (7) 

 
Constraint (7) determines the due date of all orders, so for the incoming order 𝑖′ as well as for all other 
orders in the system. The due date of an order depends on the last period for all the production 
departments in which an operation of that order is loaded. Note that the due date is a time period and 
not an exact date within the model. We make this choice, since this way we avoid working with 
individual days, making the model more detailed towards an operational level instead of a tactical 
level. As we do not know the exact moment when operations will be carried after loading them weeks 
or months ahead in time, we add some slack 𝑞 in assigning due dates. This slack provides some extra 
space within the production and avoids loading the entire capacity of a week for orders with due dates 
at the beginning of this week for instance.  
 
Figure 4.6 visualizes a simplified example of solution instances of two production departments. Within 
this figure, orders are loaded in four periods (six through nine), where each period has its own 
maximum capacity and maximum overtime hours. From the loaded orders, we can determine their 
due dates in the way we discussed above. When looking at the workload of the incoming order 𝑖′, 
indicated by the green boxes, we can see that these are loaded in different periods for the two 
departments. The periods of the last loaded order part of department 1 (𝑐𝑖′1) is equal to 8, whereas 
for department 2, 𝑐𝑖′2 equals 7. This implies that the period of the last loaded order part of order 𝑖′ 
for all departments equals 8 in this case. If we now include a slack of 1 week (𝑞 = 1), we assign a due 
date of this order in period 9. The exact date of this due date depends on the customer request.  

 
Note that we derive the latest loaded operations and with that the due dates of all other orders in the 
same manner. We can do this to discover if the solution causes earliness or tardiness for the orders.  
 

𝑅𝐸𝑖′ = max{0, 𝑐𝑑𝑖′ − 𝑑𝑖′}    (8) 

𝑅𝑇𝑖′ = max{0, 𝑑𝑖′ − 𝑐𝑑𝑖′}  (9) 

 
Constraints (8) and (9) assign values to both earliness and tardiness associated with assigning a due 
date of the incoming order 𝑖′ that deviates from the customer requested due date. Customers most 
likely request an exact date for their incoming order, however the model transforms this exact date to 
a certain time period 𝑡 within the model and uses the 𝑐𝑑𝑖′  parameter for this. Earliness occurs when 

Figure 4.6; Due date assignment example 
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the assigned due date of the model precedes the customer-requested due date. Tardiness takes place 
when the assigned due date exceeds the customer-requested due date.  
 

𝐴𝐸𝑖𝑠 = max{0, 𝑎𝑑𝑖 − (𝑐𝑖𝑠 + 𝑞)} 
 

∀𝑖 ∈ 𝑁: 𝑖 ≠ 𝑖′, ∀𝑠 ∈ 𝑆  (10) 

𝐴𝑇𝑖 = max{0, 𝑑𝑖 − 𝑎𝑑𝑖} 
 

∀𝑖 ∈ 𝑁: 𝑖 ≠ 𝑖′  (11) 

 
Constraint (10) defines the earliness related to an already assigned due date of order 𝑖. This earliness 
occurs when the period of the already assigned due date exceeds the last loaded period plus the slack 
of 𝑞 periods for a department. The latter refers to the due date of department 𝑠, which we can 
compare with the already assigned due date of the entire order to see if a department finishes its 
production activities of an order early. Furthermore, constraint (11) measures the tardiness related 
to an already assigned due date. This type of tardiness takes place when the due date of the entire 
order 𝑖 (from last loaded order fraction for all departments) exceeds the already assigned due date. 
 

𝑈𝑠𝑡
 = max{0, 𝑊𝐿𝑠𝑡 − 𝑄𝑠𝑡} 

 
∀𝑠 ∈ 𝑆, ∀𝑡 ∈ 𝑇  (12) 

 
At last, constraint (12) measures the overtime hours during a period at a certain department. This 
constraint states that overtime occurs when the loaded workload in period 𝑡 at department 𝑠 (𝑊𝐿𝑠𝑡) 
exceeds the maximum regular capacity at that moment within the same department (𝑄𝑠𝑡). If this is the 
case, then the number of overtime hours in a period at a department is the difference between them. 
 

4.3.3 Model objective function 
The objective function consists of four parts, each indicating costs of penalties, where to aim is to 
minimize the total costs. More specifically, the objective function is to minimize cost related to: 
 
1) Deviating from the customer requested due date of the incoming order 𝑖′, i.e., [𝑅𝐶𝑇 ∗ 𝑅𝑇𝑖′ +
𝑅𝐶𝐸𝑖′ ∗ 𝑅𝐸𝑖′]. This deviation is associated with tardiness, assigning a due date after the customer-
requested due date, or earliness, assigning a due date before the customer-requested due date. The 
costs related to tardiness do not differ per customer, whereas the costs linked to earliness can differ 
per customer as mentioned in Section 4.2.  
 
2) Deviating from already assigned due dates of existing orders that are not completed yet, i.e., 
[∑ 𝐴𝐶𝑇 ∗ 𝐴𝑇𝑖 + ∑ 𝐴𝐶𝐸𝑠 ∗ 𝐴𝐸𝑖𝑠𝑠∈𝑆𝑖∈𝑁:𝑖≠𝑖′ ]. We incur tardiness costs when a certain assigned order due 
date is not met, i.e. the completion time exceeds the assigned due date of an order. These costs are 
the same for each customer order. Next to tardiness, costs occur for being too early with the 
production of several elements, i.e. the assigned due date exceeds the completion time of an order. 
Earliness is not always desired, since this can result in large finished goods inventories and bad 
coordination, as mentioned in Section 4.2. Therefore, for every department we include costs related 
to the earliness of production activities at department 𝑠, depending on the preferences per 
department. 
 
3) Spreading the workload of individual orders over a large amount of periods per production 
department, i.e., [∑ ∑ 𝑆𝐶 ∗ (𝑐𝑖𝑠 − 𝑏𝑖𝑠)𝑠∈𝑆𝑖∈𝑁 ]. We include these costs, since, for instance, spreading 
out the workloads over a large amount of time periods of the operations within a single order that 
require production at the same department, where every period we load a small part of this order, is 
not desired.   
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4) The use of nonregular capacity as a result of loading the orders, i.e., [∑ ∑ ൫𝐶𝑂 ∗ 𝑈𝑠𝑡
𝐸𝑥𝑝

൯𝑠∈𝑆𝑡∈𝑇 ]. We 

include costs for increasing the production capacity at a certain department by means of working in 
overtime within a period. Note that we raise the number of overtime hours to the power of integer 
number 𝐸𝑥𝑝. Higher values of this parameter causes solutions to prefer using less overtime in multiple 
periods instead of having large fluctuations in the overtime hours per period. 
 

4.3.4. Model overview 
 
Objective function  
 

min {[𝑅𝐶𝑇 ∗ 𝑅𝑇𝑖′ + 𝑅𝐶𝐸𝑖′ ∗ 𝑅𝐸𝑖′] + [ ∑ 𝐴𝐶𝑇 ∗ 𝐴𝑇𝑖 + ∑ 𝐴𝐶𝐸𝑠 ∗ 𝐴𝐸𝑖𝑠

𝑠∈𝑆𝑖∈𝑁:𝑖≠𝑖′

]

+ [∑ ∑ 𝑆𝐶 ∗ (𝑐𝑖𝑠 − 𝑏𝑖𝑠)

𝑠∈𝑆𝑖∈𝑁

] + [∑ ∑൫𝐶𝑂 ∗ 𝑈𝑠𝑡
𝐸𝑥𝑝

൯

𝑠∈𝑆𝑡∈𝑇

]} 

 
Constraints  
 

𝑥𝑗 = 𝑧𝑗 ∀𝑖 ∈ 𝑁|𝑎𝑑𝑖 ≤ |𝐻|, ∀𝑗 ∈ 𝐽  (1) 

𝑥𝑗 ≥ 𝑟𝑗 ∀𝑖 ∈ 𝑁, ∀𝑗 ∈ 𝐽  (2) 

𝑊𝐿𝑠𝑡 ≤ 𝑄𝑠𝑡 + 𝑀𝑂𝑠𝑡 ∀𝑠 ∈ 𝑆, ∀𝑡 ∈ 𝑇  (3) 

𝑊𝐿𝑠𝑡 = ∑ ∑ 𝑝𝑗

𝑗∈𝐽𝑖|𝑦𝑗=𝑠 𝑖∈𝑁|𝑥𝑗=𝑡

 ∀𝑠 ∈ 𝑆, ∀𝑡 ∈ 𝑇  (4) 

𝑏𝑖𝑠 = min
𝑗∈𝐽𝑖|𝑦𝑗=𝑠

{𝑥𝑗} ∀𝑖 ∈ 𝑁, ∀𝑠 ∈ 𝑆  (5) 

𝑐𝑖𝑠 = max 
𝑗∈𝐽𝑖|𝑦𝑗=𝑠

{𝑥𝑗} ∀𝑖 ∈ 𝑁, ∀𝑠 ∈ 𝑆  (6) 

𝑑𝑖 = max
𝑠

{𝑐𝑖𝑠} + 𝑞 ∀𝑖 ∈ 𝑁  (7) 

𝑅𝐸𝑖′ = max{0, 𝑐𝑑𝑖′ − 𝑑𝑖′}    (8) 

𝑅𝑇𝑖′ = max{0, 𝑑𝑖′ − 𝑐𝑑𝑖′}  (9) 

𝐴𝐸𝑖𝑠 = max{0, 𝑎𝑑𝑖 − (𝑐𝑖𝑠 + 𝑞)} ∀𝑖 ∈ 𝑁: 𝑖 ≠ 𝑖′, ∀𝑠 ∈ 𝑆  (10) 

𝐴𝑇𝑖 = max{0, 𝑑𝑖 − 𝑎𝑑𝑖} ∀𝑖 ∈ 𝑁: 𝑖 ≠ 𝑖′  (11) 

𝑈𝑠𝑡
 = max{0, 𝑊𝐿𝑠𝑡 − 𝑄𝑠𝑡} ∀𝑠 ∈ 𝑆, ∀𝑡 ∈ 𝑇  (12) 
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4.4 Stochastic external lead times 
TOMRA deals with stochastic external lead times for a selection of their raw material suppliers, which 
can have a significant impact on the production processes. For example, late deliveries of materials 
can directly result in not meeting already assigned order due dates. Consequently, this can lead to 
customer dissatisfaction and high costs. Within this section, we discuss an approach to cope with 
stochastic external lead times in our problem setting. This implies that we include stochasticity and 
expand the deterministic model from Section 4.3.  
 
Stochastic external lead times of a certain material causes uncertainties in release dates of the 
operations that require the material for its production. The main idea behind the approach is to assess 
whether the loaded operations of an incoming order can really commence its production in the periods 
where they are loaded. We refer to this as the feasibility of a solution. The way that we load the 
operations within the incoming order can have an impact on the feasibility a solution. Preventing to 
load operations that require materials with stochastic external lead times in periods that precedes the 
uncertain release dates can mitigate inventory shortages and not meeting due dates as a result. For 
the process of assessing the feasibility of solutions, we use the idea of sample average approximation 
(SAA) from Shapiro (2003) that we identified from the literature in Section 3.4.1.   
 
We consider set 𝑉 (index 𝑙), consisting of materials with stochastic external lead times. We draw 
scenarios 𝜔𝑙 from Ω𝑙  for the external lead time of material 𝑙. More specifically, each scenario 𝜔𝑙 results 
in an external lead time 𝐿𝑙(𝜔𝑙), which results in a release date 𝑟𝑗(𝜔𝑙). The set Ω𝑙  consists of (historical) 

data regarding external lead times of raw material 𝑙. As we aim to seek a for robust solution, we first 
determine the external lead times of all raw materials 𝑙 based on the kth percentile from the data. For 
instance, we can use a 70th, 80th or 90th percentile, where higher percentiles would imply more robust 
release dates but can sometimes result in loading operations in unnecessary late periods. Afterwards, 
we construct a solution based on the following release dates. Finally, we randomly select a couple of 
times a scenario for each material from Ω𝑙  to obtain the service level 𝜆 related to the feasibility of the 
solution. Figure 4.7 visualizes an overview of these steps.  
 

 
Below, we provide an overview of the new sets and parameters that we introduce within the stochastic 
formulation of the model. Besides, we elaborate on way in which we obtain the release dates 𝑟𝑗(𝜔𝑙) 

from the external lead times 𝐿𝑙(𝜔𝑙) as well as how we find the service level 𝜆. 

Figure 4.7; Steps to cope with stochastic external lead times 
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Set Description 

𝑉 Set of materials with stochastic external lead times considered indexed by 𝑙 
Ω𝑙  Set of all possible external lead time scenarios for raw material 𝑙 indexed by 𝜔𝑙, 

and Ω𝑙 = {1, … , |Ω𝑙|} 
 

Parameter Description 

𝐿𝑙(𝜔𝑙) External lead time of material of type 𝑙 under scenario 𝜔𝑙 
𝑟𝑗(𝜔𝑙) Release date of operation 𝑗 ∈ 𝐽𝑖′  under scenario 𝜔𝑙  

𝜆 Service level 
𝑅𝑃𝑙  Receiving period of material 𝑙 
𝑅𝑂𝑙  Number of periods passed since last replenishment order from raw material 𝑙 

 
 
For a single scenario 𝜔𝑙, we determine the release date of operation 𝑗 ∈ 𝐽𝑖′  that requires one or 
multiple materials from set 𝑉 as follows: 
 
 

Period of receiving material 𝒍 Situation  

𝑅𝑃𝑙(𝜔𝑙) = 0 If operation 𝑗 does not require material 𝑙 

𝑅𝑃𝑙(𝜔𝑙) = 0 If material 𝑙 is on stock 

𝑅𝑃𝑙(𝜔𝑙) = 𝐿𝑙(𝜔𝑙), If material 𝑙 still needs to be ordered 

𝑅𝑃𝑙(𝜔𝑙) = 𝐿𝑙(𝜔𝑙) − 𝑅𝑂𝑙  If materials 𝑙 is already ordered 𝑅𝑂𝑙  periods ago 

 
Eventually, the release date of operation 𝑗 ∈ 𝐽𝑖′  becomes the moment when the last material arrives: 
 

𝑟𝑗(𝜔𝑙) = max
𝑙

{𝑅𝑃𝑙(𝜔𝑙)} 

 
To assess the feasibility of a solution and to obtain the service level 𝜆 (Step 4 in Figure 4.7), we first 
elaborate on what the service level implies. In our problem setting, the service level 𝜆 relates to the 
fraction of orders containing operations that require materials with stochastic external lead times that 
do not meet the due date 𝑑𝑖  that follows the model in Section 4.3.  
 
To obtain the service level 𝜆, we first count the number of scenarios for which the solution is feasible 
by means of auxiliary variable 𝛼(𝑡). We initialize 𝛼(𝑡) to zero and add one for every scenario that 
results in a feasible solution in the following way: 
 

𝛼(𝑡) =  {
𝛼(𝑡) + 1,         𝑖𝑓 𝑎𝑙𝑙 𝑥𝑗 ≥  𝑟𝑗(𝜔𝑙)    

𝛼(𝑡) + 0,         𝑖𝑓 𝑎𝑛𝑦 𝑥𝑗 < 𝑟𝑗(𝜔𝑙)   
 

 
Eventually, the service level 𝜆 becomes the number of scenarios for which the solution is feasible 
divided by the total number of scenarios applied 𝛼∗: 
 

𝜆 =  
𝛼(𝑡)

𝛼∗
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4.5 Model approach conclusion 
In this chapter, we propose a model capable of assigning due dates of incoming orders. The model 
does this by loading workloads, i.e., required production capacity, of orders into certain time periods 
at the corresponding production departments. For loading the workloads, we use a periodic loading 
framework at each production department, as mentioned in Section 4.1, where each time period has 
a certain maximum capacity. To optimize due date assignments, we allow the model to spread the 
workloads of orders over multiple periods, impose lateness to the already assigned due dates of 
existing orders and make use of nonregular production capacity by means of working in overtime.  
 
In Section 4.3, we present the deterministic model formulation in a setting where an incoming order 
request arrives with a customer-requested due date when there are a set of existing orders with 
already assigned due dates that have not been produced yet. The model objective is to minimize the 
costs related to: 1) earliness or tardiness on the customer-requested due date, 2) earliness or tardiness 
on already assigned due dates of existing orders, 3) spreading the workload of a single order at a 
department over multiple period and 4) nonregular capacity usage.  
 
At last, in Section 4.4, we extend the deterministic model to cope with stochastic external lead times 
that affect can the release dates of some operations within the incoming order. Here, we use the 
principle of sample average approximation (SAA) to assess the feasibility of a solution.  
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5. Solution design 
This chapter outlines the approaches in which we load workloads of orders into the periodic loading 
framework. The purpose of these approaches is to generate an as good as possible solution in a 
competent time at the moment of a new order arrival. This implies fitting the workload of an incoming 
order in available capacity, which can provide us information regarding tactical level decisions such as 
assigning due dates and managing production capacities. To realize this, we use an approximate 
approach where we apply heuristics to come to an as good as possible solution. The reason for this 
approach is that it can obtain good quality solutions in a computationally efficient manner, making the 
approach applicable for practical solution generation. More specifically, heuristics enable decision-
making and problem-solving in our setting where the focus is on finding satisfactory solutions within 
the available resources and time constraints rather than finding absolute optimality. Our solution 
design considers the use of construction heuristics to create an initial solution. Afterwards, we apply 
improvement heuristics to the initial solution to assess whether refinements can be achieved in 
satisfactory computational times.  
 
Figure 5.1 depicts an overview of the solution design of this research, where the first step is to create 
an initial solution by means of construction heuristics. For this step, information regarding the 
incoming order (e.g. workloads or release dates), existing orders that have not been completed yet 
and production capacities are essential input. After we create an initial solution, the next step is to 
apply improvement heuristics to improve on the initially created solution. Note that it might be 
possible that certain construction heuristics perform well on their own within remarkably less 
computational time in comparison with including an improvement heuristic. That is why we apply an 
experimental design to assess the performance of the approaches in the setting of TOMRA. Chapter 6 
elaborates further on this topic.  
 

 
 
Section 5.1 describes several construction heuristics that can create an initial solution. These 
approaches consist of ways we can load the workload of an incoming order with respect to orders that 
are already in the system. The approaches that we discuss within this section consist of solely loading 
the workloads of an incoming order as well as reloading the workloads of orders that have not been 
completed yet. Section 5.2 discusses improvement heuristics capable of adjusting a solution instance 
in search for the optimal solution. Finally, Section 5.3 provides a conclusion to this chapter.  
 

Figure 5.1; Solution design overview 
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5.1 Loading of incoming order  
This section highlights several approaches to load the workload of an incoming order whilst regarding 
already loaded orders that have not been completed yet. These approaches act as construction 
heuristics to create an initial solution. We address a total of six approaches based on the findings 
related to finite loading methods within the literature of Section 3.2.3. The approaches are forward 
loading (FL), collective forward loading (CFL), hybrid loading (HL), unloading and forward loading (UFL), 
unloading and collective loading (UCL) and unloading and hybrid loading (UHL). We elaborate on each 
of these approaches in the corresponding subsections below.  
 

5.1.1 Forward loading approach 
The forward loading approach (FL) loads the workloads of an incoming order per department without 
adjusting or reloading existing orders that are already loaded during their arrival and have not been 
completed yet.  
 
In summary, the FL approach tries to load the individual operations within the incoming order starting 
in the week of its release date. The literature in Chapter 3 addresses this way of loading as forward 
loading. We apply forward loading of the operations within the incoming order, starting with the 
operations that require production at the first department. There is no clear logic regarding which 
department to load first, since all operations require production at a single production department, 
making the departments independent of each other when it comes to loading the operations.  
 
In our approach, we load an operation in a period if there is any regular capacity left within this week, 
even if some nonregular capacity will be used to load its entire workload together with the existing 
workload in the same week. The main reason for this way of loading is to occupy as much regular 
capacity as possible, which can contribute to assigning earlier due dates. Needless to say, if there is no 
regular capacity left or loading the operation results in exceeding the maximum overtime within a 
week, then FL looks to load the operation in the next week until the workload is loaded.   
 
The FL approach does this way of loading for every single operation within the incoming order, where 
the FL approach loads the operation with the earliest release date first to take advantage of possible 
early release dates of operations. If there are operations with equal release dates, we aim to load the 
operation with the shortest processing time first. The reasoning behind this way of loading the 
operations is that this, in combination with loading operation when there is any regular capacity left, 
can lead to more operations to be loaded in earlier weeks, thus providing earlier due dates. Eventually, 
the FL approach loads the entire workload of the incoming order and a feasible solution is established. 
From this solution, amongst other things, a due date of the incoming order follows resulting in an 
objective value.  
 
In addition, after all the operations of an order are loaded, we include an approach to check whether 
it is more beneficial to use extra nonregular capacity in earlier weeks to prevent tardiness. We 
elaborate on this approach later within this subsection.   
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We depict an overview on way the FL approach works by means of the pseudo code seen in Figure 5.2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Next, we provide a simplified example illustrating the way in which the FL approach creates a solution. 
 
Figure 5.3 depicts the workload of an incoming order at a certain department. Within this example, 
this workload consists of 5 individual operations 𝑗, named 1 through 5. The workloads of these 
operations should be loaded within certain weeks at this department. Each of these operations has a 
release date 𝑟𝑗 indicating the first week in which an operation can be loaded. These release dates are 

input parameters and can in some instances, namely for operations requiring materials with stochastic 
external lead times, be derived with the approach from Section 4.4.   
 

 
Next to the input of release dates of the operations, orders from which the workloads are already 
loaded at a certain department during their earlier arrival are also input. Figure 5.4 provides an 
overview of the workloads of the existing orders that have not been completed yet. We represent 
these loaded workloads in the periodic loading framework, with a certain regular capacity 𝑄𝑠𝑡 and 
maximum overtime capacity 𝑀𝑂𝑠𝑡 per week. 

Figure 5.3; Release dates of operations within incoming order example 

1)    𝑥𝑗 = 𝑧𝑗  for all operations within existing orders (𝑖 ≠ 𝑖′) 

2) For all departments 𝑠 ∈ 𝑆: 

3)         Determine total existing workloads per period 𝑡 ∈ 𝑇 (𝑊𝐿𝑠𝑡) 

4)         For all operations within 𝐽𝑖′  that require production at 𝑠 (𝑦𝑗 = 𝑠): 

  4.1) Select operation with earliest release date 

   4.1.1) Operations with equal release dates? 

    Select operation with shortest processing time 

   4.1.2) Operations with equal release dates and equal processing times? 

    Select first operation within 𝐽𝑖′  

  4.2) Week = 𝑟𝑗 

  4.3) No regular capacity available in Week? (𝑊𝐿𝑠𝑡 > 𝑄𝑠𝑡, where 𝑡 = Week) 

   If yes:  Week = Week + 1   (Go to 4.3)  

  4.4) Maximum overtime exceeded? (𝑊𝐿𝑠𝑡 + 𝑝𝑗 > 𝑄𝑠𝑡 +  𝑀𝑂𝑠𝑡, where 𝑡 = Week) 

   If yes:  Week = Week + 1   (Go to 4.3) 

   Otherwise:  𝑥𝑗  = Week   (Go to 4.5) 

 4.5) Update total workloads (𝑊𝐿𝑠𝑡 = 𝑊𝐿𝑠𝑡 + 𝑝𝑗) 

5) Decisions extra nonregular capacity to avoid tardiness 

 

Figure 5.2; FL approach procedure 
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Within this figure, each color represents a different order, where we depict individual operations 
within the orders as well. Note that the operations of each existing order also have their individual 
release dates, however since FL does not consider reloading these operations, these are not relevant 
to mention here. 
 
Figure 5.5 visualizes the way that FL loads the workloads of the operations within the incoming order. 
Operation 2 of the incoming order has the earliest release date, namely week 4, however the existing 
workloads within this week already exceed the maximum regular capacity. Because of this, we look at 
the next week where there is regular capacity left. This results in loading this operation 2 within week 
5. All other operations within the incoming order can be loaded in the same week as their release date 
in this situation.  
 

 
The basic idea behind the FL approach is that it tries to load operations when there is remaining regular 
capacity left within a week. This can result in the occupation of remaining capacity, making sure that 
regular capacity is well utilized. On the other side, the workloads of orders can be spread out over a 
large number of periods when using the FL approach. This can happen if the release dates of the 
individual operations differ (as within the example) or if multiple weeks after the release dates have 
little capacity left where the FL approach can only load 1 operation per week for instance.  
 

Figure 5.4; Example of periodic loading framework with existing workloads  

Figure 5.5; FL approach example  
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Moreover, the FL approach allows for using nonregular capacity as a result of loading an individual 
operation. Operation 2 that is loaded within week 5 occupies the remaining regular capacity during 
this week, but also results in some nonregular capacity usage which we allow to happen if loading its 
workload does result in exceeding the maximum overtime usage. This is because the use of nonregular 
capacity is not desired but can definitely be used in order to efficiently load the workloads of orders.  
 
Figure 5.6 provides a new situation of loaded workloads in the periodic loading framework, where the 
existing workloads in weeks 6 and 8 are larger in comparison with the previous situation.  

 
Figure 5.7 shows how the same incoming order is loaded in this new situation. Again, the FL method 
tries to load the operations where there is regular capacity available. Note that operation 4 is loaded 
one week later as a result of this new setting. Moreover, Figure 5.6 indicates the customer-requested 
due date of the incoming order (𝑐𝑑𝑖′

 ), which is in week 9.  

 

As mentioned before, FL tries to load operations where there is regular capacity left, which should 
imply that we load operation 5 in week 9 within this example. However, when we make this decision, 
we might incorporate tardiness related the customer-requested due date. This is because one can 
include a certain slack of 𝑞 weeks in assigning due dates, where the due date of the order equals 𝑞 plus 
the week of last loaded operation (see Section 4.3). In the case where 𝑞 = 1, the assigned due date 
would be in week 10, causing one week tardiness on the customer-requested due date. Therefore, it 
might be beneficial to load operation 5 in week 8, using some nonregular capacity whilst meeting 𝑐𝑑𝑖′

 .  

Figure 5.6; Example of periodic framework with more existing workloads 

Figure 5.7; Decisions FL approach 
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We refer to the operations that determine the due date of an order with tardiness as bottleneck 
operations. Within the example where we consider only one production department, operation 5 is a 
bottleneck operation. Besides, if there are multiple production departments, the bottleneck operation 
is the last loaded operation of an order for all departments. The implies that a bottleneck operation 
determines the due date of the entire order, which, needless to say, can be multiple operations. 
Because of this, we consider using nonregular regular capacity in earlier weeks for just these bottleneck 
operations to try to reduce the tardiness of an order.  
 
As it always favorable to assess whether is it more beneficial to use some nonregular capacity for the 
bottleneck operations to prevent tardiness, we include an approach that does this. The last step of the 
FL approach explained in Figure 5.2 relates to this approach.  
 
We only consider these decisions when the due date of the initial solution, that follows from the 
previous steps of the FL approach, exceeds the customer requested due date (𝑑𝑖′ > 𝑐𝑑𝑖′). There are 
multiple ways in which one is able to prevent tardiness, where we aim to design a relatively simple 
procedure to make these decisions instead of designing an extensive improvement heuristic for this. 
In our approach, we keep loading the bottleneck operations one week earlier starting with the 
bottleneck operation that has the latest release date if there are multiple. The reason behind selecting 
the operation with the latest release date first is that it is more likely for bottleneck operations to be 
loaded in weeks that preceded their release date otherwise. Moreover, as the approach would always 
use nonregular capacity to prevent tardiness, we do not check whether it is more beneficial to load 
the bottleneck operations more than one week ahead in a single iteration. The procedure stops when 
operations cannot be loaded in an earlier week or when there is no tardiness anymore. Eventually the 
procedure returns the best found solution, which does not necessary have to be solution without 
tardiness.  
 
In Figure 5.8, we provide pseudo code that explains the logic behind the decisions to use extra 
nonregular capacity to prevent tardiness, which acts as the final step of our FL approach.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1) Best solution = Initial solution  

Current solution  = Initial solution 

2) Does incoming order have tardiness? (𝑑𝑖′ > 𝑐𝑑𝑖′) 

            If yes:   Go to 3 

  Otherwise:  Go to 7 

3) Determine all bottleneck operations of the order in the current solution (𝑗|𝑥𝑗 = max
𝑠

{𝑐𝑖′𝑠}) 

4) For all bottleneck operations, do the following:  

4.1) Select bottleneck operation with latest release date 

  4.1.1) Operations with equal release dates? 

   Select operation with shortest processing time 

  4.1.2) Operations with equal release dates and equal processing times? 

   Select first operation within 𝐽𝑖′  

4.2) Release date of operation equal to loading period? (𝑟𝑗 = 𝑥𝑗) 

  If yes:   Go to 7   

4.3) Load operation 1 week earlier (𝑥𝑗  = 𝑥𝑗  – 1)  

4.4) Maximum nonregular capacity exceeded? (𝑊𝐿𝑠𝑡 + 𝑝𝑗 > 𝑄𝑠𝑡 + 𝑀𝑂𝑠𝑡) 

  If yes:   Go to 4.2   

4.5) Update total workloads (𝑊𝐿𝑠𝑡 = 𝑊𝐿𝑠𝑡 + 𝑝𝑗) 

5) Obtain new solution  

6) Objective new solution < Best solution 

If yes:  Current solution = New solution 

Best solution = New solution (Go to 2) 

Otherwise:  Current solution = New solution (Go to 2)  

7) Result = Best solution 

  
Figure 5.8; Procedure decision regarding extra overtime usage to prevent tardiness of incoming order 
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We use the logic explained within the Figure 5.8 to balance between earlier due date assignment and 
nonregular capacity usage for the other loading approaches that we discuss later within this section as 
well.  
 

5.1.2 Collective forward loading approach 
Just like the FL approach, the collective forward loading approach (CFL) also loads the workload of an 
incoming order without reloading the existing orders that have not been completed yet. 
 

In contrast with the FL approach, the CFL approach is a self-constructed approach and loads the 
operations within the incoming order at a department from the moment when all operations can begin 
their production at this department onwards. This stimulates the operations that require production 
at a certain department of an incoming order to be loaded in periods at close proximity. We denote 
the latest release date of any operation 𝑗 within incoming order 𝑖′ that requires production at a certain 
department 𝑠 as the collective loading period at this department. We formulate this collective loading 
period as follows: 
 

𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑣𝑒 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑝𝑒𝑟𝑖𝑜𝑑𝑠 = max 
𝑗∈𝐽𝑖′|𝑦𝑗=𝑠

{𝑟𝑗} 

 
Appendix B contains an overview the logic behind this approach as well as the other approaches that 
we discuss during this Section. 
 
Figure 5.9 shows an example of the solution instance resulting from the CFL approach. The setting of 
this example is the same as the example from Section 5.1.1, where the operation of an incoming order 
(Figure 5.3) should be loaded into a periodic framework with already loaded orders (Figure 5.4). In this 
example, operation 5 has the latest release date, namely in week 8. So, the CFL approach loads all the 
operations from the incoming order at this department from week 8 onwards. Within this example, all 
five operations can be loaded into week 8.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Since the CFL approach waits with loading the operations at a department until all operations can begin 
its production, we expect the operations not to be loaded in a large number of different time periods. 
However, this can result in a later completion of all operations at a department. For instance, if the 
existing workloads of week 8 in the example of Figure 5.10 were larger, then some operations of the 
incoming order should be loaded in week 9.  
 
Just like within the FL approach, the CFL approach allows the usage of nonregular capacity during 
loading the operations. Operations of the incoming order will occupy the remaining capacity from the 
collective loading period until the full maximum regular capacity is occupied. This implies that if there 

Figure 5.9; CFL approach example 
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is regular capacity available and the workload of an operation exceeds this available regular capacity, 
then nonregular capacity is used. In addition, the CFL approach applies the same principle to balance 
between tardiness related to the customer-requested due date and nonregular capacity usage to 
prevent this tardiness as explained in Figure 5.8.  
 

5.1.3 Hybrid loading approach 
The hybrid loading approach (HL) is another approach that we developed and loads the workload of 
an incoming order without moving the existing orders that have not been completed yet. The HL 
approach uses both forward and backward loading, making it a hybrid approach. As mentioned before, 
forward loading loads the workloads of operations within the incoming order from the week of their 
release dates onwards. Backward loading loads the workloads of operations the other way around, 
starting with loading the operations in the week that results in the customer requested due date (𝑐𝑑𝑖′) 
and loading in the preceding weeks if the regular capacity limit is reached. The reason for making a 
hybrid approach instead of applying solely backward loading is that we do not always impose earliness 
costs in our problem setting. More specifically, some orders or departments do desire to complete the 
production activities ahead in time, which is something that principle of backward loading tends to 
counteract.  
 
In summary, the choice for loading the operations 𝑗 of incoming order 𝑖′ forward or backwards 
depends on two factors, namely the cost of preceding the customer-requested due date (RCEi′) and 
the costs of completing production activities early at a department (ACEs). Table 5.1 provides an 
overview of when the HL approach applies forward or backward loading based on these two factors.  
 
Table 5.1; HL approach guidelines 

 Department 𝒔 where: 

ACEs > 0 ACEs ≤ 0 
Incoming order 

𝒊′ with: 
RCEi′ > 0 Backward loading Forward loading (CFL) 

RCEi′ ≤ 0 Forward loading (CFL) Forward loading (CFL) 

 
If RCEi′ > 0, then the customer with the incoming order does not desire an earlier due date than its 
requested due date. When this is the case, we allow the operations to be loaded backwards, as we aim 
to avoid deviation from the customer-requested due date. However, we only allow this backward way 
of loading to happen at the departments that do not desire early production, i.e., the departments 
where ACEs > 0.  
 
The process of backward loading goes as follows: We load the operations within the incoming order 
that require production at these departments from period 𝑐𝑑𝑖′ − 𝑞 backwards. We include slack 𝑞, 
since this determines the due date that we assign to the incoming order. If there is any regular capacity 
left at these departments within period 𝑐𝑑𝑖′ − 𝑞, then we load the operations at that department, 
starting with the operations that has the latest release date, until all regular capacity is occupied. If 
there is no regular capacity left, then this backward loading looks at the previous week until all 
operations are loaded. If now an operation is loaded in a week that precedes its release date, then we 
start again with backward loading but now from week 𝑐𝑑𝑖′ − 𝑞 + 1. This extends the due date with 
one week, causing tardiness on the customer-requested due date. This is applicable if there is not 
enough regular capacity available or when 𝑐𝑑𝑖′ − 𝑞 automatically precedes one or multiple release 
dates, making the requested due date infeasible.  
 
For departments that do desire to be finished early with the production of order (ACEs ≤ 0), we apply 
forward loading. The reason behind this is that backward loading generally results in loading workloads 
in later periods in comparison with forward loading, since this way of loading looks to loads the 
workloads in available capacity close to the customer-requested due date. This implies that backwards 
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loading results in less earliness, however if a department has benefits for earliness than we apply 
forward loading here.  
 
In the case when RCEi′ ≤ 0, then the customer with the incoming order does desire an earlier due 
date than its requested due date or a due date as soon as possible. When this happens, the model 
includes benefits for assigning earlier due dates. The HL approach loads the operations of incoming 
order 𝑖′ at all departments by means of forward loading when RCEi′ ≤ 0.  
 
When applying forward loading during the HL approach, we choose to use the CFL approach instead 
of the FL approach. The reason behind this is that the backward loading technique that we apply tries 
to load all the operations at a department within the same period, namely period 𝑐𝑑𝑖′ − 𝑞. The CFL 
approach also tries to load the operations at a department in the same period, namely the collective 
loading period.   
 
Figure 5.10 provides pseudo code that explains the logic behind the HL approach.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1) 𝑥𝑗 = 𝑧𝑗  for all operations within existing orders (𝑖 ≠ 𝑖′) 

2) Incoming order requests compliance with due date? (𝑅𝐶𝐸𝑖′ > 0) 

      If yes:   Go to 3 

      Otherwise:  Go to 8 
 

3) For all departments 𝑠 ∈ 𝑆: 

4)         Determine total existing workloads per period 𝑡 ∈ 𝑇 (𝑊𝐿𝑠𝑡) 

5)         Does department desires early completion? (𝐴𝐶𝐸𝑠 > 0) 

                   If yes:    Go to 6 

  Otherwise:   Go to 7 
   

6)         For all operations within 𝐽𝑖′  that require production at 𝑠 (𝑦𝑗 = 𝑠): 

6.1) Select operation with latest release date 

   6.1.1) Operations with equal release dates? 

    Select operation with shortest processing time 

   6.1.2) Operations with equal release dates and equal processing times? 

    Select first operation within 𝐽𝑖′  

6.2) Counter = 0 

6.3) Week = 𝑐𝑑𝑖′ − 𝑞 

6.4) Counter = Counter + 1 

6.5) 𝑟𝑗 > Week? 

 If yes:  Week =  𝑐𝑑𝑖′ − 𝑞 + Counter (Go to 6.4)  

 Otherwise:  Go to 6.6 

  6.6) No regular capacity available in Week? (𝑊𝐿𝑠𝑡 > 𝑄𝑠𝑡, where 𝑡 = Week) 

   If yes:  Week = Week - 1   (Go to 6.5) 

  6.7) Maximum overtime exceeded? (𝑊𝐿𝑠𝑡 + 𝑝𝑗 > 𝑄𝑠𝑡 + 𝑀𝑂𝑠𝑡, where 𝑡 = Week) 

   If yes:  Week = Week - 1   (Go to 6.5) 

   Otherwise:  𝑥𝑗  = Week   (Go to 6.8) 

  6.8) Update total workloads (𝑊𝐿𝑠𝑡 = 𝑊𝐿𝑠𝑡 + 𝑝𝑗) 

7)         For all operations within 𝐽𝑖′  that require production at 𝑠 (𝑦𝑗 = 𝑠): 

CFL Approach 
 

8) For all departments 𝑠 ∈ 𝑆: 

9)         For all operations within 𝐽𝑖′  that require production at 𝑠 (𝑦𝑗 = 𝑠): 

CFL Approach  
 

10) Decisions extra nonregular capacity to avoid tardiness  

Figure 5.10; HL approach procedure 
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Next, we provide a simplified example of way the HL approach applies backward loading. Figure 5.11 
provides the workloads of an incoming order at a certain department, consisting of four operations 
each with their own release dates. Moreover, the figure specifies the customer-requested due date of 
the incoming and the customer does not desire an earlier due date (RCEi′ > 0).  
 

 
Additionally, Figure 5.12 shows the loaded workloads of the existing orders at the department in 
question. Each color represents the workload of a different order, where the individual operations are 
not visible. Moreover, this department does not desire early production, meaning that ACEs of this 
department is larger than zero.  

 
In this example, the slack for assigning due dates is one week (𝑞 = 1). Next, we illustrate how the 
operations within the incoming order can be loaded with respect to available capacities at this 
department. Since both RCEi′ and ACEs are positive, earliness is not desired and we apply backward 
loading. Figure 5.13 visualizes the way that HL loads the workloads of the incoming order into the 
periodic loading framework. 𝑐𝑑𝑖′  equals 8 and 𝑞 equals 1, this implies that we can start with loading in 
week 7 (𝑐𝑑𝑖′ − 𝑞). We can observe that there is still regular capacity available within this week, so we 
can load (some of) the operations in week 7. Within Figure 5.13, one can observe how HL applies 
backwards loading in this setting. We first load the operation with the latest release date, which is 
operation 2. Afterwards, we fill the available regular capacity until all regular capacity is occupied. 
Afterwards, we look one week back in time, where there is still regular capacity left to load the 
remaining workload of the incoming order at this department.  
 

Figure 5.11; Example of customer-requested due date of incoming order and release dates of its operations, where 𝑅𝐶𝐸𝑖′ > 0 

Figure 5.12; New example of periodic loading framework with existing 
workloads of department 𝑠 where 𝐴𝐶𝐸𝑠 > 0 
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Within the example, not all operations can be loaded within the regular capacity of period 7. That is 
why we load operation 3 in period 6 instead based on the procedure from Figure 5.10. Furthermore, 
note that if the existing workloads in weeks 4 through 7 in the example were larger, then there would 
not be enough available regular capacity to load all the operations before the customer-requested due 
date. In this situation, (some of) the operations would have been loaded in week 8, causing tardiness 
on the customer-requested due date with a positive slack. Note that this could also have been the case 
when the release dates of all operations were in week seven or later in the current example.  
 
Since the HL approach considers desired or undesired early production, the solutions that follow from 
this approach most likely have low costs on this aspect. On the other hand, the way of backward 
loading that the HL approach proposes can result in the spread of workloads over a large number of 
weeks. This can be the case if there is little regular capacity left in multiple weeks, where only one or 
a few operations can be loaded at a time.   
 
Again, just like with the other approaches, the HL approach allows the usage of nonregular capacity. 
Initially, HL generates an initial solution whilst allowing only loading operations if there is regular 
capacity available. Moreover, HL uses the same logic from Figure 5.8 to balance between nonregular 
capacity usage and preventing tardiness.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.13; HL approach example in situation where 𝑅𝐶𝐸𝑖′ > 0 and 𝑞 = 1 
at department s where 𝐴𝐶𝐸𝑠 > 0 
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5.1.4 Unloading and forward loading approach 
The unloading and forward loading approach (UFL) loads the workloads of an incoming order in a 
similar manner to the FL approach, however the UFL approach considers adjusting or reloading the 
workloads of existing orders that have not been completed yet.  
 
The UFL approach iteratively loads all order operations of orders with assigned due dates outside the 
frozen periods (𝑎𝑑𝑖 >  |𝐻|) in the same manner as the FL approach. This implies that we first ‘unload’ 
existing workloads of orders with an already assigned due date outside the frozen periods, after which 
we load them again. In our approach, we unload all workloads of orders with a due date outside the 
frozen periods, however an option could also be to unload a fraction of these workloads for 
computational efficiency. The main reason for still unloading all the workloads in our approach is that 
all loaded workloads take each other into account. For instance, loading some workloads in a different 
manner could free regular capacity and could have impact on all succeeding loaded workloads.  
 
When it comes to loading, we start with loading operations from the order with the earliest due date, 
with the reason to meet the already assigned or requested due dates. We select the order with the 
shortest total processing time if there are multiple orders with equal due dates. This is because, this 
way, more orders can potentially be loaded in earlier time periods. Needless to say, in our approach, 
we load the workloads of one order after the other. However, one could, for instance, decide to load 
all the workloads per department (one department after the other). The reason for our approach to 
iteratively load the orders instead is to ensure coordination between the workloads of individual 
orders at all production departments.  
 
Moreover, the UFL approach also balances between nonregular capacity usage and tardiness of either 
the customer-requested due date of the incoming order or the already assigned due dates of existing 
orders. The logic that Figure 5.8 depicts also accounts for the UFL approach. The only adaptation to 
this procedure is that it should also be executed for existing orders that are reloaded and experience 
tardiness related to their already assigned due date (𝑑𝑖 > 𝑎𝑑𝑖). In this situation, the procedure should 
check whether it is worth using some nonregular capacity to prevent the costs of tardiness related to 
an already assigned due date.  
 
Figure 5.14 provides an overview of the logic behind UFL approach by means of pseudo code.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Next, we provide a simplified example on the way in which the UFL approach creates a solution at the 
moment of a new order arrival. Within this example, we only consider one production department and 
have a slack of one week for assigning due dates (𝑞 = 1).  

1) For all orders 𝑖 ∈ 𝑁 do the following: 

2)        Select order with earliest due date (𝑎𝑑𝑖  or 𝑐𝑑𝑖′) 

2.1) Orders with equal due dates? 

 Select order with shortest total processing time (workload) 

2.2) Orders with equal due dates and equal workloads? 

 Select first order within 𝑁 

3)        Does selected order have a due date within a frozen period? (𝑎𝑑𝑖 ≤  |𝐻|) 

If yes:  Do not change loading periods of order (𝑥𝑗 = 𝑧𝑗    ∀𝑗 ∈ 𝐽𝑖) 

  Update total workloads (𝑊𝐿𝑠𝑡 = 𝑊𝐿𝑠𝑡 + 𝑝𝑗) & Go to 2 

Otherwise:  Go to 4 

4)        For all departments 𝑠 ∈ 𝑆: 

5)               For all operations within 𝐽𝑖 that require production at 𝑠 (𝑦𝑗 = 𝑠): 

           FL approach  

       6)            Decisions extra nonregular capacity to avoid tardiness  

 
Figure 5.14; UFL approach procedure 
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Figure 5.15 provides an overview of the loaded workloads of existing orders at the moment of a new 
order arrival. In total there are nine existing orders (𝑖 = 1, … , 9). Moreover, the first three weeks, 
starting with week 0, make up the frozen periods, indicating that |𝐻| equals 2.  
 
Furthermore, Figure 5.16 provides information regarding the incoming order (index 𝑖 = 10). This 
incoming order has a customer-requested due date in week 6 and consist of four operations, each with 
their own release date.  

 
 
Table 5.2 gives the last part of the input, showing the due dates of all the 
orders within the system. These due dates are either already assigned due 
dates of existing orders (𝑎𝑑𝑖) or the customer-requested due date of the 
incoming order (𝑐𝑑𝑖′).  
 
After we defined all of the input, we can start with unloading the workloads 
of orders with a due date outside the frozen periods. Orders 1, 2 and 3 all have 
a due date within a frozen period with the current slack, meaning that we do 
not unload the workloads of these orders. Figure 5.17 provides an overview 
the periodic loading framework after we unloaded the corresponding 
workloads. 

Orders 𝒊 ∈ 𝑵 𝒂𝒅𝒊 / 𝒄𝒅𝒊′  

𝟏 1 
𝟐 2 
𝟑 2 
𝟒 3 
𝟓 4 
𝟔 4 
𝟕 4 
𝟖 5 
𝟗 6 

𝟏𝟎 5 

Table 5.2; Due dates of orders example 

Figure 5.15; Another example of periodic framework with existing workloads of a department  

Figure 5.16; Incoming order with its operations and customer-requested due date example 
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After unloading the workloads, the UFL approach iteratively starts with loading the operations of 
orders, beginning with the order that has the earliest due date. Figure 5.18 provides the solution 
instance that follows after reloading the workloads according to the UFL approach. Note that we do 
not provide details regarding all operations of the existing orders as well. The UFL approach reloads 
the workloads of orders 4 through 8 before the incoming order (10). This implies that there was still 
capacity available in week 4, where we load the operation with the earliest release date of the 
incoming order. The remaining operations within the incoming order are loaded in the fifth week, as 
there was still available capacity within that period.  

 
Because of the possibility to reload workloads of existing orders combined with forward loading the 
operations separately in remaining regular capacity, the solutions following from the UFL approach 
can result in well-occupied regular capacities across the time horizon. However, just like the FL 
approach, the UFL approach can result in the workloads from single orders to be spread over a large 
number of weeks.  
 
 
 
 
 

Figure 5.17; Periodic framework after unloading workloads of orders with 𝑎𝑑𝑖 > |𝐻| 

Figure 5.18; UFL approach example 
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5.1.5 Unloading and collective loading approach 
The fifth approach, namely the unloading and collective loading approach (UCL), also can adjust or 
reload the workloads of orders that have not been completed yet to load the workload of the incoming 
order.  
 
Just like the UFL approach, the UCL approach first unloads the workloads of the existing orders with a 
due date outside the frozen periods (𝑎𝑑𝑖 >  |𝐻|). Afterwards, the UCL approach iteratively loads the 
operations of orders, starting with the order that has the earliest due date (either 𝑎𝑑𝑖 or 𝑐𝑑𝑖′). The 
UCL approach loads operations within orders that require production at a certain department in a 
forward manner from the collective loading period onwards, which is the same principle as the CFL 
approach.  
 
After the workloads of an order have been loaded, the UCL approach, just like the other approaches, 
checks whether tardiness related to the due date (𝑑𝑖 > 𝑎𝑑𝑖 or 𝑑𝑖 > 𝑐𝑑𝑖′) takes place and if it is more 
beneficial to use nonregular capacity to avoid this.  
 
The way in which the UCL loads the workloads can result in less spread of the workloads of single order, 
as the approach tries to load all operations of order within the same period. On the other hand, this 
can result in less occupation of regular capacities in earlier weeks where some operations of an order 
could have been produced.  
 

5.1.6 Unloading and hybrid loading approach 
The final approach to load the workload of an incoming order is the unloading and hybrid loading 
approach (UHL). As the name implies, this approach is a combination between unloading existing 
orders and the previously discussed HL approach.  
 
The UHL approach iteratively loads all order operations of orders with assigned due dates outside the 
frozen periods (𝑎𝑑𝑖 >  |𝐻|) in the same manner as the HL approach. This implies that, again, the choice 
between forward or backward loading for the incoming order depends on both if the customer desires 
earliness (𝑅𝐶𝐸𝑖′) as well as if the department desires earliness (𝐴𝐶𝐸𝑠), see Table 5.1. For the existing 
orders with already assigned due dates, the way of loading only depends on 𝐴𝐶𝐸𝑠.  
 
After the UHL approach loads the workloads of a single order, we check whether it is more beneficial 
to use nonregular capacity to avoid tardiness related to either the already assigned due date of existing 
order or the customer-requested due date of the incoming order.  
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5.2 Improving the initial solution   
This section outlines approaches along the lines of improvement heuristics that can improve on initially 
created solutions. First, we elaborate on the choice of neighborhood operators that can construct 
neighborhood solutions. Afterwards, we discuss two improvement heuristics that we identified from 
the literature and we can apply to initially created solutions. 
 

5.2.1 Neighborhood operators  
For improving on initially created solutions, we select the following neighborhood operators based on 
the literature from Section 3.5: 
 
Operator 1)  Move operation 𝑗 to a consecutive period at the same department 𝑠 
Operator 2)  Swap of operations 𝑗 and 𝑗∗ within consecutive periods at the same department 𝑠 
Operator 3)  Pairwise swap of all operations of orders 𝑖 and 𝑖∗ within consecutive periods at the 

same department 𝑠 
Operator 4)  Pairwise swap of all operations of order 𝑖 that are loaded in the same period with an 

equal number of operations from other orders that are loaded in a consecutive period 
 
We select operators 1-3, as these are commonly used neighborhood operators in a scheduling 
environment and are directly applicable in our problem setting. These three neighborhood operators 
allow changing the loading periods of operations by performing relatively simple actions at the same 
production department. Whilst operator 1 changes the loading period of a single operation, operators 
2 and 3 interchange the loading periods of multiple operations to construct neighborhood solutions.  
 
A disadvantage of neighborhood operators is that operators 1-3 cannot prevent tardiness of orders if 
there are bottleneck operations at different departments. We stress again that bottleneck operations 
are the latest-loaded operations within an order that cause tardiness on the due date. If we move or 
swap operations at one department at a time, then moving a bottleneck operation forward resulting 
in an earlier completion at a department can mean a worse solution if there is still a bottleneck 
operation at another department.  
 
Neighborhood operator 4 can avoid tardiness, as it can load all bottleneck operations at every 
department of an order in the preceding period. This operator only applies if we select a bottleneck 
operation to be loaded in a different period. Note that operator 4 swaps the bottleneck operations at 
all departments with an equal number of operations instead of with operations from the same order. 
This is because, restricting a swap with only operations from the same order is not always feasible, 
since not every order must have a workload at every department.  
 
Our strategy for selecting a neighborhood operator is that we select operators 1-3 with equal 
probabilities and select operator 4 in case that we decide to construct a neighborhood solution by 
changing the loading period of a bottleneck operation. The main reason for selecting operators 1-3 
with equal probabilities instead of, for instance, selecting the best performing operator is to increase 
exploration among the solution space in search of the global optimum.  
 
In the cases when we choose to apply neighborhood operators 2 or 3, we randomly select other one 
or multiple operations in a consecutive period relative to the first selected operation(s) to swap with. 
However, not all operations can be loaded in earlier or later periods, as they are restricted by release 
dates, or can cause tardiness otherwise. Table 5.3 indicates the actions that the loaded operations can 
perform in which situations.  
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Table 5.3; Actions of operations 

In case of existing order In case of incoming order Release 
date 

Action 

𝑥𝑗 < 𝑎𝑑𝑖 − 𝑞 𝑥𝑗 < 𝑐𝑑𝑖′ − 𝑞 𝑥𝑗 = 𝑟𝑗 Move forward 

𝑥𝑗 < 𝑎𝑑𝑖 − 𝑞 𝑥𝑗 < 𝑐𝑑𝑖′ − 𝑞 𝑥𝑗 > 𝑟𝑗 Move forward and backward 

𝑥𝑗 = 𝑎𝑑𝑖 − 𝑞 𝑥𝑗 = 𝑐𝑑𝑖′ − 𝑞 𝑥𝑗 = 𝑟𝑗 Cannot move 

𝑥𝑗 = 𝑎𝑑𝑖 − 𝑞 𝑥𝑗 = 𝑐𝑑𝑖′ − 𝑞 𝑥𝑗 > 𝑟𝑗 Move backward 

𝑥𝑗 > 𝑎𝑑𝑖 − 𝑞 𝑥𝑗 > 𝑐𝑑𝑖′ − 𝑞 𝑥𝑗 = 𝑟𝑗 Cannot move 

𝑥𝑗 > 𝑎𝑑𝑖 − 𝑞 𝑥𝑗 > 𝑐𝑑𝑖′ − 𝑞 𝑥𝑗 > 𝑟𝑗 Move backward 

 
It is of great importance to construct feasible neighborhood solutions and the actions coupled to the 
situations stated in Table 5.3 help with ensuing feasible solutions. In particular, when using 
neighborhood operators 2 and 3, we should make sure that we swap operations that can be loaded in 
succeeding periods with operations that can be loaded in preceding periods. When using the third 
operator, for instance, and one of the operations 𝑗 from selected order 𝑖 that is loaded in a certain 
week cannot move, then we do not allow the neighborhood operator to continue. Additionally, the 
actions with the corresponding situations in Table 5.3 also restrict neighborhood solutions from 
causing more tardiness.  
 
At last, one should always check whether an action results in exceeding the maximum overtime usage 
during a period at a department to enhance the feasibility of solutions.  
 
All neighborhood operators (1-4) allow operations to be loaded in different periods at every 
department. This implies that the neighborhood operators can transform any initial solution at a 
department into another solution whilst considering the loading restrictions. Moreover, the 
neighborhood operators can do so within a finite number of iterations, as we do not impose any 
restrictions on the use of the operators apart from only allowing the use of operator 4 when we select 
a bottleneck operation. This makes that the neighborhood operators ensure a connected 
neighborhood. 
 

5.2.2 Adapted steepest descent  
The first improvement heuristic is an adaptation to the steepest descent heuristic that we identified 
from the literature and discuss in Section 3.5.2. For the steepest descent heuristic, we recall that the 
general idea is to find neighbor solution 𝑥′ with the lowest objective function value 𝑓(𝑥′) within the 
neighborhood 𝑁(𝑥) of initial solution 𝑥. We select this improvement heuristic, since it is capable of 
finding better solutions relatively fast (Pirlot, 1996). As it is not feasible to assess and construct every 
neighborhood solution in a timely manner and we still aim to find better solution fast, we adapt the 
steepest descent heuristic from Section 3.5.2 by only constructing neighborhood solutions for a fixed 
number of iterations. We construct these neighborhood solutions by randomly selecting operations 
with equal probabilities to apply a neighborhood operator to with the strategy explained in Section 
5.2.1, apart from the operations of orders with an already assigned due date within the frozen periods 
(𝑎𝑑𝑖 ≤  |𝐻|). 
 
After we perform the iterations, we assess whether there is any improvement in comparison with the 
initial solution. If this is the case, then we continue with constructing neighborhood solutions, but now 
in the neighborhood of the best found solution for, again, a fixed number of iterations. This way, we 
constantly try to find the best neighbor until no improvements occur or a until we reach a certain time 
limit, where the latter is also an adaptation to the steepest descent heuristic. Figure 5.19 provides an 
overview of the procedure we use for the adapted steepest descent.  
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5.2.3 Simulated annealing  
The second improvement heuristic is the simulated annealing heuristic (SA) that we identified from 
the literature in Section 3.5.2. SA is a metaheuristic, meaning that, in contrast with steepest descent, 
it can escape from local optima (Henderson et al., 2003). The reason for selecting the SA heuristic 
instead of another metaheuristic like tabu search is that we do not go through the entire 
neighborhood, i.e., we do not construct and assess every possible neighborhood solution. Instead, we 
randomly construct neighborhood solutions in the same manner as described within the adapted 
steepest descent approach. From the literature in Section 3.5.2, it follows that SA always accept better 
or equally good neighborhood solutions 𝑥′ (when 𝑓(𝑥′) < 𝑓(𝑥)) and accepts worse solutions with a 
certain probability depending on the difference in objective function values (𝑓(𝑥) − 𝑓(𝑥′)) and the 
current temperature 𝑇. This temperature decreases with the cooling factor 𝛼 after a certain number 
of iterations equal to the Markov chain length are performed.  
 
SA stops and returns the best found solution 𝑥∗ once the temperature 𝑇 drops below a predefined 
stopping temperature. Figure 5.20 provides an overview of the SA procedure that we use.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Generate initial solution x 
Set x* = x  
Set Stop = false 
 

While Stop = false and Time < TimeLimit  
       For i = 0 to MaxIterations  
     x’ = random solution in N(x)  
        If f(x’) < f(x*): 
        x* = x’  
 End 
       End      
       If f(x*) ≥ f(x) 
 Stop = true 
       Else 
 x = x*   
       End        
End  
Result = x* 

Figure 2.1; Straight table with other backroom elements example 
Figure 5.19; Adapted steepest descent  

Generate initial solution x 
Set x* = x  
Set T = StartTemp 
 

While T > StopTemp 
       For m = 0 to MarkovLength                     
 x’ = random solution in N(x)  
 If f(x’) < f(x): 
  x = x’ 
  If f(x’) < f(x*) 
   x* = x’ 
  End 

 Elseif random number(0,1) ≤  e
f(x)−f൫x′൯

T  
  x = x’ 
 End 
       End 
        T = 𝛼𝑇 
End  
Result = x* 

 
Figure 5.20; Simulated annealing heuristic 
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5.3 Solution design conclusion 
In this chapter, we stated our solution design for solving the model described in Chapter 4. In short, 
our solution design consists of an approximate approach, where we solve the problem by means of 
heuristics to obtain good quality solutions in a computationally efficient manner. Section 5.1 discusses 
six approaches capable of constructing an initial solution where we load the workload of an incoming 
order in available production capacity within the periodic loading framework whilst considering the 
workloads of already existing orders. These six approaches, namely FL, CFL, HL, UFL, UCL and UHL are 
construction heuristics and apply several loading techniques from the literature in constructing initial 
solutions, namely forward loading and backward loading. Moreover, all six approaches immediately 
check whether it is more beneficial to use nonregular capacity (overtime) to prevent tardiness of either 
the incoming order (FL, CLF and HL) or both the incoming order and existing orders (UFL, UCL and UHL). 
 
After we obtain an initial solution by means of the approaches from Section 5.1, we might improve 
with the use of the improvement heuristics that we describe in Section 5.2. These improvement 
heuristics are an adaptation to the steepest descent heuristics and simulated annealing.  
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6. Experimental design  
This chapter presents the experimental design of the research, where the goal is to find the best 
performing solution approach from Chapter 5 in the setting of TOMRA. To realize this, we experiment 
on different problem instances, where an incoming order request requires to be loaded. Section 6.1 
describes the experiment setting of our research, indicating how we design experiments that can 
provide the desired results. Additionally, Section 6.2 provides the results of different problem 
instances per solution approach and provides an evaluation of the results. At last, Section 6.3 concludes 
the chapter.  
 

6.1 Experiment setting 
As mentioned before, we aim to find the best performing solution approach from Chapter 5 in terms 
of objective value in our setting. This relates to the best approach to load the workload of an incoming 
order in available capacity, providing a due date whilst considering existing orders that have not been 
completed yet. Furthermore, we stress that a solution should be obtained in competent time. This is 
an important aspect to TOMRA, since they desire to provide order to due dates to their incoming order 
requests in a timely manner.  
 
In total, we evaluate the performance of 18 solution approaches with the purpose of finding the best 
solution approach that TOMRA constantly can use for loading the workloads of future incoming orders:  
 

• We first assess the performance of each of the 6 construction heuristics from Section 5.1 that 
are capable of loading the workload of an incoming order (FL, CFL, HL, UFL, UCL and UHL).  

• Afterwards, we evaluate the performance of each of the 6 construction heuristics in 
combination with the two improvement heuristics from Section 5.2 to assess whether 
remarkable improvements occur and which improvement heuristic shows the best 
performance. More specifically, we evaluate the performance of the 6 construction heuristics 
in combination with the adapted steepest descent (ASD) improvement heuristic as well as the 
performance of the 6 construction heuristics combined with the simulated annealing (SA) 
improvement heuristic.  

 
In our experiment setting, we try to imitate the production situation at TOMRA. This implies that we 
consider three production departments 𝑆 = {1,2,3} and a time horizon of 20 weeks ahead in time 𝑇 =
{0, … ,20}. In addition, we include a slack of one week (𝑞 = 1) and set the first two upcoming weeks as 
the frozen period (|𝐻| = 2). We refer to Appendix C for reasoning behind further model parameters 
visible in Table 6.1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Moreover, in our experiment setting, we include the identified products or operations stated Section 
2.1. Appendix A provides information regarding estimations of the processing times (𝑝𝑗) of these 

considered operations.  

Model parameter Value 

𝐸𝑥𝑝 2 

𝑅𝐶𝐸𝑖′  10 

𝑅𝐶𝑇 25 

𝐴𝐶𝐸1 3 

𝐴𝐶𝐸2 0 

𝐴𝐶𝐸3 3 

𝐴𝐶𝑇 50 

𝑆𝐶 5 

𝐶𝑂 1 

Table 6.1; Model parameters values in our setting 
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6.1.1 Release date determination 
We consider a total of 12 raw materials with stochastic external lead times that can influence release 
dates of several operations. We identified this selection of materials based on recommendations and 
interviews with production managers and employees who are active on the work floor at TOMRA. For 
determining the release dates for operations that require one or multiple of these raw materials, we 
make use of the sample average approximation (SAA) approach mentioned in Section 4.4.  
 
To utilize this approach, we used historical data on multiple external lead time observations for all 12 
materials. Such an observation implies the date from ordering the material until the date of receiving 
it, which we transformed to weeks instead of days to be in line with our modeling approach. We 
transformed the data into weeks by rounding the number of days the delivery lasted to the nearest 
week. Note that there might be correlation within the historical dataset regarding external lead time 
observations. For instance, a supplier could have had delivering issues, resulting in multiple 
consecutive long external lead time observations of a certain material type. In our analysis, we ignore 
these types of correlations, which can have an impact on the results.  
 
Eventually, each external lead time observation of raw material 𝑙 with stochastic external lead times is 
a scenario 𝜔𝑙. To construct a solution, we use the external lead times 𝐿𝑙(𝜔𝑙) of all materials 𝑙 based 
on a 75th percentile from the historical data. We select this percentile, as we aim to seek for robust 
solutions and feel like this provides a reasonable balance between solution feasibility and having 
unnecessary late release dates. Note that choosing a different percentile can influence the results. 
Additionally, we assess the feasibility of the resulting solutions by means of 25 random scenarios for 
external lead times to obtain the service level 𝜆. To be consistent with comparing the approaches, we 
use the same random scenarios for all approaches to obtain 𝜆. Appendix F provides detail regarding 
the determination of release dates for operations of incoming orders in our problem setting (both 
deterministic 𝑟𝑗 and stochastic 𝑟𝑗(𝜔𝑙)). 

 

6.1.2 Performance measures 
To assess the performances of the solution approaches, we use several performance measures that 
can give us insight on how well a solution approach performs.  
 
We divide the performance of each solution approach into 5 elements, namely the number of tardy 
orders, total overtime usage, objective function value, service level and the computational time in 
seconds. Both the objective function value and service level (𝜆) directly follow from the model 
described in Chapter 4. More specifically the objective function value refers to the total costs function 
from the model stated in Section 4.3 and the service level (𝜆) relates to feasibility of the resulting 
solution based on the SAA approach as explained above and mentioned in Section 4.4.   
 
Next to these two measures, we also provide information regarding the number of tardy orders and 
the total overtime usage within the planning horizon. Both these measures are already embedded 
within the objective function, however mentioning these measures explicitly can provide a better 
understanding regarding the performance of a solution approach. At last, we also include the 
computational time as a measure, where the computational time (in seconds) implies the time it takes 
for the approach to establish the resulting solution. The reasoning behind this is that a solution within 
reasonable and competent computational time is desired.  
 

6.1.3 Performance evaluation 
Within our experiment setting, we evaluate the performance of each solution approach based on 
multiple problem instances as well as multiple unique incoming orders. 
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We evaluate the performance of each solution approach on a total of 4 different problem instances. 
These instances represent different situations with respect to the number of existing orders, 
production capacity and material availability. We base these instances on historical company data 
during past peak demand periods. We evaluate the performance of the solution approach on multiple 
instances, as this provides more generalized results and diminishes the chance of good performance 
of an approach due to coincidence. We use 4 problem instances and not more, since we desire to 
evaluate the performances on recent situations instead of situations of years ago with different 
production environments (some other operations and ways of operating). Table 6.2 presents an 
overview of the information per experiment instance, where we depict the number of existing orders 
as well as the period where an incoming order requests the due date. Appendix D provides a more 
detailed overview of the experiment instances.  
 
Table 6.2; Overview of experiment instances  

Instance 1 2 3 4 

Existing orders 332 309 290 432 

Requested due date (𝑐𝑑𝑖′) 4 6 5 4 

 
For each of the 4 problem instances, we choose several types of incoming orders that request a due 
date during a busy week with few or none available regular capacity. The reason behind requesting a 
due date in busy week is to tackle our stated action problem from Chapter 1, since requesting a due 
date where the preceding weeks have enough regular capacity remaining is currently not a problem. 
In addition, we select multiple types of incoming orders to, again, provide more generalized results 
regarding the performance of the solution approaches.  
 
In total, we choose 4 different incoming orders with the following characteristics: 
 

• An incoming order with a relatively small workload at all departments 

• An incoming order with a relatively large workload at all departments 

• An incoming order with a workload at departments 1 and 2 

• An incoming order with a workload at departments 2 and 3 
 
Needless to say, evaluating performances on more different types of incoming orders would result in 
more robust performance results of the solution approaches. We select 4 types of incoming orders, 
instead of more or conducting a simulation study related to this aspect, since we feel that these types 
cover common characteristics of incoming orders at TOMRA and can provide us helpful insights in a 
timely manner. In Table 6.3, we highlight the characteristics of the 4 different incoming orders. 
Appendix E provides more details regarding these 4 hypothetical incoming orders.  
 
Table 6.3; Characteristics of incoming orders 

Incoming orders 1 2 3 4 

Department 𝑠 = 1 
Workload (hours) 10 40 14 X 

Operations 4 10 6 X 

Department 𝑠 = 2 
Workload (hours) 8.5 30 13 9 

Operations 6 15 6 5 

Department 𝑠 = 3 
Workload (hours) 10 40 X 22 

Operations 1 4 X 3 

Total workload (hours) 28.5 110 27 31 

Total operations 11 29 12 8 
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6.1.4 Data preparation 
As mentioned before, we use historical company data for our 4 different problem instances. This data 
consists of orders in the system that have not been completed yet with their corresponding operations. 
Moreover, the already assigned due dates of these existing orders are available. The following 
adjustments and additions to the historical data of existing orders are made: 
 

▪ Included the processing times 𝑝𝑗  to every operation 𝑗 that we consider at TOMRA. These 

processing times are estimations, which can be seen in Appendix A.  
▪ Included a release date 𝑟𝑗 to every operation 𝑗, where we use the logic explained in Appendix 

F for the setting of TOMRA. 
▪ Included the initial loading periods 𝑧𝑗 for all operations 𝑗 within the existing orders of all 

problem instances. We base these values on the current production setting of TOMRA (see 
Section 2.2), where each order is loaded one period before the assigned due dates.  

▪ Improved on the initial loading periods 𝑧𝑗 of the operations within existing orders for all 

instances by performing an extensive simulated annealing run: starting temperature of 150, 
stop temperature of 1, Markov chain length of 200 and a cooling factor 𝛼 of 0.99. The 
reasoning behind this step is that the quality of the initial loading periods 𝑧𝑗 can greatly 

influence the results and we, therefore, try to improve this quality first. Especially the results 
of the FL, CFL and HL approaches can be influenced by non-efficient 𝑧𝑗 values of existing orders, 

since these approaches do not change the loading periods of these existing orders. Moreover, 
we improve on the 𝑧𝑗 values, as our goal is the find a solution approach that provides the most 

efficient solutions in the long run with constantly high quality 𝑧𝑗 values when incoming orders 

arrive.  
▪ Included the (historical) regular and non-regular production capacity (𝑄𝑠𝑡 and 𝑀𝑂𝑠𝑡) per 

department per week during the planning horizon for every instance. In our problem setting, 
the capacity depends on the employee availability. Appendix D elaborates on how we obtain 
the exact values of 𝑄𝑠𝑡 and 𝑀𝑂𝑠𝑡 for all instances.  
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6.2 Experiment results 
We implement the solution approaches related to the deterministic model from Section 4.3 together 
with the stochastic extension of Section 4.4 in Python 3.9 on a computer with AMD Ryzen 7 4700U 
running at 2.00 GHz with a 16 GB RAM. This section highlights the results of all solution approaches in 
three subsections: Section 6.2.1 discusses the results of all 6 construction heuristics, Section 6.2.2 
contains the results of all 6 construction heuristic combined with adapted steepest descent (ASD) and 
Section 6.2.3 highlights the results of all 6 construction heuristics combined with simulated annealing 
(SA).  
 
For the solution approaches consisting of an improvement heuristic (either ASD or SA), we performed 
3 replications to obtain more statistically significant results. Moreover, we outline the process of 
determining the parameters for both improvement heuristics in Appendix G.  
 

6.2.1 Construction heuristics results 
Table 6.4 provides an overview of the results of the performance related to the 6 construction 
heuristics. The results depicted in the table are the average performance measures of all 4 incoming 
orders per problem instance.  
 
Table 6.4; Construction heuristics results (average of the incoming orders per instance) 

Instance Approach Objective value Time (seconds) Tardy orders (#) 
Total Overtime 

(hours) 
Service level 

(𝜆) 

Instance 1 

FL 396.9 1.7 0.8 24.7 0.60 

CFL 387.9 1.9 0.8 23.9 0.92 

HL 364.1 1.9 0.8 20.4 0.92 

UFL 1248.5 6.3 2.8 45.2 0.86 

UCL 1182.1 6.8 2.8 41.1 0.92 

UHL 489.1 3.9 2.8 24.6 0.92 
       

Instance 2 

FL 942.1 2.0 2.5 55.3 0.83 

CFL 930.7 1.9 2.5 55.5 0.87 

HL 921.9 1.7 2.3 55.9 0.87 

UFL 1703.3 1.9 3.0 89.6 0.83 

UCL 1660.8 2.3 3.0 89.3 0.83 

UHL 969.8 2.8 3.3 56.6 0.83 
       

Instance 3 

FL 523.1 1.5 1.0 40.2 0.87 

CFL 512.7 1.5 1.0 39.1 0.90 

HL 479.5 1.5 1.0 34.7 0.90 

UFL 833.4 1.7 1.0 53.0 0.94 

UCL 821.3 2.0 1.0 52.3 0.94 

UHL 466.7 2.7 1.0 33.4 0.94 
       

Instance 4 

FL 1579.3 2.8 2.8 85.6 0.61 

CFL 1568.7 2.8 2.8 84.9 0.85 

HL 1564.4 2.9 2.8 84.4 0.85 

UFL 2502.2 66.0 24.8 76.0 0.61 

UCL 2484.2 66.9 24.8 75.0 0.85 

UHL 2482.5 61.2 20.8 78.5 0.85 

 
From the results in Table 6.4, we observe the following:  

▪ The results change significantly with the four different problem instances. An explanation for 
this is that every instance has different existing orders as well as a different production 
capacity per department during the time horizon. Especially instance 4 has remarkably more 
existing orders when the hypothetical incoming orders arrive (See Section 6.1.3), resulting in 
either more overtime usage or more tardy orders for this instance.   
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▪ The UFL and UCL approaches show poor performance related to the objective values on all 
problem instances. This is mostly due to the higher overtime usage and larger number of tardy 
orders for all instances. Moreover, a reason for the poor performances of these approaches 
can be that the initial loading periods (𝑧𝑗) are already very efficient before the arrival of the 

new order request. This can explain why unloading the operations from existing orders with 
due dates outside the frozen period, thus possibly changing their loading periods, results in 
poor performances.   

▪ The service levels are the lowest on both forward loading approaches (FL and UFL), whilst the 
service levels of the remaining approaches are, for all instances, well above the 75th percentile 
used for constructing the solution.  

▪ All unloading approaches (UFL, UCL and UHL) require on average more time to construct a 
solution as a result of their way of loading. The unloading approach require especially more 
time for instance 4 due to the higher number of existing orders in this instance.  

▪ The HL approach shows the overall best objective value performances, with only the UHL 
approach outperforming this HL approach in the problem instance 3. A reason why UHL 
performs better for problem instance 3 is that the initial loading periods (𝑧𝑗) are not very 

efficient for this instance, resulting that unloading all operations of orders with assigned due 
dates outside the frozen periods shows better performance.  

 

6.2.2 Adapted steepest descent results 
For the adapted steepest descent heuristic (ASD), we used a time limit of 300 seconds, a maximum 
iterations of 250 for the FL, CFL, HL and UHL construction heuristics and a maximum number of 
iterations of 50 for the UFL and UCL construction heuristics. We select these parameter settings, since 
these setting provide us with the most improvements in objective values in our problem setting. 
Appendix G describes the steps in tuning these parameters in more detail.  
 
Table 6.5 highlights the results related to the performance of the 6 construction heuristics with the 
ASD improvement heuristic, where we denote the difference with the values from just the construction 
heuristics (Table 6.4) in brackets. The results in the table are the average performance measures of all 
4 incoming orders per problem instance. For these solution approaches, we perform 3 replications per 
observation to obtain more generalized results.  
 
Table 6.5; Combined construction heuristics and ASD results (average of the incoming orders per instance that are performed 
with 3 replications) 

Instance Approach Objective value Time (seconds) Tardy orders (#) 
Total Overtime 

(hours) 
Service level 

(𝜆) 

Instance 1 

FL 360.4 (-36.5) 137.4 (+135.7) 1.1 (+0.3) 19.8 (-4.9) 0.70 (+0.10) 

CFL 357.8 (-30.1) 133.0 (+131.1) 1.0 (+0.2) 19.5 (-4.4) 0.88 (-0.04) 

HL 334.4 (-29.7) 149.7 (+147.8) 0.8 (+0.0) 17.4 (-3.0) 0.86 (-0.06) 

UFL 712.4 (-536.1) 292.6 (+286.3) 2.1 (-0.7) 23.6 (-21.6) 0.86 (+0.00) 

UCL 717.6 (-464.5) 286.9 (+280.1) 2.1 (-0.7) 24.4 (-16.7) 0.92 (+0.00) 

UHL 387.0 (-102.1) 131.7 (+127.8) 1.9 (-0.9) 19.5 (-5.1) 0.85 (-0.07) 
       

Instance 2 

FL 910.1 (-32.0) 168.5 (+166.5) 2.8 (+0.3) 55.0 (-0.3) 0.72 (-0.11) 

CFL 907.6 (-23.1) 107.5 (+105.6) 2.7 (+0.2) 55.1 (-0.4) 0.86 (-0.01) 

HL 893.1 (-28.8) 153.1 (+151.4) 2.6 (+0.3) 51.4 (-4.5) 0.83 (-0.04) 

UFL 1271.3 (-432.0) 175.6 (+173.7) 3.5 (+0.5) 67.4 (-22.2) 0.82 (-0.01) 

UCL 1162.0 (-498.8) 226.3 (+224.0) 3.8 (+0.8) 55.1 (-34.2) 0.85 (+0.02) 

UHL 940.1 (-29.7) 111.5 (+108.7) 4.1 (+0.8) 56.7 (+0.1) 0.85 (+0.02) 
       

Instance 3 

FL 500.4 (-22.7) 76.7 (+75.2) 1.3 (+0.3) 36.6 (-3.6) 0.88 (+0.01) 

CFL 497.1 (-15.6) 45.0 (+43.5) 1.2 (+0.2) 38.0 (-1.1) 0.90 (+0.00) 

HL 479.1 (-0.4) 34.0 (+32.5) 1.2 (+0.2) 35.1 (+0.4) 0.91 (+0.01) 

UFL 642.7 (-190.7) 222.9 (+221.2) 3.0 (+2.0) 32.2 (-20.8) 0.96 (+0.02) 
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UCL 638.4 (-182.9) 192.9 (+190.9) 3.3 (+2.3) 32.9 (-19.4) 0.96 (+0.02) 

UHL 439.6 (-27.1) 192.7 (+190.0) 1.3 (+0.3) 28.7 (-4.7) 0.94 (+0.00) 
       

Instance 4 

FL 1572.9 (-6.4) 51.8 (+49.0) 3.1 (+0.3) 83.9 (-1.7) 0.61 (+0.00) 

CFL 1561.4 (-7.3) 51.4 (+48.6) 2.8 (+0.0) 84.5 (-0.4) 0.85 (+0.00) 

HL 1561.1 (-3.3) 42.3 (+39.4) 2.8 (+0.0) 84.7 (+0.3) 0.85 (+0.00) 

UFL 1998.2 (-504.0) 199.7 (+133.7) 14.9 (-9.9) 73.6 (-2.4) 0.86 (+0.25) 

UCL 2010.0 (-474.2) 192.9 (+126.0) 14.9 (-9.9) 79.0 (+4.0) 0.88 (+0.03) 

UHL 2098.1 (-384.4) 300.0 (+238.8) 14.9 (-5.9) 82.6 (+4.1) 0.85 (+0.00) 

 
From the results in Table 6.5, we see the following:  

▪ The improvements for most instances do not last the full 300 seconds on average. This 
indicates that the ASD procedure stops, as it often is not capable of finding a better 
neighborhood solution within the maximum number of iterations. Moreover, the times of the 
unloading approaches are on average longer, which can be explained by the fact that these 
approaches generate worse initial solutions as seen in Table 6.4.  

▪ The service levels after applying the ASD heuristic differ from the approach of solely using 
construction heuristics (Table 6.4). This implies that the ASD improvement heuristics impacts 
the service levels. Again, especially the FL approach has low service levels in comparison with 
the other approaches.  

▪ The HL approach performs best in objective value and has on average least number of tardy 
orders and overtime hours within the planning horizon. An explanation for this observation is 
that the HL approach loads the operations at some production departments in a backwards 
manner, considering the customer-requested due date and resulting in the least amount of 
tardiness for the incoming order.  

 

6.2.3 Simulated annealing results 
For the simulated annealing (SA) improvement heuristic, we used a start temperature of 30 with a stop 
temperature of 5, a Markov chain length of 150 and a cooling factor α of 0.975 for all 6 construction 
heuristics. We select these parameter settings, since, in our eyes, these settings result in the best 
trade-off between computational time and objective value in our problem setting, as we aim to find 
good quality solutions in a timely manner. Appendix G describes more detailed logic behind these 
parameter settings.  
 
Table 6.6 provides an overview of the results regarding the performance of the 6 construction 
heuristics with the SA heuristic, with the differences compared with just the construction heuristics 
(Table 6.4) in brackets. Once again, the results in the table are the average performance measures of 
all 4 incoming order per instance, where we perform 3 replications per observation.  
 
Table 6.6; Combined construction heuristics and SA results (average of the incoming orders per instance that are performed 
with 3 replications) 

Instance Approach Objective value Time (seconds) Tardy orders (#) 
Total Overtime 

(hours) 
Service level 

(𝜆) 

Instance 1 

FL 338.9 (-58.0) 1304.4 (+1302.7) 1.1 (+0.3) 19.5 (-5.2) 0.72 (+0.12) 

CFL 346.9 (-41.0) 1301.2 (+1299.3) 1.3 (+0.5) 20.2 (-3.7) 0.93 (+0.01) 

HL 335.9 (-28.2) 1300.1 (+1298.2) 0.9 (+0.1) 18.9 (-1.5) 0.92 (+0.00) 

UFL 547.3 (-701.2) 1385.4 (+1379.1) 1.6 (-1.2) 22.5 (-22.7) 0.78 (-0.08) 

UCL 573.2 (-608.9) 1378.6 (+1371.8) 2.1 (-0.7) 21.7 (-19.4) 0.87 (-0.05) 

UHL 390.3 (-98.8) 1382.3 (+1378.4) 2.0 (-0.8) 17.9 (-6.7) 0.92 (+0.00) 
       

Instance 2 

FL 901.5 (-40.6) 1124.3 (+1122.3) 2.3 (-0.2) 51.9 (-3.4) 0.69 (-0.14) 

CFL 900.3 (-30.4) 1132.1 (+1130.2) 2.8 (+0.3) 55.8 (+0.3) 0.85 (-0.02) 

HL 891.2 (-30.7) 1123.0 (+1121.3) 2.6 (+0.3) 50.4 (-5.5) 0.82 (-0.05) 

UFL 1076.1 (-627.2) 1130.4 (+1128.5) 4.0 (+1.0) 55.5 (-34.1) 0.74 (-0.09) 

UCL 1048.6 (-612.2) 1133.7 (+1131.4) 4.3 (+1.3) 53.5 (-35.8) 0.89 (+0.06) 
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UHL 912.5 (-57.3) 1132.6 (+1129.8) 3.6 (+0.3) 57.6 (+1.0) 0.88 (+0.05) 
       

Instance 3 

FL 498.1 (-25.0) 1197.2 (+1195.7) 1.4 (+0.4) 37.9 (-2.3) 0.93 (+0.06) 

CFL 495.0 (-17.7) 1214.8 (+1213.3) 1.3 (+0.3) 36.2 (-2.9) 0.94 (+0.04) 

HL 477.4 (-2.1) 1205.6 (+1204.1) 1.2 (+0.2) 37.2 (+2.5) 0.94 (+0.04) 

UFL 572.3 (-261.1) 1196.1 (+1194.4) 2.2 (+1.2) 33.3 (-19.7) 0.81 (-0.13) 

UCL 558.7 (-262.6) 1197.3 (+1195.3) 2.2 (+1.2) 33.0 (-19.3) 0.92 (-0.02) 
UHL 440.7 (-26.0) 1199.7 (+1197.0) 1.3 (+0.3) 28.3 (-5.1) 0.94 (+0.00) 

       

Instance 4 

FL 1573.0 (-6.3) 1308.3 (+1305.5) 2.8 (+0.0) 85.5 (-0.1) 0.61 (+0.00) 

CFL 1562.8 (-5.9) 1309.2 (+1306.4) 2.9 (+0.1) 84.2 (-0.7) 0.85 (+0.00) 

HL 1563.5 (-0.9) 1306.8 (+1303.9) 2.8 (+0.0) 86.1 (+1.7) 0.88 (+0.03) 

UFL 2083.0 (-419.2) 1356.7 (+1290.7) 15.2 (-9.6) 80.4 (+4.4) 0.61 (+0.00) 

UCL 2058.8 (-425.4) 1355.1 (+1288.2) 14.8 (-10.0) 79.1 (+4.1) 0.81 (-0.04) 

UHL 2015.1 (-467.4) 1347.6 (+1286.4) 12.3 (-8.5) 78.6 (+0.1) 0.79 (-0.06) 

 
From the results in Table 6.6, we observe the following:  

▪ The solution approaches with the SA improvement heuristic show similar performance in 
terms of objective value compared to the approaches including the ASD heuristic. However, 
the approaches with the SA heuristic require significantly more computation time to release 
an outcome.  

▪ Both the FL and UFL have low service levels  
▪ Apart from instance 3, the HL approach shows the best performance in terms of objective 

values.  
 
 

6.2.4 Summarized results 
Table 6.7 summarizes the results of all solution approaches. The performance measures depicted in 
the table are the average values of all instances of Table 6.4, 6.5 and 6.6.  
 
Table 6.7; Average results of all approaches   

Approach Objective value 
Time 

(seconds) 
Tardy orders (#) 

Total Overtime 
(hours) 

Service level (𝜆) 

Construction 
heuristic 

FL 860.3 2.0 1.8 51.5 0.73 

CFL 850.0 2.0 1.8 50.9 0.89 

HL 832.5 2.0 1.7 48.9 0.89 

UFL 1571.8 19.0 7.9 65.9 0.81 

UCL 1537.1 19.5 7.9 64.4 0.89 

UHL 1102.0 17.6 6.9 48.3 0.89 
       

Construction 
heuristic  

+  
Adapted 
steepest 

descent (ASD) 

FL 835.9 108.6 2.1 48.8 0.73 

CFL 831.0 84.2 1.9 49.3 0.87 

HL 816.9 94.8 1.9 47.2 0.86 

UFL 1156.1 222.7 5.9 49.2 0.88 

UCL 1132.0 224.7 6.0 47.9 0.90 

UHL 966.2 188.2 5.5 46.9 0.87 
       

Construction 
heuristic  

+  
Simulated 
annealing 

(SA) 

FL 827.9 1233.5 1.9 48.7 0.74 

CFL 826.3 1239.3 2.1 49.1 0.89 

HL 817.0 1233.9 1.9 48.1 0.89 

UFL 1069.7 1267.2 5.7 47.9 0.74 

UCL 1059.8 1266.2 5.8 46.8 0.87 

UHL 939.6 1265.6 4.8 45.6 0.88 
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From the summarized results, we see that the approaches with only the construction heuristic seem 
to perform well on average. However, both improvement heuristics manage to improve on the 
objective values of the initial solutions. Figure 6.1 shows the average improvement in the objective 
values for both the ASD and SA improvement heuristics. From this figure, we clearly see that the SA 
heuristic results in more improvement for most construction heuristics. Moreover, both heuristics 
show more improvement in the unloading approaches that, on average, have worse initial objective 
values. Nevertheless, all unloading approaches still do not outperform the approaches that do not 
consider reloading operations from existing orders with already assigned due dates after applying the 
improvement heuristics with the current parameter settings.  

 
Moreover, we observe that the HL construction heuristic shows the overall best performances in terms 
of objective value for just the construction heuristic itself as well as in combination with both 
improvement heuristics. Additionally, the HL approach shows solid service levels in comparison with 
the other approaches. The average initial solution value for the HL approach of 832.5 is already good 
performance in comparison with other approaches. However, the HL approach in combination with 
the ASD heuristic with a value of 816.9 shows notable improvement in the objective value. The average 
performance of the HL approach in combination with the SA heuristic is similar, namely 817.0, however 
this is achieved in much more computational time on average (1233.9 seconds of SA in comparison to 
94.8 seconds of ASD).  
 
Additionally, we see that the unloading approaches (UFL, UCL and UHL) do show higher objective 
values than the approaches that do not consider reloading operations from existing orders with 
already assigned due dates. This poor performance can be explained by the fact that these approaches 
first unload all orders with an assigned due date outside the frozen periods and treat the incoming 
order like an existing order. As our parameter settings assign more cost to tardiness of existing orders 
in comparison to tardiness of incoming orders, these higher objective values can be explained.  
 
Furthermore, we see that the forward loading approaches have the lowest service levels in general. 
The low service levels for the forward loading approaches indicate that these approaches try to load 
the operations that require materials with stochastic external lead times as soon as their release date, 
causing these operations to be loaded in periods that precede their sampled release date. These low 
service levels are a direct result of the 75th percentile we use for determining the release dates of the 
operations requiring one or multiple materials with stochastic external lead times. A higher percentile 
would most likely result in higher service levels for these forward loading approaches. Note that this 
service level is also based on 25 random scenarios, however the service levels of the forward loading 
approaches will remain the lowest with other scenarios, as the other approaches use the same random 
scenarios for evaluating the service level.  

Figure 6.1; Average solution improvements per construction heuristic for the adapted 
steepest descent (ASD) and simulated annealing (SA) improvement heuristics 
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6.3 Experimental design conclusion 
In this chapter, we conducted experiments on the solution approaches from Chapter 5 with the aim of 
providing good quality solutions in a timely manner for the model of Chapter 4. We developed an 
experimental design for comparing 18 solution approaches: 6 construction heuristics, 6 construction 
heuristics combined with ASD and 6 construction heuristics combined with SA.  
 
Section 6.1 describes the experiment setting for comparing these solution approaches. We evaluate 
the performance of these approaches based on their objective values, computational times, number 
of tardy orders, total overtime usages and service levels. The service levels relate to loading the 
operations that require one or multiple materials with stochastic external lead times. For determining 
the release dates of these operations, we use the SAA approach from Section 4.4. In our setting, we 
apply a 75th percentile for determining the release dates and assess the feasibility of the loaded 
operations based on 25 random scenarios. Eventually, we evaluate the performances of the 
approaches on 4 problem instances that are based on historical order data with 4 different incoming 
orders at each instance that all request a due date during a peak demand period.  
 
Section 6.2 highlights the results of the performed experiments, where the HL construction heuristics 
shows the overall best performance in terms of objective value. Moreover, the forward loading 
approaches (FL and UFL) tend to show low service levels as a result of their way of loading operations 
requiring one or multiple materials with stochastic external lead times. At last, both improvement 
heuristics (ASD and SA) improve on the objective value, where the ASD heuristic converges faster to 
similar solution values compared to the SA heuristic.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

75 
 

7. Conclusion and discussion 
This chapter presents the conclusions and recommendations of our research. More specifically, Section 
7.1 recapitulates the main findings. Section 7.2 provides recommendations to TOMRA. Section 7.3 
discusses the limitations of our research as well as future research areas. Finally, Section 7.4 addresses 
the academic relevance of this research.  
 

7.1 Conclusion  
The production facility of TOMRA in Apeldoorn often experiences production related problems during 
peak demand periods of the backroom elements of bottle deposit systems. Among other things, high 
workloads and inventory shortages make up for these production problems. These problems are 
mainly caused by the fact that the production capacity is currently not fully considered in production 
planning activities at TOMRA. More specifically, optimizing due dates assignments to incoming orders 
is of great relevance, where customers currently determine the due dates. As TOMRA does not have 
detailed capacity overviews, they have little saying in providing feedback on the requested due dates 
and almost always comply with the customers’ requests resulting in heavy workload fluctuations. 
Therefore, the main research question is the following:  
 

“How to optimize the combined process of assigning due dates with spreading the workload of 
incoming orders? 

 
We developed a finite loading model that is capable of optimizing due date assignments to incoming 
order requests in a setting with multiple production departments, where customers have a desired 
due date and no incoming orders are refused. The model considers imposing tardiness to existing 
orders that have not been completed yet to fit an incoming order in the production capacity. 
Moreover, we consider the usage of nonregular capacity in this process. In addition, we developed a 
sample average approximation (SAA) inspired approach that is capable of determining release dates 
of operations that require one or multiple materials with stochastic external lead times.  
 
The solution approach for solving the model in our setting consists of an approximate method to obtain 
good quality model solution in a timely manner by means of heuristics. In total, we considered 6 
construction heuristics that can generate initial solutions to our problem, namely FL, CFL, HL, UFL, UCL 
and UHL. Moreover, we included two improvement heuristics that can improve on initial solutions, 
namely ASD and SA. 
 
To find the best solution approach in our problem setting at TOMRA, we developed an experimental 
design that evaluates the performances of the approaches based on 4 problem instances. Each 
problem instance requires loading of 4 different incoming orders that all request a due date during a 
peak demand period.  
 
From the experiment results, we conclude that the HL approach, which loads operations forward or 
backward depending on preferences of customers and production departments, shows the overall 
best performance in terms of objective value. Moreover, both forward loading approaches (FL and 
UFL) show poor performance related to the service levels as a result of their way of loading the 
operations. Using only the HL construction heuristic provides already good quality solution. However, 
applying an improvement heuristic to change some loading periods of order to fit the workload of an 
incoming order even better within available production capacity improves the objective values. ASD 
shows similar performance related to the SA improvement heuristic, however does so in less 
computational time, making this approach superior with its current parameters in our problem setting.  
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7.2 Recommendations 
Based on the evaluated solution approaches, we recommend TOMRA to implement the HL approach 
for loading the workloads of incoming orders. This construction heuristic outperforms the other 
solution approaches that we considered during this research. Moreover, we recommend applying the 
ASD improvement heuristic to enhance the quality of solutions in a timely manner.  
 
For the implementation of this approach, several changes are required at TOMRA. The first of which 
being to make use of the estimated processing times during this research to gain detailed insights on 
the workloads of orders. Additionally, the employee availability should be monitored on a weekly basis 
to obtain the production capacity, where we recommend establishing this per production department 
as far ahead in time as possible. At last, a user-friendly dashboard would help in filling in the order 
elements of incoming orders requests as well as their requested due date after which the 
recommended best solution approach of this research can load the operations per department.  
 
Furthermore, we recommend generating capacity overviews per production department. These 
overviews can contain the workload in hours per week for the planning horizon at a certain production 
department. Since TOMRA currently has no capacity related overviews, this would help in showcasing 
how much workload is planned in the upcoming weeks and to gain insights into their regular and 
nonregular capacity usage.  
 
Finally, we stress the importance of customers having the exact specifications for the table and 
conveyor departments available well ahead of the due date. The MTO elements of Dutch orders are 
dependent on checks at client locations to begin their production. As of right now, these checks are 
often executed only a couple of days before the due date. This causes that TOMRA is not able to begin 
the production activities of the tables and conveyors for these orders well ahead of time, resulting in 
less possibilities to spread workloads and less efficient production schedules.  
 

7.3 Limitations and future research  
We limited the scope of our research to the most backroom elements that TOMRA produces, however 
some less common products or services that TOMRA delivers were excluded. Moreover, we did not 
consider all materials that TOMRA uses for producing the backroom elements for determining 
(stochastic) release dates.  
 
In addition, we did not implement the solution design of the model with the use of the fastest 
programming language. This limited the number of neighborhood solutions that we could construct in 
a certain time limit. For instance, this causes the ASD improvement heuristic to not go through a larger 
proportion of the neighborhood in the search for better neighborhood solutions. Besides, the speed 
of our programming language resulted in not further tuning the parameters for both improvement 
heuristics.   
 
An area for future research is to develop more loading techniques capable of constructing initial 
solutions. In our research, we only considered 6 construction heuristic. There can be other approaches 
that can potentially outperform our best found solution approach. Moreover, we implemented a 
specific way to immediately see if it is worth to use some extra nonregular capacity to prevent 
tardiness. This procedure can be extended or adjusted in various ways to improve the results.  
 
In the future, more extensive neighborhood operators can be applied for reloading operations in 
different manners to make the improvement heuristics generate better solutions. For example, a 
bottleneck operation can swap with an operation that is loaded in an earlier week, which can possibly 
also be swapped with an operation loaded in an earlier week etcetera, to consider a wide range of 
weeks in constructing a neighborhood solution.  
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Another area for future research is to include stochasticity related to the production capacity. The 
capacity at TOMRA depends on the employee availability, of which the exact availability is hard to 
know multiple weeks or months ahead in time. The employee availability becomes more uncertain 
further in the future, which can influence the loaded workloads during these periods. One could 
consider the production capacity as a stochastic element to make the model more realistic. Moreover, 
some employees can work at multiple production department at TOMRA. The model could be changed 
in such a way to arrange the optimal distribution of the employees over the production departments 
depending on existing and incoming workloads. Besides, some employees with multiple years of 
experience can produce some types of backroom elements faster than others. This can influence the 
processing times, resulting in deviated capacity insights.  
 
At last, an extension to the model can be to make distinctions between different customers. This way, 
TOMRA can prioritize between customers, which is something they are planning on doing in the near 
future.  
 

7.4 Academic relevance  
The finite loading method that we propose in this research can be applied to a wide range of 
production environments. Both the ideas that nonregular capacity can be used to fit the workloads of 
orders and that the workloads of existing orders can be reloaded to other periods are extremely 
relevant in our eyes. The deterministic model from Section 4.3 that we use during this research 
requires a customer-requested due date an input parameter, but can easily be adapted if this is not 
the case within another setting. Additionally, production environments might require precedence 
relationships between production departments for which an adaptation to the current model is 
required via an extra constraint.  
 
Furthermore, the stochastic element that we include within our model formulation that arranges the 
determination of release dates based on the concept of SAA can be relevant for various problem 
settings. Scheduling problems that require release dates as input can make use of the method that we 
propose in Section 4.4 if there are materials with stochastic external lead times.  
 
At last, the concepts behind the construction heuristics from Section 5.1 that are capable of finding 
good quality and computationally efficient solutions can be applied in other problem settings as well.  
Whilst the concepts of forward and backward loading already are well-known within the literature, the 
ideas of collective loading and loading the orders differently depending on customer preferences or 
the production department (hybrid loading) add academical value to our best knowledge.  
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Appendix A: Processing times estimation 
This appendix outlines the methods that we applied for estimating the process times of the considered 
products per production department. Moreover, we present the results of the estimation methods.  
 

Table department 
The table department produces tables that are customizable and can differ per customer. Yamashiro 
and Nonaka (2021) propose to use regression for the estimation processing times for these types of 
products. We apply linear regression on the characteristics of the ordered tables to estimate their 
processing times. We include the following characteristics: 
 

• Length of the table expressed in meters.  

• Type of table, either EasyPac (EP) or MultiPac (MUP2) 

• Shape of the table, either straight or L-shaped  
 
We used data of the table productions from the years 2022 and 2023, containing the start / end time 
and date of a produced table with the corresponding table characteristics. Note that, as the table 
characteristics, we only consider the length of tables and not the width. The reasons for this that 
MultiPac tables are automatically wider than EasyPac tables, the width of tables is rarely mentioned 
within the dataset and the width per type of table do not differ much. For instance, the width of the 
EasyPac tables is in somewhat standardized lengths of 0.8 and 1 meter.  
 
After we identified the characteristics and obtained the data, we take the following actions to clean 
the data: 1) Remove tables with different start and end dates. 2) Remove tables that started at the 
exact same time. This is done, as employees sometimes select multiple tables at once to begin their 
production and mark them all as complete once they are all finished, resulting in combined processing 
times of (possibly different) tables. 3) Remove tables with unrealistic short processing times. 4) 
Remove outliers with processing times outside 2 standard deviations of tables with the same length.  
 
Table A.1 provides an overview of the results following from the linear regression model, where 
duration indicates the process time.  
 
Table A.1; Linear regression results of process times table department  

 Estimate Std. Error t value P(>|t|) 

Intercept 2.24305 0.07841   28.606   < 2 e-16  

Length 0.15981     0.02610    6.124 1.25 e-09 

Type -0.51496     0.05686   -9.057 < 2 e-16 

Shape 0.30977     0.06772    4.574 5.29 e-06 

 
From the results, all three characteristics are statistically significant, since they have a small p-value. 
This implies that the following equation estimates the duration of a table production:  
 

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 =  2.24305 +  0.15981 ∗ Length − 0.51496 ∗ Type +  0.30977 ∗ Shape 
 

𝑇𝑦𝑝𝑒 = {
1, 𝑖𝑓 𝑡𝑎𝑏𝑙𝑒 𝑖𝑠 𝐸𝑎𝑠𝑦𝑃𝑎𝑐 (𝐸𝑃)
0, 𝑖𝑓 𝑡𝑎𝑏𝑙𝑒 𝑖𝑠 𝑀𝑢𝑙𝑡𝑖𝑃𝑎𝑐 (𝑀𝑈𝑃2)

 

 

𝑆ℎ𝑎𝑝𝑒 = {
1, 𝑖𝑓 𝑡𝑎𝑏𝑙𝑒 𝑖𝑠 𝐿 − 𝑠ℎ𝑎𝑝𝑒𝑑
0, 𝑖𝑓 𝑡𝑎𝑏𝑙𝑒 𝑖𝑠 𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡
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To provide an example of the results, Figure A.1 shows an overview of the different table lengths 
(expressed in meters) within the cleaned data with their corresponding process time (expressed in 
hours). The line indicating the relation between length and duration is a result from the least-squares 
method that the linear regression model uses.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For existing orders, the results of the regression can be applied to estimate the process time of tables. 
For tables of incoming orders that are not yet within the system with detailed information about their 
shapes or sizes, we apply classification on the lengths. More specifically, we classify the lengths of 
tables by means of the following classes: Small (< 3 meter), Medium (≥ 3 & < 5 meter), Large (≥ 5 & < 
10 meter) and Extra Large (≥ 10 meter). With the use of this classification, TOMRA still can make 
distinctions between different sizes of tables within an incoming order, that have significant different 
processing times, without requiring knowledge for the exact table sizes. Table A.2 provides the 
classification of EasyPac (EP) and MultiPac (MUP2) tables that are part of an incoming order, following 
from the regression results:  
 
Table A.2; Classification tables within incoming order 

Table type Small  
(< 3 meter) 

Medium  
(≥ 3 & < 5 meter) 

Large  
(≥ 5 & < 10 meter) 

Extra Large 
(≥ 10 meter) 

Straight EP  2 hours 2
1

3
 hours 2

5

6
 hours 3

1

2
 hours 

Straight MUP2  2
1

2
 hours 2

5

6
 hours 3

1

3
 hours 4 hours 

Angled EP 2
1

3
 hours 2

2

3
 hours 3

1

6
 hours 3

5

6
 hours 

Angled MUP2 2
5

6
 hours 3

1

6
 hours 3

2

3
 hours 4

1

3
 hours 

 
 
 
 
 
 
 
 

Figure A.1; Relation between length of table and process time 
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Roller belt department 
The roller belt department at TOMRA produces standardized items that do not differ per customer. 
TOMRA produces these items to stock them. For the products that require production at the roller belt 
department, no clean data is available. This implies that from the available data, we cannot derive 
realistic processing times for every product. Because of this, we estimate some the processing times 
by means of measurements. As the products in question are standardized products, we take the 
average of the measures to find an estimated processing time for every product. Moreover, we round 
these processing times up to the nearest 5 minutes to cover not too much detail in our estimations.  
 
Additionally, some other products at the roller belt department are rarely ordered. For these items we 
asked several employees on their opinion on the processing times of these products to obtain an 
estimate.  
 
At last, we do not consider the roller belt variants mentioned in Section 2.1.2 for occupying capacity, 
and therefore we do not require an estimation of their processing times. The main reason for this is 
that part these products are currently produced separately and the other part are outsourced to 
another production facility. Table A.3 provides an overview of the processing times estimation of the 
product variants from the roller belt department.  
 
Table A.3; Estimated processing times for products at roller belt department 

Product type Size Production time (hours) 

Corners All regular sizes 1

12
 

All German variants 1

6
 

Elevator belt 0.5m 1

3
 

1m 1

3
 

1.5m 5

12
 

2m 1

2
 

Elevator belt start/stop 0.5m 5

6
 

1m 1 

1.5m 
1

1

6
 

2m 
1

2

3
 

PET elevator belt 160mm 8 

470mm 3 

Merger Single size 1 

V2 Conveyor Single size 3

4
 

ECO-WALL T-9/T-8 600 5 

600 E+L+B 3 

T-9 300 2 
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Conveyor department 
The conveyor department produces products that can differ per customer in terms of sizes. For 
estimating the processing times of the products that require production at the conveyor department, 
we use both available data and expert opinions. The data consist of the start / end time and date of a 
produced conveyor type with the corresponding sizes.  
 
In addition, just like with some products at the roller belt department, TOMRA obtains order requests 
for some types of conveyors only a few times per year. Because of this, we based the estimated 
processing times of these conveyors on opinions of the employees instead of incomplete or 
unavailable data.  
 
Table A.4 provides an overview of the estimated processing times of the products at the conveyor 
department.  
 
Table A.4; Estimated processing times for products at conveyor department 

Conveyor type  Production time (hours) 

Z-Shape  6.4 + 0.4 ∗ 𝑠𝑖𝑧𝑒(𝑚) 

Feeder 12 

Pre-Feeder 4.4 + 0.4 ∗ 𝑠𝑖𝑧𝑒(𝑚) 

Depot  6.4 + 0.4 ∗ 𝑠𝑖𝑧𝑒(𝑚) 

Wash & Waste 10 

 
Just like with the table department, we can derive detailed processing times of the conveyors (Z-shape, 
Pre-Feeder and Depot) that are part of existing orders. However, for conveyors of incoming orders that 
are not yet within the system with detailed information about their lengths, we again apply 
classification of the lengths. Table A.5 outlines the classification of Z-shape conveyors, Pre-feeders and 
depot conveyors with the corresponding processing times: 
 
Table A.5; Classification products conveyor department within incoming order 

Conveyor type Small (< 5 meter) Medium (≥ 5 & < 10 meter) Large (≥ 10 meter) 

Z-shape 8 hours 10 hours 12 hours 

Pre-feeder 6 hours 8 hours 10 hours 

Depot  8 hours 10 hours 12 hours 
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Appendix B: Logic behind solution approaches 
This appendix contains the logic behind the solution approaches from Section 5.1 to load the incoming 
order. In total, we provide seven flowcharts, the six approaches (FL, CFL, UL, UFL, UCL and UHL) as well 
as the logic behind choices of using extra overtime to prevent tardiness of orders.  
 

FL approach 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CFL approach 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1)    𝑥𝑗 = 𝑧𝑗  for all operations within existing orders (𝑖 ≠ 𝑖′) 

2) For all departments 𝑠 ∈ 𝑆: 

3)         Determine total existing workloads per period 𝑡 ∈ 𝑇 (𝑊𝐿𝑠𝑡) 

4)         For all operations within 𝐽𝑖′  that require production at 𝑠 (𝑦𝑗 = 𝑠): 

  4.1) Select operation with earliest release date 

   4.1.1) Operations with equal release dates? 

    Select operation with shortest processing time 

   4.1.2) Operations with equal release dates and equal processing times? 

    Select first operation within 𝐽𝑖′  

  4.2) Week = 𝑟𝑗 

  4.3) No regular capacity available in Week? (𝑊𝐿𝑠𝑡 > 𝑄𝑠𝑡, where 𝑡 = Week) 

   If yes:  Week = Week + 1   (Go to 4.3)  

  4.4) Maximum overtime exceeded? (𝑊𝐿𝑠𝑡 + 𝑝𝑗 > 𝑄𝑠𝑡 + 𝑀𝑂𝑠𝑡, where 𝑡 = Week) 

   If yes:  Week = Week + 1   (Go to 4.3) 

   Otherwise:  𝑥𝑗  = Week   (Go to 4.5) 

 4.5) Update total workloads (𝑊𝐿𝑠𝑡 = 𝑊𝐿𝑠𝑡 + 𝑝𝑗) 

5) Decisions extra nonregular capacity to avoid tardiness 
 

Figure B.1; FL approach procedure 

1)    𝑥𝑗 = 𝑧𝑗  for all operations within existing orders (𝑖 ≠ 𝑖′) 

2) For all departments 𝑠 ∈ 𝑆: 

3)         Determine total existing workloads per period 𝑡 ∈ 𝑇 (𝑊𝐿𝑠𝑡) 

4)         For all operations within 𝐽𝑖′  that require production at 𝑠 (𝑦𝑗 = 𝑠): 

4.1) Determine collective loading period ( max 
𝑗∈𝐽𝑖′|𝑦𝑗=𝑠

{𝑟𝑗}) 

  4.2) Select operation with earliest release date 

   4.2.1) Operations with equal release dates? 

    Select operation with shortest processing time 

   4.2.2) Operations with equal release dates and equal processing times? 

    Select first operation within 𝐽𝑖′  

  4.3) Week = Collective loading period 

  4.4) No regular capacity available in Week? (𝑊𝐿𝑠𝑡 > 𝑄𝑠𝑡, where 𝑡 = Week) 

   If yes:  Week = Week + 1   (Go to 4.4)  

  4.5) Maximum overtime exceeded? (𝑊𝐿𝑠𝑡 + 𝑝𝑗 > 𝑄𝑠𝑡 + 𝑀𝑂𝑠𝑡, where 𝑡 = Week) 

   If yes:  Week = Week + 1   (Go to 4.4) 

   Otherwise:  𝑥𝑗  = Week   (Go to 4.6) 

  4.6) Update total workloads (𝑊𝐿𝑠𝑡 = 𝑊𝐿𝑠𝑡 + 𝑝𝑗) 

5) Decisions extra nonregular capacity to avoid tardiness  

 

Figure B.2; CFL approach procedure 
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HL approach  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1)    𝑥𝑗 = 𝑧𝑗  for all operations within existing orders (𝑖 ≠ 𝑖′) 

2) Incoming order requests compliance with due date? (𝑅𝐶𝐸𝑖′ > 0) 

      If yes:   Go to 3 

      Otherwise:  Go to 8 
 

3) For all departments 𝑠 ∈ 𝑆: 

4)         Determine total existing workloads per period 𝑡 ∈ 𝑇 (𝑊𝐿𝑠𝑡) 

5)         Does department desires early completion? (𝐴𝐶𝐸𝑠 > 0) 

                   If yes:    Go to 6 

  Otherwise:   Go to 7 
   

6)         For all operations within 𝐽𝑖′  that require production at 𝑠 (𝑦𝑗 = 𝑠): 

6.1) Select operation with latest release date 

   6.1.1) Operations with equal release dates? 

    Select operation with shortest processing time 

   6.1.2) Operations with equal release dates and equal processing times? 

    Select first operation within 𝐽𝑖′  

6.2) Counter = 0 

6.3) Week = 𝑐𝑑𝑖′ − 𝑞 

6.4) Counter = Counter + 1 

6.5) 𝑟𝑗 > Week? 

 If yes:  Week =  𝑐𝑑𝑖′ − 𝑞 + Counter (Go to 6.4)  

 Otherwise:  Go to 6.6 

  6.6) No regular capacity available in Week? (𝑊𝐿𝑠𝑡 > 𝑄𝑠𝑡, where 𝑡 = Week) 

   If yes:  Week = Week - 1   (Go to 6.5) 

  6.7) Maximum overtime exceeded? (𝑊𝐿𝑠𝑡 + 𝑝𝑗 > 𝑄𝑠𝑡 + 𝑀𝑂𝑠𝑡, where 𝑡 = Week) 

   If yes:  Week = Week - 1   (Go to 6.5) 

   Otherwise:  𝑥𝑗  = Week   (Go to 6.8) 

  6.8) Update total workloads (𝑊𝐿𝑠𝑡 = 𝑊𝐿𝑠𝑡 + 𝑝𝑗) 

7)         For all operations within 𝐽𝑖′  that require production at 𝑠 (𝑦𝑗 = 𝑠): 

CFL Approach 
 

8) For all departments 𝑠 ∈ 𝑆: 

9)         For all operations within 𝐽𝑖′  that require production at 𝑠 (𝑦𝑗 = 𝑠): 

CFL Approach  
 

10) Decisions extra nonregular capacity to avoid tardiness  

Figure B.3; HL approach procedure 



 

87 
 

UFL approach 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1) For all orders 𝑖 ∈ 𝑁 do the following: 

2)        Select order with earliest due date (𝑎𝑑𝑖  or 𝑐𝑑𝑖′) 

2.1) Orders with equal due dates? 

 Select order with shortest total processing time (workload) 

2.2) Orders with equal due dates and equal workloads? 

 Select first order within 𝑁 

3)        Does selected order have a due date within a frozen period? (𝑎𝑑𝑖 ≤  |𝐻|) 

If yes:  Do not change loading periods of order (𝑥𝑗 = 𝑧𝑗    ∀𝑗 ∈ 𝐽𝑖) 

  Update total workloads (𝑊𝐿𝑠𝑡 = 𝑊𝐿𝑠𝑡 + 𝑝𝑗) & Go to 2 

Otherwise:  Go to 4 

4)        For all departments 𝑠 ∈ 𝑆: 

5)               For all operations within 𝐽𝑖 that require production at 𝑠 (𝑦𝑗 = 𝑠): 

   5.1) Select operation with earliest release date 

    5.1.1) Operations with equal release dates? 

     Select operation with shortest processing time 

    5.1.2) Operations with equal release dates and equal processing times? 

     Select first operation within 𝐽𝑖′  

5.2) Week = 𝑟𝑗 

5.3) No regular capacity available in Week? (𝑊𝐿𝑠𝑡 < 𝑄𝑠𝑡, where 𝑡 = Week) 

    If yes:  Week = Week + 1   (Go to 5.3) 

   5.4) Maximum overtime exceeded? (𝑊𝐿𝑠𝑡 + 𝑝𝑗 > 𝑄𝑠𝑡 + 𝑀𝑂𝑠𝑡, where 𝑡 = Week) 

    If yes:  Week = Week + 1   (Go to 5.3) 

    Otherwise:  𝑥𝑗  = Week   (Go to 5.5) 

5.5) Update total workloads (𝑊𝐿𝑠𝑡 = 𝑊𝐿𝑠𝑡 + 𝑝𝑗) 

       6)            Decisions extra nonregular capacity to avoid tardiness  

 
Figure B.4; UFL approach procedure 
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UCL approach 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1) For all orders 𝑖 ∈ 𝑁 do the following: 

2)         Select order with earliest due date (𝑎𝑑𝑖  or 𝑐𝑑𝑖′) 

2.1) Orders with equal due dates? 

 Select order with shortest total processing time (workload) 

2.2) Orders with equal due dates and equal workloads? 

 Select first order within 𝑁 

3)         Does selected order have a due date within a frozen period? (𝑎𝑑𝑖 ≤  |𝐻|) 

If yes:  Do not change loading periods (𝑥𝑗 = 𝑧𝑗    ∀𝑗 ∈ 𝐽𝑖) 

  Update total workloads (𝑊𝐿𝑠𝑡 = 𝑊𝐿𝑠𝑡 + 𝑝𝑗) & Go to 2 

Otherwise:  Go to 4 

4)        For all departments 𝑠 ∈ 𝑆: 

5)               For all operations within 𝐽𝑖 that require production at 𝑠 (𝑦𝑗 = 𝑠): 

5.1) Determine collective loading period ( max 
𝑗∈𝐽𝑖′|𝑦𝑗=𝑠

{𝑟𝑗}) 

   5.2) Select operation with earliest release date 

    5.2.1) Operations with equal release dates? 

     Select operation with shortest processing time 

    5.2.2) Operations with equal release dates and equal processing times? 

     Select first operation within 𝐽𝑖′  

5.3) Week = Collective loading period 

5.4) No regular capacity available in Week? (𝑊𝐿𝑠𝑡 > 𝑄𝑠𝑡, where 𝑡 = Week) 

    If yes:  Week = Week + 1   (Go to 5.4) 

   5.5) Maximum overtime exceeded? (𝑊𝐿𝑠𝑡 + 𝑝𝑗 > 𝑄𝑠𝑡 + 𝑀𝑂𝑠𝑡, where 𝑡 = Week) 

    If yes:  Week = Week + 1   (Go to 5.4) 

    Otherwise:  𝑥𝑗  = Week   (Go to 5.6) 

5.6) Update total workloads (𝑊𝐿𝑠𝑡 = 𝑊𝐿𝑠𝑡 + 𝑝𝑗) 

6)        Decisions extra nonregular capacity to avoid tardiness  

 
Figure B.5; UCL approach procedure 
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UHL approach 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1) For all orders 𝑖 ∈ 𝑁 do the following: 

2)        Select order with earliest due date (𝑎𝑑𝑖  or 𝑐𝑑𝑖′) 

2.1) Orders with equal due dates? 

 Select order with shortest total processing time (workload) 

2.2) Orders with equal due dates and equal workloads? 

 Select first order within 𝑁 

3)        Is selected order the incoming order 𝑖′? 

If yes:  Go to 4 

Otherwise Go to 5 

4)        Incoming order requests compliance with due date? (𝑅𝐶𝐸𝑖′ > 0) 

If yes:  Go to 6 

Otherwise Go to 10 

5)        Does selected order have a due date within a frozen period? (𝑎𝑑𝑖 ≤  |𝐻|) 

If yes:  Do not change loading periods (𝑥𝑗 = 𝑧𝑗    ∀𝑗 ∈ 𝐽𝑖) 

Update total workloads (𝑊𝐿𝑠𝑡 = 𝑊𝐿𝑠𝑡 + 𝑝𝑗) & Go to 2 

Otherwise:  Go to 6 

6)        For all departments 𝑠 ∈ 𝑆: 

7)               Does department desires early completion? (𝐴𝐶𝐸𝑠 > 0) 

If yes:   Go to 8 

Otherwise:  Go to 9 

8)               For all operations within 𝐽𝑖 that require production at 𝑠 (𝑦𝑗 = 𝑠): 

8.1) Select operation with latest release date 

    8.1.1) Operations with equal release dates? 

     Select operation with shortest processing time 

    8.1.2) Operations with equal release dates and equal processing times? 

     Select first operation within 𝐽𝑖′  

8.2) Counter = 0 

8.3) Week = 𝑐𝑑𝑖′ − 𝑞 or 𝑎𝑑𝑖 − 𝑞 

8.4) Counter = Counter + 1 

8.5) 𝑟𝑗 > Week? 

    If yes:  Week =  𝑐𝑑𝑖′ − 𝑞 + Counter or 𝑎𝑑𝑖 − 𝑞 + Counter (Go to 8.4)  

    Otherwise:  Go to 8.6 

   8.6) No regular capacity available in Week? (𝑊𝐿𝑠𝑡 > 𝑄𝑠𝑡, where 𝑡 = Week) 

    If yes:  Week = Week - 1   (Go to 8.5) 

   8.7) Maximum overtime exceeded? (𝑊𝐿𝑠𝑡 + 𝑝𝑗 > 𝑄𝑠𝑡 + 𝑀𝑂𝑠𝑡, where 𝑡 = Week) 

    If yes:  Week = Week - 1   (Go to 8.5) 

    Otherwise:  𝑥𝑗  = Week   (Go to 8.7) 

   8.7) Update total workloads (𝑊𝐿𝑠𝑡 = 𝑊𝐿𝑠𝑡 + 𝑝𝑗) 

9)               For all operations within 𝐽𝑖 that require production at 𝑠 (𝑦𝑗 = 𝑠): 

CFL Approach 
 

10)        For all departments 𝑠 ∈ 𝑆: 

11)               For all operations within 𝐽𝑖′  that require production at 𝑠 (𝑦𝑗 = 𝑠): 

CFL Approach  
 

12) Decisions extra nonregular capacity to avoid tardiness  

Figure B.6; UHL approach procedure 
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Prevent tardiness approach  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1) Best solution = Initial solution  

Current solution  = Initial solution 

2) Does order have tardiness? (𝑑𝑖′ > 𝑐𝑑𝑖′  or 𝑑𝑖 > 𝑎𝑑𝑖) 

            If yes:   Go to 3 

  Otherwise:  Go to 7 

3) Determine all bottleneck operations of the order in the current solution (𝑗|𝑥𝑗 = max
𝑠

{𝑐𝑖𝑠}) 

4) For all bottleneck operations, do the following:  

4.1) Select bottleneck operation with latest release date 

  4.1.1) Operations with equal release dates? 

   Select operation with shortest processing time 

  4.1.2) Operations with equal release dates and equal processing times? 

   Select first operation within 𝐽𝑖 

4.2) Release date of operation equal to loading period? (𝑟𝑗 = 𝑥𝑗) 

  If yes:   Go to 7   

4.3) Load operation 1 week earlier (𝑥𝑗  = 𝑥𝑗  – 1)  

4.4) Maximum nonregular capacity exceeded? (𝑊𝐿𝑠𝑡 + 𝑝𝑗 > 𝑄𝑠𝑡 + 𝑀𝑂𝑠𝑡) 

  If yes:   Go to 4.2   

4.5) Update total workloads (𝑊𝐿𝑠𝑡 = 𝑊𝐿𝑠𝑡 + 𝑝𝑗) 

5) Obtain new solution  

6) Objective new solution < Best solution 

If yes:  Current solution = New solution 

Best solution = New solution (Go to 2) 

Otherwise:  Current solution = New solution (Go to 2)  

7) Result = Best solution 

  
Figure B.7; Procedure decision regarding extra overtime usage to prevent tardiness of order 
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Appendix C: Model parameters 
This Appendix elaborates on how we acquired the model parameters that together determine the 
objective function value in the setting of TOMRA. We derived the parameter values based on several 
interviews and other verbal communication methods with the production managers at TOMRA.   
 
First of all, the managers at TOMRA indicated that they rather desire a spread of the overtime hours 
instead of having large fluctuations per week. Moreover, they mentioned that, for instance, the tenth 
overtime hour in a week should be penalized more than the first one. All in all, the way that they desire 
this results in an exponent of the overtime costs of 2 (𝐸𝑥𝑝 = 2).  
 
Additionally, if the regular capacity in a week is currently fully occupied without overtime hours, 
TOMRA is willing to assign at most five overtime hours per employee per week to prevent tardiness on 
an incoming order. This implies that if we set 𝐶𝑂 equal to 1, then 𝑅𝐶𝑇 would equal 25 (resulting from 
the model described in Section 4.3).  
 
TOMRA considers existing orders with already assigned due dates twice as important as incoming 
orders, resulting that 𝐴𝐶𝑇 becomes twice the value of 𝑅𝐶𝑇, which is 50. Moreover, TOMRA does not 
desire finishing early with the production activities at the table and conveyor departments (𝑠 = 1 & 3). 
However, they of course rather desire earliness than tardiness. In our setting, 𝐴𝐶𝐸1 and 𝐴𝐶𝐸3 are 
assigned a value of 3 after close contact with the managers, whereas 𝐴𝐶𝐸2 equals 0.  
 
The costs regarding earliness on the customer-requested due date equals 10 for the incoming orders 
in our experimental design. In reality, this value can different per customer, as sometimes customers 
do desire a due date as soon as possible. However, a value of 𝑅𝐶𝐸𝑖′ ≤ 0 would imply that the CFL & 
HL and UCL & UHL are exactly the same. Therefore, we assume that the incoming order does not desire 
an early due date in our setting.  
 
At last, the spread costs 𝑆𝐶 for spreading the workload of an order at a department over multiple 
weeks is assigned a value of 5. The reasoning behind this is that TOMRA indicated that they would 
rather spread the workload over multiple weeks than imposing tardiness on the customer-requested 
due date of an incoming order.  
 

Table B.1 highlights the values in the setting of TOMRA of all discussed model parameters.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Model parameter Value 

𝐸𝑥𝑝 2 

𝑅𝐶𝐸𝑖′  10 

𝑅𝐶𝑇 25 

𝐴𝐶𝐸1 3 

𝐴𝐶𝐸2 0 

𝐴𝐶𝐸3 3 

𝐴𝐶𝑇 50 

𝑆𝐶 5 

𝐶𝑂 1 

Table B.1; Model parameters values in our setting 
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Appendix D: Experiment instances 
This Appendix describes the problem instances in the setting of TOMRA. These instances consist of 
existing orders that occupy capacity at the moment of the arrival of an incoming order. In total, we 
consider 4 different instances. For each of these instances, we indicate the total number of orders as 
well as the peak demand period where the customer requests a due date for the incoming order.  
 
For every instance, we considered the (past) employee availabilities at TOMRA per production 
department for the entire time horizon to obtain the production capacity. Here, we made some 
estimations for weeks where there was no full information regarding the number of employees that 
were available. At TOMRA, every FTE works 38 hours per week (to obtain 𝑄𝑠𝑡) and we allow a maximum 
of 10 overtime hours per FTE in a week (for 𝑀𝑂𝑠𝑡).  
 

Instance 1 
The first situation regards the existing orders at 01/05/2022. In total, we consider 332 existing orders 
within the time horizon of 20 weeks, making the set 𝑁 regarding all orders (including the incoming 
order) as follows: 𝑁 = {1, … ,333}.  
 
The first situation has few or none available capacity in the first three weeks at all production 
departments. Because of this and since we consider a slack 𝑞 of 1 week in our setting, we set the 
customer-requested due date (𝑐𝑑𝑖′) equal to 4.  

 

Instance 2 
The second problem instance considers existing orders at 14/11/2022. In total, these are 309 existing 
orders within the stated time horizon of 20 weeks, making the set making the set 𝑁 as follows: 𝑁 =
{1, … ,310}. Moreover, the second situation has few or none available capacity in the first five weeks 
at all production departments. Because of this, we set the customer-requested due date (𝑐𝑑𝑖′) equal 
to 6.  
 

Instance 3 
The third instance considers existing orders at 23/05/2022. In total, these are 290 existing orders 
within the stated time horizon of 20 weeks, making the set making the set 𝑁 as follows: 𝑁 =
{1, … ,291}. The third situation has few or none available capacity in the first four weeks at all 
production departments. Because of this, we set the customer-requested due date (𝑐𝑑𝑖′) equal to 5.  
 

Instance 4 
The fourth instance considers existing orders at 16/01/2022. In total, these are 432 existing orders 
within the stated time horizon of 20 weeks, making the set making the set 𝑁 as follows: 𝑁 =
{1, … ,433}. The fourth situation has few or none available capacity in the first three weeks at most 
production departments. Because of this, we set the customer-requested due date (𝑐𝑑𝑖′) equal to 4.  
 
Table D.1 presents an overview of the information per experiment instance.  
 
Table D.1; Overview of experiment instances  

Instance 1 2 3 4 

Existing orders 332 309 290 432 

Requested due date (𝑐𝑑𝑖′) 4 6 5 4 
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Appendix E: Incoming order experiments 
This Appendix elaborates in detail on the different incoming orders that we consider and evaluate the 
solution approaches on. In total, we consider 4 different incoming orders; one relatively small order 
and one larger order at all departments and two orders that require production activities at two 
departments.  
 

Incoming order 1 
The small incoming order at all departments comes from a hypothetical Dutch customer (impacts some 
release dates, see Appendix F). This incoming order requires products from all three production 
departments and consists of a total of 11 operations:  
 

• 4 operations at the table department (𝑠 = 1) with a total workload of 10 hours.  
o 4 small straight MUP2 tables 

• 6 operations at the roller belt department (𝑠 = 2) with a total workload of 8.5 hours. 
o 2 elevator belts start/stop 2 meter 
o 1 PET elevator belt (470mm) 
o 1 ECO-WALL T-9 300 
o 2 V2 conveyors  

• 1 operation at the conveyor department (𝑠 = 3) with a total workload of 10 hours 
o 1 medium Z conveyor  

 

Incoming order 2 
The large incoming order at all departments comes from a hypothetical foreign customer. This 
incoming order also requires products from all three production departments and consists of a total 
of 29 operations: 
 

• 10 operations at the table department (𝑠 = 1) with a total workload of 40 hours.  
o 10 extra-large straight MUP2 tables 

• 15 operations at the roller belt department (𝑠 = 2) with a total workload of 30 hours. 
o 4 elevator belts 2 meter 
o 2 PET elevator belt (160mm) 
o 1 ECO-WALL T-9/T-8 600 
o 4 Mergers 
o 4 V2 conveyors  

• 4 operations at the conveyor department (𝑠 = 3) with a total workload of 40 hours 
o 2 large pre-feeders 
o 2 medium depot conveyors  

 

Incoming order 3 
The incoming order that requires production activities at departments 1 and 2 comes from a 
hypothetical Dutch customer and consist of a total of 12 operations:  
 

• 6 operations at the table department (𝑠 = 1) with a total workload of 14 hours.  
o 6 medium straight EP tables 

• 6 operations at the roller belt department (𝑠 = 2) with a total workload of 13 hours. 
o 3 elevator belts start/stop 1.5 meter 
o 1 PET elevator belt (160mm) 
o 2 V2 conveyors  
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Incoming order 4 
The incoming order that requires production activities at departments 2 and 3 comes from a 
hypothetical foreign customer and consist of a total of 9 operations:  
 

• 6 operations at the roller belt department (𝑠 = 2) with a total workload of 9 hours. 
o 3 PET elevator belt (470mm) 
o 3 Mergers 

• 3 operations at the conveyor department (𝑠 = 3) with a total workload of 22 hours. 
o 2 small pre-feeders 
o 1 Wash & Waste 

 
Like in Appendix C, we mention that all incoming orders do not desire an early due date (𝑅𝐶𝐸𝑖′ > 0), 
where 𝑅𝐶𝐸𝑖′  equals 10.  
 
Table E.1 presents a summary of the different incoming orders for our experimental design. 
 
Table E.1; Characteristics of incoming orders 

Incoming order 1 2 3 4 

Department 𝑠 = 1 
Workload (hours) 10 40 14 X 

Operations 4 10 6 X 

Department 𝑠 = 2 
Workload (hours) 8.5 30 13 9 

Operations 6 15 6 6 

Department 𝑠 = 3 
Workload (hours) 10 40 X 22 

Operations 1 4 X 3 

Total workload (hours) 28.5 110 27 31 

Total operations 11 29 12 9 
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Appendix F: Release dates determination 
This Appendix outlines how we determine release dates of the considered products in the setting of 
TOMRA. These release dates are part of the model input and form an essential part of the solution 
approaches from Chapter 5.   
 
For all the products that are being produced at the table department and conveyor department, the 
release dates depend on whether the products are from Dutch orders or foreign orders as mentioned 
in Section 2.2.2. The Dutch orders have checks on the tables and conveyors approximately one week 
before their assigned due date. However, since an incoming order does not have an assigned due date 
but a speculative requested due date, its release dates for the products at the table and conveyor 
departments depend on the earliest possible moment when these checks can be executed. In practice, 
one should consider the available capacity of the employees that execute the design checks at the 
location of the customer. For this research, we make an assumption related to this, namely that the 
release dates for products at the table and conveyor department of an incoming Dutch orders are two 
weeks after the moment of the incoming order request. 
 
Furthermore, foreign orders that arrive at TOMRA Apeldoorn by foreign TOMRA departments do not 
have restrictions on their release dates. This implies that tables and conveyors for both foreign existing 
and incoming orders can immediately start their production.   
 
Table D.1 proves an overview of the release dates for products that are being produced at the table 
and conveyor departments of Dutch and foreign existing and incoming orders.   
 
Table D.1; Release dates for products at the table and conveyor departments 

 Type of order Release date 

Dutch orders Existing orders 𝑟𝑗 = 𝑎𝑑𝑖 − 1 

Incoming orders 𝑟𝑗 = 2 

Foreign orders Existing orders 𝑟𝑗 = 0 

Incoming orders 𝑟𝑗 = 0 

Note that a slack for determining the due dates larger than one (𝑞 > 1) would automatically result in 
tardiness related to already assigned due dates of existing Dutch orders.  
 
For the standardizes products that are being produced roller belt department, TOMRA always knows 
the exact number and specification within a Dutch or foreign order at the moment of its arrival. The 
release dates of these products depend in the material availabilities.  
 
In total, we consider 12 materials with stochastic external lead times. We chose this selection based 
on recommendations and interviews with production managers and employees. Table D.2 highlights 
these materials as well as for which products they are necessary and their quoted deterministic lead 
time in weeks.  
 
All other products, all materials are available at the moment of the arrival (reasonable as told)  
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Table D.2: Details on materials with stochastic external lead time 

Material Required for 
Quoted deterministic 

lead time (weeks) 

A Elevator belts, Elevator belts Start/Stop, PET 
elevator belts and Mergers 

7 

B Elevator belts, Elevator belts Start/Stop, PET elevator 
belts and Mergers 

7 

C Elevator belts, Elevator belts Start/Stop, PET elevator 
belts and Mergers 

7 

D Elevator belt, Elevator belts Start/Stop, PET elevator 
belts and Mergers 

7 

E Mergers 7 

F V2 Conveyor 7 

G V2 Conveyor 7 

H V2 Conveyor 7 

I V2 Conveyor 7 

J V2 Conveyor 7 

K V2 Conveyor 7 

L V2 Conveyor 7 

 
Next, we provide an overview of the availabilities of these materials at the moment of a new order 
arrival per experimental instance and number of periods passed since last replenishment order from 
raw material 𝑙 (𝑅𝑂𝑙). We assume that the upcoming replenishments orders for the materials are 
sufficient to realize the production of all requested orders elements for all 4 incoming orders. Table 
D.3 contains this information per experiment.  
 
Table D.3; Material availabilities per instance 

Material 
Instance 1 Instance 2 Instance 3 Instance 4 

Available? 𝑅𝑂𝑙 Available? 𝑅𝑂𝑙 Available? 𝑅𝑂𝑙  Available? 𝑅𝑂𝑙 

A No 5 Yes 4 Yes 4 No 4 

B No 5 No 3 No 6 Yes 5 

C Yes 6 Yes 4 No 5 Yes 6 

D Yes 5 No 5 Yes 5 No 4 

E No 4 No 3 No 6 Yes 4 

F No 6 Yes 3 Yes 4 No 5 

G Yes 4 No 4 No 4 No 4 

H Yes 5 No 4 Yes 3 Yes 3 

I No 4 Yes 5 No 4 No 5 

J Yes 6 Yes 3 Yes 5 No 6 

K Yes 6 No 4 No 6 Yes 4 

L No 5 Yes 4 Yes 3 Yes 5 

 
For determining the release dates, we use the SAA approach described in Section 4.4. More specifically, 
we first determine release dates of operations that require one or multiple materials with stochastic 
external lead times based on a certain percentile to construct a solution and afterwards randomly 
select scenarios to assess the feasibility and obtain an estimate of the service level target 𝜆.  
 
Per instance, we select external lead times based on the 75th percentile. Moreover, to be consistent in 
comparing the approaches, we select the same random scenarios for each approach per problem 
instance when assessing the solution feasibility for an instance. In total, we assess the feasibility of a 
solution for 25 scenarios.  
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Appendix G: Improvement heuristics parameters 
This Appendix outlines the parameters that we apply for both improvement heuristics from Section 
5.2. We tune these parameters by assessing the performance of certain parameter values in terms of 
objective function value and computational time. We elaborate in detail on the process of the 
parameter tuning for both the adapted steepest descent and simulated annealing heuristics.  
 

Adapted steepest descent parameters 
For the adapted steepest descent heuristic (ASD), the goal is to find better neighborhood solution in a 
timely manner. For this improvement heuristic, we have two parameters, namely the Max Iterations 
and the Time Limit. The challenge for tuning these parameters is that each of the construction heuristic 
from Section 5.1 performs in a different manner and can each desire different parameter settings. 
Because of this, we perform experiments on certain values of the Max Iterations as well as on several 
values for the Time Limit on each construction heuristic. For these experiments, we use instance 1 (see 
Appendix D) with incoming order 1 (see Appendix E). For the Max Iterations, we experiment on values 
of 50, 100, 150, 200 and 250, where we set the Time Limit to 300 seconds (5 minutes) to see which 
improvements can take place within 300 seconds.   
 
For all combinations of parameters settings and construction heuristics, we perform 3 replications to 
obtain more generalized results. The results can be seen in Tables G.1 through G.3, where we indicate 
the average objective and average time (seconds) of each combination with standard deviations noted 
in brackets.   
 
Table G.1; Experiment results on adapted steepest descent parameters for FL and CFL approaches 

 FL Approach CFL Approach 

Max Iterations Time Limit Objective Time Objective Time 

50 300 356.9 (11.1) 17.7 (6.6) 342.2 (2.4) 16.2 (5.8) 

100 300 357.8 (6.0) 33.7 (10.8) 342.4 (0.4) 30.2 (7.4) 

150 300 359.2 (4.9) 70.6 (11.8) 340.4 (1.8) 77.1 (25.1) 

200 300 350.8 (8.5) 155.6 (4.3) 338.5 (3.4) 173.7 (32.8) 

250 300 348.5 (10.3) 248.8 (17.3) 333.1 (1.7) 181.1 (72.7) 

 
Table G.1; Experiment results on adapted steepest descent parameters for HL and UFL approaches 

 HL Approach UFL Approach 

Max Iterations Time Limit Objective Time Objective Time 

50 300 336.1 (1.7) 9.4 (3.3) 842.6 (14.9) 300.0 (0.0) 

100 300 337.1 (0.0) 19.9 (11.4) 951.4 (22.1) 300.0 (0.0) 

150 300 336.1 (1.7) 96.7 (21.9) 1002.14 (5.7) 300.0 (0.0) 

200 300 330.1 (6.2) 165.8 (48.5) 1057.4 (17.4) 300.0 (0.0) 

250 300 328.1 (3.0) 229.4 (37.8) 1070.1 (23.9) 300.0 (0.0) 

 
Table G.3; Experiment results on adapted steepest descent parameters for UCL and UHL approaches 

 UCL Approach UHL Approach 

Max Iterations Time Limit Objective Time Objective Time 

50 300 812.0 (23.6) 300.0 (0.0) 474.2 (0.0) 5.7 (0.0) 

100 300 901.16 (8.6) 300.0 (0.0) 432.5 (33.8)  53.1 (21.1) 

150 300 936.3 (10.3) 300.0 (0.0) 398.2 (26.2) 116.3 (51.3)  

200 300 982.9 (11.7) 300.0 (0.0) 406.8 (54.5) 138.0 (44.3) 

250 300 990.1 (16.9) 300.0 (0.0) 384.9 (8.7) 195.4 (20.1) 
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From the results of the tuning experiments, we observe that for both the UFL and UCL construction 
heuristics, the time limit of 300 seconds is reached for all five levels of Max Iterations. This implies that 
there is still improvement possible for these situations after 300 seconds. However, we observe that 
for these two construction heuristics 50 Max Iterations result in the lowest objective values within the 
Time Limit. Additionally, for the remaining construction heuristics (FL, CFL, HL and UHL), the Time Limit 
is never reached on average, meaning that no further improvements were found resulting in the ASD 
procedure to stop. Because of this, the highest number of Max Iterations, which is 250, results in the 
lowest objective values for these four construction heuristics.    
 
We choose for construction heuristics UFL and UCL to set the Max Iterations to 50. Additionally, for 
the FL, CFL, HL and UHL construction heuristics, we set the Max Iterations to 250.  
 
The main reason for not choosing a higher value of Max Iterations for the UFL and UCL construction 
heuristics is that with 50 Max Iterations, the objective values converge faster and result in more 
favorable values. Needless to say, would the Time Limit be extended, then more Max Iterations would 
probably result in lower objective values. However, since our aim is to find good solutions in a timely 
manner, we set the Max Iterations for these 2 construction heuristics to 50. We do not try lower values 
of Max Iterations for these approaches, as we feel that this can result in overfitting to the specific 
problem instance (instance 1 with incoming order 1). For the same reasoning, we do not select higher 
values of Max Iterations for the FL, CFL, HL and UHL construction heuristic.  
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Simulated annealing parameters 
The first step in tuning the parameters for the SA improvement heuristic is to determine the starting 
temperature. We obtain this temperature by solving instance 1 (see Appendix D) with incoming order 
1 (see Appendix E) with a starting temperature of 150, where the FL approach constructs the initial 
solution. Moreover, we solve this instance with a Markov chain length of 200 and a cooling factor 𝛼 of 
0.99. At the end of each Markov chain, we store the acceptance ratio that indicates the number of 
accepted neighbors divided by the generated neighbors of the corresponding Markov chain. Figure G.1 
provides the results of this procedure.  
 

 
For our approach, we choose to use a starting temperature of 30, which has an acceptance ratio of 
about 0.70. We choose not to start the SA heuristic with a higher temperature level, since each of the 
construction heuristics from Section 5.1 have logic about their way of creating initial solutions and do 
not construct random solutions for instance. Because of this, choosing a higher starting temperature 
level can make initial solutions significantly worse at the start of the SA heuristic, which can result in 
computational waste.  
 
Afterwards, we consider stop temperature levels of 2.5, 5, and 7.5, Markov chain lengths of 100, 150 
and 200 and cooling factors (𝛼) of 0.925, 0.950 and 0.975. For each combination of parameters, we 
conduct 3 replications with again solving instance 1 with incoming order 1 with FL as the construction 
heuristic to diminish randomness, which enables us to obtain more generalized results. As in theory, 
the SA heuristic is capable of finding the global optima from every initial solution, we only use one 
construction heuristic (FL in our case) in tuning the SA parameters.  
 
Additionally, we do not consider lower stop temperature levels, higher Markov chain lengths of higher 
cooling factors as the computational times limit us in exploring the performances on these 
computationally expensive parameter settings. Moreover, for selecting the parameters of the SA 
heuristic, we do not consider a time limit like with the ASD heuristic. The reason for this is that the SA 
heuristic can escape from local optima, which can take more time. Eventually, we apply the SA heuristic 
to our problem setting to see how much improvement can be achieved, where there obviously is a 
trade-off between computational time and objective value.  
 
Table G.4 highlights the results of the experiments for tuning the SA parameters, where we provide 
the average solution value and objective function as well as the standard deviations noted in brackets.   
 
 
 
 
 

Figure G.1; Neighborhood acceptance ratio for various temperature levels 
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Table G.4; Experiment results for tuning the simulated annealing parameters  

Scenario Start Temp Stop Temp MC length Alpha Objective Time 

1 30 7.5 100 0.925 360.3 (2.5) 226.4 (16.4) 

2 30 7.5 100 0.95 355.4 (1.6) 382.4 (5.7) 

3 30 7.5 100 0.975 350.7 (8.7) 741.8 (14.0) 

4 30 7.5 150 0.925 350.1 (12.1) 357.9 (4.6) 

5 30 7.5 150 0.95 353.8 (2.9) 563.4 (5.8) 

6 30 7.5 150 0.975 342.5 (8.4) 1125.6 (19.9) 

7 30 7.5 200 0.925 347.5 (2.9) 480.8 (12.5) 

8 30 7.5 200 0.95 343.8 (3.1) 740.8 (9.2) 

9 30 7.5 200 0.975 341.8 (1.2) 1432.0 (20.3) 

10 30 5 100 0.925 356.7 (4.1) 288.4 (17.7) 

11 30 5 100 0.95 353.8 (4.2) 477.0 (7.1) 

12 30 5 100 0.975 347.5 (6.6) 963.7 (25.0) 

13 30 5 150 0.925 348.5 (10.7) 458.4 (3.5) 

14 30 5 150 0.95 349.7 (2.9) 704.4 (5.8) 

15 30 5 150 0.975 337.1 (11.4) 1454.7 (24.9) 

16 30 5 200 0.925 345.8 (2.9) 615.1 (12.6) 

17 30 5 200 0.95 343.8 (3.1) 929.0 (8.1) 

18 30 5 200 0.975 336.5 (2.1) 1838.4 (40.4) 

19 30 2.5 100 0.925 352.1 (6.9) 397.1 (18.3) 

20 30 2.5 100 0.95 351.1 (6.6) 665.8 (13.3) 

21 30 2.5 100 0.975 340.4 (2.8) 1341.9 (34.5) 

22 30 2.5 150 0.925 345.8 (8.4) 638.5 (3.2) 

23 30 2.5 150 0.95 341.8 (1.1) 988.8 (3.8) 

24 30 2.5 150 0.975 333.5 (9.5) 2033.6 (35.2) 

25 30 2.5 200 0.925 344.8 (4.0) 854.8 (9.7) 

26 30 2.5 200 0.95 341.8 (2.1) 1302.0 (8.2) 

27 30 2.5 200 0.975 331.5 (0.6) 2534.1 (21.8) 

 
Figure G.2 depicts the results of the experiments. We choose to select the parameter values from the 
15th scenario for running the simulated annealing heuristic. The reasoning behind this is that this 
scenario results in the best trade-off between computational time and objective value in our eyes, as 
we aim to find good quality solutions in a timely manner.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure G.2; Depicted simulated annealing parameter experiment results 


