
1

Mechanical Engineering
Faculty of Engineering Technology

Optimization of flexure mechanisms
using gradient-based methods

J. ten Hagen
M.Sc. Thesis
August 2023

Exam committee:
prof. dr. ir. A. H. van den Boogaard

dr. ir. J. Havinga
dr. ir. J. J. de Jong EngD

ir. B. Seinhorst

Nonlinear Solid Mechanics
Faculty of Engineering Technology

University of Twente
P.O. Box 217

7500 AE Enschede
The Netherlands





Preface

Dear reader,

Welcome to reading my master’s thesis titled ”Optimization of flexure mechanisms using gradient-based
methods”. It was written for the graduation of my master’s in Mechanical Engineering, at the University
of Twente. This thesis is a collaboration project between the Nonlinear Solid Mechanics and Precision
Engineering research chairs.

This thesis will give you a glance into the intriguing world of structural optimization. Personally, I find
it intrinsically satisfying when an algorithm is finding the best possible design. There are few types of
structures where optimization is more useful and interesting than for flexure mechanisms. The design of
such mechanisms is inherently a trade-off between the range of motion and the dynamic performance,
while the limits of the materials and manufacturability are approached.

I am thankful to have stumbled upon this graduation project. I cannot think of any other assignment
that would have been nearly as interesting. During this research, I learned a lot about optimization and
I became much more proficient in Matlab programming. I am certain that these skills will come in useful
during my career.

This work would not have been possible without the expertise and support of my supervisors, Jos Havinga
and Jan de Jong. I want to especially thank Jos Havinga for going above and beyond in supporting my
work, during our weekly meetings and while proofreading my thesis. His sharp criticism and expertise in
optimization and Matlab helped immensely. I would also like to thank Jan de Jong, for providing very
useful insights into the modeling of flexure mechanisms. He could almost always find a gap in his busy
schedule to join our meetings and was involved from the beginning to the end.

I would also like to thank Dannis Brouwer for including me in the topical meetings for the precision
engineering graduate students, which provided me with feedback and a sense of the relevance of my work.

And last but not least, I would like to thank you for reading my thesis, enjoy.

Jason ten Hagen
Enschede, August 2023

3





Abstract

In this thesis, a method for optimizing SPACAR modeled flexure mechanisms is developed, using gradient-
based algorithms. The finite differences of the objective and constraint functions were analyzed to find
a suitable step size. The importance of scaling the objective function, constraints, and design space was
analyzed. Using the maximum stress over the entire mechanism as constraint results in a discontinuous
differentiable function, which is solved by using specific stresses as separate constraints. A similar issue
can potentially occur for the objective natural frequency, when different modes catch up with each other.
A reinforced cartwheel hinge was successfully and robustly optimized, using 25 design variables, showing
the merit of the developed method. The proposed algorithms are sequential quadratic programming
included in the MATLAB function fmincon, which is the most efficient and robust algorithm tested, and
a basic quasi-Newton method implementation that can potentially handle different frequency modes in
the objective function.
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Chapter 1

Introduction

1.1 Background

Flexure mechanisms are designed to allow motion in certain directions while constraining motion in the
other directions. This motion is achieved by elastic deformation of the flexure. Alternatively, conventional
rolling and sliding mechanisms use bearings, which cause friction, wear, and backlash. This introduces
unpredictability in the motion of such mechanisms. On the contrary, flexure mechanisms have highly
predictable motions, making them very suitable for high-precision applications. For modeling these mech-
anisms, the specialized software package SPACAR [1] is used. This software is based on non-linear finite
element theory for multi-degree of freedom mechanisms. The calculation time of a SPACAR model is
typically twenty times faster compared to a conventional finite element model [2].

In engineering, product performance is pushed to its boundaries by careful design, such that certain per-
formance is enhanced while accounting for all requirements that must be met. The process of finding the
best performing design among all design options is called optimization. In structural design, performance
can for example be defined as low mass, high stiffness, or high eigen frequencies. The requirements can be
related to internal stresses, stiffnesses, or product dimensions. In optimization theory, the performance
target is called the objective, and the requirements are called constraints. When having a model of the
product to compute objective and constraint values for different designs, it is possible to perform com-
putational optimization, which is an automated procedure for finding an optimal design.

Flexure mechanisms generally suffer from poor support stiffness in non-compliant directions, especially
in a large stroke deflected position. Design choices in the mechanism can greatly influence the support
stiffness and parasitic eigenfrequencies. Even in the simplest flexure mechanisms, multiple design choices
have to be made which can influence the performance. The mechanism is also bound by constraints, such
as the maximum allowable stress. Design guidelines are generally not sufficient to find the best possible
design. Therefore it is often desirable to optimize a design.

Optimization of SPACAR models is mostly done using the Nelder-Mead algorithm [2, 3, 4, 5]. This is
a gradient-free algorithm. It was stated that this algorithm was used, as opposed to the more efficient
gradient-based algorithms, because acquiring derivatives can be difficult. The Nelder-Mead algorithm
has been able to find the optimum of many flexure mechanisms, although the algorithm has to run many
times from different starting points, since the algorithm does not always converge to the global optimum.
There is no hard limit to the number of design variables that can be optimized with the Nelder-Mead
algorithm, but 6-8 variables is generally seen as the maximum for a reasonable optimization time.

In theory, gradient-based algorithms are much more efficient, which could allow for optimization of a
design with a significantly higher number of design variables. Gradient-based algorithms are also more
robust, since the Nelder-Mead algorithm is known to converge to a non-stationary point in some cases
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[6]. For these reasons, it can be very valuable to find a robust method of gradient-based optimization
for flexure mechanisms. Although earlier attempts at reliable optimization of SPACAR models with
gradient-based algorithms failed, no extensive effort was done to locate and solve the difficulties.

1.2 Research objective

The main objective of this research is to develop an optimization method for designs modeled in SPACAR,
accommodating a larger number of design variables than currently used methods allow. This method
should allow the optimization of a wide range of flexure mechanisms.

Part of this objective is to select or develop a suitable algorithm. The algorithms considered in this
research are limited to gradient-based algorithms. The other part of the main objective is to develop
a robust method of handling the optimization problem. The most common issues and obstacles in the
optimization process should be identified and if possible solved.

1.3 Outline

In chapter 2, the theory of gradient-based optimization is discussed. This chapter also includes some
background information about previous optimization efforts regarding SPACAR models. In chapter 3,
the methods used in this research are presented, based on the theory discussed in chapter 2. In chapter 4
the different aspects of the optimization process are introduced, including a parameter sweep and a finite
difference analysis. Furthermore the methods of optimization used in this research are demonstrated,
using a simple cross-hinge design as example. The performance of the different optimization methods
is also analyzed in this chapter. In chapter 5, two problems that introduce discontinuous differentiable
objective functions or constraints are shown. For the stress constraint, a solution is presented to overcome
this issue. In chapter 6, the developed method is tested on a cartwheel hinge with reinforcements.
Different versions are successfully optimized with up to 25 parameters. Finally, in chapter 7, the results
are discussed and conclusions are formulated.
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Chapter 2

Optimization algorithms

2.1 Optimization of flexure mechanisms

An optimization problem is generally formulated as follows:

Minimize:

f(x) (2.1)

Subject to:

gi(x) ≤ 0, i = 1, ...,m

hj(x) = 0, j = 1, ..., n

xk
lb ≤ xk ≤ xk

ub, k = 1, ..., p

In which:

• f(x) is the function to be minimized, called the objective function.

• x is a vector of all design variables, which are allowed to change within the bounds. Usually, there
is a lower bound (lb) and an upper bound (ub).

• gi(x) are inequality constraints.

• hi(x) are equality constraints.

• m ≥ 0, n ≥ 0 and p ≥ 1.

The objective function is conventionally always minimized. If a function has to be maximized, the nega-
tive or inverse of this function can serve as the objective function. In this work, only inequality constraints
and bounds are used as constraints. The maximum allowable stress in the leaf springs under load is an
example of such an inequality constraint.

Scaling of the objective function, the design variables, and the constraint functions is an important con-
sideration in optimization. Optimization algorithms generally work best if all the design variables, the
objective function, and the constraint functions are in the same order of magnitude. The design variables
can be normalized from zero to one. The constraint functions are conventionally normalized from minus
one to zero, where a positive value indicates that the constraint was exceeded. The objective function
can be scaled by calculating the objective function value at the starting point and dividing the objective
function by this value. Some objective functions span many orders of magnitude within the design space.
In that case, it can be effective to take the log or square root of the objective function apart from scaling.
Note that the location of the minimum does not change by scaling the objective function.
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2.2 Literature overview

In this section, the relevant literature on the optimization of flexure mechanisms is reviewed. Previous
optimization efforts of flexure mechanisms modeled in SPACAR are the main focus, but some other
optimization work is reviewed as well.

2.2.1 SPACAR design optimization

Successful design optimizations of SPACAR models have been performed. Wiersma et al [2, 3] opti-
mized a number of large stroke hinges of various types. The objective function was the inverse of the
second eigenfrequency. The actuation moment and maximum stress were taken as constraints. For these
optimizations, the Nelder-Mead simplex optimization algorithm [7] was used. This is an algorithm for
unconstrained problems, but the algorithm was modified so that parameter sets that violate a constraint
are not admissible. Not much information is given about the performance of the optimization algorithm.
However, it was stated that the optimizations were successful and that multiple runs from different start-
ing parameter sets converged at least more than once to the same optimum. This implies that it is likely
that the global optimum was found. The number of design variables in these hinges varied from four to
eight.

Naves et al [4, 5] also performed optimization of similar large stroke hinges, using the Nelder-Mead opti-
mization algorithm. In the first paper [4], a few changes compared to the earlier work of Wiersma [2], were
discussed. Instead of inadmissible parameter vectors outside of the bounds and constraints, a penalty
function is added. If a point of the simplex falls in the infeasible space, the function value is multiplied
by a third order penalty, ensuring that the algorithm will not converge to an infeasible location. A higher
order penalty is also possible but is more likely to cause numerical issues. Another strategy that was
added is constraint interpolation between a feasible and infeasible point, to estimate where the infeasible
area starts without requiring extra function evaluations.

The performance of the optimization algorithms was discussed more extensively compared to Wiersma’s
work. The algorithm was tested on a three flexure cross hinges, with four design variables. A total of 50
shape optimizations were performed, starting from 50 randomly generated parameter sets. The optimiza-
tion was terminated each time when the first eigenfrequency of subsequent iterations differed less than
0.5%. This is a rather large threshold, which could result in premature termination of the optimization
process. On average 135 function evaluations were performed before termination. From the 50 runs, 52%
converged within 5% of the best solution found and 24% converged within 1% of the best solution.

It was claimed that one of the reasons for not finding the optimum each time was the presence of local
optima in the search domain, but this claim is not further substantiated. With a loose termination
criterion, it is possible that certain runs were prematurely terminated while converging to the global
optimum. Furthermore, the possibility of failure of the Nelder-Mead algorithm is completely ignored.
Multiple studies have shown the lack of robustness of the Nelder-Mead algorithm, especially in problems
with more than a few variables. McKinnon [8] showed a group of convex and continuous differentiable
functions with two variables for which the Nelder-Mead algorithm converges to a non-stationary point.
Torczon [6] studied the convergence of the Nelder-Mead algorithm on well known functions such as multi-
dimensional Rosenbrock functions and concluded a discerning lack of robustness. In Torczon’s research,
the search direction went orthogonal to the gradient for larger dimensional functions, which cannot result
in an optimum. Note that these issues exist without the added complexity of constraints and barrier
functions.

Wiersma and Naves [2, 4] provide no reason for not using gradient-based optimization other than that
derivatives might be difficult to obtain.
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2.2.2 Other flexure mechanism optimizations

Kuresangsai et al. [9] developed a kinematic modeling and optimization technique for flexure-jointed pla-
nar mechanisms. One of the optimized models was a linear actuator using two parallel Hoeken’s linkages
connected to the end effector, which should be able to move ±10 mm in the x-direction. The goal of the
optimization was to minimize the displacement in the y-direction at the maximum stroke length to both
sides. The design variables were the positions and orientations of all the leaf springs. Only bounds were
used as constraints. For the optimization algorithm, a gradient-based method was used. The gradients
were directly taken from the model. The result was a very efficient optimization process. However, the
method presented is limited to kinematic design optimization, for planar mechanisms.

Lobontiu et al. [10] presented an analytical model of flexure-based displacement amplification mech-
anisms, which were optimized for maximum stiffness and displacement amplification. Twelve design
variables were used, including the radius of corner-fillets of the flexures, resulting in notched hinges. The
optimization algorithm used was a direct application of the Lagrange’s function and the Kuhn-Tucker
conditions, which is also gradient-based optimization. Bounds of the design variables and some combined
geometry bounds formed all the constraints used.

2.3 Numerical derivatives

For gradient-based optimization algorithms, derivatives of the objective function with respect to the
design variables are required. The vector of first order derivatives is called the gradient. In some cases,
the derivatives can be calculated analytically, but in many cases, the derivatives have to be calculated
numerically. These derivatives are determined by using finite differences. Forward differences and central
differences are the most used methods. The forward difference calculation requires N + 1 function
evaluations, where N is the number of design variables. The central difference method is more accurate
but requires 2N + 1 function evaluations. Since function evaluations can be costly, forward differences
are mainly used in optimization. The forward difference to one of the design variables can be calculated
with equation 2.2, in which x is the design variable and h is the step of this design variable.

f ′(x) =
f(x+ h)− f(x)

h
(2.2)

The step size h is not arbitrary. For a smooth function, the smaller the step size, the more accurate
the derivative is. With an increase of step size, the truncation error increases. However, the output
of finite element software such as SPACAR is generally not completely smooth. There is usually some
numerical noise on the output. If the step size is too small, this noise results in a large error. The range
of acceptable step sizes is problem dependent. The presence and severity of noise on the function can
vary widely by differences in software or settings.

Second order derivatives can be approximated by finite differences as well. Similar to first order finite
differences, it is also possible to use forward differences, backward differences, and central differences.
Forward differences require fewer function evaluations, but the truncation error is of first order, while for
central differences the truncation error is of second order [11]. For second order finite differences noise on
the function has more impact compared to first order finite differences, thus requiring a larger step size.
To minimize the impact of the truncation error caused by using a larger step size, central differences will
be used for second order finite differences in this work.

The full matrix of second order derivatives is referred to as the Hessian matrix. The Hessian is a
symmetrical matrix, so only half of the second order mixed partial derivatives need to be calculated. The
second order partial derivatives on the diagonal are calculated with equations 2.3 and the mixed partial
derivatives, which are off-diagonal are calculated with equation 2.4.
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∂2f

∂x2
≈ f(x+ hx)− 2f(x) + f(x− hx)

h2
x

(2.3)

∂2f

∂xy
≈ f(x+ hx, y + hy)− f(x+ hx, y − hy)− f(x− hx, y + hy) + f(x− hx, y − hy)

4hxhy
(2.4)

To calculate the full Hessian matrix, many function evaluations are required. Each diagonal component
requires two extra function evaluations and each off-diagonal component requires four function evalua-
tions. If n is the number of design variables, equations 2.5 and 2.6 gives the required number of function
evaluations N to calculate the gradient and Hessian matrix respectively.

Ngradient = n+ 1 (2.5)

NHessian = 2n2 + 1 (2.6)

2.4 Optimization algorithms

This section contains short theoretical information about the optimization algorithms used in this work.
First, the Newton’s method and a quasi-Newton method using a BFGS Hessian approximation are dis-
cussed. Next, the relevant algorithms available within the fmincon function which is part of the MATLAB
optimization toolbox, are discussed. These algorithms are the interior-point, SQP, and active-set algo-
rithms. Finally, the Nelder-Mead algorithm is shortly discussed, as it will be used as reference algorithm.

2.4.1 Newton’s method

Newton’s method is based on a local second order approximation of the objective and constraint functions.
The gradient and Hessian is required at each iteration to estimate the objective function and constraint
values around the current location in the design space. The first and second order derivatives give infor-
mation about the direction and curvature of the functions. This gives not only the search direction, but
also a good indication of the step length, since the curvature predicts the location where the gradient of
the function becomes zero. At each iteration, second order Taylor expansions, shown in equations 2.7 are
done around the current design point, to a acquire a quadratic function for the objective function and all
constraints.

f(x+ s) ≈ f(x) +∇f(x)Ts+
1

2
sTH(x)s, (2.7)

Where s is the step vector from the current design point and H is the Hessian matrix. The optimization
problem from Eq. 2.1 is now approximated with a set of quadratic functions, which can be solved using
any quadratic programming algorithm.
The main disadvantage of the Newton’s method is the requirement of a fully calculated Hessian. The
number of function evaluations required for generating the Hessian using finite differences grows expo-
nentially with the number of design variables. Therefore, the Newton’s method is generally not used
for problems with many design variables. To circumvent this problem while maintaining second order
information, quasi-Newton methods were developed, which are discussed in the next section.

2.4.2 Quasi-Newton method method

In a quasi-Newton method, the Hessian matrix is not calculated, but instead approximated using first
order derivatives of consecutive iterations. Initially, an arbitrary Hessian is chosen, which is updated each
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iteration. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) update is considered the most effective quasi-
Newton update [11]. The BFGS update formula is shown in equation 2.8, where H̃ is the approximated
Hessian. In this equation, k indicates the previous location and k + 1 indicates the current location.

sk = xk+1 − xk

yk = ∇f(x)k+1 −∇f(x)k

H̃k+1 = H̃k +
yky

⊤
k

y⊤k sk
− H̃ksks

⊤
k H̃k

s⊤k H̃ksk

(2.8)

For the first iteration, an arbitrary positive definite Hessian is chosen. The initial Hessian used in this
work is:

H̃0 =
1

∥∇f0∥
I (2.9)

In which I is the identity matrix. The BFGS method or close variants thereof are also used in the
MATLAB fmincon function.

2.4.3 Fmincon algorithms

Fmincon is a MATLAB function for the optimization of nonlinear constrained problems. The function
itself is not an optimization algorithm, however, a number of algorithms can be chosen to use within
fmincon. In the previously discussed methods, constrained optimality was not yet discussed, but applied
in the fmincon step while solving the quadratic approximation. To solve a constrained optimality problem,
the first order optimality condition is modified to include the constraints. Instead of just the objective
function, the Lagrangian function, shown in equation 2.10 is introduced.

L(x, λ) = f(x) +

m∑
i=1

λg,i · gi(x) +
m∑
i=1

λh,i · hi(x) (2.10)

Instead of the requirement that the gradient of this function must be zero, the Karush-Kuhn-Tucker
(KKT) conditions, see equation 2.11, must be met.

∇xL(x, λ) = 0

λg,igi(x) = 0 ∀i g(x) ≤ 0
h(x) = 0
λg,i ≥ 0

(2.11)

The three relevant options are the interior-point algorithm, the sequential quadratic programming (SQP)
algorithm, and the active-set algorithm. These algorithms will be briefly discussed in the next sections.

The SQP and active-set algorithms

The SQP and active-set algorithms are very similar, where the SQP algorithm has the same base func-
tionality as the active-set algorithm, but with some added benefits. The active-set algorithm checks at
each iteration if the constraints are active or inactive, and solves the KKT conditions shown in equation
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2.11, including the active constraints. The SQP algorithm is considered the most efficient nonlinear op-
timization algorithm for a wide range of problems [12].
The active-set and SQP algorithm resembles the quasi-Newton discussed before. At each step, the func-
tion is transformed into a quadratic sub-problem. First order derivatives are numerically determined and
the Hessian is approximated using the BFGS or similar method.

The SQP algorithm in fmincon has the following improvements over the active-set algorithm [12]:

• The algorithm respects the bounds, including the finite difference steps. If a starting point outside
the bounds is tried, the starting point is moved to the bounds.

• If an attempt fails, because one of the functions returns an invalid number such as NaN or Inf, the
algorithm attempts another step.

• SQP uses a more efficient set of linear algebra routines to solve the quadratic programming sub-
problem.

• The SQP deals slightly differently with situations where the constraints are not satisfied.

Interior-point

In the Interior-point algorithm, a logarithmic barrier function is added to the objective function. When
the constraints are approached or breached, this barrier function increases the objective function value.
Each step of the Interior-Point method stays within the feasible area. The initial point is normally also
required to be in the feasible area. However, in fmincon it is not necessary to start in the feasible area,
since the function will first search for the feasible area before conventionally using the interior-point al-
gorithm.

The algorithm uses two different sorts of steps. First, it attempts a direct step. This step tries to solve
the KKT equations. This is called a Newtons step. If this is not possible, a conjugate gradient step is
done. A quadratic approximation within a trust region, subject to linearized constraints is used. The
trust region has a radius R and is there to limit the step size of all design variables.

2.4.4 Nelder-Mead

The Nelder-Mead method is mainly used in this research to compare with the gradient-based methods.
It is one of the most used direct-search methods, meaning that no derivatives are required. For a n-
dimensional problem, the algorithm starts with a n+1 node simplex. At each iteration, a new node is
chosen and an old node is discarded. This is done in such a manner that the function value decreases.
Depending on the function values at the nodes, one of a few different steps can be taken at each iteration.
Since the Nelder-Mead algorithm has been clearly described in many papers and is not the focus of this
research, this algorithm is not described in more detail. For a detailed explanation of the algorithm as
used in the MATLAB function fminsearch, see the work of Lagarias et al [13], whose algorithm is actually
implemented in fminsearch.

2.5 Local minima

The gradient-based optimization algorithms in this research and the Nelder-Mead algorithm are local
search methods. These algorithms will try to find an optimum, but there is no guarantee or even
indication that the minimum found is actually the global minimum. The only method of finding out if
the minimum found is the global minimum, is performing the optimization multiple times from different
starting points. If all runs converge to the same point, it is very likely that this point is the global and
only minimum. If different points are found, but a sufficient amount of runs are performed and each point
is found multiple times, it is very likely that there are multiple local minima and that the best minimum
is the global minimum.
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2.5.1 Optimality conditions

When an optimization algorithm converges to a certain point, it is not guaranteed to be a local minimum.
The formal method to ensure a minimum is found, is to check the first and second order optimality
conditions. For unconstrained problems, the first optimality condition is met if the gradient of the
objective is zero. For constrained problems, the gradient in feasible directions has to be equal to or
greater than zero. The first order optimality conditions are known as the Karush-Kuhn-Tucker conditions
[11]. For problems with only inequality constraints, these conditions are:

∇f + J⊤
g λ = 0

λ ≥ 0.
(2.12)

In which λ are the Lagrangian multipliers and Jg is the Jacobian of the active constraints and bounds.
The subspace of feasible direction p is determined by taking the nullspace of Jg. With all this information,
the first order optimality condition is met if:

p⊤∇f = 0 (2.13)

The second optimality condition is met if the Hessian matrix of the objective function at the optimum is
positive definite. An example of a situation where the first optimality condition is met, but the second
condition is not met, is a saddle point in a two dimensional problem. The second optimality condition
can be formulated as follows:

p⊤HLp > 0 (2.14)

For all p such that:

Jgp ≤ 0 (2.15)

In which HL is the Hessian of the Lagrangian:

HL = H + λHg (2.16)

For the optimality condition check, the gradient and Hessian matrix of the objective function are required.
These have to be determined with finite differences for SPACAR optimization problems. Calculating the
Hessian can be very costly for larger problems. If there is no time or computational means to calculate
the full Hessian, just checking the first optimality condition is already useful. Another problem of a
numerical optimality condition check is numerical noise and inaccuracies. The gradient is not exactly
zero, active constraints are not exactly zero and the Hessian is not completely accurate. Therefore margins
are required. If the outcome of the optimality condition check is uncertain, a parameter sweep can be
performed near the optimum in the feasible directions p, which can support the conclusion if optimality
was reached or not.
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Chapter 3

Methods

In this chapter, the methods used in this research are introduced. First, some problem analysis tools are
introduced, which are used to identify the relation of the design variables to the objective and constraint
functions and to find an appropriate finite difference step size. The implementations of the algorithms
introduced in the previous chapter are further presented. All the optimization runs were performed in
MATLAB R2021a. All model evaluations were performed in SPACAR, using SPACAR Light as interface
between MATLAB and SPACAR.

3.1 Problem analysis

In the literature overview, it became clear that little is known about the performance of gradient-based
optimization of flexure mechanisms modeled in SPACAR. Some successful gradient-based optimizations
were performed on flexure mechanisms in general, which is promising, but these were fully analytical
problems, with relatively simple constraints. For now, it is not possible to extract analytical derivatives
from SPACAR. In this work, the optimization will be mostly considered as black-box optimization. This
is generally the case for optimization when simulations are run as function evaluations. In black-box
optimization, the output of the model from the user input can be observed, but the model is not available
in analytical form.

In order to develop an optimization method, a test design is required. In this work, flexure hinges with
varying complexities are used for optimization. These types of mechanisms are suitable subjects for op-
timization as demonstrated in earlier works. The aim of the optimizations will be to minimize the first
eigenfrequency. A rotational stroke in the compliant direction of the hinges is modeled, such that the
first eigenfrequency corresponds to the first parasitic mode. Von Mises stress and actuation moment are
both used as constraints. Throughout this work, the first eigenfrequency is always the first parasitic mode.

The first steps are to analyze the outputs of the model for various inputs. The design space is explored
using the parameter sweep technique. The accuracy and viability of acquiring derivatives with finite
differences is also analyzed. Using this information, optimization methods are developed. The last section
of this chapter gives an overview of the order in which the results in the next chapters are presented.

3.1.1 Parameter sweep

Before optimizing a problem it can be very useful to explore the design space first. A parameter sweep is
an excellent tool for this purpose. Since it is impossible to plot a multidimensional design space, separate
plots are made, where only one variable is changed at a time. From a certain starting point, one variable
at a time is varied from the lower bound to the upper bound. The resulting plots can give a lot of
information, which can help select a suitable optimization method. The objective function and any other
relevant output of the model, such as constraints, can be plotted in this sweep. Note that a parameter
sweep never gives a full picture of the entire design space, so it does not guarantee to show every problem,
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but it still gives a lot of insight.

From the parameter sweep, different aspects of the objective and constraint functions can be observed.
Missing data points due to failed model evaluations must be dealt with, either by improving the model
and its convergence or by ensuring that the optimization algorithm can deal with unsuccessful function
evaluations. It can be observed how the different parameters have no effect, a linear effect, or a nonlinear
effect on the different model outputs. Furthermore, it can be observed whether these effects depend
on other parameter settings, which means that there are interactions between the parameters. Also,
discontinuities and discontinuities of the derivatives may be identified from the parameter sweep. Finally,
it can be observed whether the output is noisy, which is relevant for determining the derivatives of
the function. All these aforementioned aspects are relevant for the optimization and may be used to
reformulate the optimization problem, define the required improvements of the model, and select an
adequate optimization algorithm.

3.1.2 Finite difference step size sweep

For accurate derivatives, the step size is very important, as discussed in section 2.3. The noise on the
output of the model determines how small of a step can be taken. The noise relevant for numerical
derivatives is of a much smaller scale than can be detected with a regular parameter sweep over the entire
design space. What can be done to find good step sizes is a step size sweep. From a random location in
the design space, the forward difference of the objective function with respect to one of the design vari-
ables is calculated for a series of different step sizes. For increasingly small step sizes, the noise becomes
dominant and the forward difference is inaccurate. For larger step sizes the truncation error dominates.
In that case, the forward difference is inaccurate because of non-linearity in the output. Visualized in a
graph the domain where the error is acceptable can be found.

3.2 Optimization methods

In this section, the specific implementations of the optimization methods used in this work are discussed.
First, some general strategies are discussed. To test the performance of the algorithms, a multi-start is
required. The different runs are started from different points spread through the design space. Gener-
ating these starting points can be done with any design of experiment technique. In this research the
Latin hypercube method is used, to ensure a good spread through the design space. The random number
generator in MATLAB was set to default, for repeatability. A multi-start should also be used, to make
sure the global optimum is found in a potentially multi-modal problem.

Scaling and normalizing of the objective and constraint functions and the design space can have a large
influence on the convergence rate of the optimizing algorithms. This is further explored in section 4.3.1.
In this research, the design variables are normalized between 0 and 1, and the constraints are normalized
between -1 and 0. The objective function was defined as −f1(x) in chapter 4 and as −f1(x)/f1(x0) in
chapters 5 and 6.

The units within SPACAR were set to meters in chapter 4, and to millimeters in chapters 5 and 6. Mil-
limeters are preferable, because in meters several numbers can get very small, causing numerical issues.
Furthermore, the default of ten load steps for the applied rotation is always used. These are the steps
from the equilibrium position, or the initial rotation, to the final position. For each step, the frequency,
stresses, and other outputs are calculated. The stress is generally highest at the maximum rotation, while
the stiffnesses and eigenfrequencies are generally lowest at the maximum rotation.

No termination criteria are implemented in the Newton’s method and quasi-Newton method, instead the
optimization is terminated upon reaching the iteration limit. For the fmincon algorithm, the termination
criteria are set extremely strict. This way, the convergence comparison of the algorithms is not influ-
enced by different termination criteria. In chapter 6, the default termination criteria of fmincon were
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used, which are still extremely strict, because stricter termination criteria caused instability near the
optimum, for the problems with many design variables.

For all the fmincon algorithms, the finite difference step size was set to 10−6, instead of the default setting
of approximately 10−8.

3.2.1 Newton’s method implementation

In each iteration of the Newton’s method, the gradient and Hessian matrix of the objective function and
constraint functions are determined, using finite difference step sizes of 10−3 in the normalized domain.
The quadratic sub-problem calculated with equation 2.7, is then solved using fmincon, with the SQP
algorithm.

3.2.2 Quasi-Newton method implementation

The implementation of the quasi-Newton method is similar to the Newton’s method, except the Hessians
of the objective and constraint functions, which are now approximated using the BFGS update equation
shown in equation 2.8. A trust-region was used in this method. This limits the step length between iter-
ations, which was necessary for stabilizing the convergence in the first few iterations. The trust-region is
implemented by setting an extra constraint, which limits the norm of the step, to 0.2 in the normalized
design space. The lack of a convergence criteria in the quasi-Newton method, caused the BFGS updates
to become inaccurate when the step length between consecutive iterations approached zero. To counter
this, the Hessians are only updated when the norm of the step vector s is larger than 10−16. The finite
difference step of 10−4 is used.

The quadratic sub-problem for this method is also solved using fmincon with the SQP algorithm. In
this method, the accuracy of the solution of the quadratic sub-problem has a large influence on the
performance of the method. Very strict termination criteria proved to be necessary. The StepTolerance
and ConstraintTolerance, see MATLAB fmincon documentation [14], were both set at 10−12, instead of
the default 10−6.

3.2.3 Nelder-Mead implementation

The Nelder-Mead algorithm in an unconstrained optimization tool. To take the constraints and bounds
into account, a soft penalty is added to the objective function, when a bound or constraint is violated.
Equation 3.2 shows an example for the stress constraint in which the objective function value is:

f(x) If: σmax(x) ≤ σcrit (3.1)

f(x) = f(x)

(
1 +

σmax(x)− σcrit

σcrit

)3

If: σmax(x) > σcrit (3.2)

In which σmax(x) is the maximum stress in the design and σcrit is the maximum allowable stress. For
the other methods, the design variables were normalized between zero and one. For this method, the
design variables are normalized between 10 and 11. The MATLAB function Fminsearch creates the initial
simplex by adding 5% of the design variable value for each node, with a minimum of 0.00025. This can
create a severely elongated starting simplex, depending on the starting point. Convergence is generally
better and faster if the starting simplex is equally spaced. Normalizing between 10 and 11 also results
in a much larger starting simplex, which can also be favorable for fast convergence. A few examples for
a two dimensional design space are shown in figure 3.1. Note that some of the vertices of the starting
simplexes fall outside the bounds. In case the functions are not defined outside the bounds, the starting
points should be carefully considered.
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Figure 3.1: Initial simplexes from different starting points for a design space normalized
from zero to one on the left and from 10 to 11 on the right.

3.3 Structure of the results

The first part of this research is focused on a simple design with few design parameters, for which all the
optimization algorithms introduced in chapter 2 can find the optimum, resulting in a clear comparison
of the performance of the different algorithms. In the next part of the research, the complexity of the
design problem is increased, mainly by increasing the number of design variables. This leads to a few
extra strategies required for successful and reliable optimization. In the last part of this research, the
fully developed method is tested on a larger design problem with up to 25 design variables. The results
of this research are subdivided into three chapters. The designs and optimization problems are presented
at the start of each chapter. The chapters are divided as follows:

• In chapter 4, a simple design with 2-4 design variables is used to analyze the optimization problem
extensively and to test the developed methods. The design space is explored graphically. The effect
of different choices in the scaling of the objective function, the constraint functions, and the design
variables is shown. With the analysis of the finite differences, an appropriate step size for the design
variables is selected. The performances of all the algorithms introduced in chapter 2 are compared
by graphically showing the convergence rate. From these algorithms, one of the MATLAB fmincon
algorithms is selected and used in the follow-up problems, along with the quasi-Newton method.

• In chapter 5, two similar hinges as in chapter 4, are introduced, with eight and ten variables
respectively. These models require a different approach to the definition of the stress constraint,
where taking the maximum Von Mises stress over the entire hinge is not enough. The second
model in this chapter shows a complication where multiple frequency modes can become the lowest
frequency within the design space.

• In chapter 6, the capabilities of the developed methods are demonstrated on a reinforced cartwheel
hinge design, with up to 25 design variables. In this chapter, some local minima are encountered
and analyzed. This chapter also includes graphs that show the performance of the optimization
algorithms. The number of function evaluations required for each problem to converge while using
the SQP algorithm is shown, resulting in a benchmark for the number of function evaluations as a
function of the number of design variables.
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Chapter 4

Cross-hinge

In this chapter, optimization tools are developed, using a simple optimization test case as example. The
aim is to show the feasibility and capabilities of the algorithms and methods discussed in the previous
chapters. First, the test case model is introduced. Then several analysis steps, that are used to help
the optimization process, are discussed and finally, the convergence performance of the algorithms is
presented.

4.1 Model

A simple flexure mechanism is defined for an initial study on the optimization of flexures with SPACAR.
This cross-hinge has four design variables and will be referred to as the cross-hinge 4p. The simplified
cross-hinge is shown in Figure 4.1, and consists of two crossed leaf springs, fixed on one end and attached
to a rigid body on the other end. The two leaf springs can move through each other in the model.
Although this is physically impossible, the model can be used as a simplified system for the study of the
optimization algorithm. A physically feasible variant of such a hinge is usually configured with one leaf
spring placed in the middle and in the other direction leaf springs are placed on both sides, to prevent
torsional asymmetry.

(a) Cross-hinge including design variables (b) Cross-hinge at maximum rotation

Figure 4.1: Model of the four parameter cross-hinge. The model of the two parameter cross-
hinge is the same but with w and B fixed.

At the third node, a mass and moment of inertia are added, which represents an object attached to this
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hinge. The density of the rigid beam connecting the leaf springs at the top is 3000kg/m3. The angle of
the rotation is indicated as θ. Warping of the leaf springs is set to ’true’, for this model and all other
models in this work. The material properties of the leaf springs and other model parameters are shown
in figure 4.1.

Table 4.1: Model parameters. The mass and moment of inertia terms are applied at node 3.

Parameter Quantity Unit
θmax 0.5 rad
ρ 7800 kg/m3

E 210 GPa
G 70 GPa
m 1 kg
Jxx 10−3 kg m3

Jyy 10−3 kg m3

Jzz 10−3 kg m3

4.1.1 Optimization problem

Since the main drawback of flexure mechanisms is a low stiffness, especially for large stroke hinges, it
is interesting to maximize the stiffness in the non-compliant directions, given a prescribed rotation in
the compliant direction. For this purpose, using the first parasitic eigenfrequency is ideal, because this
takes all stiffness components into account. The model is fixed in the compliant direction, so the first
eigenfrequency is parasitic. The optimization problem is formulated as follows:

Find:

x = {H,B,w, t}

Minimize:

−f1(x)

Subject to:

0.05 ≤ H ≤ 0.2 m

0.05 ≤ B ≤ 0.2 m

0.025 ≤ w ≤ 0.075 m

0.0001 ≤ t ≤ 0.001 m

σVM
max(x) ≤ 300 MPa

Mmax(x) ≤ 2 Nm

(4.1)

4.2 Design space and finite difference analysis

4.2.1 Parameter sweep

In figure 4.2, a parameter sweep of the cross-hinge is shown. The first row of plots shows the first natural
frequency as output, the second row shows the maximum stress and the third row shows the maximum
actuation moment. In each column, a sweep from the lower bound to the upper bound of one of the
design variables is shown. Five random nominal settings are used, resulting in five lines per plot. The
dashed lines in the stress and moments plots show the constraint limit.
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Figure 4.2: Parameter sweep of the objective function and constraints. The constraints
are the maximum Von Mises stress and the actuation moment. Dashed lines indicate the
constraint limits.

From this sweep, the objective and constraint functions seem continuous over the whole design space.
Furthermore, no extreme non-linearities are observed which would call for other definitions or scaling of
the parameters. Furthermore, the sweep gives good insight into how the frequency, stress, and moment
behave when changing the four parameters. Some of the relations seem to be linear, such as the w as
function of frequency, stress, and moment. These relations could potentially be used to simplify the
problem.

4.2.2 Visualization using two design variables

A great difficulty of optimization with many design variables is the inability of visualizing the design
space. If everything is set-up correctly this is not a problem. However, when looking into a new type
of problem, or developing a custom optimization tool, a lack of visualization is a big hindrance. To
circumvent this problem, a problem can always be reduced to just two design variables.

For the cross-hinge, the first optimization attempts with all four design variables showed that the width
(B) of the cross-hinge and the width (w) of the leaf springs converge to the lower and upper bound
respectively. The length (L) and thickness (t) go to some value between the bounds. This makes the
latter two more interesting for the reduced problem with two design variables.

A full mapping of the design space of this two parameter cross-hinge is shown in Figure 4.3. The location
where the stress and moments reach the constraint limit is also shown in this plot. What stands out
is that there is a kink in the frequency map, where the frequency suddenly changes direction. In this
location, the frequency is not differentiable. This raises the suspicion that the mode of the first natural
frequency changes at this kink. In Section 5.4.1 it is shown for a similar case that this is indeed what
happens. In the cross-hinge problem, it happens far from optimum and the direction does not change
dramatically, so is not expected to be an issue in this case. However, this phenomenon can cause problems
with gradient-based methods.
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Figure 4.3: Visualization of the design space of the two parameter cross-hinge

Figure 4.3 also shows the optimum found with fmincon. It is noticeable that the stress constraint is close
to parallel to the objective function at the location of the optimum. To visualize the local optimum, the
objective function value at the stress constraint and moment constraint limits is shown in Figure 4.4.
It appears that the earlier found optimum is indeed correct. Note that if the moment constraint was
not present, this cross-hinge would have a local minimum at the location where the frequency suddenly
changes direction.
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Figure 4.4: The first natural frequency at the stress and moment constraints.

4.2.3 Numerical derivatives

The step size sweep of the objective function with respect to the four design variables is shown in Figure
4.5. This sweep is done in normalized design space, so the step size is the fraction of the domain of the
design variable. In these plots, the default finite difference step size used by fmincon is shown by the
black dotted line. It can clearly be seen that the forward difference is already somewhat unstable at this
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step size. A larger step size should be used. According to these plots, the step size should roughly be
taken between 10−3 and 10−6, since these values return fairly accurate forward differences. These values
are variable dependent, but in this case the range is roughly the same for all four parameters. This range
is based on first order derivatives. For second order derivatives, the noise has even more severe effects.
Because of this, for calculating the Hessian a step size of 10−3 was used.

The results in figure 4.5 were generated after increasing the accuracy of design parameters in the SPACAR
input files generated by SPACAR Light. This is necessary in order to get accurate finite differences.
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Figure 4.5: Step size sweep of forward differences of the objective function to the four
normalized design variables

The gradients of the constraints should also be determined. Similar plots as figure 4.5 were made for
the maximum stress and actuation moment and shown in appendix B. The results are similar to the
objective function step size sweep, but the acceptable range of step sizes appeared to be larger, so the
gradients of the objective function are the limiting factor.
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4.3 Optimization results

4.3.1 Influence of scaling and normalization

As briefly mentioned in section 2.1, scaling and normalization of the objective function, design space, and
constraints can significantly influence the convergence rate. Optimization generally converges best if the
objective function is close to linear, does not span many orders of magnitude, and is close to an order
of magnitude one. In previous work [2], the objective function used for optimizing large stroke flexure
hinges was the inverse of the first parasitic eigenfrequency. This results in a very non-linear objective
domain. An alternative is taking the negative of this frequency instead of the inverse. Both are shown
in figure 4.6. The objective function is clearly more evenly spread over the design space for the negative
frequency.
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Figure 4.6: Design space comparison between objective functions −f1 and 1
f1
.

The actual convergence rate of differently scaled objective functions can easily be tested by performing
a series of optimization runs from different starting points. For this comparison, fmincon was used with
the SQP algorithm. For each different setting, 30 optimization runs were done from different starting
points that were generated with the Latin hypercube sampling method. The four parameter cross-hinge
was optimized. Figure 4.7 shows the results. The convergence it defined as the evaluation when the
difference between the best found solution and the current function evaluation is less than 10−3Hz. All
runs converged well beyond this level of accuracy. This eliminates the influence of the convergence criteria
of the algorithm, resulting in a more equal comparison.

Figure 4.7 and A.1 contain box plots. In these plots, the red line gives the median value of the data set.
The box spans ±25% from the median. The black lines are called the whiskers and span the whole data
set except for outliers, which are shown as red plus signs. Lastly, the boxes are notched. These notches
show the 95% confidence range of the median.

28



(1) (2) (3) (4) (5)

20

30

40

50

60

70

80

F
u

n
c
ti
o

n
 e

v
a

lu
a

ti
o

n
s

Figure 4.7: Comparison of convergence of differently scaled frequency objective functions.
Also contains a box where no normalization has been done on the input variables and on
the constraints. The description of the boxes is found in Table 4.2.

Table 4.2: Description of the boxes in figure 4.7

Box nr. Description
(1) Objective function: 1

f1
(x)

(2) Objective function: −f1(x)
(3) Objective function: −f1(x)/f1(x0)
(4) Same as (3), without normalized design space
(5) Same as (3), without normalized constraints

It is clear that the objective −f1 (case 2) performs much better compared to the objective 1
f1

(case 1).

Case (3) gives an even better convergence rate, but only slightly. Not normalizing the design space (case
4) or constraints (case 5), gives a slightly worse performance. For this model, the optimization works
fine without normalization. However, in many cases not normalizing the design space and constraint
functions can be problematic. In all further optimization results in this research, the design space and
constraints are normalized. The objective function −f1 (case 2) for the results in this chapter. Case 3 is
used as objective function in the remaining chapters.

Scaling of a compliance objective function

In flexure mechanisms, it can be relevant to optimize the stiffness in specific directions, in which case the
compliance C can be minimized. Scaling of this objective function is necessary, because the compliance
spans multiple orders of magnitude within the design space. The results of different scalings, with 30
optimization runs each, is shown in Appendix A. In conclusion, it is recommended to scale the compliance
by taking the log.

4.3.2 Convergence rate comparison

To compare the performance of each optimization method, the cross-hinge has been optimized 100 times
with each algorithm. This was done for the cross-hinge with two and four design variables. The starting
points are 100 locations in the design space that were generated with the Latin hypercube method. For
each algorithm, the same starting points were used. In figure 4.8, the results are shown for the two
variable cross-hinge. The plot shows the median value out of 100 runs, of the difference between the best
feasible solution found at a certain iteration, minus the best found solution in all runs, which is therefore
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considered to be the global minimum. The median is used instead of the average, because for the loga-
rithmic scale of the convergence measure, outliers dis-proportionally skew the average. To determine if
the solution is feasible, it is checked if all the bounds and constraints are satisfied.

The optimization runs are not terminated before the maximum number of function evaluations is reached,
such that the convergence criteria do not influence the result. At some runs in fmincon, even though the
convergence criteria was set to zero, the run was still terminated before the function evaluation limit was
reached. This is because subsequent iterations yielded exactly the same results. It is assumed that even
if not terminated, a better solution would not have been found.
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Figure 4.8: Median convergence rate of each optimization algorithm using 100 semi-random
starting points. Applied on the two parameter cross-hinge.

For the results, it is important to note that the convergence rate at small differences with the best solution
is not of importance. Different algorithms can converge in slightly different ways, resulting in slightly
different objective function values. From figure 4.8 it can be concluded that the median convergence
rate of all the gradient-based methods using BFGS approximations of the Hessian is the fastest. These
methods all perform roughly equal. The Full-Newton method requires more function evaluations, since
the Hessian needs to be calculated each iteration. The Nelder-Mead algorithm converges significantly
slower compared to the gradient-based methods.
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Figure 4.9: Spread of convergence rates of the different algorithms applied on the two
parameter cross-hinge. The best and worst 10% of all runs are excluded.

The median performances of the fmincon algorithms and quasi-Newton method are approximately equal.
Consistency is another measure to differentiate between algorithms. In figure 4.9, the spread of the
convergence of different attempts is shown. The dashed lines give the best and worst converging attempts.
The SQP is the most consistent fmincon algorithm and is the preferred fmincon algorithm based on this
information. It is also noteworthy that each Newton’s method run ends in exactly the same optimum.
Furthermore, the Nelder-Mead has the largest spread as expected and even the best attempt converges
slower than the worst quasi-Newton and fmincon attempt.
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Figure 4.10: Median convergence rate of each optimization algorithm using 100 semi-random
starting points. Applied on the four parameter cross-hinge.

The same convergence plot was also made for the four parameter cross-hinge, as shown in figure 4.10.
In this case, the different BFGS based algorithms diverge slightly in convergence rate. The SQP and
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active-set converge the fastest and nearly at the same rate. This is not surprising since these algorithms
are nearly identical. SQP is the most refined algorithm of the two and performs slightly better. The
quasi-Newton method converges significantly slower compared to the SQP algorithm. There are multiple
possible reasons why the SQP algorithm converges faster. The trust-region fmincon uses is adjusted
during the optimization run, whereas the trust region in the quasi-Newton method is constant. Fmincon
also sometimes performs a line-search, which is not implemented in the quasi-Newton method.

4.3.3 Nelder-Mead convergence

In section 2.2, the convergence of optimization of a cross hinge using Nelder-Mead in previous research
was discussed. Using the Nelder-Mead algorithm with the Matlab function fminsearch, a similar opti-
mization was done on the cross hinge with four design variables, for a total of 100 runs. After 135 function
evaluations, 49% of the runs were converged within 1% of the global optimum and 67% converged within
5% of the global optimum. This is an improvement over the algorithm used by Naves [4]. In conclusion,
this implementation of Nelder-Mead is at least representative for the algorithms used in previous work.

Figure 4.11 illustrates the difference in the performance of Nelder-Mead between a normalized design
space from 0-1 and from 10-11, as discussed in section 3.2.3.
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Figure 4.11: Median convergence rate out of 100 runs of the Nelder-Mead algorithm. The
performance between the two different normalization ranges is compared.
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Chapter 5

Complications in cross-hinge variants

In the previous chapter, the optimization of a simple cross hinge with 4 design variables at most was
studied. That was used to study how to numerically determine the derivatives, and to get an impression
of the effect of optimization algorithm and objective function definition on the convergence rate. By
increasing the complexity of the problem, other issues may become apparent. By introducing more
design variables, the variety of solutions throughout the design space will also increase. This causes
certain effects when using frequencies and stresses in the constraint and/or objective function. These
effects will be shown in this chapter by increasing the number of design variables in the cross-hinge
problem.

5.1 Models

Two different models are analyzed in this chapter. Both are introduced in this section.

5.1.1 The eight parameter cross-hinge model

In the previous chapter, the cross-hinge design optimization used four design variables. With some model
modifications, the number of design variables is increased to eight. A schematic overview of this modified
cross-hinge is shown in figure 5.1. Both leaf springs can have their own thickness and width. The height
and width of the cross hinge can also be varied on all sides, with respect to the center. Note that this
extra design freedom can result in asymmetry in the yz and xz-plane. Since the model is asymmetric,
due to the mass and inertia at node 3, it is expected that the optimal geometry will be asymmetric as
well. The advantages of using the same simple cross hinge as the base design, are relatively fast function
evaluations and predictable behavior.
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Figure 5.1: Model of the eight parameter cross-hinge.

This model is identical to the cross-hinge introduced in section 4.1, apart from the extra design variables.
For the model parameters, see Table 4.1.

5.1.2 Multi-beam cross-hinge model

To enable an increasing number of design variables on a relatively simple design, both leaf springs of the
cross-hinge are divided into n beams of equal length. The load case and constraints are the same as in
the previous cross-hinge designs. For simplicity, only the thickness of each beam element is used as a
design variable. All other variables are fixed. The height H and width B of the cross hinge are both
100 mm and the width w of all beams is 50 mm. The thicknesses can range from 0.2 mm to 2 mm. An
example of this cross hinge with n = 5 is shown in figure 5.2.

Figure 5.2: Model of the multi-beam cross-hinge with n beams of variable thickness

5.2 Optimization problems

Eight parameter cross-hinge

The optimization problem for the eight parameter cross-hinge is defined as:
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Find:

x = {H1, H2, B1, B2, w1, w2, t1, t2}

Minimize:

−f1(x)/fx(x0)

Subject to:

50 ≤ (H1, H2) ≤ 200 mm

50 ≤ (B1, B2) ≤ 200 mm

25 ≤ (w1, w2) ≤ 75 mm

0.1 ≤ (t1, t2) ≤ 1 mm

σVM
max(x) ≤ 300 MPa

Mmax(x) ≤ 2 Nm

Multi-beam cross-hinge

The optimization problem for the multi-beam cross-hinge is defined as:

Find:

x = {t1, ..., t(2n)}

Minimize:

−f1(x)/fx(x0)

Subject to:
0.2 ≤ (t1, ..., t(2n)) ≤ 2 mm

σV
max(x) ≤ 300 MPa

Mmax(x) ≤ 2 Nm

5.3 Results of the eight parameter cross-hinge

5.3.1 Separate stress constraints

The first optimization attempts of this design lacked convergence. Multiple runs from different starting
points did not result in a consistent optimum. In order to find the root cause of this issue, a parameter
sweep was performed. The issue is already clear with just one sweep from the starting point:

x0 = {0.1 m, 0.1 m, 0.1 m, 0.1 m, 0.05 m, 0.05 m, 0.0005 m, 0.0005 m}

Parameter sweeps from different starting points yielded similar results. While the objective function
and moment constraint did not show any surprising behavior, the stress constraint sweeps did. The red
lines in Figure 5.3, represent the maximum Von Mises stress as function of the design variables. This
maximum stress was used for the stress constraint in the previous chapter. The maximum stress is clearly
not continuously differentiable in this design space. Since a requirement for gradient-based optimization
is a sufficiently smooth function, this is likely to be the main problem.
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Figure 5.3: Parameter sweep of the stress constraints for the eight parameter cross hinge.
The Von Mises stress at 32 locations is shown, most of which overlap, due to symmetry in
the model. The maximum Von Mises stress is shown in red. The dashed lines show x0.

The Von Mises stresses at the vertices of the beams, that are not the maximum stress, are shown in
black. There are a total of 4 flexible beams in this cross hinge, so there are 32 stress constraints. Many
of these stresses overlap, partly due to the symmetry of the starting geometry. What happens is that
the location of the maximum stress changes within the design space. The solution for this problem is to
treat the Von Mises stress at all locations as separate constraints. However, the stress is calculated by
SPACAR at many points in each beam. To keep the number of constraints limited, only the Von Mises
stress at the eight vertices of each beam is used as a separate constraint. This has proved to be sufficient
for optimizing most problems, since the maximum Von Mises stress is generally located at one of these
vertices. It might be possible that for some designs the maximum stress will not appear at the vertices.
In this case, the choice of constraints should be reconsidered.

As can be seen, the separate stresses are smooth. However, they do change direction at zero since the
stress at this point changes from tensile stress to compressive stress or vice versa. The exact influence of
this phenomenon was not researched, but it did not cause serious issues in the optimizations that were
done.

5.3.2 Convergence results

The median convergence of the eight parameter cross-hinge is shown in figure 5.4. Each algorithm is run
from 30 different starting points, which were generated with the Latin hypercube method. Since the SQP
algorithm performed best in the previous chapter and the quasi-Newton algorithm has its own merits,
as will be discussed in section 5.4.1, only these two algorithms are tested on this model, and the models
presented in chapter 6. In this plot, and the convergence plots in section 6.2.2, function evaluations that
violate the stress constraint by less than 0.1 MPa are allowed. However, the best solution to which all
evaluations are compared is strictly feasible. By taking the absolute value of the difference between the
current objective value and the best objective value, the slightly infeasible solution cannot cause negative
values.
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Figure 5.4: Median convergence out of 30 runs of the eight parameter cross-hinge. Dashed
lines indicate the range excluding best and worst 10% of all runs.

5.4 Results of the multi-beam cross-hinge

In this section, a problem with multiple frequency modes, which alternately are the lowest frequency
within the design space is discussed. This is a particularly major problem within this specific model,
although it might be encountered in other models as well. In Chapter 6, models with more design variables
are optimized where this issue is only encountered sporadically.

5.4.1 Separating frequency modes

Initial optimization tests with n >= 2 using the SQP algorithm, showed inconsistent convergence, and
different runs that did not converge to a local optimum. The likely problem is revealed by displaying the
first four eigenfrequencies in a parameter sweep over the thickness.
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(a) Sweep of one of the thicknesses for the n = 2 model.
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(b) Sweep of one of the thicknesses for the n = 5 model.

Figure 5.5: Parameter sweep of the natural frequencies at a random parameter configuration
for the multi-beam cross-hinge with 2 beams per leaf spring and the model with 5 beams
per leaf spring

In figure 5.5, a parameter sweep of the first four eigenfrequencies is shown. For the left sub-figure the
n = 2 model is used, so with a total of four beams, and for the right sub-figure the n = 5 model is
used, with a total of ten beams. For both sub-figures, only the thickness of one of the beams is varied.
Sweeps of the thickness of the remaining beams yielded comparable results. It is clear that the lowest
eigenfrequency, used in the objective function, is not continuously differentiable. Figure 5.5 shows that
this is caused by different frequency modes which take over when increasing or decreasing the dimension
of a design variable. This can be a problem for reliable gradient-based optimization.

A solution for this problem could be to separate frequency modes. Analogous to the separate stress
constraints, the frequency modes can be calculated separately. This is not applicable within fmincon,
however, it is possible to implement this in the Quasi-Newton method.

There are possible methods to keep track of different frequencies in SPACAR, but it is not straightforward
to implement this in a reliable manner. It was decided that this falls outside the scope of this research.
But it is recommended to explore this option for when the eigenfrequencies are used as constraints or
objective function.
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Chapter 6

Cartwheel

In this chapter, the developed optimization methods are used to optimize a useful realistic design, with
a large number of design variables. The designs to be optimized in this chapter are all variations of the
cartwheel hinge, which is a hinge with two leaf springs, oriented at an angle and connected at the center.
The pivot shift of the cartwheel hinge during a stroke is very small compared to the cross hinge with
disconnected springs [15]. This can be a major advantage of this type of hinge. A simple cartwheel hinge,
with only four design variables (H B t and a rotation applied on the moment of inertia tensor), was
optimized by Wiersma [2]. One of the aims of this chapter is to show the benefit of increasing the design
freedom when it comes to the performance of the hinge.

In the previous chapter, it was shown that using the frequency as objective function can lead to optimiza-
tion problems if multiple frequency modes are the lowest within the design space. The eigenfrequency is
still used as objective function in this chapter, since it still is a very useful performance objective. For
all models presented in this chapter, the presumably global optimum could be found.

Adding reinforcements to leaf springs can increase the support stiffness and the first parasitic eigenfre-
quency. This has been studied and applied on parallel leaf spring configurations [16]. The application
of reinforcements might also benefit the cartwheel hinge. In section 6.1, the basic cartwheel is compared
to a reinforced cartwheel, to show the improvement performance. The reinforced cartwheel is optimized
with several levels of design freedom, increasing the number of design variables which increases the design
performance. For all the models in the previous chapters, the rotation on the hinge was only modeled in
the positive counterclockwise direction. This is a useful simplification, but in section 6.1.4, it is shown
that for geometries that are not symmetrical in the y-z plane, this simplification should be avoided.

6.1 Models

Figure 6.1 schematically shows the two cartwheel concepts. The width (w) is defined in z-direction, and
is therefore not shown in this graph. For some of the models, individual ’arms’ of the hinge, have their
own design variables. The number of the design variable corresponds with the node of the respective arm.
In section 6.1.1, a three parameter cartwheel and six parameter reinforced cartwheel are both optimized
and compared. In section 6.1.2, first the symmetry over the xz-plane is removed and the design variable
w is added, resulting in the 13 parameter reinforced cartwheel. Also removing the symmetry over the
yz-plane resulted in the 25 parameter cartwheel
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Figure 6.1: Schematic drawing of the regular and reinforced cartwheel concepts

The model parameters of the cartwheel hinges used in this chapter are presented in Table 6.1. The
moment of inertia and mass applied at the pivot of the hinge used on this cartwheel was also used in
the work of Wiersma [2] and Naves [4]. This mass and inertia represent an L-shaped robot arm rotating
around the pivot point of the hinge. The density for the rigid beams and leaf springs is the same. The
thickness of the reinforcements is 2.5 mm. The θmax of ±10°, was only applied for the full range of motion
25 parameter cartwheel, starting in section 6.1.4. For all other cartwheel hinges θmax is only modeled in
the positive direction. For the three variable cartwheel and six variable reinforced cartwheel, the width
(w) of the hinge was fixed at 75 mm.

Table 6.1: Model parameters. The mass and moment of inertia terms are applied at the
pivot of the hinge, rigidly attached to node 4.

Parameter Quantity Unit
θmax ±10 °
ρ 7800 kg/m3

E 210 GPa
G 70 GPa
m 0.574 kg
Jxx 3.760−3 kg m3

Jyy 3.528−2 kg m3

Jzz 3.826−3 kg m3

6.1.1 Simple and reinforced cartwheel comparison

Optimization problems

The optimization problem first model introduced in the previous section, the simple cartwheel, is formu-
lated as:

Find:

x = {t, B,H}

Minimize:

−f1(x)/fx(x0)
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Subject to:
0.3 ≤ t ≤ 2 mm

20 ≤ B ≤ 50 mm

20 ≤ H ≤ 50 mm

σVM
max(x) ≤ 300 MPa

The optimization problem for the reinforced cartwheel is defined as:

x = {ti, to, a, b, B,H}

Minimize:

−f1(x)/fx(x0)

Subject to:
0.3 ≤ ti ≤ 2 mm

0.3 ≤ to ≤ 2 mm

0.1 ≤ a ≤ 0.5

0.6 ≤ b ≤ 0.95

20 ≤ B ≤ 50 mm

20 ≤ H ≤ 50 mm

σVM
i (x) ≤ 300 MPa ∀i = 1..Nσ

Results

Note that a and b are defined as ratios of the length of the arm. The optimized models are shown in
Figure 6.2. Both were optimized multiple times from different starting points, resulting in a consistent
optimum. The reinforcements appear to increase the performance of the hinge. Therefore, the reinforced
design will be further optimized in the next sections, with more design variables.

Figure 6.2: Optimized designs of the three parameter cartwheel and six parameter reinforced
cartwheel hinges. The top row shows the Von Mises stress distribution and the bottom row
the first frequency mode, both at the maximum rotation.
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6.1.2 Increased number of design variables

6.1.3 Optimization problems

More design variables can be introduced for the reinforced cartwheel, to allow greater design freedom.
The first logical design is to give the top and bottom arms individual design variables while maintaining
symmetry over the yz-plane. The width in the z-direction (w) of the entire hinge is also added as design
variable. This results in a total of 13 design variables. The corresponding optimization problem is defined
as:

Find:

x = {ti1, ti4, to1, to4, a1, a4, b1, b4, B1, B4, H1, H4, w}

Minimize:

−f1(x)/fx(x0)

Subject to:
0.3 ≤ (ti1, ti4) ≤ 2 mm

0.3 ≤ (to1, to4) ≤ 2 mm

0.1 ≤ (a1, a4) ≤ 0.5

0.6 ≤ (b1, b4) ≤ 0.95

20 ≤ (B1, B4) ≤ 50 mm

20 ≤ (H1, H4) ≤ 50 mm

σVM
i (x) ≤ 300 MPa ∀i = 1..Nσ

For the next cartwheel hinge, all four arms of the hinge have individual design parameters, and the w
is also used as design variable. This hinge contains 25 design variables. The objective function and
constraints are comparable to the previous design, but the design variable vector is now:

x = {ti1, ti2, ti3, ti4, to1, to2, to3, to4, a1, a2, a3, a4, b1, b2, b3, b4, B1, B4, H1, H2, H3, H4, w}

Results

Figure 6.3, shows the results of the three cartwheels with an increasing number of design variables. Each
optimization was run 15 times from different starting locations. The six parameter cartwheel always
converged to the presumed global optimum, the thirteen parameter cartwheel converged 13 times to the
presumed global within the function evaluation limit of 600 and the 25 parameter cartwheel converged
nine times to the presumed global optimum within the function evaluation limit of 1500.
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Figure 6.3: Comparison of performance of 6, 13, and 25 parameter reinforced cartwheel.
The top row shows the Von Mises stress distribution and the bottom row the first frequency
mode, both at the maximum rotation.

The 13 parameter cartwheel improved performance with 29.9 Hz over the six parameter cartwheel hinge.
The 25 parameter increases performance by a further 7.8 Hz. This shows that increasing the number
of design variables indeed benefits the design. With increased design freedom, the performance should
always increase or at least match the performance of the model with fewer design variables. If this is not
the case, the optimization algorithm is converged to a local optimum.

6.1.4 Symmetrical rotation

Flexure hinges are generally designed to enable the same maximum rotation to both sides of the resting
position. Until this point, the optimizations were performed with only a one-sided positive rotation,
because this simplifies the model. For symmetrical designs with a symmetrical load, the result will be
representative for the rotation to both sides. However, when the design is allowed to become asymmetrical,
it will perform better in the direction where the rotation was modeled and sacrifices performance in the
other direction. This is demonstrated in figure 6.4, which shows the frequency over the range of the
rotation, for both cases.
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Figure 6.4: Comparison of the first eigenfrequency at all rotation angles for the optimized
geometry of the 25 parameter reinforced cartwheel, where one sided or two sided rotation
was modeled.

Modeling the rotation in both directions makes the optimization process slightly more complicated. The
minimum natural frequency over the whole range of motion can still be used as the objective function.
However, for a one-sided rotation, the minimum natural frequency is always found at the maximum
rotation angle. While with a two-sided rotation, the maximum can be found at either the positive or
negative rotation. This behavior can introduce kinks in the objective function, where the objective is not
continuously differentiable. The proposed solution is to define the objective as the natural frequency in
one of the maximum deflected positions and to constrain the frequency in the other deflected position
to be equal or higher. In that case, it is possible that a better design is found when the location of the
objective function and constraint is reversed. To make sure the best solution is found, both cases should
be optimized.

The first eigenfrequency for the optimized hinge taking both rotations into account, is 195.9 Hz at
both maximum deflections. The first eigenfrequency of the other design is 203.4 Hz at the maximum
positive rotation, but only 178.9 Hz at the maximum negative rotation. The optimal design found while
taking both rotations into account, is nearly identical to the optimized design found for the thirteen
parameter cartwheel, taking only the positive rotation into account as shown in figure 6.3. The difference
in performance is small and partly due to numerical discrepancies from SPACAR, by modeling different
the different rotations. Adding the extra design freedom does not add any significant performance, due
to the near symmetrical nature of the model and design space, in the y-z plane.

6.1.5 Asymmetrical design space

It was shown that full design freedom with 25 design parameters is excessive for the symmetrical design
space with a symmetrical problem definition that accounts for the rotation in both directions. However,
if the design problem would be more complicated, for instance by introducing an asymmetrical design
space, the extra design variables become relevant. Both symmetrical and asymmetrical design spaces are
shown in Figure 6.5.
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Figure 6.5: Symmetrical and asymmetrical design spaces, in which the blue areas represent
the possible locations of the end of the leaf springs.

In this case, two arms of the cartwheel can extend up to 70mm from the center in x-direction, while
the other two can only extend up to 40mm. The optimization problem for the model with asymmetrical
design space is defined as:

Find:

x = {ti1, ti2, ti3, ti4, to1, to2, to3, to4, a1, a2, a3, a4, b1, b2, b3, b4, B1, B4, H1, H2, H3, H4, w}

Minimize:

−f1(x)/fx(x0), at: − θmax

Subject to:
0.3 ≤ (ti1, ti2, ti3, ti4) ≤ 2 mm

0.3 ≤ (to1, to2, to3, to4) ≤ 2 mm

0.1 ≤ (a1, a2, a3, a4) ≤ 0.5

0.6 ≤ (b1, b2, b3, b4) ≤ 0.95

20 ≤ B1 ≤ 70 mm

20 ≤ B2 ≤ 40 mm

20 ≤ B3 ≤ 70 mm

20 ≤ B4 ≤ 40 mm

20 ≤ (H1, H2, H3, H4) ≤ 50 mm

σVM
i (x) ≤ 300 MPa ∀i = 1..Nσ

f1 at: − θmax ≤ f1 at: θmax

In figure 6.6 a comparison of optimized cartwheels is shown, where the left is symmetrical, and on the
right, the extra design space is utilized. The extra design freedom gives a significant performance boost,
with an increase of 32.5 Hz.
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Figure 6.6: Comparison of the optimized symmetrical reinforced cartwheel on the left and
the reinforced cartwheel with a modified design space on the right. Taking the rotation
in positive and negative directions into account. The top row shows the Von Mises stress
distribution and the bottom row the first frequency mode, both at the maximum rotation.

This model of the cartwheel hinge, with the asymmetrical design space, was used in the next section, for
generating the convergence results of the 25 design variable problem.

6.2 Results

In this section, the convergence performance of the optimization of the 13 and 25 variable designs is
presented. These optimizations were run from 15 starting points. The optimization is done with the SQP
algorithm.

6.2.1 Starting points

If the only minimum within the design space, is the global minimum, all optimization runs should converge
to the same point for every combination of starting parameters within the design space. It is shown in
the next section that this is not the case for the 25 parameter reinforced cartwheel. In this design, there
are groups of similar design variables. An example of such similar design variables are the thicknesses
of the four inner leaf springs. It is hypothesized that for this design, starting from a symmetrical point,
where similar variables have the same value, will result more often in convergence to the global optimum,
even though the optimum will not be fully symmetrical.

6.2.2 Convergence results

The cartwheel has been successfully optimized with 13 and 25 parameters. The 13 parameter with 15
starting points defined with the Latin hypercube method, was capped at 600 function evaluations. The
first series of optimizations was done with the starting points generated with the Latin hypercube (LHC)
method. The second series was done with symmetrical starting points. The optimization runs of the
25 parameter asymmetrical design were capped at 1500 function evaluations. Three different series of
optimizations with 15 runs each, were done on this model. In the first series, the eigenfrequency during
the full stroke was taken as objective function. In the second series, the eigenfrequency at the maximum
positive rotation was used as objective function, while the eigenfrequency at the maximum negative
rotation was constrained. In the third series, the same settings as in the second series are used, but the
starting points are symmetrical. The results are shown in table 6.2. The best solution found is presumed
to be the global optimum. If the norm of the resulting set of design variables of a run minus the set
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of design variables of the best solution is smaller than 10−2, in normalized space, the global optimum
is considered to be found. Convergence to a local optimum is presumed when the search is terminated
before reaching the function evaluation limit, but the global optimum is not found. If the maximum
number of function evaluations is reached, but the norm of the resulting set of design variables minus
the resulting set of design variables of another local minimum is smaller than 10−2, in normalized space,
a local optimum is considered to be found. For the termination criteria, the default settings of fmincon
were used. The presumed global optimum and several presumed local optima are further analyzed in the
next section, in which the optimality conditions are also checked.

Table 6.2: Results of the different optimization series, discussed in this section, using the
SQP algorithm.

Series Global optimum Presumed local Not converged in
of 15 runs found optimum found fun. eval. limit

13p, LHC start 13 - 2
13p, sym. start 15 - -

25p f1 full stroke, LHC start 6 7 2
25p f1 constraint at −θmax, LHC start 9 5 1
25p f1 constraint at −θmax, sym. start 14 1 -

From the results in table 6.2, it can be concluded that for the 13 parameter reinforced cartwheel, the
global minimum is generally found for each starting point, although sometimes 600 function evaluations
were not enough. For the 25 parameter reinforced cartwheel, it is likely that local minima exist. Choosing
symmetrical starting points and defining the objective function in one stroke direction while constraining
the other both improve the odds of finding the global optimum. It should be noted that even though the
runs of the 25 parameter reinforced cartwheel with the frequency of the full stroke as objective function
resulted in finding the global optimum six times within the defined limits of 10−2, the optima of the runs
with the added frequency constraint at one of the maximum rotations, were orders of magnitude closer to
each other. The median convergence rates of both models, using the SQP and quasi-Newton algorithm
are also plotted in Figure 6.7. For this figure, the series with symmetrical starting points was used. It is
clear that the SQP algorithm converges faster and closer to the optimum, especially for the 25 parameter
reinforced cartwheel. At a certain point in the optimization process, the algorithm started to jump back
and forth between a few points close to the optimum.
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(b) Asymmetrical 25 parameter reinforced cartwheel

Figure 6.7: Median convergence out of 15 runs, of the 13 and 25 parameter reinforced
cartwheels. The dashed lines indicate the range excluding the two best and worst runs.
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6.2.3 Analysis of local optima

For the 25 parameter reinforced cartwheel, multiple optimization runs did not result in convergence to
the global optimum. Three of the local optima found were encountered with at least two different starting
points. This is a strong indication that these are actual local optima. The corresponding models of the
local optima found are shown in figure 6.8.

Figure 6.8: Four of the presumed global and local optima, of the asymmetrical 25 parameter
reinforced cartwheel. The stress and first eigenfrequency modes at the maximum rotation
are shown.

To show that these designs are indeed local optima, the optimality conditions are checked. The designs
with a maximum frequency of 200.80 Hz, 189.95 Hz, and 158.03 Hz, all yield first and second order
optimality, with the gradients in feasible directions close to zero and positive definite Hessian matrices in
all feasible directions. The design with a frequency of 185.93 Hz, does not yield optimality. In this design,
the first two eigenfrequencies are nearly identical. Convergence to this point is presumably caused by
the different frequency modes taking over, causing a non-smooth objective function. The Hessian matrix
calculated for checking the optimality conditions at this point is also not reliable, since the Jacobian and
Hessian of the objective function are discontinuous at the location where different frequency modes take
over. A sweep of the first eigenfrequency in all feasible directions is plotted in figure 6.9. This figure
visually confirms that the first three designs are indeed converged to local optima, while the fourth is
converged to a point where the frequency mode changes.
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Figure 6.9: Parameter sweeps near converged points in all feasible directions, for the models
shown in figure 6.8

Since local minima can occur, a multi-start is necessary to find the global optimum with some level of
confidence. However, the odds of finding local optima can be reduced. It is wise to start the optimizing
process with as few design variables as makes sense. The number of design variables can be increased
gradually. With more design freedom, the optimum should always be identical or better compared to the
model with fewer design variables. Stricter bounds can also reduce the chance of finding a local optimum,
since it reduces design freedom. The bounds can often be stricter defined based on the results of the
optimization with fewer design variables.

6.2.4 Convergence benchmark

As seen in the convergence plots, the SQP algorithm converges very well for the designs in the entire
tested range of different numbers of design variables. The median number of function evaluations required
to converge within 10−3 Hz of the best feasible solution found, is shown in figure 6.10. The data points
were fitted with a second order polynomial, showing a clear trend. This graph can serve as a benchmark
for the convergence rate that can be achieved for any number of design variables.
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Figure 6.10: Median number of function evaluations required to converge within 10−3 Hz
of the best feasible optimum found, using the SQP algorithm. The polynomial used is:
y = 0.8231x2 + 6.412x+ 5.574
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Chapter 7

Conclusion and recommendations

7.1 Conclusion

In chapter 4, the viability of gradient-based optimization of flexure mechanisms was demonstrated. Ap-
propriate scaling of the objective function and normalization of the design space and constraints were
shown to benefit the convergence rate. A finite difference step size of 10−6 in the normalized design
space, was demonstrated to work well for the algorithms used in the MATLAB function fmincon, after
increasing the accuracy of design parameters in the SPACAR input files generated by SPACAR Light.
For the Newton’s method and quasi-Newton’s method a larger step size of 10−4 was used. These step
sizes are problem and variable dependent and should be one of the first things to analyze in case of
unsatisfying optimization results. The comparison of convergence rates of the different algorithms con-
firmed that gradient-based algorithms converge much faster than the Nelder-Mead algorithm, especially
with an increasing number of design variables. Of all the tested algorithms, the sequential quadratic
programming algorithm performed best.

In chapter 5, it was shown how discontinuous differentiable constraints and objective functions can oc-
cur, which can obstruct gradient-based optimization. This problem for the stress constraint was solved
by using the Von Mises stress at different locations as separate constraints. A method for solving this
problem for the natural frequency, caused by different modes taking over as the lowest frequency within
the design space, was proposed, but not implemented yet.

In chapter 6, it was demonstrated that the developed optimization method is able to successfully optimize
a flexure mechanism with up to 25 design parameters. It was also shown that increasing the design free-
dom of the mechanism can benefit the performance of the mechanism. The occurrence of local minima
within the design space was also demonstrated for the 25 parameter reinforced cartwheel, which implies
that a multi-start optimization run is required to find the global optimum with some level of confidence.

Overall it can be concluded that gradient-based optimization of flexure mechanisms modeled in the
SPACAR software is viable and enables optimization with significantly more design variables compared
to the Nelder-Mead algorithm. For gradient-based optimization, one of the most important considerations
is to prevent discontinuous differentiable objective and constraint functions.
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7.2 Recommendations

A major advantage of gradient-based algorithms over many other optimization algorithms was not dis-
cussed yet. All the function evaluations that have to be performed for determining a gradient vector or
even a Hessian matrix can be done simultaneously. This is not possible for an algorithm such as Nelder-
Mead, where all function evaluations depend on the outcomes of the previous function evaluations, which
does not allow for parallelization. Currently, the Matlab parallel computing toolbox supports up to 512
simultaneous running processing cores. If enough processing cores are available, the run-time of an opti-
mization with a large number of design variables can be reduced enormously. Parallel computing was not
used in this research, but it is definitely recommended to implement this in future optimization projects.

It is recommended to model or keep track of the different frequency modes, to prevent the occurrence of
a discontinuous differentiable objective function. This cannot be directly applied to the optimization in
fmincon, since only one function can be used as objective function input. In a custom implementation
of an optimization algorithm, such as the quasi-Newton method, modeling multiple frequency modes
separately can be utilized.

There might be a workaround to utilize the separation of frequency modes in fmincon. The frequency
modes that are the lowest somewhere within the design space could be identified with a parameter sweep.
If this is a low number of modes, it could be viable to perform separate optimization runs, each time
with one of the modes as the objective function, while using the other modes as constraints.
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Appendix A

Scaling of a compliance objective
function
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Figure A.1: Function evaluations required to converge within 10−8, of the best solution.
Note that the maximum number of function evaluations was set at 150. The compliance in
node 3, see Figure 4.1a, in y-direction Cyy was minimized.

Table A.1: Objective function corresponding to box plots in figure A.1

Box nr. Description
(6) Cyy(x)

(7) 3
√
Cyy(x)

(8) Cyy(x)/Cyy(x0)

(9) 3
√
Cyy(x)/Cyy(x0)

(10) log(Cyy(x))
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Appendix B

Forward differences of the constraint
functions
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Figure B.1: Delta sweep of forward differences of the maximum Von Mises stress to the four
normalized design variables of the four parameter cross-hinge
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Figure B.2: Delta sweep of forward differences of the actuation moment to the four normal-
ized design variables of the four parameter cross-hinge
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Appendix C

Optima

Figure C.1: The optimal design variable vectors of the two, four, and eight parameter cross-
hinge and the 6 and 13 reinforced cartwheel and finally the 25 parameter asymmetrical
reinforced cartwheel with ±θ. For the corresponding optimization problems, see Chapters
4, 5, and 6.
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