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Management summary

Introduction and problem description

This research is conducted at Hortec Assemblies BV (HA), a company that produces and assembles

(control) electronics for third parties operating in aerospace, railway, automotive and industry.

Hortec employs a high-mix low-volume Make-To-Order production strategy in a job shop production

environment with 2 production departments: Surface-Mount Technology (SMT) and Through-Hole

Technology (THT). The SMT department performs 3 distinct operations and the THT department

performs 14 distinct operations. Production planning at HA for both departments predominantly

relies on the experience, assumptions and gut feelings of the operations manager. Management at

HA finds its current Customer Service Level of 86.6% too low and wants to increase it to 90%. After

discussion with management, we create a problem cluster to identify possible (core) problems. The

low Customer Service Level results from end products missing their external due dates for customer

shipments. This issue arises from infeasible production plans, driven by unrealistic external and

internal due dates and production plans that rely on assumptions about resource capacity instead

of incorporating actual resource capacity data. Therefore, the core problem of this research is the

lack of incorporating resource capacities in tactical production planning using the data available.

The main research question is:

How can a method that takes into account resource capacity using data available in

tactical production planning for a high-mix low-volume make-to-order EMS company

be designed such that the Customer Service Level improves from 86.6% to 90%?

Approach and solution design

HA lacks differentiation between strategic, tactical and operational planning. To limit the scope,

we use a positioning framework that categorises different capacity planning functions such as or-

der acceptance, resource loading and scheduling. Order accepting decides on accepting or rejecting

incoming orders. Resource loading measures the impact of a set of orders on the production sys-

tem, and determines reliable due dates and resource capacity levels needed to produce the orders

and their constituting jobs. Scheduling is about the assignment of jobs to machines. For HA, re-

source loading is most appropriate since we incorporate resource capacity levels in tactical production

planning such that the last confirmed due date is achieved and the Customer Service Level increases.

Resource loading focus on a time-driven approach, resource-driven approach or a combination of

both. The time-driven approach extends short-term capacity at a certain cost to ensure timely

order completion. The resource-driven approach cannot extend capacity and allows orders to finish

after their due date at a certain cost. For HA, we design a resource loading MIP model that inte-

grates both approaches. The MIP model takes into account (1) non-preemption constraints within

the operation of an order, (2) capacity constraints and (3) precedence constraints. This implies

scheduling operations within one or multiple consecutive periods without exceeding capacity lim-

its while maintaining the predecessor-successor relationship. The MIP model is computationally

tractable for smaller data instances.

For larger data instances, we use heuristic methods. These methods first create an initial solution
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using a constructive heuristic, which is then improved using an improvement heuristic. For the con-

structive heuristic, we find priority rules and finite loading methods to construct an initial solution.

For HA, we designed a constructive heuristic based on Partial Backwards Finite Loading and pri-

ority rules. For the priority rules, we test Earliest Due Date, Latest Due Date, Shortest Processing

Time and Latest Processing Time. For the improvement heuristic of HA, we use the metaheuristic

Simulated Annealing.

Results and conclusion

We assess the MIP model and heuristics for a planning horizon of 1, 2, 4 or 6 months considering

light, typical and heavy workloads. The designed MIP model is computationally tractable for a

planning horizon of 1 or 2 months in combination with a light, typical and heavy workload. The

Customer Service Level can improve beyond 90% at the expense of tardiness and overtime costs.

For the scenarios tested, the Customer Service Level can improve between 95% and 100% with costs

ranging between €0 and €50,500. The bottleneck operations for HA are SMD, SSOL, AOI and PR.

For a planning horizon larger than 2 months the MIP model becomes computationally expensive

and the heuristics are recommended to use. The constructive heuristic performs best using the

Shortest Processing Time priority rule. The heuristics achieve gaps between 24-35.2% from the MIP

solution. Reasons for the high gaps are (1) a constructive heuristic that does not decide on overtime

and tardiness and (2) an improvement heuristic that finds a current best solution quickly but is not

able to improve the solution more.

Recommendations and implementation challenges

Recommendations for HA are (1) implementing the MIP model at HA, (2) further developing the

constructive and improvement heuristic, (3) implementing the heuristics in a more suitable computer

program, (4) improving data of HA, (5) investigating the impact of a rolling planning horizon on the

model, (6) limit the impact of the bottleneck operations and (7) investigate the use of the MIP model

at order acceptance. A major implementation challenge is the integration with existing systems. The

MIP model in this research is developed in AIMMS, a high-cost software. Possibilities for HA are

acquiring an AIMMS license, designing the model in free software using Python or integrating the

model directly into Isah. We recommend HA to discuss the possibilities with its ERP consultant and

make a trade-off between user-friendliness, implementation time and implementation cost. Another

challenge is the resistance of employees performing the planning for almost 20 years. We recommend

using clear communication about the benefits of the model, addressing the concern of the stakeholders

and involving the stakeholders in the implementation process.

Contribution to theory and practice

This research contributes to theory by introducing a novel resource loading MIP model that in-

tegrates both resource-driven and time-driven approaches, addressing constraints such as non-

preemption, capacity, and precedence simultaneously. Literature on resource loading is limited,

particularly for combining these two approaches. Additionally, this research offers a comprehensive

description of the job shop production environment different from traditional job shop planning

and scheduling problems. This environment serves as a foundation for researching similar produc-

tion environments. The proposed MIP model and its components hold the potential for inspiring
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future research in resource loading, guiding researchers in formulating similar problems with non-

preemption constraints. This research contributes to practice by introducing a resource loading

method for integrating resource capacity into HA’s tactical production planning, enabling effective

tactical decision-making. Employing the proposed MIP model for up to 2-month planning horizons

allows HA to optimise production, providing insights into tardy orders and cost-efficient overtime al-

location. The model also provides insights into the bottleneck operations at HA. Additionally, HA’s

potential to improve Customer Service Level beyond 90% through overtime usage is demonstrated.
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1 Introduction

This chapter discusses the research problem and research plan. Section 1.1 introduces the company of

this research, Hortec Assemblies BV. Section 1.2 elaborates on the research motivation and Section

1.3 clarifies the problem context. Section 1.4 defines the scope. Section 1.5 defines the research

objective and states the research questions and approach.

1.1 Company introduction - Hortec Assemblies B.V.

Hortec Electronics was founded in 1998. Hortec Electronics specialised in the development and

assembly of electronics. Since January 2021, the engineering and assembly departments are divided

into Hortec Technology BV and Hortec Assemblies BV, respectively. This research is executed in the

management department at Hortec Assemblies BV (hereinafter referred to as HA). HA produces and

assembles (control) electronics for third parties that manufacture for aerospace, railway, automotive

and industry. The key focus of HA is passion, flexibility and quality. HA uses a Make-To-Order

(MTO) production strategy. With an MTO strategy, products are made in response to placed cus-

tomer orders such that they can be highly tailored to customers’ needs (Peeters and van Ooijen,

2020). An MTO strategy is characterised by long lead times, low storage costs and high flexibility

(Peeters and van Ooijen, 2020).

Figure 1.1: Graphical representation of PCBs through the production process.

Figure 1.1 shows the stages of the Printed Circuit Bord (hereinafter referred to as PCB) before

and after the different production methods at HA. The production starts with an empty PCB,

represented left in Figure 1.1. The empty PCB is an input for the first production method at HA

called Surface-Mount Technology (SMT). With SMT, electrical components are mounted directly

on the surface of a PCB. Commonly used SMT components are chip resistors, metal electrode face

resistors, chip capacitors, chip inductors, discrete semiconductors and integrated circuits (Lee, 2001).

The output of the SMT production method is called a semi-finished product and is represented in the

middle of Figure 1.1. The output of the SMT production method is the input for the second method

called Through-Hole Technology (THT). With THT production, larger electrical components that

are not suitable for SMT are placed on PCBs through a hole and are mounted with soldering tin that

passes through the hole (Vianco and Feng, 2016). Commonly used THT components are inductor

coils, relays, connectors, switches, and fuse holders (Vianco and Feng, 2016). The output of the

THT production method is called the end product and is represented right in Figure 1.1. Every

product at HA follows these stages.
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1.2 Research motivation

Due date setting and production planning need to be effective and efficient due to the increase in

customers’ demand for short lead times. Both are performed manually at HA with the help of data

and planning functionalities in the ERP system called Isah. Three main motives for this research

are identified:

Unreliable and low Customer Service Level. The most essential motive of this research is

the unreliable and low Customer Service Level at HA. A Customer Service Level is the fraction of

customer orders filled on or before their due dates (Sawik, 2006). HA knows three types of due

dates:

• The preferred due date of the customer. Suggested by the customer but not achievable

since this is not based on the internal lead times of HA and customers want products as fast

as possible. Therefore, the preferred customer due date is currently not taken into account for

the key performance indicator (hereinafter referred to as KPI) Customer Service Level.

• The first confirmed due date. Agreed during the customer ordering process. The first

confirmed due date is created by HA based on the current production plan and available

resource capacity.

• The last confirmed due date. Agreed during the purchase or production process. It

happens that the first confirmed due date cannot be achieved due to disruptions during the

purchase or production process. If the delay turns out to be more than one week, the first

confirmed due date is changed in accordance with the customer to a new due date called the

last confirmed due date. In the remainder of this research, we refer to the last confirmed due

date as the external due date.

The Customer Service Level of HA is measured by calculating the deviation between the due date

and the actual shipment day of a product. Table 1.1 shows the Customer Service Level of HA from

2017 until 2021 based on the first confirmed due date and the last confirmed due date.

Table 1.1: Customer Service Levels of HA from 2017-2021.

2017 2018 2019 2020 2021

First confirmed due date 64.5% 74.6% 67.5% 74.4% 79.6%
Last confirmed due date 64.8% 85.4% 82.7% 83.6% 86.6%

Currently, HA focuses on the Customer Service Level based on the last confirmed due date since

the customer agreed with this new due date. However, it would be ideal to measure the Customer

Service Level based on the first confirmed due date since this date is initially agreed upon. However,

improving the first confirmed due date from 79.6% to 90% is a huge step. This is the future goal

of HA. From 2017 to 2018, the last confirmed due date, which is the service level accepted at HA,

increased and became stable. However, the Customer Service Level is still too low. The aim of

management is to achieve a Customer Service Level based on the last confirmed due date of at least

98%. According to management, the Customer Service Level aim of 98% is not achievable by only

2



improving the production planning method. Therefore, management aims to achieve a Customer

Service Level based on the last confirmed due date of at least 90% by conducting this research. Since

the Customer Service Level is the most important motive, the action problem of this research is:

The Customer Service Level based on the last confirmed due date of HA needs to be

increased from 86.6% to at least 90%.

Recommendation of earlier conducted Master Thesis. Another motive is a Master Thesis

conducted by Anouk Scholten at HA in 2020 to search for inventory reduction approaches (Scholten,

2020). One recommendation of this Master Thesis is to improve production planning since planning

decisions are based on the experience and gut feelings of employees. No operational and limited

tactical planning is used within HA (Scholten, 2020).

Company growth. The last motive is the aim of company growth. Currently, HA is growing

and is planning to grow in the upcoming years. Production planning based on employee experience

and gut feelings is feasible but not efficient. When HA grows it will no longer be feasible to plan

production manually. HA wants to be prepared for this stage. Table 1.2 shows the revenue growth of

HA over the years between 2017 and 2023. The revenue growth of 2022 is based on the revenue until

October plus a forecast for November and December. The revenue growth of 2023 is a combination

of already placed orders and a forecast. Since 2019 HA is growing, except for 2020 which is due to

COVID-19.

Table 1.2: Revenue growth of HA from 2017-2023.

2017 2018 2019 2020 2021 2022 2023

Revenue (x €1.000.000) 3,04 2,67 3,76 2,95 3,59 5,62 6,20
Revenue growth compared
to year before (%)

-6 -12 41 -21 22 56 10

Cumulative revenue growth
since 2016 (%)

-6 -18 22 1 22 79 89

1.3 Problem context

To identify the core problem of the action problem of HA, a problem cluster is used to map all prob-

lems along with their connections (Heerkens and van Winden, 2017). Figure 1.2 shows the problem

cluster of the action problem of HA. This problem cluster is identified based on the experience of

the director and SMT production manager. Section 1.3.1 explains all problems (white boxes) within

the problem cluster, Section 1.3.2 explains all possible core problems (grey boxes) and Section 1.3.3

explains the chosen core problem (blue box).
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Figure 1.2: Problem cluster of HA.

1.3.1 Problems

End product is not shipped on or before the external due date. No new external due date

is negotiated with the customer for a shipment delay of less than one week. HA ships the product

too late to the customer resulting in a lower Customer Service Level. For a shipment delay of at

least one week, a new external due date is negotiated with the customer: the last confirmed due

date. Table 1.1 shows the Customer Service Level of HA based on production orders (hereinafter

referred to as POs) shipped on time. The other part is shipped too late.

Delays during production. A delay during production can be any activity that increases the

flow time of a PO. The flow time of a PO is the amount of time a PO spends in the production

process (i.e. total processing time). The production end date (hereinafter referred to as the internal

due date) is not achieved when delays during production occur since the planning does not include

a margin for production delay. Section 1.3.2 explains the two main reasons for production delay:

quality issues and customer change requests.

Production does not start on the official starting date. It happens that the production

of a PO does not start on the official start date. If that happens the planning becomes infeasible

since there are no margins for a later start of production. Due to no margins, the internal due date

delays and the product is shipped too late. The starting day of the next POs also delays due to

tight planning without margins.
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Unrealistic internal due dates and production plans based on assumptions. One reason

for delays in the production start is unrealistic internal due dates and production planning based

on assumptions. After receiving a purchase order from a customer the operations manager sets an

external due date and plans a PO as soon as possible based on available resource capacity. He

identifies the available resource capacity by his experience and the production plan so far. The

external due date and internal due date are set by the operations manager and Isah calculates the

start date based on the production step lead times that are entered in Isah by the job preparator.

These production step lead times are assumed based on experience. In reality, these production

step lead times are often higher than pre-calculated. Isah also does not take into account the days

off and vacations of employees. So more resource capacity is taken into account than in practice

available which results in a period between the start date and internal due date of production that

is too small.

1.3.2 Possible core problems

Infeasible due date request of the customer. Section 1.2 states that the due date preferred

by the customer is (almost) always infeasible since the customer has no knowledge about the internal

lead times of HA. The infeasible customer due date requests are not taken into account to calculate

the Customer Service Level so solving this problem will not increase the Customer Service Level.

Therefore, this is not our core problem. Improving the preferred customer due date is outside the

scope of this research.

Quality issues. Production can be delayed due to quality issues. PCBs need rework when they

do not meet the quality standards of HA. PCB rework happens monthly. The production employees

are receiving yearly training to limit the chance of PCB rework. Therefore, this is not the chosen

core problem.

Customer change request. A customer of HA can send a request for change anywhere in the

process. A change request can be the adjustment of one or more components, the adjustment of a

process step, or the adjustment of the required number of products. The customer can even cancel

the PO. Due to a customer change request production is put on hold and delayed. Customer change

requests also lead to a higher inventory position when components are already purchased and in

stock. Customer change requests are not our core problem since HA wants to have certain flexibility

for its customers.

Suppliers do not meet the agreed delivery dates. Production cannot start and is postponed

when a component is not delivered on or before the production start date. The purchase department

already uses a buffer of two weeks between the delivery of the components and the start of production

to ensure production start dates are achievable. To decrease inventory HA aims at a buffer of at

most 3 days. This implies that a component may arrive 3 days before or after the agreed delivery

date. Both arriving too early and too late are unacceptable since arriving too early unnecessarily

increases the inventory position of HA. Deliveries too late lead to delayed production. For this

research only the orders too late are important. Table 1.3 gives an overview of the purchase orders

delivered too late by the suppliers of HA.
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Table 1.3: % of deliveries arrived too late at HA in 2017-2022.

2017 2018 2019 2020 2021 2022

Deliveries too late > 3 days (%) 7.5% 7.9% 8.9% 7.3% 9.0% 8.2%

The main reason for unmet delivery dates is component scarcity. COVID-19 created a component

scarcity in the electronics industry. Components could not be produced and shipped to Europe due to

lockdowns in Asia. The COVID-19 situation became stable but the component scarcity is not solved

yet. Specific components are not available or are delivered later. Purchase orders delivered months

to years later is normal. To deal with postponed deliveries substitute components are purchased,

the PCB is redesigned or production is postponed. These steps lead to a delayed production start.

This is not our core problem since we cannot influence the suppliers and the component scarcity.

1.3.3 Core problem of HA

The last possible core problem is the lack of incorporating resource capacities in production planning.

Section 1.3.1 explained that assumptions are used for internal due date setting and production

planning. One assumption is made on production step lead times that are entered in Isah. The

other assumption is the available resource capacity taken into account at internal due date setting

and production planning. We choose to solve the problem of using available resource capacity in

production planning. Even if HA enters the right production step lead times in Isah the internal

due dates and production plans are still too realistic since available resource capacity based on data

available is not considered. By providing a solution to using available resource capacity in tactical

production planning the Customer Service Level of HA improves. By achieving internal due dates,

external due dates can also be achieved which leads to the improvement of the Customer Service

Level. HA can improve production step lead times by itself to improve the Customer Service Level

even more. Since this core problem will solve other problems within the problem cluster and create

efficient production planning that leads to an increase in Customer Service Level, the chosen core

problem of HA is:

Lack of incorporating resource capacities in production planning using data available

within HA.

1.4 Scope

The core problem of HA is production planning. HA does not distinguish between the three different

levels of planning: strategic, tactical and operational. The operations manager plans the PO in

Isah based on the external due date and the production employees try to follow the schedule by

starting the next PO based on the earliest starting date or the earliest internal due date. Section

2.2 discusses the current production planning method of HA in more detail. To limit the width of

this research, we identify which type of production planning level is most relevant to this problem.

Hans (2001) provides a positioning framework to distinguish between different capacity planning

functions. Figure 1.3 shows the positioning framework.
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Figure 1.3: Positioning framework (from: Hans (2001))

Hans (2001) explains the different production planning levels as follows. Strategic production plan-

ning involves long-range decisions made by management such as building new facilities or buying new

machines. Tactical planning involves medium-range decisions such as allocating sufficient resources

to deal with incoming demand as effectively and profitably as possible. Tactical planning is divided

into two activities: order acceptance and resource loading. Order acceptance is about accepting or

rejecting incoming orders based on the order characteristics and the current state of the production

system. Resource loading is about loading a given set of orders and determining reliable internal

due dates and the resource capacity levels needed to process these orders and their constituting

jobs. Resource loading can establish the feasibility and suitability of a given set of accepted orders.

Operational planning concerns the short-term scheduling of production orders resulting from the tac-

tical level. The result of operational planning is the assignment and sequence of the jobs on machines.

For HA, we create a method that incorporates resource capacity in tactical production planning

such that the last confirmed due date is achieved and the Customer Service Level increases. It is not

important to which specific machine a job is assigned but to which time bucket and against which

resource capacity levels. In other words, we plan a given set of orders and need to determine internal

due dates and resource capacity levels such that the Customer Service Level increases. Therefore,

we focus on the tactical production planning activity resource loading.

1.5 Research objective and questions

The goal of this research is to increase the Customer Service Level from 86.6% to at least 90%. The

main objective of this research is to design a method for a high-mix low-volume MTO company that

incorporates resource capacity into tactical production planning using data available while improving

the Customer Service Level. The research objective leads to the following main research question:

How can a method that takes into account resource capacity using data available in

tactical production planning for a high-mix low-volume make-to-order EMS company

be designed such that the Customer Service Level improves from 86.6% to 90%?

To answer the main research question, several sub-questions are determined.
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1. What does the current production planning of HA look like?

To incorporate resource capacity in a production tactical planning method for HA, the current

production planning of HA should be clear. This research question is answered in Chapter 2

by the following sub-questions:

(a) What does the production environment of HA look like?

(b) What does the production planning method of HA look like?

(c) What are the (tactical) planning functionalities in Isah?

(d) What is the performance of the current production planning method in terms of Customer

Service Level, tardiness and earliness?

2. What literature is available on designing and solving a resource loading method that is effective

for a high-mix make-to-order job-shop type production process

After analysing the current situation, a literature study is executed in Chapter 3 to gain

information on resource loading. To answer this research question several sub-questions are

determined:

(a) What is resource loading and how can it be used in tactical production planning?

(b) Which modelling approaches are used for solving resource loading?

3. How can a tactical planning method incorporating resource capacities for HA be designed?

After analysing the literature, the tactical planning method for HA needs to be designed.

Chapter 4 shows the solution design by answering the following sub-research questions:

(a) What does the exact model formulation of the resource loading method for HA look like?

(b) What does the constructive heuristic for the resource loading method for HA look like?

(c) What does the improvement heuristic for the resource loading method for HA look like?

4. What is the effect and improvement of the proposed method for HA?

The proposed solution in Chapter 4 is tested on its effect and improvement in Chapter 5. To

answer the research question several sub-questions are determined:

(a) Which data is used to test the designed models?

(b) What is the performance of the designed models?

(c) To what extent can the exact model help to improve the Customer Service Level?

Chapter 6 provides the conclusion of this research, recommendations for HA and recommendations

for future research. It also discusses the contribution of this research to theory and practice.
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2 Current Situation

This chapter analyses the current situation at HA. Section 2.1 describes the production environment

at HA. Section 2.2 describes the current production planning method at HA. Section 2.3 describes

the planning functionalities in Isah. The performance of the current planning method of HA is

investigated in section 2.4. Section 2.5 provides a conclusion on the current situation analysis.

2.1 Production environment at HA

Section 1.1 describes that HA knows two production methods: SMT and THT. Figure 2.1 shows a

graphical representation of the two production methods with their main inputs and output.

Figure 2.1: Graphical representation of the production methods at HA with their corresponding
inputs and outputs.

Both production methods exist out of several operations. Section 2.1.1 describes the operations of

the SMT department and Section 2.1.2 describes the operations of the THT department. Section

2.1.3 analysis the occurrences of each operation in the SMT and THT department. Section 2.1.4

analysis the different production routes at HA.

2.1.1 Operations at SMT production

Figure 2.2 shows the flow of the operations at SMT production. In practice, all products follow this

flow but not all product routings are inserted correctly in Isah. Therefore, the product routings in

Isah may deviate from the flow in Figure 2.2.

Figure 2.2: Graphical representation of the operations flow at SMT production.

The following operations are represented:

• SMT. Figure 2.3 shows the SMT line with a stencil printer, two SMT pick & place machines

and the SMT oven. First, A PCB moves through the stencil printer which places paste on

the PCB. Then the PCB moves through the two SMT pick & place machines that place
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the components on the PCB and eventually, it will move through an oven that adheres the

components to the PCB.

Figure 2.3: The SMT line at HA.

• AOI. AOI stands for Automated Optical Inspection and is used to check the quality of the

SMT component placements and paste.

• Rework. When a fault is detected during AOI, the PCB needs rework to repair the fault.

2.1.2 Operations at THT production

For THT production no general flow of operations exists. The following operations can be performed

at THT production:

• Conventional. Conventional includes cutting the PCB panel into individual PCBs, preparing

the components, and placing the components on the PCB.

• Wave soldering. A few years ago, HA only used wave soldering. Figure 2.4 shows the

general idea of wave soldering. First, the PCB moves through a fluxing station which cleans

the components to be soldered. Next, the PCB moves through a preheat zone and eventually

passes through the soldering station (Vianco and Feng, 2016). Lastly, the PCB moves through

a cooling station. In practice, wave soldering is not used anymore but not all product routings

are updated in Isah. Therefore some product routes still include wave soldering.

Figure 2.4: Wave soldering as represented in Arunasalam et al. (2022).
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• Selective soldering. For three years HA has had a selective soldering machine. With selective

soldering a soldering head solders the through-hole joints individually instead of moving the

PCB through a solder wave. Whereas wave soldering is faster, selective soldering uses less

materials-solder, flux and power. Besides, selective soldering results in less rework and less

post-assembly cleaning.

• Post-assembly. After wave or selective soldering, a PCB may need post-assembly. This

includes removing flux residues, checking the soldering joints, removing solder balls, manual

soldering et cetera.

• PCB washing. PCBs that need coating and PCBs with sensitive and expensive modules used

in aerospace, automotive, medical technology and telecommunications need to be washed. The

main task of washing is to remove flux residues, oxides and soldering materials (kolb Cleaning

Technology GmbH, n.d.).

• PCB drying. PCBs that are washed also need to dry.

• Potting. With potting, the PCB is placed in a mould and a liquid compound is poured

into the mould. The liquid compound solidifies and the PCB is encased by the compound

(MPE-electronics, b).

• Coating. With coating, the PCB is covered by a polymeric film to protect the PCB from

environmental and physical factors (MPE-electronics, a).

• Programming. Some PCBs need to be programmed with specific software. This software is

delivered by the customer or by the engineering department of Hortec Technology.

• Test & Repair. Some PCBs need to be tested. If a PCB fails a test, the reason for failing is

discovered and the PCB is repaired such that it will pass the test eventually.

• Burn-in test. With a burn-in test the PCB is tested on the customer- and product-specific

requirements for 12, 24 or even more hours.

• Intermediate check. Sometimes an internal check is needed between production steps to

ensure that the product still meets the quality standard of HA.

• Final check. All PCBs get a final check before packing to ensure that the quality threshold

of HA is achieved.

• Packaging. Packaging includes packing the products for shipment.

2.1.3 Occurrences of SMT and THT operations

To indicate the occurrence of an operation, the semi-finished and end products in Isah updated in

2017 or later are analysed. In total 757 semi-finished products and 950 end products are analysed.

Table 2.1 shows the occurrences of the operations of SMT production based on the 757 analysed

semi-finished products.
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Table 2.1: Occurrences of operation at SMT production.

Operation Occurrence

SMT 690
AOI 538
Rework 497

Table 2.2 shows the occurrences of the operations of THT production based on the 950 analysed

end products.

Table 2.2: Occurrences of operation at THT production.

Operation Occurrence

Conventional 1695
Final check 855
Packaging 751
Test & repair 471
Selective soldering 347
Intermediate check 321
Wave soldering 187
Coating 87
Potting 76
PCB Washing 74
Burn-in test 40
Post-assembly 26
Program 15
PCB Drying 8

From the operation occurrence analysis, we can conclude that the product routings in Isah contain

inaccuracies. Two main points that motivate the inaccuracies:

• Section 2.1.2 explained that HA does not use its wave soldering machine anymore. The occur-

rence of wave soldering is still 187 whereas it should equal zero.

• Section 2.1.1 explained that SMT production always follows the flow in Figure 2.2. This implies

that the occurrence of SMT, AOI and rework should equal 757 each.

These two points do not influence the result of this research since the solution design is tested

with the product routings from Isah and not with improved product routings. However, correctly

designed product routings improve the Customer Service Level since lead times are better estimated

when article routings are inserted correctly. Updating the product routings is outside the scope of

this research but is a recommendation for future research.

2.1.4 Different product routings within HA

The previous section determines the occurrences of individual operations. This section analyses the

different product routings at HA. After analysing the product data for products updated in 2017 or

later, a total of 313 different product routings are identified over 1707 products. Table 2.3 shows

the 10 most occurring product routings, these routings cover 57% of all product routings at HA.
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Table 2.3: Ten most occurring product routings at HA.

Route
Occurrence
(products)

Occurence
(%)

SMD, AOI, REW 256 15
WSMD,SMD,WAOI,AOI,REW 179 10
SMD 139 8
PR,SSOL,PR,EC,VER 101 6
PR,EC,VER 71 4
SMD,AOI 60 4
PR,SOL,PR,EC,VER 52 3
PR 51 3
PR,SSOL,EC,VER 35 2
SMD,REW 31 2

Total 975 57

The product routings also prove that inaccuracies in Isah exist. One main motivation is that there are

several combinations of SMT, AOI and rework whereas in practice there is only one route possible:

SMT, AOI and rework. Table 2.4 shows the distribution of the product routing occurrences for the

routings outside the top ten.

Table 2.4: Distribution of production routes outside the top ten at HA.

Occurence
# of

production routes

1 172
2 61
3 22
4 12
5 9
6 4
7 8
8 2
9 1
10 3
12 2
13 1
14 1
16 1
17 1
18 1
20 1
22 1

The SMT department is a flow shop since every product follows the same route: SMT, AOI and

Rework (Pinedo, 2016b). The THT department is a job shop since every product follows its own

predetermined route (Pinedo, 2016b). There are recurring product routes at the THT department

but to keep it simple the SMT and THT production environments are analysed as a job shop.
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2.2 Current production planning method of HA

Figure 2.5 shows the current production planning method of HA. An incoming sales order from a

customer triggers the process. The next paragraphs describe the different tasks of the flowchart.

Figure 2.5: Flowchart of the current production planning method of HA.

Incoming sales order from a customer with a preferred due date. The process is triggered

every time a sales order arrives. The sales order includes the following information: product, quantity

and preferred due date. Sales orders arrive at random.

Create a realistic due date for the sales order and negotiate with the customer. Section

1.3.2 describes that the due date request of a customer is (almost) always infeasible. The operations

manager of HA creates a feasible external due date for the PO based on the customer’s preferred

due date, the current production plan, his experience, the availability of critical components and

the urgency of the sales order in the following way:

1. He checks the current production plan and selects a week as close as possible to the customer-

preferred due date in which enough resource capacity is left. The amount of resource capacity

left in a week is based on the experience and the gut feeling of the operations manager.

2. He checks if critical components with long lead times can be delivered before or in the selected

week. If all critical components can be delivered on time, the first possible date in the selected

week is set as the external due date. If components cannot be delivered on time, a later

external due date is chosen.

3. For a high-urgency sales order, an earlier external due date may be chosen but this leads to

changes in the overall production plan.

The external due date is negotiated with the customer and added to the sales order in Isah as the

first confirmed due date. Almost all sales orders at HA are accepted. Manual due date setting

has a major disadvantage. It does not ensure the earliest feasible starting date possible based on

available resource capacity in Isah, which leads to higher customer lead times and infeasible due

dates. Therefore, it would be better to create a due date based on available resource capacity in

Isah such that the earliest possible start date and internal due date are selected.

Create POs for the sales order in Isah. The second step is to create a PO for the sales order

in Isah. For both SMT and THT production, a separate PO is created. Due to differences in batch

quantities and the way Isah is designed, it is best to use one PO for the SMT department and one

PO for the THT department. This is not changed during this research. The operations manager

gives an internal due date to the two types of POs. For THT POs the internal due date equals the
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external due date minus two slack days and for SMT POs the internal due date is 7 days before the

start of the THT PO. Figure 2.6 graphically represents this process.

Figure 2.6: Flowchart of creating an SMT and THT PO.

Perform automatic work preparation function in Isah to plan PO. The third step is

performing automatic work preparation in Isah to create a start date for a PO. Automatic work

preparation is executed per PO. With automatic work preparation, Isah automatically executes the

following steps:

1. Copying product data to PO. Product data includes the product routings, the components,

and the tools needed to produce the product.

2. Plan the PO by creating a start date with backward planning. This means that

starting from the internal due date all production steps are scheduled backwards to a starting

date (Yeh, 2000). Section 2.3 explains the planning functionalities in Isah in depth.

Dispatch PO to the shop floor. The SMT department dispatches the POs to the shop floor

based on the earliest starting date. The THT department dispatches the POs to the shop floor

based on the earliest external due date since the THT manager does not trust the production plan

in Isah. The management of HA aims at dispatching based on the earliest starting date of the POs

since these are created based on internal and external due dates.

2.3 Planning functionalities in Isah

Section 2.2 states that Isah is used to plan POs based on backward planning. Isah needs the following

data to plan a PO: product data (described in Section 2.3.1) and operation planning parameters

(described in Section 2.3.2). Isah also has more planning functionalities than backward planning.

Section 2.3.3 explains the planning functionalities unexploited at HA to give an impression of the

scope of Isah.

2.3.1 Product data

The automatic work preparation function copies the product data to the PO. This includes the

product routings, and the components and tools needed to start production. Each operation in

the production route of a product has a lead time (in minutes) defined to produce one PCB. The

lead time per operation for a specific product is estimated by the work preparator with a calculation

sheet and his experience. Table 2.5 shows the lead times (in seconds) that are used in the calculation

sheet for the lead time estimation of the operations of conventional, selective soldering and manual

soldering on product-level. The total lead time of the conventional operation is calculated with a

calculation sheet by counting the number of components to assemble and multiplying it with the lead
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time of that type of component. For selective and manual soldering an estimation of 3.5 seconds and

7 seconds per soldering of one through-hole joint is used. The lead time in seconds is converted to

a lead time in minutes. This information is not regularly controlled and updated and therefore may

be outdated. For all other operations, estimation is based on the experience of the THT manager

and work preparator.

Table 2.5: Rules used to estimate lead time per operation on product level.

Operation Description
Lead time
(seconds)

Conventional Placement 2 pins component curved 20
Conventional Placement 2 pins component 20
Conventional Placement 3 pins component 20
Conventional Placement IC 25
Conventional Placement connector 35
Conventional Placement of trafo 80
Conventional Placement of relais 40
Conventional Placement resistor network 20
Selective soldering Soldering of one through-hole joint 3.5
Manual soldering Solder of one through-hole joint 7

2.3.2 Operation planning parameters

Parameters are defined manually per operation (in Dutch: Capaciteitsgroepen). These operation

parameters are used when planning a PO in Isah. The operation parameters in Isah are explained

to get insight into the planning functionalities in Isah. Figure 2.7 shows an example of an operation

defined in Isah.

Figure 2.7: Example of an operation defined in Isah.

The following operation parameters are used within the planning of HA:

• Based on (in Dutch: Op basis van): plan the operation based on employee-hours or

machine-hours. Man-hours are used when specific employees need to be assigned to an op-

eration. Machine hours are used when an operation needs to be assigned in general, the

assignment of the operation is not important for the production plan and can be done on the

production floor.

• Planning type (in Dutch: Type): plan the operation based on finite or infinite capacity.

With finite capacity, Isah takes into account already planned POs and available capacity. Isah

ensures that capacity is not exceeded. Standard a First Come First Serve priority is used with

finite capacity planning, but the user can assign other priorities such as due date or customer
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priority. With infinite capacity, Isah plans the operations consecutively without taking into

account capacity. The planner manually analysis if capacity is exceeded and if the PO has to

be rescheduled. The planning type can be assigned to each operation individually. This means

that if the conventional operation is planned with finite capacity, already planned POs are

taken into account and the conventional operation of the PO to plan may not exceed capacity.

If the conventional operation is planned with infinite capacity, the conventional operation of

the PO to plan may exceed capacity.

• Schedule till (in Dutch: Inplannen tot): percentage of the available capacity for the

operation that may be scheduled to execute the operation. This percentage is calculated over

the parameter ”to schedule per day”. For example, if this parameter is set to 90%, 90% of the

maximum capacity per day for this operation may be scheduled. The other 10% is reserved

for urgent sales orders.

• Maximum capacity per day (in Dutch: Te plannen per dag): the hours of capacity

available per day. For example, HA has three employees available with 8 working hours per

employee. If the maximum capacity per day is set to 8, the PO is assigned to one employee

and the other 2 employees can be assigned to other POs. However, if the maximum capacity

per day is set to 24 the PO is assigned to the three employees and no employee is left to work

on other POs.

• Consecutively (in Dutch: Aaneengesloten): in literature, this is also called non-preemption

(Pinedo, 2016b). This means that any intervening days (after the start day) must be unoc-

cupied and that the remainder must fit on the last day. So a job once started at a machine

may not be interrupted until it is finished. Planning nonconsecutive means that all available

capacity of the operation can be used even if this means that the job is interrupted to pro-

cess another job, in literature called preemption. The parameter consecutively can only be

used when planning with finite capacity since planning with infinite capacity always leads to

consecutive operations.

• Minimal lead time (in Dutch: Minimale doorlooptijd): the minimum number of days

that are planned for an operation. For example, a potted PCB needs to dry for at least one

day. The minimal lead time of PCB potting is set to 1 day. Isah will plan the potting operation

for at least one day independent of the product. The minimal lead time is indicated in days.

A minimum lead time of zero means that Isah does not take into account a minimal lead time.

• Fixed lead time (in Dutch: Vaste doorlooptijd): a fixed number of days that are planned

for the operation. For example, PCB drying always needs 1 day independent of the product.

The fixed lead time is indicated in days. A fixed lead time of zero means that Isah does not

take into account a fixed lead time.

Table 2.6 shows the manually inserted settings in Isah used within HA for the parameters of the

operations. One example to clarify the parameters: the operation SMT is planned based on machine

hours while taking into account infinite capacity. This implies that capacity may exceed when needed

and the scheduler needs to check if that happens. The maximum capacity per day is 8 hours, from

which 90% may be scheduled. The operation needs to be planned consecutively, so preemption is

not allowed. For SMT, minimum and fixed lead times are not taken into account.
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Table 2.6: Settings used within HA for the parameters per operation in Isah.

Operation Based on Planning type
Schedule
till (%)

Maximum
capacity
per day
(hours)

Plan con-
secutively

Minimal
lead time
(days)

Fixed
lead
times
(days)

SMT Machine-hours Infinite capacity 90% 8 Yes 0 0
AOI Man-hours Finite capacity 90% 8 No 0 0
Rework Man-hours Finite capacity 90% 8 No 0 0
Conventional Man-hours Finite capacity 90% 32 No 0 0
Wave soldering Man-hours Finite capacity 90% 8 No 0 0
Selective soldering Man-hours Finite capacity 90% 8 No 0 0
Post-assembly Man-hours Finite capacity 90% 32 No 0 0
PCB washing Man-hours Infinite capacity 90% 8 Yes 1 0
PCB drying Machine-hours Finite capacity 90% 8 No 0 1
Potting Man-hours Infinite capacity 90% 8 Yes 1 0
Coating Man-hours Infinite capacity 90% 8 Yes 1 0
Programming Man-hours Finite capacity 90% 24 No 0 0
Test & Repair Man-hours Infinite capacity 90% 8 No 1 1
Burn-in test Man-hours Infinite capacity 100% 0 Yes 2 2
Intermediate check Man-hours Infinite capacity 90% 8 Yes 0 0
Final check Man-hours Finite capacity 90% 8 No 0 0
Packaging Man-hours Infinite capacity 90% 8 Yes 0 0

Within HA, nobody is responsible for updating and controlling the parameters. No one knows the

exact meaning of the parameters and their influence on the planning. This implies that backward

planning within HA is not used to its fullest potential and is conducted with outdated parameter

values that may not reflect reality. One example is the parameter setting for conventional, where

3 employees are available per day to work on the conventional operation of one PO. However, in

practice, only one employee is working on the conventional step of one PO. The other remaining

employees can work on other POs. Due to the parameter setting, 3 employees are planned on the

conventional step of one product so more capacity is assumed than available in practice.

2.3.3 Other planning functionalities within Isah

The following functionalities are also available within Isah but are not used:

• Plan based on production status/-date. HA plans one PO at a time. However, it is

also possible to plan all POs within a specific production status or a specific planning horizon.

Within Isah, production statuses are used to keep track of all planned POs. For example, one

status is ”THT - complete and waiting to be released to the work floor”.

• Forward planning. Forward planning plans the operations of a product from the scheduled

starting date until all operations are performed (Yeh, 2000). One possible application of

forward planning is to identify a suitable internal due date by checking if capacity is exceeded

when we want to produce a PO as soon as possible or in a specific week.

• Frozen period. When planning based on production status or production date, Isah can

take into account a frozen period (days) to ensure that POs within the frozen period are not

changed.
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• Planning horizon. When planning based on production status/-production date, Isah can

use a planning horizon to schedule all POs within the chosen planning horizon.

• Priorities. Isah can use one or more priorities while planning. When using more priorities,

the priorities are ranked. For each priority, it should be defined if it should be used in ascend-

ing or descending order. The following priorities can be used in Isah: customer priority, sales

priority, shipment date of the sales order, sales status, PO end date, production priority, and

production status.

Figure 2.8 shows an example of using priorities in Isah. In this example, first, all POs in

a specific production status (in Dutch: Productiestatus) with a customer priority (in Dutch:

Klantprioriteit) of 1 are planned based on ascending (in Dutch: Oplopend) sales order shipment

date (in Dutch: Verzenddatum). When production statuses have the same customer priority

and sales order shipment date, the highest production status will be planned first since it uses

a descending (in Dutch: Aflopend) order. All POs without a customer priority are planned

last based on the sales order shipment date.

Figure 2.8: Example of priorities used within Isah.

• Capacity overview. It is possible to analyse the capacity of the operations or employees to

identify capacity bottlenecks in the created production plan. The capacity overview is shown

in a Gantt Chart.

2.4 Performance of current due date setting and operational planning

method of HA

The following sections describe the performance of the current planning method in terms of Customer

Service Level (2.4.1) and tardiness and earliness (2.4.2).

2.4.1 Customer Service Level

Customer Service Level is the KPI that initiated this research. See Section 1.2 Table 1.1 for the

Customer Service Level of HA from 2017-2022. Section 1.2 also explains the calculation of the

Customer Service Level and the aim of management regarding the Customer Service Level.

2.4.2 Tardiness and earliness

KPIs used in production are tardiness and earliness. A tardy PO is a PO where the completion date

is higher than the internal due date, Ti = max(0, Ci− di) (Muñoz-Villamizar et al., 2019). An early

PO is a PO where the completion date is lower than the internal due date, Ei = max(0, di − Ci)

(Muñoz-Villamizar et al., 2019). The deviation between the completion date and the internal due
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date is measured in days. Table 2.7 shows the percentages of early POs, POs on-time and tardy

POs at HA from 2017-2022.

Table 2.7: Percentages of early POs, POs on-time and tardy POs of HA.

2017 2018 2019 2020 2021 2022

% of early POs 36.3% 36.4% 1.5% 35.7% 47.7% 30.4%
% of POs on time 8.7% 31.3% 28.9% 16.2% 25.6% 20.3%
% of tardy POs 55.0% 32.2% 39.6% 48.1% 26.7% 49.3%

We cannot see a constant improvement or setback for the percentages over the years, which is logical

since planning is conducted in the same manner in all these years. The percentages are not in line

with the goal of management. Theoretically, HA wants 100% POs on time. The more realistic

aim of management is 90% POs on time, 8% early POs and 2% tardy POs. Early POs are better

than tardy POs and therefore HAs aim at a percentage of 8% of early POs and 2% of tardy POs.

However, there are several reasons why HA wants its percentage of early POs as low as possible:

• Not all customers want to receive the products before the agreed delivery date. Therefore,

products of early POs are kept in inventory until the delivery date reaches. Keeping finished

products in inventory costs money and increases the inventory position.

• Early POs can indicate that internal lead times for the product are lower than expected. This

means that the start of PO could be later and this results in the later purchasing of components.

This would lead to a lower inventory position since components would be in stock for a shorter

period.

Improving the inventory position of HA is outside the scope of this research. The remainder of this

research only uses tardiness as KPI.

2.5 Conclusion on the current situation

HA operates in an MTO environment. It has an SMT and THT production method that can perform

3 and 14 unique operations, respectively. The SMT production is a flow shop since each product

follows the same production route. The THT department is a job shop where each product has its

own predetermined production route. The entire production environment of HA is analysed as a job

shop to generalise this research.

The due date setting of a sales order is executed by the operations manager based on the customer’s

preferred due date, the existing production plan, component availability and sales order priority.

The amount of resource capacity available is based on the experience and gut feeling of the opera-

tions manager instead of the resource capacity available in the currently available production plan.

This leads to unrealistic external due dates.

After a confirmed sales order the operations manager creates POs for the SMT and THT depart-

ment. These POs are planned with an automatic work preparation function in Isah. Afterwards,

the POs are dispatched to the shop floor. The SMT department dispatches based on the earliest
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starting date of a PO. The THT department dispatches based on the earliest external due date.

This research improves the process of planning the created POs. Instead of creating an internal due

date for THT equalling the first confirmed due date of the sales order minus 2 slack days and for

SMT equalling the start date of THT minus 7 slack days, we design a method that sets internal due

dates for the PO based on the external due date of the sales order and resource capacity available.

The designed method takes into account the production environment characteristics found in this

chapter.
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3 Literature review

Section 1.4 defines the scope of this research: resource loading. So, the literature review focuses on

resource loading. Resource loading measures the impact of a set of orders for a specific set of time

buckets (Hans, 2001). Section 3.1 describes the concept of resource loading. Section 3.2 describes

solution approaches for optimisation problems such as resource loading. Section 3.3 provides a

conclusion to the literature study.

3.1 Resource loading

Resource loading is a tactical planning method often used at order acceptance. It measures the

impact of a set of orders on the production system (Hans, 2001). It loads a given set of orders and

determines reliable internal due dates and resource capacity levels needed to process the orders and

their constituting jobs (Hans, 2001). Resource loading can be executed simultaneously (integrated

approach) or separately (hierarchical approach) from the order acceptance decision. In the hierar-

chical approach, the only information passed through from the order acceptance decision to resource

loading is the aggregate information on the workload (Hans, 2001).

Hans (2001) mentions two resource loading approaches: a time-driven approach and a resource-

driven approach. The resource-driven approach allows orders to be finished after their due date

because capacity cannot be extended. Common objectives mentioned are minimising total lateness

or minimising the number of orders too late. The time-driven approach extends short-term capacity

against a certain cost to ensure that orders are finished before their due dates. The objective func-

tion is minimising the cost of extending capacity. In general, three ways of capacity expansion are

used: overtime, hiring extra operators and outsourcing.

Hans (2001) provides a Mixed-Integer Linear Programming model (MILP) for the resource loading

problem. This model adopts the time-driven and resource-driven approaches simultaneously. The

model takes into account fixed machine capacity and expandable operator capacity. The orders of

an MTO job shop production environment are divided into jobs with linear precedence relations

(i.e. a job may start only if its predecessor is completed). Figure 3.1 shows an example of a linear

precedence relation. The model can handle a minimal duration of a job and a minimum time lag

between jobs. The model uses time buckets of one week. The release and due dates of jobs orders

are specified in weeks and the processing times of jobs are specified in hours. The model minimises

the total cost of extending capacity and the penalties incurred by tardy orders.

Figure 3.1: Example of linear precedence relations as provided by Hans (2001).

An equivalent approach to resource loading is also used in project management: Multi-Project

Rough-Cut Capacity Planning (RCCP). RCCP allows generalised precedence constraints, which

implies that they do not have to be linear. Figure 3.2 shows an example of generalised precedence
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relations. Gademann and Schutten (2005) study a time-driven RCCP taking into account capacity

flexibility, precedence relations and maximum work content per period. They discuss several linear

programming-based heuristics to solve their model. Cherkaoui et al. (2015) propose a time-driven

RCCP MILP model that handles different planning levels by varying the length of the time periods.

Their model is based on a continuous time representation of start and end times and the discrete-

time representation of resource constraints. The period lengths are shorter at the beginning of the

planning horizon and increase over time.

Figure 3.2: Example of generalised precedence relations as provided by Hans (2001).

3.2 Solution approaches for resource loading

Two classes of optimisation algorithms exist: exacts methods and heuristic methods (Rader, 2010).

Exact methods provide optimal solutions. Examples of exact methods are complete enumeration,

branch-and-bound and simplex (Guzman et al., 2022; Schutten, 1996). For most applications, exact

methods are too slow to solve the problem in a reasonable period (Guzman et al., 2022). The

remainder of this study focuses on heuristic methods since Section 3.1 already provides an exact

method: a MILP model. Heuristic methods are mainly divided into two classes: constructive

heuristics and improvement heuristics (Guzman et al., 2022; Maan-Leeftink, 2021a).

3.2.1 Constructive heuristic

Constructive heuristics generate solutions incrementally by building upon a partial (incomplete)

solution (Maan-Leeftink, 2021a; Tavares et al., 2009). Constructive heuristics require little compu-

tational time and are easy to implement (Schutten, 1996). One major disadvantage is that they

lead to poor-quality solutions. However, they can be used to create an initial solution to use for

improvement heuristics. One way to add building blocks to an empty solution is based on priority

rules such as Earliest Due Date, Shortest Processing Time and First In-First Out (Schutten, 1996).

In due-date setting literature, another priority rule is mentioned that not only determines a feasible

solution based on job information but also based on capacity constraints (Thürer et al., 2013). This

rule is known as finite loading.

Priority rules. Priority rules examine the order in which orders are scheduled by assigning pri-

orities. Some well-known priority rules in literature are Earliest Due Date (EDD), First In First

Out (FIFO), Minimal Slack (MS), Service in Random Order (SIRO) and Shortest Processing Time

(SPT) (Holthaus and Rajendran, 1997; Pinedo, 2016a; Schutten, 1996).
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Finite loading. Finite loading can be executed forward or backwards. Forward Finite Loading

(hereinafter referred to as FFL) is recommended when orders have negotiable due dates because

they are proposed or quoted by the company (Thürer et al., 2013). Backward Finite Loading

(hereinafter referred to as BFL) is recommended when orders have fixed due dates specified by

the customer (Thürer et al., 2013). Assume order i with product routing Ri consisting of ni jobs

, i.e. Ri = {1, ..., ni}. All jobs of order i need to be planned on machine 1 (s = 1) in time

buckets t = {1, 2, 3, 4, 5, 6}. FFL starts at the release date of the first job ri1 and plans each job j

accordingly. Due date dij is set to the due date of the previous job di(j−1) plus its processing time

pij and the dynamic factor Fij(Wst, Cst). Fij(Wst, Cst) is based on the workload Wst and capacity

Cst of machine s in time bucket t. For example, when d(i−1)j = 4 and pij = 1 we load (i, j) in time

bucket 4 + 1 = 5 since W15 + workload (i, j) ≤ C15. Equation 3.1 shows the formula for FFL for

each i except for the first one. For the first operation in Rj , di−1,j is changed by the release date of

the order ri. Figure 3.3 shows a graphical representation of the example provided.

dij = di,j−1 + pij + Fij(Wst, Cst) ∀i ∀j ∈ Ri \{1} (3.1)

Figure 3.3: Graphical representation of FFL adjusted from Thurer et al. (2014).

With BFL we start at the due date of order i. Equation 3.2 shows BFL for all operations in Ri

except for the last operation ni. The due date of the last operation ni in product routing Ri is set

to the due date of the order.

dij = di(j+1) − pij − Fij(Wst, Cst) ∀i ∀j ∈ Ri \{ni} (3.2)

For FFL and BFL the size of the time buckets must be larger than the largest processing time pij

so that an operation can always be planned in a single time bucket (Robinson and Moses, 2006).

If the processing time variability is high then the required minimum bucket size is large relative to

the average processing time. Robinson and Moses (2006) proposes a method that overcomes this

problem: Partially Forward/Backward Finite Loading (PFFL/PBFL).
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PFFL/PBFL first calculates the number of time buckets required to accommodate an operation.

Equation 3.3 shows the calculation for the number of time buckets where b is the number of time

buckets required, pij is the processing time and G is the granularity of the time buckets.

b =
pij
G

(3.3)

If b = 1, FFL or BFL is used. If b > 1, PFFL or PBFL looks for availability across multiple

contiguous time buckets. This means that after finding a time bucket the procedure checks the

subsequent b − 1 time buckets. To avoid waiting time, the procedure will not insert a job unless

each of the subsequent time buckets is 100% available. If the availability of contiguous time buckets

is insufficient, the search will start again at the next time bucket. Figure 3.4 shows a graphical

representation of PFFL where (i, j) is partially loaded in time buckets 1 and 2.

Figure 3.4: Graphical representation of PFFL adjusted from Robinson and Moses (2006).

3.2.2 Improvement heuristics

Improvement heuristics apply improvements in each iteration to a complete initial solution until a

stopping criterion is met (Tavares et al., 2009). The initial solution is generated randomly or by

a constructive heuristic (Tavares et al., 2009). One type of improvement heuristic is local search.

Local search starts with a given initial feasible solution, searches the neighborhood for a better

solution using some operator, accepts/rejects the solution and starts again. The local search stops

if a local optimum or stopping criteria is reached (Maan-Leeftink, 2021b). A local optimum is the

best solution found in the neighborhood but it does not have to be the best solution of the entire

feasible region (i.e. global optimum). Figure 3.5 shows this concept.
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Figure 3.5: Illustration of local and global optimality by Jeon et al. (2017).

To overcome local optimality a balance between intensification and diversification is used. Intensi-

fication exploits a neighborhood with promising solution characteristics and diversification explores

the entire feasible region (Maan-Leeftink, 2021c). Heuristics that balance intensification and di-

versification are called metaheuristics (Maan-Leeftink, 2021c). Two well-known metaheuristics are

Simulated annealing (hereinafter referred to as SA) and Tabu Search (hereinafter referred to as TS).

Simulated Annealing. SA is able to escape from local optima by accepting changes to the solu-

tion (with a certain probability) that worsen the objective function. SA starts with an initial solution

based on a (greedy) constructive heuristic. At each iteration, a neighbor solution is generated ran-

domly by a neighborhood operator. Some examples of neighborhood operators are move, swap and

reassign (Maan-Leeftink, 2021c). The neighbor solution is accepted as the new current solution if

the objective function is better. If the objective function is worse, the neighbor solution is accepted

with a certain probability. A temperature is used to influence the probability of accepting a worse

solution. SA starts with an initial temperature. After each iteration, the temperature decreases via

a cooling scheme. A lower temperature causes a lower acceptance rate of a worse solution. SA stops

if a stopping condition is met. Rules of thumb are defined in literature to set the parameters for SA

(Maan-Leeftink, 2021c; Rader, 2010):

• Initial temperature: Choose an initial temperature such that the initial acceptance ratio of

worse solutions is approximately 1. This leads to high diversification at the start of SA. The

acceptance ratio is calculated by number of accepted worse transitions
number of proposed worse transitions .

• Length of Markov chains: After each Markov Chain the temperature is decreased such that

the probability of accepting a worse solution becomes smaller until the probability becomes

almost zero. The number of iterations is determined by the Markov Chain length. E.g. a

Markov Chain length of 1 means that after every iteration the temperature is updated. The

Markov Chain length can be static or dynamic. A rule of thumb is to set the Markov Chain

length equal to the number of neighbor solutions.

• Cooling schemes: The cooling scheme defines how fast the temperature decreases. Two com-

monly used examples areNewTemperature = α∗CurrentTemperature andNewTemperature =
CurrentTemperature

1+β∗CurrentTemperature with α close to 1 and β close to 0.

• Stopping condition: A few examples of stopping criteria are (1) reaching a maximum number

of iterations, (2) temperature T getting close to 0, and (3) the current solution does not change

after too many iterations. The most used stopping criterion is the temperature getting close

to 0.
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Tabu search. TS is able to escape from local optima by incorporating memory. TS also starts

with an initial solution based on a (greedy) constructive heuristic. Based on the initial solution, (a

selection of) neighbor solutions are evaluated and accepted if their objective value is better and is

not on the tabu list (Maan-Leeftink, 2021b). Attributes from recently visited solutions are put in the

front of the tabu list and the last element is deleted. Some important decisions when implementing

TS (Maan-Leeftink, 2021b; Rader, 2010):

• Tabu list length: The tabu list length can be static or dynamic. With a dynamic length, the

length increases if the best solution is not updated and decreases if a certain time has passed

without solution revisits.

• Tabu list attributes: Possible attributes are (1) entire solutions, (2) operators, and (3)

changed items. The best attribute to use depends on the problem and its size.

• Aspiration level: A disadvantage of some tabu list attributes is that multiple solutions can

be rejected due to one stored attribute, also unvisited once. Aspiration level is a rule allowing

changes that are in the tabu list. One example is accepting the neighbor solution if it leads to

the best solution found.

• Stopping criteria: The most common stopping criteria is no improvements after a predeter-

mined number of exchanges or time.

3.3 Conclusion on the literature study

Resource loading is used to measure the impact of a set of orders in terms of due dates and resource

capacity levels. Resource loading can be time-driven, resource-driven or a combination of both.

Hans (2001) provides a MILP for the combined resource loading problem. An equivalent approach

allowing generalised non-linear precedence constraints is Rought-Cute Capacity Planning (RCCP).

Gademann and Schutten (2005) provide a time-driven RCCP.

Solution approaches for resource loading are exact methods and heuristic methods. Heuristic meth-

ods are mainly divided into two classes: constructive heuristics and improvement heuristics. Con-

structive heuristics creates a solution incrementally by building upon a partial (incomplete) solution.

Constructive heuristics are easy to implement and need less computational time but the solution

quality is low. However, the solution of constructive heuristics can be used as input for the im-

provement heuristic. Examples of constructive heuristics are simple priority rules (e.g. Earliest Due

Date, Shortest Processing Time) and priority rules taking into account capacity (i.e. finite loading).

Improvement heuristics apply improvements in each iteration to a complete initial solution until a

stopping criterion is met. Examples of improvement heuristics are local search, Simulated Annealing

and Tabu Search.
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4 Solution design

This chapter proposes a resource loading MIP formulation and a resource loading heuristic consisting

of a construction and improvement step. Section 4.1 describes the model formulation. Section

4.2 describes the designed constructive heuristic. Section 4.3 describes the designed improvement

heuristic. Section 4.4 provides a conclusion to this chapter.

4.1 MIP model formulation

This section describes the resource-loading MIP model formulation. Section 4.1.1 describes the sets,

parameters and decision variables. Section 4.1.2 describes the objective value and constraints.

4.1.1 Sets, parameters and decision variables

This section provides a description and the assumptions of the job shop production environment of

HA. The time horizon T is discretized into time buckets (t = Tmin, Tmin+1, Tmin+2, ..., Tmax−1, Tmax)

of equal length. The production environment of HA knows 17 different operations Jj (j = 1, ..., 20).

Table 4.1 shows the different operations Jj . Each operation has regular capacity cj (hours) per

time bucket. HA is able to extend capacity only by working overtime. Per time bucket a maximum

amount of overtime mojt is allowed for each operation. Decision variable Ojt indicates the overtime

(hours) for operation Jj in time bucket t. Working overtime has a cost of co per hour. The total

cost of working overtime is given by
∑

jt co ∗Ojt.

Table 4.1: Overview of the operations at HA in the set Jj .

j Operation j Operation

1 AOI 10 PWA
2 COAT 11 REW
3 EC 12 SMD
4 PB 13 SOL
5 POT 14 SSOL
6 PR 15 TC
7 PRNA 16 TE
8 PRO 17 VER
9 PW

Each order Ii (i = 1, ..., n) has a product routing consisting of zi operations. The precedence con-

straints are linear, this means that the product routing shows the operations to be performed in a

given sequence. For example, the product routing of order I1 is J1 → J3 → J4, whereas the product

routing of order I2 is J4 → J5 → J2 → J6. Sis indicates the s-th operation in the product routing

of order Ii. For example, S11 indicates the first operation in the product routing of order I1 which

equals J1. S23 indicates the third operation in the product routing of order I2 which equals J2.

Operation Sis has a pre-defined positive processing time pis (hours). There are two options: (1)

we can process an operation in one time bucket or (2) we need multiple time buckets to process

the entire operation. For option 1, we need a time bucket size large enough such that the largest

operation can always be planned in one time bucket. Option 2 is recommended when having a high
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processing time variability. We use option 2 in this research. In 2022 the longest operation at HA

needed six weeks to finish. Considering a time bucket size of six weeks is impractical for HA and

also not preferred by the management. Most operations at HA take a few hours or days, and a small

percentage of the operations take more than one week (1.5% in 2023). We use a time bucket of one

week. To be able to cope with the more time-consuming orders, we allow multiple time buckets to

process the entire operation. xist indicates the number of hours that the s-th operation of order Ii is

assigned to time bucket t. Binary variable yist indicates if the s-th operation of order Ii is assigned

to time bucket t. HA does not allow preemption within an operation of order Ii, i.e. the execution

of operation s ∈ Si is planned in subsequent weeks.

The orders at HA have an internal due date di (expressed in weeks) but no release date. To simplify

the model, we assume that all materials are available before the start of the time horizon. Orders are

allowed to finish earlier or later than the internal due date. Tardyi indicates if order Ii is finished

too late. Finishing later than the internal due date is allowed against some cost ct. The cost of

finishing late is independent of the number of days finishing late. The total cost of tardy orders

is given by
∑

i ct∗Tardyi. Table 4.2 shows an overview of all sets, parameters and decision variables.

A solution is feasible if each operation in Si is completely assigned within the planning horizon while

respecting the precedence, capacity and non-preemption constraints.

Table 4.2: Sets, parameters and decision variables

Sets
Ii Set of all orders, indexed by i
Jj Set of all operations, indexed by j

T
Set of all time buckets, indexed by t
where t = {Tmin, Tmin+1, Tmin+2, ..., Tmax−1, Tmax}

Si Product routing of order i, indexed by s where s = {1, 2, ..., zi}
Parameters
Sis The s-th operation in the product routing of order i
pis Processing time of the s-th operation of order i (expressed in hours)
di Internal due date of order i (expressed in weeks)
cj Regular capacity of operation j (expressed in hours)
mojt Maximum overtime for operation j in time bucket t (expressed in hours)
ct, co Cost of tardiness and overtime, respectively

Decision variables
xist Number of hours that the s-th operation of order i is assigned to time bucket t
yist 1 if the s-th operation of order i is processed in time bucket t, 0 otherwise
Ojt The hours of overtime used for operation j in time bucket t
Tardyi 1 if order i is finished too late, 0 otherwise

Auxiliary variables
sist Auxiliary variable used for non-preemption constraints 4.7 to 4.11

1 if the job started in or before time bucket t, 0 otherwise
fist Auxiliary variable used for non-preemption constraints 4.7 to 4.11

1 if the job is not completed before time bucket t, 0 otherwise
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4.1.2 Objective function and constraints

The goal of HA is to minimise the cost of overtime and tardiness. The objective function equals:

Min(z) =
∑
i

(
ct ∗ Tardyi

)
+
∑
jt

(
co ∗Ojt

)
Constraint (4.4) ensures that each operation in Si is fully assigned. The operation may be assigned

preemptive or non-preemptive. Constraints (4.7) until (4.11) together with Constraint (4.4) ensures

non-preemption within an operation of order i.

∑
t

xist = pis ∀i, s ∈ Si (4.4)

The binary decision variable yist equals 1 if the s-th operation of order i is processed in time bucket

t, i.e. if xist > 0. Constraints (4.5) and (4.6) ensure that yist = 1 if xist > 0. If xist > 0, constraint

(4.5) holds for yist = 0∨1 while constraint (4.6) forces yist to be 1. If xist = 0, constraint (4.6) holds

for yist = 0 ∨ 1 while constraint (4.5) forces yist to be 0. Epsilon is set to the minimum duration

required to start Sis. For example, if xist needs to be at least 30 minutes ϵ is set to 0.5.

xist ≥ yist ∗ ϵ ∀i, s ∈ Si, t (4.5)

xist ≤ pis ∗ yist ∀i, s ∈ Si, t (4.6)

Constraints (4.7) until (4.11) (in combination with constraint (4.5)) ensures non-preemption within

an operation of order i. Binary variables sist and fist indicate the start- and end time of the s-th

operation of order i. sist equals 1 if the job started in or before time bucket t and 0 if the job has

not started yet. fist equals 1 if the job is not completed before time bucket t and 0 if the job is

completed before time bucket t. Table 4.3 provides an example of the logic between yist, sist and

fist. sist equals 1 for all t starting from the first t in which yist > 0. fist equals 1 starting from t = 1

and becomes zero as soon as yist becomes zero again. Constraints (4.7) and (4.8) set sist, whereas

constraints (4.9) and (4.10) set fist. Constraint (4.11) ensures that yist equals one if both sist and

fist equal 1.

Table 4.3: Example of auxiliary variables non-preemption constraints.

t 1 2 3 4 5 6

y 0 0 1 1 1 0
s 0 0 1 1 1 1
f 1 1 1 1 1 0

sist ≥ yist ∀i, s ∈ Si, t (4.7)

sist ≥ sis(t−1) ∀i, s ∈ Si, t (4.8)

fist ≥ yist ∀i, s ∈ Si, t (4.9)

fist ≥ fis(t+1) ∀i, s ∈ Si, t (4.10)

yist ≥ sist + fist − 1 ∀i, s ∈ Si, t (4.11)
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Constraint (4.12) ensures that the assigned hours for operation j in time bucket t may not exceed

the regular capacity cj plus the available overtime Ojt. For example, order 1 has product routing

J2 → J4 and order 2 has product routing J8 → J4 → J1. Operation J4 is performed at S12 and S22.

The resulting capacity check for operation J4 equals: x12t + x22t ≤ c4 + o4t for all time buckets t.

Constraint (4.13) ensures that maximum overtime is not exceeded.∑
i

∑
{s∈Sis|Sis=j}

xist ≤ cj +Ojt ∀j, t (4.12)

Ojt ≤ mojt ∀j, t (4.13)

The linear precedence constraint assures that the s-th operation in the product routing can start if

(s − 1) is finished. This should hold for every s in Si except for s = 1. Equation (4.14) shows the

corresponding constraint.

t∑
t′=1

xi(s−1)t′ ≥ pi(s−1) ∗ yist ∀i, t ∀s ∈ Si \{1} (4.14)

Constraint (4.15) indicates if an order is tardy. If the last operation zi in product routing Si of order

i is finished in time bucket t higher than di, the order is tardy (i.e. Tardyi = 1).

Tardyi ≥ yist ∀i∀{s ∈ Si|s = zi}∀{t ∈ T |t > di} (4.15)

Constraint (4.16) shows the non-negative sign variables and constraint (4.17) shows the binary sign

variables.

xist, Overtimejt ≥ 0 (4.16)

yist, sist, fist, Tardyi ∈ {0, 1} (4.17)

4.2 Constructive heuristic

This section describes the designed constructive heuristic. The constructive heuristic is used to

construct an initial feasible solution. Section 3.2.1 describes four finite loading methods: FFL, BFL,

PFFL and PBFL. We choose the idea of PBFL for two reasons:

1. External due dates of orders are established at order acceptance and are fixed.

2. Operations are allowed to be assigned to several consecutive time buckets.

PBFL looks backwards for availability across multiple contiguous time buckets. A job is not inserted

unless each of the subsequent time buckets is 100% available. The constructive heuristic starts with

an empty solution and plans the orders according to a sequence. First, the sequence is determined

based on a priority rule (see Section 4.2.1). Afterwards, the order is planned using PBFL (see Section

4.2.2). Each order with its operations is planned backwards while taking into account precedence,

capacity and non-preemption constraints. The constructive heuristic is finished (1) when a feasible

solution is found or (2) when the problem is infeasible. The problem is infeasible when the orders

cannot be planned within the planning horizon while respecting the precedence, capacity and non-

preemption constraints. Figure 4.1 shows a graphical representation of the constructive heuristic.
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Figure 4.1: Flowchart of the constructive heuristic.

Section 4.2.1 describes the priority rules considered in the constructive heuristic. Section 4.2.2

describes how the orders are planned and Section 4.2.3 describes the calculation of the objective

value.

4.2.1 Select order based on priority rule

The sequence in which orders are planned is determined by a priority rule. Section 3.2.1 discusses

well-known priority rules. The priority rules implemented in the constructive heuristic are Earliest

Due Date (EDD), Latest Due Date (LDD), Shortest Processing Time (SPT) and Longest Processing

Time (LST). With EDD and LDD, we determine if it is better first to schedule all early or late

internal due dates when planning backwards. With SPT and LST we determine if it is better to

first schedule smaller or larger orders.

4.2.2 Plan orders

The orders are planned in (consecutive) time bucket(s) with capacity or overtime available to plan

operation Sis. This is executed until the complete processing times of all orders are planned. Figure

4.2 shows a graphical representation of step 2 in Figure 4.1. To be able to search in multiple time

buckets for availability, we introduce an Available-To-Work (ATW) window as used in Gademann

and Schutten (2005). The following paragraphs provide a description of setting the ATW windows

(step 2.1. in Figure 4.2) and ensuring planning in (consecutive) time bucket(s) (step 2.2. in Figure

4.2).
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Figure 4.2: Flowchart of step 2 (plan orders) in the constructive heuristic.

Step 2.1: Set ATW window. The ATW window [Fis, Lis] indicates the range in which we look

for available (consecutive) time bucket(s) to plan Sis. Fis indicates the first time bucket and Lis

indicates the last time bucket in which we look for available capacity. The ATW window loops

negatively in time. The ATW window for the last operation zi starts at the internal due date di

until the minimum time bucket in the planning horizon, i.e. [di, Tmin]. For example, the internal

due date is in time bucket 8 and the minimum time bucket of the planning horizon is 6. The ATW

window is set to [8,6], i.e. we loop through the time buckets in the following sequence 8 → 7 → 6.

The ATW window for all other operations in Si starts at the start time of the next operation until

the minimum time bucket in the planning horizon, i.e. [sti(s+1), Tmin].

If the total processing time pis does not fit in the ATW window, the ATW window is enlarged by

increasing Lis by one. To avoid violation of the precedence constraint, all set planning variables

of Si are emptied and step 2.2. is executed again for all s ∈ Si. Increasing the ATW window is

executed until Tmax is reached. If Tmax is reached and the complete pis cannot be planned within

the ATW window, the problem is infeasible.

Step 2.2: Plan Sis in (consecutive) time bucket(s). Within the ATWwindow, one or multiple

consecutive time buckets are selected to plan Sis. For each time bucket in the ATW window, we

check if there is either regular capacity or overtime available. The constructive heuristic is allowed to

plan multiple operations of one order in the same time bucket. This leads to the following situation:
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if operation Sis is scheduled for 60% of the time bucket, operation Sis+1 cannot be scheduled for more

than 40% of the time bucket. To prevent this situation, the auxiliary parameter PercentageWeekit

is initialised to ensure that the percentage of planned order Ii in time bucket t does not exceed 100%.

If there is (1) not enough regular capacity or overtime available to plan the complete processing time

in time bucket t or (2) PercentageWeekit ≥ 1 , we check if the consecutive time bucket t − 1 has

regular capacity or overtime left. If part of an order is planned in time bucket t and time bucket

t− 1 has no regular capacity or overtime left or PercentageWeekit ≥ 1, we delete all planned hours

of Sis and start planning again at the next time bucket t− 1 such that consecutiveness is ensured.

This is executed until (1) the complete processing time pis is scheduled within the ATW window or

(2) every time bucket in the ATW window is evaluated. Figure 4.3 shows a graphical representation

of step 2.2. (plan (i,s) in (consecutive) time bucket(s)). Appendix A provides a technical description

of the flowchart in Figure 4.3.

Figure 4.3: Flowchart of step 2.2. (plan (i,s) in (consecutive) time bucket(s)) of the constructive
heuristic.

4.2.3 Calculate objective value

Tardiness and overtime are calculated when all orders with their operations are completely planned.

One limitation of the constructive heuristic is that it only calculates tardiness and does not make

decisions on tardiness. For example, if an operation in t = di needs 10 hours of overtime with a total

cost of €200 while planning in t+1 does not require overtime but leads to a tardy order with a total

cost of €100, the constructive heuristic plans the operation in t = di. The improvement heuristic
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improves the constructive heuristic by checking if it is better to decrease overtime by increasing

tardiness and the other way around. One way to improve the constructive heuristic is to make

decisions on tardiness versus overtime. So, in the previous example, the constructive heuristic then

plans at t+ 1 instead of t. This is a recommendation for future research (see Section 6.2).

4.3 Improvement heuristic: Simulated Annealing

After constructing an initial feasible solution, SA is used to improve the initial solution. We choose

SA over TS since it explores and evaluates one neighbor at a time instead of multiple neighbor

solutions (Aarts et al., 1992). At TS, each neighbor solution needs to be evaluated against the

solutions already in the tabu list. SA also needs less tailored parameter tuning (Aarts et al., 1992).

At the beginning of the improvement heuristic, a set is created from the initial solution containing

tardy orders and orders using overtime. At each iteration of the improvement heuristic, a random

order i is selected from the created set. A neighbor is created with the neighborhood operator using

the randomly selected order. If the objective value of the neighbor is better than the current solution,

the neighbor is accepted as the new current solution. If the objective value of the neighbor is also

better than the current best solution, the neighbor is accepted as the new current best solution.

If the objective value of the neighbor is worse than the current solution, the neighbor is accepted

with a certain probability. After each Markov Chain, the temperature is decreased. Algorithm 1

provides the pseudo-code of the heuristic. Section 4.3.1 describes the neighborhood operator of the

SA heuristic.

Algorithm 1 Improvement heuristic: Simulated Annealing

Temp := InitialTemp
Solution := ConstructiveSolution
CurrentBest := Solution
while not StoppingCriteria do

for m := 1 to MarkovChainLength do
NeighborSolution := NeighborhoodOperator(Solution)
if NeighborSolution < Solution then

if NeighborSolution < CurrentBest then
CurrentBest := NeighborSolution

end if
Solution := NeighborSolution

else
if RandomNumber ≤ e

CurrentSolution−NeighborSolution
Temp then

Solution := NeighborSolution
end if

end if
end for
Temp := α * Temp

end while
Result := CurrentBest

4.3.1 Neighborhood operator

The neighborhood operator adjusts the current solution. Since the constructive heuristic does not

make trade-offs between increasing capacity or allowing tardiness, the neighborhood operator ad-
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justs either a tardy order or an order using overtime. Which order uses overtime is an arbitrary

choice. It depends on the order planned at the moment that regular capacity is not available anymore.

At each iteration of the improvement heuristic, a random order i is selected from the created set.

If the randomly selected order is tardy, the logic in paragraph 1A is followed. If the randomly

selected order uses overtime, the logic in paragraph 1B is followed. For both situations, precedence

constraints may be violated. To fix violations of the precedence constraints, the logic in paragraph

2 is followed.

1A. Replanning tardy order. For a tardy order, we check if we can finish the last operation zi

in an earlier time bucket while using overtime to avoid tardiness. So, we check if the tardy order can

be planned in an ATW window starting from the completion time of the last operation zi minus 1

until the minimum time bucket in the planning horizon, i.e. [cti − 1, Tmin]. After setting the ATW

window, the last operation zi is replanned using the logic in Figure 4.3.

1B. Replanning orders using overtime. If the order uses overtime, a random operation using

overtime is selected. We check if some or all amount of overtime used can be planned in regular

time in t − 1 or t + 1. If that is possible, we plan the available amount in regular time in the time

bucket that has the most regular capacity available. If it is not possible, the next operation in order

i using overtime is checked.

It may happen that no regular time is available for the operations using overtime in order i. To

still find a neighbor solution, the order is replanned using an ATW window using the completion

time of the last operation zi. If the completion time of zi (indicated by cti) is greater or equal

to the minimum time bucket and less than the maximum time bucket, the ATW window is set to

[cti + 1, Tmin]. If the completion time of zi is equal to the maximum time bucket in the planning

horizon, the ATW window is set to [cti − 1, Tmin].

2. Violation of precedence constraints. Replanning the last operation of a tardy order or an

operation using overtime may lead to a violation of the precedence constraints in the following ways:

1. The operation (except for the first operation) is replanned earlier than its predecessor finishes.

2. The operation (except for the last operation) is replanned later than its successor starts.

If precedence constraints are violated after replanning, all operations causing the violations are re-

planned until no violation exists. Replanning the operations due to precedence violation uses the

logic in Figure 4.3.

Figure 4.4 shows a graphical representation of the neighborhood operator.
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Figure 4.4: Flowchart of the neighborhood operator.

4.4 Conclusion on solution design

This chapter proposes a resource loading model formulation for the internal due date setting and

the tactical production planning problem of HA. The model takes into account non-preemption be-

tween an operation of an order (i.e. between Sis), regular and overtime capacity constraints, and

precedence constraints. We use the MIP model to plan a given set of orders in a specific planning

horizon. In that way, we can evaluate if the Customer Service Level of HA can increase and against

which costs.

To solve larger data instances, we designed a simple constructive and improvement heuristic. The

constructive heuristic is designed to construct an initial solution. The improvement heuristic im-

proves the initial constructed solution. Since the constructive heuristic does not make decisions on

tardiness, we improve the initial solution by either replanning a tardy order or replanning an order

using overtime.

The constructive heuristic is inspired by PBFL. It uses priority rules to determine the sequence in

which orders are planned. For each Sis it sets an ATW window and plans Sis in the ATW window in

one or multiple consecutive time buckets. If not enough regular capacity or overtime is available in

the ATW window, we enlarge the ATW window. In the end, the objective value is calculated. One

limitation is that the constructive heuristic only calculates tardiness and does not make decisions

on tardiness. The improvement heuristic replans a tardy order or an order using overtime. In the

first case, we check if a tardy order can be planned in an ATW window from the completion time of

the last operation zi minus 1. So, decreasing the ATW window. In the second case, we check if an

operation of an order using overtime can be planned in regular time in t−1 or t+1. For both cases,

we check if precedence constraints are violated after replanning. If they are violated, we replan the

operations causing the violations until no violations exist.
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5 Solution test

This chapter evaluates the performance of the solution design suggested in Chapter 4. Section 5.1

describes the setup of the solution test. Section 5.2 describes the experiments on the designed

MIP model. Section 5.3 describes the experiments for the designed constructive heuristic. Section

5.4 describes the experiments for the designed improvement heuristic. Section 5.5 evaluates the

performance of the constructive and improvement heuristic against the MIP model. Section 5.6

concludes the solution test.

5.1 Solution test setup

Section 5.1.1 describes the experiments of this research together with their goals. Section 5.1.2

describes the parameters and the values used in the experiment. Section 5.1.3 describes the data

set.

5.1.1 Experiments and their goals

In this chapter, several experiments are conducted for the MIP model, constructive heuristic and

improvement heuristic. The following experiments with their goals are conducted:

1. MIP: impact of planning horizon length & workload The goal is to identify and provide

insights into the performance of the MIP for different planning horizon lengths and workloads.

2. MIP: impact of different maximum overtime. The goal is to identify the impact of

using different maximum overtime and to provide insights into the maximum overtime needed

to create feasible solutions.

3. MIP: impact of different ϵ. ϵ indicates the minimum duration required to start an opera-

tion. The goal of this experiment is to identify the impact of different ϵ on the performance of

the MIP model.

4. MIP: insight in Customer Service Level. The goal is to provide insights into the extent

the Customer Service Level can be increased against which costs. This test provides the

following insights to HA: (1) the extent to which the Customer Service Level improves against

which costs, (2) the bottleneck operations, and (3) the maximum overtime used to achieve the

result.

5. MIP: validation of infeasible production plans. The MIP model results in two infeasible

scenarios at the Customer Service Level tests. The goal of this test is to validate if the infeasible

production plans resulting from the MIP model also appeared to be infeasible in practice.

6. Constructive heuristic: impact of different priority rules. The goal is to identify which

priority rule works best for the situation of HA.

7. Improvement heuristic: initialisation of the parameters. The goal is to identify the

initial values of the SA parameters that work best for the situation of HA. The parameters are

initial temperature, length of Markov Chain, cooling scheme and stopping criteria.

8. Solution quality of constructive heuristic and improvement heuristic. The goal is to

provide insights into the performance of the constructive and improvement heuristic.
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5.1.2 Parameter settings

The following parameter values are retrieved from Isah and fixed during the experiments: Sis, pis, di

and cj . The maximum overtime parameter mojt is determined in the experiments since they differ

for each experiment. The cost of tardiness and overtime are equal for each experiment. The costs

are determined by the management of HA. The cost of overtime is set to the gross wage per hour of

an employee plus the overhead cost for equipment that they use. The cost of a tardy order is based

on the risk of harming a customer relationship due to late delivery in combination with the indirect

personnel cost of organising a late shipment. HA uses a cost of tardiness independent of the order

size. HA does not distinguish between the importance of the relationship of customers with higher

sales and organising a late shipment takes the same amount of time independent of the order sizes.

The following costs are determined:

1. Cost of working one hour of overtime: €45

2. Cost of a tardy order: €500

5.1.3 Data

The data set used is retrieved from Isah. On 10-05-2023, we created a list of all production orders

accepted to produce in 2023. This list includes orders already produced in 2023 and orders still

to be produced in the remainder of 2023. A total of 582 orders and 2524 operations are accepted.

Some operations in a production route have no processing time inserted in Isah. A processing time

is defined for these operations based on the mean processing time of all operations in 2023. Table

5.1 shows the mean processing time (expressed in hours) per operation type j in 2023.

Table 5.1: Mean processing time per operation type j in 2023.

Operation
Mean processing
times (hours)

Operation
Mean processing
times (hours)

AOI 8 PWA 4
COAT 5 REW 1
EC 4 SMD 11
PB 1 SOL 2
POT 5 SSOL 9
PR 7 TC 1

PRNA 1 TE 5
PRO 4 VER 4
PW 3

Two priority rules are based on the processing times of operations. Therefore some insight is gained

into the distributions of the processing times of the operations in the data set. Figure 5.1 shows

a graphical representation of the distribution of pis in the data set of 2023. The dataset contains

more small processing times (pis) than larger processing times. This may lead to more tardiness if

the larger orders are planned first since a few large orders late lead to less tardiness than a lot of

small orders late. Therefore, we hypothesise that the priority rule SPT performs better than LPT.

The processing times of zero in the Figure confirm that some operation in a production route have

nu processing time inserted in Isah.
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Figure 5.1: Distribution of processing times in dataset of 2023.

5.2 Experiments on MIP

Section 5.2.1 identifies the performance of the MIP model for different planning horizon lengths and

workloads. Section 5.2.2 identifies the impact of different maximum overtimes on the MIP model.

Section 5.2.3 identifies the impact of different minimum durations (ϵ) required to start an operation.

Section 5.2.4 identifies and provides insights into the improvement of the Customer Service Level

by using the MIP model. Section 5.2.5 validates the infeasibility found by the MIP model of the

production plan.

5.2.1 MIP: impact of planning horizon length & workload

This section identifies and provides insights into the performance for different planning horizon

lengths and workload sizes. We assume no overlap between 2 consecutive planning horizons.

The operations manager of HA evaluates and updates the production plan every 2 months to create a

more reliable and feasible production plan based on the current situation. The first planning horizon

is set to 2 months (8 time buckets). Also, a smaller planning horizon of 1 month (4 time buckets)

and two larger planning horizons of 4 months (16 time buckets) and 6 months (24 time buckets)

are tested. HA knows a light, typical and heavy workload. The workload at HA depends on the

processing time and not the number of orders, i.e. the workload is the sum of all processing times

(
∑

is pis). So it may happen that a heavy workload contains more orders than a typical workload.

Each workload type is based on the workload per month in the planning horizon, i.e.
∑

is pis divided

by the planning horizon length. Table 5.2 provides the thresholds for each workload type. We test

a light workload period, a typical workload period, and a heavy workload period for each planning

horizon.
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Table 5.2: Definition of workload types at HA.

Workload type
Average workload

per month in
planning horizon (hours)

Light < 1000
Typical 1000-1800
Heavy > 1800

We identify scenarios for each planning horizon length and workload from the dataset of 2023. Table

5.3 shows the resulting scenarios.

Table 5.3: Scenarios test MIP: impact of planning horizon length & workload.

Scenario

Planning
horizon
(time

buckets)

Workload Time buckets # orders # operations
Workload
(hours)

1 4 Light 26-29 33 150 818
2 4 Typical 11-14 75 298 1714
3 4 Heavy 7-10 69 279 1921

4 8 Light 26-33 50 226 1415
5 8 Typical 23-30 94 423 2456
6 8 Heavy 6-13 148 604 3825

7 16 Light 26-41 91 441 2768
8 16 Typical 19-34 177 780 4989
9 16 Heavy 6-21 289 1201 8007

10 24 Light 25-48 130 625 4209
11 24 Typical 16-39 261 1171 7759
12 24 Heavy 2-25 430 1798 11786

We start the experiments with a maximum overtime of 60 for each scenario test. If maximum over-

time of 60 is not enough to create a feasible solution or a solution with a gap of 0%, we test a higher

maximum amount of overtime. We stop the MIP if a solving time of 600 seconds is reached since

HA does not accept a solution solving for more than 10 minutes.

Table 5.4 shows the results of the experiments. A combination of the planning horizon length and

workload determines if the MIP is efficient to use within a reasonable amount of time and if it can

find an optimal solution. A solution is optimal if the objective value found equals the lower bound of

the minimisation problem. The lower bound of a minimisation problem represents the best feasible

solution value for the objective function within its feasible region (Lalla, 2021). The upper bound

of a minimisation problem represents the best feasible solution found so far (Lalla, 2021). A gap

represents the difference between the lower bound and the upper bound. A gap of 0% demonstrates

optimality. The result also includes bottleneck operations per scenario. Bottleneck operations are

operations using overtime.

For a planning horizon of 1 and 2 months, the MIP provides an optimal solution for a light, typical
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and heavy workload. For a planning horizon of 4 months, the MIP only provides an optimal solution

for a light workload. The MIP model cannot find an optimal solution for a planning horizon of 6

months. For the planning horizons of 4 and 6 months, higher maximum overtime is tested to evaluate

the performance of the MIP. For a planning horizon of 4 months with a typical workload, the MIP

finds solutions with a gap of around 36%. For heavier workloads in combination with larger planning

horizons, the MIP model is (1) infeasible or (2) has a large maximum overtime and a high solution

gap which is far from optimal. The MIP tests in the remainder of this chapter are performed for

a planning horizon of 1 and 2 months. The constructive and improvement heuristic may be more

efficient for larger planning horizons, especially in combination with typical and heavy workloads.

For all feasible scenarios, SSOL is a bottleneck operation. Other bottleneck operations are SMD,

PR and AOI.

Table 5.4: Result test MIP: impact of planning horizon length & workload.

Scenario
Maximum
overtime

Cost of
tardiness (e)

Cost of
overtime (e)

Total cost
(e)

CPU time
GAP
(%)

Bottleneck
operations

1 60 0 0 0 0.1 0 -
2 60 2000 13860 15860 0.8 0 SMD,SSOL
3 63 1000 21105 22105 13 0 SMD,SSOL

4 60 0 0 0 1 0 -
5 60 2000 1575 3575 19 0 SSOL
6 60 1500 49500 51000 148 0 SMD,SSOL

7 60 0 0 0 30 0 -
8a 60 7000 5985 12985 ≥ 600 38 SSOL,PR
8b 180 7000 4590 11590 ≥ 600 29 SSOL
8c 240 7500 6750 14250 ≥ 600 43 SSOL
9a 60 - - - ≥ 600 infeasible -
9b 240 - - - ≥ 600 infeasible -
9c 999 2500 113625 116125 ≥ 600 5 SMD,SSOL,PR

10 60 1000 0 1000 156 0 -
11a 60 - - - ≥ 600 infeasible -
11b 240 - - - ≥ 600 infeasible -
11c 999 106000 76185 182185 ≥ 600 92 SSOL,AOI
12a 60 - - - ≥ 600 infeasible -
12b 240 - - - ≥ 600 infeasible -
12c 999 2000 162315 164315 ≥ 600 81 SMD,SSOL,PR

5.2.2 MIP: impact of different maximum overtime

Section 5.2.1 concludes that the MIP model leads to optimal solutions for a planning horizon of 1

and 2 months for each workload type. Therefore, the impact of maximum overtime is tested for a

planning horizon of 1 and 2 months in combination with light, typical and heavy workloads. These

are scenarios 1, 2, 3, 4, 5 and 6 of Table 5.3 in Section 5.2.1. We also provide insights into the

maximum overtime needed to create feasible solutions.

Table 5.5 shows the results of the experiments. We find the maximum overtime needed to create

a feasible solution for each scenario. The solution improves a little by increasing overtime. This is

logical since increasing available overtime enables orders to use overtime instead of being tardy. The
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solution cannot increase tardiness to improve the objective value because all frequently occurring

operations use all regular capacity available in each time bucket in the planning horizon. This implies

that we cannot improve the solution by finishing orders late because no regular capacity is available

in the later time buckets. The impact of maximum overtime is low. By increasing overtime, we only

can decrease tardiness by 1 or 2 orders even if overtime is increased significantly.

Table 5.5: Result test MIP: impact of maximum overtime.

Scenario
Maximum
overtime

Tardy
orders (%)

Cost of
tardiness (e)

Cost of
overtime (e)

Total cost
(e)

CPU time
Bottleneck
operations

1 0 0 0 0 0 0.1 -
2a 42 - - - Infeasible 0.8 -
2b 43 5.3 2000 13860 15860 1 SMD,SSOL
2c 60 5.3 2000 13860 15860 1 SMD,SSOL
2d 100 4 1500 14265 15765 0.8 SMD,SSOL
2e 400 4 1500 14265 15765 0.8 SMD,SSOL
3a 62 - - Infeasible 0.1 -
3b 63 2.9 1000 21105 22105 14 SMD,SSOL
3c 100 1.4 500 21105 21605 25 SMD,SSOL

4 0 0 0 0 0 1 -
5a 4 - - - Infeasible 0.1 -
5b 5 5.3 2500 1575 4075 42 SSOL
5c 25 4.3 2000 1575 3575 19 SSOL
5d 60 4.3 2000 1575 3575 18 SSOL
5e 400 4.3 2000 1575 3575 17 SSOL
6a 57 - - - Infeasible 1 -
6b 58 2.0 1500 49500 51000 299 SMD,SSOL,PR
6c 60 2.0 1500 49500 51000 153 SMD,SSOL,PR
6d 100 1.4 1000 49500 50500 157 SMD,SSOL,PR
6e 400 1.4 1000 49500 51000 ≥ 600 SMD,SSOL,PR

5.2.3 MIP: impact of different ϵ

Again, we use scenarios 1, 2, 3, 4, 5 and 6 of Table 5.3 in Section 5.2.1. Section 5.2.2 concludes that

the impact of maximum overtime on the MIP model is low. For this section, we use the maximum

overtime found such that the scenario is feasible. Table 5.6 shows the resulting scenarios.

Table 5.6: Scenarios test MIP: impact of different ϵ.

Scenario

Planning
horizon
(time

buckets)

Workload
Maximum
overtime

Time buckets # orders # operations
Workload
(hours)

1 4 Light 0 26-29 33 150 818
2 4 Typical 43 11-14 75 298 1714
3 4 Heavy 63 7-10 69 279 1921

4 8 Light 0 26-33 50 226 1415
5 8 Typical 5 23-30 94 423 2456
6 8 Heavy 58 6-13 148 604 3825
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This section identifies the impact of different ϵ, i.e. the minimum duration required to start an

operation. We test the following minimum durations: 0.01, 0.1, 0.25, 0.5 and 0.75. We do not test

an ϵ greater than 1 since this leads to infeasible solutions. This is logical since a lot of processing

times equals 1 (see Figure 5.1). We do not have processing times lower than 1.

Table 5.7 shows the results of the experiments. We can conclude that the epsilon does not have an

influence on the performance of the MIP. Even the solving time remains almost the same for each

epsilon. This implies that it is not more efficient to use a minimum duration lower than 1.

Table 5.7: Result test MIP: impact of different ϵ.

Scenario ϵ
Cost of

tardiness (e)
Cost of

overtime (e)
Total cost

(e)
CPU time

Bottleneck
operations

1
0.01, 0.1, 0.25
0.5, 0.75

0 0 0 ± 0.1 -

2
0.01, 0.1, 0.25
0.5, 0.75

2000 13860 15860 ± 1 SMD,SSOL

3
0.01, 0.1, 0.25
0.5, 0.75

1000 21105 22105 ± 33 SMD,SSOL,AOI

4
0.01, 0.1, 0.25
0.5, 0.75

0 0 0 ± 1 -

5
0.01, 0.1, 0.25
0.5, 0.75

2500 1575 4075 ± 21 SSOL

6
0.01, 0.1, 0.25
0.5, 0.75

1500 49500 51000 ± 435 SMD,SSOL,PR

5.2.4 MIP: insight in Customer Service Level

The previous sections analyse the impact of different settings of the MIP model. The goal of

analysing the improvement of the Customer Service Level is to improve the Customer Service Level

against the lowest cost. We use the conclusions of the previous tests to set the settings of the MIP

model. We again use scenarios 1, 2, 3, 4, 5 and 6 of Table 5.3 in Section 5.2.1. For the maximum

overtime, we test two cases: (1) no restriction on maximum overtime and (2) the current maximum

overtime allowed at HA (i.e. mojt = 20). The first case is used to find a cost-efficient balance

between overtime and tardiness without maximum overtime restrictions. The second case is used

to identify if the scenarios are feasible with the current maximum overtime restrictions of HA. The

first case is indicated with scenario + a, whereas the second case is indicated with scenario + b.

For both cases, we use an ϵ of 1. Table 5.8 shows the results of the experiments. The last column

indicates the maximum overtime actually used at the solution.

We conclude that the maximum overtime of HA of 20 only provides a feasible solution for a planning

horizon of 1 and 2 months in combination with a light workload. For these combinations, also 0%

tardiness is achieved. The planning horizons of 1 and 2 months with a light, typical and heavy

workload are feasible when there is no restriction on maximum overtime. When using no maximum

overtime restrictions, we still have a small percentage of tardy orders. The goal of HA is a Customer

Service Level of at least 90%. If HA is able to extend the capacity to the maximum overtime

used against the cost mentioned, HA is able to improve its Customer Service Level above 90%. The
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bottleneck for each scenario is SMD and SSOL. Also, AOI and PR are bottlenecks in some scenarios.

Table 5.8: Result test MIP: Customer Service Level.

Scenario
Tardy

orders (%)
Cost of

tardiness (e)
Cost of

overtime (e)
Total cost

(e)
Bottleneck
operations

Max. overtime
used

1a 0 0 0 0 - 0
1b 0 0 0 0 - 0
2a 4.0 1500 14264 15765 SMD,SSOL,AOI 74
2b - - - infeasible - -
3a 1.4 500 21105 21605 SMD,SSOl,AOI 238
3b - - - infeasible - -

4a 0 0 0 0 - 0
4b 0 0 0 0 - 0
5a 4.3 2000 1575 3575 SSOL 18
5b 4.3 2000 1575 3575 SSOL 14
6a 1.4 1000 49500 50500 PR,SMD,SSOL 127
6b - - - infeasible - -

5.2.5 MIP: validation of infeasible production plans

The test on Customer Service Level in Section 5.2.4 shows two infeasible scenarios: a planning

horizon of 4 time buckets with a heavy workload (scenario 3b) and a planning horizon of 8 time

buckets with a heavy workload (scenario 6b). Both scenarios use the current maximum overtime at

HA of 20 hours per operation per time bucket. We test for both scenarios if they appeared infea-

sible in practice. Section 4.1.1 discusses that a solution is feasible if each operation is completely

assigned within the planning horizon while respecting the precedence, capacity and non-preemption

constraints. To validate the infeasibility of the model, we examine whether each order within the

planning horizon is completed by or before its internal due date. Orders finishing beyond the plan-

ning horizon demonstrate the infeasibility of the scenario.

Table 5.9 shows the result in terms of orders finished outside the planning horizon and the number

of tardy orders. The production plan in both scenarios is infeasible in practice due to orders finished

outside the planning horizon. A significant amount of orders are tardy. We analysed the number

of orders finished beyond the planning horizon between scenario 3b and scenario 6b. One potential

explanation is that scenario 6b has a broader planning horizon, allowing for a more distributed

allocation of orders across the time buckets. Orders with internal due dates in time buckets 7 to 10

fall within the planning horizon due to the inclusion of time buckets 6, 11, 12 and 13 in the planning

horizon in scenario 6b. However, the orders from scenario 3b planned in time buckets 6, 11, 12 and

13 limit the capacity available for the orders with an internal due date in those time buckets and

they are planned outside the planning horizon of 6-13. Besides, there is an almost equal amount

of due orders in each time bucket each involving comparable numbers of operations and processing

times that need to be planned. So, this explanation seems unlikely. The number of tardy orders in

each scenario is almost equal.

The infeasibility in practice could have been avoided by the MIP model which already showed
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the infeasibility of the problem by a maximum overtime of 20 hours. By using the MIP model,

HA could analyse the situation and take preventive measures, including the adjustment of the

maximum overtime or proactive communication with customers regarding revised shipment dates.

Implementing these proactive steps ensures that the problem becomes feasible and reduces the

number of orders that are delayed.

Table 5.9: Result test MIP: validation on infeasible production plans.

Scenario

Planning
horizon
(time

buckets)

# orders
Orders finished outside
planning horizon (%)

Tardy orders (%)

3b 7-10 69 70 77
6b 6-13 148 51 74

5.3 Experiment on the constructive heuristic: priority rules

This section identifies which priority rule leads to the lowest objective. The priority rules mentioned

in Section 4.2.1 are EDD, LDD, SPT and LST. We test the priority rules for a planning horizon of

2 months for each workload type since the standard planning horizon of HA is two months. We use

the maximum overtime found for a feasible solution in Section 5.2.2. If for the constructive heuristic

the problem is infeasible using the maximum overtime of Section 5.2.3 Table 5.6, we increase the

maximum overtime until the constructive problem is feasible. We compare two results:

1. The maximum overtime needed for a scenario and specific priority rule to be feasible.

2. The performance of the different priority rules in a scenario for the same maximum overtime.

Table 5.10 shows the result of the first experiment. The SPT priority rule needs the highest maximum

overtime for a typical (scenario 5) and heavy (scenario 6) workload to be feasible. The SPT priority

rule also leads to the lowest percentage of tardy orders because more overtime can be used such that

fewer orders are tardy.
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Table 5.10: Performance of constructive heuristic for different priority rules: what maximum over-
time needed?

Scenario
Maximum
overtime

Priority rule
Tardy

orders (%)

Cost of
tardiness

(e)

Cost of
overtime

(e)

Total cost
(e)

4 0 EDD 6.0 1500 0 1500
4 0 LDD 8.0 2000 0 2000
4 0 SPT 6.0 1500 0 1500
4 0 LPT 6.0 1500 0 1500

5 5 EDD 41.5 19500 4860 24360
5 11 LDD 10.6 5000 11610 16610
5 22 SPT 4.3 2000 14265 16265
5 7 LPT 58.5 27500 8145 35645

6 58 EDD 16.9 12500 62595 75095
6 59 LDD 7.4 5500 60885 66385
6 71 SPT 1.4 1000 61515 62515
6 58 LPT 17.6 13000 62505 75505

Table 5.11 shows the result of the second experiment. The priority rule SPT leads to the lowest

objective value for a typical (scenario 5) and heavy (scenario 6) workload. For scenario 6, SPT also

leads to the lowest percentage of tardy orders. For scenario 5, SPT and LDD both lead to the lowest

percentage of tardy orders.

Table 5.11: Performance of constructive heuristic for different priority rules using same amount of
maximum overtime.

Scenario
Maximum
overtime

Priority rule
Tardy

orders (%)

Cost of
tardiness

(e)

Cost of
overtime

(e)

Total cost
(e)

4 0 EDD 6.0 1500 0 1500
4 0 LDD 8.0 2000 0 2000
4 0 SPT 6.0 1500 0 1500
4 0 LPT 6.0 1500 0 1500

5 22 EDD 12.8 6000 16335 22335
5 22 LDD 4.3 2000 15660 17660
5 22 SPT 4.3 2000 14265 16265
5 22 LPT 45.7 21500 18315 39815

6 71 EDD 4.1 3000 62460 65460
6 71 LDD 2.7 2000 61560 63560
6 71 SPT 1.4 1000 61515 62515
6 71 LPT 6.1 4500 63450 67950

5.4 Experiments on improvement heuristic: initialisation parameters

For SA, the following parameters need initialisation: initial temperature, length of Markov Chains,

cooling scheme and stopping condition. Each parameter is set by experiments. We use scenario 5

(planning horizon of 2 months with a typical workload) to find the initial parameters since this is

the current planning horizon and preferred workload type for HA. The SPT priority rule is used
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to construct a solution since this is the best-performing priority rule for our problem according to

Section 5.3.

5.4.1 Initial temperature

Section 3.2.2 describes that the initial temperature is set such that the initial acceptance ratio is

approximately 1. At this stage, the Markov Chain length, cooling scheme and stopping condition are

not determined yet. For the Markov Chain length, a rule of thumb is to use the number of neighbour

solutions. For this experiment, we use a smaller and larger arbitrary Markov Chain length to test the

influence of the Markov Chain length on the initial temperature. The smaller Markov Chain length

is set to 100, the bigger is set to 1000. For the cooling scheme, we choose α close to 1. We choose

an α of 0.99. For the stopping criteria, we use a common stopping criterion where the heuristic

stops if the temperature is getting close to 0. During this experiment, we stop if the temperature

drops below 0.05. We start with an initial temperature of 10 and increase it until the initial accep-

tance ratio becomes around 1. Figure 5.2 shows the results of the experiments with a Markov Chain

length of 100 and Figure 5.3 shows the results of the experiments with a Markov Chain length of 1000.

The Markov Chain length has almost no effect on the acceptance ratio for different initial tempera-

tures while the CPU time increases significantly with a larger Markov Chain length. The CPU time

for one iteration of Markov Chain length 100 is around 4, whereas the CPU time for one iteration

of Markov Chain length 1000 is around 180 (± 3 minutes). The number of iterations needed for an

initial temperature is calculated by initial temperature ∗αn = stopping condition where n equals the

number of iterations needed. In this experiment, n is calculated by n = log0.99(
0.05

Initial temperature ).

Note that the number of iterations highly depends on α, so the number of iterations found in this

experiment only applies to α = 0.99 and a stopping condition of 0.05.

A higher initial temperature implies more iterations, so we make a trade-off between the acceptance

ratio and the number of iterations needed. For both Markov Chain lengths, the initial acceptance

ratio is above 0.95 for an initial temperature of 3000. So, we choose an initial temperature of 300.

We do not choose a higher initial temperature since it increases the acceptance ratio by 0.01 while

we need around 20 iterations more. For a Markov Chain length of 100, this is around 1.6 minutes.

For a Markov Chain length of 1000, this is around 75 minutes.

Figure 5.2: Results initial temperature ex-
periment with Markov Chain length of 100.

Figure 5.3: Results initial temperature ex-
periment with Markov Chain length of 1000.
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5.4.2 Markov Chain length, cooling scheme and stopping condition

With an initial temperature of 3000, we find the best Markov Chain length and cooling scheme.

The trade-off is a good solution within a reasonable amount of time. Section 5.4.1 explains how to

calculate the number of iterations needed given an initial temperature, α and stopping condition.

We first emphasise the influence of α on the number of iterations. Assume a stopping condition of

Temperature < 0.05 and an initial temperature of 3000. Table 5.12 shows the number of iterations

needed for some values of α. Especially for α close to 1, the number of iterations increases signif-

icantly. We start testing the following values of α: 0.85, 0.90, 0.96 and 0.98. Based on the results

different α is tested. We start the experiments with a Markov Chain length of 100 and will increase

and decrease according to the results.

Table 5.12: Impact of α on the number of iterations needed for SA.

α
Number of

iterations needed
α

Number of
iterations needed

0.80 49 0.96 270
0.85 68 0.97 361
0.90 104 0.98 545
0.95 215 0.99 1095

Figure 5.4 shows the results of the experiments. The SA heuristic is almost insensitive to the Markov

chain Length and decrease factor. This implies that the current best solution is found quickly and

the heuristic is not able to improve the solution more. This indicates that the SA neighborhood

operator can be designed in a better way. Due to time limitations of this research and the suffi-

ciency of the MIP model for HA, we are not improving the neighborhood operator. HA commonly

uses a planning horizon of around 2 months, which is solvable by the MIP model. Improving the

SA heuristic is a recommendation for future research (see Section 6.2). The improvement heuristic

improves the constructive solutions on average with 19%. For the remainder of the experiments, we

use a Markov Chain length of 25 and an α of 0.90 since this combination leads to the lowest CPU

time against the best improvement to the constructive solution.

Figure 5.4: Results of the Markov Chain length and cooling scheme experiments.

Since the heuristic finds the current best solution quickly, we assume that the stopping condition

does not have a high influence as well. An experiment testing different stopping conditions confirms
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our assumptions. The solution quality does not improve using a lower or higher stopping condition.

Therefore, we use the stopping condition used during the previous experiments: the temperature

drops below 0.05.

5.5 Solution quality of constructive and improvement heuristic

Despite the fact that the neighborhood operator can be designed in a better way, the solution quality

of the constructive and improvement heuristic is compared to the MIP solutions. For the construc-

tive heuristic, we use the priority rule SPT. For SA, we use the parameter values found in Section

5.4. So an initial temperature of 3000, a Markov Chain length of 25, an α of 0.90 and a stopping

condition of temperature below 0.05. We test scenarios 1, 2, 3, 4, 5 and 6 of Section 5.2.1 Table

5.3. We do not test the other scenarios because we cannot compare an optimal MIP solution with

the constructive and improvement solutions since the MIP model cannot find an optimal solution

for these scenarios.

Table 5.13 shows the results. In terms of tardiness, the constructive and improvement heuristic

performs better than the MIP model. The constructive heuristic results in no tardiness. Section

4.2.3 discusses that the constructive heuristic does not make decisions on tardiness or using overtime.

It plans the order in (consecutive) time bucket(s) closest to the internal due date. Since there is

no maximum overtime restriction, overtime is increased until each order is finished on its internal

due date. Therefore, the constructive heuristic results in no tardiness against a higher cost for using

overtime. The improvement heuristic slightly increases the percentage of tardy orders since orders

using overtime are rescheduled which leads to a tardy order. In terms of objective value, the MIP

performs better than the constructive and improvement heuristic. The MIP makes decisions on

tardiness and using overtime which leads to a cost-efficient solution. This confirms the assumption

that the neighborhood operator can be designed in a better way such that the amount of overtime

and tardiness leads to a more cost-efficient solution.

Table 5.13: Performance of the three models: tardy orders and objective values.

Scenario
Tardy
orders

MIP (%)

Total cost
MIP (e)

Tardy
orders

constructive (%)

Total cost
constructive (e)

Tardy
orders
SA (%)

Total cost
SA (e)

1 0 0 0 4545 0 360
2 4.0 15765 0 21150 2.7 21065
3 1.4 21605 0 29205 0 26820
4 0 0 0 5715 1.8 1040
5 4.3 3575 0 21195 2.0 16525
6 1.4 50500 0 65745 2.7 62615

Table 5.14 provides insights into the gap between the MIP and constructive heuristic, MIP and

improvement heuristic, as well as the improvement of the constructive heuristic by the improve-

ment heuristic. In scenarios 2, 3 and 6 the constructive and improvement heuristic demonstrate a

performance with gaps ranging from 24% to 35.2%. There are two already known explanations for

the gaps. The first explanation is the SA neighborhood operator. It finds the current best solution

quickly and is not able to improve the solution close to the MIP solution. The second explanation is
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the constructive heuristic. The constructive heuristic does not make decisions on tardiness or using

overtime. It plans the operation of an order backwards in the set ATW window and changes the

ATW window if not enough capacity or overtime is available. Since there is no maximum overtime

restriction, the operations of the order are always scheduled in the first time bucket of the ATW

window (i.e. the internal due date) using overtime. To decrease overtime cost, the improvement

heuristic reschedules the orders using overtime (partially) to an earlier or later time bucket such

that overtime cost decreases.

A contradicting insight resulting from this test is the improvement of the constructive heuristic by

SA of 92.1% (scenario 1) and 81.8% (scenario 4). The MIP model shows that scenario 1 and 4 is

solvable without tardiness and overtime by scheduling some operation in consecutive time buckets

instead of one time bucket. Since the improvement heuristic reschedules some operations (partially)

to an earlier or later time bucket and the scenarios have a light workload, the improvement heuristic

is able to improve the constructive heuristic significantly. The second notable insight is scenario

5 with a gap between the MIP model and constructive heuristic of 492% and the gap between

the MIP model and improvement heuristic of 362%. This implies that the MIP model finds a

significantly better solution compared to the constructive and improvement heuristic. The main

difference between the MIP and the heuristics is the amount of overtime used. The MIP only

uses 35 hours of overtime (€1575), whereas the constructive heuristic uses 471 hours of overtime

(€21195) and the improvement heuristic uses 345 hours of overtime (€15525). An explanation

is that scenario 5 contains orders with high processing time operations around the same internal

due date. Since there is no maximum overtime restriction, the constructive heuristic increases the

capacity to fit the high-processing time operations into the time bucket of the internal due date

whereas the MIP model balances the high-processing times over multiple time buckets. Because of

the high gap between the MIP and constructive, the improvement heuristic is able to improve the

constructed solution significantly compared to the improvements in scenarios 2, 3 and 6. However,

it cannot improve close to the MIP solution due to the SA neighborhood operator.

Table 5.14: Performance of the three models: the gap between the solutions.

Scenario
Gap between

MIP & constructive (%)
Gap between

MIP & SA (%)
Improvement constructive

by SA (%)

1 - - 92.1
2 34.2 33.6 0.4
3 35.2 24.1 8.2
4 - - 81.8
5 492.9 362.0 22.0
6 30.2 24.0 4.8

5.6 Conclusion on solution test

In this chapter, we use scenarios representing a planning horizon of 1, 2, 4 or 6 months in combi-

nation with a light, typical or heavy workload. The scenarios contain some undefined processing

times. The undefined processing times are defined based on historical data. The orders contain

more operations with smaller than larger processing times.
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The MIP model is computationally tractable for planning horizons of 1 and 2 months with a light,

typical and heavy workload. The impact of the maximum overtime and ϵ in the MIP model are

low. The Customer Service Level of HA can improve beyond 90% at the expense of overtime and

tardiness costs when following the production plan provided by the MIP model. The bottleneck

operations are SMD, SSOL, AOI and PR.

For planning horizons larger than 2 months with a typical or heavy workload, the MIP model be-

comes computationally expensive. For these situations, constructive and improvement heuristics are

used. The best priority rule for the constructive heuristic is the Shortest Processing Time. For

the improvement heuristic, the initial parameter values for the temperature (3000), Markov Chain

length (25), decrease factor (0.9) and stopping condition (temperature < 0.05) are defined. The

improvement heuristic is almost insensitive for the Markov Chain length, decrease factor and stop-

ping condition. For almost all scenarios, the constructive and improvement heuristic performs with

a gap of 24% and 35.2% between the MIP solution. This is a consequence of the SA neighborhood

operator and constructive heuristic. The SA neighborhood operator finds the best solution quickly

but is not able to improve the solution close to the MIP solution. The constructive heuristic does not

make decisions on tardiness and overtime. Without overtime restrictions, the constructive heuristic

plans each operation at the internal due date of the order by increasing overtime. It does not create

a tardy order if that would lead to lower total costs. Due to time limitations, this is not executed

during this research but is a recommendation for future research (see Section 6.2).
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6 Conclusion and recommendation

Section 6.1 provides a conclusion to this research and Section 6.2 provides recommendations for HA.

Section 6.3 discusses the contribution of this research to theory and practice. Section 6.4 discusses

implementation challenges for HA.

6.1 Conclusion

HA employs a high-mix low-volume MTO production strategy in a job shop production environment.

The management of HA finds the Customer Service Level of 86.6% too low and wants to improve

the Customer Service Level to at least 90%. After identifying possible (core) problems, we conclude

that the low Customer Service Level is a result of end products missing their external due date for

customer shipments. The external due dates are missed due to infeasible production plans that rely

on assumptions about resource capacity instead of incorporating actual capacity data. Therefore,

the main research question is:

How can a method that takes into account resource capacity using data available in

tactical production planning for a high-mix low-volume make-to-order EMS company

be designed such that the Customer Service Level improves from 86.6% to 90%?

After limiting the scope, we conclude that resource loading is the most appropriate method to solve

this problem. Resource loading measures the impact of a set of orders in terms of internal due

dates and resource capacity levels by either allowing tardiness (resource-driven) or extending capac-

ity (time-driven). The designed model for HA integrates both resource loading approaches. The

designed MIP model schedules orders with its operations within the planning horizon while min-

imising tardiness and overtime costs. The MIP model allows both tardiness and overtime and takes

into account non-preemption constraints within an operation of an order, capacity constraints and

precedence constraints. The MIP model can be used by HA for a planning horizon of 1 or 2 months

in combination with light, typical and heavy workloads. For other combinations of planning horizons

and workloads, the MIP model becomes computationally expensive. The experiments throughout

this research show that a Customer Service Level of at least 90% can be achieved by using the MIP

against some tardiness and overtime costs. For the scenarios tested, the Customer Service Level can

improve between 95% and 100% with costs ranging between €0 and €50,500.

For larger data instances a constructive and improvement heuristic is needed to solve the instance

in a reasonable amount of time. For HA, larger data instances are a planning horizon larger than

2 months in combination with a typical and heavy workload. The constructive heuristic is based

on Partial Backward Finite Loading. Partial Backward Finite Loading plans operations of an order

in one or multiple contiguous time buckets with enough capacity left. Whereas Partial Backward

Finite Loading takes into account capacity, some simpler priority rules also exist such as Earliest

Due Date, Latest Due Date, Shortest Processing Time and Largest Processing Time. For HA,

a constructive heuristic is designed based on Partial Backward Finite Loading while determining

the order sequence by the Shortest Processing Time priority rule. To improve the constructive

heuristic, an improvement heuristic is designed. The improvement heuristic is Simulated Annealing

which adjusts the solution by either trying to schedule overtime in regular time or by decreasing the
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completion time of tardy orders. The constructive and improvement heuristics achieve a gap to the

MIP solution between 24% and 35.2%. The are two reasons for the gaps. The first one is that the

constructive heuristic does not decide on overtime and tardiness. It plans the operation of an order

backwards in the set ATW window and only enlarges the ATW window if not enough capacity or

overtime is available. Without maximum overtime restrictions, the constructive heuristic increases

overtime until enough overtime is available to fit the operation at the internal due date of the order.

So, it mainly increases overtime costs instead of creating tardiness costs. The second one is that

the neighborhood operator can be designed in a better way. The experiments show that the SA

heuristic is almost insensitive to the Markov Chain Length and decrease factor, so the current best

solution is found quickly and the heuristic is not able to improve the solution more. Therefore, the

SA heuristic cannot improve the constructed solution such that the objective value comes close to

the MIP solution.

6.2 Recommendations

To goal of this research is to create a method that takes into account resource capacity using data

available in tactical planning and to find out if the Customer Service Level can be improved beyond

90%. This section explains recommendations formed during this research.

Implement the MIP model at HA. We recommend using the designed model at the tactical

planning level to gain insights into the resource capacity levels in a specific planning horizon and to

set internal due dates such that the Customer Service Level can be improved. Section 6.4 discusses

the implementation challenges for HA.

Further developing the constructive and improvement heuristic. The main focus of this

research is the MIP model. A simple constructive heuristic and improvement heuristic are provided

for larger data instances. For the constructive heuristic, we suggest researching the use of a greedy

heuristic that makes decisions on tardiness versus overtime. For the improvement heuristic, we

suggest improving the neighborhood operator. The current neighborhood operator is not able to

decrease the overtime close to the amount of overtime used in the MIP solution. Due to time

limitations and the fact that the MIP model can be used for the standard planning horizon of HA,

this is not assessed during this research.

Implementing the heuristics in a more suitable computer program. During this research,

the heuristics are implemented in AIMMS. AIMMS software is especially for designing and solving

mathematical models. However, it is not designed to solve heuristics. More appropriate programs

exist for coding and solving heuristics such as Delphi or Python. Due to time limitations and the

focus on the MIP model, we were not able to implement the heuristics into Delphi or Python.

Improving data of HA. The models heavily rely on the data of HA in the ERP system. By

improving the data, the reliability of the MIP model improves. The chance of achieving the model

solutions, in reality, is higher when accurate data is used. Most important is to update the product

routings and their processing times.
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Investigating the impact of a rolling planning horizon on the models. We assume no

overlap between 2 consecutive planning horizons, whereas in practice this may happen. Due to time

limitations, the impact of a rolling planning horizon is not researched. We recommend researching

the impact in a later stage.

Limit the impact of the bottleneck operations. The research shows four bottleneck opera-

tions: SMD, SSOL, AOI and PR. We recommend researching how to limit the bottleneck operations

such that there are no bottleneck operations in the future. One possibility is to research if regular

capacity needs to be extended to cope with the bottlenecks in the future.

Investigating the use of the MIP model at order acceptance. Resource loading can also

be used at the order acceptance phase to gain insights into the resource capacity levels and to gain

insights into the impact of accepting an incoming order. By using resource loading earlier in the

process, high costs for overtime and tardiness can be limited since resource capacity levels are already

checked at the order acceptance phase and preventive measures can be taken such as rejecting the

order. We recommend investigating the use of the MIP model in order acceptance to limit the cost

of overtime and tardiness.

6.3 Contribution to theory and practice

The main contribution of this research to theory is the resource loading MIP model combining the

resource-driven and time-driven approaches. Literature on resource loading is limited especially for

combining the two approaches. The resource loading model proposed in Hans (2001) corresponds

most to our proposed MIP model. A major distinction between the model of Hans (2001) and

our proposed model is that Hans (2001) allows preemption, whereas our proposed model does not

allow preemption within the operations of an order. To the best of our knowledge, there is no re-

source loading MIP model available in literature that combines the resource-driven and time-driven

approach taking into account non-preemption constraints, capacity constraints and precedence con-

straints simultaneously.

Another contribution to theory is the description of the job shop production environment. In most

traditional job shop planning and scheduling problems, the problem consists of jobs Jj that are

planned on machines Mm in such a way that the capacity of the machines is not exceeded. The job

shop production environment in this research has orders Ii with a unique product routing containing

some of the operations Jj , where Sis indicates the s-th operation in the product routing of order

Ii. Each operation Jj has its capacity. Each Sis is planned in such a way that the capacity of

the corresponding operation Jj is not exceeded and the precedence constraint of an order is not

violated. The job shop production environment of this research can be used by other researchers

modelling a similar production environment. The proposed MIP model can be used by researchers

modelling a resource loading problem based on the resource-driven and time-driven approach with

non-preemption, capacity and precedence constraints for a similar job shop production environment.

Also, specific parts of the model can be used as an inspiration for other researchers such as modelling

of the non-preemption constraints.
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This research contributes to practical applications by introducing a resource loading method that

integrates resource capacity into HA’s tactical production planning. HA did not differentiate between

strategic, tactical, and operational planning. Following this research, HA has acquired the capability

for effective tactical planning. For planning horizons of up to 2 months, HA can employ the proposed

MIP model to generate an optimal production plan, yielding insights into tardy orders and required

overtime hours in a cost-efficient manner. Another contribution is demonstrating HA’s potential

to improve its Customer Service Level beyond 90% at the expense of overtime costs. Furthermore,

the research demonstrates the bottleneck operations SMD, SSOL, AOI and PR. HA can further

investigate how to deal with those bottleneck operations such that overall operational efficiency and

capacity utilisation can be achieved.

6.4 Implementation challenges

Implementing the proposed model at HA includes some challenges. This section explains possible

implementation challenges.

Integration with existing systems. One of the main challenges involves integrating the pro-

posed model into existing systems. The current MIP model is developed in AIMMS, a high-cost

software provided by the University of Twente. To adopt the solution, HA can acquire an AIMMS

license. Obtaining an AIMMS license allows for modest model adjustments but requires a business

license investment. Alternatively, HA could use free software like Anaconda and design the model

using Python. This option requires specific Python knowledge. For both options, the main concern

is the integration of the software with Isah which contains essential data to perform the model. In-

tegration with Isah is possible via SQL but it needs to be designed such that the planner can quickly

and easily execute the model for the scenarios he needs. A more optimal but expensive option is

integrating the MIP model directly into Isah. This option allows the planner to use one software

instead of Isah combined with AIMMS or free software. HA works with an ERP consultant who is

able to implement customised programs into Isah at the expense of time and cost. A recommen-

dation for HA is to discuss the possibilities with the ERP consultant and make a trade-off on the

option in terms of the user-friendliness of the solution, implementation time and implementation

cost.

Resistance of employees for the proposed solution. Another challenge is the resistance of

employees. The operations manager has employed production planning for almost 20 years and

might be used to his method and may be resistant to change. A recommendation for HA is to use

clear communication about the benefits of the model, addressing the concerns of the stakeholders

and involving the stakeholders in the implementation process.
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Appendices

A Solution design: technical details constructive algorithm

We introduce the following auxiliary parameters to perform step 2.2 in Figure 4.3: TotalUsedOverT imejt,

TotalUsedRegularjt, AvailableRegularjt, AvailableOvertimejt, StillToScheduleist, ScheduleRegularist

and ScheduleOvertimeist. The following points are evaluated for each time bucket t in the ATW

window until Sis is completely planned or the complete ATW window is evaluated:

1. The amount of regular capacity left in time bucket t → 3 possible scenarios:

(a) AvailableRegularjt = 0

(b) AvailableRegularjt < StillToScheduleist → update parameters:

i. ScheduleRegularist = AvailableRegularjt

ii. StillToScheduleist = StillToScheduleist − ScheduleRegularist

iii. TotalUsedRegularjt = TotalUsedRegularjt + ScheduleRegularist

iv. AvailableRegularjt = 0

(c) AvailableRegularjt ≥ StillToScheduleist → update parameters:

i. ScheduleRegularist = StillToScheduleist

ii. StillToScheduleist = 0

iii. TotalUsedRegularjt = TotalUsedRegularjt + ScheduleRegularist

iv. AvailableRegularjt = cj − TotalUsedRegularjt

2. The amount of overtime left in time bucket t → 5 possible scenarios:

(a) No overtime left and ScheduleRegularist = 0

(b) No overtime left but ScheduleRegularist > 0

(c) AvailableOvertimejt < StillToScheduleist and ScheduleRegularist = 0

(d) AvailableOvertimejt < StillToScheduleist but ScheduleRegularist > 0

(e) AvailableOvertimejt ≥ StillToScheduleist → update parameters:

i. ScheduleOvertimeist = StillToScheduleist

ii. StillToScheduleist = 0

iii. TotalUsedOverT imejt = TotalUsedOverT imejt + ScheduleOvertimeist

iv. AvailableOvertimejt = mojt − TotalUsedOverT imejt

3. The number of hours already planned for all s ∈ Si in time bucket t:

PercentageWeekit provides the percentage of the time bucket already used by order i, i.e.

PercentageWeekit = PercentageWeekit+(ScheduleRegularjt+ScheduleOvertimejt) /(cj+

mojt). If PercentageWeekjt > 1, the parameters are set back to their previous value and the

next t := t− 1 is evaluated. For example, S12 = J4 with p12 = 10. S12 is completely planned

at t = 5 with ScheduleRegular45 = 8 and ScheduleOvertime45 = 2. The maximum regular

capacity and overtime are c4 = 36 and mo45 = 9. S12 is the first operation of order i planned

in t = 5. PercentageWeek is calculated by (8 + 2)/(36 + 9) ≈ 0.22. 1− 0.22 ≈ 0.78 is left in

time bucket t = 5 to plan other operations of order i.
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