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ABSTRACT 

The Net Primary Productivity (NPP) is an essential indicator of monitoring vegetation health, carbon 

exchange, and the impact of extreme climate events, such as drought. Light Use Efficiency (LUE)-based 

models utilise remote sensing data for NPP estimation. However, estimation of NPP through these models 

has been mainly performed using low/moderate resolution remote sensing data. In this respect, this study 

utilised two LUE-based models, i.e., MOD17 and GLO-PEM and temporal high-resolution remote sensing 

(i.e. Sentinel-2) data to evaluate the performance of these models in estimating NPP and to detect the 

impacts of the 2018 drought on NPP in Bavaria Forest National Park (BFNP), Germany. The necessary 

data for NPP estimation, including Sentinel-2 imagery, climate data (i.e., daily mean and minimum 

temperature, vapour pressure deficit, soil moisture deficit), and land cover map, have been collected from 

Copernicus Open Access Hub, European Centre for Medium-Range Weather Forecasts, National Snow 

and Ice Data Center, and Copernicus Land Monitoring Service. The forest inventory data, MODIS- NPP, 

and Standardised Precipitation and Evapotranspiration Index (SPEI) values have been used for NPP 

verification and drought impact assessment. The two LUE models were used first to estimate the Gross 

Primary Productivity (GPP), and then NPP was estimated using a coefficient derived from GPP and NPP 

ratio. Different statistical analyses, including the Coefficient of Determination (R2), Person's Correlation 

Coefficient (r), Linear Trend, and t-test, have been performed to verify the model outputs and their temporal 

change as well as to detect the drought and associated impacts. Analysis showed that the results obtained 

using the GLO-PEM model agree better with forest inventory NPP than the NPP estimated using the 

MOD17 model. When MODIS products were used for verification, both models' outputs were observed 

to behave almost similarly to MODIS products. Time series analysis of NPP showed a slight decrease in 

NPP in 2018 than the previous two years (i.e., 2016 and 2017), and then a significant reduction was found 

in 2019, 2020, and 2021. In 2022, a slight increase was noted in NPP values, indicating restoration and the 

recovery's start. However, an overall downward trend in NPP values was found as the slope values of the 

linear trend were negative in different sample points. The lagged correlation results revealed the delayed 

impacts of Vapor Pressure Deficit (VPD) and soil moisture deficit on NPP. Besides, a lagged correlation 

was also found between SPEI and NPP, indicating the legacy impacts of drought. The substantial reduction 

of NPP and negative NPP values may be attributed to the drought and associated disturbances, such as 

environmental stress, immature leaf senescence, defoliation, crown dieback, tree mortality, insect infestation, 

and logging. In a nutshell, the LUE-based models using Sentinel-2 data showed good prospects in NPP 

estimation and extreme climate impact detection.  

 

The study encountered a few limitations, such as an image gap in the Sentinel-2 time series due to 

cloud cover and insufficient reference data to validate and verify the model outputs. Besides, the 

downscaling of climate data, atmospheric distortion in the Sentinel-2 images, and inherent limitations of 

NDVI, like soil background reflectance and saturation problems, may have caused errors in data. Future 

research may require increasing the satellite image frequency using the harmonized data of Sentinel-2 and 

Landsat data and improving the models’ ability to estimate autotrophic respiration at daily timestep. 

 

Keywords: Net primary productivity; Light use efficiency; Drought; Sentinel-2; MOD17; GLO-PEM; 

SPEI; Bavaria Forest National Park 
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1. INTRODUCTION 

1.1. Background of the study 

 

The primary production of vegetation refers to a complex set of processes in which plants produce biomass 

by converting solar energy, carbon dioxide, and water (Roy et al., 2001). It serves as the major driver of 

ecosystem function and a measure of ecosystem dynamics. Through the carbon and water cycles, it 

contributes to the regulation of the global climate (Roy et al., 2001). It also serves as a point of entry for 

carbon from the atmosphere into the terrestrial biosphere. Many ecosystem services, including food and 

shelter for wildlife; food and fibre for humans, carbon sequestration; and climate change mitigation, depend 

on primary productivity (Song et al., 2013). The agenda 2021 of the United Nations (UN) sets directives for 

efficient monitoring of forests involving earth observation and modelling to combat deforestation (United 

Nations, 1992). Besides, one of the Sustainable Development Goals (SDG) that calls for monitoring forest 

health and growth is the conservation and sustainable management of terrestrial ecosystems to lessen the 

effects of human activity and climate change (United Nations, 2018). In EU Forest Strategy for 2030, the 

European Commission also emphasized the strengthening of forest monitoring, referring to productivity as 

an important indicator of forest growth in the Pan-European Ministerial Conference on the Protection of 

Forests (European Commission, 2021). 

The measure of productivity deals with the quantity of carbohydrates produced by photosynthesis 

in a specific time interval over a given area (Roy et al., 2001). Green plants store a portion of absorbed solar 

energy (400 to 700 nm domain) in organic substances by photosynthesis, known as Gross Primary 

Productivity (GPP). Then, plants use some of this energy in organic compounds for their autotrophic 

respiration (Ra), known as plant carbon loss. The balance after this carbon loss through Ra is called Net 

Primary Productivity (NPP) (Sala and Austin, 2000). NPP is an effective indicator for monitoring the forest 

health and stand age (He et al., 2012). A positive value of NPP indicates more carbon uptake by plants than 

release, which reflects the ecosystem’s health and growth. Contrarily, a negative NPP means that respiration 

or decomposition outperforms plants’ carbon absorption. Hence, NPP is a vital indicator of resource use, 

ecosystem health, and biosphere carbon fluxes (Cao et al., 2004a). NPP can also be used as an indicator to 

investigate the impact of an extreme climatic event like drought on the ecosystem (Lai et al., 2018; Nanzad 

et al., 2021). Since realized or actual light use efficiency (LUE) is regulated by temperature, humidity, and 

soil moisture (Potter et al., 1993), the drought impacts photosynthesis, eventually negatively affecting the 

carbon balance (He et al., 2014). Drought limits the plant’s ability to draw water to its leaves reducing 

photosynthesis (Choat et al., 2012), affecting the balance between gross productivity and autotrophic 

respiration to reduce the NPP (He et al., 2014). Numerous studies revealed that the drought reduced the 

NPP of the terrestrial ecosystem on a local to global scale (Ciais et al., 2005; Zeng et al., 2005; Zhao & 

Running, 2010). This impact on productivity can also disrupt ecosystem services like timber, food, and fibre 

production, which has socio-economic consequences. The European landscape experienced a drought in 

2018 that caused a temperature rise and precipitation deficit across the continent (Ahmed et al., 2021). 

Therefore,  estimating forest NPP to determine its changes due to the drought event is vital. 

Numerous models have been developed to estimate the NPP in diverse ecosystems utilizing 

different combinations of input variables, processes, and parameters for various biomes and environmental 

conditions (Cramer et al., 1999). These models can be classified as prognostic and diagnostic (Sasai et al., 

2007). The prognostic models estimate the ecosystem carbon flux for future times using the climate data 
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predicted from the climate models [i.e., Biome Biogeochemical Cycles (BIOME-BGC) (Running & Hunt, 

1993); Integrated Biosphere Simulator (IBIS) (Kucharik et al., 2000); Lund-Potsdam-Jena General 

Ecosystem Simulator (LPJ-GUESS) (Sitch et al., 2003)]. For example, LPJ-GUESS, which is a Dynamic 

Global Vegetation Model (DGVM) estimates ecosystem dynamics (i.e., GPP, NPP) in different spatial 

extent and time steps using climatic, solar radiation, carbon dioxide, and soil physical properties as input 

variables (Sitch et al., 2003). The DGVMs are complex process-based models that combine biogeography,, 

plant physiology and biogeochemistry, vegetation dynamics, and biophysical processes in terrestrial 

ecosystem modelling. Due to their numerous input parameters, which can only be retrieved at a very coarse 

spatial resolution, these models have the drawback of being unable to be employed in (near) real-time. 

The diagnostic models produce a realistic simulation of carbon fluxes throughout recent times using 

satellite and climate measurements [i.e., Carnegie-Ames-Stanford Approach (CASA) (Potter et al., 1993); 

Production Efficiency Model (PEM) (Nemani et al., 2003)]. The remote sensing-based diagnostic models 

can further be divided into three approaches (Song et al., 2013): (i) Statistical models estimate NPP based 

on a regression model linking NPP with one or more explanatory variables, such as meteorological 

parameters, evapotranspiration, atmospheric carbon dioxide, and Spectral Vegetation Indices (SVI). In this 

approach, the NPP is considered a dependent variable, whereas the meteorological parameters or SVIs are 

considered independent variables. Some examples of such type of NPP estimations include Goward et al. 

(1985), Tucker & Sellers (1986), and Sims et al. (2006); (ii) Parametric models, also known as LUE or 

production efficiency models, apply the LUE concept that refers to the quantity of carbon produced by 

absorbing per unit amount of Photosynthetically Active Radiation (PAR) (Monteith, 1972; Lieth, 1975; 

Monteith, 1977; Asrar et al., 1984). These models estimate the Absorbed Photosynthetically Active 

Radiation (APAR) from the product of the Fraction of Absorbed Photosynthetically Active Radiation 

(FAPAR) and PAR. FAPAR is generally measured from SVIs like Normalized Difference Vegetation Index 

(NDVI) as it linearly correlates to NDVI—a measure of the amount of chlorophyll and how much energy 

it absorbs (Myneni et al., 1997). It can also be estimated from Leaf Area Index (LAI) retrieved from earth 

observation data. Some examples of parametric (LUE-based) models are the Global Production Efficiency 

Model (GLO-PEM) (Prince & Goward, 1995), CASA (Potter et al., 1993), and MOD17 (Running et al., 

2000); and (iii) Process-based models simulate biological processes that have impacts on NPP, i.e., 

photosynthesis, respiration, and transpiration. The algorithms of these models are not based on the LUE 

concept. However, they may use one or more input variables extracted from remote sensing data. For 

example, Running et al. (1989)  and Liu (1997) used remote sensing data to estimate LAI as an input variable 

of the Forest-BGC and Boreal Ecosystem Productivity Simulator (BEPS) process-based model, respectively. 

Also, Smith et al. (2002) estimated canopy nitrogen content using hyperspectral remote sensing data as an 

input variable of the Photosynthesis and Evapotranspiration (PnET) model. 

Among these three categories of models where remote sensing data are used, the LUE models have 

become popular, due to the abundance of remote sensing data with worldwide coverage and high temporal 

frequency. The advantage of LUE-based models over statistical or empirical models is that they consider 

the influences of environmental stressing factors on photosynthesis while modelling primary productivity. 

They involve fewer input variables and parameters and consist of a more straightforward algorithm than 

process-based models. These models have been used extensively to estimate the NPP in various terrestrial 

ecosystems involving various input variables and study areas ranging from local to global scale. Many LUE-

based models have been developed so far, maintaining the primary methodology to estimate NPP involving 

two steps, first calculating GPP by multiplying APAR with LUE and then subtracting Ra to derive NPP. 

The maximum or potential LUE is a conversion rate that can only be achieved in an optimum environmental 

condition. Therefore, these models use some environmental scalars or stressor fractions to downregulate 

the maximum LUE to adjust its value in a given environmental condition. Some widely used LUE-based 

models are CASA (Potter et al., 1993), MOD17 (MODIS) (Running et al., 2000), GLO-PEM (Prince & 
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Goward, 1995a), C-Fix (Veroustraete et al., 1994), Biosphere Model Integrating Eco-physiological and 

Mechanistic Approaches using Satellite Data (BEAMS) (Sasai et al., 2005), Eddy Covariance-Light Use 

Efficiency (EC-LUE) (Yuan et al., 2007a), etc. Among these models, only the CASA model takes a different 

path by simulating NPP directly without estimating GPP beforehand. These models mainly differ in 

selecting and calculating maximum LUE environmental limiting factors. This is the key part of the algorithm 

where different model proposes different methods. Another variable is plant Ra where models vary in ways. 

Thus, the models have some differences in input data and parameters. Some input variables in the LUE-

based model require remote sensing measurements, including PAR, FAPAR, etc., that can be acquired from 

different remote sensing sensors. PAR is generally calculated from incident solar radiation, measured by 

meteorological satellite or interpolation of ground-based observation. On the other hand, FAPAR 

estimation requires SVIs calculated from multispectral satellite imageries. Many satellite-based sensors that 

acquire multispectral images have been used in NPP estimation models, including MODIS, Landsat, SPOT-

VGT, AVHRR, Sentinel-2, PROBA-V, IKONOS, etc. The type of sensor plays an important role in 

ecosystem modelling as they vary in temporal, spectral, and spatial resolutions. The source of other data like 

temperature, humidity, and soil moisture includes meteorological stations and remote sensing-based 

estimation. 

MODIS is the most commonly used Satellite sensor in NPP modelling, followed by the Landsat 

(i.e., Palma et al., 2021; Chirici et al., 2022; Wang et al., 2022; Q. Liu et al., 2022). Understandably, MODIS 

is popular for its higher temporal resolution and a longer data availability period; however, the spatial 

resolution is lower than Landsat and Sentinel-2 data. The Sentinel-2 sensor created an opportunity to explore 

using high spatial and temporal resolution data for estimating vegetation carbon flux. Although a few studies 

have been conducted to generate NPP using Sentinel-2 data [i.e., Zheng & Takeuchi (2022) in a mangrove 

forest; Mngadi et al. (2022) in an urban forest; Miettinen et al. (2021) in a boreal forest], there are no studies 

that estimated NPP using LUE models and Sentinel-2 data in the temperate mixed forest.  

As explained earlier, the LUE models vary in the source of input variables, environmental scalars, 

Ra and their estimating methods. Table 1 presents the input variables of some widely used LUE-based 

models. As can be seen from Table 1, among these models, GLO-PEM and MOD17 require a smaller 

number of input variables and hence seem to be more feasible models for NPP estimation. 
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Table 1. The input variables of some widely used light use efficiency-based models. 

Model Ref. SOL PAR FAPAR SW NDVI 
Max. 
LUE 

Temp. Topt VPD SM LE H Prec. ET PET RH EF 

EC-LUE Yuan et al., 2007  ✓ ✓ ✓ ✓ ✓ ✓   ✓ ✓ ✓     ✓ 

CASA Potter et al., 1993 ✓  ✓ ✓ ✓ ✓ ✓ ✓  ✓   ✓ ✓    

MOD17 Running et al., 2000  ✓ ✓ ✓ ✓ ✓ ✓  ✓       ✓  

GLO-
PEM 

Prince & 
Goward, 1995 

 ✓ ✓ ✓ ✓ ✓ ✓ 
 

✓ ✓     
 

✓ 
 

C-Fix 
Veroustraete et al., 

1994 
✓  ✓ ✓ ✓ ✓ ✓ 

 
 ✓ ✓ ✓   

 
 

 

Note: SOL = total incoming solar radiation; PAR = Photosynthetically active radiation; FAPAR = Fraction of absorbed PAR; SW = Shortwave radiation; NDVI = Normalized 

difference vegetation index; Max. LUE = Maximum or potential light use efficiency; Temp. = Temperature, Topt. = Optimum temperature; VPD = Vapor pressure deficit; SM 

= Soil moisture; LE = Latent heat flux; H = Sensible heat flux; Prec. = Precipitation; ET = Evapotranspiration; PET = Potential evapotranspiration; RH = Relative humidity; EF 

= Evaporative fraction. 
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The MOD17 algorithm was mainly developed to be applied using MODIS satellite data with coarse 

spatial resolution (Running et al., 1994; Running et al., 2000; Zhao et al., 2005). The performance of this 

algorithm has been evaluated by comparing it to eddy covariance flux tower data and forest inventory data 

in many studies (i.e., Reichstein et al., 2003; Turner et al., 2006; Shim et al., 2014; Sjöström et al., 2013; Zhu 

et al., 2016).. The performance of the MOD17 algorithm when used with high spatial resolution data such 

as Sentinel-2 data  remains unexplored. In the case of the GLO-PEM model, the algorithm was developed 

to estimate all of the input variables except PAR using remote sensing data such as AVHRR, a coarse spatial 

resolution sensor which was used for the original model run. Furthermore, it took an indirect approach to 

estimate temperature, vapor pressure deficit (VPD), and soil moisture from the thermal band of AVHRR 

data instead of using meteorological observation, contributing to the uncertainty in the model output. Thus, 

this study intends to use these input variables (i.e., temperature, VPD, soil moisture) from meteorological 

data in this model. This approach will give new insight into the model’s performance when the 

environmental scalars are estimated using meteorological measurements rather than estimates based on 

thermal images.. The algorithms of the selected two models are also different. For instance, MOD17 uses 

minimum temperature and VPD as a scalar, whereas GLO-PEM uses mean temperature, VPD, and soil 

moisture deficit. Moreover, the two models take different approaches to estimating Maintenance Respiration 

(Rm), but similar approach to estimating Growth Respiration (Rg). 

 

This study investigates the NPP estimation by employing MOD17 and GLO-PEM models with 

Sentinel-2 data and investigate its changes during the drought event. The variation in selected models’ 

algorithms, input variables, and high spatial resolution data will provide new scientific evidence in NPP 

estimation in the temperate ecosystem. The findings will also help explore the potential of Sentinel-2 data 

in LUE-based NPP models. The study takes place in Bavaria Forest National Park (BFNP), a mixed 

temperate forest inhabited mainly by coniferous (i.e., Spruce) and deciduous (i.e., European Beech) trees. 

The main advantage of this study area is its mixed forest type, which will help us understand the application 

of our modelling approach for various plant species. West-central Europe, where the study area is situated, 

suffered from a drought in 2018, one of the most severe meteorological droughts in the last four decades 

(Aalbers et al., 2023). The study period extends from 2016 until 2022 and allows obtaining the temporal 

variation of NPP before and after the 2018 Drought. 

1.2. Aim and objectives, research questions, and hypothesis 

1.2.1. Aim 

The aim of the study is to investigate the changes in net primary productivity retrieved using Sentinel-2 data 

during an extreme climatic event in a mixed temperate forest.  

1.2.2. Specific objectives 

I. To evaluate the performance of MOD17 and GLO-PEM models in estimating NPP using 

Sentinel-2 data. 

II. To investigate the temporal changes in NPP values from 2016 to 2022 to detect the impact of the 

2018 drought event. 

1.2.3. Research questions 

I. What is the relation between the estimated NPP from the MOD17 and GLO-PEM models?  

II. To what extent has the 2018 drought event affected the primary productivity of forest stands in 

BFNP? 
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1.2.4. Hypothesis 

I. The estimated NPP from both models has a relation with the NPP estimated from MODIS 

products and forest inventory data; however, the relationship is stronger with the GLO-PEM 

model than MOD17. 

II. There is a decrease in estimated NPP during the drought year in or after 2018. 

1.3. Study area 

The Bavaria Forest National Park (BFNP) is situated at the Eastern Bavaria Forest in Germany along the 

border of the neighbouring Czech Republic (Figure 1). The park was established in 1970. The total area of 

the BFNP is around 242 km2  with an elevation in-between 650 and 1,453 m from the average sea level. The 

park is part of an ancient mountainous area called Bohemian Masse, formed of granite and gneiss, which 

are a type of crystalline rocks (van der Knaap et al., 2020). It has a cool and humid climate with varying 

temperatures and precipitation in high and low elevations. The yearly mean temperature varies in-between 

3°C (at high altitude) and 6.5°C (at low altitude). 

In the same way, precipitation also varies from 1,000 mm (at low elevation) to 2,500 mm (at high 

elevation). The forest ground remains ice-covered for around two months in a year (maximum temperature 

< 0°C), whereas frost days account for more than four months (minimum temperature < 0 °C). Most of 

the area of BFNP is covered by forest (about 97%), inhabited by coniferous, deciduous, and some other 

types of plants also. The dominant species in BFNP include Norway spruce (picea abies), European beech 

(fagus sylvatica), Silver fir (abies alba), Larch (larix), White birch (6opern papyrifera), Sycamore maple (acer 

pseudoplatanus), and Common rowan (sorbus aucuparia). BFNP also contains dead wood, including fallen and 

standing dead trees resulting from Bark beetle infestation (Krzystek et al., 2020).  

 
Figure 1. The boundary of Bavaria Forest National Park with a topographic and hill shade map in the background 
(right). The location of Bavaria Forest National Park in the south-eastern part of the Germany (left).  



RETRIEVING FOREST NET PRIMARY PRODUCTIVITY USING TEMPORAL SENTINEL-2 DATA AND ITS RESPONSE TO AN EXTREME CLIMATE EVENT 

7 

2. DATA AND METHODS 

The study used satellite imageries, climate reanalysis data (fusion between ground observation and model 

estimation where satellite-based measurements are also involved), available primary productivity products 

and forest inventory data. In supplement to the detailed description of the data and methods, Figure 2 shows 

a general overview of the workflow of data, methods, and outputs. 

2.1. Data 

2.1.1. Climate and soil moisture data 

 

The estimation of NPP involves different climate variables that mainly work as downregulating factors of 

the maximum LUE values. The climate variables include minimum temperature, mean temperature, dew 

point temperature, relative humidity, saturation vapour pressure, vapour pressure deficit, soil moisture, field 

capacity of the soil, soil moisture deficit, and incident solar radiation. Most of these climate variables have 

been used to estimate the scalars of LUE for both models except the incident solar radiation. For instance, 

the MOD17 model requires minimum temperature and vapour pressure deficit scalars. The estimation of 

vapour pressure deficit requires relative humidity and saturation vapour pressure. The mean temperature 

and dew point temperature are required to estimate the relative humidity, whereas saturation vapour pressure 

requires mean temperature. On the other hand, the GLO-PEM model requires temperature and soil 

moisture deficit scalars in addition to VPD scalars. Estimating soil moisture deficit involves the soil’s field 

capacity or maximum water retention capacity. Apart from these climate variables, incident solar radiation 

is required to estimate the PAR. 

 

Most of the climate data has been collected from the ERA5 dataset of the European Centre for 

Medium-Range Weather Forecasts (ECMWF) disseminated by the Climate Data Store of Copernicus 

Climate Change Service (https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5). ERA5 

indicates the fifth-generation version of the ECMWF Re-Analysis (ERA) dataset. The re-analysis dataset is 

prepared by combining the observed data from the weather station with the simulated data from the climate 

model into a complete and consistent dataset on a global scale. The data pre-processing, including data 

calling, downscaling, sub-setting, calculation, and exporting, was performed in Google Earth Engine (GEE) 

platform using JavaScript programming. Several datasets of ERA5 available on GEE vary in timestep, period 

of availability, and variables. Table 2 compiles the basic information of the climate variables collected from 

different data collections. The mean, minimum, and dew point temperatures are available in 

“ECMWF/ERA5/DAILY” data collection until 09th July 2020. Therefore, the mean and dew point 

temperatures after this date have been collected from “ECMWF/ERA5_LAND/DAILY_RAW” collection 

for the remaining period. 

 

On the other hand, the minimum temperature after 09th July 2020 has been estimated from the 

hourly temperature data in the “ECMWF/ERA5_LAND/HOURLY” data collection. A day’s minimum 

hourly temperature was considered the daily minimum temperature. The incident solar radiation, also known 

as the short-wave radiation, has been collected from ECMWF/ERA5_LAND/DAILY_RAW data 

collection for the entire study period. The soil moisture data for a 01-meter depth has been collected from 

“NASA/SMAP/SPL4SMGP/007” data collection, which disseminates the soil moisture data generated 

from the Soil Moisture Active Passive (SMAP) satellite of National Aeronautics and Space Administration 

(NASA) that carries both active and passive remote sensing sensors 

(https://nsidc.org/data/spl4smgp/versions/7). This data has been provided by National Snow and Ice 
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Data Center (NSIDC), United States. The daily soil moisture data has been calculated by averaging the three-

hourly data of a day.  

 

In addition to the pixel-wise climate data from ERA5, field-measured climate data from a weather 

station in the study area have been collected. This dataset contains hourly time series data of different climate 

variables, including mean, minimum, maximum temperature, dew point temperature, air pressure, humidity, 

wind speed, and wind direction. However, this data were not measured spatially but in a point hence we did 

not use these data for pixel-wise spatial estimation of NPP. 

 

The monthly Standardized Precipitation and Evapotranspiration Index (SPEI) values (Vicente-

Serrano et al., 2010) from 2016 to 2021 have been collected from Spanish National Research Council 

(http://hdl.handle.net/10261/288226) to show the drought occurrence and detect the drought impacts on 

NPP. This dataset is available on GEE platform in CSIC/SPEI/2_8 data collection. The collected dataset 

contains SPEI values with one-month and three-month time scales with 0.5-degree spatial resolution. The 

one-month time scale means the input variables (precipitation, evapotranspiration) of the index have been 

accumulated over the past one month, whereas the three-month scale is based on a three-month 

accumulation period. 

 

Table 2. An overview of the relevant data collected from GEE, including the data variables and their basic properties. 

No. 
Data Collection on 

GEE 
Variables Period Timestep 

Spatial 

Resolution 

1. 
ECMWF/ERA5/DAI

LY 

Mean temperature 2016-July 2020 Daily 27830 m 

Minimum 

temperature 
2016-July 2020 Daily 27830 m 

Dew point 

temperature 
2016-July 2020 Daily 27830 m 

2. 
ECMWF/ERA5_LAN

D/DAILY_RAW 

Mean temperature July 2020-2022 Daily 11132 m 

Dew point 

temperature 
July 2020-2022 Daily 11132 m 

Incident solar 

radiation 
2016-2022 Daily 11132 m 

3. 
ECMWF/ERA5_LAN

D/HOURLY 

Minimum 

temperature 
July 2020-2022 

Daily, calculated 

from hourly data 
11132 m 

4. 
NASA/SMAP/SPL4S

MGP/007 
Soil moisture 2016-2022 

Daily, calculated 

from 3-hrs data 
11000 m 

5. CSIC/SPEI/2_8 SPEI 2016-2021 Monthly 55660 m  
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Figure 2. Methodological flowchart of the study. . 
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2.1.2. Sentinel-2 imageries 

 

The satellite imageries from the Sentinel-2 sensor were collected from Copernicus Open Access Hub from 

2016 to 2022. Since BFNP is a mountainous region, cloud cover is a big obstacle for optical remote sensing. 

Therefore, special attention was given to selecting images with no cloud or lowest cloud in the area of 

interest. Although Sentinel-2 has 10-day revisit time and reduced to 5 days for the constellation of Sentinel-

2A and Sentinel-2B, only one usable image has been found in a month due to the high cloud cover 

percentage. The focus of the investigation was on the growing season. Therefore, most of the images 

collected were acquired between March and October.. In total, 45 images have been collected from 2016 to 

2022. The basic properties of Sentinel-2 imageries are given in this Table 3. The Sentinel-2 images have 

different spatial resolutions for various bands; however, the spatial resolution reported in Table 3 is for Band-

4 and Band-8, which were used in this study. The Level-1C image contains top-of-atmospheric reflectance 

data in cartographic geometry, whereas the Level-2A image contains atmospherically corrected surface 

reflectance data in cartographic geometry. 

 

Table 3. Specification of Sentinel-2 data collected for this study. 

No. Year Acquisition Date 
 

Level Tile 
Spatial 

Resolution 

1.  

2016 

09-05-2016  Level-1C T33UUQ 10 m 

2.  08-07-2016  Level-1C T33UUQ 10 m 

3.  27-08-2016  Level-1C T33UUQ 10 m 

4.  16-10-2016  Level-1C T33UUQ 10 m 

5.  

2017 

25-03-2017  Level-1C T33UUQ 10 m 

6.  24-04-2017  Level-2A T33UUQ 10 m 

7.  13-06-2017  Level-2A T33UUQ 10 m 

8.  13-07-2017  Level-2A T33UUQ 10 m 

9.  17-08-2017  Level-1C T33UUQ 10 m 

10.  26-09-2017  Level-1C T33UUQ 10 m 

11.  16-10-2017  Level-1C T33UUQ 10 m 

12.  

2018 

25-03-2018  Level-2A T33UUQ 10 m 

13.  19-04-2018  Level-2A T33UUQ 10 m 

14.  29-05-2018  Level-2A T33UUQ 10 m 

15.  08-06-2018  Level-2A T33UUQ 10 m 

16.  

 

03-07-2018  Level-2A T33UUQ 10 m 

17.  27-08-2018  Level-2A T33UUQ 10 m 

18.  16-09-2018  Level-2A T33UUQ 10 m 

19.  16-10-2018  Level-2A T33UUQ 10 m 

20.  15-11-2018  Level-2A T33UUQ 10 m 

21.  

2019 

30-03-2019  Level-2A T33UUQ 10 m 

22.  24-04-2019  Level-2A T33UUQ 10 m 

23.  19-05-2019  Level-2A T33UUQ 10 m 

24.  28-06-2019  Level-2A T33UUQ 10 m 

25.  23-07-2019  Level-2A T33UUQ 10 m 

26.  27-08-2019  Level-2A T33UUQ 10 m 

27.  31-10-2019  Level-2A T33UUQ 10 m 

28.  30-12-2019  Level-2A T33UUQ 10 m 

29.  

2020 

24-03-2020  Level-2A T33UUQ 10 m 

30.  18-05-2020  Level-2A T33UUQ 10 m 

31.  02-06-2020  Level-2A T33UUQ 10 m 

32.  22-07-2020  Level-2A T33UUQ 10 m 
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No. Year Acquisition Date 
 

Level Tile 
Spatial 

Resolution 

33.  21-08-2020  Level-2A T33UUQ 10 m 

34.  20-09-2020  Level-2A T33UUQ 10 m 

35.  

2021 

25-02-2021  Level-2A T32UQV 10 m 

36.  28-04-2021  Level-2A T33UUQ 10 m 

37.  17-06-2021  Level-1C T33UUQ 10 m 

38.  25-09-2021  Level-2A T32UQV 10 m 

39.  

2022 

09-03-2022  Level-2A T32UQV 10 m 

40.  24-03-2022  Level-2A T32UQV 10 m 

41.  27-06-2022  Level-2A T32UQV 10 m 

42.  17-07-2022  Level-2A T32UQV 10 m 

43.  16-08-2022  Level-2A T32UQV 10 m 

44.  10-10-2022  Level-2A T32UQV 10 m 

45.  14-11-2022  Level-2A T32UQV 10 m 

2.2. Methods 

2.2.1. Climate and soil moisture data pre-processing 

 

The climate and soil moisture dataset underwent a series of pre-processing steps before they were ready to 

use as input variables for scalar estimation. The pre-processing works include unit conversion, downscaling, 

clipping, and harmonization to the same coordinate reference with an exact number of rows and columns. 

Using JavaScript code, the unit conversion, downscaling, and sub-setting steps were performed on the GEE 

environment. Several GEE scripts were prepared to call the data from relevant data collection (Table 2), 

pixel-wise downscale the data to match the pixel size of the Sentinel-2 image, subset them according to the 

geometry of BFNP’s boundary, and finally export the data. 

 

The bicubic resampling technique has been used to downscale the climate and soil moisture data. 

This technique preserves the essential information and minimizes the loss of details while reducing the pixel 

size. The mathematical algorithm of this technique involves interpolating the pixel values based on a 4x4 

window of surrounding cells (Jähne, 1993). The Bicubic interpolation uses cubic polynomials to calculate 

the new pixel values between the original data points, considering a more extensive set of neighbouring 

pixels than other simpler interpolation techniques. This method is a commonly used technique in climate 

data down-sampling. Shah et al. (2023) reported that the bicubic resampling technique is a suitable 

interpolation method for climate data in a raster format. 

 

The climate datasets were originally provided in the Kelvin unit, which was converted to the Celsius 

unit by subtracting 273.15. Since the operations involving multiple raster layers require an exact number of 

rows and columns, all the climate and soil moisture layers have been harmonised into the same geometry 

with an exact number of rows and columns. Before that, the raster layers were clipped by the boundary layer 

of BFNP. This harmonisation task was performed in ArcGIS Pro using a model in the model builder 

environment. 

 

To visualise and analyse the SPEI values, a sample point from the middle part of BFNP was taken 

randomly (13.38242845688875, 48.98504189801222) to extract the monthly SPEI values from 2016 to 2021. 

Since the SPEI layer has a very coarse spatial resolution (about 55 km), one sample point is enough to show 

the SPEI values in the study area. Figure 3 shows a time series plot containing monthly SPEI values with a 

01-month and 03-month time scale. In 2018, most SPEI values were around -1.5 and below -0.5 for the 03-



RETRIEVING FOREST NET PRIMARY PRODUCTIVITY USING TEMPORAL SENTINEL-2 DATA AND ITS RESPONSE TO AN EXTREME CLIMATE EVENT 

 

12 

month and 01-month scales, respectively. After 2018, the increased number of values below -0.5 in both 

scales shows the drought situation’s continuity. Furthermore, a short drought period can be seen in-between 

late 2016 and early 2017, although less severe than in 2018. In short, the 2018 drought is the most severe as 

most values (from April to November) are around -1.5 in the 03-month scale (more appropriate than the 

01-month scale for drought monitoring), which indicates severe drought conditions (Rhee & Im, 2017). The 

SPEI values are interpreted as extremely wet (≥ 2), very wet (1.5 to 1.99), moderately wet (1.0 to 1.49), near 

normal (0.99 to -0.99), moderate drought (-1.0 to -1.49), severe drought (-1.5 to -1.99), and extreme drought 

(≤ -2) (Rhee & Im, 2017). 

 
A. 

 
b. 

 
Figure 3. Monthly SPEI values from 2016 to 2021 with 01-month (a) and 03-month (b) time scales. 

2.2.2. Estimation of vapor pressure and soil moisture deficit 

 

The models require several scalars to down-regulate the maximum LUE values. The scalars include the VPD 

and soil moisture deficit scalars. Estimating these scalars requires estimating the VPD and soil moisture 

deficit in the first place. VPD can be defined as the difference between the saturation vapour pressure and 

actual vapour pressure. Saturation vapour pressure is the maximum water vapour in air at a particular 

temperature. It is the pressure water vapour molecules produce when air is saturated with moisture and in 
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equilibrium with a water surface like a liquid water body or wet soil. On the other hand, actual vapour 

pressure is the pressure water vapour molecules in the air at a specific temperature put on each other. It 

shows the total amount of water vapour in the air, regardless of how much water it can hold simultaneously. 

The VPD was estimated by the following equation (Eq. 1) 

 

VPD = ES – (ES * Rh) (1) 

 

where VPD is Vapor pressure deficit, ES stands as Saturated vapor pressure, ‘Es * Rh’ denotes as 

Actual vapor pressure, and Rh is Relative humidity. The ES in Eq.1 was estimated by the following equation 

(Eq. 2) using the mean temperature and some constant parameters as input variables. 

 

ES = (6.112 * exp ((17.67 * T) / (T + 243.5))) * 100 (2) 

 

where T stands as Mean temperature. The VPD in Eq. 1 also requires Rh as an input variable. Rh 

is a measurement of the air’s water vapour content in relation to the air’s maximal water vapour capacity at 

a given temperature. The equation was used to calculate the Rh (Eq. 3) in the unitless equation as a fraction. 

 

Rh = exp((17.269 * Td)/(273.3 + Td) – (17.269 * Ta)/(237.3 + Ta)) (3) 

 

where Td and Ta denote as Dew point temperature and Mean temperature, respectively. 

 

Another water-related scalar is soil moisture deficit which is the difference between available soil 

moisture and the maximum water-holding capacity of soil at a given time. The maximum water-holding 

capacity of soil is also known as the field capacity. The value of the field capacity depends on several factors, 

like soil texture, organic matter content, soil structure, compaction, soil depth, slope, aspect, and drainage 

pattern (Cassel & Nielsen, 2018). In this study, the maximum available soil moisture from 2016 to 2022 has 

been considered as the maximum water-holding capacity of the soil, assuming that the soil was saturated at 

that specific occurrence. 

2.2.3. Pre-processing of Sentinel-2 image and FAPAR estimation 

 

The Sentinel-2 images collected for this study come from two sensors of the Sentinel-2 constellation, i.e., 

Sentinel-2A and Sentinel-2B. The Sentinel-2A was launched in June 2015, while the other sensor was 

launched in March 2017. The collected images contain both Level-1C and Level-2A products. The Level-

1C products are radiometrically and geometrically corrected data, but they need further processing to 

remove the atmospheric distortions. Therefore, they underwent atmospheric and topographic corrections 

to convert them from top-of-atmospheric reflectance to surface reflectance. This processing was conducted 

using a software tool named Sen2Cor, also known as Sentinel-2 Level-2A Processor, developed by the 

European Space Agency (ESA) (https://step.esa.int/main/snap-supported-plugins/sen2cor/sen2cor-v2-

11/). Sen2Cor uses advanced algorithms to quantify and eliminate air scattering and absorption from 

particles, water vapour, and ozone levels. Sen2Cor also performs terrain correction to mitigate the terrain 

(elevation, slope, aspect) originated distortion (Main-Knorn et al., 2017) . This pre-processing was 

performed for the whole tile of the image. 

 

The reflectance values of the Sentinel-2 images from red and near-infrared (NIR) bands were the 

input variables of FAPAR estimation. The FAPAR is the fraction of PAR that the green vegetations absorb 

for photosynthesis (Yang et al., 2014). In remote sensing-based ecosystem modelling, it is typically estimated 

from a vegetation index. In this study, the FAPAR was estimated using the NDVI based on an empirical 

relationship between these two variables. Myneni & Williams (1994) examined the relations between FAPAR 
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and NDVI under different conditions that may affect the reflectance from vegetation, i.e., soil reflectance, 

leaf orientation and optical properties, and atmospheric and bidirectional effects. They established a linear 

model between FAPAR and NDVI, which has been used in this study. The model is expressed in the 

following equation (Eq. 4). The band math tool of SNAP software was used to process the estimation of 

NDVI and FAPAR. Later, ArcGIS Pro was used to post-process the FAPAR layers, i.e., sub-setting and 

harmonization with other variables. 

 

FAPAR = 1.164 * NDVI – 0.143 (4) 

The constant 1.164 is the slope or conversion coefficient of the relation, whereas the constant 0.143 

represents the intercept or offset. 

2.2.4. Estimation of PAR 

 

The primary productivity estimation also involves PAR as a significant variable. The electromagnetic 

spectrum’s blue, green, and red wavelengths are included in this spectrum, which spans 400 to 700 nm. The 

metabolic reactions that are required for photosynthesis must be fuelled by PAR. Plant growth, 

development, and energy generation are fuelled by the complicated chemical processes that are started when 

the chlorophyll pigments inside plant cells absorb PAR. This study estimated PAR from the total incident 

solar radiation, also known as Shortwave Radiation (SWR), collected from the ERA5 reanalysis dataset 

provided by ECMWF. A GEE script was prepared and executed to call the data from 

ECMWF/ERA5_LAND/DAILY_RAW collection, downscale the data to 10 m spatial resolution, change 

unit from J/m2/day to MJ/m2/day, and export the data as GeoTIFF format. Some basic properties of this 

data collection, including the incident solar radiation variable, are given in Table 2. The SWR raster layers 

also underwent post-processing, like sub-setting by BFNP boundary and harmonisation to the same 

coordinate systems and row and column numbers of other data layers. Finally, the PAR was estimated by 

multiplying the SWR with a coefficient (0.45) (Running & Zhao, 2019). In addition to this pixel-wise PAR 

data estimated from the incident short wave radiation, a time series data of PAR with 20-minute intervals 

have been collected from a field-based measurement system. However, the topography of the study area is 

not flat. There is a variation in the elevation, which influences the quantity of the incident solar radiation. 

Therefore, instead of using the same PAR value for the entire study area measured in a point, the pixel-wise 

estimation of PAR from ERA5 data has been used in this study.  

2.2.5. Land cover map and maximum light use efficiency parameter 

 

The land cover map is an essential input variable in ecosystem modelling as the models have plant type-

specific parameters. Two land cover maps have been collected from Copernicus Land Monitoring Service, 

known as Corine Land Cover, and BFNP authority (Figure 4). The latest version of the Corine land cover 

map collected for this study was prepared in 2018 with 100 m spatial resolution 

(https://land.copernicus.eu/pan-european/corine-land-cover). This map was downscaled to 10 m spatial 

resolution using the bilinear resampling method. The land cover classes in the Corine land cover map are 

consistent with the plant types and their specific parameter values in the models (Table 4). Therefore, this 

map was used in the models. On the other hand, the land cover map from BFNP authority was used to 

mask the study area to keep only the vegetated areas for further analysis of the model outputs. Figure 4 

shows the simplified version of both maps. The “other” class in Corine map contains mainly non-vegetated 

areas, whereas the “other” class in BFNP map contains meadows, dead wood, scrub pine, and other non-

vegetated areas. 
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Figure 4. Land cover maps from Corine and BFNP management. The simplified versions show the three main stands (evergreen coniferous, deciduous, and mixed). The other 
vegetated (grass, transitional woodland shrub, pasture, and meadows) and non-vegetated areas are merged into the “other” class. 
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Maximum LUE describes an organism’s capacity to effectively transform absorbed light into 

chemical energy through photosynthesis. It is a significant factor in determining the primary productivity 

and accumulation of plant biomass. The idea is frequently expressed as a ratio between the rate of carbon 

uptake, also known as the net photosynthetic rate and the amount of absorbed photosynthetically active 

radiation (PAR). In light usage efficiency models, estimating NPP is crucial. The determination of how 

effectively plants convert absorbed light energy into chemical energy is a key component of light usage 

efficiency models, which are used to estimate NPP. In LUE-based models, the variable of maximum LUE 

is used as a constant; however, the variable’s value differs according to the types of plants. Besides, different 

values are suggested by different models. Moreover, many studies optimized this value for any specific 

ecosystem or plant type, which also differs from the original suggested value by the model developers. A 

thorough literature review was conducted to find the maximum LUE values in this study. 

 

The literature suggests that the optimal range of the values of the maximum LUE varies with 

geographical location, plant types, and weather conditions. Furthermore, the estimation and calibration 

methods also influence the values of this parameter. An overview of the maximum LUE values for different 

types of ecosystems is available in Annex 1. The importance of this parameter varies from 0.5 to 1.8 gC/MJ. 

The parameter value ranges from 0.8 to 2.14 gC/MJ  in the evergreen needle leaf plants. On the other hand, 

the range of the parameter values is slightly lower for the mixed forest (i.e., 1.9 to 2.14 gC/MJ). A visual 

representation of the variation of maximum LUE values according to the plant types can be seen in Figure 

5, compiling data from the table in Annex I. The figure 5 shows the minimum, maximum, median, lower 

and upper quartile, and outlier for different plant types. Although many studies used various parameter 

values for different plants, some studies used a single value for different plant types irrespective of geography 

and ecosystem types (i.e., Yuan et al., 2007b). However, this study used different maximum LUE values for 

different plant types since the conversion efficiency from energy to carbon depends on the plant’s 

physiology. Table 4 shows the values of the maximum LUE found in the literature for different kinds of 

plants used in this study. 

 

 

Figure 5. This Box and Whisker plot demonstrating the variations of the maximum light use efficiency (LUE) for 
different types of plants. The unit of measurement is gC/MJ. 
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Table 4 The maximum LUE values used in this study (Running & Zhao, 2019). The same parameter value has been 
used for grassland and pasture. 

Plant/land cover type Max. LUE Unit 

Broad-leaved Deciduous  0.001165 

kgC/m
2

/d/MJ 

Needle-leaved Coniferous 0.000962 

Mixed Forest 0.001051 

Grass 0.000860 

Transitional woodland shrub 0.001281 

Pasture 0.000860 

 

2.2.6. MOD17 model 

 

The MOD17 algorithm is considered as an LUE-based model, which fusions remote sensing-based data 

with environmental factors and mechanistic knowledge of plant physiological processes to estimate GPP 

and NPP at regional and global levels. The model has a rigorous algorithm to estimate the primary 

productivity that involves several parameters. The parameters have been calibrated for different plant stands 

to obtain the optimum values. The following equation was used to estimate GPP, which is a product of 

LUE and absorbed solar energy. 

 

GPP = APAR * ε          (5) 

 

APAR is a product of PAR, which is useable for photosynthesis and fraction of that radiation 

absorbed by vegetations (i.e., FAPAR). It was calculated using the following formula. 

 

APAR = PAR * FAPAR          (6) 

 

FAPAR quantifies the fraction or amount of the incident solar radiation in the photosynthetically 

active wavelength range (400-700 nm) absorbed by the vegetation canopy. This model uses an empirical 

relation between FAPAR and a spectral vegetation index like NDVI to estimate the FAPAR. The structure 

of this relation can be seen in the following equation. In this study, as mentioned before, an empirical model 

of FAPAR estimation based on the relation between FAPAR and NDVI established by Myneni & Williams 

(1994) has been used. A short description of this formula was provided in Section 2.2.3. 

 

FAPAR = a + b*NDVI          (7) 

 

 where a is the intercept of the relation and b is the coefficient or slope of the relation. 

 

PAR accounts for the incident solar radiation from 400 to 700 nm wavelength. Solar radiation 

within this range of wavelength is also known as visible light. Plants can absorb this light to utilize in 

photosynthesis processes. That’s why it’s called photosynthetically active radiation. In this model, a fraction 

of total incident solar radiation, also known as shortwave radiation (175 – 10,000 nm), have been considered 

as PAR (Eq. 8). 

 

PAR = (SWRad * 0.45)          (8) 
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where SWRad stands as an incident shortwave radiation or total incident solar radiation. 

 

The LUE value is estimated by downregulating the plant-specific maximum LUE values. In this 

model, minimum temperature (TMIN) and VPD are used as environmental scalars (Eq. 9). The values of 

the scalars vary from 0 to 1. The maximum photosynthesis occurs when the scalar value is 1, whereas no 

photosynthesis occurs when the value is 0. 

 

ε = εmax * TMIN_scalar * VPD_scalar        (9) 

 

where εmax is biome-specific maximum light use efficiency, TMIN_scalar denotes as stress factor of 

minimum temperature (value ranges from 0 to 1), and VPD_scalar stnds as a stress factor of VPD (value 

ranges from 0 to 1). 

 

TMIN_scalar and VPD_scalar can be estimated using the following Eq. 10 and Eq. 11, respectively 

(Lin et al., 2017). These equations were developed based on fuzzy logic principle. The values of the 

parameters of these equations for different plant types are given in Annex II. 

 

𝑇𝑀𝐼𝑁_𝑠𝑐𝑎𝑙𝑎𝑟 =  {

0;  𝑊ℎ𝑒𝑛: 𝑇𝑀𝐼𝑁 ≤ 𝑇𝑀𝐼𝑁𝑚𝑖𝑛
𝑇𝑀𝐼𝑁−𝑇𝑀𝐼𝑁𝑚𝑖𝑛

𝑇𝑀𝐼𝑁𝑚𝑎𝑥−𝑇𝑀𝐼𝑁𝑚𝑖𝑛
; 𝑊ℎ𝑒𝑛: 𝑇𝑀𝐼𝑁𝑚𝑖𝑛 < 𝑇𝑀𝐼𝑁 < 𝑇𝑀𝐼𝑁𝑚𝑎𝑥 

1; 𝑊ℎ𝑒𝑛: 𝑇𝑀𝐼𝑁 ≥ 𝑇𝑀𝐼𝑁𝑚𝑎𝑥

   (10) 

 

where TMIN denotes as daily minimum temperature, and TMINmin and  TMINmax are the daily 

minimum temperature at which LUE is zero (biome-specific constant), and  the daily minimum temperature 

at which optimum LUE equals to maximum LUE (biome-specific constant), respectively. 
 

𝑉𝑃𝐷_𝑠𝑐𝑎𝑙𝑎𝑟 =  {

0; 𝑊ℎ𝑒𝑛: 𝑉𝑃𝐷 ≥ 𝑉𝑃𝐷𝑚𝑎𝑥
𝑉𝑃𝐷𝑚𝑎𝑥−𝑉𝑃𝐷

𝑉𝑃𝐷𝑚𝑎𝑥−𝑉𝑃𝐷𝑚𝑖𝑛
; 𝑊ℎ𝑒𝑛: 𝑉𝑃𝐷𝑚𝑖𝑛 < 𝑉𝑃𝐷 < 𝑉𝑃𝐷𝑚𝑎𝑥

1; 𝑊ℎ𝑒𝑛: 𝑉𝑃𝐷 ≤ 𝑉𝑃𝐷𝑚𝑖𝑛

   (11) 

 

 

where VPD is the vapor pressure deficit during the day time in Pa unit. VPDmin and  VPDmax are 

the daylight average VPD at which the LUE is zero (biome-specific constant), and the daylight average VPD 

at which optimum LUE is equal to LUEmax (biome-specific constant), respectively. 

 

The estimation of NPP requires the estimation of autotrophic respiration (Ra), which is subtracted 

from the GPP. The Ra involves estimating maintenance (Rm) and growth respiration (Rg). In other words, 

Ra is the summation of Rm and Rg. The MOD17 model has an algorithm to estimate the Rm and Rg. For 

a living plant, Rm is estimated for the leaf, fine roots, and woody biomass (Running & Zhao, 2019). The 

algorithm includes equations for estimating the biomass volume of leaves, roots, and live wood. Then the 

Rm is estimated based on the relationship between biomass and temperature sensitivity to respiration (Q10). 

However, the Rm from leaf and roots are estimated at daily timestep, whereas the Rm from live wood is 

estimated at annual timestep. Later, the aggregated annual Rm from the daily Rm of leaf and roots are 

summed up to the annual Rm of live wood to get the annual Rm of the entire plant. On the other hand, Rg 

is estimated as a percentage (25%) of the discrepancy between GPP and Rm (Bruhn et al., 2022). Therefore, 

the NPP output from MOD17 is at the annual timestep. 
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Since this study intended to estimate NPP at daily timestep, a coefficient was used to estimate NPP 

from the GPP. Waring et al. (1998) found a linear relationship between the GPP and NPP based on the 

field-based measurement of primary productivity of both evergreen and deciduous plants. He reported an 

NPP/GPP ratio 0.47 with a 0.04 standard deviation (r2 = 0.98). However, this ratio may not be universal 

for all geographic and ecosystem types. Nevertheless, the study area of the current research is relatively small 

and entirely falls within the temperate ecosystem. Hence, there is no significant environmental variation in 

the study area. Therefore, we followed above mentioned ratio to estimate NPP from GPP. 

 

NPP = GPP – Ra = GPP – {GPP (1 – 0.47)}       (12) 

2.2.7. GLO-PEM model 

 

The GLO-PEM model follows the fundamental structure of the LUE-based models. However, it uses three 

environmental scalars, unlike two scalars in the MOD17 model. The scalars of the GLO-PEM model are 

mean temperature, VPD, and MD. Besides, this model uses a mean temperature scalar instead of a minimum 

temperature scalar. The model structure is given in Eq. 13. The full description of the model algorithm is 

available in Prince & Goward (1995), Goetz et al. (1999), and Cao et al. (2004). 

 

𝐺𝑃𝑃 = ∑ 𝑃𝐴𝑅 × 𝑓𝑃𝐴𝑅 ×  𝜀𝑚 × 𝑓(𝑇𝑎) × 𝑓(𝑉𝑃𝐷) × 𝑓(𝑆𝑀)𝑡      (13) 

 

where 𝜀𝑚 is the maximum light use efficiency, and 𝑓(𝑇𝑎) is the mean temperature scalar, 𝑓(𝑉𝑃𝐷) 

is the vapor pressure deficit scalar, and 𝑓(𝑆𝑀) is the soil moisture scalar. 

 

The following equation (Eq. 14) was used to calculate 𝑓(𝑇𝑎)  for GLO-PEM model (Cao et al., 

2004b). 

 

𝑇𝑒𝑚𝑝𝑆𝑐𝑎𝑙𝑒𝑟 =  
(𝑇−𝑇𝑚𝑖𝑛)(𝑇−𝑇𝑚𝑎𝑥)

(𝑇−𝑇𝑚𝑖𝑛)(𝑇−𝑇𝑚𝑎𝑥)−(𝑇−𝑇𝑜𝑝𝑡)
2       (14) 

 

where T is the daily mean temperature, Tmin is the constant minimum temperature (-1°C), Tmax 

stands as the constant maximum temperature (50°C), and Topt is the optimum temperature. This parameter 

is defined as the long-term mean temperature of the growing season. This study estimated this parameter 

by averaging the hourly temperature of the growing season (from April to September) from 1990 to 2022. 

 

The 𝑓(𝑉𝑃𝐷)for the GLO-PEM model was estimated using the following equation (Prince & 

Goward, 1995b). 
 

𝑉𝑃𝐷𝑆𝑐𝑎𝑙𝑒𝑟 = (1.2𝑒(−0.35𝐷)) − 0.2        (15) 

 
where D stands as the vapor pressure deficit. 

 

The following equation was used to estimate the 𝑓(𝑆𝑀)  scalar of the GLO-PEM model (Cao et 

al., 2004b). 
 

𝑆𝑜𝑖𝑙𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒𝑠𝑐𝑎𝑙𝑎𝑟 = 1 − exp (0.081(𝛿𝜃 − 83.03))      (16) 
 

 where δθ stands as the soil moisture deficit. 

 



RETRIEVING FOREST NET PRIMARY PRODUCTIVITY USING TEMPORAL SENTINEL-2 DATA AND ITS RESPONSE TO AN EXTREME CLIMATE EVENT 

 

20 

The GLO-PEM model has an equation to estimate the autotrophic respiration or Ra. This equation 

estimates Ra based on the relationship between temperature and biomass. Moreover, the biomass is 

estimated from a non-linear relation with the minimum reflectivity in the visible channel. Since the model 

was developed based on the AVHRR reflectance data, the equation was established from the reflectance 

values of the visible channel of the AVHRR sensor. However, the spectral range of visible bands in Sentinel-

2 differs from the AVHRR sensor. Therefore, it is not feasible to use this equation in this study. Hence, the 

same technique of NPP estimation from GPP as the MOD17 model was also used for the GLO-PEM 

model.  

2.2.8. Model implementation and post-processing of NPP data 

 

Both models have been implemented in a MATLAB environment. Two separate MATLAB scripts were 

prepared for MOD17 and GLO-PEM models, and two additional scripts were for data preparation, model 

execution, and exporting to GeoTIFF format. MOD17 and GLO-PEM scripts include many conditional 

loops that incorporate all the land cover and plant-specific parameters in the scalars and NPP estimation. 

All the input variables, including the PAR, FAPAR, climate, and soil moisture variables, were converted to 

a matrix from the raster format. Then they were transformed into an array. Then these arrays were used to 

estimate NPP executing the MOD17 and GLO-PEM scripts. The array output of the NPP was transformed 

into a matrix format. Finally, the matrices were exported into GeoTIFF format with WGS 1984 coordinate 

system. 

 

Post-processing the NPP data involves the removal of NO VALUES and reprojecting the raster 

layers to fix the pixel size at 10 m. During the data exporting to GeoTIFF format from MATLAB, the pixel 

outside the BFNP boundary were assigned an extra-large value by default: the no value. These values were 

removed from the raster layers using the extract by attributes tool in ArcGIS Pro. Then, the layers were 

reprojected to WGS 1984 UTM Zone 33N coordinate system to match the rows and column numbers and 

the pixel size of the input variables. 

2.2.9. Verification 

 

In the absence of the eddy covariance flux tower-based time series measurement of the productivity and Ra 

data, secondary GPP, NPP, and forest inventory data have been collected from various sources to verify 

the model output of this study. One of the common primary productivity datasets is the MODIS GPP and 

NPP products generated from the MOD17 model using the MODIS remote sensing data. This dataset has 

been producing the primary productivity data since 2001. Since MODIS NPP data comes with an annual 

timestep, MODIS GPP data have been collected as this data are provided with an 8-day composite. Later, 

GPP values were converted to NPP values for verification purposes. In addition, some field-measured 

biomass and NPP data have been collected from the BFNP authority for the year 2016 (i.e., January, May, 

July, August). Table 5 provides an overview of the secondary datasets collected from various sources to 

verify the model outputs of this study. 

 

Table 5. The basic information about the primary productivity datasets was collected for verification purposes.  

No. Dataset Timestep Period Format 
Spatial 

Resolution 
Source 

1.  MODIS GPP 8-days 2016-2021 Raster 500 m NASA Earth Data 

2.  Forest Inventory Monthly 2016 Point shapefile - BFNP Authority 

 

The input variables are entirely different in MODIS products. The MODIS products use MODIS 

reflectance data for FAPAR estimation. Moreover, it uses coarse-resolution MODIS land cover maps (500 
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m spatial resolution) and climate and soil moisture data from different sources than the source used for this 

study.  

 

  The MODIS-GPP data comes with an 8-day interval, whereas the MODIS-NPP data is at an annual 

timestep. Since the NPP generated from this study are at daily timestep, instead of using MODIS-NPP data, 

we have estimated NPP from MODIS-GPP with 8-day composites using an NPP/GPP ratio (Eq. 17) 

(Waring et al., 1998). In addition to GPP data, the MODIS-GPP datasets also contains net photosynthesis 

as separate band. It is also possible to estimate NPP from this data instead of using GPP directly (Eq. 18). 

The net photosynthesis can be defined as the difference between GPP and Rm.  

 

MODIS NPP = MODIS GPP * 0.47        (17) 

MODIS NPP = 0.8 * (MODIS GPP – Rm) = 0.8 * PsnNet     (18) 

 

Where PsnNet stands as the net photosynthesis. MODIS NPP have been estimated using both the 

formulas and kept whichever provided the highest values of the Coefficient of Determination (expressed as 

R2). One difficulty in using MODIS products for verification is the mismatch in the acquisition dates of 

MODIS data (8-day composite) and Sentinel-2 data. To resolve this issue, this study considers the nearest 

dates of MODIS products from the Sentinel-2 acquisition dates. A list of the dates for both MODIS 

products and Sentinel-2 data is given in Annex III. The difference between the MODIS and Sentinel-2 dates 

varies from 0 to 3 days. Another difficulty is the mismatch in the spatial resolution. The MODIS products 

have a very coarse spatial resolution, i.e., 500 m, whereas the NPP data of this study has a 10 m resolution. 

Therefore, the MODIS products have been downscaled using the bilinear resampling technique to match 

the spatial resolution of NPP data estimated in this study. 

 

For verification purposes, 107 random points have been generated to collect the NPP values from 

both the estimated NPP and MODIS NPP layers. The sample points were generated only on certain types 

of land covers where vegetation exists, excluding the urban, roads, and water body land cover types. To do 

this the study area was masked to keep only the vegetated areas. The vegetation land cover types of BFNP 

include coniferous stand, deciduous stand, mixed stand, meadows, and transition stands between forest and 

meadows and line vegetation. After generating 107 sample points using simple random sampling techniques, 

NPP values from both estimated NPP and MODIS-NPP were extracted using the “extract multi values to 

points” tool in ArcGIS Pro. Moreover, estimated NPP data was also extracted for locations of the forest 

inventory sampling plots. Finally, these data have been used to calculate the R2 by squaring Pearson’s 

correlation coefficient (r) and plotting the scatter diagram. The R2 values indicate how much of one variable 

can be explained by the other variable. Then, the R2 between MOD17 NPP and GLO-PEM NPP has also 

been calculated for inter-model comparison. 

2.2.10. Spatio-temporal distribution of NPP 

 

Since the models generate one raster layer for every timestep and it is not possible to show all the NPP maps 

for every date to present the spatio-temporal distribution of NPP, August has been selected as a 

representative month in BFNP from the late growing season to show the spatial distribution as the plant 

foliage matures at this time. However, September is selected for 2021 in the absence of any suitable image 

in August or July. For a better interpretation and comparison, the NPP values are classified into five classes 

for all the NPP layers from both models. The classes are 3.5 x 10-3 to 9.0 x 10-3, 2.5 x 10-3 to 3.5 x 10-3, 1.0 

x 10-3 to 2.5 x 10-3, 0.5 x 10-3 to 1.0 x 10-3, and ≤0.5 x 10-3 kgC/m2/timestep. For better visibility and 

interpretation of the changes in NPP across the place and time, NPP layers with only positive values have 

also been created along with the original NPP layers. 
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2.2.11. Change detection, the relation of NPP with climate variables and SPEI 

 

Temporal change in the estimated NPP has been calculated pixel and patch-wise (land cover type-wise). For 

pixel-wise change detection, some sample pixels were selected from every land cover type following the 

simple random sampling, and time series pixel values (i.e., NPP values) have been extracted from 2016 to 

2022. The number of sample points for different land cover types are 25, 17, 45, and 12 for evergreen, 

deciduous, mixed, and others (i.e., grass, pasture, shrub), respectively. On the other hand, for patch-wise 

change detection, spatial averaging of the pixel values was applied to generate the time of NPP values. The 

change in the NPP values was analysed by estimating a linear trend and the year-wise change. 

 

To investigate the overall direction of the NPP over the study period, a linear trend has been 

estimated in all the time series extracted at the sample point locations. Time series NPP values were extracted 

from 2016 to 2022 for each sample point. Hence, each point has 45 NPP values. Then, a linear trend was 

estimated for every sample point. The sample point-wise slope values of the linear trend have been 

considered to determine the direction of the trend and fluctuation rate. Since showing a time series plot of 

all the sample points with trend lines is not possible, a map showing the point-wise slope values has been 

prepared. The slope values were divided into four classes, showing spatial variation. To detect if there is any 

significant change or break point after the 2018 drought (Aalbers et al., 2023), a one-tailed t-test has been 

performed between the pre-drought (2016-2018) and the post-drought (2019-2022) NPP time series (Eq. 

19). The null hypothesis of the t-test was that the mean NPP of the pre-drought period was not greater than 

the post-drought period. On the other hand, the alternative hypothesis was that the mean NPP of the post-

drought period was less than the pre-drought period. The t-test output is the p-values; the significance level 

was 0.01 for 99% confidence intervals (Eq. 20). That means the null hypothesis will be rejected if the p-

values are less than 0.01. 

 

t = (X1 – X2) / √[(s1
2 / n1) + (s2

2 / n2)]        (19) 

 

 where X1 and X2 are the mean NPP during the pre- and post-drought periods, respectively; s1 and 

s2 are the standard deviations of the pre- and post-drought NPP time series, respectively; n1 and n2 are the 

sample sizes of the both time series. 

 

After calculating the t-value, the test calculates the p-value to test the hypothesis (Eq. 20). 

 

p-value = 1 – F(t, df)          (20) 

 

 where F is the Cumulative Distribution Function (CDF) of the t-distribution; t is the calculated t-

value from the t-test; df is the degree of freedom associated with the t-test. 

 

Pearson’s correlation coefficient (r) has been calculated  between the NPP estimated from both 

models and climate variables..  Since r-values show both the magnitude and direction of the relations, and 

both positive and negative relations exist between NPP and climate data, r-values have been calculated 

instead of R2. The NPP estimated by the MOD17 model was correlated to the daily minimum temperature, 

soil moisture deficit, and vapour pressure deficit. On the other hand, the NPP estimated from the GLO-

PEM model was correlated to daily mean temperature, vapour pressure deficit, and soil moisture deficit. 

Since water stress originating from VPD and soil water deficit can have delayed impacts on NPP, real-time 

and lagged correlations were calculated for these two variables. Since the Sentinel-2 data series contains 

mostly one image in a month, each lag period means at least a one-timestep-month lag. However, there are 
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gap months in the data series. Hence, the exact time for each lag period would be at least one or more 

months. The climate variables have been chosen based on the scalars used for each model.  

 

Although the lagged correlation between VPD and soil moisture deficit indicates the drought 

influence on NPP, the correlation between estimated NPP and SPEI values has been performed to detect 

the drought impacts on NPP. Real-time and lagged correlation with several lag periods between SPEI (both 

01-month and 03-month scale) and estimated NPP have been calculated to find the maximum impact 

scenario. Finally, the lagged correlation with the maximum overall r-values has been reported in the result 

section. 

2.2.12. Significance of correlation and probability distribution 

The p-values of the correlations of the inter-comparison of estimated NPP from both models and the 

estimated NPP with climate variables and SPEI have been calculated using the following formula (Eq. 21) 

in excel. Then, the significance of the correlations have been reported based on a significance level. The 

correlation is significant if the p-value is less than the significance level. The selected significance level is 

mentioned in the result section. 

 

p-value = TDIST((ABS(r)*(SQRT(N-2))/SQRT(1 – r2)), DF, 2)     (21) 

 

where TDIST is the t-test distribution, ABS is absolute value function, r is correlation coefficient, 

N is sample size, DF is degree of freedom, and 2 indicates the two-tailed test. 

 

Then, the Probability Distribution Function (PDF) of the correlation values of the estimated NPP 

and climate variables have been estimated for a better understanding of the distribution of the r-values using 

the Kernel Density Estimation (KDE) method. The PDF helps understand the maximum statistical 

probability or likelihood of the influence of the independent variables (i.e., climate data) on the dependent 

variables (i.e., NPP). 
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3. RESULTS 

3.1. NPP from MOD17 and GLO-PEM model 

 

3.1.1. Spatial distribution of NPP 

 

The spatial distribution of NPP from MOD17 and GLO-PEM models and their temporal changes from 

2016 to 2022 is shown in Figure 6, Figure 7, Figure 8, and Figure 9. The NPP maps of positive values are 

shown separately in addition to the combined illustration of positive and negative values. 

 

The findings show that NPP is heterogeneously distributed over the study area considering the 

distribution of the plant types. Both models show a decrease in the volume of NPP in the first few years, 

then an increase in the latter part of the study period from 2016 to 2022.. In the case of the MOD17 model, 

the first two years of 2016 and 2017 show the maximum volume of NPP across the study area. In these two 

years, almost all pixels show positive values of NPP, as there is no significant visual difference between the 

illustration of combined (positive and negative) and positive-only layers (Figure 6).  

 

The MOD17 model shows a reduction in NPP in 2018 onwards as the prevalence of the first class 

is almost diminished. The magnitude of the NPP reduction is found to be maximum in-between 2018 and 

2019, and no significant recovery is noticed until 2022. Most of the pixels in 2019, 2020, and 2021 belong 

to the fourth and fifth class of NPP (<=1.0 x 10-3 kgC/m2). Although a slight recovery occurred in 2021, 

especially in the southern and south-eastern parts of BFNP, the major recovery occurred in 2022. The 

prevalence of class four and five has mostly been converted to the third and second classes this year (Figure 

7). Many areas with negative NPP values are found in 2019, 2020, and 2021, dispersed throughout the study 

area. The spatial distribution of the pixels with negative NPP suggests that the extent of negative NPP 

increased in 2020 than in 2019 and then decreased in 2021 (Figure 7). This scenario implies a slight recovery 

in 2021, especially in the southern part of BFNP, as some sparsely distributed areas are changed to the 

second class of NPP. Although the GLO-PEM model shows maximum NPP value in 2016 and 2017, the 

quantity of NPP is lower as most of the study area is dominated by the NPP second class compared to the 

dominance of the first class in the other model (Figure 8). 

 

The GLO-PEM model also shows similar behaviour regarding the change and recovery from 2018 

to 2022 (Figure 8 and Figure 9). However, there are some differences in the quantity and extent of the 

change. Although the MOD17 model shows an overall reduction of NPP in 2018, there is a slight increase 

in the GLO-PEM model, especially in the southern part of the study area (Figure 8). From 2019 onwards, 

the GLO-PEM model also generated low NPP until 2022, which experienced a recovery. From 2019 to 

2022, the overall quantity of NPP is lower in the GLO-PEM model than in the MOD17 model. The GLO-

PEM  model also identifies the appearance of the negative values in 2019 and their increase and decrease in 

2020 and 2021, respectively (Figure 8, and Figure 9). In short, both models identified the maximum NPP 

reduction in 2020. The northern part of the study area underwent the maximum extent of fluctuations 

compared to the southern part. 
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Figure 6. Spatial distribution and temporal change of NPP from MOD17 model from 2016 to 2019 in the late growing season. The upper maps show the NPP values with 
positive and negative values, whereas the lower maps show only positive ones. 
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Figure 7. Spatial distribution and temporal change of NPP from MOD17 model from 2020 to 2022 in the late growing season. The upper row shows the NPP values with 

positive and negative values, whereas the lower row shows only positive ones.  
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Figure 8. Spatial distribution and temporal change of NPP from GLO-PEM model from 2016 to 2019 in the late growing season. The upper row shows the NPP values with 
positive and negative values, whereas the lower row shows only positive ones. 
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Figure 9. Spatial distribution and temporal change of NPP from GLO-PEM model from 2020 to 2022 in the late growing season. The upper row shows the NPP values with 
positive and negative values, whereas the lower row shows only positive ones.
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3.1.2. Land cover wise quantification of NPP 

 

A quantitative representation of the temporal changes according to land cover classes (e.g., Deciduous, 

Evergreen, Mixed, others) described above can be found in Table 6. The MOD17 model estimated that the 

total amount of NPP in BFNP gradually decreased from about 82890 kg in 2016 to about 3178 kg in 2020, 

then it started increasing to about 40870 kg in 2022. Almost a similar pattern is found for NPP values using 

GLO-PEM model, except there found an increase in NPP values in 2018. Moreover, the amount of 

estimated NPP is generally lower in the GLO-PEM model than in the MOD17 model. The land cover-wise 

NPP quantification also shows a similar decrease (from 2016 to 2020) and increase (from 2021 to 2022) in 

the MOD17 model. Overall, the highest productivity is found in mixed forest-type stands, followed by 

evergreen, others (i.e., grasses, shrubs, meadows), and deciduous stands applying both GLO-PEM and 

MOD17 models.  

 

Furthermore, the land cover-wise estimation of GLO-PEM shows a slight increase in 2018 and a 

decrease afterwards, like the overall estimation covering the entire BFNP. In short, both models recorded 

the lowest productivity in 2020 for all land cover types. Moreover, the recovery started in 2021 and 

continued in 2022, although the productivity did not reach the initial level of 2016. 

 

Table 6. The table shows a land cover-wise quantitative representation of NPP in Aug/Sep from 2016 to 2022. The 
numbers are in kilogram units. The calculation considers only positive values to avoid error-related distortion.  

LC Type Models 2016 2017 2018 2019 2020 2021 2022 

BFNP 

MOD17 82890.64 80727.05 65439.92 6453.97 3178.69 7836.69 40870.09 

GLO-PEM 60208.42 58422.31 69370.45 4675.61 2416.07 6921.38 30050.28 

Deciduous 

MOD17 12090.16 13799.08 10632.72 1788.05 798.47 2319.24 6997.98 

GLO-PEM 10265.77 10248.50 12176.41 1298.88 720.26 1971.68 5757.29 

Evergreen 

MOD17 19916.78 17856.22 15770.22 827.22 388.10 842.25 8341.37 

GLO-PEM 13438.39 12681.27 15351.89 597.76 260.53 723.35 5780.41 

Mixed 

MOD17 33313.33 33397.85 26974.08 2815.11 1508.42 3416.04 16717.65 

GLO-PEM 24749.51 24203.01 28443.30 2037.19 1117.38 3027.95 12412.74 

Others 

MOD17 17570.37 15673.90 12062.90 1023.59 483.70 1259.16 8813.09 

GLO-PEM 11754.75 11289.53 13398.85 741.78 317.90 1198.40 6099.84 

Note: The others type includes grass, pasture, transitional woodland shrub, meadows. 
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3.2. Comparison of the estimated NPP with NPP from forest inventory 

 

The comparison of the summation of mean daily NPP in different sample points of the forest inventory 

with the NPP extracted from the MOD17 and GLO-PEM layers for the same points shows that MOD17 

NPP is found closer to the field-measured NPP than GLO-PEM NPP in May 2016 (Table 7). On the other 

hand, GLO-PEM NPP is closer to the forest inventory NPP in July and August compared to the MOD17 

NPP. MOD17 has also overestimated the NPP more than the forest inventory NPP in July and August by 

35 and 33%, respectively. Overall, the differences between the forest inventory NPP and GLO-PEM NPP 

are lower than the difference between MOD17 NPP and the forest inventory NPP. The R2 values between 

the summation of estimated NPP and field-measured NPP (Table 7) are found to be 0.32 and 0.84 for 

MOD17 and GLO-PEM models, respectively. Moreover, when compared point-wise instead of aggregating 

the values, the highest values of R2 are found in May for both MOD17 (0.25) and GLO-PEM (0.26) models. 

 

Table 7. The summation of the mean daily NPP in all the sample points of the forest inventory. The numbers are in 
kgC/m2/day units. 

Data source May 2016 July 2016 August 2016 

Forest inventory 0.29 0.31 0.27 

MOD17 0.30 0.42 0.36 

GLO-PEM 0.26 0.34 0.26 

3.3. Comparison of the estimated NPP with MODIS products  

 

The estimated NPP from MOD17 and GLO-PEM models have been compared with the MODIS products. 

(Running & Zhao, 2019). The comparison between the estimated NPP from the MOD17 model and the 

MODIS-NPP suggests mostly positive relations; however, the strength of the relations, which expressed as 

R2 values, varies from 0.16 to 0.72 (Figure 10). The scatter plots in Figure 10 suggest that the outputs of two 

models, MOD17 and MODIS-NPP, follow an upward identical pattern. However, the distribution of the 

observations in the scatter plots is different for all the sampling dates. The distribution shows both sparse 

and compact nature. 

 

The GLO-PEM model also gives similar results when compared to the MODIS-NPP. However, 

the values of R2 differ from the MOD17 model (Figure 11). The correlation between the GLO-PEM model 

products versus MODIS-NPP varies from 0.16 to 0.70. In most cases, the R2 values between GLO-PEM 

and MODIS NPP are less than the R2 values between MOD17 and MODIS NPP. Like MOD17, the GLO-

PEM NPP also shows sparse and compact nature of distribution against the MODIS NPP.  
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Figure 10. Comparison between MOD17 (x-axis) and MODIS-NPP (y-axis) on some selected dates. The figures on 
x-axis and y-axis of each sub-figure is in kg/m2 unit. The red line represents the linear trend line between the variables. 
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Figure 11. Comparison between GLO-PEM (x-axis) and MODIS-NPP (y-axis) on some selected dates. 
The figures on x-axis and y-axis of each sub-figures are in kg/m2 unit. The red line represents the linear 
trend line between the variables.
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3.4. Inter-comparison of MOD17 and GLO-PEM NPP 

 

An inter-comparison between the MOD17 and GLO-PEM models has been performed to investigate how 

the models perform against each other. The results show that most of the R2  values of this comparison are 

above 0.8, which suggests a strong positive relation between two models (Figure 12). Nevertheless, a few 

lower R2  are also found below 0.4. However, the p-values suggest that all correlations are significant in 0.01 

level of significance (Annex IV).  

 

 

Figure 12. The comparison of coefficient of determination (R-squared values) between the estimated NPP from 
MOD17 and GLO-PEM models. The x-axis contains all the 45 dates of the Sentinel-2 data series of the study. 

3.5. Temporal change in NPP 

 

The temporal changes in NPP estimated from both models have been analysed and presented separately. A 

linear trend was calculated using the NPP values extracted from different sample points throughout the 

study area. Figure 13 shows the distribution of the slope values of the trend estimated from both models. 

The findings show a downward trend of NPP in all the sample locations for both models. However, there 

is a slight difference in the range and spatial distribution pattern of the slope values. In the case of the 

MOD17 model, the slope value ranges from 5.0 x 10-7 to 1.8 x 10-6 kg/m2. On the other hand, the slope 

values of the GLO-PEM model vary from 5.0 x 10-7 to 1.6 x 10-6 kg/m2. The spatial distribution of slope 

values suggests that any specific range of the fluctuation rates is not concentrated but distributed over space. 

Nevertheless, a spatial correlation pattern can be seen as the sample points within the same value range are 

located near each other in many parts of the study area. 

 

A more clear picture of how the NPP changes over time can be seen in Figure 14, which has three 

plots for three representative pixels from evergreen, deciduous, and mixed, land cover types. The plots in 
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Figure 14 shows that the model identifies the seasonal cycles of the NPP very well. The NPP values after 

2018 are very lower in all plots. However, there is a recovery trend in 2022, as the plots show higher peaks 

than in the previous three years. 

 

 
Figure 13. Spatial distribution of the slope of the linear trend in NPP from 2016 to 2022. The slope values in legend 
have a scale factor of 0.0001. The symbols here represent the locations of the sample points from which NPP values 
have been extracted. 
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Figure 14. Time series plots and linear trend lines of three representative pixels from different types of land cover. 
The x-axis of the plots represents NPP in kg/m2/day units, whereas the y-axis shows the time. 

 

The linear downward trend found in different sample points is further supplemented by the significant 

differences found in NPP between pre-drought (2016-2018) and post-drought(2019-2022) periods from the 

t-test. The mean NPP values largely decreased in the post-drought period compared to the pre-drought 

period in every sample point, as shown in Figure 15 (MOD17) and Figure 16 (GLO-PEM). The significance 
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of this change in mean NPP in the latter period is further confirmed by the p-values of the t-test. Almost 

all of the p-values are found to be less than 0.01 (Annex IV). This result suggests that the reduction in mean 

NPP in the post-drought period is statistically significant at a 0.01 significance level. 

 

 

Figure 15. Mean NPP values from MOD17 model in pre-drought (2016-2018) and post-drought (2019-2022) periods. 

 

 

Figure 16. Mean NPP values from GLO-PEM model in pre-drought (2016-2018) and post-drought (2019-2022) 
periods. 
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moisture deficit, and VPD of the study area. Figure 17 shows that the NPP values estimated by the MOD17 

model are moderately-strong correlated to the climate variables such as minimum temperatures and soil 
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correlation coefficient values are mostly around 0.4 for different sample points. In the case of VPD, the 

real-time correlation provides a positive correlation, whereas the lag-3 correlation provides higher negative 

r-values (Figure 18). The probability density distribution in Figure 19 shows that the R2 values of around 

0.43, -0.47, 0.41, and -0.44 have the maximum probability of occurring when establishing the relation of 

MOD17 NPP with daily minimum temperature, lag-1 soil moisture deficit, real-time VPD, and lag-3 VPD, 

respectively. The p-values of the r-values between MOD17 NPP and climate variables suggest that about 

84, 79, 99, 85, and 94% sample points for minimum temperature, real-time soil moisture deficit, lag-1 soil 

moisture deficit, real-time VPD, and lag-3 VPD, respectively, show significant correlations at a 0.05 

significance level (Annex IV). 

 

 On the other hand, the GLO-PEM-NPP have also been correlated with daily mean temperatures, 

real-time and lag-1 soil moisture deficit, real-time VPD, and lag-3 VPD. The findings suggest that GLO-

PEM-NPP is also moderately-strong correlated with the climate variables, as most correlation coefficient 

values are between 0.4 and 0.45 in both directions (Figure 20). Like MOD17, lag-1 soil moisture deficit 

shows the higher r-values than real-time values. Similarly, lag-3 VPD shows negative relations (with higher 

values), whereas real-time VPD shows positive relations with the estimated NPP (Figure 21). The probability 

density distribution in Figure 22 shows that the maximum likelihood of R2 between GLO-PEM NPP and 

climate variables lies around 0.4, 0.5, 0.3, and 0.4 for mean temperature, lag-1 soil moisture deficit, real-time 

VPD, and lag-3 VPD, respectively. The p-values of the r-values between GLO-PEM NPP and climate 

variables suggest that about 65, 78, 100, 35, and 74% sample points for mean temperature, real-time soil 

moisture deficit, lag-1 soil moisture deficit, real-time VPD, and lag-3 VPD, respectively, show significant 

correlations at a 0.05 significance (Annex IV). 

 

 

Figure 17. Correlation coefficients (r) of MOD17 NPP with daily minimum temperature, soil moisture deficit, and 
lag-1 soil moisture deficit. The correlation of NPP with real-time soil moisture deficit and lag-1 soil moisture deficit is 
in a negative direction. The x and y axis shows sample point numbers and r-values, respectively. 
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Figure 18. Correlation coefficients of MOD17 NPP with real-time VPD and lag-3 VPD. The x and y axis shows 
sample point numbers and r-values, respectively. 

 

  

  
Figure 19. Probability density function distribution of the correlation coefficient values (r) of MOD17-NPP with daily 
minimum temperature (upper left), lag-1 soil moisture deficit (upper right), real-time VPD (lower left), and lag-3 VPD 
(lower right). 
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Figure 20. Correlation coefficients of GLO-PEM NPP with daily mean temperature, real-time soil moisture deficit, 
and lag-1 soil moisture deficit. The x and y axis shows sample point numbers and r-values, respectively. 

 

 

Figure 21. Correlation coefficients of GLO-PEM and real-time VPD and lag-3 VPD. The x and y axis shows sample 
point numbers and r-values, respectively. 
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Figure 22. Probability density function distribution of the correlation coefficient values (r) of GLO-PEM NPP with 
daily mean temperature (upper left), lag-1 soil moisture deficit (upper right), real-time VPD (lower left), and lag-3 VPD 
(lower right). 

 

The correlation between monthly SPEI values and estimated NPP from both models revealed a lagged 

relation. After several trials, the maximum r-values of the estimated NPP with lagged SPEI values are found 

for a lag period of 6 and 8 for MOD17 and GLO-PEM, respectively (Figure 23). Both the 01-month and 

03-month scales for monthly SPEI values were tried, and the 03-month scale SPEI values provided the 

overall maximum r-values. The p-values of the r-values between estimated NPP and lagged SPEI suggest 

that almost all the correlations are significant at a 0.05 significance level (Annex IV). Each lag period 

represents a monthly timestep. Therefore, a fluctuation in SPEI values has the maximum influence on NPP 

after at least 6 or 8 months, according to MOD17 and GLO-PEM models, respectively. However, due to 

the gap month in the Sentinel-2 time series data of this study, the exact lag period of lag-6 and lag-8 would 

be translated to one or more years. For example, considering the image acquisition dates in Table 3, the lag 

8 for GLO-PEM represents the impacts of SPEI in May 2016 on the NPP in August 2017, similarly August 

2017 correlates to August 2018, August 2018 correlates to July 2019, July 2019 correlates to August 2020, 

August 2020 correlates to July 2022 (due to data gap in 2021). 
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Figure 23. Correlation coefficients of MOD17 and GLO-PEM NPP with lagged SPEI values with 03-month time 
scale. The lag period for GLO-PEM and MOD17 is 8 and 6, respectively. The x and y axis shows sample point numbers 
and r-values, respectively.  
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4. DISCUSSION 

The study employed two LUE-based models, i.e., MOD17 and GLO-PEM, with Sentinel-2 data to estimate 

NPP in a temperate forest for assessing the impact of the 2018 drought on NPP. The study found that the 

GLO-PEM model fits better with the NPP estimated using forest inventory data, whereas their relation with 

MODIS products shows considerable variation. The NPP shows a negative trend in different sample points 

during 2016 and 2022. The NPP during the post-2018 is significantly less than in the pre-2018 period. The 

NPP mostly showed a significant correlation between the climate variables and SPEI values. The critical 

finding is that the estimated NPP showed lagged correlation with VPD, soil moisture deficit, and SPEI 

values that revealed the delayed or legacy response of NPP to drought and associated impacts. 

 

The following sections discuss MOD17 and GLO-PEM with Sentinel-2 data, model outputs and 

performance, and the impacts of the 2018 drought on NPP. The first section discusses the challenges of 

using the selected models with Sentinel-2 data at first. Then, the following two sections discuss the findings 

of the study. The second section discusses the models’ performance related to the first objective. The third 

section (impacts of the 2018 drought on NPP) the temporal change of NPP and its relation to climate 

variables, which is associated with the second objective. 

4.1. MOD17 and GLO-PEM with Sentinel-2 data 

 

An important aspects of this study is to retrieve NPP from the high spatial resolution satellite imageries (i.e., 

Sentinel-2) for a better understanding of the application of these types of remote sensing data in ecosystem 

modelling. Another important aspect is using the LUE-based models (i.e., MOD17 and GLO-PEM) that 

require one of the critical input variables (i.e., FAPAR) to be directly estimated from the satellite image 

reflectance. Therefore, first of all, these two aspects of the study require some reflection as they brought the 

opportunity to explore new dimensions on the one hand, but there were also challenges on the other hand.  

 

The spatial resolution of the satellite image is critical as the coarse resolution data average 

reflectance from many non-vegetation features along with the vegetation. In contrast, the high resolution 

tends to contain information from more homogenous land covers. Nouri et al. (2020) found that satellite 

data with high spatial resolution can detect the variation and changes in spectral information of vegetation 

more precisely than the coarse resolution data. The high-resolution data can also discriminate different 

vegetation types more accurately (Burchard-Levine et al., 2021), essential for NPP modelling as 

photosynthesis depends on vegetation types. The high spatial resolution satellite image has been found more 

effective in NPP estimation, especially due to its capacity to discriminate vegetation from other features and 

vegetation types (Pan et al., 2009; Wu & Bauer, 2012; Yan et al., 2018). However, using high spatial 

resolution data comes with challenges related to frequency. For instance, high-frequency or lower time 

interval data is available for coarse spatial resolution data (i.e., AVHRR, MODIS with daily or near-daily 

frequency). On the other hand, the high spatial resolution data comes with relatively lower frequency (i.e., 

Landsat and Sentinel-2 with eight days and five days, respectively). Therefore, the cloud-cover-related data 

gap in high spatial resolution optical remote sensing prevents obtaining a very frequent time series. This 

study also encountered this challenge as the cloud cover-related obstacle in BFNP caused image gap and 

error in the Sentinel-2 time series, preventing obtaining a clearer seasonal variation of NPP and precise 

temporal change. It is not feasible to interpolate the relatively large image gap since the interpolated images 

may fail to obtain accurate information on the vegetation change during the data gap. Harmonization of 

Landsat and Sentinel-2 data could increase the time series frequency as their spatial resolution is close. 
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As for another aspect, the major challenge of MOD17 and GLO-PEM models is the estimation of 

FAPAR from the vegetation indices, as the variation in indices and spectral resolution cause both 

underestimation and overestimation of FAPAR. There is a limitation in available knowledge about the 

relationship between vegetation spectral indices and FAPAR (Zhang et al., 2015), because the complex and 

heterogenous structure of vegetation cover and spectral uncertainties of the sensors affect the relations 

(Gobron et al., 2008). Furthermore, the inherent source of errors in vegetation indices such as soil 

brightness, soil moisture, and saturation of NDVI in dense vegetation also generates errors in FAPAR 

estimation (Clevers, 2014). Moreover, the selection of maximum LUE parameter values also affects outputs 

of MOD17 and GLO-PEM models. These values can be vegetation-specific or universal. The literature 

suggests a wide range of values (Annex I). Therefore, this is another challenge of using these models, 

influencing the models' performance. 

 

Keeping these challenges in mind, if we look into the time series of this study, the time series is 

significantly fragmented due to the image gap. Therefore, it was not feasible to analyse the spatial and 

temporal distribution of NPP using the annual total or annual mean productivity. Hence, a representative 

month, i.e., August, was selected since this month lies between the mid and end of the growing season when 

the foliage reaches a mature stage. Another reason was in 2021, there were so many negative NPP values 

during mid-season or summer months, possibly due to a combination of errors related to atmospheric 

distortion, lower productivity, and tree mortality or logging that may not provide a meaningful temporal 

change scenario. However, despite selecting August as a representative month, we had to choose September 

for 2021 due to the image gap between August and July. When checking input variables of the summer 

months of 2021, it appeared that the NDVI had a prevalence of negative values that caused negative 

FAPAR, thus a negative NPP. 

4.2. Model outputs and performance 

 

Our results revealed that using MOD17,  NPP was overestimated in all three months in 2016 (i.e., May, July, 

and August) compared to forest inventory NPP. However, the latter two months are considerable here (35 

and 33% overestimation in July and August, respectively) as the difference between estimated MOD17-NPP 

and measured NPP in May is marginal. The overestimation tendency of the MOD17 model was also 

observed in previous studies conducted by  Turner et al. (2006). Although the previous studies (.e., Ardö, 

2015; Turner et al., 2006b) evaluated the MODIS-NPP products estimated by the same model using MODIS 

reflectance, the present findings indicate that the model persists in its overestimation nature when applied 

with Sentinel-2 reflectance. The previous study identified that one of the reasons for this overestimation is 

due to the high FAPAR value (Turner et al., 2006b). Ardö (2015) also showed that the MOD17 model yields 

higher NPP due to its sensitivity to plant’s absorbed incoming solar radiation. Therefore, evaluating FAPAR 

estimated from the Sentinel-2 reflectance can be a future endeavor to adjust further and improve the 

prediction accuracy of NPP products using the MOD17 model. Although the R2 value for the MOD17 

model using Sentinel-2 data is not very high in this study, a contrasting finding exists in literature where the 

MOD17 model with Sentinel-2 data agreed very strongly (average R2 = 0.92 for various species) with the 

flux tower-measured data (i.e., Mngadi et al., 2022). Hence, a more extended period of reference data like 

forest inventory or flux tower data could have possibly increased the R2 of MOD17-NPP in this study. 

 

On the other hand, the GLO-PEM model estimated NPP well as it generated NPP closer to the 

forest inventory NPP than the MOD17 approach. The better agreement of the GLO-PEM model is also 

evident from the coefficient of determinants values, where about 84% of GLO-PEM NPP can be explained 

by the field-measured NPP, compared to 32% in the case of the MOD17 model. Liu et al. (2022) reported 

that the water-related stress scalars impact the performance of the LUE-based models more than the 
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temperature-related stress scalars. Therefore, using soil moisture deficit scalar in the GLO-PEM model may 

have contributed to the better fit in estimated NPP products.  

 

As for the second approach for evaluating the NPP products in this study is comparing the 

MOD17- NPP and GLO-PEM- NPP to other NPP products (i.e., MODIS NPP products), promising 

results are found when compared to MODIS productivity products. The R2 values of 0.16 to 0.72 between 

the MOD17 and MODIS-NPP imply a considerable variation in their relationship.. A recent study 

attempted to estimate GPP using the MOD17 model with Sentinel-2 data, where they found 57% agreement 

between the model output and eddy covariance flux tower data (Junttila et al., 2023). Another study found 

45 and 52%  average agreement between the MOD17 model with MODIS data against the field-measured 

data on sunny and cloudy days, respectively (L. Liu et al., 2022). Although our approach of using Sentinel-

2 data applying the MOD17 model and then comparing it to MODIS products differs from the previous 

studies, we can find a general idea that the MOD17 model performs moderately well against the evaluation 

data. The GLO-PEM model also shows similar findings where the MODIS-NPP can explain about 15 to 

70% of estimated NPP based on the R2 values. However, a previous study found the average agreement 

between GLO-PEM and eddy covariance flux tower data 51 and 43% for sunny and cloudy days, 

respectively (L. Liu et al., 2022). 

 

The large range of the R2 values between MOD17 and GLO-PEM NPP and MODIS NPP may be 

attributed to a few reasons. Firstly, the mismatch between the acquisition date of Sentinel-2 and the dates 

of the 8-day composite of MODIS data may have contributed to this large variation in the R2 values. 

Secondly, the MODIS products used climate data from GMAO-NASA with a different spatial resolution. 

On the other hand, this study used climate data from ECMWF (ERA5 reanalysis) after downscaling to 10 

m spatial resolution. It might have caused some distortion in scalar calculations too. Besides, the MODIS 

products use MODIS land cover maps with a coarse spatial resolution (i.e., 500 m), whereas this study used 

resampled Corine land cover map with a fine spatial resolution (i.e., 10 m). Most importantly, this study used 

Sentinel-2 reflectance to estimate FAPAR instead of MODIS reflectance like the MODIS products. 

Moreover, different equations applied for the estimation of the FAPAR in both cases, which might have 

caused differences in the quantity of NPP. Furthermore, the MODIS products were downscaled from 500 

m to 10 m spatial resolution to match the spatial resolution of the estimated NPP, which may have also 

caused distortion. 

 

Overall, despite the shortcoming of the shorter period of field-measured NPP data, it can be 

concluded that the GLO-PEM model performed better than the MOD17 model. Moreover, although 

verification with MODIS-NPP products is not an ideal evaluation approach, the findings suggest that both 

models performed almost similarly when compared with MODIS-NPP products. 

 

In addition, the spatial distribution of NPP from 2016 to 2018 corresponds well with the vegetation 

types. The difference in productivity can be distinguished between the tree and other (Figure 4) types of 

vegetation (i.e., grass, shrub, pasture, etc.), which implies that the model can quantify vegetation-specific 

NPP as the algorithm incorporates the land cover types and vegetation type-specific parameter values (i.e., 

maximum LUE, scalars). The higher NPP in trees than in grass-type vegetation is consistent with the 

findings of other studies that also found the same outcome (Xiao et al., 2019). From the spatiotemporal 

distribution and the land cover-wise quantification of NPP, two significant occurrences can be picked up 

for the discussion. Firstly, the estimated NPP is slightly lower in the GLO-PEM model compared to the 

MOD17 model. Out of three environmental scalars of GLO-PEM model, two are different than the scalars 

of MOD17. For instance, GLO-PEM uses a daily mean temperature scalar instead of the daily minimum 

temperature scalar (in MOD17) and a soil moisture deficit scalar. The use of one extra scalar, such as soil 



 

45 

moisture deficit and different temperature scalar, may downregulate the maximum LUE and lead to slightly 

higher than the scalars of the MOD17. Therefore, in most cases, the GLO-PEM model generated a lower 

NPP than MOD17. Secondly, deciduous trees show higher productivity during the stressed period than 

evergreen trees. Although the area size of the evergreen land cover is larger than the deciduous land cover 

in the study area, the results demonstrated that the NPP value is higher for the deciduous trees than for 

evergreen trees in 2019, 2020, and 2021. The review of the literature suggests that deciduous trees have a 

higher tolerance ability than evergreen trees in stressed environments due to higher water use efficiency (de 

Souza et al., 2020; di Francescantonio et al., 2020; Tomlinson et al., 2013). 

 

4.3. Impacts of the 2018 drought on NPP 

 

The second research question deals with the impacts of the 2018 drought, which was one of the most 

significant meteorological droughts in Europe (Cammalleri et al., 2023). The results also show a substantial 

decrease of NPP in the latter years after 2018, this change may not be attributed solely to the impacts of 

2018 drought. There was a drought in-between late 2016 and early 2017 (García-Herrera et al., 2019). Multi-

year droughts from 2018 onwards have been found in the literatures; for instance, Rakovec et al. (2022) 

reported that the entire span from 2018 to 2020 was a drought period, provided that the drought fluctuated 

temporarily and spatially. The European Drought Observatory (EDO) also reported several drought events 

in 2019 and 2020 in its annual drought report (P et al., 2021). Furthermore, 2022 was also reported as a 

drought year, one of the worst in centuries, mainly due to heat waves and water stress conditions 

(Commission et al., 2022). Another characteristic of the drought's impact on the ecosystem function is that 

the impacts of the drought may appear later. This lag period of drought impact, also known as drought 

legacy, can cause the cumulative impacts of drought in addition to the immediate impacts felt during the 

drought (Müller & Bahn, 2022). Therefore, we may argue that the reduction of NPP after 2018 is a 

cumulative consequence of 2018 and other subsequent droughts, including immediate and legacy impacts. 

The findings of other studies may support this argument. For instance, Schnabel et al. (2022) reported that 

tree growth was not reduced significantly in 2018, likely due to the available soil moisture that partly 

compensated for the meteorological water stress. However, a significant decrease in vegetation growth was 

observed in 2019, which can be attributed to the legacy impacts of the 2018 drought and the succeeding 

impacts of the latter drought (Schnabel et al., 2022). Similarly, the reduction in NPP in 2018 detected by 

MOD17 might have been influenced by the 2016 drought in addition to the immediate impact of the 2018 

drought. 

 

After 2018, a prevalence of negative NPP and significantly lower NPP have been observed in the 

results for the years 2019, 2020, and 2021. This occurrence can be attributed to decrease in productivity due 

to drought and drought-induced tree mortality (Senf et al., 2020). Arend et al. (2022) found that the 

European Beech (fagus sylvatica), the dominant deciduous tree in BFNP, suffered from defoliation due to the 

drought. This impact extended to the following years also, as the embolized xylem does not regain function 

in the season following a drought (Arend et al., 2022). Furthermore, the immature leaf senescence and crown 

dieback that increasingly led to the mortality of European Beech trees were also observed in the subsequent 

years of drought in northern Switzerland (Frei et al., 2022). Moreover, The surviving trees also showed more 

crown dieback tendencies than the natural occurrence in the following years of the drought (Frei et al., 

2022). Additionally, the drought-affected trees (i.e., premature leaf senescence) were susceptible to 

infestation (i.e., bark beetle, bleeding cankers) by more than double compared to other trees in the 

subsequent years (Frei et al., 2022; Nardi et al., 2023). Besides the deciduous trees (i.e., European Beech), 

the coniferous or evergreen trees were also affected by the 2018-2020 drought-induced disturbances. 

Research showed that the impacts on coniferous trees were more than those of the deciduous trees 
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(Thonfeld et al., 2022). The study reported that the Spruce trees (picea abies), which considers as a dominant 

evergreen species in BFNP, largely suffered from canopy cover loss due to the 2018-2020 drought and 

drought-induced insect infestations and forced clear-cut in Germany (Thonfeld et al., 2022). Another study 

by Obladen et al. (2021) also reported dieback in Beech and Spruce trees, especially high mortality in Spruce 

trees induced by the 2018-2019 drought in Bavaria, Germany. Conversely, in addition to drought-related 

productivity and tree loss, other reasons, such as windthrow and regular harvesting, also took place 

(Thonfeld et al., 2022), possibly contributing to the NPP reduction. In short, the substantial decrease and 

negative values in the NPP estimation of this study may be attributed to the combined impacts of drought 

in 2018 and the subsequent droughts that caused reduced productivity, insect infestation, tree mortality, and 

additional forced clear-cut. Another reason for the thorough detection of negative NDVI may be the spatial 

resolution. The coarse-resolution image aggregates the reflectance from all the vegetation within the pixel, 

which may attenuate or neutralize the poor reflectance from the stressed or dead vegetation by the strong 

reflectance from the healthy vegetation. On the other hand, Sentinel-2 has a 10 m spatial resolution, and the 

heterogeneity of the signal persists; thus, the NPP reduction might have been discriminated rightly. 

 

The correlation between estimated NPP and climate data reflects the drought very well. The higher 

r-values of NPP with lagged soil moisture deficit than real-time soil moisture deficit indicates that the 

impacts of soil moisture deficit on NPP take some time to appear. These findings are consistent with the 

legacy impact of drought (Müller & Bahn, 2022). However, the negative r-values of real-time soil moisture 

deficit suggest an immediate impact. On the other hand, the positive r-values of the real-time VPD suggest 

that the negative impact of the VPD increase was not felt immediately. One possible reason is that the 

available soil water may compensate for the atmospheric water stress for a short time, which helps the plants 

keep their stomata open (Xu et al., 2023). However, the higher negative r-values for lagged correlation of 

VPD indicate the delayed influence of water stress on NPP, which is also consistent with the drought legacy 

impact. 

 

Another interesting finding of this study is the higher lag period in the correlation between NPP 

and monthly SPEI values. This result implies that the maximum impact of drought on vegetation 

productivity occurs 6 and 8 monthly-timestep later for MOD17 and GLO-PEM, respectively. However, 

due to the gap month in this study's Sentinel-2 time series data, lag-6 and lag-8 would be converted to one 

or more years. For instance, lag 8 for GLO-PEM represents the effects of SPEI in May 2016 on the NPP 

in August 2017, similarly August 2017 correlates to August 2018, August 2018 to July 2019, July 2019 to 

August 2020, and August 2020 to July 2022 (due to data gap in 2021). This finding justifies the legacy impact 

of drought and the substantial reduction of NPP after 2018 up to 2021. The previous studies also found 

one to two or more years of lagged impacts of drought on tree mortality (Bigler et al., 2007). Moreover, the 

monthly SPEI with the 03-month time scale has been found more effective in establishing the relationship 

between drought and NPP than the 01-month time scale. 

 

Overall, the r-values for all the climate variables are mostly around 0.45. It suggests that one single 

environmental factor only partially controls NPP as there are many other forcing factors that might be 

involved, including plant physiology, nutrients, atmospheric carbon dioxide, nitrogen, etc. This scenario 

points out one of the limitations of these LUE-based models: they do not consider many essential variables. 
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5. CONCLUSION 

This study intended to assess the performance of two LUE-based models in estimating NPP using high 

spatial resolution Sentinel-2 imageries and to investigate the 2018 drought impacts on NPP in BFNP. Two 

models, namely MOD17 and GLO-PEM, have been selected that require PAR, FAPAR, maximum LUE 

values, and environmental scalars. MOD17 requires daily minimum temperature scalars and VPD scalars, 

whereas GLO-PEM requires daily mean temperature, VPD, and soil moisture deficit scalars. FAPAR was 

estimated using the NDVI values retrieved from the Sentinel-2 imageries. PAR and environmental scalars 

have been estimated based on the required climate data collected from the ERA5 reanalysis data of ECMWF. 

Other necessary data, including land covers, forest inventory data, and MODIS-NPP products, have also 

been collected for model implementation and verification. In addition,  monthly SPEI values have been 

collected for drought impact analysis. Several geospatial data computing platforms and environments, 

including GEE, SNAP, ArcGIS Pro, MATLAB, and Python, have been used in different stages of data 

analysis. The model outputs were used to perform several statistical analyses. 

 

The results show that the MOD17 model overestimated the NPP compared to the forest inventory 

NPP. NPP estimated using the GLO-PEM model showed a better accuracy versus the forest inventory 

NPP data. The comparison of estimated NPP with MODIS-NPP shows that both models perform almost 

similarly; however, the prediction accuracy of the NPP retrieved from GLO-PEM were slightly lower than 

MOD17. Significant reductions in NPP value have been observed during the post-drought (i.e., 2019-2022) 

compared to the pre-drought (i.e., 2016-2018) period. The slope values of the linear trend in all the sample 

points show a downward trend of NPP. Estimated NPP from MOD17 and GLO-PEM models positively 

correlate with minimum and mean temperatures. On the other hand, retrieved NPP shows negative relation 

with real real-time and lagged soil moisture deficit and lagged VPD, whereas, however, a positive relation 

was observed between retrieved NPP and real-time VPD. In addition, negative relation has been found 

between predicted NPP and  lagged SPEI values. The negative correlations of NPP with lagged VPD, lagged 

soil moisture deficit, and lagged SPEI indicate drought's negative impact on NPP. 

 

Despite the limitations in the verification of the estimated NPP due to the unavailability of the 

forest inventory dataset and temporal distortion in the MODIS products, important findings may be drawn 

to support the first hypothesis. Both models generate promising outputs as the estimated NPP has positive 

relations with the forest inventory NPP and MODIS-NPP. Although the forest inventory data has a shorter 

period, a better fit of GLO-PEM shows this model's compatibility in NPP estimation. The study produced 

substantial information to support the second hypothesis as well. The significant reduction of NPP after 

2018 is a consequence of the cumulative impacts of 2018 and subsequent droughts and associated 

disturbances (i.e., tree mortality, insect infestation, and forced logging). Moreover, the reduction of NPP (in 

MOD17) in 2018 than 2016 and 2017 may be attributed to the immediate impact of the 2018 drought and 

the legacy impact of the 2016 drought. The lagged correlation of VPD, soil moisture deficit, and SPEI values 

with NPP also supports the drought-caused impacts. 

 

The study has some limitations that influenced the current results on the one hand and open 

opportunities for future studies on the other hand. The cloud cover and atmospheric distortions prevented 

obtaining a frequent time series of Sentinel-2 images which caused difficulty in temporal change detection 

and correlation with the climate data. A fusion between Sentinel-2 and Landsat could have increased the 

data frequency. Estimating Ra with a fraction of GPP is another study limitation. The MOD17 lacks 

methods to estimate Ra at daily timesteps. The GLO-PEM’s Ra estimation method also was not applicable 

to Sentinel-2 data due to the difference in spectral resolution between AVHRR and Sentinel-2. Therefore, 
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further studies are required to adjust the model adopting appropriate methods to estimate Ra at daily 

timestep using these models with Sentinel-2 data. Moreover, the models used NDVI for FAPAR estimation, 

which may have caused errors due to the inherent limitations of this vegetation index. A comparative study 

can be undertaken to evaluate FAPAR from NDVI and LAI to see if it improves the model's performance. 

Another limitation was the unavailability of field-measured data. In future, calibrating the maximum LUE 

parameters against the field-measured data may generate a more accurate estimation of NPP. It will improve 

the validation and verification also. In short, LUE-based models with Sentinel-2 has the prospect of 

estimating NPP with high spatial resolution. The high spatial resolution discriminates the NPP change more 

precisely. The models are able to detect drought and associated impacts on NPP. 
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ANNEX I 

An overview of the maximum LUE values for different vegetation types collected from the literatures. The unit of 

LUE is gCMJ-1 except the blue coloured values are in gCmolPPED-1 unit.  

 

No. Vegetation Type Max. LUE 
Range 

(SD) 

MAT 

(°C) 

MAP 

(mm) 
Reference 

1 Grassland 2 1.8-3   (Oomen et al., 2016) 

2 Cropland 2.7 1.996-3.55   (Du et al., 2022) 

3 Tropical Savanna 0.8 0.5-2.9 25.7 1150 (Lin et al., 2017) 

4 
Tropical Broadleaf 

Deciduous 
1.044 0.75-1.4 25 945 (Lin et al., 2017) 

5 Herbaceous 1.5    (Machwitz et al., 2015) 

6 Woody vegetation 1.1    (Machwitz et al., 2015) 

7 Bare soil 0.1    (Machwitz et al., 2015) 

8 Savanna [C3+C4] 0.9  22.6 464 (Jin et al., 2013) 

9 Savanna 1.66 0.33-3.50 22-26.1 458-1200 (Sjöström et al., 2009) 

10 Grassland 2.01 1.58-2.92 29.5-30.2 374-510 (Sjöström et al., 2009) 

11 Deciduous broadleaf 1.8 0.55-3.5   (Martínez et al., 2018) 

12 Evergreen needleleaf 1.5 0.55-3.5   (Martínez et al., 2018) 

13 

Grassland, Savanna, 

Cropland, Evergreen 

broadleaf 

1.2 0.55-3.5   (Martínez et al., 2018) 

14 C3 Plants  0.5-4.0   (Prince & Goward, 1995a) 

15 C4 Plants 2.76    (Prince & Goward, 1995a) 

16 Deciduous broadleaf 0.542  25 1200 (Kayiranga et al., 2022) 

17 Grass and crops 0.542  25 1200 (Kayiranga et al., 2022) 

18 Evergreen needleleaf 0.985  25 1200 (Kayiranga et al., 2022) 

19 Evergreen broadleleaf 0.485  25 1200 (Kayiranga et al., 2022) 

20 Deciduous needleleaf 0.692  25 1200 (Kayiranga et al., 2022) 

21 Cropland 1.94 --- (0.55)   (Madani et al., 2017) 

22 Grassland 1.19 --- (0.45)   (Madani et al., 2017) 

23 Savanna 0.93 --- (0.38)   (Madani et al., 2017) 

24 Woody savanna 0.93 --- (0.37)   (Madani et al., 2017) 

25 Open shrubland 0.74 --- (0.21)   (Madani et al., 2017) 

26 Closed shrubland 0.2 --- (0.38)   (Madani et al., 2017) 

27 Mixed forest 1.43 --- (0.37)   (Madani et al., 2017) 

28 Deciduous broadleaf 1.68 --- (0.35)   (Madani et al., 2017) 

29 Evergreen broadleleaf 1.4 --- (0.2)   (Madani et al., 2017) 

30 Evergreen needleleaf 0.98 --- (0.32)   (Madani et al., 2017) 

31 Savanna 2.27 0.33-3.5 28.25 524 (Tagesson et al., 2015) 

32 Grassland (C3+C4) 5    (Seaquist et al., 2003) 

33 

Different biomes (deciduous 

broadleaf, evergreen 

needleleaf, grassland, mixed, 

savanna) 

2.14    (Yuan et al., 2007b) 
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No. Vegetation Type Max. LUE 
Range 

(SD) 

MAT 

(°C) 

MAP 

(mm) 
Reference 

34 Savanna (mostly C4 + C3) 0.489  26 320 (Sjöström et al., 2009) 

35 Cropland 2.201 --- (0.66)   (Madani et al., 2014) 

36 Grassland 1.294 --- (0.32)   (Madani et al., 2014) 

38 Woody savanna 0.983 --- (0.20)   (Madani et al., 2014) 

39 Open shrubland 0.631 --- (0.37)   (Madani et al., 2014) 

40 Closed shrubland 0.508 --- (0.01)   (Madani et al., 2014) 

41 Mixed forest 1.171 --- (0.23)   (Madani et al., 2014) 

42 Deciduous broadleaf 1.453 --- (0.14)   (Madani et al., 2014) 

43 Evergreen broadleleaf 0.98 --- (0.21)   (Madani et al., 2014) 

44 Evergreen needleleaf 0.835 --- (0.24)   (Madani et al., 2014) 

45 Cropland 2.8  10.9 973 (Garbulsky et al., 2010) 

46 Shrubland 1.35  17.7 377 (Garbulsky et al., 2010) 

47 Grassland 2.2 1.0-3.1 5.2-24.9 335-1990 (Garbulsky et al., 2010) 

48 Savanna 1.5 1.2-1.55 15.3-26.8 404-449 (Garbulsky et al., 2010) 

49 Cropland 3.8  10.9 973 (Garbulsky et al., 2010) 

50 Shrubland 2  17.7 377 (Garbulsky et al., 2010) 

51 Grassland 3.7 1.9-4.5 5.2-24.9 335-1990 (Garbulsky et al., 2010) 

52 Savanna 2.4 1.7-2.5 15.3-26.8 404-449 (Garbulsky et al., 2010) 

53 Cropland 2.4 --- (0.6)   (TURNER et al., 2003) 

54 Grassland 1.9 --- (0.5)   (TURNER et al., 2003) 

55 Mixed forest 1.9 --- (1.0)   (TURNER et al., 2003) 

56 Boreal conifer 1.2 --- (0.6)   (TURNER et al., 2003) 

57 Broad-leaved Deciduous  1.165    (Running & Zhao, 2019) 

58 Needle-leaved Coniferous 0.962    (Running & Zhao, 2019) 

59 Mixed Forest 1.051    (Running & Zhao, 2019) 

60 Grass 0.860    (Running & Zhao, 2019) 

61 Transitional woodland shrub 1.281    (Running & Zhao, 2019) 

62 Pasture 0.860    (Running & Zhao, 2019) 

Note: SD = standard deviation, MAT = mean annual temperature, MAP = mean annual precipitation. --- 

means range information is not available. 
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ANNEX II 

Biome-Property-Look-Up-Table (BPLUT) for MOD17 NPP algorithm contains the biome-specific constant values of different parameters (Running & Zhao, 2019). The 

parameters are mainly used to estimate GPP and plant respiration. Although the model used the parameter values as constant, it is possible to optimize any of them to get better 

result. This study intends to optimize maximum LUE value. 

 

UMD_VEG_LC ENF EBF DNF DBF MF CShrub OShrub WSavanna Savanna Grass Crop 

LUEmax 

(KgC/m2/d/MJ) 
0.000962 0.001268 0.001086 0.001165 0.001051 0.001281 0.000841 0.001239 0.001206 0.000860 0.001044 

Tmin_min (C) -8.00 -8.00 -8.00 -6.00 -7.00 -8.00 -8.00 -8.00 -8.00 -8.00 -8.00 

Tmin_max (C) 8.31 9.09 10.44 9.94 9.50 8.61 8.80 11.39 11.39 12.02 12.02 

VPD_min (Pa) 650.0 800.0 650.0 650.0 650.0 650.0 650.0 650.0 650.0 650.0 650.0 

VPD_max (Pa) 4600.0 3100.0 2300.0 1650.0 2400.0 4700.0 4800.0 3200.0 3100.0 5300.0 4300.0 

SLA (LAI/KgC) 14.1 25.9 15.5 21.8 21.5 9.0 11.5 27.4 27.1 37.5 30.4 

Q10* 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 

Froot_leaf_ratio 1.2 1.1 1.7 1.1 1.1 1.0 1.3 1.8 1.8 2.6 2.0 

Livewood_leaf_ratio 0.182 0.162 0.165 0.203 0.203 0.079 0.040 0.091 0.051 0.000 0.000 

Leaf_mr_base 0.00604 0.00604 0.00815 0.00778 0.00778 0.00869 0.00519 0.00869 0.00869 0.0098 0.0098 

Froot_mr_base 0.00519 0.00519 0.00519 0.00519 0.00519 0.00519 0.00519 0.00519 0.00519 0.00819 0.00819 

Livewood_mr_base 0.00397 0.00397 0.00397 0.00371 0.00371 0.00436 0.00218 0.00312 0.00100 0.00000 0.00000 

Note: Evergreen Needleleaf Forest (ENF), Evergreen Broadleaf Forest (EBF), Deciduous Needleleaf Forest (DNF), Deciduous Broadleaf Forest (DBF), Mixed forests (MF), 

Closed Shrublands (CShrub), Open Shrublands (OShrub), Woody Savannas (WSavanna), Savannas (Savanna), Grassland (Grass), Croplands (Crop), and Specific Leaf Area (SLA) 
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ANNEX III 

The list of Sentinel-2 acquisition dates and the nearest available dates for MODIS GPP data. 

 
S-2 acquisition 

date 

Nearest MODIS GPP date S-2 acquisition date Nearest MODIS GPP date 

2016-05-09 2016-05-08 2019-06-28 2019-06-26 

2016-07-08 2016-07-11 2019-07-23 2019-07-20 

2016-08-27 2016-08-28 2019-08-27 2019-08-29 

2016-10-16 2016-10-15 2019-10-31 2019-11-01 

2017-03-25 2017-03-22 2019-12-30 2020-01-01 

2017-04-24 2017-04-23 2020-03-24 2020-03-21 

2017-06-13 2017-06-10 2020-05-18 2020-05-16 

2017-07-13 2017-07-12 2020-06-02 2020-06-01 

2017-08-17 2017-08-13 2020-07-22 2020-07-19 

2017-09-26 2017-09-22 2020-08-21 2020-08-20 

2017-10-16 2017-10-16 2020-09-20 2020-09-21 

2018-03-25 2018-03-22 2021-02-25 2021-02-26 

2018-04-19 2018-04-15 2021-04-28 2021-05-01 

2018-05-29 2018-06-02 2021-06-17 2021-06-18 

2018-06-08 2018-06-10 2021-09-25 2021-09-22 

2018-07-03 2018-07-04 2022-03-09 2022-03-06 

2018-08-27 2018-08-29 2022-03-24 2022-03-22 

2018-09-16 2018-09-14 2022-06-27 2022-06-26 

2018-10-16 2018-10-16 2022-07-17 2022-07-20 

2018-11-15 2018-11-17 2022-08-16 2022-08-13 

2019-03-30 2019-03-30 2022-10-10 2022-10-08 

2019-04-24 2019-04-23 2022-11-14 2022-11-17 

2019-05-19 2019-05-17   
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ANNEX IV 

The p-values of the intercomparison between MOD17 and GLO-PEM models are in the table below. The 

p-values have been estimated based on r-values. The numbers are given in scientific notation as they are 

very small. All the p-values are significant at a 0.01 significance level. 

 
Dates P-value Dates P-value Dates P-value 

2016-05-09 2.6112E-64 2018-07-03 4.12263E-34 2020-06-02 4.4424E-127 

2016-07-08 1.5688E-11 2018-08-27 6.93197E-31 2020-07-22 8.92662E-13 

2016-08-27 3.82515E-09 2018-09-16 8.92885E-46 2020-08-21 3.27335E-95 

2016-10-16 4.3767E-124 2018-10-16 7.6314E-57 2020-09-20 6.9649E-118 

2017-03-25 2.34553E-64 2018-11-15 3.18972E-61 2021-02-25 7.43091E-96 

2017-04-24 2.64987E-46 2019-03-30 6.73392E-49 2021-04-28 1.89657E-50 

2017-06-13 2.93221E-68 2019-04-24 5.7073E-112 2021-06-17 1.60102E-36 

2017-07-13 1.22944E-42 2019-05-19 2.4927E-113 2021-09-25 3.2013E-103 

2017-08-17 3.83848E-95 2019-06-28 8.3937E-118 2022-03-09 6.46817E-81 

2017-09-26 1.03977E-47 2019-07-23 2.4407E-69 2022-03-24 5.81068E-87 

2017-10-16 7.52421E-60 2019-08-27 8.6022E-246 2022-06-27 1.90181E-33 

2018-03-25 4.8022E-29 2019-10-31 1.66565E-44 2022-07-17 1.17928E-59 

2018-04-19 1.58091E-68 2019-12-30 3.62511E-06 2022-08-16 4.24108E-58 

2018-05-29 3.40312E-32 2020-03-24 1.55129E-18 2022-10-10 1.01847E-59 

2018-06-08 1.4083E-179 2020-05-18 1.2728E-99 2022-11-14 6.12843E-66 

 

The p-values of the t-test between the mean NPP during the pre-2018 (2016-2018) and post-2018 (2019-

2022) periods. All the p-values are lower than the significance level of 0.01 at 99% confidence intervals. The 

table below shows the p-values in scientific notations. 

 
Sample point 

number 

P-values of t-test Sample point 

numbers 

P-values of t-test 

MOD17 GLO-PEM MOD17 GLO-PEM 

1 5.14E-06 1.15E-07 53 0.000172 5.61E-05 

2 7.21E-11 2.44E-14 54 1.56E-05 1.39E-06 

3 8.17E-10 6.98E-13 55 0.000136 1.04E-05 

4 0.000204 2.57E-05 56 2.29E-06 2.44E-08 

5 1.92E-06 1.76E-08 57 2.4E-06 1.26E-07 

6 1.75E-06 1.58E-07 58 6.9E-06 3.36E-07 

7 9.59E-08 8.01E-10 59 1.3E-05 6.27E-07 

8 0.001209 0.000584 60 7.46E-08 8.45E-11 

9 1.08E-08 3.37E-11 61 4.09E-05 2.57E-06 

10 5.34E-05 1.57E-05 62 6.85E-06 5.11E-08 

11 3.67E-05 2.38E-06 63 0.00015 5.76E-06 

12 9.27E-06 1.57E-06 64 0.000101 1.71E-06 

13 7.98E-09 6.64E-11 65 2.68E-09 3.65E-12 

14 2.25E-06 2.04E-07 66 4.26E-05 1.79E-05 

15 4.69E-08 4.17E-10 67 2.44E-06 8.8E-08 

16 5.35E-06 4.58E-08 68 0.000104 3.38E-06 

17 2.75E-05 5.9E-07 69 2.66E-05 6.59E-07 

18 1.09E-06 1.38E-08 70 3.4E-05 9.68E-07 

19 1.41E-07 5.99E-10 71 2.07E-06 3.2E-08 

20 1.86E-06 3.38E-08 72 6.28E-10 8.58E-13 
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Sample point 

number 

P-values of t-test Sample point 

numbers 

P-values of t-test 

MOD17 GLO-PEM MOD17 GLO-PEM 

21 3.02E-06 1.43E-07 73 1.05E-06 2.56E-08 

22 1.55E-07 2.73E-10 74 2.99E-07 7.74E-09 

23 9.67E-09 5.06E-12 75 2.83E-10 5.58E-13 

24 0.000532 0.000171 76 5.57E-12 4.26E-15 

25 2.98E-05 1.28E-06 77 9.5E-08 2.86E-10 

26 4.58E-07 2.33E-09 78 1.65E-06 8.86E-09 

27 2.54E-05 1.96E-06 79 3.18E-08 1.39E-10 

28 1.49E-10 8.52E-14 80 5.63E-09 3.65E-12 

29 2.5E-05 1.95E-06 81 5.93E-10 1.68E-12 

30 3.64E-06 2.63E-08 82 5.24E-08 1.99E-11 

31 1.45E-07 1.53E-08 83 3.87E-05 2.04E-06 

32 6.1E-08 7.84E-11 84 1.73E-07 8.91E-10 

33 8.46E-06 2.56E-07 85 4.3E-09 2.51E-11 

34 6.45E-10 1.38E-12 86 3.27E-10 4.86E-13 

35 1.19E-05 4.58E-07 87 7.01E-09 9.19E-11 

36 1.99E-06 1.1E-07 88 0.00045 6.75E-05 

37 0.000933 0.000342 89 1.08E-08 8.19E-11 

38 9.98E-07 2.82E-09 90 6.44E-07 2.52E-08 

39 0.000114 4.7E-05 91 4.17E-09 2.19E-12 

40 7.18E-06 1.13E-07 92 4.73E-06 1.26E-07 

41 2.51E-10 3.32E-13 93 0.004694 0.001938 

42 1.07E-05 6.64E-07 94 0.000638 0.000853 

43 3.82E-09 3.51E-11 95 5.57E-06 1.04E-06 

44 1.09E-06 3.43E-09 96 2.6E-07 3.1E-09 

45 0.000389 0.000221 97 0.000219 5.07E-05 

46 4.64E-09 1.36E-12 98 7.26E-08 6.61E-11 

47 1.56E-07 5.63E-10 99 4.12E-10 6.72E-14 

48 0.000433 2.01E-05 100 2.73E-05 6.66E-06 

49 3.96E-05 1.84E-05 101 2.99E-05 3.16E-06 

50 3.57E-06 1.71E-08 102 0.000162 2.45E-05 

51 4.46E-07 9.19E-09 103 1.85E-05 2.17E-06 

52 0.00016 1.63E-05    

 

P-values of the correlation values of MOD17 NPP with climate variables and SPEI values. The table also 

contains the percentage of significant and insignificant p-values for every climate variables at 0.05 

significance level. 

 

Sample 

point no. 

P-values of correlation of MOD17 NPP with climates variables and SPEI values 

Min. 

Temp. 

Real-time 

SMD 
Lag-1 SMD 

Real-time 

VPD 
Lag-3 VPD 

Lag-6 

SPEI 

1.  0.018732 0.022697 0.002021 0.011042 0.002609 0.000416 

2.  0.121017 0.104301 0.012333 0.075611 0.019506 0.000225 

3.  0.032347 0.041449 0.005166 0.047127 0.006756 0.000427 

4.  0.001301 0.007127 0.001451 0.002844 0.001854 0.001006 

5.  0.00022 0.003395 0.000262 0.001298 0.000862 0.005167 

6.  0.017999 0.03285 0.015285 0.021573 0.011381 0.000826 

7.  0.002896 0.019446 0.000841 0.003869 0.010361 0.001517 
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Sample 

point no. 

P-values of correlation of MOD17 NPP with climates variables and SPEI values 

Min. 

Temp. 

Real-time 

SMD 
Lag-1 SMD 

Real-time 

VPD 
Lag-3 VPD 

Lag-6 

SPEI 

8.  0.002407 0.042901 0.00423 0.0024 0.012789 0.001568 

9.  0.019128 0.037708 0.002885 0.018229 0.004689 0.000445 

10.  0.000339 0.004134 0.000262 0.00131 0.001164 0.00081 

11.  0.003865 0.011873 0.001015 0.003982 0.00098 0.001499 

12.  0.015197 0.028769 0.071294 0.062296 0.024353 0.001207 

13.  0.122268 0.117845 0.019046 0.052177 0.051212 0.000805 

14.  0.001704 0.010321 0.00091 0.005627 0.00241 0.000425 

15.  0.055772 0.068968 0.015207 0.033535 0.031818 0.00019 

16.  0.003023 0.006964 0.001926 0.00428 0.002832 0.00264 

17.  0.003052 0.016324 0.001487 0.002541 0.001172 0.001825 

18.  0.018118 0.022791 0.002886 0.012623 0.003731 0.000369 

19.  0.024183 0.04748 0.011279 0.016364 0.019382 0.000303 

20.  0.013749 0.018285 0.008142 0.017028 0.018427 0.0021 

21.  0.008268 0.015779 0.008052 0.009468 0.003892 0.003356 

22.  0.003567 0.021115 0.000474 0.005537 0.00119 0.002186 

23.  0.017438 0.052306 0.001776 0.016085 0.005196 0.000936 

24.  0.000356 0.004464 0.000324 0.000822 0.001488 0.000927 

25.  0.00321 0.016837 0.000582 0.001764 0.003129 0.000213 

26.  0.002275 0.02038 0.000557 0.00423 0.002258 0.001373 

27.  0.004251 0.004668 0.00098 0.005863 0.001697 0.002573 

28.  0.071202 0.062346 0.027278 0.061222 0.029661 0.003257 

29.  0.000157 0.004311 0.000439 0.00042 0.000508 0.001082 

30.  0.010034 0.031699 0.001023 0.00376 0.001743 0.00104 

31.  0.05417 0.039793 0.015024 0.055762 0.012049 0.000975 

32.  0.020158 0.053668 0.00999 0.011251 0.018272 0.000339 

33.  0.001421 0.009698 0.001154 0.002467 0.002462 0.00204 

34.  0.081091 0.075169 0.018532 0.056081 0.026524 0.000495 

35.  0.004791 0.01647 0.001293 0.002861 0.004284 0.00053 

36.  0.009365 0.010378 0.001362 0.007731 0.00529 0.000808 

37.  0.001109 0.005073 0.036947 0.013634 0.00884 0.00407 

38.  0.000459 0.014219 0.001184 0.001293 0.001656 0.00087 

39.  0.000274 0.010171 0.002619 0.001109 0.018927 0.00813 

40.  0.001042 0.01328 0.002171 0.004468 0.001422 0.00193 

41.  0.132553 0.112628 0.028071 0.079935 0.119215 0.001228 

42.  9.46E-05 0.001621 0.000525 0.000651 0.003213 0.006554 

43.  0.031464 0.108949 0.010737 0.026871 0.033414 0.003303 

44.  0.014018 0.033343 0.006392 0.008765 0.00576 0.000966 

45.  0.003239 0.019706 0.001144 0.002508 0.016316 0.000501 

46.  0.005495 0.020844 0.00197 0.008524 0.018632 0.000661 

47.  0.023181 0.048844 0.009934 0.015854 0.018772 0.000651 

48.  0.000775 0.011396 0.000263 0.000959 0.001165 0.000796 

49.  0.000367 0.001695 0.000348 0.00193 0.003619 0.000208 

50.  4.1E-05 0.002204 0.00022 0.000462 0.001349 0.001366 
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Sample 

point no. 

P-values of correlation of MOD17 NPP with climates variables and SPEI values 

Min. 

Temp. 

Real-time 

SMD 
Lag-1 SMD 

Real-time 

VPD 
Lag-3 VPD 

Lag-6 

SPEI 

51.  0.014826 0.017699 0.01253 0.022801 0.003757 0.001917 

52.  0.002744 0.013832 0.001021 0.002212 0.000702 0.001588 

53.  0.00182 0.006402 0.008515 0.012216 0.004516 0.005339 

54.  0.00257 0.002933 0.001178 0.003877 0.008345 6.87E-05 

55.  0.000667 0.005907 0.000562 0.001728 0.00189 0.014948 

56.  0.004617 0.048406 0.003353 0.00472 0.039281 0.01165 

57.  0.004967 0.028197 0.001015 0.009754 0.000561 0.017849 

58.  0.010495 0.014481 0.002482 0.010151 0.003838 0.000395 

59.  0.009092 0.022042 0.004752 0.009635 0.001815 0.002351 

60.  0.001736 0.010657 0.00066 0.002876 0.007695 0.001551 

61.  0.000493 0.003026 0.000483 0.001081 0.002113 0.001182 

62.  0.006698 0.025352 0.002429 0.003185 0.002425 0.000414 

63.  0.000821 0.013094 0.001484 0.002097 0.001596 0.002585 

64.  0.00083 0.010885 0.00069 0.000674 0.001277 0.002751 

65.  0.013139 0.027451 0.002969 0.009815 0.021714 0.000604 

66.  9.46E-05 0.000976 0.000435 0.001683 0.005066 0.001666 

67.  0.010199 0.028808 0.00409 0.00553 0.006501 0.000292 

68.  0.001244 0.013335 0.001724 0.001605 0.002049 0.009295 

69.  0.004879 0.035319 0.004469 0.004545 0.004666 0.007441 

70.  0.001822 0.014737 0.001595 0.002076 0.001873 0.005534 

71.  0.002067 0.00725 0.000798 0.003146 0.006358 0.000857 

72.  0.053708 0.066021 0.006988 0.051132 0.080712 0.000311 

73.  0.003367 0.01193 0.001243 0.009551 0.002354 0.000686 

74.  0.002111 0.003736 0.0012 0.007929 0.016328 0.002187 

75.  0.099379 0.139602 0.021079 0.071615 0.02302 0.001767 

76.  0.1354 0.150443 0.025588 0.164984 0.016601 0.004761 

77.  0.036241 0.039754 0.004632 0.015771 0.015078 0.000451 

78.  0.022896 0.032059 0.006904 0.026386 0.004211 0.001115 

79.  0.057935 0.047888 0.008502 0.028361 0.03688 0.000117 

80.  0.030176 0.043877 0.006398 0.018772 0.021423 0.000451 

81.  0.09295 0.089216 0.019964 0.054909 0.065437 0.002436 

82.  0.005558 0.026874 0.001452 0.007025 0.010229 0.000944 

83.  1.12E-05 0.001342 0.000298 0.000141 0.001384 0.005786 

84.  0.03499 0.063495 0.014436 0.026823 0.008708 0.001133 

85.  0.128679 0.127002 0.019545 0.048278 0.044141 0.000865 

86.  0.024182 0.057915 0.006854 0.032994 0.012343 0.001597 

87.  0.148488 0.098821 0.01867 0.068919 0.008379 0.000557 

88.  0.000734 0.018902 0.001459 0.000451 0.014732 0.00168 

89.  0.125076 0.175672 0.033755 0.051898 0.0442 0.000987 

90.  0.004126 0.016256 0.002667 0.005022 0.005035 0.001057 

91.  0.009329 0.023363 0.002466 0.008421 0.019573 0.000867 

92.  0.00061 0.002129 0.000441 0.002337 0.001531 0.000661 

93.  0.000144 0.001642 0.013469 0.003551 0.003623 0.007087 
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Sample 

point no. 

P-values of correlation of MOD17 NPP with climates variables and SPEI values 

Min. 

Temp. 

Real-time 

SMD 
Lag-1 SMD 

Real-time 

VPD 
Lag-3 VPD 

Lag-6 

SPEI 

94.  0.146918 0.17759 0.031604 0.120402 0.070594 0.001639 

95.  0.003498 0.008949 0.001119 0.008131 0.005733 0.001123 

96.  0.011491 0.067544 0.004233 0.010355 0.029225 0.011841 

97.  0.001409 0.006877 0.000488 0.001229 0.00188 0.000291 

98.  0.004378 0.030218 0.001799 0.009204 0.026648 0.001316 

99.  0.046609 0.132888 0.032516 0.047958 0.066682 0.005596 

Significant 

(%) 
83.8 78.8 99.0 85.9 93.9 100 

Note: SMD = Soil moisture deficit 

 

P-values of r-values of GLO-PEM NPP with climate variables and SPEI values. The table also contains the 

percentage of significant and insignificant p-values for every climate variables at 0.05 significance level. 

 

Sample 

point no. 

P-values of correlations of GLO-PEM with climate variables and SPEI values 

Mean. 

Temp. 

Real-time 

SMD 
Lag-1 SMD 

Real-time 

VPD 
Lag-3 VPD Lag-8 SPEI 

1.  0.021735 0.016103726 0.000711047 0.075665627 0.004991903 4.49737E-05 

2.  0.221168 0.107194658 0.008975243 0.460220322 0.051025602 0.000114108 

3.  0.086874 0.037584093 0.003284579 0.311758749 0.01566838 0.000805022 

4.  0.004 0.00085798 0.000488982 0.021738976 0.004535298 5.43378E-05 

5.  0.004774 0.001688611 0.000111203 0.019352376 0.004079574 0.00028796 

6.  0.058009 0.008559224 0.00732294 0.113533433 0.02642088 0.000501865 

7.  0.031789 0.015920593 0.000249277 0.051537371 0.02433754 0.000252354 

8.  0.002541 0.004991124 0.000444843 0.012576703 0.023555269 0.044684962 

9.  0.078467 0.046468779 0.002167068 0.216426146 0.01542804 4.26399E-05 

10.  0.000775 0.000422808 6.09004E-05 0.008662893 0.002218699 0.001219309 

11.  0.004853 0.002670072 0.000280223 0.02592833 0.001888891 8.17672E-05 

12.  0.091755 0.009251928 0.045521664 0.253998024 0.041638052 0.000299861 

13.  0.290214 0.12968144 0.011500584 0.329309434 0.12170388 4.61847E-05 

14.  0.004064 0.001831558 0.000261333 0.030953307 0.003678966 0.000690627 

15.  0.146414 0.062628097 0.006987614 0.211933757 0.085065081 0.000113847 

16.  0.019139 0.00430998 0.001093073 0.063279446 0.010642211 9.76005E-05 

17.  0.007778 0.0050972 0.000574099 0.033213582 0.003555475 0.000136141 

18.  0.031964 0.015797263 0.001365857 0.094555103 0.009272432 6.0969E-05 

19.  0.07603 0.028899261 0.006688658 0.142341921 0.059775838 0.00019141 

20.  0.074074 0.012454105 0.004526129 0.129234879 0.052833845 5.40497E-05 

21.  0.018 0.001881085 0.003652593 0.065973478 0.009377499 0.000533914 

22.  0.017777 0.025790372 0.000412814 0.107924678 0.005124165 0.000239258 

23.  0.056441 0.070291312 0.001483005 0.241511435 0.020097302 0.000508964 

24.  0.000927 0.000641386 6.43055E-05 0.006430229 0.003284826 0.000583927 

25.  0.014264 0.007686898 0.000129179 0.02377889 0.008092569 0.000145295 

26.  0.007794 0.011824371 0.000334159 0.066532265 0.008086098 0.000660844 

27.  0.005727 0.000609192 0.000303805 0.05156399 0.003656708 0.000343662 

28.  0.238591 0.063952141 0.020523584 0.375266698 0.074970514 0.002120454 

29.  0.000227 0.000441926 4.29119E-05 0.005092927 0.000553357 0.000888862 

30.  0.030476 0.032483356 0.000760002 0.093765965 0.005970707 2.14137E-05 
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Sample 

point no. 

P-values of correlations of GLO-PEM with climate variables and SPEI values 

Mean. 

Temp. 

Real-time 

SMD 
Lag-1 SMD 

Real-time 

VPD 
Lag-3 VPD Lag-8 SPEI 

31.  0.146584 0.013299652 0.007386418 0.252450408 0.031624925 6.3099E-05 

32.  0.101533 0.066336291 0.009063291 0.166685357 0.072771237 0.000428431 

33.  0.006741 0.003398398 0.000541559 0.028900064 0.010811254 0.00030412 

34.  0.268247 0.0876183 0.013411146 0.379239224 0.073800457 0.000179892 

35.  0.014664 0.005240987 0.000291823 0.029176914 0.010627158 0.000253683 

36.  0.038099 0.00262113 0.000409702 0.061487599 0.012013446 8.13836E-05 

37.  0.009233 0.000142524 0.017973523 0.118645755 0.025760206 0.06775229 

38.  0.008882 0.005641583 0.000444575 0.052169345 0.005400974 0.001824414 

39.  0.001826 0.000894369 0.000775847 0.021062934 0.047707519 0.012893479 

40.  0.011418 0.00353418 0.000679613 0.107795899 0.004144341 0.002612179 

41.  0.324839 0.118062123 0.013386213 0.393948213 0.191860268 0.000215987 

42.  0.001164 0.00017345 0.000188473 0.010852461 0.008230275 0.002476122 

43.  0.104905 0.091817467 0.00533369 0.204013177 0.069636393 0.000269585 

44.  0.035926 0.022856288 0.00502492 0.120095669 0.022659013 0.000250818 

45.  0.002606 0.002390537 0.000224784 0.023594835 0.045672183 0.016936653 

46.  0.068496 0.03272467 0.001498126 0.126844685 0.060285959 0.00035966 

47.  0.099499 0.05003956 0.006084048 0.159578662 0.062877512 9.86762E-05 

48.  0.002317 0.003497088 0.000136219 0.02171985 0.006172322 8.86983E-05 

49.  0.000948 7.38507E-05 7.13538E-05 0.00873606 0.005980292 0.001890679 

50.  0.001185 0.000896328 7.13637E-05 0.010246242 0.005021237 0.003642478 

51.  0.03669 0.003787754 0.006952268 0.138069716 0.010726654 0.001677361 

52.  0.003755 0.002618785 0.000327706 0.020831628 0.002057854 0.000140247 

53.  0.005983 0.000576211 0.004086542 0.079783641 0.009427893 0.003650648 

54.  0.007781 0.000359802 0.000404937 0.032947681 0.020567903 0.000793639 

55.  0.001763 0.001245219 0.000267967 0.024302799 0.004403599 0.001349634 

56.  0.017298 0.026678591 0.001204032 0.066126243 0.069393532 0.001040159 

57.  0.009197 0.006307197 0.000394559 0.066782205 0.00091732 0.000431461 

58.  0.024192 0.002285022 0.000533248 0.122849598 0.009150104 7.88138E-05 

59.  0.010594 0.002729645 0.001672233 0.06088532 0.004371357 0.000521543 

60.  0.021079 0.011209062 0.000344597 0.050376712 0.022423121 0.000689703 

61.  0.002258 0.000958773 0.000135863 0.010747051 0.004120659 0.000120343 

62.  0.01144 0.014112064 0.000704065 0.045431812 0.00448808 0.000155222 

63.  0.002005 0.004255187 0.000522927 0.014043257 0.004805454 0.000352954 

64.  0.002445 0.005534728 0.000503457 0.020200486 0.007046304 0.000245367 

65.  0.060405 0.026343516 0.001139018 0.11125592 0.044007382 0.000320157 

66.  0.000973 6.48997E-05 9.98987E-05 0.008730903 0.006656892 0.004045882 

67.  0.02501 0.012254369 0.000824343 0.062287947 0.009692126 1.25327E-05 

68.  0.003328 0.004522812 0.001207117 0.026826624 0.0087272 0.000165678 

69.  0.008373 0.012347456 0.002493861 0.050114255 0.015314672 0.000265631 

70.  0.003303 0.004259738 0.000862027 0.026117215 0.007526868 0.000341057 

71.  0.009685 0.003911003 0.000136802 0.025605173 0.006644659 0.000229246 

72.  0.214419 0.092127736 0.005216999 0.369849343 0.202516142 0.000169648 

73.  0.002071 0.003448278 0.000131003 0.035029085 0.00249454 0.001472253 

74.  0.013149 0.001580526 0.000526782 0.056632843 0.024942862 0.00178617 

75.  0.230652 0.151522044 0.016543311 0.438315628 0.061653965 0.000124508 

76.  0.299881 0.134141695 0.024939583 0.663708056 0.067174499 0.000539096 

77.  0.138736 0.051953631 0.003424415 0.183036582 0.040701071 3.19436E-05 

78.  0.044461 0.020781591 0.004135469 0.165453774 0.011566807 4.22103E-05 
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Sample 

point no. 

P-values of correlations of GLO-PEM with climate variables and SPEI values 

Mean. 

Temp. 

Real-time 

SMD 
Lag-1 SMD 

Real-time 

VPD 
Lag-3 VPD Lag-8 SPEI 

79.  0.266775 0.080080205 0.00610768 0.295059488 0.08637162 1.68584E-05 

80.  0.193656 0.073037999 0.006603956 0.250981829 0.081457473 0.000106505 

81.  0.235771 0.068679248 0.01098327 0.2895923 0.137483908 0.000103594 

82.  0.022775 0.045937689 0.000804318 0.124994835 0.023083749 0.001699305 

83.  0.000701 0.000110776 6.35834E-05 0.009516608 0.004273508 0.002217405 

84.  0.08978 0.042049511 0.009454028 0.175085932 0.031591569 8.94757E-05 

85.  0.308467 0.148670173 0.01286066 0.325199209 0.104392296 3.05663E-05 

86.  0.078089 0.036820621 0.004223036 0.236560535 0.031865873 0.000581539 

87.  0.209425 0.073699135 0.010716432 0.408040552 0.022256128 0.000280457 

88.  0.003417 0.003349977 0.000254014 0.01693963 0.04017391 4.11357E-05 

89.  0.306992 0.168935373 0.02138368 0.315952542 0.101725267 3.43684E-05 

90.  0.018867 0.004765192 0.00065751 0.044243024 0.007742983 0.000206379 

91.  0.069905 0.025791004 0.001473371 0.111144074 0.051178593 0.000237616 

92.  0.004075 0.00056587 0.000126871 0.017013333 0.003132139 0.000715628 

93.  0.001245 2.64363E-05 0.007453032 0.05529308 0.018531075 0.04590334 

94.  0.116798 0.045247959 0.003917127 0.223173835 0.119027631 0.115841886 

95.  0.007575 0.002586808 0.000314968 0.06412027 0.013047571 0.000223481 

96.  0.048694 0.054513171 0.001435699 0.089569292 0.057740968 0.00076181 

97.  0.001088 0.000570724 0.000106835 0.012369276 0.005217414 0.003141561 

98.  0.061065 0.042956385 0.001972844 0.154681301 0.093088371 0.000143175 

99.  0.202937 0.124493048 0.026056425 0.319829053 0.14362573 0.001000986 

Significant 

(%) 
64.6 77.8 100 35.4 73.7 98.0 

Note: SMD = Soil moisture deficit 


