
BSc Thesis Applied Mathematics

Accelerating iterative methods
for the anisotropic radiative
transfer equation using
Anderson Acceleration

Daan Velthuis

Supervisor: M. Schlottbom

August, 2023

Department of Applied Mathematics
Faculty of Electrical Engineering,
Mathematics and Computer Science



Preface

I want to thank Matthias Schlottbom for proposing this topic and his guidance and feedback
during my research.



Accelerating iterative methods for the anisotropic radiative
transfer equation using Anderson Acceleration

Daan T. J. Velthuis∗

August, 2023

Abstract
This paper concerns the iterative solution of the linear system which comes from

the discretization of the anisotropic radiative transfer equation. The goal is to create
a fast converging method using Anderson Acceleration. With Anderson Acceleration
a method can converge within fewer iterations or it might turn a diverging method
into a converging one. The results are shown for numerical examples, which showcase
the effect of Anderson Acceleration. The mixed-system with subspace correction and
Anderson Acceleration converges with a low computation time for all our examples,
making it a great candidate if a proof can be given in the future that the method will
converge for all values for the parameters.

Keywords: Anistotropic radiative transfer, Iterative methods, Anderson Acceleration

1 Introduction

In this paper we will discuss methods to solve the anisotropic radiative transfer equation.
This equation describe the way radiation waves move through a turbid medium, it describes
the streaming, absorption and scattering. It has many applications, for example heat
transfer [4] and medical imaging [6]. The equation is as follows:

s · ∇ru(s, r) + σt(r)u(s, r) = σs(r)

∫
S
k(s · s′)u(s′, r)ds′ + q(s, r), where (1)

k(s · s′) = 1

4π

1− g2

[1− 2g(s · s′) + g2]3/2
(2)

Here u(s, r) is the intensity we are after. It depends on both r ∈ R, which is the position,
and s ∈ S, which is a unit vector that indicates the direction of propagation. The scatter-
ing rate is given by σs. The loss of intensity is given by the total attenuation coefficient
σt = σa + σs, where σa is the absorption rate. We define c = ∥σs/σt∥∞. The function
k(s ·s′) is the scattering function, which has a constant g. We consider only 0 ≤ g < 1. For
g = 0, we have isotropic scattering and for g close to 1 the scattering is forward peaked.
Lastly, q(s, r) characterizes the internal sources of radiation.

We will work with the linear system obtained by the mixed finite element discretization
of equation (1) [3]:[

R+M+ −AT

A M−

] [
u+

u−

]
=

[
K+

K−

] [
u+

u−

]
+

[
q+

q−

]
(3)

∗Email: d.t.j.velthuis@student.utwente.nl

1



Here + indicate the even part and − the odd part. The matrix R accounts for the bound-
ary conditions. The matrices M+ and M− are mass matrices and K+ and K− represents
scattering. Lastly A discretizes s · ∇r.

This system is too large to solve with direct methods, so iterative methods are used.
There are already multiple methods in place, each with their advantages and shortcom-
ings. Firstly, the preconditioned even-parity system is provably robustly convergent, but is
computationally expensive per iteration. Secondly, the mixed system also is provable con-
vergent and has a low computation time per iteration. However, the number of iterations
goes up quickly when c approaches 1. The last method which we will discuss is the mixed
system with subspace correction. The correction improves the convergence behaviour when
c ≈ 1, but the system might diverge for certain parameters.

The goal of this research is to create an iterative method which incorporates all positives
from the existing methods. We want to have a method which converges to a solution fast
in terms of computation time for all values of the parameters. To achieve this we will use
Anderson Acceleration.

2 Anderson acceleration

The fixed-point iteration is a method used to find a fixed point of a function. In other
words, it approximates a solution for the equation f(x) = x by starting with an initial
guess x0 and calculates the sequence xk+1 = f(xk), k = 0, 1, 2, . . . , which converges to the
true fixed point x̃ if f is a contraction. The speed with which this sequence converges to
the solution is the convergence rate. Anderson acceleration is a method used for increasing
this convergence rate.

2.1 Method

We will now look at Anderson acceleration. We have a function f : Rn → Rn for which we
want to calculate the fixed point, so we want to solve f(x) = x. We define g(x) = f(x)−x,
which gives the residual and denote fk = f(xk) and gk = g(xk). The algorithm has a
parameter m, which is the number of last estimates taken into consideration when calcu-
lating the next value of x. The method works as follows:

Algorithm 1 Anderson Acceleration
Start with initial guess x0
x1 = f(x0)
Set k = 1
while ∥g(xk)∥ is not sufficiently small do

mk = min(m, k)
Gk = [gk−mk

, . . . , gk]
β = argminα∈Ak

∥Gkα∥, where Ak = {α ∈ Rmk :
∑mk

i=0 αi = 1}
xk+1 =

∑mk
i=0 βifk−mk+i

k = k+1
end while

2



2.2 Derivation

Solving f(x) = x is the same problem as solving g(x) = 0, therefore we could see this
problem as a minimization problem; minimize ∥g(x)∥.

As stated above, the fixed-point iteration chooses the next value of x by evaluating the
function at the previous value of x, so xk+1 = f(xk). However, when using Anderson
acceleration xk+1 will be a linear combination of the mk + 1 last values of the sequence
xk, where the coefficients sum to one, so x̂k+1 = Xkβ, where Xk = [xk−mk

, . . . , xk]. We
want to choose β such that it minimizes ∥g(x̂k+1)∥. If we have β, we can calculate our
next iterate. We will rewrite the problem.

g(x̂k+1) = g(Xkβ) = g

(
mk∑
i=0

βixk−mk+i

)

We will now use the first order Taylor approximation of g(x) ≈ ax+ b.

g

(
mk∑
i=0

βixk−mk+i

)
≈ a

mk∑
i=0

βixk−mk+i + b

=

mk∑
i=0

βiaxk−mk+i +

mk∑
i=0

βib

=

mk∑
i=0

βi(axk−mk+i + b)

≈
mk∑
i=0

βig(xk−mk+i)

= Gkβ

We will apply Anderson Acceleration on a linear system, so our g(x) is affine linear, mean-
ing in our case we do not need the approximation, but it is an equality.

We have now translated our problem of choosing β to choosing it in such a way that it
minimizes over ∥Gkβ∥. Our final step is to include the fixed-point iteration step as well,
this means we set the true next value of x to f(x̂k+1). We can calculate it in the following
way, where we use the similar linear approximation for f as we did for g.

xk+1 := f(x̂k+1) = f(Xkβ) ≈ Fkβ, where Fk = [fk−mk
, . . . , fk]

3 Applying Anderson acceleration

3.1 Splitting methods

The condition number of a problem indicates how much sensitive the problem is to small
errors. A low condition number means the problem is well-conditioned, meaning not much
precision is lost during the calculations and this makes the problem suitable for iterative
solvers. A preconditioner can be applied to the problem to reduce the condition number.
A wide class of iterative solution techniques is based on splitting matrix A into M − N .
Using this we see Ax = b is equivalent to x = x+M−1(b−Ax). We see that this is already

3



a fixed-point problem with f(x) = x+M−1(b−Ax).

Matrix M should now be chosen in a smart way, it should resemble A, but it has to be
computationally cheap to invert. Choosing M to be the diagonal of A is called the Jacobi
preconditioner and choosing M to be the lower triangular matrix, obtained by setting all
entries above the diagonal to zero in A, is the Gauss-Seidel preconditioner.[1]

can rewrite the equation by introducing our iteration matrix T = I −M−1A.

x = M−1b+ (I −M−1A)x = M−1b+ Tx (4)

Transforming this into an iterative scheme we obtain:

xk+1 = M−1b+ Txk. (5)

3.2 Convergence

To show the method actually converges, we look at the error at each iteration: ek = x−xk.
We want to have ek → 0 as k → ∞. We can subtract our iterative scheme (5) from equation
(4) to get the following

x− xk+1 = M−1b+ Tx− (M−1b+ Txk), i.e.
ek+1 = Tek

This means ek = T ke0. Taking the norm on both sides gives us an inequality which shows
the upper-bound of the error.

∥ek∥ = ∥T ke0∥ ≤ ∥T∥k∥e0∥

This shows the error will converge to 0 if ∥T∥ < 1.[1]

3.3 Termination criterion

Before we put the different methods to the test, we first need to decide when the process
should stop. We want to have the error to be smaller than a chosen absolute tolerance t. A
common choice is to check the difference between consecutive iterations and stop when the
difference becomes sufficiently small. This raises a problem when the rate of convergence
is very small, i.e. ∥T∥ ≈ 1, because the solution may not have been reached yet, but the
update is smaller than the chosen absolute tolerance. This is why we need to include the
norm of T when determining when the difference ∥xk−xk−1∥ is actually sufficiently small.

∥ek+1∥ ≤ ∥T∥∥ek∥ = ∥T∥∥x− xk∥ = ∥T∥∥x− xk+1 + xk+1 − xk∥
≤ ∥T∥ (∥x− xk+1∥+ ∥xk+1 − xk∥)
= ∥T∥∥ek+1∥+ ∥T∥∥xk+1 − xk∥

This can be rewritten to

∥ek+1∥ =
∥T∥

1− ∥T∥
∥xk+1 − xk∥

This means if we want to have ∥ek+1∥ ≤ t, than ∥xk+1−xk∥ ≤ 1−∥T∥
∥T∥ t, which could become

very small if ∥T∥ is close to 1.[1]

4



3.4 Test case

To see the effect of applying Anderson acceleration, we will consider a small example.
We will look at a second-order one-dimensional boundary value problem with Dirichlet
boundary conditions:

−u′′ + u = f on the interval (0,1)
u(0) = 0

u(1) = 0,

where f is given and u is unknown. We discretize this problem by splitting the interval
[0, 1] in N subintervals, all of length h = 1

N . We define points on the interval xi =
ih, i = 0, . . . , N and ui ≈ u(xi). We now take the central difference approximation of u,
u′′i ≈ ui−1−2ui+ui+1

h2 , i = 1, . . . , N − 1. This way we can rewrite our equation to a linear
system.

(A+ I)U = F

Here A is a N − 1×N − 1 tridiagonal matrix with 2
h2 on the main diagonal and − 1

h2 on
both minor diagonals. U = (u1, . . . uN−1)

T and F = (f(x1), . . . , f(x2))
T .

We have that A+I is strictly diagonally dominant, which is a necessary condition to ensure
convergence for the Jacobi and Gauss-Seidel iteration. [1] The iteration matrix for this
problem is T = M−1(A+ I).

3.5 Results

3.5.1 Terminating criterion

We have calculated 1−∥T∥
∥T∥ for different values of N for both preconditioners to see the

difference.

Table 1: 1−∥T∥
∥T∥ for both preconditioners, where T is the iteration matrix in the

boundary value problem.

N Jacobi Gauss-Seidel

10 5.672e-2 9.425e-2
20 1.373e-2 2.535e-2
40 3.406e-3 6.573e-3
80 8.497e-4 1.672e-3
160 2.123e-4 4.213e-4
320 5.307e-5 1.057e-4
640 1.327e-5 2.649e-5
1280 3.317e-6 6.628e-6
2560 8.293e-7 1.658e-6

In table 1 we can see that for both methods 1−∥T∥
∥T∥ gets approximately 4 times as small as

N gets twice as large. This means we expect to need 4 times as many iterations to reach
the same precision if N doubles in size.

5



3.5.2 Boundary value problem

Moreover, we have also compared the number of iterations needed to solve the problem
by the standard fixed point iteration and when using Anderson acceleration. We have
chosen an absolute tolerance of 10−6 and u(x) = x5 − x3 + x2 − x, which means f(x) =
−20x3 + 6x − 2. The iteration count can be seen in table 2, dashed indicate that the
method did not converge within 300,000 iterations.

Table 2: Iteration count for solving boundary value problem with u(x) = x5 −
x3 + x2 − x and tolerance is 10−6.

N Jacobi Jacobi (AA) Gauss-Seidel Gauss-Seidel (AA)

10 248 50 127 18
20 1026 304 519 37
40 4217 1323 2118 85
80 17288 4502 8661 197
160 70795 16128 35431 350
320 289723 29552 144926 1030
640 - 54325 - 3777
1280 - 119140 - 6119

We have done the same for a different choice of function, namely u(x) = ex− (1+(e−1)x)
and f(x) = −ex and the results can be seen in table 3.

Table 3: Iteration count for solving boundary value problem with u(x) = ex −
(1 + (e− 1)x) and tolerance is 10−6.

N Jacobi Jacobi (AA) Gauss-Seidel Gauss-Seidel (AA)

10 238 44 122 12
20 986 195 497 34
40 4056 926 2035 65
80 16643 3195 8334 203
160 68213 8441 34130 447
320 279394 17166 139741 1022
640 - 39484 - 4751
1280 - 96444 - 14071

Without Anderson Acceleration we see that the number of iterations roughly quadruples
each time N doubles for both methods in both cases. When Anderson Acceleration is
applied the number of iterations goes down by a significant factor. It only roughly doubles
when N is doubled as well. For high values of N the iteration is more than 100 times
smaller for the Gauss-Seidel method.

3.6 Anderson acceleration with an eigenvector

While running tests, a special case came up where the size of A did not influence the
numbers of iterations needed, the solution was always found after one iteration. It turned

6



out that here we were solving Ax = b with b being an eigenvector of A with corresponding
eigenvalue λ. We will show that indeed the solution will always be found after one iteration
when Anderson acceleration is applied to the fixed-point problem x = x+ b−Ax.

Theorem: When Anderson Acceleration is applied to the system Ax = b, x2 will be a
solution, if x0 = 0 and b is an eigenvector of A with eigenvalue λ.

Proof: We start of with x0 = 0 and thus x1 = b. Using these values we can calculate that
G1 = [b, (1− λ)b]. Now we will choose β, such that

β = argminα∈A1
∥G1α∥, where A1 = {α ∈ R2 : α0 + α1 = 1}

= argminα0+α1=1∥(1− α1λ)b∥.

We see for α1 = 1
λ the value becomes zero, which is the minimal value of a norm. This

means we have the vector β =
(
λ−1
λ , 1

λ

)
. This can be used to calculate the next iterate,

x2 = β0f0 + β1f1 =
1

λ
b.

We see this is indeed a solution to our equation x = x+ b−Ax, which proves our theorem.
■

4 Anisotropic radiative transfer system

Recall from the introduction that we want to apply Anderson acceleration to the more
complex system[

R+M+ −AT

A M−

] [
u+

u−

]
=

[
K+

K−

] [
u+

u−

]
+

[
q+

q−

]
. (6)

We will consider the multiple methods named in the introduction and compare the compu-
tation time and iteration count for different parameters, both with and without Anderson
Acceleration applied.

4.1 Approaches

First we explain the derivation of the methods and later on we will add preconditioners to
try to lower the numbers of iterations needed.

4.1.1 Even-parity system

By taking the Schur complement of (6) we get

Eu+ = K+u+ + q,

where E = AT (M− −K−)−1A+M+ +R and q = q+ +AT (M− −K−)−1q−. In iterative
form this will be

u+k+1 = u+k − (E −K+)u+k − q. (7)

We see this system uses the mentioned inverse of (M− −K−), which is computationally
expensive to calculate. Once we have calculated u+, we can use it to calculate u−.

7



4.1.2 Iteration on mixed system

The mixed system approach is a splitting method as in chapter 3.1. It starts with turning
(6) into an iterative scheme:[

R+M+ −AT

A M−

] [
u+k+1

u−k+1

]
=

[
K+

K−

] [
u+k
u−k

]
+

[
q+

q−

]
. (8)

We see this is of the form Mxk+1 = Nxk + b.

This method will first calculate u+k+1 using the Schur complement. Secondly it will
use this found value to calculate u−k+1 as well. Lastly, it will use the entire vector uk+1 =

(u+k+1, u
−
k+1) for Anderson acceleration, opposed to the previous method, which only con-

sidered u+k+1 at each iteration.

The Schur complement of (8) gives us the equation for u+k+1 and u−k+1:

(R+M+ +AT (M−)−1A)u+k+1 = f+
k +AT (M−)−1f−

k

u−k+1 = (M−)−1(f−
k −Au+k+1),

where f+
k = K+ + u+k + q+ and f−

k = K− + u−k + q−.

We can prove that this system has a convergence rate c. We start by converting (8)
into error form by subtracting it of (6):[

R+M+ −AT

A M−

] [
e+k+1

e−k+1

]
=

[
K+

K−

] [
e+k
e−k

]
.

We rename the blockdiagonal matrix with K+ and K− to K. Next we multiply both sides
by eTk+1:[

(e+k+1)
T (e−k+1)

T
] [R+M+ −AT

A M−

] [
e+k+1

e−k+1

]
= eTk+1Kek.

This can be simplified to

(e+k+1)
T (R+M+)e+k+1 + (e−k+1)

TM−e−k+1 = eTk+1Kek.

Matrix R is a symmetric positive semidefinite matrix, which means (e+k+1)
TRe+k+1 ≥ 0, we

also rename the blockdiagonal matrix with M+ and M− to M :

eTk+1Mek+1 ≤ eTk+1Kek.

We know from the properties of the anisotropic radiative transfer equation that xTKx ≤
cxTMx. That gives us the following inequalities using the Cauchy-Schwarz inequality:

eTk+1Mek+1 ≤ c(eTk+1Mek)

∥ek+1∥2M ≤ c(∥ek∥M∥ek+1∥M )

∥ek+1∥M ≤ c∥ek∥M

This concludes the proof that the method has a contraction rate capped by c, meaning
it will always converge as c = σs

σa+σs
< 1.

8



4.2 Applying preconditioners

4.2.1 Even-parity system

Two preconditioners P1 and P2 will be applied to (7), resulting in

u+k+1 = u+k − P2P1((E −K+)u+k + q).

This is done in the same way as in the paper on robustly convergent methods[2]. The first
preconditioner P1 is chosen to resemble E−1. It can not be calculated directly, so another
iterative approach is taken, which is computationally expensive. This preconditioner en-
sures a contraction rate of c.

The second preconditioner P2 aims to improve the convergence behaviour for c ≈ 1 using
subspace correction [5]. The system is projected onto a smaller suitable subspaces using
Galerkin projection.

This method is provably convergent. [5] Moreover, the method is robust, meaning that the
number of iterations needed does not depend on the size of the system.

4.2.2 Mixed system

Before we get to our preconditioner, we first do some manipulations on our system. First
we take (8), however we do not directly calculate uk+1, but first an intermediate step
uk+1/2.

[
R+M+ −AT

A M−

]
uk+1/2 =

[
K+

K−

]
uk +

[
q+

q−

]
. (9)

We introduce ek := u− uk and we subtract (9) from our original system (6):[
R+M+ −AT

A M−

]
ek+1/2 =

[
K+

K−

]
ek+1/2 +

[
K+

K−

]
(ek − ek+1/2).

We know ek − ek+1/2 = u− uk − u+ uk+1/2, so we can rewrite our system to

[
R+M+ −AT

A M−

]
ek+1/2 =

[
K+

K−

]
ek+1/2 +

[
K+

K−

]
(uk+1/2 − uk).

If we know could calculate our error ek+1/2, we can use our value for uk+1/2 perfectly to
get the exact value of u. Unfortunately, we see that calculating the error is equivalent to
solving the entire system, which was our goal in the first place. What we can do, is approxi-
mate our error with a correction value uc and use it to get a better value for our next iterate.

To get to this approximation we will apply subspace correction as above, in [5]. We
construct a block-diagonal matrix:

P =

[
P+

P−

]
.

This matrix, when applied, will lower the dimensions significantly. We will project the
entire system, which creates a way smaller and approachable linear system, which we can

9



simply solve using traditional methods. Once the solution is found, we use it to get a
solution in our original large space again, which approximates the real solution. P has to
be chosen properly to ensure a unique solution.

We multiply our matrices from the left side with P T and from the right with P to
create a smaller system. This smaller system will have vc as its variable:

P T

[
R+M+ −AT

A M−

]
P

[
v+c
v−c

]
= P T

[
K+

K−

]
P

[
v+c
v−c

]
+P T

[
K+

K−

]
(uk+1/2−uk).

This can be rewritten to [
(P+)T (R+M+)P+ −(P+)TATP−

(P−)TAP+ (P−)TM−P−

] [
v+c
v−c

]
=[

(P+)TK+P+

(P−)TK−P−

] [
v+c
v−c

]
+

[
(P+)TK+

(P−)TK−

]
(uk+1/2 − uk).

After this system has been solved we can get uc = Pvc. Lastly we can get our new
iterate uk+1 = uk+1/2 + uc.

5 Results

The preconditioned even-parity system (P-EPS), the mixed system (MS) and the mixed
system with subspace correction (MS-SC) are implemented in MATLAB, both with and
without Anderson Acceleration (AA). The iteration count and computation time for dif-
ferent values for the parameters g and c are shown in the tables below.
The value of c is set to a specific value by changing the values of σs and σa. This is done
in the same way as in [5] using a checkerboard pattern.
For the MS-SC method, Anderson Acceleration does not take the half-steps uk+1/2 into
account, but only the corrected estimatation uk.

Table 4: Iteration count and computation count (s) for g = 0

c P-EPS P-EPS (AA) MS MS (AA) MS-SC MS-SC (AA)

0.5000 8 1.20 6 0.89 16 0.28 9 0.35 10 0.34 6 0.33
0.7500 10 1.38 7 0.98 25 0.42 12 0.50 12 0.40 7 0.39
0.9000 11 1.53 8 1.10 46 0.84 16 0.69 13 0.53 8 0.53
0.9900 12 2.14 8 1.27 246 4.12 49 2.43 14 0.47 9 0.52
0.9990 11 1.52 8 1.08 - - 202 9.96 13 0.44 9 0.52
0.9999 12 1.66 9 1.21 - - - - 15 0.63 9 0.52

10



Table 5: Iteration count and computation count (s) for g = 0.1

c P-EPS P-EPS (AA) MS MS (AA) MS-SC MS-SC (AA)

0.5000 8 2.25 6 1.74 15 0.24 9 0.36 10 0.34 7 0.40
0.7500 10 2.78 7 1.99 24 0.42 12 0.52 12 0.41 8 0.48
0.9000 12 3.34 8 2.23 44 0.77 15 0.67 13 0.45 9 0.53
0.9900 12 3.47 9 2.46 233 3.90 42 1.98 14 0.47 9 0.53
0.9990 11 3.04 9 2.49 - - 208 10.28 13 0.45 9 0.53
0.9999 12 3.36 9 2.48 - - - - 14 0.60 9 0.54

Table 6: Iteration count and computation count (s) for g = 0.2

c P-EPS P-EPS (AA) MS MS (AA) MS-SC MS-SC (AA)

0.5000 8 2.73 6 2.18 15 0.25 9 0.38 10 0.34 7 0.39
0.7500 10 3.44 7 2.47 24 0.41 12 0.53 12 0.40 9 0.54
0.9000 12 4.42 8 2.90 43 0.78 16 0.72 13 0.47 10 0.62
0.9900 13 5.41 9 3.30 219 3.97 39 1.97 14 0.50 10 0.64
0.9990 12 4.51 9 3.37 - - 133 7.05 13 0.47 9 0.57
0.9999 13 4.79 9 2.70 - - - - 15 0.52 10 0.58

Table 7: Iteration count and computation count (s) for g = 0.4

c P-EPS P-EPS (AA) MS MS (AA) MS-SC MS-SC (AA)

0.5000 9 3.69 6 2.68 14 0.25 10 0.44 12 0.49 9 0.62
0.7500 11 4.47 8 3.18 22 0.36 13 0.55 16 0.55 11 0.65
0.9000 13 5.26 9 3.50 39 0.65 17 0.74 20 0.66 13 0.77
0.9900 15 6.09 10 3.88 191 3.15 37 1.70 17 0.57 12 0.73
0.9990 14 5.79 10 3.92 - - 206 10.14 15 0.51 11 0.65
0.9999 15 6.11 10 3.92 - - - - 16 0.57 12 0.72

Table 8: Iteration count and computation count (s) for g = 0.5

c P-EPS P-EPS (AA) MS MS (AA) MS-SC MS-SC (AA)

0.5000 9 4.32 7 3.29 15 0.25 11 0.46 14 0.48 10 0.58
0.7500 12 5.76 8 3.72 21 0.35 13 0.55 23 0.77 13 0.79
0.9000 14 6.76 9 4.15 37 0.60 18 0.79 33 1.16 15 0.92
0.9900 17 8.22 10 4.79 176 3.18 37 1.85 26 0.89 15 0.93
0.9990 16 7.69 10 4.57 - - 113 5.52 17 0.58 13 0.78
0.9999 17 7.90 11 4.40 - - - - 19 0.63 14 0.85

11



Table 9: Iteration count and computation count (s) for g = 0.7

c P-EPS P-EPS (AA) MS MS (AA) MS-SC MS-SC (AA)

0.5000 10 6.19 7 4.20 19 0.31 12 0.51 21 0.71 12 0.73
0.7500 14 8.70 9 5.27 30 0.50 17 0.74 102 3.44 18 1.10
0.9000 18 12.46 11 6.85 41 0.68 22 0.98 - - 24 1.52
0.9900 25 16.82 13 7.81 145 2.41 45 2.10 - - 26 1.64
0.9990 25 16.28 13 7.40 812 13.91 151 7.43 29 0.97 20 1.25
0.9999 23 15.51 13 7.43 - - 313 15.28 122 4.16 22 1.36

Table 10: Iteration count and computation count (s) for g = 0.9

c P-EPS P-EPS (AA) MS MS (AA) MS-SC MS-SC (AA)

0.5000 13 11.61 9 7.61 24 0.40 14 0.61 40 1.35 17 1.05
0.7500 18 19.66 11 10.52 47 0.81 22 0.98 - - 31 1.95
0.9000 26 30.56 14 14.69 85 1.41 34 1.59 - - 75 4.85
0.9900 50 60.80 21 22.01 151 2.56 55 2.64 - - 167 10.92
0.9990 60 71.07 22 22.86 516 8.65 132 6.41 - - 68 4.55
0.9999 61 71.77 21 20.86 - - - - - - 69 4.50

6 Discussion

For the preconditioned even-parity system, we see a low iteration count, but a high com-
putation time per iteration, as expected. We know the contraction rate depends on g and
c [2], which is confirmed by the results. If g or c increases, the number of iterations needed
goes up. When Anderson Acceleration is applied the iteration count goes down and with
it the computation time. However, it is still significantly higher than for the other methods.

The mixed-system has a low computation time per iteration, but as c approaches 1,
the convergence becomes very slow. The dashes indicate that the method did not converge
within 1,000 iterations. This makes sense, because we have proved that the contraction
rate is capped by c. Anderson Acceleration gets the iteration count down, but it remains
slow for high values of c.

When looking at the result for the mixed-system with subspace correction we see the
method is fast and converges for the cases when g is at most 0.5. For larger values of g,
the dashes indicate that the method diverged. Anderson Acceleration turns the divergent
sequence into a convergent one and does manage to find a solution for all the cases, while
still being a very fast method.

7 Conclusions

In conclusion, we can see that Anderson Acceleration lowers the number of iterations
needed for all the methods and converges even when the original method diverges for all

12



chosen parameters. The goal was to have a method which converges fast, the mixed-system
with subspace correction and Anderson Acceleration fits this description.

However, it remains to be proven that the method converges for all possible values for
the parameters. As of now, we have only shown it does so for these specific values. It is
still possible that it fails for other values. This makes the method unreliable. It would be
a great addition if the proof is given, because it would mean our goal is achieved and we
have a fast convergent method in the mixed-system with subspace correction and Anderson
Acceleration.

References

[1] Uri M. Ascher and Chen Greif. A First Course in Numerical Methods. Society for
Industrial and Applied Mathematics, February 2011.

[2] Jürgen Dölz, Olena Palii, and Matthias Schlottbom. On robustly convergent and ef-
ficient iterative methods for anisotropic radiative transfer. Journal of Scientific Com-
puting, 90(3), February 2022.

[3] Herbert Egger and Matthias Schlottbom. A mixed variational framework for the
raditive transfer Equation. Mathematical Models and Methods in Applied Sciences,
22(03):1150014, March 2012.

[4] Michael Modest. Radiative Heat Transfer. Academic Press, 2 edition, May 2003.

[5] Olena Palii and Matthias Schlottbom. On a convergent DSA preconditioned source
iteration for a DGFEM method for radiative transfer. Computers &amp Mathematics
with Applications, 79(12):3366–3377, June 2020.

[6] Tanja Tarvainen, Aki Pulkkinen, Ben T. Cox, and Simon R. Arridge. Utilising the
radiative transfer equation in quantitative photoacoustic tomography. In Alexander A.
Oraevsky and Lihong V. Wang, editors, Photons Plus Ultrasound: Imaging and Sensing
2017. SPIE, March 2017.

13


	Introduction
	Anderson acceleration
	Method
	Derivation

	Applying Anderson acceleration
	Splitting methods
	Convergence
	Termination criterion
	Test case
	Results
	Terminating criterion
	Boundary value problem

	Anderson acceleration with an eigenvector

	Anisotropic radiative transfer system
	Approaches
	Even-parity system
	Iteration on mixed system

	Applying preconditioners
	Even-parity system
	Mixed system


	Results
	Discussion
	Conclusions

