
 

 

 

 

MASTER THESIS 

DECODING NEURAL 

CONTROL STRATEGIES 

UNDERLYING HUMAN 

MOVEMENT 
 

I. E. Gomez Orozco 
 

 

 

FACULTY OF ENGINEERING TECHNOLOGY 
DEPARTMENT OF BIOMECHANICAL ENGINEERING 

 
EXAMINATION COMMITTEE 

Prof. dr. ir. M. Sartori 
R. E. ornelas Kobayashi, MSc 
Dr. S. U. Yavuz 

DOCUMENT NUMBER 

 BE - 940 

AUGUST 
2023 



 
 

Contents 
Introduction ................................................................................................................................................... 1 

0.1. Motor control ................................................................................................................................ 1 

0.1.1. Motor neurons ....................................................................................................................... 1 

0.1.2. Modelling alpha-motor neurons ............................................................................................ 3 

0.1.3. Force modulation .................................................................................................................. 4 

0.2. Interfacing with alpha-motoneurons ............................................................................................. 5 

0.3. Analysis of human neuromechanics ............................................................................................. 6 

0.4. Problem statement ......................................................................................................................... 6 

1. Introduction ........................................................................................................................................... 7 

2. Methods................................................................................................................................................. 8 

2.1. Experimental protocol ................................................................................................................... 8 

2.2. In silico motor neuron pool generation ......................................................................................... 8 

2.3. In vivo analysis ............................................................................................................................. 9 

2.4. In silico analysis ............................................................................................................................ 9 

2.4.1. Firing dynamics..................................................................................................................... 9 

2.4.2. Force profile correlation ...................................................................................................... 10 

2.5. ∆𝐼𝐹 Optimization ........................................................................................................................ 11 

3. Results ................................................................................................................................................. 11 

3.1. Rate coding analysis ................................................................................................................... 11 

3.2. Neural firing dynamics................................................................................................................ 11 

3.3. Neural drive and force correlation .............................................................................................. 12 

3.4. ∆𝐼𝐹 Optimization ........................................................................................................................ 13 

4. Discussion ........................................................................................................................................... 15 

4.1. General discussion ...................................................................................................................... 15 

4.2. Limitations and future scope ....................................................................................................... 17 

5. Conclusion .......................................................................................................................................... 18 

References ................................................................................................................................................... 18 

Appendix ..................................................................................................................................................... 25 

A.1. MN pool models driven by ∆𝐼𝐹20 .................................................................................................. 25 

A.2. MN pool models driven by slope-specific ∆𝐼𝐹 ............................................................................... 25 

A.3. Subject 1 firing dynamics................................................................................................................ 26 

A.4. Subject 2 firing dynamics................................................................................................................ 27 



 
 

A.5. Subject 3 firing dynamics................................................................................................................ 29 

 

  



 
 

Abstract 

 

Understanding the neural mechanisms involved in the generation of human movement is fundamental for 

the development of technologies oriented to motor control and neurorehabilitation. One of the integral 

concepts for understanding motor control are α-motor neurons (MNs). MNs are excitable cells that control 

the activation of the skeletal muscle they innervate. Therefore, exploring the neural mechanisms underlying 

the activation and modulation of MNs is essential for a complete comprehension of human movement. 

However, the study of these neural mechanisms is constrained by the number of MNs that current 

approaches can observe. Therefore, in this work, we implement person-specific biophysical MN models, 

previously developed, that can reproduce neural firing dynamics from the entire pool of MNs. These models 

represent the neural excitability as a subject-specific constant gain, represented as ∆𝐼𝐹. However, it has 

been reported that neural excitability changes as a function of the rate of force development (RFD). Hence, 

this work proposes an approach to demonstrate that ∆𝐼𝐹 changes depending on the RFD. For this purpose, 

first, we examine the firing characteristics at different force levels and RFDs of in vivo decomposed MNs 

from the tibialis anterior muscle (TA) from four healthy subjects. Second, we compare the neural firing 

dynamics reproduced by the in silico models, created specifically for every subject and driven by its 

corresponding constant ∆𝐼𝐹, with the neural firing dynamics observed in vivo at different RFDs. Finally, 

we propose a methodology to optimize ∆𝐼𝐹 that best reproduces the neural firing dynamics at different 

RFDs, turning a person-specific ∆𝐼𝐹 into a function of the RFD. Therefore, the objective of this study is to 

characterize the neural excitability, represented as ∆𝐼𝐹 in the neural biophysical models, as a function of 

the RFD. This approach can create new opportunities in analyzing and understanding human movement 

control, enabling the development of new neuro-prosthetic devices. 

Keywords: Neural excitability, motor neuron 
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Introduction 
 

 

The study of human movement has multiple applications, such as the development of motor control 

technologies, neurorehabilitation, and sports. In a general sense, human movement is generated by a series 

of interactions between the nervous and musculoskeletal systems [1], where muscle contraction is 

responsible for generating the movement of a joint. Muscle contraction is controlled by α-motor neurons 

(MNs) generating action potentials [2], [3]. MNs receive multiple excitatory inputs through different 

descending pathways of the central nervous system (CNS) and feedback signals from afferent connections 

modulating their firing activity [4], [5].  

Therefore, exploring the strategies utilized by the CNS to generate muscle contraction is key for the 

understanding of human movement. Non-invasive methods, such as decomposition algorithms, are 

convenient to study the neural firing activity of MNs in humans. However, these methods are constrained 

by the number of MNs that can be analyzed [6]. Nevertheless, recent work has demonstrated the feasibility 

of simulating the neural firing activity of a complete pool of MNs using person-specific biophysical neuron 

models [7].    

In this work, we implement person-specific biophysical models to study how the excitability of the MNs 

firing activity changes as a function of the speed with which the force increases, also known as the rate of 

force development (RFD) [8]. 

This section provides the reader with a comprehensive introduction to relevant concepts and background 

information essential for understanding the project. First, important concepts such as motor control, motor 

units, the neural strategies underlying force modulation, and the intricate relationship between the neural 

drive to the muscles and force generation are introduced. Next, tools such as High-Density 

Electromyography (HD-EMG) and decomposition algorithms that enable the measurement of neural firing 

activity are discussed. Finally, procedures to simulate neural firing activity, are explored. At the end of this 

section, the reader is also introduced to the problem statement of this project.  

 

0.1.  Motor control 
 

0.1.1. Motor neurons 

Motor units are the fundamental unit of movement where their primary function is to convert synaptic input 

received by the MN into mechanical output by the muscle [9]. Motor units consists of a MN and the muscle 

fibers it innervates [10]. MNs are organized in pools located in the ventral horn of the spinal cord, with 

each pool innervating a specific muscle [11]. A MN consists of a soma, dendrites, and axon. The soma is 

the body of the MN where contains the nucleus of the cell and other cellular structures responsible for the 

correct functioning of the cell, the dendrites are branches conveying inputs to the soma, and the axon 

transmits the signals integrated in the soma towards the muscle fibers [12]. The MN membrane contains 

different ion channels, mainly including sodium 𝑁𝑎+, potassium 𝐾+, and calcium 𝐶𝑎2+, that are sensitive 

to changes to voltage in the membrane. These ion channel regulate the transition of ions between the 

intracellular and extracellular environments [13]. Consequently, when there is a change in the electric 

gradient and the membrane reaches to a specific voltage threshold, the MN generates an action potential 
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[14]. MN excitability or neural excitability refers to the property of MNs to generate an action potential in 

response to a stimulus. The neural excitability is determined by the intrinsic properties of the MN, such as 

the amount of different ion channels, and the size of the MN [15]. Therefore, MNs are excitable cells that 

modulate muscle force gene by the generation of action potentials [16].  

Moreover, MNs exhibit variations in morphology and excitability according to their functionality in muscle 

activation [17]. The size of the MN affects the electric resistance of its membrane [18], where smaller MNs 

offer a larger resistance compared to bigger MNs. Therefore, by Ohm’s law, where voltage is given by the 

product between resistance and current, when they are exposed to an excitatory current, smaller MNs are 

activated before larger ones [18]. This is behavior is known as the Henneman’s principle [17], where it 

states that MNs are recruited in a size-dependent manner [19]. 

Studies have shown a saturation effect in the rate at which MNs generate action potentials, which can be 

attributed to their intrinsic excitability characteristics [20], [21]. One plausible explanation for this rate 

saturation is due to the presence of persistent inward currents (PICs) within the MN membrane [20]. PICs 

are voltage-sensitive sodium and calcium channels located in the dendrites of the MNs, acting as gain 

factors by amplifying and sustaining the synaptic input [22], [23]. Experimental evidence has demonstrated 

that PICs generate an initial amplification followed by a significant saturation when the synaptic input is 

transmitted through the dendrites of the MNs  [22], [24]. 

MNs receive different information through synapses from different sources [25]. Motor commands 

originate mainly in the primary motor cortex, and subcortical regions of the brain [26], [27], and are 

transmitted through different descending pathways until converging in MNs that innervate the skeletal 

muscles [28]. Additionally, MNs receive motor commands from multiple layers of interneurons in the spine 

[29], [30], and afferent signals as a feedback system from sensory neurons in the muscle [4], [5], [31]. 

 

 

Figure 1. The common synaptic input is the neural drive to the muscle. The MNs receive information from different sources 

including motor commands or control input, independent noise, and common noise. A pool of MNs acts as a low-pass filter 

capturing the low frequency components of the signal inputs. The output of the pool of MNs, referred as the effective neural drive 

to the muscle, is highly correlated to the control input. Figure obtained from [32]. 
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The multiple synaptic inputs received by a pool of MNs are integrated and transformed into the neural drive 

controlling muscle activation [33], [34]. Studies have revealed a strong correlation between the neural drive 

to the muscles and the force profile exerted by the muscle [32]. Therefore, the analysis of the neural drive 

is fundamental to estimate muscle force. The neural drive is constituted by the summation of the firing 

activity produced by the MNs [34]. Due to the nonlinear behavior of individual MNs [32], signal 

components present in the MN output may not be present in their inputs. However, the low-frequency 

components of a common current input shared by multiple MNs, i.e., common synaptic input (CSI), will 

be present in the output of the set of MNs (Figure 1). Therefore, a pool of MNs can be seen as a low pass 

filter, where the neural drive is the linear transformation of the low-frequency components in the CSI [34]. 

Moreover, the larger the set of MNs analyzed receiving the CSI, the greater is the correlation with the force 

profile [32]. 

 

0.1.2. Modelling alpha-motor neurons 

There are multiple methods to model the neural dynamics involved in the generation of action potentials, 

such as biophysical models, spiking neural models, and neuromorphic models [35], [36], [37], [38]. 

Biophysical models, such as the Hodgkin-Huxley model [36], where the generation of action potentials is 

determined by the physiological properties of the neuron (e.g., ion channel dynamics, etc). In these models, 

motor neurons can be modeled as compartmental representations of soma and dendrite, where each 

compartment is represented by an electric circuit including different parameters representing the 

physiological properties of the neurons [35]. Figure 2 shows a neuron model representation of the soma 

compartment that includes a membrane capacitance (𝐶𝑠), leakage (𝑔𝑙𝑠), sodium (𝑔𝑁𝑎), and slow (𝑔𝐾𝑠) and 

fast (𝑔𝐾𝑓) potassium channels responsible to replicate neuron firing activity. The action potentials 

generated by a depolarization of the membrane are described by equations ( 1 ), ( 2 ), ( 3 ), and ( 4 ). 

 

𝐶𝑠

𝑑𝑉𝑠(𝑡)

𝑑𝑡
= −𝑔𝑙𝑠(𝑉𝑠(𝑡) − 𝐸𝑙) − 𝐼𝑖𝑜𝑛(𝑡) + 𝐼𝑖𝑛𝑗−𝑠(𝑡) 

( 1 ) 

𝐼𝑖𝑜𝑛(𝑡) = �̅�𝑁𝑎𝑚3ℎ(𝑉𝑠(𝑡) − 𝐸𝑁𝑎) + �̅�𝐾𝑓𝑛4(𝑉𝑠(𝑡) − 𝐸𝐾) + �̅�𝐾𝑠𝑞2(𝑉𝑠(𝑡) − 𝐸𝐾) 

( 2 ) 

𝑔𝑙𝑠 =
2𝜋𝑟𝑠𝑙𝑠

𝑅𝑚−𝑠
 

( 3 ) 

𝐶𝑠 = 2𝜋𝑟𝑠𝑙𝑠𝐶𝑚 

( 4 ) 
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Figure 2. Neuron model representing the soma compartment as an electric circuit. The membrane capacitance is represented as 

𝐶𝑠. The model includes sodium 𝑔𝑁𝑎, slow potassium 𝑔𝐾𝑠, fast potassium 𝑔𝐾𝑓 ion channels as electric conductances with their 

respective reverse potentials 𝐸𝑁𝑎, and 𝐸𝐾. 𝐸𝑙 represents the leakage Nernst voltage and 𝐼𝑖𝑛𝑗  the current injected in the soma.   

Figure obtained from [35]. 

Where 𝑚 and ℎ represent the dynamics of the activation and inactivation of the sodium channel, 𝑛 

represents the activation dynamics of the fast potassium channel, and 𝑞 the activation dynamics of the slow 

potassium channel. These state variables are voltage-dependent and their behavior is described by a set of 

first order differential equations involving voltage-dependent rate constants 𝛼𝑚, 𝛽𝑚, 𝛼ℎ, 𝛽ℎ, 𝛼𝑛, 𝛽𝑛, 𝛼𝑞 , 𝛽𝑞 

[13] , [35]. Solving these differential equations require small integration steps that increase the 

computational cost. To optimize computational efficiency, the time evolution of these rate constants can be 

approximated using a pulse-based model [39]. This method allows the direct estimation of the activation 

and inactivation variables by representing the behavior of the time course of the voltage-dependent rate 

constants as pulses.  

 

0.1.3. Force modulation 

Neural strategies underlying force control include recruitment and rate coding. Recruitment involves the 

systematic activation of MNs, while rate coding refers to the frequency at which the MN generates action 

potentials [40].  

The relationship between MN pool activation (i.e., number of recruited MNs within the pool) and the 

muscle force, normalized with the maximum voluntary contraction (MVC), generated in response is 

described by an exponential curve (Figure 3) [41]. The curves depicted in Figure 3 represent the MN pool 

activation from the tibialis anterior muscle (TA) and the first dorsal interosseous muscle (FDI). The TA and 

the FDI recruitment were obtained from ramp isometric voluntary contractions at low RFDs (MVC/s), 10 

%MVC/s and 5% MVC/s respectively [41], [42], [43]. Due to the exponential function, recruitment coding 

has more influence on force generation at low force levels at the initial phase of the contraction [44]. In 

contrast, rate coding assumes a more prominent role in modulating force at intermediate and high force 

levels during isometric contractions [45]. 

Nevertheless, studies have demonstrated that the recruitment threshold and the firing rate of a MN are not 

fixed to a specific force level but is rather influenced by the RFD and the type of muscle contraction [40], 

[44]. For higher RFDs, MNs are recruited at lower force levels [46], [47]. This change in the neural 

strategies for force modulation may be caused by a modulation of neural excitability, changing the intrinsic 

parameters of a MN to be activated at lower force thresholds. Moreover, during ballistic contractions, when 

the muscle generates high forces at high speed, MNs have been observed to initially fire action potentials 

at very high frequencies, which then decrease over time, meaning a more substantial increase in neuron 

excitability [46].  



5 
 

 

Figure 3. Recruitment curves showing the exponential relationship between the cumulative generated force and the percentage of 

recruited MNs within a pool for the tibialis anterior muscle (TA) and the first dorsal interosseous muscle (FDI). These curves were 

obtained from ramp isometric voluntary muscle contractions at low RFDs. Figure obtained from [41]. 

 

0.2. Interfacing with alpha-motoneurons 
The measurement of neural activity can be accomplished through invasive or noninvasive methods. 

Invasive techniques involve the insertion of electrodes directly into the muscle, providing higher accuracy 

[48]. On the other hand, noninvasive methods rely on capturing the surface electrical signal generated by 

the contracting muscle [49]. Although intramuscular electrodes offer higher precision, noninvasive 

electrodes present several advantages. They eliminate the need for a clinically controlled environment, 

allow the study of sensitive muscles and capture a larger number of motor units contributing to muscle 

contraction [50]. 

Electromyography (EMG) measures the electrical activity generated by the muscles and can be used to 

estimate the neural activation of the muscle [49]. The EMG signal is composed of the superimposition of 

action potentials generated by the MNs [51]. To identify individual MN firing activity, significant 

advancements have been made in developing reliable multichannel blind source separation algorithms, such 

as Convolution Kernel Compensation (CKC) [48], [49], [52]. This method discriminates the superimposed 

action potentials constituting the EMG signal into individual MN firing activity in different locations of the 

muscle. Therefore, this method involves using monopolar electrodes arranged in a two-dimensional 

configuration to measure the electrical activity on the surface of the muscle from multiple locations. This 

system is referred to as high-density surface EMG (HD-EMG) [53]. HD-EMG measures the electrical 

activity across different channels creating a spatial resolution, allowing the identification of different 

sources. 

However, it is important to note that this method presents some limitations. First, the HD-EMG restricts the 

identification of only a limited amount of MNs due to the number of electrodes available in its 

configuration. Second, the larger and superficial MNs tend to overlap smaller and deeper MNs due to the 

action potential surface size [49].  
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0.3. Analysis of human neuromechanics 
Understanding the MN’s firing dynamics and the generation of muscle force can lead to improvements in 

such fields as bionics, neurorehabilitation, and sports. Using interface methods, for example, the HD-EMG 

decomposition algorithms [48], [53], and neural models is beneficial to the study of neural firing activity. 

Interface methods allow the recording and study of experimental MN firing activity, while neural models 

estimate the firing activity of MNs in response to a stimulus. However, as mentioned in section 0.2, there 

are technical limitations in the current methods used to analyze experimentally the firing characteristics in 

MNs. Additionally, studies demonstrate that neural aspects influencing firing activity vary for every person, 

where factors such as age, level of training, neural injury, and motor disorders contribute to this variation 

[54], [55], [56], [57], [58], [59].  

Therefore, recent research has proposed a methodology using HD-EMG decomposition, a single-

compartment biophysical model, and optimization algorithms to create in silico MNs pools comprising 

person-specific parameters [7]. Furthermore, this methodology represents neural excitability as a gain 

factor, ∆𝐼𝐹 (
𝐻𝑍

𝜂𝐴
), specific for every person, that linearly scales the neural drive to compute the CSI 

represented in the soma. Thus, the CSI represents neural signals, such as from interneurons, afferent 

pathways, and neuromodulatory inputs, contributing to the MN activation. Therefore, since ∆𝐼𝐹 determines 

the magnitude of the CSI to generate an action potential, it reflects the neural excitability.  

With this approach, it is possible to analyze the firing dynamics of complete pools of MNs, and 

consequently, estimate the muscle force. 

 

0.4. Problem statement 
The study of neural firing activity is crucial for understanding the neural strategies implemented by the 

CNS to control muscle activation and consequently force generation. Numerous studies have explored the 

relationship between MN’s discharge rate and recruitment coding [60], [61], [62], [63]. Moreover, research 

has reported that the RFD is produced by a change in neural excitability, influencing the recruitment and 

rate coding strategies [47], [64], [65], [8], [66], [67]. However, as mentioned in section 0.2, there are 

technical limitations in the current methods used to analyze the firing characteristics in MNs. In non-

invasive methods, the main limitation is due to the restricted number of MNs that can be analyzed, thus the 

decomposed MNs do not represent the neural behavior of the entire pool innervating a muscle. 

The methodology mentioned in section 0.3 aims to address this limitation. However, this method was 

assessed by estimating the MN pool firing parameters with a specific RFD, 20% MVC/s, and a constant 

person-specific ∆𝐼𝐹. Since the MN excitability changes, and consequently the firing pattern, depending on 

the RFD, the present work aims to analyze and characterize the parameter ∆𝐼𝐹 across different RFDs using 

optimization algorithms and a single-compartment person-specific biophysical model comprising the entire 

pool of MNs innervating the TA. Thus, the goal of this research is to analyze whether by estimating ∆𝐼𝐹 

for multiple RFDs, the neural model, optimized for only 20% MVC/s, can reproduce realistic firing activity 

at multiple conditions. 

In this way, this study contributes by estimating ∆𝐼𝐹 as a function of the RFD for the analysis of the neural 

firing activity of an entire pool of MNs for multiple conditions, both for different force levels and RFDs, 

using non-invasive methods. Therefore, this approach contributes to the development of technologies that 

help people with impairments and in neurorehabilitation.  
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1. Introduction 
 

Alpha-motor neurons (MNs) are key elements in 

motor control since they represent the final pathway 

of the nervous system and the interface with the 

musculoskeletal system. MNs are excitable cells 

that produce action potentials in response to a 

stimulus [16] with the excitability of the MNs 

modulated according to the motor task. Studies have 

reported a change in MN excitation when varying 

the rate at which muscle force is generated over 

time, known as the rate of force development (RFD) 

[46], [47], [64], [68]. Therefore, to understand the 

neural strategies underlying human movement, it is 

essential to analyze and characterize how MN 

excitability is modulated according to the RFD. 

In this context, neural excitability is an intrinsic 

property of MNs determined by multiple factors 

such as the ionotropic and neuromodulatory 

systems [15], [69], [70]. The ionotropic system 

refers to the modulation of the opening of ion 

channels by neurotransmitters to depolarize the 

MN, while the neuromodulatory system relates to 

the use of neurotransmitters to alter the intracellular 

dynamics and change the MN’s response to 

subsequent ionotropic inputs [69]. Additionally, the 

MN size is one of the parameters contributing to the 

excitability of the MN, since MNs with smaller 

sizes offer a larger electric resistance, therefore, 

being activated first given a current input [18]. 

The nervous system implements different strategies 

to modulate the force exerted by the muscle, such as 

recruitment and rate coding [71]. Recruitment 

coding refers to the number of MNs that are 

activated within the pool. According to Henneman’s 

size principle [19], MNs are recruited in an orderly 

fashion based on their size, with the smallest motor 

neurons being recruited first and the largest motor 

neurons being recruited last. Rate coding represents 

the frequency at which these MNs are generating 

action potentials. 

Numerous studies have explored the relationship 

between recruitment and rate coding, providing 

significant insights into the neural techniques 

involved in force generation and its modulation 

[72], [62], [73]. However, the relative contribution 

of these two neural strategies may vary depending 

on the specific muscle, the task performed, and the 

RFD [40], [44]. Therefore, there is a knowledge gap 

on how these two strategies are modified at multiple 

RFDs. Additionally, due to technical limitations 

[48], the study of MNs’ firing activity is constrained 

to a small number of MNs that can be analyzed, thus 

not representing the firing behavior of the entire 

pool of MNs. 

To address this challenge, previous work [7] has 

shown that in silico MN pools can reproduce neural 

firing activity and estimate the force profile during 

isometric contractions. This method involved 

optimization algorithms and person-specific 

biophysical models driven by a common synaptic 

input (CSI). The CSI represents all the synaptic 

signals, such as cortical, from interneurons, and 

afferent pathways, contributing to the activation of 

the MNs. The CSI was derived as the product 

between the neural drive to the muscle and a person-

specific gain (∆𝐼𝐹). Therefore, ∆𝐼𝐹 reflects the 

neural excitability because it determines the 

magnitude of the CSI. In this method, ∆𝐼𝐹 and the 

parameters comprising the pool of MNs were 

computed by optimization algorithms, and the data 

obtained at 20% MVC/s RFD.  

Based on the evidence, that the neural excitability 

changes in function of the RFD [8], [74], [75], in 

this work we use person-specific biophysical 

models of four healthy subjects to analyze and 

characterize ∆𝐼𝐹 to study the adjustments in the 

neural excitability and the effects on the recruitment 

and rate coding across different RFDs.  

This research demonstrates that the excitability gain 

∆𝐼𝐹 is not a constant value but rather a function of 

the RFD. Understanding how the nervous system 

modulates neural excitability across multiple RFDs, 

yields valuable knowledge about the neural 

strategies involved in the generation of force. The 

current study assesses the contribution and effects 

of neural excitability in MN firing behavior using 

person-specific in silico pools optimized for a 20% 

MVC/s RDF specifically. We hypothesize that by 

adjusting a person-specific excitability gain ∆𝐼𝐹 
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according to the RFD, the in silico MN pool can 

reproduce the neural firing activity observed 

experimentally. As a result, the MN pool models can 

be driven by a person-specific ∆𝐼𝐹 function that 

depends on the RFD. 

The findings of this study contribute to the 

development of technologies in neurorehabilitation, 

and assistance for impaired persons, such as neuro-

prosthetic devices and exoskeletons, by using non-

invasive methods to model the entire pool of MNs 

innervating a muscle for multiple conditions. 

Furthermore, the obtained results offer crucial 

insights into how neural excitability is modulated 

across multiple RFDs. 

 

2. Methods 
 

2.1. Experimental protocol 
Four healthy subjects (age: 27.4 ± 2.07 years, 

weight: 70 ± 12.34 kg, height: 173.6 ± 10.06 cm) 

participated in this study [7]. The subjects were 

instructed to perform isometric ankle dorsiflexion 

contractions at five different force levels (10%, 

20%, 30%, 40%, and 50%) relative to the maximum 

voluntary contraction force (MVC). For each target, 

four rates-of-force (5%, 10%, 15%, and 20% 

MVC/s) were performed. A total of five repetitions 

for each condition. The subjects were provided with 

a visual reference on a screen to track the exerted 

force using ramp-and-hold patterns. 

The HD-EMG data was recorded from the TA 

muscle by an 8 × 8 electrode grid and a TMSi Refa 

multichannel amplifier (TMS International B. V., 

Oldenzaal, The Netherlands) at a sampling 

frequency of 2048 Hz. The associated torque was 

recorded using a Biodex chair (M4 Biodex Medical 

Systems Inc., Shirley, NY, USA) and a National 

Instruments Data Acquisition card (NI DAQ) at a 

sampling frequency of 512 Hz. Both measurements 

were performed simultaneously. 

 

2.2. In silico motor neuron pool 

generation 
The data obtained from the HD-EMG was 

decomposed by a convolution kernel compensation 

blind source separation algorithm [48], [49], [52] to 

identify individual spike trains produced by the in 

vivo MNs. Subsequently, the quality of the 

identified MNs was assessed by a quality control 

algorithm rejecting non-physiologically realistic 

MNs according to a pulse-to-noise ratio (PNR) > 20 

dB, a coefficient of variation (CoV) < 0.3, and 

discharge rates < 30 Hz [7], [76]. 

The data obtained from the 20% MVC/s RFD was 

used to generate in silico MNs copies that can 

reproduce the firing activity of the in vivo MNs [7]. 

This specific RFD was selected to have a wider 

range of MNs recruited during the different trials. 

For each in vivo decomposed MN, a CSI-driven 

single-compartment biophysical model was 

implemented to create an in silico MN copy [35]. 

The model represents the soma membrane of the 

MN as an electric circuit, it comprises a membrane 

capacitance (𝐶), leakage (𝑔𝑙), slow potassium 

(𝑔𝐾𝑠), fast potassium (𝑔𝐾𝑓), and sodium (𝑔𝑁𝑎) 

conductances responsible for the generation of 

action potentials. The model solves the Hodgkin and 

Huxley differential equations [36] using a pulse-

based model method [39], where the voltage-

dependent state variables (𝑚, ℎ, 𝑛, 𝑞) that control 

the activation and inactivation of the different ionic 

channels are described by 𝛼𝑖 and 𝛽𝑖 representing the 

state variables behavior as rectangular pulses, where 

𝑖 represents each state variable. Therefore, the time 

evolution of the activation and inactivation 

dynamics of the included ion channels are 

represented by 𝛼𝑖 and 𝛽𝑖. The diameter of the 

somma (𝐷𝑠), used to customize the leakage 

conductance and MN capacitance, represents the 

anatomical size of the MN.  

The CSI driving the biophysical model was 

obtained by the linear transformation between the 

neural drive and a person-specific ∆𝐼𝐹20 gain, 

where the subscript denotes that this gain was 

calculated for the 20% MVC\s RFD. The neural 

drive was derived from the in vivo cumulative spike 

trains and ∆𝐼𝐹20 was computed using a multi-
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objective optimization that minimized the 

recruitment error in two conditions [7]. First, the 

earliest recruited in vivo MN with the smallest in 

silico 𝐷𝑠 and, second, the latest recruited in vivo MN 

with the biggest in silico 𝐷𝑠.  

Optimizing subject-specific the ionic channels 

parameters of the slow potassium activation 

dynamics represented as 𝛼𝑄 and 𝛽𝑄 values during 

the pulse, and the diameter of the soma 𝐷𝑠 from the 

neural model, enabled the production of in silico 

MN copies that generate spikes corresponding to the 

in vivo firing activity characteristics. Furthermore, 

based on the distribution of these parameters from 

the identified in silico MNs, a set comprising 200 in 

silico MNs was generated for each subject to 

simulate a complete pool of MNs innervating the 

TA. 

2.3. In vivo analysis  
The in vivo data analysis examined the recruitment 

and rate coding strategies across different RFDs. 

The mean discharge rate during the plateau of each 

recorded in vivo MN was calculated according to ( 

5 ).  

𝑓̅ =
∑ (

1
𝑡𝑛 − 𝑡𝑛−1

)

𝑁
 

( 5 ) 

Where 𝑡𝑛 represents the time at which the spike was 

observed, and 𝑁 refers to the total number of inter-

spike lapses generated by the MN. 

The MN recruitment threshold was determined as 

the %MVC at which a MN produced its first spike.  

To compensate for the neuromechanical delay 

produced by a lag between the neural drive to the 

muscle and the force generation [77], the neural 

drive and the torque profile were synchronized 

estimating the cross-correlation function, where the 

peak value of the function represents the delay 

between the two data. 

Test 1 consisted of analyzing how the discharge rate 

observed in vivo is modulated through multiple 

RFDs at different force levels from the four subjects 

by computing the mean discharge rate at 5, 10, 15, 

and 20% MVC/s during the plateau portion of the 

ramp.  

2.4. In silico analysis  

2.4.1. Firing dynamics 

Test 2 assessed the capability of the in silico MN 

pools to reproduce in vivo MN firing behavior 

across different RFDs using a person-specific ∆𝐼𝐹20 

gain corresponding to 20% MVC/s RFD  (for which 

the in silico MN pool was created (section 2.2))  [7]. 

Therefore, test 2 examines the MN firing activity 

regarding recruitment and rate coding.  

For each condition, force level and RFD, the 

repetition containing the largest number of 

identified MNs was selected in the present study.  

To generate in silico MNs spikes, the CSI was used 

to drive the created MN models. The CSI was 

derived as the product between the excitability gain 

∆𝐼𝐹 and the neural drive derived from the in vivo 

generated spikes. Then, an activation function was 

implemented to determine the number of motor 

neurons that are activated. This function is based on 

the relationship between the recruitment properties 

of the TA and the force exerted by the muscle [41]. 

Subsequently, the generated in silico spikes were 

used to compute the mean discharge rate, and the 

recruitment threshold implementing the same 

methodology as described previously using the in 

vivo data. 

To examine the performance of the current model 

driven by ∆𝐼𝐹20 at different RFDs, three different 

methods were implemented. Additionally, these 

methods were compared to determine the optimal 

function that measures the error considering the 

computational cost, complexity, and representation 

of the data.   

2.4.1.1. Linear model 

The first method consisted in fitting the data with a 

linear model describing the recruitment and rate 

coding. Then, the relative error between in vivo and 

in silico neural activity was computed as the 

difference between the slopes and the y-intercepts. 

Additionally, a third cost function is required in this 

method to describe the distribution of the data, such  
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Figure 4. Block diagram describing the process to compute ∆IF for multiple RFDs. The grey lines represent the procedures to 

compute a person-specific ∆𝐼𝐹20 for a specific rate of force development [7]. The black lines represent the methodology to compute 

a person-specific ∆IF as a function of the RFD. The experimental data is obtained using HD-EMG and convolution kernel blind 

source separation decomposition [52]. Subsequently, a person-specific ∆𝐼𝐹20 was estimated using optimization algorithms. The 

CSI was computed as the linear transformation between ∆𝐼𝐹20 and the neural drive. The MNs model is driven by the computed 

CSI, where the parameters were estimated by optimization algorithms to match the recruitment and firing patterns. Based on the 

distribution of these parameters, an entire pool comprising 200 MNs was created. Then, the entire pool, optimized with data of 20 

%MVC/s, was used to produce MN firing patterns using data obtained at multiple RFDs. Finally, ∆𝐼𝐹 was estimated by an 

optimization algorithm minimizing the error between the recruitment and mean firing rate using a kernel density estimator as a 

cost function. 

 

as the range of the data, consequently increasing the 

complexity of the model. 

2.4.1.2. Covariance matrix-based ellipses 

The second method involved the generation of 

ellipses using the covariance matrix of the 

recruitment and rate coding to capture the neural 

behavior according to (6).  

[
𝑥(𝑛)

𝑦(𝑛)
] = [

𝑣1,𝑥 𝑣2,𝑥

𝑣1,𝑦 𝑣2,𝑦
] [√𝜆1 √𝜆2] [

𝑐𝑜𝑠(𝑛)

𝑠𝑖𝑛(𝑛)
]

+ [

𝑟𝑎𝑛𝑔𝑒1

2
𝑟𝑎𝑛𝑔𝑒2

2

]

 𝑛=0 … 2𝜋

 

( 6 ) 

Where 𝑣 are the eigenvectors and 𝜆 are the 

eigenvalues respectively from the covariance 

matrix. The center of the ellipse is defined by half 

of the range of the recruitment and rate coding data. 

Thus, the area of the in vivo neural activity ellipse 

that is not captured by the in silico MNs ellipse 

indicates the error of the in silico MN pool to 

reproduce in vivo firing patterns. 

2.4.1.3. Kernel density function 

The third method consisted in computing the 

probability density function from the recruitment 

and rate coding using a bivariate kernel density 

estimator, where the bandwidth was estimated as 

described in [78]. This method uses an asymptotic 

mean integrated squared error (AMISE) approach to 

minimize the distance between kernel density 

estimator and the probability density function. The 

relative error between the two MN sets was 

calculated as the previous method, calculating the 

excluding area of the in vivo MN behavior. 

2.4.2. Force profile correlation 

Test 3 measured the correlation between the neural 

drive and the force profile for the multiple force 

levels to examine the ability of the neural models 

driven by ∆𝐼𝐹20 to estimate the force profile across 

the different RFDs. The correlation between these 

two variables, neural drive and force profile, was 

measured by the coefficient of determination (𝑅2)   
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Table I. Mean discharge rate (Hz) in the four subjects during the plateau portion of the contraction at the multiple 

RFDs and multiple force levels. 

Force Level (%MVC) Rate of force development (%MVC/s) 

 5 10 15 20 

10 10.76±1.5 10.75±1.48 11±1.80 10.76±1.44 

20 13.04±1.48 12.47±1.62 12.17±2.34 13.08±1.81 

30 13.25±1.64 12.61±2.55 13.27±1.89 12.05±0.96 

40 15.06±1.80 14.40±1.63 14.29±1.63 14.46±1.71 

50 16.89±1.61 15.17±1.14 13.50±2.58 15.31±1.85 

 

Table II. Firing activity relative error (mean±std) in vivo vs in silico estimated by the linear model method. 

Error (%) Rate of force development (% MVC/s) 

 20 15 10 5 

Slope Error  68.87 ± 37.14 381.25 ± 564.42 308.52 ± 252.92 1594.9 ± 2890.9 

Intercept Error  24.65 ± 12.50 28.27 ± 20.37 26.52 ± 20.30 29.77 ± 11.67 

Spread Error  3.60 ± 3.67 8.5 ± 9.12 22.25 ± 4.58 30.87 ± 14.14 

obtained by computing a linear regression model for 

every subject. 

2.5. ∆𝐼𝐹 Optimization  
Figure 4 describes the process followed in this study 

for the estimation of a person-specific excitability 

gain ∆𝐼𝐹as a function of the RFD. 

Test 4 consisted of computing a person-specific ∆𝐼𝐹 

gain for each RFD that best describes the in vivo 

neural dynamics was performed by implementing a 

genetic optimization algorithm in MATLAB (The 

MathWorks, Inc., Natick, MA, USA). The 

optimization algorithm minimized the relative error 

of the excluding in vivo neural activity area derived 

by the kernel density estimator method. 

The optimization algorithm was initiated with a 

population size of 70, an elite percentage of 10%, a 

cross-over of 70% using a heuristic function 

according to ( 7 ), a mutation rate of 5%, and a 

function tolerance of 0.01. These parameters were 

chosen to minimize the computation time. 

𝑐ℎ𝑖𝑙𝑑 = 𝑝𝑎𝑟𝑒𝑛𝑡2 + 𝑟𝑎𝑡𝑖𝑜 ∗ (𝑝𝑎𝑟𝑒𝑛𝑡1 − 𝑝𝑎𝑟𝑒𝑛𝑡2) 

( 7 ) 

The optimized ∆𝐼𝐹 excitability gains obtained for 

the four subjects were used to drive the in silico MN 

pools to generate simulated spikes at their 

corresponding RFD. Subsequently, the neural firing 

dynamics were examined and compared with the 

analysis performed in section 2.4.1. 

 

3. Results 
 

3.1. Rate coding analysis 
Figure 5 shows the rate coding analysis in vivo for 

multiple RFDs and force levels. A linear model was 

implemented to compare the discharge rates 

obtained from the four subjects. The mean discharge 

rate (Hz) for all the subjects at 5, 10, 15, and 20% 

MVC/s for the multiple force levels is presented in 

Table I.  

3.2. Neural firing dynamics 

The three proposed methods were tested to analyze 

their performance to estimate the error at different 

RFDs between in vivo identified MNs and in silico 

generated MN pool models driven by ∆𝐼𝐹20. Figure 

5 shows an example from subject 4 of the linear 

model method. This method measured the relative 

error in the slope of the model, the intercept, and the 

spread or distribution of the data. The mean errors 

between the four subjects using the linear method 

model are presented in Table II, where the error of 

the slope and the spread decreases when increasing 

the RFD. 
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Figure 5. Example of the relative error estimation of the firing activity at multiple RFDs (5, 10, 15, and 20% MVC/s) between in 

vivo MNs (blue) vs in silico generated MN models (green) driven by ∆𝐼𝐹20 using the linear model method (subject 4). With this 

method three cost functions are estimated: Slope error, intercept error, and spread error

Table III. Firing activity relative error (mean±std) in 

vivo vs in silico estimated by the covariance matrix-

based ellipse method. 

 Rate of force development (%MVC/s) 

 20 15 10 5 

Error 

(%)  

10.02 ± 

6.75 

30.47 ± 

21.48 

36.7250 

± 7.28 

45.40 ± 

12.65 

 

A representation of the covariance matrix-based 

ellipse method for subject four is shown in Figure 6, 

where the relative error is estimated as the excluding 

area of the ellipse that captures the in vivo neural 

dynamics. The mean errors from the four subjects 

across the different RFDs are shown in Table III. 

Lastly, an example from subject four of the kernel 

density function method is illustrated in Figure 7. 

Additionally, Table IV summarizes the relative 

errors for the four subjects across the multiple 

RFDs. These errors were estimated by the relative 

difference between the areas computed by the kernel 

density functions. The upper recruitment threshold 

of the in silico models decreases from ~50% MVC 

to ~32% MVC when decreasing the RFD from 20% 

MVC/s to 5% MVC/s respectively. 

Table IV. Firing activity relative error (mean±std) in 

vivo vs in silico estimated by the bivariate kernel density 

function method. 

 Rate of force development (%MVC/s) 

 20 15 10 5 

Error 

(%)  

0.67 ± 

0.47 

7.92 ± 

9.18 

10.50 ± 

5.62 

23.62 ± 

14.20 

 

Figure 8 shows the estimated relative error for the 

four subjects using the kernel density function 

between in vivo and in silico generated spikes. The 

error (mean±std) of the four subjects yielded the 

following results: 0.66%±0.48 at 20% MVC/s, 

7.91%±9.18 at 15% MVC/s, 10.50%±5.66 at 10% 

MVC/s, and 23.60%±14.21 at 5% MVC/s. 

3.3. Neural drive and force correlation 
The correlation analysis between the force profile 

and the computed neural drive from the in vivo 

identified MNs and in silico MN models, driven by 

∆𝐼𝐹20, for the four subjects throughout the different 

conditions, force levels and RFDs, is shown in 

Figure 9. The mean coefficient of determination of 

the in vivo MNs of all subjects yield the following 

values: 𝑅2 = 0.90 ± 0.03 for 5% MVC/s, 𝑅2 = 
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Figure 6. Example of the relative error estimation of the firing activity at multiple RFDs (5, 10, 15, and 20% MVC/s) between in 

vivo MNs (blue) vs in silico generated MN models (green) driven by ∆𝐼𝐹20 using the covariance matrix-based ellipse method 

(subject 4). This method estimates only one cost function: the difference between the areas of the computed ellipses. 

 

Figure 7. Example of the relative error estimation of the firing activity at multiple RFDs (5, 10, 15, and 20% MVC/s) between in 

vivo MNs (blue) vs in silico generated MN models (green) driven by ∆𝐼𝐹20 using the kernel density function method (subject 4). 

This method estimates only one cost function: the difference between the areas of the kernel density functions. 

0.92 ± 0.02 for 10% MVC/s, 𝑅2 = 0.91 ± 0.05 for 

15% MVC/s, and 𝑅2 = 0.91 ± 0.05 for 20% MVC/s. 

3.4. ∆𝐼𝐹 Optimization 
After the optimization of ∆𝐼𝐹 across multiple RFDs 

using the kernel density function method, a person-

specific excitability function ∆𝐼𝐹 that best 

minimizes the error between in vivo and in silico 

neural data was computed. The optimization time 

required to find the optimal ∆𝐼𝐹 was ~50 

hours/RFD using a parallel computation with 12 

workers, 128GB of RAM, and an AMD Ryzen 
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Figure 8. Relative error between in vivo and in silico generated 

neural firing activity driven by ∆𝐼𝐹20 across multiple RFDs for 

the four subjects. The error was estimated using a bivariate 

kernel density estimator to compute the difference in the 

distributions of the recruitment and rate coding. For the four 

subjects the error increases when decreasing the RFD. 

 

Figure 9. Correlation analysis of the force profile and the 

neural drive for in vivo MNs (blue) and in silico generated 

models (green) driven by ∆𝐼𝐹20. The correlation analysis was 

performed estimating the coefficient of determination 

(𝑅2)using a regression model between the neural drive and the 

force profile.  

 

Ryzen Threadripper 3990X 64-Core processor 2.90 

GHz.  

The relative change of the inter-subject excitability 

gain ∆𝐼𝐹values compared to ∆𝐼𝐹20 across all the 

studied RFDs is presented in Figure 10. As can be 

observed, the neural excitability gain ∆𝐼𝐹 decreases 

when decreasing the RFD for all the subjects up to 

~45% relative to ∆𝐼𝐹20. Additionally, the specific  

 

Figure 10. Subject-specific excitability gain ∆𝐼𝐹 as a function 

of the RFD. ∆𝐼𝐹 was computed using optimization algorithms 

minimizing the error between the in vivo and in silico firing 

activity using a bivariate kernel estimator. This figure 

represents the relative change of ∆𝐼𝐹 with ∆𝐼𝐹20. For the four 

subjects ∆𝐼𝐹 decreases when decreasing the RFD. 

 

Table V. Subject-specific excitability values ∆𝐼𝐹 (
𝐻𝑧

𝜂𝐴
) at 

each RFD analyzed. 

Subject (#) Rate of force development (%MVC/s) 

 20 15 10 5 

1 0.4889 0.4214 0.34918 0.2724 

2 0.4467 0.3857 0.3650 0.2928 

3 0.4477 0.3854 0.3063 0.2906 

4 0.5613 0.4303 0.4102 0.4001 

 

∆𝐼𝐹 values obtained after the optimization 

procedure are presented in Table V for every 

subject. 

Figure 11 shows an example from subject four 

comparing the firing activity captured by the 

bivariate kernel estimator between in vivo and in 

silico MNs driven by the optimized function ∆IF. 

As it can be seen, the in silico MN models driven by 

the optimized ∆𝐼𝐹 present a better performance in 

tracking the in vivo neural activity reducing the 

error. 

The error (mean±std) for the four subjects, 

estimated by the kernel density function method of 

the firing dynamics using in silico MN pool driven  
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Figure 11. Example of the relative error estimation of the firing activity at multiple RFDs (5, 10, 15, and 20% MVC/s) between in 

vivo MNs (blue) vs in silico generated MN models (green) driven by ∆𝐼𝐹 optimized for the multiple RFDs using the kernel density 

function method (subject 4). The optimized ∆𝐼𝐹 increases the recruitment threshold at low RFDs reducing the estimated error. 

 

Table VI. Firing activity relative error (mean±std) in 

vivo vs in silico estimated by the bivariate kernel density 

function method after optimization of ∆𝐼𝐹. 

 Rate of force development (%MVC/s) 

 15 10 5 

Error (%) 4.54±5.30 6.30±3.83 14.03±8.51 

 

Table VII. Improvement in reproducing in vivo neural 

firing activity using in silico MN models driven by ∆𝐼𝐹 

optimized as a function of the RFD relative to in silico 

MN models driven by ∆𝐼𝐹20. 

Subject (#) Rate of force development (%MVC/s) 

 15 10 5 

1 60% 30.58% 5.85% 

2 34.18% 23.08% 59.89% 

3 0% 42.85% 58.33% 

4 43.25% 56.69% 39.35% 

 

by the optimized ∆𝐼𝐹 for the specific RFD, are 

presented in Table VI. 

Additionally, the level of improvement to reproduce 

in vivo neural firing activity using in silico MN 

models driven by ∆𝐼𝐹 relative to in silico MN 

models driven by ∆𝐼𝐹20 is presented in Table VII. 

Overall, the improvement using ∆𝐼𝐹 optimized as a 

function of RFD for the four subjects is 

37.83%±6.44. The error is reduced for the four 

subjects to 34.35%±25.27 for the 15% MVC/s 

RFD, 38.30%±14.72 for the 10% MVC/s, and 

40.85%±25.13 for the 5% MVC/s.  

 

4. Discussion 
 

4.1. General discussion 
In this study, the neural firing activity of the TA 

from four healthy subjects was analyzed at different 

force level amplitudes (10, 20, 30, 40, and 50% 

MVC) and RFDs (5, 10, 15, 20% MVC/s). Person-

specific biophysical neuronal models were created 

from the data in vivo obtained at 20% MVC/s. 

Additionally, a complete pool comprising 200 in 

silico MNs was created from the statistical 

properties of the model parameters [7]. Therefore, 

the MN pool model parameters, including the 

excitability gain ∆𝐼𝐹, were optimized to reproduce 
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realistic firing patterns at a specific RFD (20% 

MVC/s). 

In the current study, it has been demonstrated that 

neural excitability is modulated as a function of the 

RFD as it has been described in previous studies 

[46], [47], [64], [68], and consequently, the in silico 

MN pool can be driven by a CSI using the optimized 

∆𝐼𝐹 function to reproduce in vivo neural firing 

patterns. Additionally, the in silico MN pools can be 

used to estimate the force profile exerted by the 

muscle at the multiple ranges of the RFD regardless 

the ∆𝐼𝐹 used to drive the models. 

The rate coding from the observed data in vivo at 

multiple force levels and RFDs was analyzed. 

However, in this study, the firing activity of each 

individual MN was not tracked along the multiple 

conditions, force level and RFD. Table I shows the 

mean discharge rate of the four subjects during the 

plateau portion of the ramp contraction profile. The 

results indicate that overall, the recorded MNs 

generate action potentials at similar frequencies 

regardless of the RFD (5, 10, 15, and 20% MVC/s). 

These findings are consistent with previous research 

[41], [79], [80], where an increment in discharge 

rate is produced when increasing the force level. 

These results highlight the contribution of rate 

coding gradually increasing the fire frequency when 

increasing the muscle force [44]. Additionally, a 

previous study [81], measured MN firing activity of 

the first dorsal interosseus (FDI) at slow (10% 

MVC/s), fast (20% MVC/s) and ballistic 

contractions using wire electrodes. The study 

reported a similar discharge rate between slow and 

fast contractions with a substantial increment at 

ballistic contractions. Therefore, these findings 

corroborate the results of the current study. 

Additionally, since the analysis of the discharge 

rates in vivo shows comparable results across the 

multiple RFDs, the neural drive and consequently, 

the CSI, contain similar amplitudes across the 

RFDs. In silico MNs are optimized to generate a 

spike when a voltage threshold is reached due to an 

input current (CSI). However, the neural firing 

dynamics analysis shows that in silico MN pool 

driven by the constant ∆𝐼𝐹20 cannot reproduce the 

neural firing dynamics observed in vivo at multiple 

RFDs, apart from the 20% MVC/s RFD, despite the 

excitatory input current exhibiting similarities for 

the multiple RFDs. These findings can be attributed 

to the fact that in silico MN pools, along with ∆𝐼𝐹20, 

were optimized using the data obtained at 20% 

MVC/s in previous work [7]. This causes that the 

MN pool models driven by ∆𝐼𝐹20 at 5, 10, and 15% 

MVC/s RFDs produce an earlier MN recruitment. 

This happens because the amount of electric current 

over time required to activate an in silico MN during 

the 20% MVC/s RFD is achieved at larger forces 

compared to lower RFDs due to the higher slope in 

force produced over time during the linear 

increment portion of the contraction. Consequently, 

in silico MNs at low RFDs achieve the same amount 

of electric current over time, for which they were 

optimized to be activated, at lower forces decreasing 

the recruitment threshold. Therefore, the 

optimization of ∆𝐼𝐹 according to the RFD is 

essential since it scales the CSI adjusting the 

recruitment thresholds. 

As can be observed in Figure 8, the error in neuron 

firing activity increases when decreasing the RFD 

for all subjects. However, subjects 1 and 3 present a 

smaller error throughout the different RFDs 

compared to the rest of the subjects. The MN pools 

of these two subjects consist mainly (>70%) of MNs 

generated from the statistical distribution of the in 

silico identified MNs parameters that reproduce the 

firing activity of in vivo observed MNs [7]. 

Therefore, since identified in silico MNs possess 

more reliable firing parameters than the generated 

MNs, we would expect a smaller error from the MN 

pools comprising a higher amount of in silico 

identified MNs. 

A plausible explanation for these findings may be 

that the more in silico MNs optimized with the 

firing patterns observed in vivo at 20% MVC/s, the 

in silico pool will better represent that specific RFD. 

On the other hand, if most of the pool is constituted 

by generated MNs based on the distribution of the 

parameters from the identified in silico MNs, the 

pool may capture the firing parameters of another 

MNs that were not observed in vivo. Consequently, 

the error is larger at low RFDs for the subjects with 

a higher number of in silico optimized MNs. 
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As previously reported [34], [32], the correlation 

analysis showed a high correlation between the 

torque profile and the neural drive. This test 

measured this correlation using in vivo identified 

MNs and in silico generated MN models driven by 

∆𝐼𝐹20 to generate the neural drive at multiple RFDs. 

The results indicate that there is no significant 

change in correlation when using the in silico MN-

generated pool to estimate the exerted torque profile 

across the RFDs. These findings are unexpected 

since the in silico MN-generated models were 

optimized at 20% MVC/s and driven by ∆𝐼𝐹20. 

Therefore, we hypothesized a higher correlation at 

higher RFDs compared with lower RFDs since the 

firing dynamics change at different RFDs. This can 

be explained since the coefficient of determination 

𝑅2 is already large using the neural drive derived 

from in vivo MN. Consequently, since the neural 

drive is determined by the CSI [34], and therefore, 

the in silico MN models are driven by the CSI 

derived from in vivo MNs, the correlation between 

the neural drive and the torque profile is the same 

for in vivo and in silico MNs. 

The cost functions test showed that the optimal 

method to estimate the neural firing dynamics error 

between in vivo observed MNs and in silico MN 

generated pools is the kernel density function. This 

method can accurately estimate the neural firing 

activity area (Table IV) compared to the covariance 

matrix-based ellipse method (Table III), where the 

error is over-estimated since this function assumes 

that the data is normally distributed and creating 

symmetric ellipses [82]. Additionally, the 

covariance matrix-based ellipse method is sensitive 

to extreme values since the center of the ellipse is 

defined by the range of the data. Furthermore, the 

kernel density method can capture the distribution 

of the data within one cost function, decreasing the 

computational cost compared to the linear model 

method (Table II) that requires three cost functions 

to optimize ∆𝐼𝐹. Moreover, since the in silico MN 

generated pools contain more MNs compared to the 

observed in vivo, it modifies the trend of the data, 

causing the linear model to consider these additional 

MNs as errors increasing the cost function value. 

The findings obtained from the optimization of a 

person-specific excitability gain ∆𝐼𝐹 for the 

multiple RFDs indicate that ∆𝐼𝐹 is modulated as a 

function of the RFD. Figure 10 shows that for every 

subject, ∆𝐼𝐹 decreases when decreasing the RFD, 

indicating that neural excitability increases 

substantially when the muscle is contracted at high 

RFDs (20% MVC/s) compared to the other RFDs 

analyzed as suggested previously [8], [46], [47], 

[64], [68]. 

Additionally, the analysis using in silico MN pools 

driven by a person-specific ∆𝐼𝐹 adjusted according 

to the RFD demonstrates an improvement to track 

the neural firing activity observed in vivo. 

4.2. Limitations and future scope 
The present study has researched how the neural 

excitability, modeled as ∆𝐼𝐹 using in silico MN-

generated models, is modified as a function of the 

RFD to reproduce neural activity. However, there 

are features and open questions for further research. 

First, the estimated error between in vivo and in 

silico MN firing activity was minimized across the 

multiple RFDs analyzed in this study. However, at 

lower RFDs the error remains relatively high 

(14.03%±8.51). This can be due to the 

oversimplification of the neural dynamics used in 

this study. Therefore, future research should focus 

on new strategies to minimize this error by 

examining and integrating other parameters 

regarding MN excitability in the neural model [8], 

[35]. These strategies may include the input of 

different electric current amplitudes depending on 

the size of the MN. Thus, modulating the 

excitability in individual MNs. Other strategies 

should examine and integrate other parameters 

regarding MN excitability in the neural model, such 

as the metabotropic system and persistent inward 

currents of sodium and calcium. Studies have 

reported that the metabotropic system contributes 

greatly to the regulation of neural excitability at the 

intracellular level [69]. Additionally, persistent 

inward currents of sodium and calcium have a 

crucial impact in MN excitability since they 

contribute to the amplification of the synaptic 

current and produce a self-sustained firing activity 



18 
 

due to a short pulse of excitatory input [8], [69], 

[83], [84].    

Second, the in silico MN models used in this study 

do not generate a significant change in force profile 

estimation across the different RFDs. Therefore, 

future research should investigate and link the 

neural firing activity of the in vivo and in silico MNs 

to their twitch force to correctly estimate the torque 

exerted by the muscle [85], [86], [87].  

Third, the activation function to generate spike 

trains using in silico MN models was implemented 

as an exponential function [41]. However, this 

function is not fixed, but rather it is affected by the 

RFD since the recruitment threshold is shifted 

accordingly [46], [47], [64]. Thus, using a fixed 

activation function to generate in silico spike trains 

may result in inaccurate firing patterns. Therefore, 

future studies may examine how the activation 

function can be optimized, along with the in silico 

MN-generated models, for the accurate tracking of 

the recruitment coding for different RFDs. 

Finally, the methodology implemented in this study 

can be examined with in silico MN-generated 

models optimized at a different RFD to compare the 

performance of ∆𝐼𝐹 to reproduce neural activity. 

Additionally, this methodology can be implemented 

by exploring the neural activity of other muscles. 

 

5. Conclusion 
 

This study characterized a person-specific neural 

excitability gain ∆𝐼𝐹 that drives MN pool models 

across multiple RFDs. The findings of this study 

suggest that a dynamic adjustment of ∆𝐼𝐹 according 

to the RFD could generate realistic neuron firing 

activity using MN pool models that were optimized 

at a constant specific RFD.  
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Appendix 
 

A.1. MN pool models driven by ∆𝐼𝐹20 

 

A 1. Firing dynamics analysis of the four subjects and multiple RFDs (5, 10, 15, and 20% MVC/s) between in vivo MNs (blue) vs 

in silico generated MN models (green) driven by ∆𝐼𝐹20 using the kernel density function method. 

 

A.2. MN pool models driven by slope-specific ∆𝐼𝐹 

 

A 2. Firing dynamics analysis of the four subjects and multiple RFDs (5, 10, 15, and 20% MVC/s) between in vivo MNs (blue) vs 

in silico generated MN models (green) driven by ∆𝐼𝐹 specific for each RFD using the kernel density function method. 
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A.3. Subject 1 firing dynamics 

 

A 3. Firing dynamics analysis for subject 1. The relative error estimation of the firing activity at multiple RFDs (5, 10, 15, and 20% 

MVC/s) between in vivo MNs (blue) vs in silico generated MN models (green) driven by ∆𝐼𝐹20 using the linear model method. With 

this method three cost functions are estimated: Slope error, intercept error, and spread error. 

 

A 4. Firing dynamics analysis for subject 1. The relative error estimation of the firing activity at multiple RFDs (5, 10, 15, and 20% 

MVC/s) between in vivo MNs (blue) vs in silico generated MN models (green) driven by ∆𝐼𝐹20 using the covariance matrix-based 

ellipse method. This method estimates only one cost function: the difference between the areas of the computed ellipses. 
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A 5. Firing dynamics analysis for subject 1. The relative error estimation of the firing activity at multiple RFDs (5, 10, 15, and 20% 

MVC/s) between in vivo MNs (blue) vs in silico generated MN models (green) driven by ∆𝐼𝐹20 using the kernel density function 

method. This method estimates only one cost function: the difference between the areas of the kernel density functions. 

A.4. Subject 2 firing dynamics 

 

A 6. Firing dynamics analysis for subject 2. The relative error estimation of the firing activity at multiple RFDs (5, 10, 15, and 20% 

MVC/s) between in vivo MNs (blue) vs in silico generated MN models (green) driven by ∆𝐼𝐹20 using the linear model method. With 

this method three cost functions are estimated: Slope error, intercept error, and spread error. 
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A 7. Firing dynamics analysis for subject 2. The relative error estimation of the firing activity at multiple RFDs (5, 10, 15, and 20% 

MVC/s) between in vivo MNs (blue) vs in silico generated MN models (green) driven by ∆𝐼𝐹20 using the covariance matrix-based 

ellipse method. This method estimates only one cost function: the difference between the areas of the computed ellipses. 

 

A 8. Firing dynamics analysis for subject 2. The relative error estimation of the firing activity at multiple RFDs (5, 10, 15, and 20% 

MVC/s) between in vivo MNs (blue) vs in silico generated MN models (green) driven by ∆𝐼𝐹20 using the kernel density function 

method. This method estimates only one cost function: the difference between the areas of the kernel density functions. 
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A.5. Subject 3 firing dynamics 

 

A 9. Firing dynamics analysis for subject 3. The relative error estimation of the firing activity at multiple RFDs (5, 10, 15, and 20% 

MVC/s) between in vivo MNs (blue) vs in silico generated MN models (green) driven by ∆𝐼𝐹20 using the linear model method. With 

this method three cost functions are estimated: Slope error, intercept error, and spread error. 

 

A 10. Firing dynamics analysis for subject 3. The relative error estimation of the firing activity at multiple RFDs (5, 10, 15, and 

20% MVC/s) between in vivo MNs (blue) vs in silico generated MN models (green) driven by ∆𝐼𝐹20 using the covariance matrix-

based ellipse method. This method estimates only one cost function: the difference between the areas of the computed ellipses. 
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A 11. Firing dynamics analysis for subject 3. The relative error estimation of the firing activity at multiple RFDs (5, 10, 15, and 

20% MVC/s) between in vivo MNs (blue) vs in silico generated MN models (green) driven by ∆𝐼𝐹20 using the kernel density function 

method. This method estimates only one cost function: the difference between the areas of the kernel density functions. 

 


