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Abstract 

As businesses increasingly prioritize understanding customers’ value through metrics 

such as Customer Lifetime Value (CLV), they leverage it to guide customer engagement and 

retention strategies. However, a systematic literature review revealed a noticeable gap: the 

limited integration of customers’ risk factors into CLV calculations. This gap becomes even 

more pronounced in the telecommunications sector. Despite being rich in detailed customer 

data, the sector remains largely uncharted territory for risk-adjusted CLV predictions via 

machine learning (ML). This thesis aims to bridge this disparity, emphasizing the prediction of 

risk-adjusted CLV in the non-contractual (B2C) setting of the telecommunications industry 

using ML techniques. 

This thesis presents a novel approach to integrate customers’ risk into CLV calculations 

in the telecommunications industry by introducing a Risk-Adjusted Return (RAR) metric. The 

thesis employed the Design Science Research Methodology (DSRM) to develop this research 

and utilized the Cross-Industry Standard Process for Data Mining (CRISP-DM) to construct 

ML models. The customers’ risk involved in RAR calculation incorporated the probability of 

customer churn and beta value, modifying the discount rate used in CLV calculation to reflect 

risk. Four different approaches were proposed to calculate RAR. ML models, including 

Logistic Regression, XGBoost, CatBoost, and Random Forest were built to predict both 

customer churn probability and RAR. To validate these models, eXplainable AI (XAI) 

techniques, such as feature importance, SHAP global explanation, SHAP local explanation, 

and LIME, were utilized. 

The results indicated statistical differences among the four proposed RAR calculation 

approaches, validating their distinctiveness. The churn model demonstrated an accuracy of 

85%, while the RAR models exhibited robust performance with an 𝑅2 of 0.92 and Mean 

Absolute Percentage Error (MAPE) around 20%. Among the algorithms, XGBoost emerged as 

the best model for churn prediction, while CatBoost outperformed others in predicting RAR 

for all four approaches. The most influential features for RAR across the approaches were 

found to be the number of loyalty point acquired by the customer, average revenue from 

customer in the last 3 months including with it standard deviation, the total revenue from the 

customer along with the standard deviation, the probability of customers’ churn and the beta 

value. These features align with the features used in traditional RAR calculations thus increase 

the model validity. 
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The thesis concludes by asserting the statistical significance of the proposed RAR and 

the robustness of the proposed models, with their feature importance aligning with traditional 

calculation models. For future research, there are opportunities to explore different risks, 

decompose the revenue components for individual RAR calculations, utilize more advanced 

ML algorithms and hyperparameter tuning, and further incorporate ML in XAI. 

Keywords: Risk Adjusted Revenue, Machine Learning, explainable AI  
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1 Introduction 

1.1 Background Information 

Customers are the foundation of any business. They serve as the main source of revenue 

and simultaneously act as a valuable asset that influences the company's performance, 

profitability, and growth. This understanding has prompted a shift in corporate practices 

towards a more customer-centric approach, leading to the emergence of Relationship 

Marketing (RM) in the 1980s. Relationship Marketing aims to attract, retain, and enhance 

customer relationships (Ryals & Knox, 2005). It is important for the company to know the 

value of its customers and develop appropriate strategies to retain them. The most widely used 

metric to measure the customers’ value to the company is Customer Lifetime Value (CLV) 

(Kumar & Reinartz, 2016; Glady et al., 2015; Gupta et al., 2004). CLV represents the total net 

present value of all future cash flows expected to be generated by a customer over the course 

of their relationship with a company, minus the costs associated with acquiring and serving 

that customer (Kumar & Reinartz, 2016; Gupta et al., 2004). 

By considering the future value of a customer, a company can make better decisions 

about how to treat its customers and decide which customers are worth retaining and which 

ones to let go. Furthermore, by measuring the CLV, companies are also able to improve 

company profitability by selecting more profitable customers, targeting them effectively, and 

focusing on long-term customer relationships (Dahana et al., 2019; Kumar & Reinartz, 2016; 

Qi et al., 2012). Identifying the most valuable customers allows a company to focus its 

resources on retaining them and increasing their value. This can be accomplished through 

targeted marketing campaigns (Benedek et al., 2014), loyalty programs (Kang et al., 2015), and 

personalized offers (Daqar & Smoudy, 2019). By improving customer retention and increasing 

the value of its customer base, a company can improve its profitability and long-term success. 

Therefore, CLV has become a critical aspect of RM, serving as a significant metric for 

developing tailored marketing and retention strategies for each customer (Dahana et al., 2019; 

Kumar & Reinartz, 2016; Qi et al., 2012). 

Moreover, CLV is not just a measure of customers’ value but can also be used to measure a 

company's financial performance and estimate its valuation (Gupta et al., 2004; Hogan et al., 

2002). Combining CLV with projected total customer growth helps estimate the company's 

current value. To the extent that the customer base forms a significant part of a company's 

overall value, CLV can serve as a useful proxy for firm value (Gupta et al., 2004). The total 
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customers’ value of a company is aligned with the total Market Capital of the firm (Rust et al., 

2004), hence a company with a higher CLV tends to have a higher stock price. 

Due to its importance, measuring CLV has been one of the most important tasks for 

scholars and practitioners in the field of marketing. Accordingly, various methods have been 

developed to predict and measure CLV in various contexts and industries settings, including 

calculating CLV for marketing resource allocation in the airline industry setting (Rust et al., 

2004), business-to-business setting (Venkatesan and Kumar, 2004; Kumar et al. 2008), and 

online retail market (Dahana et al., 2019). These methods are generally based on key 

assumptions concerning retention rate and profit margin while incorporating the cost of 

acquisition, retention, and service. While this approach has been widely used and has proved 

to be useful in many settings, it has several limitations. One major limitation of CLV is that it 

assumes a company does not react to changes in the market once it has invested in a customer, 

which is not realistic (Méndez-Suárez & Crespo-Tejero, 2021). The changes in customer 

preferences, including churn or a reduction in product/service purchases from the company, 

are not factored into the CLV calculation. These changes represent a risk that could affect the 

future profitability of a customer. Therefore, to obtain an accurate estimation of customers’ 

value, valuation techniques must account not only for customer profitability but also for 

associated risks (Buhl & Heinrich, 2008; Yun & Yan, 2013). Thus, it is crucial to account for 

risk factors when assessing customers’ value, as failing to incorporate these parameters in the 

CLV calculation could lead to incorrect customers’ value estimations. 

1.2 Problem Context 

Despite the importance of accurately estimating CLV, studies that take into account the 

impact of risk on CLV calculation are limited (Singh & Singh, 2016). One of the pioneering 

works in this area was presented by Dhar and Glazer (2003), who argued that companies often 

fail to consider whether all their valuable customers are collectively desirable from a risk 

perspective. To address this gap, Dhar and Glazer (2003) proposed a new metric called risk-

adjusted lifetime value (RALTV), which takes into account the impact of risk on customers’ 

value. While several studies have since emerged that apply customers’ risk to CLV calculation 

in different industries and contexts, the majority of these studies have been conducted in the 

financial services industry (FSI), including insurance, banking, and peer-to-peer lending. 

Moreover, the main application of these studies has been to determine the optimal customer 

portfolio composition using mean-variance methodology, with the volatility of customer 



3 

 

income serving as the primary source of risk (e.g., Buhl & Heinrich, 2008; Homburg et al., 

2009; Tarasi et al., 2011; Juhl & Christensen, 2013). 

Furthermore, several other applications of the study exist, such as calculating more 

accurate CLV to find the most profitable customers for marketing purposes (Singh et al., 2013; 

Machado & Karray, 2022a) or using risk-adjusted customers’ value for adaptive pricing in e-

commerce (Ruch & Sackmann, 2012). These potential applications demonstrate the importance 

of incorporating customers’ risk into customers’ value calculations. Given that customers’ risk 

exists in all industries, it is imperative to incorporate the impact of risk on the calculation of 

customers’ value to obtain accurate estimations. Moreover, the nature of customers’ risk may 

vary across industries, meaning that a standard approach cannot be applied across the board. 

For example, the probability of default (PD) risk in financial services cannot be used in other 

industries. Hence, it is essential to conduct more in-depth research to explore the impact of 

customers’ risk on CLV calculations and expand the scope of existing studies to ensure 

accurate estimations of customers’ value across various industries. 

Furthermore, advances in technology and the rise of big data have facilitated the 

collection and analysis of extensive customer data. As a result, customer relationship 

management (CRM) has undergone a significant transformation, with companies now 

benefiting from more precise and actionable insights into customer behavior. Moreover, the 

emergence of machine learning (ML) has introduced new options for predicting the impact of 

customers’ risk on value. ML can analyze large amounts of customer data more efficiently and 

accurately than traditional methods, which could lead to more precise predictions of future 

customers’ value (Borle et al., 2008). In the quest to optimize customer portfolios, it is essential 

to adapt and extend existing models to incorporate data-driven approaches that enable more 

precise predictions of future customers’ value. However, despite its growing popularity, only 

two studies fully utilize ML to predict risk-adjusted CLV. Both studies are conducted by 

Machado & Karray (2022a, 2022b) in an FSI setting. Therefore, further research is needed to 

explore the potential of ML in this area. A comparative analysis between ML and traditional 

methods for calculating risk-adjusted customers’ value could provide valuable insights into 

their effectiveness and potential applications across various industries. More accurate and 

precise CLV calculations can help organizations make informed decisions regarding customer 

acquisition and retention strategies (Gupta et al., 2004). 
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1.3 Research Objective and Research Question 

Although several studies address the importance of incorporating customers’ risk into 

CLV calculations, there remains a lack of research focused specifically on the Business-to-

Consumer (B2C) industry, particularly within the non-contractual customers of the 

telecommunication sector. This study addresses the current research gap by developing a risk-

adjusted CLV metric tailored specifically to the B2C industry, particularly for non-contractual 

customers within the telecommunication industry. Furthermore, while some studies use ML 

algorithms to predict risk-adjusted CLV, their application to the telecommunication industry 

remains largely unexplored. The research objectives are two-fold: firstly, to introduce a new 

metric that considers the impact of risk on customers’ value, with a specific focus on 

telecommunication industry applications. Secondly, to explore the potential of ML algorithms 

in predicting the risk-adjusted CLV, to improve the accuracy and precision of CLV 

calculations. By achieving these objectives, this study aims to provide a more comprehensive 

understanding of customers’ value and help telecommunication companies make more 

informed decisions regarding customer acquisition and retention strategies. 

To accomplish the research goal, this study attempts to address the following research 

question (RQ): 

How can machine learning techniques be effectively applied to predict risk-adjusted customer 

lifetime value in the non-contractual (B2C) setting of the telecommunication industry? 

The research consists of various sub-questions (SQ) aimed at gaining a comprehensive 

understanding of the existing literature. The initial six questions focus on establishing a 

foundation for the study. 

SQ1. How has the incorporation of customers’ risk into CLV calculation evolved over 

time in the literature? 

SQ2. What are the industries or domains where customers’ risk has been incorporated 

into CLV calculation? 

SQ3. What are the commonly used methods for incorporating customers’ risk into the 

calculation of customers’ value in the industry? 

SQ4. What is the state-of-the-art ML model used to predict the risk-adjusted CLV in 

the Telecommunication industry? 

SQ5. What is the most significant customer’s type of risks to be considered when 

assessing customers’ value in the Telecommunication industry? 
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SQ6. How much historical data and what time period should be considered to evaluate 

the risk-adjusted customers’ value in the industry? 

Using the insights gained from the literature review, a research design is developed to 

build a ML model to predict the risk-adjusted CLV in the telecommunication industry. This 

model address the following sub-question: 

SQ7. What specific risks identified from the literature are most relevant to the 

telecommunication industry, and how can these be quantified for inclusion in the 

ML model? 

SQ8. How to develop a ML Model to predict the risk-adjusted CLV in 

telecommunication industry? 

Finally, the ML model is tested and evaluated. Furthermore, the model's performance 

and validity are assessed by evaluating the results using different data splitting strategies. 

Additionally, the results of feature importance are compared with the traditional results. In 

doing so, this part attempts to answer the following sub-question: 

SQ9. How does the strategy of splitting data into training and test sets affect the 

performance of the ML models for risk-adjusted CLV prediction? 

SQ10. What is the most important feature/variable to predict the risk-adjusted CLV in 

telecommunication industry? 

SQ11. How does the most important feature from the model compared to the traditional 

calculations method? 

1.4 Research Scope and Limitations 

The scope of this research involves identifying customers’ risk and proposing a novel 

method to incorporate this risk into the CLV calculation, thereby creating a RAR metric. 

Subsequent steps include examining the statistical significance of the proposed approach to 

confirm its distinctiveness. Once the uniqueness of the RAR is established, an ML model is 

developed to predict the RAR, and the model's performance is evaluated. To validate the 

model's accuracy, a feature importance analysis is conducted. This analysis facilitates a 

comparison between the most influential features in the model and the variables used in 

traditional CLV calculation methods. 

The study is conducted in collaboration with one of the largest mobile 

telecommunications providers in Indonesia, and the data used are from prepaid customer data. 

The sample is randomly drawn from all geographic areas in Indonesia, as the company operates 
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nationwide. Customers’ risk in this study is related to the telecommunications industry, such 

as customer churn and income volatility. The dataset consists of a total of 200,000 customers, 

and the data observed span a period of 3 years, from January 2020 to December 2022. 

Regarding limitations, this research may have certain constraints. Firstly, the findings 

and conclusions drawn from the study may only be applicable to the specific context of the 

telecommunication industry in Indonesia and may not be generalizable to other industries or 

regions. Additionally, the accuracy of the CLV predictions using ML algorithms may depend 

on the quality and availability of data, as well as the performance of the ML model used. The 

study acknowledges that there may be limitations in the available data or potential issues with 

the model that could impact the results. Moreover, the study may not be able to capture all 

possible customers' risks, and there may be other factors that could impact CLV but are not 

considered in this research (e.g., the probability of customers switching segments). Lastly, as 

the study is based on data from a single mobile telecommunications provider, the findings may 

not necessarily represent the entire industry or all types of customers. Despite these limitations, 

the research aims to contribute to the understanding of risk-adjusted CLV in the 

telecommunication industry and provide insights for future research in this area. 

1.5 Research Methodology 

This research adheres to the Design Science Research Methodology (DSRM) defined 

by (Peffers et al., 2007). DSRM consists of six steps arranged in a sequential order, which 

include problem identification and motivation, defining solution objectives, design and 

development, demonstration, evaluation, and communication. Figure 1 illustrates these six 

steps. 
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Figure 1 Design science research methodology (Peffers et al., 2007) 

1. Problem Identification and Motivation: The first step of the DSRM process is to 

identify the problem and justify it with motivation. The thesis provides a clear 

overview of the problem identification and motivation, which can be found in 

Chapter 1. 

2. Define the objective for a solution: The second step in the DSRM process is to 

define the objectives for the solution based on the identified problem and assess its 

feasibility. The objectives of this research are stated in Sections 1.3 and 1.4. To 

achieve these objectives, a systematic literature review was conducted in Chapter 2 

to gather all relevant information for the research question and develop a metric for 

predicting risk-adjusted CLV using ML algorithms. Chapter 2 provides detailed 

responses to all SQ1-SQ6, thoroughly reviewing the available literature. 

3. Design and development: The third phase of the DSRM process involves several 

activities, including the extraction and analysis of data, the identification of 

customers’ risks from the data, and the development of a metric for risk-adjusted 

CLV. The specific activities involved in this phase are presented in more detail in 

Chapter 4. 

4. Demonstration: The next step is to demonstrate the practical application of the 

developed solution. This can take the form of experiments, simulations, or case 

studies. For this study, the developed ML model to predict risk-adjusted CLV is 

presented and discussed in Chapter 4 and Chapter 5. 
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5. Evaluation: At this stage, the results of the ML model are presented and evaluated. 

The evaluation includes identifying the most important features for predicting risk-

adjusted CLV using Explainable AI (XAI) and comparing the predicted values with 

those obtained using traditional CLV methods. A detailed account of the evaluation 

process and findings can be found in Chapter 5. 

6. Communication: The final stage of the research aims to disseminate the findings 

and outcomes of the study. This is achieved through a comprehensive report that 

presents the research process, challenges, and artifacts, as well as novel insights and 

relevant information that can help stakeholders understand the research problem 

and its solutions. The report targets organizations, researchers, and audiences who 

are interested in the topic and provides recommendations for future research and 

practical applications. 

1.6 Thesis Outline 

This thesis is systematically organized into six chapters to provide a cohesive 

understanding of the effective application of ML techniques in predicting risk-adjusted CLV 

in the non-contractual, B2C context within the telecommunication industry. 

Chapter 1 serves as the foundation, introducing the research topic, objectives, the 

central research question, and the array of sub-questions that guide this research. This chapter 

sets the stage for the following chapters by providing an overview of the current situation and 

outlining the research scope. 

Chapter 2 is dedicated to a comprehensive literature review that aims to address sub-

questions SQ1 through SQ6. The exploration of past and current academic literature paves the 

way to understanding the evolution and applications of risk-adjusted CLV across various 

industries and domains. It further delves into identifying prevalent methodologies employed 

within the industries. Crucially, this chapter identifies and discusses the gap in existing 

literature that this study aims to fill. 

Chapter 3 outlines the research methodology employed in this study. It covers the 

philosophical and analytical underpinnings of the chosen methodological approach, providing 

justification for the selected methods. 

In Chapter 4, the proposed RAR model is presented. The chapter elaborates on the 

formula employed to calculate RAR, highlighting any assumptions made. Further, the selected 

dataset and its characteristics are described, along with the construction of the ML model used 
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in the study, which includes data preprocessing, feature engineering, model development, and 

the model evaluation and validation process. 

Chapter 5 presents the results derived from the application of the RAR model and ML 

techniques. This chapter provides a detailed analysis of the calculated RAR values, the 

performance of the ML model, and the results of the model validation process. It also offers an 

insightful discussion on the importance of different features, their influence on model 

predictions, and a comparative analysis with traditional calculation methods. 

Finally, Chapter 6 concludes the thesis by addressing the main and sub-research 

questions, discussing the implications and limitations of the study, and providing suggestions 

for future research. 
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2 Literature Review 

This chapter presents the background information and a systematic literature review 

(SLR) conducted to answer the research questions outlined in Chapter 1. The background 

information presents the background and definitions of useful concepts and terms concerning 

ML and its applications to establish a contextual understanding for the audience. Whereas the 

SLR aims to investigate the historical development of studies that have incorporated 

customers’ risk into CLV calculation (SQ1), as well as the industries or domains in which these 

studies have been applied (SQ2). Further, the SLR also uncover the general methods used to 

incorporate customers’ risk into CLV calculation in the industry (SQ3) and identify the ML 

methods used in previous studies (SQ4). The review also examines the types of customers’ 

risks considered (SQ5) and the total customer data and time period of observation used to 

evaluate customers’ risk in the telecommunication industry (SQ6). Finally, the literature review 

aims to identify the gaps in the existing literature and provide insights for the development of 

a ML model to predict risk-adjusted CLV in the telecommunication industry. 

2.1 Background Information 

2.1.1 Machine Learning 

ML is a critical subfield of artificial intelligence that uses algorithms and statistical 

models to teach computers how to learn from data and make decisions or predictions without 

explicit instructions (El Naqa & Murphy, 2015). It proves to be incredibly powerful, surpassing 

human performance in various domains (Weld & Bansal, 2019). As the amount of data in 

various fields continues to grow exponentially, ML becomes an indispensable tool for 

analyzing and making sense of this data (Mahesh, 2018). Its applications are incredibly diverse, 

ranging from pattern recognition, computer vision, and spacecraft engineering to finance, 

entertainment, ecology, computational biology, and biomedical and medical fields (El Naqa & 

Murphy, 2015). There are three main types of ML depending on the availability of feedback to 

support the learning process: supervised learning, unsupervised learning, and reinforcement 

learning. 

Supervised ML models are designed to develop a function that accurately predicts 

labels for unseen data, using labelled examples as a training set. The algorithm undergoes a 

training process that enables it to identify patterns and learn from observations, thus allowing 

for insightful predictions. This iterative process continues until the algorithm reaches a high 
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degree of accuracy and performance. Typical tasks, such as classification and regression, use 

supervised ML algorithms because the desired output is already known (Alpaydin, 2010). 

Applications of supervised learning in the marketing field include predicting customer churn 

(Al-Mashraie et al., 2020) and estimating customers’ value (Tsai et al., 2013). 

Unsupervised ML algorithms, in contrast to supervised ML, are implemented in 

situations where labelled examples are not available, thus eliminating the need for human 

instruction. These algorithms possess the innate ability to identify correlations and connections 

by examining the data available, employing clustering techniques to identify both similarities 

and disparities (Alloghani et al., 2020). Within the marketing sector, the applications of 

unsupervised ML are extensive, with its utility in customer segmentation (Purnomo et al., 

2020) and anomaly detection (Tan et al., 2020). K-means clustering and probabilistic clustering 

methods are among the most commonly utilized algorithms in unsupervised learning 

(Alloghani et al., 2020). 

Finally, reinforcement learning is a type of ML that involves learning by trial and error. 

Instead of being given specific labelled examples like in supervised learning, the system learns 

through rewards or punishments received from its environment. The goal is for the system to 

learn to make decisions that lead to the maximum reward. A fundamental reinforcement 

algorithm may be represented as a Markov Decision Process (MDP), which specifies a set of 

states, actions, rewards, and transition probabilities that account for specific times, actions, and 

states (Alpaydin, 2010). An example of reinforcement learning application in the marketing 

field is dynamic pricing (Liu et al., 2021). 

2.1.2 Explainable AI/ML (XAI) 

XAI is a field of research that aims to create ML models that are transparent and 

explainable to humans. The term XAI was first introduced by Van Lent et al. in 2004 to 

describe the ability of their system to explain the behaviours of AI-controlled entities in 

simulation games applications (Adadi & Berrada, 2018). However, the idea of XAI can be 

traced back to the mid-1970s and early 1980s, when some expert systems explained their results 

via the applied rules (Xu et al., 2019). The need for XAI arises due to the increasing adoption 

of complex ML models such as Deep Neural Networks (DNNs). These models are often 

referred to as "black box" models because their internal decision-making processes are not 

transparent to humans, making it difficult for humans to understand their decision-making 

process. In fact, the output of DNNs cannot be explained by the network itself, nor by an 
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external explanatory component, and not even by the developer of the system, which makes 

them particularly challenging to explain (Xu et al., 2019). This lack of transparency is 

particularly problematic in critical domains such as healthcare, finance, and justice, where the 

decisions made by these models can have significant real-world impact (Samek & Müller, 

2019). As a result, there is a growing demand for ML models that can provide explanations or 

justifications for their predictions. This would enable humans to understand the factors that 

influenced the decision and increase trust in the model. 

In addition to increasing trust in ML models, XAI has several other benefits. One of the 

main benefits is that it can help identify and correct biases in the data or the model itself, which 

can have significant real-world implications (So C. , 2020; Doshi-Velez & Kim, 2017). XAI 

also has the potential to improve the overall performance and effectiveness of ML models. By 

providing explanations for the model's predictions, developers and domain experts can gain 

insights into the model's decision-making process and identify potential areas for improvement 

or refinement (Guidotti et al., 2018; Xu et al., 2019). Finally, XAI can aid in compliance with 

ethical and legal regulations by providing justifications and explanations for the decisions made 

by the model. 

In recent years, there has been a growing interest among AI researchers to create 

transparent systems by opening the "black-box" of neural networks. The field of XAI can be 

categorized into two main strands of work: transparency design and post-hoc explanation 

(Lipton, 2018; Linardatos et al., 2021), as illustrated in Figure 2. The transparency design 

strand aims to provide developers with an understanding of how a model functions by focusing 

on the model structure, such as the construction of a decision tree, individual components, such 

as a parameter in logistic regression, and the training algorithms, such as solution seeking in a 

convex optimization. Post-hoc explanation techniques, on the other hand, focus on explaining 

why a particular result is inferred, from the perspective of users. These techniques include 

giving analytic statements, providing visualizations, and giving explanations by example. 

SHAP (Lundberg & Lee, 2017) and LIME (Ribeiro et al., 2016) are notable examples of post-

hoc explanation methods widely used in XAI research. These techniques provide insights into 
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the contribution of individual features or components in a model's predictions, allowing for 

more interpretability and transparency in AI systems.  

 

Figure 2 Two categories of Explainable AI work: transparency design and post-hoc (Xu et 

al., 2019) 

XAI has garnered considerable attention worldwide, not only in the realm of research, 

but also in industry. In April 2017, the United States Defence Advanced Research Projects 

Agency (DARPA) 1initiated the XAI program with the goal of enhancing the explainability of 

AI decisions while maintain the model performance. Similarly, in July of the same year, the 

Chinese government issued "The Development Plan for New Generation of Artificial 

Intelligence," aimed at promoting high-explainability AI and strong-extensibility AI. 

Furthermore, in May 2018, the European Union published the "General Data Protection 

Regulation" (GDPR)2, which grants citizens a "right to explanation" when they are affected by 

algorithmic decision-making (Xu et al., 2019). As such, XAI has become increasingly crucial 

for all stakeholders, including users, those affected by AI decisions, and developers of AI 

systems. 

2.1.3 Machine Learning and Explainable AI in CLV Predictive Frameworks 

The application of ML for CLV prediction has gained attention in comparison to 

traditional methods, as it shown to outperform traditional models (Borle et al., 2008). The 

earliest study that applied ML algorithms in customer valuation is the study of (Gelbrich & 

Nakhaeizadeh, 2000) where they use linear regression and multiple linear regression to predict 

the purchase frequency, price acceptance and the discount rate in the automotive industry. In 

2013, Tsai et al. presented a novel approach for predicting CLV using a hybrid ML model. 

Their model integrates the clustering algorithm K-means and three classification algorithms, 

namely Decision Tree, Logistic Regression, and Multilayer Perceptron. The authors' findings 

 
1 https://www.darpa.mil/ 
2 https://gdpr-info.eu/ 
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suggest that the hybrid model exhibits superior performance in the domain of CLV prediction 

compared to using a single model. Furthermore, the study highlights the criticality of selecting 

appropriate clustering and classification techniques when constructing a hybrid model. In 

recent research conducted by Asadi and Kazerooni (2023), it was demonstrated that stacked 

ensemble learning outperformed several popular predictive methods such as deep neural 

networks, bagging support vector regression, light gradient boosting machine, random forest 

and extreme gradient boosting in predicting CLV. These findings suggest that there have been 

numerous studies conducted on predicting CLV using ML, and that more advanced ML 

algorithms are being explored to improve accuracy and performance. 

Despite numerous studies on ML-based CLV prediction, the use of XAI in customer 

valuation is limited. To the best of the author's knowledge, only one study by Yılmaz Benk et 

al. (2022) that incorporate XAI in their customer valuation study. They has predicted customer 

valuation in e-commerce using CLV and two other metrics: distinct product category and trend 

in amount spent. They proposed using a multi-output deep neural network (DNN) to identify 

the most profitable customers. In the end, Yılmaz Benk et al. (2022) derived the Shapley value 

using the XAI method to interpret the DNN's decisions. Although the application of XAI in 

customer valuation studies is limited, XAI research has been conducted in other areas related 

to customer valuation. For instance, XAI has been applied in churn prediction (Marín Díaz et 

al., 2022), customer turnover (Souza & Leung, 2021), propensity to buy a product (Gramegna 

& Giudici, 2020), and augmented cross-selling (Haag et al., 2022). 

2.2 Systematic Literature Review (SLR) 

SLR is a structured and transparent process that helps researchers gain a deeper 

understanding of prior work in their field and identify gaps and potential avenues for future 

research (Kraus et al., 2022). The process typically involves four phases, starting with 

identifying relevant databases and keywords for the search process. The selection phase 

follows, where inclusion and exclusion criteria are established and applied for selecting 

relevant studies. The third phase involves extracting and integrating data from selected studies, 

while the fourth phase focuses on interpreting the results to identify patterns and themes in the 

data (Mengist et al., 2020). 

2.2.1 The Search Phase: Scientific Database and Search Queries 

As the first phase in the SLR process, the search phase plays a critical role in 

determining the effectiveness and validity of the entire review. This phase encompasses several 
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fundamental tasks, including identifying relevant databases for sourcing studies, and 

determining the keywords to be utilized in the search process. 

This SLR utilizes two major academic databases, Scopus3 and Web of Science (WoS)4, 

as primary sources of information. These databases were selected due to their ability to provide 

comprehensive coverage of academic literature, including both recent and historical 

publications, relevant to this topic (Harzing & Alakangas, 2016). Scopus and WoS are widely 

regarded as high-quality sources for academic research because they employ rigorous 

evaluation processes to ensure that only high-quality publications are included in their 

databases (Baas et al., 2020; Pranckute, 2021). Furthermore, both databases are indexed and 

abstracted, meaning that they provide bibliographic information and summaries of articles 

rather than the full text (Pranckute, 2021). Advanced search options offered by these databases 

allow users to apply selection criteria, making it easier to find relevant literature. Overall, 

Scopus and WoS are appropriate sources for this SLR study due to their comprehensive 

coverage and rigorous evaluation processes. 

Further, the search query applied in the database is formulated based on a set of 

keywords related to the research questions. The main objective of this SLR is to examine the 

prediction of customers’ value with the inclusion of customers’ risk, and therefore, all 

variations of the name will be included in the search criteria. However, abbreviations will not 

be included since they may yield irrelevant results or obscure the intended meaning of the 

query. Furthermore, it can be assumed that papers or journal articles that use abbreviations 

have already been captured in the search, as the full name has been included in the query. The 

search strings used for all sources comprises of strings as follows: 

1. (“Customer” AND (“Risk Adjusted Revenue” OR “Risk adjusted lifetime 

value” OR “Risk-adjusted Lifetime value”))  

2. (“Customer Lifetime Value” OR “Customer Value” OR “Customer Portfolio” 

OR “Customer Asset”) AND (“Optimization” OR “Risk-Adjusted” OR “Risk 

Adjusted”)  

Both search string was combined to get all result combination. In order to further control 

the relevance of the search result, the search query is applied in the article’s title, abstract, and 

keywords. 

 
3 https://www.scopus.com 
4 https://webofknowledge.com 

https://webofknowledge.com/
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2.2.2 The Selection Phase 

To ensure the quality and reliability of the research, only peer-reviewed articles 

published in reputable journals or conference proceedings were included. The articles adhered 

to proper formatting guidelines, including complete author identification and publication 

information. There was no restriction on the publication year in order to provide a 

comprehensive overview of the topic. Only articles published in English were included in the 

study, while non-English articles were excluded. In addition, articles that did not have a clear 

connection to the research questions of this study based on their title, abstract, or content were 

also excluded. Duplicate articles with identical titles or content found in multiple databases 

were also excluded. Finally, incomplete or excessively short articles were not considered for 

the study. Table 1 provides a summary of the inclusion and exclusion criteria adopted by this 

study during the SLR. 

Table 1 Inclusion and exclusion criteria 

Inclusion Criteria  Exclusion Criteria 

Studies published in conferences 

proceeding and journal articles 

 Articles that are not complete 

Adhere to proper formatting guidelines, 

including complete author identification 

and publication information 

 Studies that are not related to the main RQ 

from title, abstract and content 

English based peer reviewed studies  Duplicate articles by title or content 

 

To ensure the relevance of the articles to this study and to avoid spending time reading 

irrelevant publications, the gathered articles underwent a thorough review process. This process 

involved multiple steps, beginning with executing the defined search queries on each scientific 

database, followed by applying the inclusion and exclusion criteria as described in Table 1. 

The duplicate studies from different databases were removed, and the irrelevant studies were 

excluded based on the assessment of their title and abstract. Afterwards, the remaining studies 

were evaluated through the analysis of the full text and exclusion of short, overly general, or 

incomplete studies. Finally, the primary papers that were used in this research were selected. 
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At the conclusion of this review process, 22 articles were selected from a pool of 386 articles 

identified in the initial step. Figure 3 depicts the SLR selection flow chart used in this study. 

 

Figure 3 SLR selection flow chart 

2.3 SLR Results 

This section provides an overview of the research findings from the SLR. Subsection 

2.3.1 presents details about the research method and output of the papers found in the SLR, 

including co-citation analysis and general themes discussed in the study. In the subsequent 

Subsections (2.3.2 – 2.3.7), each of the SQ1-SQ6 identified in the study will be answered. 

Through analysis of the SLR findings, this study aims to offer a comprehensive overview of 
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the current state of research on the topic and identify gaps in the existing literature that need to 

be addressed. 

2.3.1.1 Data Extraction and Synthesis 

After selecting the relevant articles, the SLR study moved forward to the third phase, 

the data extraction and synthesis, aimed at extracting information pertinent to addressing the 

research questions. This involved a thorough reading of all studies while utilizing a research 

framework designed to answer the research questions. Table 2 presents the 22 selected articles 

along with the research method used and the study's output. Research methods included 

Literature Review (LR), Experiment (E), and Comparative Study/Validation Study (CS/VS), 

each of which could produce varying output categories (Theoretical (T), Conceptual Model 

(CM), and Empirical results (ER)). The majority of the literature provided theoretical 

perspectives on the subject matter. These studies were classified as theoretical (T) when they 

presented overarching concepts, advantages, disadvantages, or design principles for 

incorporating risk when calculating customers’ value. Additionally, some studies offered a 

conceptual model (CM) that supplemented the theoretical framework by providing graphical 

representations of the design decisions inherent in the model. All of the studies also produced 

empirical results (ER) derived from calculating (C), predicting (P), or both (CP) customers’ 

value while incorporating risk. Similarly, this study also produced ER derived from both 

calculating and predicting the risk-adjusted revenue. 

Table 2 Research method and output 

Reference 
Research Method(s) Output 

LR E CS/VS T CM ER 

Dhar & Glazer (2003)   v v  C 

Ryals (2003)   v v  C 

Ryals & Knox (2005) v  v  v C 

Wangenheim & Lentz (2005) v  v v  CP 

Hai-wei et al. (2006)  v    P 

Ryals & Knox (2007) v  v v v C 

Buhl & Heinrich (2008) v  v v  C 

Homburg et al. (2009) v  v v  CP 

Sackmann et al. (2010) v  v v  C 

Tarasi et al. (2011) v  v v  C 
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Ruch & Sackmann (2012)   v v  C 

Singh et al. (2013) v  v v  C 

Juhl & Christensen (2013) v  v v  C 

Albadvi & Norouzi (2013)   v   CP 

Yun & Yan (2013)   v   C 

So et al (2014)   v   P 

Petersen & Kumar (2015)  v  v  C 

Norouzi & Albadvii (2016) v  v v  CP 

Singh & Singh (2016) v  v v  C 

Viviani, Komura, & Suzuki (2021) v  v v v P 

Machado & Karray (2022a) 
 

  v   P 

Machado & Karray (2022b) v  v  v CP 

This Study (2023) v v v v  CP 

 

Figure 4 Number of studies by year of publication 

The results of SLR method in this study found articles between 2003 to 2022 (Figure 

4). The earliest study identified was conducted by Dhar and Glazer in 2003. On average, one 

to two papers were published annually on the topic, with four studies found in 2013. A five-

year gap in publications occurred after 2016, with one study identified in 2021 and two 

additional studies produced by Machado and Karray in 2022 (A detailed overview of 

publication per year is presented in the Appendix 1). The majority of the studies were published 

in marketing and management journals, with 41% in marketing journals (e.g., Journal of 

Marketing, Journal of Marketing Research) and 36% in management journals (e.g., 

4
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Management Research Review). The remaining studies were published in other journals, such 

as the European Journal of Operational Research and Decision Support Systems journal. In 

terms of number of citations, the early studies conducted between 2003 and 2011 received a 

high number of citations, exceeding 100 in most cases. Citations are commonly used as a 

measure of a publication's usefulness, impact, or influence. The number of citations received 

by a publication is often taken as an indicator of its influence (Aksnes et al., 2019). Table 3 

presents a detailed breakdown of the citation distribution. 

Table 3 Number of citations 

Number of 

citations 

Number 

of studies 
List of studies 

0-50 14 

 Wangenheim & Lentz (2005); Hai-wei et al. (2006); Sackmann 

et al. (2010); Ruch & Sackmann (2012); Juhl & Christensen 

(2013); Norouzi & Albadvi (2013); Singh et al. (2013); Yun & 

Yan (2013); So et al (2014); Norouzi & Albadvi (2016); Singh 

& Singh (2016); Viviani, Komura, & Suzuki (2021); (Machado 

& Karray (2022a, 2022b) 

50-100 1  Buhl & Heinrich (2008) 

100-150 2 Tarasi et al. (2011); Ryals & Knox (2005) 

150-200 3 Ryals (2003); Petersen & Kumar (2015); Homburg et al. (2009) 

>200 2 Dhar & Glazer (2003); Ryals & Knox (2007) 

 

A citation network analysis within the SLR result was conducted and is presented in 

Figure 5 to further examine the relationships between the studies. In this figure, the circle size 

depicts the number of papers that cite the respective paper in the network. Additionally, the 

arrow lines indicate network correlation: the paper at the head of the arrow is the one that's 

been cited, while the paper at the tail of the arrow is the citing paper. The analysis reveals that 

Dhar & Glazer's (2003) work is the most influential study among the SRL results, with 17 out 

of the 21 studies included in the SLR citing them. Tarasi et al. (2011) and Buhl & Heinrich 

(2008) also hold significant importance and have been cited by 9 and 8 studies, respectively. 

Co-citation analysis shows that these three studies are often cited together, with 8 out of 9 

studies that cite Tarasi et al. (2011) and 7 out of 8 studies that cited Buhl & Heinrich (2008) 

also citing Dhar & Glazer (2003). This indicates a strong relationship and research focus among 
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the three most important studies (Annarelli et al., 2021). Five studies did not cite or were not 

cited by the other studies, most of which were published after 2011. Two studies, Hai-wei et 

al. (2006) and Petersen & Kumar (2015), were found to not cite and citing the other studies 

found in SLR. 

 

Figure 5 Citation network 

The most dominant theme is evaluated with the analysis of word clouds. Figure 6 (A) 

demonstrate the high-frequency word in the titles of research papers, where the word size 

represents the frequency used in the titles. The most popular words in the title of selected papers 

are “customer”, “risk”, “portfolio”, “value” and “model”. In Figure 6 (B), the most popular 

keywords of the selected studies are “customer relationship management”, “customer portfolio 

management”, “risk”, “customer lifetime value” and “customer portfolio”. These results 

suggest that the majority of the studies focus on the relationship between "risk" and "customer," 

with a particular emphasis on "customer relationship management," "customer portfolio 

management," and "customer lifetime value". 
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(A)           (B) 

Figure 6 Word cloud of (A) titles and (B) keywords of selected studies 

The studies mentioned in Table 2 were further explored, and information was extracted 

to find the relevant evidence to answer the research question. The detailed results of the data 

extraction are shown in Table 4, which will be structured with the following elements: 

• Reference; 

• Research theme (the key aim of the study);  

• Industry setting of the study; 

• Type of risk used in customer lifetime value calculation; 

• Methodology used in the study; 

• Time frame of the data; and 

• Total observed customer/data. 

The following section of this chapter presents the fourth phase of the SLR study. It 

further reviews the studies found and discusses the temporal evolution of studies, the 

application area, the risk used in the calculation, and the methodology used to incorporate risk 

in customers’ value calculation. 
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Table 4 Data extraction and synthesis of prior studies 

Reference Research Theme Industry Risk Method 
Time frame 

(years) 

Total 

Customer 

Dhar & Glazer 

(2003) 

Find the best customers’ segment by 

calculating Risk Adjusted Lifetime 

Value (RALTV) 

• B2B • Beta risk • Mean Variance • 5 • - 

Ryals (2003) Introducing risk in CLV calculation • FSI (Insurance) • Churn 

• Mathematical 

and statistical 

approach 

• 4 • 2 

Ryals & Knox 

(2005) 

Introducing risk into CLV calculations 

within the insurance industry involves 

forecasting revenue, risk, and costs, 

and then calculating the risk-adjusted 

CLV. 

• FSI (Insurance) 

• Insurance claim 

risk 

• Churn 

• Mathematical 

and statistical 

approach 

• Forecasting 

• 4 • 12 

Wangenheim & 

Lentz (2005) 

Attempt to segment the customers 

based on metrics that describe the 

dynamics of their lifecycle 

development, including return and risk 

characteristics. 

• B2C (Airlines) 

• Beta risk  

• Variance of 

customer 

transaction 

• Inactive period 

• Regression 

• correlation 

• clustering 

(Kmeans) 

• 4 • 23652 

Hai-wei et al. 

(2006) 

Incorporating risk into the 

measurement of customers’ value 

through a Bivariate Hierarchical 

Bayesian approach. 

• B2B 

• Churn 

• Decline of 

purchase 

• Volatility of 

income 

• NBD 

• Mathematical 

and statistical 

approach 

• 2 • 2343 

Ryals & Knox 

(2007) 

Adjusting the CLV calculation by 

incorporating relationship risk. 
• FSI (Insurance) 

• Relationship 

risk 

(customer 

• Mathematical 

and statistical 

approach 

• 4 • 10 
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Developing a customer relationship 

scorecard as a managerial tool to assess 

risks in customer relationships and 

formulate risk mitigation strategies. 

overall 

relationship, 

account 

relationship, 

knowledge of 

customer) 

Buhl & Heinrich 

(2008) 

Balancing the customer portfolio across 

various customers’ segments based on 

their occupations, estimating the 

return, risk, and correlation coefficients 

of different groups according to their 

annual revenue. This balancing is 

achieved through statistical analysis 

(mean-variance) and consideration of 

correlations between segments. 

• FSI • Beta risk • Mean Variance • 10 • - 

Homburg et al. 

(2009) 

Developing a CLV model for dynamic 

customer portfolio analysis that 

considers switching patterns between 

customers’ segments over time. 

• FSI 

• B2C 

(Telecommunicatio

n, Pharmaceutic, 

Chemical, Bank) 

• Volatility of 

income 

(probability of 

changing 

segment over 

time) 

• Regression 

• Mean Variance 

 

• 1.25 

(telco) 

• 4 

(others) 

• 300000 

(telco) 

• 3422 

(pharm

acy) 

• 826 

(chemic

al) 

• 100000 

(bank) 

Sackmann et al., 

(2010) 

Finding the optimal mix of customers’ 

segments (relationship-oriented and 

transaction-oriented) within a non-

• B2C (Commerce) 
• Volatility of 

Income 
• Mean Variance • 0.75 • 2357 
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contractual customer portfolio using 

Mean-Variance (MV) optimization. 

Tarasi et al. 

(2011) 

Segment the company based on cash 

flow and utilize Mean-Variance analysis 

to determine the most profitable 

portfolio considering the risk-return 

ratio. 

• B2B • beta risk • Mean Variance • 7 • 516 

Ruch & 

Sackmann 

(2012) 

Calculate the risk-adjusted price for 

customers in an e-tailer. The price is 

adjusted based on customers’ value, 

turnover risk, and payment risk. 

• B2C (Commerce) 
• Payment risk 

• Churn risk 

• NBD 

• Mathematical 

and statistical 

approach 

- - 

Singh et al. 

(2013) 

Calculating Risk Adjusted Revenue in 

the credit card industry using DEA, and 

then ranking customers from the most 

to the least profitable. 

• FSI (Credit card) 

• Beta risk  

• Volatility of 

income 

• Probability of 

Default 

• Data 

Envelopment 

Analysis (DEA) 

• 3 • 1700 

Juhl & 

Christensen 

(2013) 

Building upon the work of Tarasi et al. 

(2011), this study aims to enhance it by 

incorporating growth rate 

considerations. It involves segmenting 

customers based on geographical and 

customers’ segments, utilizing an 

expanded dataset, and introducing 

additional metrics such as reward-to-

volatility (RtVo) and Jensen’s α. 

• B2B • Beta risk • Mean Variance • 4 • 968 

Albadvi & 

Norouzi (2013) 

Calculating risk-adjusted CLV and 

comparing it with the traditional CLV. 

The process involves clustering 

• FSI 
• Beta risk 

• Downside beta 
• NBD • 2.75 • 3632 
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customers based on RFM variables, 

estimating beta and downside beta for 

each segment, and subsequently 

calculating a risk-adjusted discount rate 

for each segment. The CLV is computed 

using the Pareto/NBD model. 

• Mathematical 

and statistical 

approach 

Yun & Yan 

(2013) 

Developing a customer portfolio 

optimization model under risk 

conditions, utilizing multi-phase 

marketing resource inputs as decision 

variables. This model is solved using a 

particle swarm optimization (PSO) 

method, aiming to assist companies in 

optimizing customer equity and 

enhancing their marketing strategies. 

• B2B (Commodities) 
• Volatility of 

income 

• Mathematical 

and statistical 

approach 

• 1 • 20 

So et al (2014) 

Employing credit card users as either 

transactors or revolvers, this study 

demonstrates the process of 

constructing a scorecard to predict the 

likelihood of each applicant being a 

transactor. The impact of this 

distinction on profitability modelling is 

then showcased. 

• FSI 
• Probability of 

Default 

• Statistical 

technique 

(scorecard 

predictive 

model) 

• 4 • 6000 

Petersen & 

Kumar, (2015) 

Conduct research and experimentation 

to develop a novel CLV metric that 

incorporates product returns as a risk 

factor in the calculation. Compare the 

results with the company's existing 

strategy and a benchmark model. Utilize 

• B2B (Commerce) 
• Risk of product 

return 

• Mathematical 

and statistical 

approach 

• 3 • 26000 
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the Pareto/Non binomial distribution 

(NBD) model to statistically estimate 

the volatility of future returns 

generated by customers. Calculate the 

weight of each customers’ segment and 

optimize the composition of customers. 

Norouzi & 

Albadvi (2016) 

Utilizing the Pareto/Non binomial 

distribution (NBD) model as a statistical 

assumption to estimate the volatility of 

future returns generated by customers, 

calculate the weight of each customers’ 

segment, and optimize the composition 

of customers. 

• B2C (cosmetic) 
• Volatility of 

income 

• NBD 

• Mean Variance 
• 2 • 1411 

Singh & Singh 

(2016) 

Develop a risk-adjusted RFM method 

for calculating CLV and employ DEA to 

determine the most profitable 

customer composition. 

• B2B 

• Churn 

• Volatility of 

Income 

(reaching 

minimum sales 

level & 

regularity of 

customer 

purchase) 

• Data 

Envelopment 

Analysis (DEA) 

• 2 • 2000 

Viviani, Komura, 

& Suzuki (2021) 

Enhance the profitability-risk 

relationship within the hotel industry by 

optimizing customers’ segments. 

Employing Hidden Markov Model 

(HMM) for customers’ segmentation, 

• B2C (Hotel) 

• Volatility of 

income from 

each segment 

• HMM  

• Mathematical 

and statistical 

approach 

• 5 • 5000 
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the customer portfolio is subsequently 

optimized using a statistical approach. 

Machado & 

Karray (2022a)  

Utilize ML to model RAR in the financial 

sector, integrating Customer Portfolio 

Theory (CPT) and Multiple Sources of 

Risk (MSR) approaches. 

• FSI (loan provider) 

• Recency of 

delinquency 

• Volatility of 

multiple 

sources of 

income 

• the credit 

rating. 

• Probability of 

Default 

• Machine 

Learning 
• 8 

• 2 

million 

Machado & 

Karray (2022b) 

Implementing a hybrid approach to 

evaluate Customer RAR in the financial 

sector. Calculate RAR using the CPT 

approach and group customers based 

on all variables in the dataset. 

• FSI (P2P lending) 

• Volatility of 

multiple 

sources of 

income (beta 

risk and 

minimum 

expected rate 

of return) 

• Machine 

Learning 
• 8 

• 2 

million 

This Study 

Introducing a novel metric to evaluate 

customers' RAR in the 

telecommunication industry. Calculate 

the RAR using the proposed approach 

and develop an ML model for RAR 

prediction. Subsequently, evaluate and 

validate the model through a feature 

importance analysis. 

• B2C 

(Telecommunicatio

n industry) 

• Probability of 

customers’ 

churn 

• Beta value 

• Mathematical 

and Statistical 

approach 

• Machine 

Learning 

• 3 • 200000 
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2.3.2 Studies Modelling Risk-Adjusted CLV Throughout Time 

The results of the SLR reveal that the majority of the studies that incorporate customers’ 

risk in CLV calculations are derived from financial portfolio theory. This group of studies 

draws upon the work of Nobel Laureate William Sharpe, which is associated with Modern 

Portfolio Theory (MPT) and Capital Asset Pricing Model (CAPM) (Sharpe, 1964) and the work 

of Markowitz (1952), which is associated with portfolio selection theory (PST). MPT is based 

on the concept of share portfolios and proposes that investors aim to maximize returns for a 

given level of risk. The CAPM is grounded in the assumption that investors are risk averse, 

where investors demand higher returns for higher levels of risk. CAPM also suggest that all 

assets carry two distinct types of risk: systematic and unsystematic. Systematic risk is market-

wide and affects all assets, while unsystematic risk is related to a single asset or a limited 

number of assets (Sharpe, 1964). The CAPM demonstrates that unsystematic risk can be 

eliminated by holding a well-diversified portfolio, whereas systematic risk cannot be 

diversified away (Buhl & Heinrich, 2008). Furthermore, in CAPM systematic risk is measured 

by beta, which represents the sensitivity of an asset's returns to movements in the overall 

market. Thus, in the studies that model CLV incorporating risk and are derived from the 

financial portfolio theory, the customer is treated as a risky asset where the risk of each 

customer/customers’ segment is different and need to be managed to maximize the return. 

Some studies, such as the studies presented by Dhar and Glazer (2003) and Ryals 

(2003), have applied the CAPM model to calculate a customer-specific discount rate to be 

incorporated into CLV models. However, Wangenheim and Lentz (2005) and Buhl & Heinrich 

(2008) contend that CAPM has certain drawbacks, such as disregarding unsystematic risk in 

the calculation. To overcome these limitations, these researchers apply the PST of Markowitz 

(1959) to customer portfolio management, arguing that PST model by Markowitz provides a 

more effective approach to mitigate these limitations. Homburg et al. (2009) have integrated 

customer portfolio theory and customers’ segment dynamic theory, arguing that static portfolio 

models may overestimate the value of top-tier customers and underestimate the value of 

bottom-tier customers due to disregarding value dynamics in customer relationships. This 

approach has been further developed by Viviani et al. (2021) to determine the optimal customer 

composition in the hospitality industry. 

Other studies have also applied the PST to customer portfolio management, such as 

Sackmann et al. (2010) for e-commerce, Tarasi et al. (2011) and Juhl and Christensen (2013) 

for B2B settings. Norouzi and Albadvi (2016) have expanded on the existing research by 
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introducing a hybrid model that combines stochastic CLV modeling and ex-ante customer 

portfolio optimization, which predicts future return streams by customers and incorporates 

these predictions into the portfolio optimization process. Finally, Machado and Karray (2022b) 

propose an adaptation of the PST model by Buhl and Heinrich (2008) where they use ML to 

group customers and predict the RAR) value based on these groups. These studies demonstrate 

the value of applying financial portfolio theory in customer portfolio management. 

Another approach to examine the risk-adjusted customers’ value consider Multiple 

Source of Risk (MSR) approach, which is determined by relevant risk factors associated with 

the industry and business setting (Machado & Karray, 2022a). Singh et al. (2013) have 

observed that most studies which incorporate risk in customers’ value calculations, such as 

those derived from the CAPM in finance, only account for one type of risk - namely, volatility 

of income - without identifying and quantifying different sources of risk that affect customers’ 

value. Therefore, they proposed a framework to measure the value of credit card customers 

using multiple types of risk, including volatility of different sources of income and customers' 

PD. Subsequently, Singh and Singh (2016) employed a non-parametric approach to generate a 

risk-adjusted Recency Frequency and Monetary (RARFM) index for each customer, taking 

into account returns from various income sources and different types of risk, such as the 

likelihood of customer churn, the probability of reaching a minimum amount of sales, and the 

volatility of customer purchases. Other studies, such as Ryals and Knox (2005), have 

considered factors such as customers' specific insurance claims and customer churn. Finally, 

Machado and Karray (2022a) combine the PST and MSR approach to calculate RAR in FSI 

then they implement the statistical tests the evaluate the result. 

2.3.3 Application Areas 

The industries setting where the studies in incorporating customers’ risk in the 

customers’ value is explored. The studies found in SLR could be clustered into three big groups 

of industrial settings, which are FSI, B2C and B2B. The result SLR found that the majority of 

study was conducted in FSI (44%) which encompass from insurance (e.g., Ryals and Knox, 

2005), credit card (e.g., Singh et al.,2013) until peer-to-peer lending (Machado & Karray, 

2022b). The second highest group was in B2C settings (30%) outside the FSI, that have several 

industries, such as e-commerce (e.g., Ruch & Sackmann, 2009), telecommunication (Homburg 

et al., 2009), until airlines (Wangenheim & Lentz, 2005) . While the remaining of the studies 

(26%) was conducted on B2B settings, such as medical instrument provider for hospitals (Hai-

wei et al., 2006) and commodities company (Yun & Yan, 2013).  
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In terms of application area, the studies conducted on risk-adjusted revenue primarily 

aimed at finding the optimal customer portfolio composition to maximize returns. Figure 6(B) 

shows that “customer portfolio management” is one of the dominant keywords in the area of 

research. This application area of the studies covered various industries such as the financial 

services industry (Dhar and Glazer, 2003; Buhl & Heinrich, 2008; Homburg et al., 2009; 

Albadvi & Norouzi, 2013), the business-to-consumer (B2C) setting (Wangenheim and Lentz, 

2005; Sackmann et al., 2010; Norouzi & Albadvi, 2016; Viviani et al., 2021), and the business-

to-business (B2B) setting (Tarasi et al., 2011; Juhl & Christensen, 2013; Yun & Yan, 2013). 

In addition to these industries, the studies also explored other areas of application, such as 

identifying the most profitable customers in the credit card industry (Singh et al., 2013; So et 

al., 2014), adjusting product prices in e-commerce (Ruch & Sackmann, 2012), and also find 

more accurate risk-adjusted CLV metric (Ryals, 2003; Singh & Singh, 2016; Petersen & 

Kumar, 2015; Machado & Karray, 2022a). 

2.3.4 Methods to Incorporate the Customers’ Risk in CLV Models 

The incorporation of customers’ risk into customer valuation is dependent on the 

specific application area of research. Many studies that apply financial portfolio concepts to 

customer portfolio optimization utilize mean-variance analysis to determine the optimal 

customer portfolio composition. To arrive at the best customer portfolio composition, these 

studies typically segment customers based on demographic features such as their profession, 

level of education, homeownership status, marital status, and employment status (Buhl & 

Heinrich, 2008; Homburg et al., 2009; Tarasi et al., 2011; Sackmann et al., 2010; Viviani et 

al., 2021; Machado & Karray, 2022b) before use it to calculate or predict the best customer 

portfolio composition. Customers’ segmentation is necessary because the behavior of 

individual customers can be uncertain, while the behavior of a group consisting of a sufficient 

number of customers can be more predictable (Yun & Yan, 2013). 

For instance, Tarasi et al. (2011) analyzed the variability in a customer portfolio, 

predicted the similarity of different market segments (i.e., automotive, consumer goods, food 

and beverage, etc), and explored the use of market segment weights in an optimized portfolio. 

They then used mean-variance analysis to create the best frontier of customer portfolio 

composition. Similarly, Viviani et al. (2021) segmented customers using the Hidden Markov 

Model (HMM) and used mean-variance analysis to construct an efficient customer portfolio 

while considering the customers’ segment switching probability as the risk. In addition to 
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mean-variance analysis, other methods are utilized to determine the optimal customer portfolio, 

such as particle swarm optimization (Yun & Yan, 2013). 

The other studies with different application area, employ different approach to 

incorporate the customers’ risk. For example, Ryals and Knox (2005), who employ a 

mathematical approach to directly calculate risk-adjusted CLV. So et al. (2014) uses statistical 

approach to build a scorecard predictive model and use them to identify more profitable 

customer. Albadvi and Norouzi (2013) cluster customers using the RFM model and then use a 

mathematical approach to calculate customers’ risk. They estimate the risk-adjusted CLV 

associated with each segment using Pareto/NBD modeling. Singh et al. (2013) and Singh and 

Singh (2016) employed Data Envelopment Analysis (DEA) to compute a measure of RAR in 

a credit card company and CLV from a RARFM model, respectively.  

2.3.5 Machine Learning in risk-adjusted CLV studies 

From the studies found, only four studies use ML algorithms to predict the risk-adjusted 

CLV. The first study that apply ML algorithm in their work is presented by Wangenheim & 

Lentz (2005). They use multiple linear regression to predict the customer revenue after adjusted 

by the customers’ risk and use the predicted value to build the customer segmentation using K-

Means. Homburg et al. (2009) also partially utilized ML algorithms, a regression tree, to 

segment their customer data where the result is further used for customer portfolio optimization 

using Mean-Variance. In a more recent study, Machado and Karray (2022b) incorporated ML 

techniques into their model for predicting customers’ RAR in the financial lending industry. 

To assess risk, they combined the PD of lenders obtained through logistic regression as one of 

their sources of customer’s risk. They used the credit rating to predict the PD of the lender and 

employed two different methods to encode the customer credit rating, based on the Weight of 

Evidence (WOE) method and normalized interest rate, and compared the results. All of the 

previous approaches represent a novel attempt to integrate multiple sources of risk in CLV 

calculations, highlighting the potential benefits of combining traditional statistical methods 

with ML techniques. 

And finally, the subsequent study by Machado & Karray (2022a) is the first study that 

fully utilized ML to predict the risk adjusted CLV. They propose a hybrid ML framework to 

predict the RAR value of customers’ segment. The hybrid framework here refers to combine 

two different ML algorithm, usually supervised and unsupervised learning to predict a value. 

Hybrid models can offer better predictive results because they can handle high dimensional 
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datasets more efficiently and combine individual models’ best characteristics, hence mitigating 

their weaknesses. In their study, Machado and Karray compared the results of the individual 

models and hybrid models using customer data from the peer-to-peer lending industry. The 

hybrid model first clusters the customer data using unsupervised learning and then uses the 

results as a variable to predict the customer RAR value using supervised learning. The authors 

compared different combinations of clustering and predicting algorithms, such as k-Means++, 

k-Means random, DBSCAN, clustering with pre-determined variables for the clustering 

algorithms and Adaptive Boosting (AB), Gradient Boosting (GB), Decision Tree (DT), 

Random Forest (RF), Support Vector Machine (SVM), and Artificial Neural Network (ANN) 

for the predicting algorithms. The experiments conducted in their research show that the hybrid 

ML algorithms outperform individual models in terms of predictive power and processing time 

for most frameworks. The combinations of DT, RF, or GB with k-Means++ exhibit higher 

efficiency than the individual models. Therefore, Machado and Karray's study demonstrates 

the potential of hybrid ML models in risk-adjusted CLV prediction and provides important 

insights for future studies in this area. 

2.3.6 The customers’ risk 

The SLR study identified nine different sources of risk that customer might carry, with 

the most commonly used risks being the volatility of customers’ income, beta risks, and 

customers’ churn. The volatility of customers’ income is a readily measurable risk that is 

available in all industry settings, which explains its prevalence in the literature. For example, 

Wangenheim and Lentz (2005) incorporated the volatility of customers’ transactions as a non-

systematic risk in their calculations to account for the limitations of the CAPM model in 

disregarding non-systematic risk. They also highlighted that when valuing an asset, the 

expected value is discounted by a factor influenced by the degree of risk associated with the 

asset, such as its past or future expected volatility. Therefore, the first metric to be tested in this 

context is the variance in customer transactions over time or the volatility of income from the 

customer, which could be defined as: 
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Where p is is equal to the number of periods with 𝑅𝑉𝑖𝑡 > 0, c = 1,…, j. 𝑅𝑉𝑖𝑡 represent the 

revenue of customer i in period t, and CRV represent the conditional revenue of customer. The 

other study that use volatility of income as customers’ risk is proposed by Homburg et al. 

(2009). They considered the volatility of customer income over a certain period and the 

likelihood of a customer changing their segment as risks to be factored in. Singh et al. (2013) 

proposed the inclusion of the volatility of multiple income sources as one of their multiple 

risks. They defined volatiltiy of income as: 

 𝜎 = √𝐸(𝑋2) − (𝐸(𝑋))2 2.2 

where E(X) is the expected average value of X. And finally, Machado & Karray (2022a) also 

use the volatility of income as the risk to predict the PD of a customer in FSI (Equation 2.2).  

The second most commonly used risk factor identified in the SLR study is beta risk. As 

previously mentioned, most of the studies found were derived from financial portfolio theory 

(CAPM and MPT) and CAPM solely incorporates systematic risk, which is indicated by beta 

(Wangenheim & Lentz, 2005; Buhl & Heinrich, 2008). Beta is a metric that reflects the 

volatility of an asset's price fluctuations in comparison to a benchmark. Specifically, it denotes 

the ratio of the covariance between an asset and the market to the market's variance. If an asset's 

beta value is positive, the stock price is expected to increase and decrease in conjunction with 

the market; however, if the beta value is negative, the stock price is projected to rise (or fall) 

when the market declines (or rises) (Wangenheim & Lentz, 2005). A stock with a beta of 1.0 

will have returns that track the market, whereas a stock with a beta of 1.5 is anticipated to move 

1.5 times more than the market. Consequently, high beta shares are preferred in rising stock 

markets, while low beta shares are preferred in falling stock markets (Ryals L., 2003). This 

idea is then extended to the customer portfolio, where the beta value for each customer or 

customers’ segment is computed and utilized as a measure of customers’ risk. 

To calculate the beta value of customers’ segments, it is necessary to define the market 

portfolio, which consists of all available assets, with each asset held in proportion to its market 

value relative to the total market value of all assets. However, determining a single market 

portfolio for all companies is difficult or often not feasible (Buhl & Heinrich, 2008; Tarasi et 

al., 2011). Therefore, most studies define the market portfolio to calculate beta values as the 

company's current customer base (Dhar & Glazer, 2003; Wangenheim & Lentz, 2005; Buhl & 

Heinrich, 2008; Tarasi et al., 2011; Albadvi & Norouzi, 2013; Singh et al., 2013; Machado & 

Karray, 2022b). All of these studies use the same formula to calculate beta value: 
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 𝛽 =  
𝑐𝑜𝑣(𝜑𝑐𝑡, 𝜑𝑚𝑡)

𝑣𝑎𝑟(𝜑𝑚𝑡)
 2.3 

where 𝜑𝑐𝑡 𝑎𝑛𝑑 𝜑𝑚𝑡  are the return for customer c and market m, respectively, at a given time 

period t. While the formula to calculate the discount rate might differ between studies, for 

example Dhar & Glazer (2003) and Wangenheim & Lentz (2005) define the discount rate as: 

 𝑑 =  𝜓𝑚 𝑥 𝛽 2.4 

Where 𝜓𝑚 represents the expected rate of return of the market. On the other hand, Buhl & 

Heinrich (2008) expand the formula to calculate the discount rate by adding the “risk free asset” 

or customer with the lowest risk in the formula, such as: 

 𝑑 =  𝜓𝑓 +  𝛽 (𝜓𝑚 − 𝜓𝑓)  2.5 

Where 𝜓𝑓 represent the minimum expected rate of return, which correspond with customer 

with the lowest risk and 𝜓𝑚 represents the expected rate of return of the market. 

The third most prevalent risk identified in the review was customer churn, which can 

be a risk factor in any industry and is now considered a major challenge for many companies 

(Singh & Singh, 2016). Customer churn refers to the probability that a customer will no longer 

be active or loyal to a company. Singh and Singh (2016) caution that relying solely on a 

customer's past purchases as a predictor of future behavior can be misleading, as it may 

incorrectly assume that the customer is still engaged with the company when in reality they 

may have already churned. This can lead companies to waste resources and money on 

customers who are no longer interested in their products or services. Hai-wei et al. (2006) note 

that traditional models like recency, frequency, monetary (RFM) often only use the recency of 

a customer's last purchase to estimate churn risk, but this may not accurately reflect the true 

risk of churn as it ignores variations in customer purchase cycles. To address this, they propose 

a more comprehensive definition of churn risk that takes into account the time elapsed since a 

customer's last purchase as well as their overall purchase history and therefore they define 

churn risk as : 

 𝐶ℎ𝑢𝑟𝑛 𝑅𝑖𝑠𝑘 =  
𝑅𝑒𝑐𝑒𝑛𝑐𝑦

√𝜎𝑛

 2.6 
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where 𝜎𝑛 represent the variance of interpurchase time. Ryals (2003) and Ryals and Knox 

(2005) use the probability of customer retention as their source of risk. They estimate the 

customer retention rate from the managerial knowledge on their customer relationship and use 

that risk to calculate the risk-adjusted CLV. 

Several studies have identified different types of risks that are specific to particular 

industries. For example, in the financial services industry, such as credit card or loan providers, 

PD was used as a type of risk (Singh et al., 2013; So et al., 2014; Machado & Karray, 2022a). 

PD stands for the probability that a customer will default on their credit card or loan payments. 

Each financial institution has its own definition of when a customer is categorized as defaulting 

on payments, with most banks defining default as non-payment of minimum balance for a 

period of 90 days (Singh et al., 2013). Other source of risk were observed in other industries, 

for instance, in the insurance industry, customer claim risk and relationship risk were identified 

as types of risk (Ryals & Knox, 2005, 2007). For e-commerce, product returns and payment 

risk were identified as significant risks (Petersen & Kumar, 2015; Ruch & Sackmann, 2012). 

2.3.7 The Time Horizon and Data Observed 

The duration of observation or data used to calculate CLV varied significantly among 

the selected studies. Sackmann et al. (2010) had the shortest observation period, utilizing only 

39 weeks of surveys to analyze customer behavior and segment customers. On the other hand, 

Buhl & Heinrich (2008) had the longest data observation period, utilizing 10 years of customer 

income data to predict the CLV. The duration of observation data was correlated with the 

industry in which the study was conducted. For example, Homburg et al. (2009) used different 

time ranges for each sector in their study. They define a period of observation as one quarter 

of a year for the telecommunications industry and one year for the banking industry. In general, 

the B2C sector tended to have a shorter time frame for data observation, while the FSI sector 

had the longest. The average time frame for B2C, B2B, and FSI was found to be 2.85, 3.5, and 

4.9 years, respectively. 

The number of customers observed in the studies also varied depending on the industry 

and method used. The smallest number of customers observed was 10 in Ryals & Knox's (2007) 

study on an insurance company, while Machado & Karray (2022a, 2022b) used the largest 

amount of data with a total of 2 million cases from 8 years of data. Ryals & Knox (2007) were 

able to use a small amount of customer data by employing managerial knowledge to determine 

the customer's risk value and then calculating the risk-adjusted CLV using mathematical 
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approaches. Meanwhile, Machado & Karray (2022a, 2022b) used ML algorithms to predict 

customers’ risk, which required more data to achieve better accuracy. The detailed information 

on the duration of the time period and number of customers used in each study can be found in 

Table 4. 

2.4 Summary 

This chapter provides an overview of ML and XAI in general, as well as their specific 

application in the context of customer valuation. As explained, ML is a potent tool for 

analyzing data and developing accurate predictive models. Meanwhile, XAI aims to provide 

interpretability and transparency to the decision-making process of ML models. While the 

application of ML is diverse, its application in predicting CLV has gained significant attention 

in recent studies, as it has been shown to outperform probability models However, while the 

application of ML in customer valuation is diverse and extensive, the use of XAI in this field 

remains limited. Nonetheless, XAI has been applied in other areas of the business field related 

to customer valuation, such as churn prediction, customer turnover, propensity to buy a 

product, and augmented cross-selling, among others. 

This study also conducted a SLR to explore and evaluate the integration of customers’ 

risk in customers’ value calculation. The review identified 22 papers that integrated customers’ 

risk in their customers’ value calculation. The majority of these studies were based on financial 

portfolio theory, with a focus on finding the optimal customers’ value composition to maximize 

the company's return. Another approach used was the MSR, which considers various risks to 

achieve a more accurate CLV metric and a better understanding of customers’ value. The 

review also identified various industry settings and domains where these studies have been 

applied, which can be grouped into three main categories: FSI, B2C, and B2B. 

The SLR study also identified the most significant types of customers’ risk in 

calculating CLV across industries. The findings suggest that the most commonly used risk 

factor is the volatility of income from customers. This risk factor is easily measurable and 

applicable to all industry settings. Moreover, in non-contractual settings, income from 

customers tends to be more unpredictable, leading to a greater impact on CLV. The volatility 

of customer income is also closely associated with the second most commonly used risk factor, 

Beta value. Beta value measures volatility in asset price fluctuations relative to a benchmark. 

In the context of this study, Beta value reflects the volatility of customer income fluctuations 

in relation to the entire customer base. Beta value is widely used in studies seeking to identify 
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the optimal customer portfolio. Customer churn emerged as the third most frequently used risk 

factor in calculating risk-adjusted CLV. This type of risk is applicable across all industry 

settings. However, it poses a particular challenge in non-contractual settings, where customers 

may silently churn, making it difficult to predict. 

The SLR study also aimed to investigate the various methods used to incorporate 

customers’ risk. The most prevalent approach in prior studies has been the mean-variance 

method. Typically, studies segment customers based on their financial and demographic 

characteristics and then utilize mean-variance optimization to identify the optimal customer 

portfolio. However, other methods have also been employed to assess the impact of customers’ 

risk on customers’ value. For instance, some studies have employed mathematical and DEA 

techniques, while others have utilized statistical approaches and ML algorithms to predict risk-

adjusted customers’ value. The application of ML-based methods in this field is gaining 

popularity, with several initial studies using ML algorithms in their process, such as customer 

segmentation and predicting customer probability of default. Moreover, there is a recent study 

that fully utilized an ML algorithm to predict the risk-adjusted revenue of customers. 

This study also aims to examine the duration of observation and the amount of data 

used in previous studies, as these factors are highly associated with the industry setting and the 

method used in the study. The findings indicate that in previous studies, the B2C sector tended 

to have a shorter time frame for data observation, while the FSI sector had the longest. 

Specifically, the average time frame for B2C, B2B, and FSI was found to be 2.85, 3.5, and 4.9 

years, respectively. Moreover, the amount of data used in previous studies varied significantly, 

ranging from only using the data of 10 customers to exploring the data from 2 million cases. 

These variations in the duration of observation and amount of data used should be taken into 

account when interpreting and comparing the results of different studies. 

2.4.1 Research Gap 

Despite the growing body of literature on customer valuation, there are still several 

research gaps that need to be addressed. Firstly, the studies in the field of customer valuation 

that integrate customers’ risk have mostly been conducted in the FSI with limited 

representation from other industries. For instance, there is a lack of research in the B2C sector, 

which has different characteristics and challenges compared to FSI. Furthermore, there is only 

one study conducted in the telecommunication industry that explores the integration of 

customers’ risk in customer valuation. This research gap is significant as the 
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telecommunication industry is unique in its customer behavior, which is characterized by high 

customer acquisition cost and low switching costs. The application of customer valuation in 

the telecommunication industry, especially in predicting customer lifetime value, can provide 

valuable insights to optimize customer acquisition and retention strategies. 

Secondly, while ML has been increasingly used in customer valuation studies, there is 

a lack of studies that fully utilize ML algorithms. According to Table 2, most studies focus on 

calculating the impact of customers’ risk on CLV, while only a small portion employ prediction 

method to forecast the impact of customers’ risk. Moreover, Table 4 shows that despite the 

growing popularity of ML, only two studies fully utilize this approach to predict risk-adjusted 

customers’ value. This presents an opportunity for researchers to explore the potential of ML 

in predicting risk-adjusted customers’ value. With the availability of big data and high 

computational power, ML has the potential to offer powerful predictions regarding customer 

behavior and risk. Thus, a comparative analysis between ML and traditional methods for 

calculating risk-adjusted customers’ value would provide valuable insights into their 

effectiveness and potential applications across various industries. Further research in this area 

could pave the way for more accurate and precise CLV calculations, ultimately helping 

organizations to make informed decisions regarding customer acquisition and retention 

strategies. 

Thirdly, there is a significant research gap in the application of XAI in customer 

valuation studies, with only one study found in this field. Moreover, there is no study found 

that has applied XAI to risk-adjusted revenue prediction. The gap in XAI research in customer 

valuation is crucial as the explainability of ML models in customer valuation is increasingly 

important due to the interpretability, regulatory, and ethical considerations. Furthermore, the 

lack of XAI applications in risk-adjusted revenue prediction is an important gap as it is an 

essential metric for customer valuation that integrates customers’ risk. The integration of XAI 

in risk-adjusted revenue prediction can enhance the interpretability of ML models and provide 

more accurate and reliable customer valuation assessments. 

In summary, the current literature on customer valuation presents several research gaps, 

including the lack of representation from other industries, the limited use of ML, and the lack 

of studies utilizing XAI. This thesis addresses these research gaps, helping to improve the 

accuracy and reliability of customer valuation methods and provide more actionable insights 

for decision-making in various industries. 
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3 Methodology 

This chapter presents the methodology that was employed to achieve the research 

objective and address the research question and sub-research questions, as established in 

Section 1.3. The initial segment outlines the comprehensive methodological approach that was 

adopted in this study. Subsequently, the chapter expounds on the fundamental aspects of the 

methodology that are pertinent to the topic investigated in this thesis, such as customer 

valuation, ML algorithms, and XAI. 

3.1 Research Design Methodology 

To achieve the research objective of developing and evaluating an artifact to provide a 

quantifiable measure of the risk-adjusted expected future value of a customer in the 

telecommunication industry, the DSRM as proposed by Peffers et al. (2007) was selected as 

the primary methodology. This selection was made based on its alignment with the research 

objective. The artifact that was developed is a ML model, which aimed to predict the risk-

adjusted CLV of customers in the telecommunication industry. DSRM provided a structured 

framework that ensured a systematic approach to artifact development, testing, and evaluation. 

It emphasized the importance of rigor, relevance, and utility in creating artifacts that addressed 

real-world problems. Using DSRM methodology ensured that the development of the ML 

model was grounded in a well-defined and systematic research process. 

In addition to DSRM, the Cross-Industry Standard Process for Data Mining (CRISP-

DM) was incorporated as a sub-methodology to guide the development and evaluation of the 

ML model. The CRISP-DM methodology is a widely accepted, industry-independent process 

model for data mining and ML model development. Despite its introduction over two decades 

ago, CRISP-DM remains the standard in aligning data mining with business goals (Schröer et 

al., 2021). By integrating CRISP-DM, the process of developing and evaluating the ML model 

could be effectively guided, ensuring that all necessary steps were considered and executed 

systematically. Combining DSRM and CRISP-DM allowed for a comprehensive research 

methodology that covered both the design and evaluation aspects of the artifact, as well as the 

data-driven and technical components of the ML model. This integrated approach ensured that 

the developed artifact aligned with the research objective, was grounded in theoretical 

foundations, and followed industry best practices for data mining and predictive modeling. 

As mentioned in Section 1.5, DSRM consisted of six steps, namely problem 

identification and motivation, defining objectives for a solution, design and development, 
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demonstration, evaluation, and communication (Figure 1). Furthermore, CRISP-DM is 

comprised of six distinct phases: business understanding, data understanding, data preparation, 

modeling, evaluation, and deployment (Wirth & Hipp, 2000). These phases are iterative in 

nature and allow for movement between phases as necessary. Figure 7 illustrates the flow of 

each of the CRISP-DM phases. To operationalize the research methodology, the integration of 

the phases of DSRM and CRISP-DM was used in a structured and iterative approach. The six 

steps of DSRM guided the overall research design and artifact development, while the six 

phases of CRISP-DM were incorporated as a sub-methodology to guide the development and 

evaluation of the ML model.  

Each step of CRISP-DM was integrated with the relevant DSRM steps to ensure 

alignment and completeness. Specifically, the business understanding phase of CRISP-DM 

was integrated with the problem identification and motivation and defining objectives for a 

solution phase of DSRM, respectively. The data understanding, data preparation, and 

modelling phases of CRISP-DM were integrated with the design and development phase of 

DSRM. The evaluation phase of CRISP-DM was integrated with the demonstration and 

evaluation phases of DSRM. During the evaluation phase of CRISP-DM, the results were 

evaluated against the defined objective. Similarly, in the demonstration phase of DSRM, the 

utility, efficacy, and usability of the artifact in a real-world context were demonstrated, 

including its effectiveness and efficiency in addressing the research problem. In the evaluation 

phase of DSRM, the effectiveness and efficiency of the artifact were evaluated, and any 

limitations or improvements were identified. This phase aligned with the evaluation phase of 

CRISP-DM. The deployment phase of CRISP-DM, which deploys the ML model in a 

production environment, monitors its performance over time, and assesses its impact on the 

business, was not used in this thesis. This study only aimed to develop the model and assess its 

performance without deploying it into the system. 
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Figure 7 CRISP-DM Methodology (Jensen, 2012) 

3.1.1 Problem Identification and Motivation 

The problem identification has already been stated in the Section 1.2 of this thesis. As 

previously stated, accurately estimating CLV is crucial for organizations to make informed 

decisions regarding customer acquisition and retention strategies. CLV provides valuable 

insights into the profitability of current and potential customers, allowing companies to 

prioritize their marketing efforts and allocate resources effectively. However, incorporating 

customers’ risk into CLV calculation remains a challenge, with limited studies conducted using 

traditional methods. On the other hand, ML has emerged as a tool for analyzing and building 

prediction models using big data. The application of ML for CLV prediction has gained 

attention in recent studies as it has shown that ML-based CLV models can outperform 

traditional models. Therefore, there is a need to explore the potential of utilizing ML to develop 

a new metric to predict the risk-adjusted CLV of customers. 

3.1.2 Define objective of a Solution 

The objectives of this study are outlined in Sections 1.3 and 1.4 of this thesis. The 

primary objective is to develop a novel metric for predicting risk-adjusted CLV using ML 

techniques. Existing research indicates that the majority of studies that incorporate risk in CLV 

calculation are conducted in the FSI using traditional methods. Thus, this study aims to address 

this gap by exploring the potential of ML to develop a new metric for predicting risk-adjusted 

CLV in the telecommunications industry. By conducting this research in a less studied field, 
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such as the telecommunications industry, this study contributes to the existing knowledge on 

risk-adjusted CLV and enhances understanding of the application of ML in this domain. 

Additionally, the literature review also highlights a lack of studies that utilize XAI to predict 

risk-adjusted CLV. Hence, the second objective of this study is to develop an XAI model for 

predicting risk-adjusted CLV. This further enhances the interpretability of the proposed metric, 

contributing to the wider adoption of ML-based CLV models. 

3.1.3 Design and Development 

In the third step of the DSRM process, an artifact is created as a solution to the problem, 

which may take the form of models, concepts, or other methods. According to Peffers et 

al.(2007), an artifact can be broadly defined as "any designed object in which a research 

contribution is embedded in the design." In this thesis, the artifact refers to the design and 

development of a ML model to predict the risk-adjusted CLV. The design and development 

steps of DSRM will be following the data understanding, data preparation and modelling phase 

of CRISP-DM method.  

The data understanding phase is crucial in the CRISP-DM methodology as it lays the 

foundation for the subsequent phases of data preparation and modeling. During this phase, the 

data is collected and explored to gain a better understanding of its characteristics, quality, and 

structure. This involves identifying potential data sources, examining the data's distribution and 

summary statistics, and detecting potential outliers or missing values. Additionally, data 

understanding may also entail exploring the relationships and dependencies between different 

variables and features within the dataset. This phase is covered in Chapter 4. 

Further, the raw data will be transformed into a format suitable for modeling in data 

preparation phase. This process often includes data cleaning, selection, and transformation. 

Firstly, the data will be cleaned to handle errors, missing data, and inconsistencies. Then, a 

relevant subset of the data will be selected for inclusion in the model development. Finally, the 

data will be transformed into a format suitable for the chosen modeling technique. This phase 

is crucial for ensuring the quality of the data and the success of the subsequent modeling phase. 

The outcome of this phase is a prepared dataset that is ready for modeling, testing, and 

evaluation. This phase will be explained in Chapter 4. 

Finally, in the modelling phase, the model is designed and developed based on the 

available data. The first step is to select an appropriate modelling technique that suits the 

business problem and the data available. This selection process can be guided by the models 
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used in the literature review. The performance of the model is then evaluated using a separate 

subset of data, known as the validation, set. This process is repeated until an optimal model is 

achieved. Feature selection is another crucial aspect of the modelling phase, which involves 

identifying the relevant features or variables that have the most significant impact on the 

model's predictive power. The objective is to include only the most relevant features in the 

model to avoid overfitting or underfitting, which can reduce the model's performance. 

Additionally, the model's performance is tested on new and unseen data to assess its ability to 

generalize to new situations. This process is called model validation or testing, and it is 

essential to ensure that the model performs well on data that it has not seen before. The 

modelling and data preparation phases are iterative, and if the model's performance is not 

satisfactory, the process can be restarted until an optimal model is obtained. Figure 7 illustrates 

this iterative process, where the modelling and data preparation phases are not unidirectional. 

3.1.4 Demonstration and Evaluation 

According to Peffers et al. (2007), the demonstration step of DSRM include 

demonstrate the practical application of the developed solution. This can take the form of 

experiments, simulations, or case studies. And the evaluation involves in testing the artifact 

created in the previous step and evaluating its effectiveness in solving the identified problem. 

This step focuses on validating the effectiveness, efficiency, and suitability of the artifact in 

meeting the desired goals and objectives. The artifact is tested using real-world data to 

determine its performance and functionality. The results are then evaluated and compared with 

the desired outcomes and expectations to determine the extent to which the artifact meets the 

specified criteria. These two steps are aligned with the evaluation phase of CRISP-DM 

methodology.  

3.1.5 Communication 

The final stage of the research aims to disseminate the findings and outcomes of the 

study. This is achieved through a comprehensive report that presents the research process, 

challenges, and artifacts, as well as novel insights and relevant information that can help 

stakeholders understand the research problem and its solutions. The report targets 

organizations, researchers, and audiences who are interested in the topic and provides 

recommendations for future research and practical applications. 
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3.2 Analytical Methods 

This section outlines the specific analytical methods that will be employed in this thesis, 

including the method to calculate CLV, the specific ML methods that used, and the XAI 

methods that applied. The section provides a detailed overview of each of these methods, 

including their theoretical basis, strengths, and limitations, as well as their specific applications 

to the research study. By outlining the analytical methods that used in this study, this section 

aims to provide a clear and comprehensive understanding of the analytical framework that 

guides the research, and to demonstrate the rigor and validity of the study's findings. 

3.2.1 Customer Lifetime Value 

There are various methods and formulas that can be used to calculate CLV, and the 

appropriate approach will depend on the nature of the business and the available data. However, 

the two fundamental steps for assessing CLV are: (a) forecasting the net cash inflows the 

company from the customer over a period of time, and (b) determining the current value of that 

series of cash flows. Hence, according to Berger and Nasr (1998) the general CLV formula is 

(Berger & Nasr, 1998) : 

 𝐶𝐿𝑉 =  ∑ 𝜋(𝑡) × 
1

(1 + 𝑑)𝑡
 , 𝑖 = 1, … , 𝑛 

𝑛

𝑖=0

 3.1 

Where 𝜋(𝑡) is represents the cash flow generated from customer 𝑖 in period 𝑡, and 𝑑 is 

the discount rate.  

Another method to calculate CLV is proposed by Gupta & Lehmann (2003), where they  

suggested an alternative approach to compute CLV that draws on the discounted cash flow 

method in finance. Nevertheless, there are two significant distinctions between the two 

methods. Firstly, CLV is generally defined and estimated at an individual customer or segment 

level. This enables a distinction to be made between more profitable customers as opposed to 

just looking at overall profitability averages. Secondly, unlike finance, CLV incorporates the 

potential for a customer to defect to a competitor in the future, making it more comprehensive 

in nature. 

 𝐶𝐿𝑉 =  ∑
(𝑝𝑡 − 𝑐𝑡)𝑟𝑡

(1 + 𝑑)𝑡
− 𝐴𝐶

𝑇

𝑡=0

 3.2 
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where 𝑝𝑡 it the price paid by a consumer at time t, 𝑐𝑡is the direct cost of servicing the 

customer at time 𝑡, 𝑑  is discount rate or cost of capital for the firm, 𝑟𝑡 is probability of customer 

repeat buying or being “alive” at time t, 𝐴𝐶 = acquisition cost, and 𝑇 = time horizon for 

estimating CLV. The formula demonstrates that the calculation of CLV is not solely based on 

the revenue generated from a customer, but also heavily influenced by the probability of repeat 

purchases, which is commonly referred to as the retention rate. This highlights the significance 

of customer retention in determining the customer's value and the risk associated with their 

retention, which could ultimately impact the CLV. Further, Gupta and Lehmann (2003, 2005) 

also demonstrated that under the assumption of constant margins (𝑝𝑡 − 𝑐𝑡) and retention rates 

over time, and with an infinite time horizon, the expression for CLV can be simplified to the 

following equation: 

 𝐶𝐿𝑉 =  ∑ 𝑚
𝑟

(1 + 𝑑 − 𝑟)𝑡

∞

𝑡=0

 3.3 

Hwang et al. (2004) proposes a new model for measuring lifetime value that takes into 

account both customer defection and cross-selling opportunities in a business. Furthermore, 

unlike the existing model that focused on financial contribution estimated from past history of 

profit generation and converted the contribution to present value, the authors argue that their 

proposed model focuses not only on past profit contribution, but also on future financial 

contribution, potential profit generation of a customer, and expected service periods. Their 

prosed CLV model is formulated as follows: 

 𝐶𝐿𝑉 =  ∑ 𝜋𝑝(𝑡𝑖)(1 + 𝑑)𝑁𝑖−𝑡𝑖 +

𝑁𝑖

𝑡𝑖=0

∑
𝜋𝑓(𝑡𝑖) + 𝐵(𝑡𝑖)

(1 + 𝑑)𝑡𝑖−𝑁𝑖

𝑁𝑖+𝐸(𝑖)+1

𝑡𝑖=𝑁𝑖+1

 3.4 

Where 𝑁𝑖 represent the total service period of customer 𝑖 and 𝑡𝑖 represent service period 

index of customer 𝑖. The first part of the equation, the sum of 𝜋𝑝(𝑡𝑖)(1 + 𝑑)𝑁𝑖−𝑡𝑖, represents 

the net present value (NPV) of the past profit contribution of the customer, calculated by 

summing up the profit contribution of customer 𝑖 at period (𝑡𝑖), multiplied by the interest rate 

factor ((1 + 𝑑)𝑁𝑖−𝑡𝑖) , which transforms the past profit into the present value. The future cash 

flow is computed by adding the expected future profit and the potential benefits (𝐵) that the 

customer could bring during the expected service period 𝑖 (𝑡𝑖). The potential benefits or value 

refer to the expected profits that a company can obtain from a customer by providing additional 

services or cross-selling. 
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Several studies extend the general CLV formulas by incorporate customers’ risks in the 

discount rate (𝑑) calculation. Ryals & Knox (2005) used two criteria to calculate the discount 

rate, the risk of customers and market (
𝑅𝑐

𝑅𝑚
) and Weighted Average Cost of Capital (WACC5). 

They define the customers’ risks as the weighted customer credit rating for individual 

customers and its average for the entire portfolio representing the market risk (Machado & 

Karray, 2022a). 

 𝑑 =  
𝑊𝐴𝐶𝐶 × 𝑅𝑐

𝑅𝑚
 3.5 

(Dhar & Glazer, 2003) applied the CAPM theory and include the systematic risk, Beta 

value (𝛽) in the discount rate calculation, where the formula became: 

 𝛽 =  
𝑐𝑜𝑣(𝜑𝑐𝑡, 𝜑𝑚𝑡)

𝑣𝑎𝑟(𝜑𝑚𝑡)
 3.6 

 𝑑 =  𝜓𝑚 𝑥 𝛽 3.7 

where 𝜑𝑐𝑡 𝑎𝑛𝑑 𝜑𝑚𝑡  are the return for customer c and market m, respectively, at a given time 

period t and  𝜓𝑚 represents the expected rate of return of the market. Finally, Buhl & Heinrich 

(2008) expand the formula to calculate the discount rate by adding the “risk free asset” or 

customer with the lowest risk in the formula, such as: 

 𝑑 =  𝜓𝑓 +  𝛽 (𝜓𝑚 − 𝜓𝑓) 3.8 

Where 𝜓𝑓 represent the minimum expected rate of return, which correspond with 

customer with the lowest risk and 𝜓𝑚 represents the expected rate of return of the market. The 

detailed definition of beta value could be find in the Subsection 2.3.6. 

3.2.2 Machine Learning Algorithms 

3.2.2.1 Logistic Regression 

Logistic regression (LR), also referred to as the logit model or logistic model, is a 

statistical method used to assess the association between a categorical dependent variable and 

several independent variables. This approach estimates the likelihood of an event occurring by 

fitting data to a logistic curve. (Kleinbaum et al., 2002). Figure 8 displays the logistic function 

 
5 A financial metric used to calculate the average cost of financing a company's operations by taking into 

account the proportion of debt and equity and their respective costs. 
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that underlies the mathematical framework of the logistic model. The function, denoted as 

𝑓(𝑧), illustrates the probability of an event occurring by fitting data to a logistic curve. It is 

represented by the equation 
1

1+𝑒−𝑧, where 𝑧 represents the input values. The plotted graph 

illustrates the range of values that 𝑓(𝑧) can take, as 𝑧 varies from 1 to +1. 

 

Figure 8 Logistic function (Kleinbaum et al., 2002) 

𝑓(𝑧) =  
1

1 + 𝑒−𝑧
 3.9 

Examining the left side of the graph, it is notable that the logistic function 𝑓(𝑧) takes 

the value of 0 when 𝑧 tends towards −∞. In contrast, on the right side, as 𝑧 approaches ∞, 𝑓(𝑧) 

approaches 1. Regardless of the specific value of 𝑧, 𝑓(𝑧) consistently ranges between 0 and 1. 

This inherent characteristic of the logistic function, tailored to accommodate probabilities, 

ensures that any risk estimate derived from it lies within the interval of 0 to 1. The logistic 

model is purposefully designed to guarantee that any estimated risk will constantly reside 

within the bounds of 0 and 1. Consequently, the logistic model never yields a risk estimate 

surpassing 1 or falling below 0. This sets it apart from alternative models, thereby positioning 

the logistic model as the preferred choice when seeking to estimate probabilities (Kleinbaum 

et al., 2002). 

The allure of the logistic model further stems from the shape of its corresponding 

logistic function. As depicted in the Figure 8, when moving from 𝑧 approaching negative 

infinity towards the right, 𝑓(𝑧) initially maintains proximity to zero, subsequently experiences 

a rapid ascent, and eventually approaches but never reaches 1 as 𝑧 increases. This pattern 

generates an elongated and distinctively S-shaped curve, contributing to the unique 

representation of the logistic model. The sigmoid or S-shaped nature of the logistic function 

holds particular appeal, especially when the variable 𝑧 is interpreted as an index that 

consolidates the contributions of variables, while 𝑓(𝑧) represents the corresponding probability 

for a given value of 𝑧. In this context, the S-shape of 𝑓(𝑧) signifies that the influence of 𝑧 on 
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the variable remains relatively minimal for lower values of 𝑧 until a certain threshold is reached. 

Subsequently, the probability escalates rapidly within a specific range of intermediate 𝑧 values, 

but never reaches 1, indicating that the model is designed to estimate probabilities within the 

range of 0 to 1. 

 𝑧 =  𝛼 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑘𝑋𝑘 3.10 

To establish the logistic model, the variable z is represented as the sum of a linear 

combination of independent variables 𝑋1, 𝑋2, up to 𝑋𝑘, where 𝛼 and 𝛽𝑖 are constant terms 

signifying unknown parameters. Conceptually, 𝑧 acts as an index that amalgamates the values 

of the 𝑋𝑠. Substituting this linear sum expression into the logistic function, the resulting 

equation becomes: 

 𝑓(𝑧) =  
1

1 + 𝑒−(𝛼+∑ 𝛽𝑖𝑋𝑖)
 3.11 

To fully grasp the mathematical model, it will be explained within an epidemiological 

context. The logistic model operates within the framework of a generalized epidemiological 

study, where a group of subjects is observed with respect to independent variables 𝑋1, 𝑋2, up 

to 𝑋𝑘. Additionally, disease status is determined, denoted as 1 for "with disease" or 0 for 

"without disease." The objective is to utilize this information to depict the probability of disease 

development during a defined study period (e.g., from 𝑇0 to 𝑇1) for disease-free individuals, 

characterized by specific values of the independent variables 𝑋1, 𝑋2, up to 𝑋𝑘 measured at T0. 

The probability of developing the disease, given the independent variables 𝑋𝑠, is 

represented as  𝑃(𝐷 = 1|𝑋1, 𝑋2, … , 𝑋𝑘). In the logistic model, this probability is defined as: 

 𝑃(𝐷 = 1|𝑋1, 𝑋2, … , 𝑋𝑘) =  
1

1 + 𝑒−(𝛼+∑ 𝛽𝑖𝑋𝑖)
 3.12 

The parameters α and the βi in the model correspond to unknown values that necessitate 

estimation based on collected data concerning the 𝑋𝑠 and the disease outcome (𝐷) for the 

subject group. Consequently, if the values of the parameters 𝛼 and 𝛽𝑖 are known, along with 

the specific 𝑋1 through 𝑋𝑘 values for a particular disease-free individual, the logistic model 

can be employed to determine the probability of that individual developing the disease over a 

defined follow-up time interval. 
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For ease of notation, the probability statement 𝑃(𝐷 = 1|𝑋1, 𝑋2, … , 𝑋𝑘) is succinctly 

denoted as 𝑃(𝑿), wherein the bold 𝑿 serves as a compact representation encompassing the 

collection of variables  𝑋1 through  𝑋𝑘. Therefore, the logistic model can be expressed as: 

 𝑃(𝑋) =  
1

1 + 𝑒−(𝛼+∑ 𝛽𝑖𝑋𝑖)
 3.13 

3.2.2.2 Random Forest 

Random Forest is a highly regarded ensemble learning method widely employed in both 

classification and regression problems. Introduced by Leo Breiman (Cutler et al., 2012), RF 

utilize the collective wisdom of multiple decision trees to produce a consolidated result. This 

algorithm extends the bootstrapping method proposed by Breiman in 1996 and forms a crucial 

component of ensemble algorithms. During the training phase, the RF algorithm generates 

numerous decision trees. Each tree randomly selects a subset of data through bootstrapping, a 

process where data is sampled with replacement. Furthermore, randomness is introduced at 

each decision split by selecting different subsets of features, resulting in a diverse set of models 

(Breiman, 2001; Cutler et al., 2012). Once multiple data samples are generated, these models 

are independently trained, and their predictions are aggregated, usually by taking their average 

or majority, to yield a more accurate estimate (Breiman, 2001). Figure 9 below shows the 

workflows of RF algorithm. 

 

Figure 9 Random Forest (Sharma, 2020) 

By incorporating randomness at both the data and feature levels, the algorithm 

generates an ensemble of diverse trees. With a large number of trees, the RF model benefits 
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from the Strong Law of Large Numbers, which helps overcome the overfitting problem often 

encountered with single decision trees. Overfitting occurs when a model performs well on the 

training data but poorly on unseen data. The diversity of the tree ensemble, coupled with the 

aggregation process, allows the Random Forest model to achieve robustness and improved 

accuracy (Breiman, 2001). 

A notable advantage of RF is their ability to handle both regression and multiclass 

classification problems effortlessly. They exhibit relatively fast training and prediction times 

and depend on only one or two tuning parameters, simplifying the model selection process. 

Moreover, RF provide measures of variable importance, which aid in feature selection and 

provide insights into the underlying relationships within the data. Additionally, RF are adept 

at handling missing values and outliers, further enhancing their versatility (Cutler et al., 2012). 

However, there are certain drawbacks to be considered in RF algorithm. If the number 

of trees in the forest is not properly tuned, RF can be computationally expensive without 

significant performance gain. Therefore, selecting an appropriate number of trees is crucial to 

strike a balance between computational cost and model effectiveness (Oshiro et al., 2012). 

While RF provide some degree of interpretability through variable importance measures, they 

may not offer the same level of interpretability as simpler models like linear regression or single 

decision trees. It is essential to consider the trade-off between interpretability and predictive 

performance when choosing the appropriate modeling approach (IBM, n.d.). 

In the case of the RF Regressor, a specific application of the RF algorithm, it is 

employed when the target variable is continuous. Operating under the same fundamental 

principles as the RF classifier, the RF Regressor differs in how predictions are aggregated. The 

final prediction is computed as the average of the predictions from all trees in the forest, 

reducing variance and mitigating the risk of overfitting, especially when the loss function is 

Mean Squared Error (MSE) (Cutler et al., 2012). 

In conclusion, RF are a powerful ensemble learning method that effectively addresses 

classification and regression problems. By harnessing the collective strength of multiple 

decision trees, RF offer improved accuracy, robustness, and versatility. While they have 

advantages such as handling various data types, providing measures of variable importance, 

and mitigating overfitting, it is important to carefully tune the number of trees and consider the 

trade-off between interpretability and predictive performance. The RF Regressor variant 

specifically caters to continuous target variables, employing an averaging approach to enhance 

model performance. 
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3.2.2.3 XGBoost 

Extreme Gradient Boosting (XGBoost), another ensemble ML algorithm, was first 

introduced by Chen and Guestrin in 2016. Similar to RF, XGBoost uses decision trees as its 

base learners, combining the predictions of several models to enhance robustness and improve 

generalization over a single model. However, unlike RF, which employs bootstrapping or 

bagging to enhance the performance of the base learners, XGBoost utilizes boosting algorithms 

as its learning strategy. Boosting is a sequential technique that combines a set of weak learners 

(in this case, single decision trees) to deliver improved prediction accuracy. It operates in a 

stage-wise manner, training weak learners in sequence, with each one aiming to correct the 

mistakes of its predecessors. Each model in the sequence is assigned a weight reflecting its 

contribution to the final prediction, which is a weighted sum of the predictions of the individual 

models (Hastie et al., 2009). 

Following its namesake, "Extreme Gradient Boosting", XGBoost embraces the concept 

of a boosting method known as Gradient Boosting (GB). This technique, introduced by 

Friedman in 2001, uses a gradient descent algorithm to minimize errors in sequential models. 

The GB algorithm creates new models that predict the residual errors of prior models and 

combines these new error-predicting models to construct the final prediction. XGBoost refines 

the basic GB algorithm by introducing a regularization parameter to control overfitting, 

rendering it robust to noisy data and outliers (Chen & Guestrin, 2016). This unique feature 

allows XGBoost to be effectively employed as both a classifier and a regression algorithm. 

 

Figure 10 XGBoost Workflow (Guo et al., 2020) 
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Aside from its capability to prevent overfitting, XGBoost demonstrates high predictive 

power and outpaces other gradient boosting techniques in terms of speed. This advantage is 

due to its utilization of column block data structures in which the data is stored pre-sorted, 

enabling parallel learning and significantly reducing computation time. Moreover, it 

encompasses an out-of-core computation feature that optimizes memory usage, making it 

particularly well-suited for large datasets (Bentéjac et al., 2021). XGBoost can handle both 

linear and tree learners, learn feature interactions automatically, and includes built-in cross-

validation at each iteration of the boosting process. 

On the other hand, XGBoost also has several drawbacks. Firstly, to attain optimum 

performance, XGBoost requires meticulous tuning of parameters, which can be time-

consuming. Secondly, XGBoost can still overfit the training data if the regularization parameter 

is improperly configured. Lastly, while it is more interpretable than some complex models, 

such as neural networks, it does not compare to the straightforwardness of simpler models like 

linear regression or decision trees. 

3.2.2.4 CatBoost 

CatBoost, derived from "Category" and "Boosting," is an implementation of gradient 

boosting algorithms that specifically designed to handle categorical variables and reduce the 

prediction shift that occurs during training phase of gradient boosting algorithm 

(Prokhorenkova et al., 2018).  In CatBoost, categorical features are replaced by a numerical 

feature that signifies the expected target value for each category. Ideally, this numerical feature 

should be computed using a different dataset to avoid overfitting to the training data, but this 

is not always feasible. The procedure proposed in CatBoost calculates this new feature in a 

manner similar to the model-building process. For a given random permutation of the instances, 

the information from instances < i is used to compute the feature value of instance i. 

Subsequently, several permutations are carried out, and the obtained feature value for each 

instance is averaged, which aids in avoiding overfitting to the training data (Prokhorenkova et 

al., 2018; Bentéjac et al., 2021). 

The primary methodology of CatBoost diverges from typical gradient boosting 

algorithms via its implementation of "ordered boosting." This method, driven by permutations, 

resolves the prediction shift commonly encountered in gradient boosting. This shift originates 

from the discrepancy between 𝐹(𝑥𝑖)| 𝑥𝑖, representing a training instance, and 𝐹(𝑥𝑖)| 𝑥𝑖 for a 

test instance x. It transpires because gradient boosting employs the same instances for 

estimating both the gradients and the models that minimize these gradients (Bentéjac et al., 
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2021). CatBoost proposes a solution wherein the gradients are estimated using a series of base 

models that exclude the instance in question from their training sets. This is initiated by 

introducing a random permutation in the training instances. The concept behind CatBoost is to 

build N base models for each of the M boosting iterations. The  𝑖-th model of the 𝑚-th iteration 

is trained on the first i instances of the permutation and is employed to estimate the gradient of 

the 𝑖 + 1 instance for the (𝑚 + 1)th boosting iteration. To maintain independence from the 

initial random permutation, this process is repeated using s different random permutations. The 

implementation of CatBoost optimizes this process such that a single model is built per 

iteration, accommodating all permutations and models. The base models employed are 

symmetric trees or decision tables, which are grown by extending all leaf nodes level-wise 

using the same split condition (Bentéjac et al., 2021). 

One of the key strengths of CatBoost is its robustness against overfitting. This feature 

is accomplished by employing oblivious trees, which use the same split for a feature across all 

instances. In conjunction with this, a regularization term is incorporated in the loss function, 

further preventing overfitting. Benchmark studies have also demonstrated the superior 

performance of CatBoost over other gradient boosting algorithms and random forests, 

especially with categorical data (Jhaveri et al., 2019). However, despite these strengths, 

CatBoost has its limitations. It may run slower than its counterparts for large-scale numerical 

datasets, and careful parameter tuning may be necessary for optimal performance. 

3.2.3 Evaluation Metrics in Machine Learning Models 

Evaluation metrics are essential in assessing the performance of ML models. They 

provide quantitative insight into the level of accuracy or error inherent in a prediction model, 

helping data scientists tune their models for optimal outcomes. 

In classification tasks, some of the most commonly used evaluation metrics are: 

• Accuracy: This is the simplest evaluation metric for classification, representing 

the ratio of correct predictions to total predictions. Accuracy is commonly used 

when target classes are well balanced. 

• Precision, Recall, and F1 Score: These metrics are derived from the confusion 

matrix, a table layout that visualizes the performance of an algorithm (Powers, 

2011). Precision measures the proportion of true positive predictions among all 

positive predictions. Recall, also known as sensitivity or true positive rate, 

measures the proportion of true positives among all actual positives. The F1 
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Score is the harmonic mean of Precision and Recall, providing a balance 

between the two metrics (Sokolova and Lapalme, 2009). 

• Area Under the Receiver Operating Characteristic curve (AUC-ROC): The 

ROC curve plots the true positive rate against the false positive rate for various 

threshold settings, and the AUC quantifies the overall performance of the 

classifier. It provides a single scalar value representing expected performance 

(Fawcett, 2006). 

In regression tasks, the following metrics are often utilized: 

• Mean Absolute Error (MAE): It calculates the average of the absolute 

differences between the predicted and actual values. MAE is a linear score, 

meaning all individual differences are weighted equally (Willmott & Matsuura, 

2005). 

• Mean Squared Error (MSE): Similar to MAE, it calculates the average of the 

squared differences between the predicted and actual values. MSE gives more 

weight to larger differences (Willmott and Matsuura, 2005). 

• Root Mean Squared Error (RMSE): The RMSE is the square root of the MSE. 

The RMSE is preferred over the MSE when large errors are particularly 

undesirable, as the RMSE is more sensitive to such errors (Willmott and 

Matsuura, 2005). 

• Mean Absolute Percentage Error (MAPE): MAPE measures the average 

absolute percent error for each time period or data point. It is often used as a 

loss function for regression problems and in model evaluation because of its 

easy interpretability as percentage error (Myttenaere et al., 2016) 

• 𝑅2: Also known as the coefficient of determination, 𝑅2 quantifies the proportion 

of variance in the dependent variable that can be predicted from the independent 

variable(s). It measures the strength of the relationship between the model and 

the dependent variable on a convenient 0 – 100% scale. (Chicco et al., 2021) 

Each of these metrics presents a different perspective on the errors inherent in a 

prediction model and can be useful for diagnosing specific issues. 

3.2.4 Explainable AI (XAI) 

Just like mentioned in Section 2.1, the field of XAI can be categorized into two main 

strands of work: transparency design and post-hoc explanation (Lipton, 2018; Linardatos et al., 
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2021). As the interest to decipher the complexity of black-box models, the field of XAI has 

proposed a variety of post-hoc interpretability methods. These tools can be categorized into 

two broad types based on the level of their interpretability: global and local models. Global 

models, such as SHAP, aim to illustrate the overall behavior of a model by interpreting the 

average impact of features across all instances (Lundberg & Lee, 2017). Local models, 

exemplified by Local Interpretable Model-agnostic Explanations (LIME), focus on explaining 

individual predictions, providing a detailed understanding of the model's decision-making 

process for specific instances (Ribeiro et al., 2016). 

3.2.4.1 Local Interpretable Model-agnostic Explanations (LIME) 

LIME is a technique within the field of XAI that provides human-interpretable 

explanations of individual predictions made by complex ML models. It does this by 

approximating the local decision boundary around the point of prediction using a simpler model 

(e.g., a linear model), which can then be inspected for understanding (Ribeiro, Singh, & 

Guestrin, 2016). LIME works on the assumption that every complex model is linear on a local 

scale, despite being potentially nonlinear on a global scale. This makes it a model-agnostic 

method, meaning it can be applied to any ML model (Ribeiro et al., 2016). The simplicity of 

LIME's surrogate model ensures the interpretability of its explanations, allowing humans to 

understand and potentially trust the decisions made by the complex model. 

The process employed by LIME involves the following steps: First, it select the set of 

features to explain, which can be all features in the dataset or a subset of particular interest. A 

grid of points is then established around the instance being examined, with its dimensions 

defined in a way that captures the local feature variation yet remains sufficiently representative 

of the instance's vicinity. Perturbed instances are then generated by introducing random 

adjustments to the feature values for each point in the grid. Following this, an interpretable 

model, such as a linear model or decision tree, is fitted to these perturbed instances. Finally, 

this fitted model is used to elucidate the prediction made by the black box model for the original 

instance (Ribeiro et al., 2016). 

One of the strengths of LIME is that it allows users to understand and trust the 

predictions of complex ML models by providing local explanations. It also facilitates the 

detection and correction of biases, errors, and undesired behaviors in the models. However, 

one limitation of LIME is that it only provides local, rather than global, explanations (Ribeiro 

et al., 2016). Overall, LIME has proven to be a useful tool for demystifying the complex 
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predictions made by black-box models and making ML more transparent, trustworthy, and 

accessible. 

3.2.4.2 SHapley Additive exPlanations (SHAP) value 

While LIME provides valuable local explanations for specific instances, there is a 

growing need for interpretability methods that can provide both global and local explanations. 

SHAP is a method that offers this dual perspective. SHAP, developed by Lundberg and Lee 

(2017), is built upon the foundation of Shapley values, a concept first introduced within the 

realm of cooperative game theory. In their original context, Shapley values quantify the 

contributions of individual players to a cooperative game. This concept of assigning 

contributions to individual players has been adapted and applied in the ML domain to 

determine the importance of individual features in predictive models. With SHAP, each 

feature's impact on a model's output is measured, enabling explanations for individual 

predictions to be formulated. Hence, SHAP allows for a more comprehensive understanding of 

model predictions, attributing each feature's influence on both a specific prediction (local 

interpretation) and across all predictions (global interpretation). 

The primary objective of the SHAP method is to provide an explanation for the 

prediction made by a given instance, denoted as 𝑥, by quantifying the contribution of each 

feature towards that prediction. This explanation technique relies on the computation of 

Shapley values, which are derived from coalitional game theory. In the context of SHAP, the 

feature values associated with a particular data instance serve as players within a coalition. The 

Shapley values enable a fair allocation of the "payout" (i.e., the prediction) among the features 

involved. In the case of tabular data, a player can refer to an individual feature value. However, 

a player can also be a group of feature values. For example, to explain an image, pixels can be 

grouped to super pixels and the prediction distributed among them. A notable aspect introduced 

by the SHAP method is its representation of Shapley value explanations as an additive feature 

attribution method, akin to a linear model. This perspective establishes a connection between 

LIME and Shapley values. SHAP presents the explanation in the following manner: 

 𝑔(𝑧′) =  ∅0 + ∑ ∅𝑗𝑧′𝑗

𝑀

𝑗=1

 3.14 

Where 𝑔 is the explanation model, 𝑧′ ∈ {0,1}𝑀is simplified input, M represents the 

number of simplified input feature and ∅𝑗 ∈ 𝑅 is the feature attribution for feature 𝑗. To ensure 
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effective explanations, explanation models often employ simplified inputs, denoted as 𝑥′, 

which are mapped to the original inputs 𝑥 through a mapping function 𝑥 =  ℎ𝑥(𝑥′). It is 

important to note that while 𝑥′ may contain less information than 𝑥, the mapping function 

ℎ𝑥(𝑥′) is specific to the current input 𝑥, ensuring the approximation 𝑔(𝑧′) ≈ 𝑓(ℎ𝑥(𝑧′)) holds 

true when 𝑧′ ≈ 𝑥′. Therefore, even with potentially reduced information in 𝑥′, the mapping ℎ𝑥 

guarantees that ℎ𝑥(𝑥′) = 𝑥. 

In their paper, Lundberg and Lee (2017) highlight an intriguing characteristic of the 

class of additive feature attribution methods. They demonstrate that within this class, there 

exists a single unique solution that possesses three desirable properties, which were previously 

unfamiliar to other additive feature attribution methods. These properties closely align with the 

well-known principles of classical Shapley value estimation methods. The first of these 

properties is referred to as local accuracy. Local accuracy necessitates that when approximating 

the original model 𝑓 for a specific input 𝑥, the explanation model should, at the very least, 

produce an output that matches 𝑓 when provided with the simplified input 𝑥′. It is important to 

note that 𝑥′ corresponds to the original input 𝑥. 

 𝑓(𝑥) = 𝑔(𝑥′) =  ∅0 + ∑ ∅𝑖𝑥′𝑖

𝑀

𝑖=1

 3.15 

Another important property of the additive feature attribution methods is the concept of 

missingness. When the simplified inputs represent the presence or absence of features, the 

property of missingness ensures that features missing in the original input have no impact on 

the attribution. In other words, missingness dictates that a missing feature receives an 

attribution value of zero. In simplified feature, where 𝑥′𝑗 represents the simplified feature and 

a value of 0 indicates the absence of a feature value, all feature values 𝑥′𝑗 of the instance being 

explained should be set to '1'. The presence of a '0' in the notation would signify that the 

corresponding feature value is missing for the instance of interest.  

𝑥′𝑗 = 0 → ∅𝑗 = 0 

The third property of additive feature attribution methods, identified as consistency by 

Lundberg and Lee (2017), plays a crucial role in ensuring the reliability and meaningfulness of 

the attributions. Consistency states that if a model undergoes changes such that the contribution 

of a specific simplified input (feature value) increases or remains the same, regardless of the 

other inputs, the attribution assigned to that input should not decrease. In other words, 
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consistency asserts that any increase or maintenance of the marginal contribution of a feature 

value in the model should correspondingly result in an increase or maintenance of its assigned 

Shapley value. This property guarantees that the attributions assigned to the feature values align 

with the changes observed in their contributions, regardless of the interactions and influences 

of other features. 
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4 Experimental Design 

4.1 Dataset  

The data used in this thesis was the real-world data provided by one of 

telecommunications company based on Indonesia. The dataset specifically encompasses 

transactional information related to their prepaid (non-contractual) B2C customers. Prepaid 

customer was selected to be this research subject because they represent the majority of telco 

customer in Indonesia, and their constituting 95% of the company total customer base 

(Telkomsel, 2023).  

The dataset contains comprehensive monthly transactional record of 200,000 clients 

across a time span of three years, starting from January 2020 and concluding in December 

2022. To ensure a robust and reliable analysis, only customers who were active in January 2020 

and had a minimum length of stay (LOS) of three months in January 2020 were considered. 

Any customer with less than a three-month LOS was excluded because they could be 

considered as new or unstable customer (Binh et al., 2021). Furthermore, the selected prepaid 

customer was from the B2C class, ensuring that they are an individual customer who 

voluntarily chose to engage with our company's services without any contractual commitments. 

In addition, to capture diverse consumer behaviours and to offer a balanced view of both active 

and churned customers, the selected pool consists of 50% customers who remained active 

throughout the period of observation, while the remaining 50% churned in the last three months 

of the observation period. 

While incorporating demographic data like age, gender, and location can potentially 

introduce bias, the dataset was curated to minimize such issues. For instance, the age 

distribution within the dataset aligns with Indonesia's demographic structure (BPS Indonesia, 

2022). It could be seen at Figure 11 that the adults (ages 25-64) dominate the dataset at 67.1%, 

followed by seniors (age > 64) at 18.8%, and young individuals (age < 25) at 14.1%. This 

distribution minimizes age-related biases and enables a better understanding of service 

consumption patterns across different age groups. Gender distribution showcases a balanced 

representation, with males and females almost equally represented. Regarding location, while 

all regions are well-represented, regions with capital cities displayed a slightly elevated churn 

rate due to heightened competition, reflecting typical urban customer behavior rather than a 

dataset bias. 



62 

 

 

Figure 11 Age group and gender distribution in the dataset 

One key aspect of the dataset is the granularity of revenue and usage data. The company 

offers a range of services, including voice, SMS, broadband, digital, and international roaming. 

For each of these services, the dataset captures individual revenue and usage behaviour, which 

is then aggregated on a monthly basis. The usage data capture the total days, total transactions, 

total duration and volume of services used. Furthermore, it offers insights into customers' 

online behaviour, categorized according to their intensity of usage and the types of websites or 

online activities they engage in. As for the demographic data, the dataset includes age, gender, 

and location of the customers, offering valuable insights into the user base of the company. 

The dataset also incorporates the details of device used by the customers, providing an insight 

into the potential influence of device type on customer behaviour and probability to churn. 

Collectively, these 141 features provide a comprehensive perspective on the customer base, 

encompassing their behaviour patterns and their financial contributions to the company. Table 

5 provides a comprehensive overview of the descriptive statistics for the sample features in the 

dataset, offering valuable insights into the distribution characteristics of each feature. For a 

more comprehensive understanding, Appendix 2 contains additional visual representations, 

including histograms and charts that further illustrate the distributions of the features and also 

the detailed description of feature name. 

Table 5 Descriptive statistics of sample features 

 Point 
Total 

revenue 
Avg 3m 

Total 
recharge 

Avg 3m std 
Total 

Revenue 
std 

Total 
recharge 

std 

mean 84 79,499 79,410 78,081 32,899 47,488 52,597 

std 249 121,963 121,079 132,729 79,412 103,507 106,853 
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min - - - - - - - 

25% 9 26,490 26,447 25,000 12,917 20,651 22,664 

50% 35 57,067 56,978 54,000 23,369 36,172 39,322 

75% 101 104,840 104,417 100,000 39,796 58,333 62,641 

max 41,299 20,319,820 20,071,050 17,581,750 16,266,500 22,733,530 20,412,410 

 

In addition, the dataset demonstrates a notable level of reliability and validity, due to 

the automated mechanism employed by the company’s system for capturing revenue, usage, 

and recharge behavior, as well as the comprehensive customer’s device data. The automation 

process effectively mitigates the likelihood of human error, thereby able to maintain the reliable 

data quality throughout the entire customer base. Furthermore, in terms of privacy preservation 

and adherence to research ethics, the dataset employs a secure approach by hashing the main 

identifier of customers, namely the MSISDN or phone number. This approach ensures the 

anonymity and confidentiality of customer information, highlighting the commitment to 

maintaining ethical standards in data analysis and safeguarding customer privacy. 

4.2 Method to Calculate RAR 

In this research, the formula used to calculate risk-adjusted CLV will follow the method 

calculate CLV that introduced by Berger and Nasr (1998). The CLV model defines the CLV 

as the present value of the future cash flows generated by a customer, taking into account the 

customer's generated revenue and the associated servicing costs. To incorporate the time value 

of money, these cash flows are discounted using a suitable discount rate (Equation 3.1). 

However, since cost data is unavailable for this research, only the customer's generated revenue 

is utilized in the calculation Therefore, the metric computed in this study is referred to as RAR 

instead of RALTV. To calculate RAR, the proposed method builds upon the base model by 

Berger and Nasr (1998) but incorporates adaptations to the discount rate to account for the risk 

associated with the customer. Specifically, two customers’ risks are considered: the probability 

of customer churn and the volatility of revenue from each customer that represented by beta 

value.  

The selection of the probability of customer churn is motivated by its frequent 

occurrence in the telecommunications industry, particularly among prepaid customers who 

have the flexibility to switch providers at will. Furthermore, this study acknowledges the 

prevalent role of revenue volatility as a common risk across various industries. To represent 

this volatility, the study applies the concept of beta value, traditionally used in finance to 

measure the volatility or systematic risk of a security or portfolio in relation to the market as a 
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whole. This represents a novel approach, suggesting that the method for calculating RAR using 

revenue volatility, encapsulated by the beta value of customer's revenue contribution, could be 

valuable and potentially applicable across different sectors. Therefore, by incorporating these 

two aspects of risk, the churn probability and the beta value of revenue volatility, this 

methodology for calculating RAR provides not only comprehensive data but also allows for 

meaningful comparisons across different experiments or industries. 

4.2.1 Incorporating the Probability of Customer Churn 

The first customers’ risk that will be used in the RAR calculation is the probability of 

churn from customer. The integration the risk of probability of churn into discounted rate 

formula will follow the approach proposed by Ryals & Knox (2005). Ryals & Knox's model 

uses two criteria to calculate the discount rate, the risk of customers relative to the market (
𝑅𝑐

𝑅𝑚
) 

and the WACC. They define the customers’ risks as the weighted customer credit rating for 

individual customers, with its average for the entire portfolio representing the market risk 

(Equation 3.5). In this study, the model was adapted by replacing the customers’ risk criterion 

(
𝑅𝑐

𝑅𝑚
) with the individual customer's probability of churn (𝐶𝑐) divided by the expected 

probability of churn for the entire market (𝐶𝑚). And the formula for the discount rate while 

incorporating the probability of customer churn as the risk is: 

 𝑑 =  
𝑊𝐴𝐶𝐶 ×  𝐶𝑐

𝐶𝑚
 4.1 

For this approach, an assumption is made that the dataset used in this study represents 

the entire market. Hence the expected probability of churn for the entire market is the average 

probability of churn from all of the customer in the dataset. The estimation of churn probability 

is conducted using a selected ML model developed following the CRISP-DM framework and 

the ML pipeline. In this process, a snapshot of the last 1 year of historical data is chosen to 

predict the churn probability for each customer. The features from the first 9 months of the 

snapshot data are utilized to predict the churn probability for the subsequent 3 months. The 

expected probability of churn for the entire dataset is calculated as the average of the churn 

probabilities for each customer. This approach, which incorporates the individual customer's 

probability of churn as the risk criterion, will be referred to as 'approach A' in the later part of 

this thesis. Additionally, this thesis considers three WACC values of the company: 6.58%, 

7.8%, and 7.92% (Alpha Spread, 2023). These values represent the minimum, median, and 
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maximum WACC values observed during the dataset period (January 2020 – December 2022). 

In the later part of the thesis, RAR calculation using minimum WACC value will be referred 

as Approach A.1, the medium WACC value will be referred as Approach A.2 and maximum 

WACC value will be referred as Approach A.3. The RAR results obtained using these three 

different WACC values will be compared using Welch’s ANOVA to evaluate the statistical 

difference between them. 

4.2.2 Incorporating the Volatility of Revenue from Customer into the Discount Rate 

The volatility of customer revenue will be quantified using the Beta value. The 

calculation of the Beta value in this thesis follows the CAPM theory as adopted by Dhar & 

Glazer (2003), Buhl & Heinrich (2008), and Machado & Karray (2022) in Equation 3.6. 

Additionally, the discount rate is computed in Equation 3.7. However, the formula is adjusted 

by replacing the 'returns' for the customer and market with the 'revenues' from the customer 

and the average revenue from the market. Consequently, the formula to calculate the discount 

rate when incorporating the volatility of customer revenue becomes: 

 𝑑 =  𝜓𝑚 𝑥 
𝑐𝑜𝑣(𝜑𝑐𝑡, 𝜑𝑚𝑡)

𝑣𝑎𝑟(𝜑𝑚𝑡)
 4.2 

where 𝜑𝑐𝑡 𝑎𝑛𝑑 𝜑𝑚𝑡  are the revenue for customer c and market m, respectively, at a 

given time period t and  𝜓𝑚 represents the expected rate of revenue of the market. In this 

approach, which will be referred to as "approach B" in this thesis, the market is assumed to 

represent the entire customer base of the company, providing a comprehensive representation 

of the revenue dynamics.  

To calculate the Beta value, the volatility of revenue from each customer is assessed on 

a monthly basis. This enables the consideration of variability and fluctuations in the customer's 

revenue contributions, ensuring that the RAR calculation is sensitive to changes in their 

revenue patterns. By incorporating the customer revenue volatility, the RAR assessment 

becomes more comprehensive, accurately capturing the dynamic nature of revenue generation. 

This enhanced approach provides a robust foundation for evaluating the financial impact of 

various risks on customer revenue, enabling informed decision-making and resource allocation. 

4.3 Experimental Setup And Machine Learning Development Pipeline 

The experimental setup of the thesis involves the careful selection of experiments aimed 

at estimating the RAR value for each customer within the dataset and develop a ML model to 
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predict them. To achieve this objective, firstly, the revenue sources and different risk sources 

are extracted from the dataset. Subsequently, a method will be proposed to calculate the RAR, 

tailored to the specific risk sources identified. This method will provide a comprehensive 

framework for assessing and quantifying the financial impact of various risks on customer 

revenue. Finally, the obtained results will undergo rigorous statistical tests, including the 

application of analysis of variance (ANOVA), to compare and evaluate the distinctiveness of 

the proposed models. These statistical tests will ascertain whether the generated metric exhibits 

statistically significant differences, thereby substantiating its potential for further exploration. 

The RAR result obtained from the previous step serves as the target value for the 

subsequent development of the ML model. The ML model was developed primarily using 

Python as the programming language. Figure 12 illustrates the complete ML pipeline employed 

during the ML model development process. The pipeline was constructed following the 

CRISP-DM methodology, encompassing a series of key steps and components crucial for 

effective model development. These steps include data pre-processing, feature selection or 

engineering, model training, and model evaluation. Each step within the pipeline contributes 

to the overall process of creating a robust and accurate ML model for predicting RAR. By 

adhering to the ML pipeline and utilizing the CRISP-DM methodology, the model development 
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process ensures a systematic and comprehensive approach, resulting in a reliable model for 

RAR prediction.  

 

Figure 12 Machine Learning Model Development Pipeline 

4.4 Data Preprocessing 

An extensive data pre-processing strategy was implemented to guarantee the integrity 

and dependability of the subsequent analysis. The treatment was customized according to each 

variable's specific attributes to ensure that the data preprocessing steps were both appropriate 

and effective. 

Initial Feature Selection and data treatment: The first step in data preprocessing 

involved selecting the main features to be included in the thesis. This process was necessary as 

the initial dataset received from the company contained various data points that were unrelated 

to the thesis or overly specific, increasing the data dimensionality without contributing 

significantly to the thesis objectives. For instance, data related to postpaid customers, which 

were not relevant to the study focused on prepaid customers, were excluded. Similarly, specific 

datasets such as the division of SMS into on-net and off-net categories were simplified by 

including only one value since the other value could be derived by subtracting the overall SMS 
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count from the on-net category. After the initial feature selection, the next step involved 

addressing inconsistencies in data format and column names. Since the data spanned a three-

year period, inconsistencies in column names were bound to occur. To ensure consistency and 

compatibility, efforts were made to standardize the data format and resolve any discrepancies 

in column names. This process involved mapping and renaming columns to ensure uniformity 

throughout the dataset. 

Missing Value Treatment: The handling of missing values varied depending on the 

specific characteristics of each variable. For variables associated with revenue, usage, or 

recharge, the missing values were replaced with zeroes. It is safe to be done because these 

values were system-generated and a missing entry implied an absence of data during the 

observational period. Other variables with missing data were treated differently. For specific 

columns with rules governing missing value treatment, such as internet category based on the 

first application or website categories or the customer segmentation according to the average 

revenue, the rules were strictly followed for the missing value imputation. For several missing 

value with negligible row of data, the row simply dropped. For categorical variables with 

missing data, a new category, "No_data", was created, or the mode of the data was used. 

Outlier Detection and Treatment: Z-score analysis was applied for outlier detection in 

each feature. This method is a commonly used technique for identifying outliers by determining 

if a data point is a certain number of standard deviations away from the mean (Iglewicz & 

Hoaglin, 1993). Following the identification of outliers, a capping method was used to manage 

them. This involves limiting the maximum and minimum values for a variable to reduce the 

impact of extreme values. Furthermore, alternative outlier treatment methods such as 

Winsorizing and Binning were explored in this thesis. However, the results from both methods 

were similar and even lower compared to the capping method. As a result, the capping approach 

was adopted for outlier treatment.  

For the RAR prediction task, rows with RAR values identified as outliers were excluded 

from the analysis. This decision was based on the assumption that these outliers might represent 

unique situations that could potentially distort the normal image and affect the predictive 

model. By excluding these outliers, the subsequent analysis focused on more representative 

data, enhancing the reliability and accuracy of the RAR predictions.  

Category Simplification: To handle sparse categories and reduce the noise in the data, 

several values within some columns were grouped into a single category labeled 'others'. This 
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process helps to ensure a more manageable and robust data set minimizing overfitting due to 

rare categories. 

Encoding Categorical Variables: To prepare the dataset for ML algorithms, categorical 

variables were transformed via encoding techniques. Ordinal Encoding was utilized for 

features with binary outcomes, such as gender, while One-Hot Encoding (OHE) was applied 

to categorical variables with more than two possible values. This encoding approach ensures 

the algorithms can effectively interpret and utilize these features, thereby enhancing the 

accuracy and robustness of the resulting analysis. 

4.5 Feature Engineering 

Feature Engineering plays a pivotal role in ML model development as it will impact the 

predictive power of the model. On this thesis, this step is divided into two different parts, 

namely feature extraction and feature selection. Feature extraction process consisted of several 

steps aimed at generating new variables that could provide additional, meaningful information 

to the predictive models. And after the new features is extracted, we can proceed into the next 

step, feature selection. Feature selection aims to identify the most relevant features from the 

extracted set. This step helps to reduce dimensionality, remove noisy or irrelevant features, and 

focus on the subset of features that have the most impact on the target variable. Feature 

selection methods can be applied to the extracted features to identify the subset of features that 

best contribute to the predictive power of the model. 

The Subsection 4.5.1 describes the features extraction process, where it elaborates in 

the different new features extracted from the existing features and the rationale behind it. In 

the end of features extraction process, the total features that included in the features selection 

process amount to 265 features. And the subsequent subsection describes the features selection 

process. 

4.5.1 Feature Extraction 

The feature extraction step conducted in this thesis are: 

1. Binning/Grouping: To enhance the data representation and improve interpretability, 

specific variables, including age and region were subjected to binning or grouping. Age 

was categorized into three groups: young, adults, and seniors. This categorization 

allows for a more comprehensive analysis of the different age segments and their impact 

on the desired outcomes. Additionally, the region variable was binned into four distinct 
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tiers based on factors such as economic power and population size. This categorization 

provides a more nuanced understanding of regional differences and enables the 

exploration of their influence on the study variables. 

2. Days since Last Transaction: As models often struggle to interpret datetime data 

directly, the difference between the last transaction (either service usage or recharge) 

and the recording date was calculated. By converting these datetime values into a more 

digestible integer format, the model can more effectively utilize these features. 

3. Remaining Active Period: The remaining active period of a customer was calculated 

by subtracting the recording date from the grace period. Similar to the previous point, 

converting datetime data into integer values makes it easier for models to interpret the 

data. 

4. Service Usage: New columns were generated to track the frequency of customers 

purchasing voice, broadband, or SMS packages. This feature was engineered to capture 

customer price sensitivity. Regular customers who frequently purchase packages for 

their most-used services could be considered price-sensitive. On the other hand, regular 

customers who seldom purchase packages, even for their most-used services, might be 

less price-sensitive. 

5. Change in Recharge and Revenue: To capture the volatility in a customer's recharge 

and revenue patterns, the percentage change and standard deviation of both total 

revenue and individual service revenues were computed. This feature could offer 

insights into the stability of a customer's financial contribution and potentially signal 

impending churn. 

6. Revenue Contribution: The contribution of each revenue component to the total 

revenue was calculated. This could highlight the relative importance of each service in 

generating revenue, might provide insights into the revenue structure and customer’s 

habit. 

4.5.2 Feature Selection 

Following the creation of new features, the process moved on to the selection of the 

most relevant features for the predictive model. 

1. Dimensionality Reduction: High-dimensionality data can potentially overfit the model 

and introduce noise, thus compromising model performance. Therefore, certain 

columns that encapsulate high-dimensionality information, such as sub-district data, 

device data, and most-used application data, were eliminated. These high-
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dimensionality features were replaced with more generalized counterparts, such as 

region data in place of sub-district data and device type data instead of specific device 

data. This reduction of dimensionality serves to improve model interpretability and 

reduce computational complexity while preserving essential information for the model. 

2. Multicollinearity Analysis: To avoid redundancy and to improve the interpretability 

of the model, multicollinearity analysis was performed on the 265 remaining features. 

Features that exhibited correlation greater than 85% with any other feature were 

eliminated to prevent multicollinearity, which can adversely affect the performance and 

interpretability of some models. 

3. Correlation Analysis: Following the multicollinearity analysis, an evaluation of the 

remaining features occurred based on their correlation with the target variable. For the 

preliminary model training, the choice fell on the top 150 features demonstrating the 

highest correlation with the target. This selection stemmed from the consideration that 

data ranked beyond these features already exhibited very low correlation with the target 

(Appendix 2). Selecting a substantial quantity of 150 features ensures a wide array of 

influencers available for subsequent SHAP analysis, thus improving the potential for a 

more robust model. This method ensures that chosen features display a significant 

relationship with the target, enhancing their potential to contribute meaningfully to the 

predictive power of the model. 

4. Feature Importance Analysis: The final selection of features was made based on their 

importance as determined either from the embedded ML function or from the global 

importance of SHAP values. This step further refined the features to the top 10-20 that 

had the most significant impact on the model's performance. Using this feature 

importance analysis provides a robust method of selecting the most impactful variables 

and reducing overfitting, improving the generalizability of the predictive model. 

4.5.3 Feature Scaling 

Data scaling is an essential transformation applied during the data pre-processing stage 

to address the issue of disparate value ranges across features. When feature values exhibit 

significant variations, ML models may inadvertently assign more weight to features with higher 

average values, potentially biasing the model's predictions. To mitigate this bias, feature 

scaling techniques are employed to normalize the values and ensure fair treatment of each 

feature. 
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Two widely used feature scaling methods are min-max scaling and standardization 

(García et al., 2014). Min-max scaling rescales the feature values to a range between zero and 

one, effectively mapping the data to a uniform scale. On the other hand, standardization 

transforms the values to have a mean of zero and a standard deviation of one. While 

standardization is less sensitive to outliers, it may not be the most suitable choice when working 

with some ML algorithm (Sefara, 2019). Given that the dataset in this study contains either 

minimal outliers or has successfully addressed them during the pre-processing steps, the min-

max scaling approach has been deemed appropriate for the feature scaling process. 

In this thesis, the feature scaling process was carefully implemented within a pipeline 

framework to mitigate the risk of data leakage during model training. Data leakage refers to a 

situation where information from the test or validation set inadvertently leaks into the training 

set, leading to overly optimistic performance metrics and compromised model generalization 

(Kaufman et al., 2012). By incorporating feature scaling within the pipeline, the scaling 

transformation is applied to the training data while keeping the scaling parameters isolated 

from the test or validation data. This ensures that the scaling process is performed solely based 

on the training data distribution and characteristics. Consequently, when the model is evaluated 

using unseen data, the feature scaling is applied consistently, reflecting the real-world scenarios 

and enhancing the model's ability to generalize to new instances. 

4.6 Model Development 

This section details the construction of two ML models: the customer churn prediction 

model and the RAR prediction model. To ensure a comprehensive comparison of model 

performance, four distinct ML algorithms were employed: LR, RF, XGBoost, and Catboost. 

The selection of these algorithms was driven by their unique characteristics. LR, known for its 

simplicity and statistical efficiency, provided a baseline model for comparison. On the other 

hand, RF, XGBoost, and Catboost were chosen for their complexity and ensemble-based 

approach. RF belongs to the bagging/boostrapping algorithms, while XGBoost and Catboost 

utilize boosting learning algorithms. By comparing these different learning methods, valuable 

insights can be gained regarding their performance in the specific use case of this thesis. 

Prior to train the model, it is essential to address the data splitting strategy used to ensure 

reliable and robust model evaluation. In this thesis, a stratified sampling five-fold cross-

validation (CV) approach was adopted to split the data prior to training the models. 

Conventional five-fold CV entails randomly dividing the dataset into five equal-sized folds, 
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with each fold serving as a validation set once while the remaining four folds are allocated for 

training. However, in this thesis, the stratified sampling technique was employed to ensure the 

preservation of the class distribution within each fold. By doing so, it was ensured that each 

fold contained approximately the same proportion of samples from each class as the original 

dataset. This approach is crucial as it mitigates the risk of biased evaluation and ensures 

consistent assessment of the model's performance across different folds (Kohavi, 1995).  

Furthermore, while the available data initially consisted of monthly records, the model 

development process involved aggregating the data without considering the precise sequence 

of individual data points. In this context, splitting the data without explicitly accounting for the 

temporal order was deemed appropriate. This approach enabled the utilization of a larger and 

more representative dataset for model training and evaluation, enhancing the robustness and 

generalizability of the results. 

The model development process involved multiple steps. After having 5 set of data 

resulted from the 5-fold stratified CV, then the base model could be trained using the 150 

features selected during the feature selection phase. Further refinement of the model was 

carried out by deriving feature importance from the embedded ML function or the global 

importance of SHAP values to identify the final features for inclusion in the model. For Churn 

prediction model, Principal Component Analysis (PCA) was also considered in the 

dimensionality reduction and feature extraction method. However, the model performance 

result using PCA was still slightly worse compared to selection features using features 

importance, hence the final feature selection method was using feature importance. However, 

in the RAR prediction model, the method of using PCA was not considered to be implemented. 

It is because one of the final goals is also to understand the contribution of individual features 

to the RAR prediction model's performance, hence using PCA for feature extraction would not 

be appropriate. The final number of selected features was decided from a small experiment to 

decide the most optimal number of features.  

Subsequently, hyperparameter optimization was applied to enhance the performance of 

the model. The hyperparameter was optimized using the combination of random search and 

grid search. Random search was used as initial exploration of set hyperparameter to narrow 

down to a promising region, then grid search was employed to fine-tune the parameters within 

that region. This combination can be a good strategy to balance computational efficiency and 

optimization performance. The hyperparameter tuning process was carried out using both CPU 

(LR and RF) and GPU (XGB and Catboost) resources, leveraging their respective capabilities. 
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This allowed for efficient exploration and optimization of the hyperparameter space. The final 

set of hyperparameters used in this thesis is presented in Table 6. 

Table 6 Hyperparameter used for each model 

Model Algorithm Hyperparameter 

Churn 

LR max_iter = 1000, penalty = 'l1', C = 0.01, solver = 

'liblinear' 

RF n_estimators = 500, min_samples_split = 10, 

min_samples_leaf = 2, max_features = 'auto', 

max_depth = None, 

XGBoost subsample = 0.8, n_estimators = 500,  max_depth = 6, 

learning_rate = 0.05,  gamma = 0.1,   colsample_bytree 

= 0.8, 

Catboost n_estimators = 1000, learning_rate = 0.05, depth = 8, 

RAR – Beta Value 

Approach 

RF bootstrap = True, max_depth = None, max_features = 

auto, min_samples_leaf = 3, min_samples_split = 2, 

n_estimators = 500 

XGBoost colsample_bytree = 1.0, gamma = 0, learning_rate = 

0.05, max_depth = 9, n_estimators = 1000, subsample = 

1 

Catboost Depth = 9, learning_rate = 0.15, loss_function = MAE, 

n_estimators =  800,  

RAR – WACC and 

Churn Approach 

RF Bootstrap = True, max_depth = None, max_features = 

auto,  min_samples_leaf = 2, min_samples_split = 2, 

n_estimators = 300 

XGBoost colsample_bytree = 1.0, gamma = 0, learning_rate = 

0.05, max_depth = 9, n_estimators = 900, subsample = 

0.8 
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Catboost  n_estimators = 1100, depth = 9,  learning_rate = 0.08, 

loss_function = MAE, 

 

4.7 Model Evaluation and Validation 

The ML models developed in this thesis can be categorized into two types: the churn 

prediction model, which is a classification model, and the RAR prediction model, which is a 

regression model. Each model requires specific evaluation metrics tailored to its respective 

task. 

For the churn prediction model, the evaluation focuses on two primary metrics: 

accuracy and the F1 score. Accuracy measures the overall correctness of the model by 

calculating the proportion of correct predictions out of all predictions made. However, because 

the churn model involves identifying potential churners, precision and recall values are also 

crucial. Therefore, the F1 score, which is the harmonic mean of precision and recall, is 

employed as an additional measure. A high F1 score indicates a well-balanced performance 

between precision (the ratio of true positive results to the sum of true positive and false positive 

results) and recall (the ratio of true positive results to the sum of true positive and false negative 

results), providing a comprehensive understanding of the model's performance in churn 

prediction. 

On the other hand, the evaluation of the RAR prediction model utilizes MAPE and 

RMSE as the main metric. MAPE represents the average of the absolute percentage errors, 

allowing for an intuitive comprehension of error rates in percentage terms. However, MAPE 

treats all data points equally and may not adequately capture the impact of high variance in a 

small subset of data. In contrast, RMSE provides information on the average magnitude of 

prediction errors, placing higher emphasis on large errors due to its squaring operation. The 

other metric also evaluated in the model, such as: MAE and 𝑅2. 

To ascertain the robustness of the final model, various splitting strategies were 

examined to assess the model's performance under different conditions. These strategies 

utilized different split ratios ranging from 0.5 to 0.9. In addition, the final model's performance 

was evaluated using 5-fold CV and group-split CV. Given the regression nature of the RAR 

model, a five-fold CV (without stratified sampling) suffices. Furthermore, group-split CV was 

applied to supplement the evaluation process, with the dataset divided according to region_tier. 
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To further assess model performance, a learning curve analysis was conducted by training the 

model with varying amounts of training data. 

Furthermore, the model validation in this thesis will employ XAI techniques, including 

Feature Importance, SHAP and LIME These methods enable a comprehensive understanding 

of the specific contributions of features to the model predictions, which is crucial in this 

context. Feature Importance and SHAP provide insights into the variables with the greatest 

influence on predictions from a global perspective. Furthermore, SHAP and LIME provide 

granular, localized insights from individual data points, providing a deeper understanding of 

the model's behavior. For local explanations in approach A, two customers were evaluated: 

sample X, representing customers who stayed, and sample Y, representing those who churned. 

Similarly, in approach B, two distinct customers were used: sample X, which denotes 

customers with a negative beta value, and sample Z, which symbolizes those with a positive 

beta value. It's worth noting that sample X in both approaches represents the same customer. 

By utilizing these XAI techniques, the correlation between the most impactful features 

identified by the models and the elements involved in the RAR calculation could be established, 

validating the model from both performance and theoretical perspectives. 
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5 Results and Discussions 

5.1 Probability of Customer Churn Model 

The approach A of this thesis use the probability of customer churn model, hence prior 

the RAR calculation, the churn model will be developed first. As mentioned in the previous 

chapters, the churn model will be developed following the ML pipeline and using four different 

algorithms (LR, RF, XGB and Catboost). Figure 13 illustrates the average results of a 5-fold 

cross-validation for evaluating the model's performance across different numbers of features. 

The average accuracy and average F1 score were computed to assess the impact of feature 

selection on the model's predictive capabilities. 

The findings reveal a consistent pattern of improvement in both average accuracy and 

average F1 score as the number of features increased. From 5 to 9 features, there were 

incremental improvements observed, with average accuracy ranging from 0.835 to 0.847 and 

average F1 score ranging from 0.821 to 0.844. Afterwards, the model improvement is minimal 

and had notable performance improvements at 18 features, reaching a value of accuracy 0.852, 

and average F1 score, reaching a value of 0.848. Hence, the number of features selected on the 

model development is 18 features.  

 

Figure 13 Total feature vs model performance for probability of churn model (5-fold CV) 
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5.1.1 Model Performance Evaluation Metric 

Table 7 presents the performance results of each model. The logistic regression model, 

known for its simplicity, allowed for direct optimization of hyperparameters using grid search. 

When evaluating feature selection, the analysis revealed negligible differences in performance 

between utilizing all available features and selecting only the top 18, accuracy and ROC-AUC 

scores reduced by a mere 0.01. Interestingly, despite the grid search optimization, no significant 

improvements in the model's overall performance were observed. 

Table 7 Probability of Customer Churn: Model Performance (5-fold CV) 

Model & Model Development Stage Accuracy Recall Precision 
F1 

Score 

ROC-

AUC 

Logistic Regression      

Initial model and all features 0.80 0.77 0.81 0.79 0.80 

Feature selection 0.79 0.70 0.86 0.77 0.79 

Grid search hyperparameter tuning 0.79 0.70 0.86 0.77 0.79 

Catboost      

Initial model and all features 0.853 0.832 0.870 0.850 0.853 

Feature selection 0.852 0.828 0.869 0.848 0.852 

Random search hyperparameter tuning 0.854 0.847 0.859 0.853 0.854 

Grid search hyperparameter tuning 0.856 0.844 0.865 0.854 0.856 

XGBoost      

Initial model and all features 0.890 0.886 0.894 0.890 0.890 

Feature selection 0.889 0.884 0.893 0.889 0.889 

Random search hyperparameter tuning 0.888 0.887 0.890 0.888 0.888 

Grid search hyperparameter tuning 0.892 0.890 0.893 0.892 0.892 

Random Forest      

Initial model and all features 0.799 0.722 0.854 0.782 0.799 

Feature selection 0.796 0.695 0.871 0.773 0.796 

Random search hyperparameter tuning 0.789 0.653 0.896 0.756 0.789 

Grid search hyperparameter tuning 0.797 0.694 0.875 0.774 0.797 

The performance of the Catboost algorithm surpasses that of the logistic regression 

model significantly, with 0.05 difference in accuracy, recall, F1 Score and ROC-AUC score 

between them. When considering only the top 18 features in Catboost, the accuracy and F1 

score remain highly similar with using all of the features, with only a marginal decrease of 

0.001. The hyperparameter optimization process further enhances the model's performance, 

although the improvements are relatively small. Notably, the final Catboost model exhibits 

well-balanced recall and precision values, with a minor difference of only 0.02 between them, 

resulting in a high F1 score.  
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On the other hand, the performance of XGBoost model outperforms both logistic 

regression and Catboost models by a significant margin, with the all the metric almost reaching 

0.9. Notably, the recall and precision metrics exhibit stability, with minimal differences 

observed across different stages of model development. Additionally, the grid search 

hyperparameter optimization process proves effective in enhancing the performance of all 

metrics in the final model.  

The RF algorithm yields results similar to logistic regression, with the final model 

achieving an accuracy of less than 0.8. Moreover, when selecting only the top 18 features, there 

is a significant reduction in the recall value, while the precision value shows only slight 

improvement. Similar to logistic regression, the final Random Forest model performs slightly 

worse in terms of metrics compared to the initial model using all available features. 

5.1.2 The Best Model 

Among the evaluated models, the XGBoost model consistently demonstrated superior 

performance in terms of accuracy, recall, precision, F1 score, and ROC-AUC. Additionally, 

the grid search hyperparameter optimization further improved the model's performance across 

all metrics and resulted in a balanced outcome with high accuracy and F1 score. The final 

model used in this thesis is the XGBoost model, which achieved an accuracy and F1 score of 

0.892. Detailed results of the best model, including the confusion matrix and ROC-AUC curve, 

are presented in Figure 14.  

 

(a)           (b) 

Figure 14 Customer churn prediction model: (a) Confusion matrix and (b) ROC-AUC curve 
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To gain insights into the factors driving customer churn, a feature importance analysis 

using the SHAP value was conducted, and the results are shown in Figure 15. The analysis 

revealed that the most important feature in predicting the probability of customer churn is the 

"brand_A" feature, indicating the type of SIM card brand used by the customer. The second 

and fourth most important features are the standard deviation of recharge transactions and SMS 

revenue. Interestingly, among the top 18 features, a significant proportion (10 out of 18) are 

related to the customer's region. These region-related features include "region_tier," which 

represents the economic power and population of the region, as well as specific regions 

identified by "region_lacci_xx." Additionally, the feature "region_lacci_nunique" indicates the 

number of different regions where the customer resided during the observation period. 

 

Figure 15 Customer churn prediction model: SHAP Value 

5.2 RAR Calculation 

5.2.1 Approach A 

The approach A for calculating RAR incorporates the probability of churn obtained 

from the previous model and the WACC values observed during the observation period. Three 

different WACC values are considered: the minimum WACC value (approach A.1), the median 

WACC value (approach A.2), and the maximum WACC value (approach A.3). The statistical 
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distribution of the actual total revenue and the calculated RAR values is presented in Table 8 

and the histogram of calculated RAR values is presented in Figure 16. To ensure a reliable 

distribution, any customers with outlier RAR values were excluded from the dataset, resulting 

in a remaining sample size of 197,692 customers. The distribution in Table 8 also showed that 

the RAR values are consistently lower than the total revenue, as expected. Additionally, as the 

WACC value increases, the RAR values decrease. This relationship is anticipated because the 

discount rate used to calculate RAR is highly correlated with the WACC value (as defined in 

Equation 4.1). Consequently, a higher WACC value leads to a higher discount rate, resulting 

in lower RAR values. 

Table 8 Approach A: Descriptive statistic of Calculated RAR Result 

 

 

 

Figure 16 Approach A: Distributed RAR value 

  

Total 

Revenue 

RAR value  

WACC min WACC mid WACC max 

count 197,692 197,692 197,692 197,692 

mean 2,683,918 2,255,263 2,195,887 2,190,303 

std 2,144,940 1,855,696 1,823,163 1,820,201 

min 2,550 1,697 1,588 1,577 

25% 1,110,838 903,632 870,937 867,880 

50% 2,113,714 1,738,899 1,682,397 1,676,812 

75% 3,580,973 3,024,572 2,948,474 2,940,945 

max 17,724,060 10,821,540 10,821,000 10,820,950 
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Figure 17 displays a scatter plot illustrating the relationship between total revenue (x-

axis) and the calculated RAR value (y-axis), with each dot representing a customer in the 

dataset. The color coding of each dot represents the impact of probability of churn. The plot 

reveals that higher probabilities of churn correspond to lower RAR values. This observation 

aligns with the expectations outlined in Equation 4.1, highlighting the influence of both the 

WACC and the probability of churn on the RAR calculation and their significance in the 

financial assessment of customer revenue. Furthermore, the scatter plot demonstrates that 

customers with high probabilities of churn are distributed across a wide range of total revenue 

values. This finding is further emphasized in the box plot (Figure 18), which depicts the 

distribution of RAR values across different bins of probability of churn. Each bin exhibit 

similar distribution of RAR values, indicating that the impact of churn probability on RAR is 

consistent across various segments of customers.  

 

Figure 17 Approach A: Scatter plot of Total Revenue vs RAR Value 

 

Figure 18 Approach A: Boxplot of RAR value to Probability of Churn 

The impact of probability of customer churn to RAR value is more prominent in the 

Figure 19. As the probability of churn decreases, the ratio of RAR to total revenue increases. 

These visualizations provide valuable insights into the relationship between total revenue, 
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probability of churn, and RAR, offering a comprehensive understanding of how these factors 

interplay in the assessment of customer revenue. 

 

Figure 19 Approach A: Distribution of RAR value to total Revenue Ratio and the Probability 

of Churn 

5.2.1.1 Statistical Analysis to Compare RAR Value 

According to the findings presented in Table 8 and Figure 16, the calculated RAR 

values using three different WACC values exhibit similar results. A statistical test is needed to 

determine the presence of statistically significant differences in the calculated RAR values 

across the three methods within approach A. The ANOVA is an appropriate test for comparing 

the means of multiple groups. However, the assumption of homoscedasticity (equal variances) 

required for traditional ANOVA is not met in the data. 

To assess the assumption of homogeneity of variance, both Levene's and Bartlett's tests 

were conducted. The results of these tests indicated p-values of 9.36e-08 and 1.99e-41, 

respectively, both significantly lower than the standard significance level of 0.05. This suggests 

evidence against the assumption of equal variances in the data. As a result of the detected 

heteroscedasticity, a Welch's ANOVA was performed. Welch's ANOVA does not assume 

equal variances and is therefore more suitable for our data. The Welch's ANOVA yielded a p-

value of 2.85e-21, which is significantly below the 0.05 threshold. This indicates that there are 

statistically significant differences in the RAR values obtained from the three methods within 

approach A. 

5.2.2 Approach B 

In the results for Approach B, there's a detailed explanation of how RAR is calculated, 

based on the volatility of revenue indicated by the Beta Value. Table 9 displays the statistical 

distribution of these RAR values, highlighting a significant difference from Approach A. In 
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Approach B, the RAR values can be higher than the actual total revenue. This situation is 

expected as the discount rate used in this approach could have both positive or negative value. 

The discount rate is the result of the expected return of all customers in the company multiplied 

by the Beta value, as depicted in Equation 4.2. The expected return from all customers in the 

company is -0.013, hence negative beta value will lead to positive discount rate and positive 

beta value lead to negative discount rate and produced the higher RAR value compared to the 

actual total revenue. 

Table 9 Approach B: Descriptive statistic of Calculated RAR Result 

 

 

 

 

 

 

 Figure 20 provides insights into the distribution of Beta values, the observed beta value 

is ranging from -42 until 10. However, on scatter plot that very small amount of customer with 

beta value less than -10 and showing that the majority of customers have Beta values ranging 

from -10 to 5. The histogram plot emphasizes the relationship between Beta values and the 

RAR-to-total-revenue ratio, demonstrating that higher Beta values correspond to higher ratios. 

Additionally, the boxplot further illustrates that higher Beta values are associated with higher 

calculated RAR values. 

 

(a)                      (b)             (c) 

 Total Revenue RAR Value 

count  194,464   194,464  

mean  2,702,213   2,809,040  

std  2,164,500   2,279,828  

min  2,550   1,652  

25%  1,117,476   1,131,818  

50%  2,125,282   2,185,314  

75%  3,601,637   3,765,111  

max  23,360,000   13,277,820  
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Figure 20 Approach B: (a) scatter plot, (b) histogram, (c) boxplot of RAR value to total revenue 

and beta value 

5.3 RAR Prediction Model: Approach A.1 (Minimum WACC value) 

Figure 21 shows the model performance, as measured by MAPE and RMSE, for each 

number of features used in the model. From the Figure 20, it could be seen that as the number 

of features increased from 5 to 9, the average MAPE exhibited unstable performance, with 

minor fluctuations observed. However, from 9 features onwards, there was a consistent 

improvement in the average MAPE, indicating enhanced predictive accuracy. Notably, the 

improvement became more substantial as the number of features increased from 9 to 17, 

reaching its lowest point at 23.45% for 17 features. In contrast, the average RMSE 

demonstrated a continuous improvement as the number of features increased. This suggests 

that incorporating additional features into the model resulted in a better fit to the observed data, 

thereby reducing the overall prediction error. The average RMSE consistently decreased from 

591,493 for 5 features to 557,624 for 17 features. 

The final selected number of features was determined to be 17, as this configuration 

offered the most effective balance between predictive accuracy and model complexity. While 

the average RMSE continued to improve beyond 17 features, the magnitude of improvement 

became marginal. This indicates that incorporating additional features beyond 17 did not lead 

to substantial gains in reducing the prediction error. On the other hand, the average MAPE 

demonstrated a consistent improvement until 17 features were included. This suggests that the 

selected features effectively captured the underlying patterns and relationships in the data, 

resulting in enhanced predictive accuracy. Therefore, considering both the marginal 
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improvement in RMSE beyond 17 features and the consistent improvement in MAPE, the 

decision was made to select 17 features as the optimal configuration for the model. 

 

Figure 21 Approach A.1: Number of feature vs model performance (5-fold CV) 

5.3.1 Model Performance Evaluation Metric 

Table 10 displays the performance metrics of each model during the model 

development stage. Notably, the Catboost algorithm consistently demonstrated strong 

performance throughout the modeling process. The initial model achieved an impressive 𝑅2 

value of 0.91 and a MAPE of 23.36%. After feature selection, the model's performance 

experienced minimal degradation, with the 𝑅2 value remaining at 0.91 and the MAPE 

decreasing slightly to 23.64%. In the final model, significant improvements were observed 

across all metrics, except for RMSE, which exhibited a slight increase of 10000. The MAPE 

saw a notable reduction of 4%, indicating enhanced accuracy and precision.  

Table 10 Approach A.1: Model performance (5-fold CV) 

Model & Model Development Stage MAPE MAE RMSE 𝑹𝟐 

Catboost     

Initial model and all features 23.36 358,254 548,076 0.91 

Feature selection 23.64 362,555 555,542 0.91 

Random search hyperparameter tuning 19.51 355,476 560,046 0.91 

Grid search hyperparameter tuning 19.38 353,781 558,315 0.91 

XGBoost     

Initial model and all features 23.74 369,528 565,848 0.91 

Feature selection 23.66 371,903 569,962 0.91 
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Random search hyperparameter tuning 22.45 363,472 559,686 0.91 

Grid search hyperparameter tuning 21.94 360,894 557,307 0.91 

Random Forest     

Initial model and all features 23.13 379,640 584,747 0.9 

Feature selection 23.09 381,036 585,703 0.9 

Random search hyperparameter tuning 22.58 379,528 584,432 0.9 

Grid search hyperparameter tuning 22.56 378,131 582,710 0.9 

 

Similarly, the XGBoost algorithm exhibited strong performance in the initial model, 

with a MAPE value of 23.74% and an 𝑅2 value of 0.91, which were comparable to the 

performance of the Catboost algorithm. As the model development progressed, further 

improvements were observed in all metrics. The MAPE saw a reduction of 2%, indicating 

enhanced accuracy and precision in the final model. Additionally, the RMSE decreased by 

7500, indicating a better fit of the model to the data. The 𝑅2 value remained consistently high 

at 0.91 throughout the modeling process. 

The Random Forest model exhibited a strong initial performance, achieving the best 

MAPE value among the evaluated models. However, it also had the highest initial RMSE. 

Throughout the model development process, the improvements were relatively minor. The 

MAPE showed a marginal improvement of only 0.6%, the RMSE decreased by 3000 units and 

the 𝑅2 value stayed at 0.9. 

In summary, the Catboost algorithm exhibited the best overall performance, delivering 

the lowest MAPE in the final model. The XGBoost algorithm also demonstrated strong 

performance with improvements across all metrics. On the other hand, the Random Forest 

model showed a strong initial performance but had limited advancements during the model 

development process. Hence, Catboost was selected as the final model due to its balanced 

performance in all metrics. 

5.3.2 Model Interpretation and Feature Importance Analysis 

5.3.2.1 Global Explanation 

To further evaluate and validate the model, feature importance analysis was conducted 

using both the feature importance function embedded in the model and the global interpretation 

of SHAP values. The results are presented on Figure 22 and revealed that the top 9 most 

important features were consistent across both methods. The most influential feature, as 

identified by the feature importance method, was "poin," which represents the total loyalty 
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points received by the customer from past transactions. This feature had the highest importance 

value and exerted a significant impact on the model's predictions. It was found that the 

importance of "poin" was more than twice that of the second most important feature, which 

was the probability of churn. However, when considering the SHAP global importance, the 

dominance of the "poin" feature on the prediction results was not as pronounced as indicated 

by the feature importance. The SHAP values provided a comprehensive understanding of the 

feature's impact, specifically illustrating how different feature values contribute to the predicted 

RAR values. For example, the SHAP values revealed that higher values of "poin" were 

associated with higher RAR values, suggesting a positive relationship between customer 

loyalty points and revenue. 

The probability of churn was identified as the second most important feature in both the 

feature importance and SHAP analyses. This emphasizes its significant role in predicting churn 

behavior. Additionally, the average revenue over the last 3 months ("avg_3m") was ranked as 

the third most important feature, highlighting the importance of recent revenue trends in 

understanding customer churn. 

 

      (a) 
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      (b) 

Figure 22 Approach A.1: (a) Feature Importance and (b) SHAP value 

5.3.2.2 Local Explanation 

To further evaluate the impact of each feature on the prediction value, a more detailed 

analysis was conducted using SHAP waterfall plots and LIME. These methods provide insights 

into the contribution of each feature for individual instances, allowing for a more granular 

understanding of their influence on the predictions. A sample of data that represent stayed 

customer, sample X, was selected for this analysis, and the results are presented in Figure 23. 

From both SHAP and LIME, the probability of customer churn was identified as the most 

influential feature for the selected instances. Both models indicated that an increase in the 

probability of churn had a positive impact on the predicted result. Additionally, there are other 

similar features listed as the top eight most influential feature according to both model, such 

as: “hvc_tier_gold”, “avg_3m_pct_change” and “poin”. However, it is important to note that 

some features showed different impact directions between the two models. For example, the 

“hvc_tier_gold” feature had a positive impact according to SHAP, but a negative impact 

according to LIME. 
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(a) 

 

 

(b) 

Figure 23 Approach A.1: (a) SHAP value and (b) LIME value for data sample X 

To provide more comprehensive perspective, another data sample, sample Y, was 

selected for comparison. As sample Y represents instances with a high probability of churn, 

the analysis aimed to uncover distinct patterns in feature importance that presented in Figure 

24. In contrast to sample X, the top five features based on SHAP values showed negative 

contributions to the predicted value. Specifically, the most important feature, "poin," had a 

negative contribution of 377,204, followed by "prob_churn" with a high negative contribution 

of 326,204 to the predicted result. This different could be resulted due to the different value of 

each feature and the interaction between them. According to LIME, the most important feature 

for sample Y was "hvc_tier_Gold," which made a positive contribution of 366,469, followed 

by "avg_3m_pct_change" with a negative contribution of 250,855 to the predicted RAR value.  
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(a) 

 

(b) 

Figure 24 Approach A.1: (a) SHAP value and (b) LIME value for data sample Y 

5.3.2.3 Dependence Plot 

Dependence plot analysis using SHAP also conducted to find the interaction between 

the features and SHAP values. For this analysis, “prob_churn” was selected as the main feature 

and the other top five features, such as 'poin’, 'avg_3m_std', 'avg_3m' and 'total_revenue', was 

selected as the secondary feature. Figure 25 displays the dependence plots, revealing notable 

insights into the relationship between the probability of customers’ churn and SHAP value. It 

becomes evident that there is a negative correlation between churn probability and the SHAP 

value. As the probability of churn increases, the corresponding SHAP value contribution to 

predicted result is decreases. This finding aligns with the previously discussed correlation 

between churn probability and RAR in Subsection 5.2.1. 
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Furthermore, the interaction between the "prob_churn" value and other features 

revealed distinct impacts on the SHAP values. It was observed that a range of "prob_churn" 

values could result in the same SHAP value contribution. To delve deeper into this 

phenomenon, the interaction with another feature was analyzed.  From the interaction with 

“poin” feature, it could be seen that a low probability of churn with high “poin” value tend to 

have higher SHAP value contribution compared to low probability of churn with low “poin”. 

However, when the churn probability is high and the “poin” value is high, the SHAP value 

contribution decreases. This pattern is also found across the dependence plots for the other 

selected secondary features, namely "avg_3m_std," "avg_3m," and "total_revenue". It is 

understandable as the “poin” feature represents the historical spending of the customer, and the 

other features could be considered as the other representation of customer spending. Therefore, 

all the selected secondary features exhibit similar interaction patterns with the probability of 

churn. 

 

Figure 25 Approach A.1: SHAP Dependence plot of Probability of Churn 

5.3.3 Model Validation 

To assess the robustness of the final model, various splitting strategies were employed, 

and the results are presented in Table 11. The table demonstrates that slight variations in 
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performance metrics occur as the split ratio changes from 50:50 to 90:10, but overall, the 

model's performance remains consistent. Notably, all metrics exhibit similar performance with 

only negligible differences. The best MAPE and MAE were observed in the 80:20 ratio, while 

the best RMSE was obtained in the 70:30 ratio. Furthermore, the 𝑅2 values consistently 

remained high at 0.91 across all splitting strategies. These findings indicate that the model 

exhibits robustness and stability across different split ratios, demonstrating its ability to 

generalize well to unseen data. 

Table 11 Approach A.1: Final Model Performances Across Different Split strategy 

Split Ratio MAPE MAE RMSE 𝑹𝟐 
50:50 19.62 356,987 561,280 0.91 

60:40 19.5 355,546 560,821 0.91 

70:30 19.32 353,537 559,225 0.91 

80:20 19.27 352,344 561,539 0.91 

90:10 19.36 354,396 562,349 0.91 

 

Furthermore, the final model also evaluated using 5-fold CV to give detailed 

understanding of the model validation process and further ensure that the model is not 

overfitted and has a stable performance. The results are presented at the Table 12 below. As 

can be observed, the performance on all evaluation metrics is reasonably consistent across the 

five folds for both the training and test sets. This indicates that the final model is not overfitting 

as it performs similarly well on unseen data as on the training data. Additionally, the stability 

of the model is evident, as the performance metrics do not fluctuate significantly across the 

different folds. This suggests that the model's performance is not heavily reliant on any 

particular subset of the data, demonstrating its generalizability and robustness. 

Table 12 Approach A.1: Final Model 5-fold Cross Validation Result 

Fold 
Train Test 

MAPE MAE RMSE 𝑹𝟐 MAPE MAE RMSE 𝑹𝟐 

1 15.87 290,105 474,393 0.93 19.38 352,691 560,862 0.91 

2 15.94 290,944 476,666 0.93 19.28 352,339 552,498 0.91 

3 15.74 289,685 476,449 0.93 19.30 354,723 556,717 0.91 

4 15.88 288,910 472,150 0.94 19.39 357,390 567,578 0.91 

5 15.88 290,527 475,742 0.93 19.54 351,761 553,919 0.91 

Avg 15.86 290,034 475,080 0.93 19.38 353,781 558,315 0.91 
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 The group split method was also employed to examine the model's performance under 

different splitting strategies, with results presented in Table 13. In line with expectations from 

traditional cross-validation strategies, the model's performance metrics on the training set were 

better than those on the test set. While there were slight fluctuations in the test set results, these 

were not significant. The best MAPE on the test set was achieved by test_group 4, with a rate 

of 18.94%. The worst MAPE was seen in test_group 3, with a rate of 21.38%. These 

fluctuations may be attributed to the varied characteristics of data across regions. For instance, 

region tier 3, which corresponds to the middle-low region, could possess distinct patterns that 

are not as easily captured by the model trained primarily on data from other regions. 

Table 13 Approach A.1: Final Model Group-Split Result 

Test Train Test 

group MAPE MAE RMSE 𝑹𝟐 MAPE MAE RMSE 𝑹𝟐 

1 15.84 284,610 467,069 0.94 19.76 402,326 622,598 0.9 

2 15.48 289,085 475,847 0.94 19.09 338,876 536,929 0.91 

3 15.28 289,954 474,848 0.94 21.38 341,684 541,700 0.91 

4 16.17 286,981 467,675 0.93 18.94 518,462 755,218 0.88 

Avg 15.69 287,658 471,360 0.94 19.79 400,337 614,111 0.90 

 

To further evaluate the model's learning efficiency and robustness, the learning curves 

to evaluate the model performances according to the number of training data used. The metric 

used in the learning curve is RMSE and the result is presented at Figure 26 below. It could be 

seen that the training scores increase with the size of the training set, while the 

Validation_scores decrease. This trend reflects the model's decreasing ability to fit the training 

data perfectly (as indicated by the increasing training error), but also its improved 

generalization to unseen data (as shown by the decreasing validation error). Furthermore, the 

gap between the training and validation scores is relatively small, especially at larger training 

sizes. This reinforce the notion that the model isn't overfitting as it's generalizing well to unseen 

data. 
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Figure 26 Approach A.1: Final Model Learning Curve Analysis 

To validate the model's outputs, a comparative analysis was conducted between the 

impactful features identified by the ML model and the variables emphasized in traditional 

calculation methods. This comparative analysis enhances the assessment of the model's 

coherence and reliability in recognizing essential features. As per Equation 4.1, the discount 

rate used in RAR calculation for Approach A is derived from the WACC value multiplied by 

the customer churn probability and divided by the market's expected churn probability. Thus, 

the customer churn probability is a crucial feature in RAR calculation using the traditional 

method. Consistently, the final model also identifies the churn probability as an important 

feature, where it ranked second in importance according to both feature importance and SHAP 

global explanations. Furthermore, the local explanation from two randomly selected data 

samples also identified churn probability as the most significant feature as per both SHAP and 

LIME. Figure 24's dependence plot more clearly demonstrates the relationship between churn 

probability and SHAP value, revealing a negative correlation. As churn probability increases, 

the corresponding SHAP value contribution to the predicted RAR decreases and can even turn 

negative. This finding aligns with the traditional RAR calculation method, as a higher churn 

probability leads to a higher discount rate, resulting in a lower calculated RAR value. 

Additionally, the final model other most important features, “point”, “avg_3m_std”, 

“avg_3m”, “total_revenue” and “total_revenue_std”, strengthens its coherence between the 

model with traditional calculation methods. Those features represent various aspects of 

customer spending or the revenue derived from the customer. This aligns perfectly with the 

formula used to calculate RAR (Equation 3.1), where the RAR is determined by the sum of the 

customer's revenue throughout the observation period, divided by the discount rate raised to 
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the power of the period. Moreover, two of these features, “avg_3m_std” and 

“total_revenue_std”, represent the volatility of customer spending, a factor that is bound to 

occur given the six semesters of observations. Such volatility inevitably affects the calculated 

RAR revenue, and the final model captures this by ranking these features among the most 

important. 

5.4 RAR Prediction Model: Approach A.2 (Median WACC value) 

The graph presented in Figure 27 portrays the association between the number of 

features and their respective performances in the feature selection process for Approach A.2. 

Similar with the result from previous approach, the average MAPE displays fluctuations when 

the number of features is increased from 5 to 9 and consistently improve afterwards. The MAPE 

reached 23.85% when the total features are 18 and then the improvement slow smaller change. 

In contrast, the average RMSE demonstrates a continuous improvement as the number of 

features increases. This suggests that the incorporation of additional features contributes to a 

better fit of the model to the observed data, resulting in reduced prediction errors. The average 

RMSE consistently decreases from 587,396 for 5 features to 545,709 for 18 features.  

The selected number of features for the final model in this approach was 18 features. 

Although the larger number of features could yield improved model performances, a close 

examination of the graph reveals that the marginal improvement for the number of features 

beyond 18 are minimal. Hence, based on the observed trend, it can be inferred that 18 features 

represent the most optimal number for this particular model. 

 

Figure 27 Approach A.2: Number of feature vs model performance (5-fold CV) 
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5.4.1 Model Performance Evaluation Metric 

The Table 14 presents the performance metrics of the models at different stages of 

model development. The Catboost algorithm consistently demonstrates strong performance 

across all metrics. In the initial model using all features, Catboost achieves a MAPE of 23.21%, 

an MAE of 349,567, an RMSE of 535,188, and an 𝑅2 of 0.91. Through feature selection, the 

model's performance remains stable, with slight variations in the performance. Furthermore, 

hyperparameter tuning using random search leads to improved performance, resulting in a 

lower MAPE of 20.33%, an MAE of 353,120, an RMSE of 556,118, and a slightly lower 𝑅2 

of 0.90. The final model, after grid search hyperparameter tuning, exhibits the best MAPE of 

19.61%, the lowest MAE of 346,318, an RMSE of 547,301, and an 𝑅2 of 0.91. 

Table 14 Approach A.2: Model Development (5-fold CV) 

Model & Model Development Stage MAPE MAE RMSE 𝑹𝟐 

Catboost     

Initial model and all features 23.21 349,567 535,188 0.91 

Feature selection 23.85 355,790 545,710 0.91 

Random search hyperparameter tuning 20.33 353,120 556,118 0.90 

Grid search hyperparameter tuning 19.61 346,318 547,301 0.91 

XGBoost     

Initial model and all features 24.21 364,263 559,590 0.904 

Feature selection 23.90 365,209 561,521 0.904 

Random search hyperparameter tuning 22.91 359,090 551,957 0.902 

Grid search hyperparameter tuning 22.21 353,787 548,270 0.91 

Random Forest     

Initial model and all features 24.52 373,964 577,500 0.9 

Feature selection 24.47 375,088 577,966 0.9 

Random search hyperparameter tuning 24.44 374,299 576,814 0.9 

Grid search hyperparameter tuning 23.59 372,164 574,789 0.9 

 

In comparison, the XGBoost algorithm also demonstrates competitive performance. 

Similar to Catboost, XGBoost achieves consistent performance across the different stages of 

model development. The initial model using all features yields a MAPE of 24.21%, an MAE 

of 364,263, an RMSE of 559,590, and an 𝑅2 of 0.904. Through feature selection and 

hyperparameter tuning, the model's performance remains relatively stable, with slight 

improvements observed in the MAPE (23.90% and 22.91%, respectively), MAE, RMSE, and 

𝑅2.  
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In contrast, the Random Forest algorithm demonstrates comparatively lower 

performance across all model development stages. The initial model using all features yields a 

MAPE of 24.52%, an MAE of 373,964, an RMSE of 577,500, and an 𝑅2 of 0.9. Despite feature 

selection and hyperparameter tuning, the model's performance shows minimal improvement, 

resulting in a final model with a MAPE of 23.59%, an MAE of 372,164, an RMSE of 574,789, 

and an 𝑅2 of 0.9. 

Overall, Catboost consistently demonstrates the best performance across all model 

development stages, with the lowest MAPE, RMSE, and highest 𝑅2 values. XGBoost and 

Random Forest exhibit comparable performance but fall slightly behind Catboost in terms of 

the overall model performance. This resulted in Catboost also selected as the final model for 

this particular approach. 

5.4.2 Model Interpretation and Feature Importance Analysis 

5.4.2.1 Global Explanation 

Feature importance analysis was conducted on the best model using two methods: the 

embedded feature importance method within the model and the SHAP explanation using SHAP 

smmary plot. The results that presented in Figure 28 revealed consistent findings with the 

previous approach. The most important feature, "poin", exhibited a feature importance value 

more than double that of the second most important feature, "prob_churn". Similarly, the third 

most important feature, "avg_3m", had less than half the feature importance value of 

"prob_churn". The evaluation using SHAP values corroborated the findings from the feature 

importance method. The list of most important features remained similar, with "poin" retaining 

its position as the most influential feature. However, the difference in SHAP value impact 

between the most important feature and the other top four features is not as significant as the 

difference observed in feature importance. 
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(a) 

 

(b) 

Figure 28 Approach A.2: (a) Feature Importance and (b) SHAP value 

5.4.2.2 Local Explanation 

To gain a more detailed understanding of the impact of each feature, a local explanation 

was performed using both SHAP value and LIME. The same data sample utilized in the 

previous approach was selected for this analysis. The results from both SHAP value and LIME, 

which presented in Figure 29, consistently demonstrated that the top four features exhibited a 
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similar impact direction to the previous approach, although the magnitude of the impact varied. 

Notably, the most important feature according to both SHAP value and LIME was 

"prob_churn," which had a positive impact on the predicted result. However, the remaining 

features display varying rankings and even different impact directions between SHAP value 

and LIME. For instance, the second most important feature according to SHAP value, 

"avg_3m", is not among the top eight most important features according to LIME. In contrast, 

LIME identifies "avg_3m_pct_change" as the second most important feature, which is closely 

related to "avg_3m", while giving different impact direction with SHAP value. Moreover, 

despite "poin" being identified as the most important feature according to SHAP global 

explanation, it ranks lower in importance according to SHAP value and does not even appear 

among the top eight important features according to LIME for this specific instance.  

 

(a) 

 

(b) 

Figure 29 Approach A.2: (a) SHAP value and (b) LIME value for data sample X 
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Furthermore, data sample Y was used as the second sample for comparison. 

Interestingly, all the top features had negative contributions to the predicted SHAP values. 

According to SHAP, the most important feature was "prob_churn" which negatively 

contributing 380,500, followed by "poin" with a negative contribution of 272,048. Conversely, 

according to LIME, the most important feature was "avg_3m_pct_change" with a negative 

contribution of 444,660, while "hvc_tier_Gold" made a positive contribution of 412,575. 

Another noteworthy feature was "day_of_recharge," ranking third in importance and making a 

relatively high positive contribution of 399,709. These contrasting results highlight the 

differences in how SHAP values and LIME interpret and attribute importance to the features 

for individual instances. The detailed result is presented in Figure 30 below. 

 

(a) 

 

(b) 

Figure 30 Approach A.2: (a) SHAP value and (b) LIME value for data sample Y 
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5.4.2.3 Dependence Plot 

The dependence plot of “prob_churn” with the other top five features (“poin”, 

“avg_3m”, and “avg_3m_std”) was also examined and presented in Figure 31. The findings 

mirrored those of the previous approach, with a negative correlation observed between the 

probability of churn and the corresponding SHAP value. The interaction between "prob_churn" 

and the other features followed a similar pattern, whereby instances with a low probability of 

churn and a high "poin" value tended to exhibit a higher SHAP value contribution compared 

to those with a low "poin" value. However, when both the churn probability and the "poin" 

value were high, the SHAP value contribution decreased. 

Interestingly, the impact of "avg_3m_std" on the SHAP value, in relation to the 

probability of churn, was not as straightforward as the other features. There were instances 

where a high "avg_3m_std" value combined with a low probability of churn still resulted in a 

relatively low SHAP value. This phenomenon can be attributed to the nature of "avg_3m_std" 

that slightly different with the other features. While the other features represent the historical 

customer spending, for example the "avg_3m" measures the average revenue from customer in 

the last 3 months, the "avg_3m_std" measures the standard deviation of such value. Therefore, 

it introduces additional complexities to its interaction with the “prob_churn”. 
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Figure 31 Approach A.2: SHAP Dependence plot of Probability of Churn 

5.4.3 Model Validation 

The best model from approach A.2 then validated using different splitting strategies to 

assess its performance. The splitting ratio ranges from 50:50 to 90:10 and the results presented 

in the Table 15. The result indicates the stable performance across splitting ratio, where the 

best performance is achieved by 90:10 splitting ratio. These findings indicate that the model 

exhibits robustness and stability across different split ratios, demonstrating its ability to 

generalize well to unseen data. 

Table 15 Approach A.2: Final Model Performances across Different Split Strategies 

Split Ratio MAPE MAE RMSE 𝑹𝟐 
50:50 20.14  352,299   559,715  0.91 

60:40 19.75  348,603   554,279  0.91 

70:30 19.7  349,510   556,280  0.91 

80:20 19.86  347,267   552,860  0.91 

90:10 19.64  344,555   546,625  0.91 

 

Table 16, showing the result of a 5-fold CV process, serves as further evidence to the 

validity of the developed model. Similar with the previous approach, performance consistency 
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across all evaluation metrics and folds for both the training and test sets becomes apparent. 

This consistency indicates effective handling of overfitting and equal performance with unseen 

and training data by the model. Stability of the model is also visible from the minor fluctuation 

of performance metrics across different folds, suggesting minimal influence of any specific 

subset of the data on the model's performance. 

Table 16 Approach A.2: Final Model 5-fold CV Results 

Fold 
Train Test 

MAPE MAE RMSE 𝑹𝟐 MAPE MAE RMSE 𝑹𝟐 

1 16.3 287,640 469,430 0.93 19.77 347,029 551,947 0.91 

2 16.25 289,099 472,341 0.93 19.64 346,259 550,746 0.91 

3 16.36 286,834 469,160 0.93 19.5 343,313 540,605 0.91 

4 16.32 286,427 468,447 0.93 19.41 346,215 543,951 0.91 

5 16.33 287,466 469,619 0.93 19.73 348,773 549,256 0.91 

Avg 16.31 287,493 469,799 0.93 19.61 346,318 547,301 0.91 

 

The group split analysis, as shown in Table 17, yielded results similar to the previous 

approach, with slight variations in performance across the splits. Notably, test_group 4 

achieved the best MAPE, but also exhibited the highest RMSE and lowest 𝑅2 value. 

Conversely, test_group 3 consistently had the worst MAPE, consistent with the previous 

approach. It is worth noting that the relatively poorer performance in MAE and RMSE for 

test_group 4 may be caused by its inclusion of regions with lower economic power, potentially 

limiting the model's ability to generalize effectively to these specific regions. However, despite 

these slight variations in error rates, the model's overall performance remains robust across all 

regions. 

Table 17 Approach A.2: Final Model Group-Split Results 

Test Train Test 

group MAPE MAE RMSE 𝑹𝟐 MAPE MAE RMSE 𝑹𝟐 

1 16.29 282,609 464,647 0.93 20.1 393,836 607,354 0.9 

2 15.98 286,177 469,020 0.94 19.34 332,385 526,891 0.91 

3 15.7 287,718 471,364 0.93 21.62 334,331 530,774 0.91 

4 16.57 284,549 463,970 0.93 19.02 508,967 744,998 0.87 

Avg 16.14 285,263 467,250 0.93 20.02 392,380 602,504 0.90 
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Another critical aspect of model validation is the evaluation of learning efficiency and 

robustness using learning curves. Figure 32 presents the learning curves using RMSE as the 

evaluation metric. Similar pattern with the approach A.1 also appears as with the expansion of 

the training set size – an increase in the training scores and a decrease in the validation scores 

are occurs. This trend demonstrates the model's aptitude in generalizing unseen data, as it 

becomes less efficient at fitting the training data perfectly. The relatively narrow gap between 

the training and validation scores, especially at larger training sizes, strengthens the idea that 

the model is not overfitting. 

 

Figure 32 Approach A.2: Final Model Learning Curve Analysis 

Model outputs also undergo validation through a comparative study between influential 

features as determined by the ML model and variables emphasized in traditional calculation 

methods. Just like Approach A.1, customer churn probability remains an influential feature in 

the traditional calculation of RAR, and the ML model maintains its importance. It is evidence 

that in both the global explanation and the local explanation, the probability of churn remains 

as the top important feature. On the dependence plot (Figure 30), the significance of SHAP 

value contribution according to the probability of churn also have negative correlation, where 

the higher probability of churn, the lower its SHAP value. 

Furthermore, the model for Approach A.2 also exhibits striking similarities with the 

conventional calculation methods, as evidenced by the importance assigned to its top features. 

Like the previous approach, “poin”, “avg_3m_std”, “avg_3m”, “total_revenue”, and 
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“total_revenue_std” again emerge as critical. These features, in essence, reflect the varying 

dimensions of customer spending and their revenue. This interpretation conforms with the RAR 

calculation formula (Equation 3.1), adding weight to the model's credibility. Intriguingly, 

features such as “avg_3m_std” and “total_revenue_std” stand for the fluctuations in customer 

spending over the six semesters of observation. These movement inevitably influence the RAR 

value, and these feature captured as the most important feature from the model. 

5.5 RAR Prediction Model: Approach A.3 (Maximum WACC value) 

Figure 33 presents the results of evaluating the model's performance in relation to the 

number of features used using MAPE and RMSE as the evaluation metric. Similar with the 

previous approach, the MAPE showed performance fluctuations throughout the observation, 

while the RMSE showed constant improvement.  The optimal number of features for the final 

model was determined to be 17. This choice was based on the trade-off between model 

performance and complexity. It was observed that increasing the number of features beyond 

17 did not result in significant improvement in the average MAPE and average RMSE. 

Therefore, selecting 17 features was deemed the most effective approach, striking a balance 

between model accuracy and complexity. 

 

Figure 33 Approach A.3: Number of feature vs model performance (5-fold CV) 
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5.5.1 Model Performance Evaluation Metric 

Table 18 presents the performance results of the models across various development 

stages for Approach A.3. The Catboost model, initially trained with all features, achieved a 

MAPE of 23.86%, an MAE of 352,323, an RMSE of 540,175, and an 𝑅2 value of 0.91. A 

minor decline in the MAPE to 23.35% was observed following the feature selection process, 

while a modest uptick in error was noted in other metrics. The employment of hyperparameter 

tuning technique further enhanced the model's performance, decreasing the MAPE to 19.92% 

in random search and the subsequent grid search led to an even lower MAPE of 19.80%. In 

contrast, the MAE and RMSE displayed mixed trends - increasing with random search tuning, 

then decreasing with grid search while the 𝑅2 remained relatively steady at 0.91 during the 

process. 

Table 18 Approach A.3: Model Development 

Model & Model Development Stage MAPE MAE RMSE 𝑹𝟐 

Catboost     

Initial model and all features 23.86 352,323 540,175 0.91 

Feature selection 23.35 352,475 541,102 0.91 

Random search hyperparameter tuning 19.92 351,129 554,663 0.906 

Grid search hyperparameter tuning 19.80 348,060 550,109 0.908 

XGBoost     

Initial model and all features 24.14 363,165 558,302 0.908 

Feature selection 24.03 364,693 559,999 0.902 

Random search hyperparameter tuning 22.75 354,497 547,482 0.91 

Grid search hyperparameter tuning 22.19 353,865 548,878 0.91 

Random Forest     

Initial model and all features 24.19 373,054 576,709 0.9 

Feature selection 23.96 374,254 576,936 0.9 

Random search hyperparameter tuning 23.55 372,967 576,047 0.9 

Grid search hyperparameter tuning 23.39 371,705 574,476 0.9 

 

The subsequent model, XGBoost, achieved a slightly higher MAPE of 24.14% 

compared to the initial Catboost model, while the remaining metrics also slightly 

underperformed in relation to Catboost. Following the feature selection process, a slight 

decrease in the MAPE to 24.03% was recorded, with a minor rise in error across other metrics. 

The model improved notably with random search hyperparameter tuning, lowering the MAPE 

to 22.75%, and the grid search further improved this to 22.19%. However, as with the Catboost 

model, the MAE and RMSE fluctuated, while the 𝑅2 remained stable at 0.91. Despite 
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improvements across all metrics relative to the initial model with all features, the final 

XGBoost model lagged slightly behind the final Catboost model. 

The initial Random Forest model provided competitive MAPE results at 24.19% 

compared to other models, albeit with higher values for MAE and RMSE. However, 

improvements across the model development stages were minimal. Hyperparameter tuning 

achieved slight enhancements in metrics, with the final model registering a MAPE of 23.39%, 

an MAE of 371,705, and an RMSE of 574,476. While there was an improvement in 

performance across all metrics relative to the initial model, the final Random Forest model 

underperformed when compared to the other two models. 

In comparing the three models, Catboost and XGBoost consistently surpassed the 

Random Forest model in all performance metrics. The Catboost model achieved the lowest 

final MAPE of 19.80% and MAE of 348,060 after grid search hyperparameter tuning. However, 

XGBoost demonstrated marginally superior RMSE and 𝑅2 values compared to Catboost, albeit 

with minor differences. Considering the overall performance and the significant improvement 

in MAPE, the Catboost model was chosen as the final model. 

5.5.2 Model Interpretation and Feature Importance Analysis 

5.5.2.1 Global Explanation 

In terms of feature importance and SHAP global explanation, the top 9 most important 

features remain consistent with the previous approach. From the Figure 34, could be observed 

that "poin" emerges as the most influential feature, with a significant margin over the second 

most important feature, "prob_churn." The SHAP summary plot aligns with this finding, 

showing that the impact of "poin" on the predicted result is notable but not as distinct as 

indicated by the feature importance values. "Prob_churn" and "avg_3m" retain their positions 

as the second and third most important features according to SHAP value. This pattern is 

similar to the previous approach. 
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(a) 

 

(b) 

Figure 34 Approach A.3: (a) Feature Importance and (b) SHAP value 

5.5.2.2 Local Explanation 

 In the local explanation using both SHAP and LIME in the Figure 35, the most 

important feature remains consistent with the previous approaches, which is "prob_churn". 

However, the rankings and contribution directions of the other features differ between the two 

methods. The “prob_churn” is contributing 738,068 of SHAP value to the predicted result. An 
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interesting finding in this approach is that "redeemer_mtd_flag" emerges as the second most 

important feature according to LIME, having similar contribution value to "prob_churn", where 

the later contribute 1,138,101 and the former contribute 1,096,596 to the predicted result. 

However, according to SHAP value, "redeemer_mtd_flag" does not appear among the top nine 

most important features. 

 

(a) 

 

(b) 

Figure 35 Approach A.3: (a) SHAP value and (b) LIME value for data sample X 

Similarly, for sample Y, “prob_churn” was also regarded as the most important feature 

according to SHAP and LIME (Figure 36). Aside from that, the other significant features 

according to both of them are different. According to SHAP, the top three most important 

features are prob_churn, poin and remaining active period which all of them gave negative 
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contribution of 344,758, 288,457 and 288,060 of SHAP value respectively. On the other hand, 

the top three most important features according to LIME are “prob_churn”, 

“redeemer_mtd_flag_count_n” and “day_of_recharge” with contribution -801,250, -727,918 

and 331,895.  

 

(a) 

 

(b) 

Figure 36 Approach A.3: (a) SHAP value and (b) LIME value for data sample Y 

5.5.2.3 Dependence Plot 

The dependence plot analysis presented in Figure 37 further confirms the consistency 

of the results across multiple approaches. Similar to the previous findings, the probability of 

churn exhibited a negative correlation with the SHAP value, demonstrating a consistent pattern 

of influence on the predictions. The interaction with the other top 5 features also displayed 

similar trends, indicating that the impact of these features on the SHAP value remains 
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consistent across different approaches. Furthermore, it is important to note that the similarity 

in results can be attributed to the shared methodology used to calculate the RAR, with 

variations only in the WACC value. This shared approach ensures that the interaction and 

impact of each feature on the SHAP value are likely to be similar across the different 

approaches.  

 

Figure 37 Approach A.3: SHAP Dependence plot of Probability of Churn 

5.5.3 Model Validation 

The best model from approach A.3 then validated using different splitting strategies to 

assess its performance. The splitting ratio ranges from 50:50 to 90:10 and the results presented 

in the Table 19. The result indicates the stable performance across splitting ratio, where the 

best performance is achieved by 90:10 splitting ratio. These findings indicate that the model 

exhibits robustness and stability across different split ratios, demonstrating its ability to 

generalize well to unseen data. 

Table 19 Approach A.3: Final Model Across Different Split Strategies 

Split Ratio MAPE MAE RMSE 𝑹𝟐 
50:50 19.96  348,378   547,198  0.91 

60:40 19.87  346,241   543,214  0.91 

70:30 19.58  344,013   538,791  0.91 
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80:20 19.49  342,713   539,018  0.91 

90:10 19.21  341,508   539,892  0.91 

 

The result of the 5-fold CV process for this approach can be seen in Table 20. Similar 

to the previous models, the consistency of performance on all evaluation metrics across all five 

folds for both the training and test sets can be noted. This denotes that the model has 

successfully mitigated overfitting, performing equally well on both the training data and unseen 

data. The performance metrics' minor fluctuations across the folds further validate the model's 

stability, signifying that the model's predictions are not significantly influenced by any 

particular subset of the data. 

Table 20 Approach A.3: Final Model 5-fold CV Results 

Fold 
Train Test 

MAPE MAE RMSE 𝑹𝟐 MAPE MAE RMSE 𝑹𝟐 

1 15.41 264,830 438,019 0.94 19.5 343,168 540,756 0.91 

2 15.44 266,646 442,098 0.94 19.71 344,521 540,601 0.91 

3 15.4 264,617 437,423 0.94 19.72 347,818 550,107 0.91 

4 15.34 263,399 436,265 0.94 19.63 352,027 557,146 0.91 

5 15.2 265,289 439,618 0.94 19.84 348,501 555,104 0.91 

Avg 15.36 264,956 438,685 0.94 19.68 347,207 548,743 0.91 

 

 The evaluation of the model using group split analysis further confirmed its robust 

performance across different groups. The results are presented in Table 21. Consistent with the 

previous approaches, there were minor fluctuations in the performance metrics, indicating 

overall robustness across all groups. Notably, train_group 3 exhibited the highest MAPE value 

at 22.15%, while train_group 4 had the highest MAE and RMSE values, remaining consistent 

with previous observations. 

Table 21 Approach A.3: Final Model Group Split Results 

Test Train Test 

group MAPE MAE RMSE 𝑹𝟐 MAPE MAE RMSE 𝑹𝟐 

1 15.35 260,924 434,420 0.94 20.1 393,687 608,595 0.89 

2 14.95 259,692 433,220 0.95 19.43 332,649 527,872 0.91 

3 14.71 262,135 436,194 0.94 22.15 334,709 530,085 0.91 

4 15.63 264,314 436,086 0.94 19.42 510,876 745,660 0.87 

Avg 15.16 261,766 434,980 0.94 20.28 392,980 603,053 0.90 
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To evaluate the learning efficiency and robustness of the model under Approach A.3, 

learning curves are employed. Figure 38 demonstrates these learning curves, utilizing RMSE 

as the chosen metric. The progression of the training set size elucidates an upward trend in the 

training scores and a downward trend in the validation scores. This is indicative of the model's 

improving capacity to generalize unseen data, while it becomes slightly less precise at fitting 

the training data. The compact gap between the training and validation scores, specifically at 

larger training sizes, strengthen the idea that the model is not overfitting.  

 

Figure 38 Approach A.3: Final Model Learning Curve Analysis 

Validating the model's outputs is also crucial, and a comparative analysis is performed 

between the significant features recognized by the ML model and the variables emphasized in 

traditional calculation methods. Much like in the previous approaches, the probability of churn 

remains a crucial feature in the traditional RAR calculation, and the final model selected in 

Approach A.3 continues to acknowledge its significance, in both global and local explanation. 

The relationship between probability of churn with the SHAP value on the dependence plot 

analysis (Figure 36) also remain similar as they have negative correlation. 

A robust link between the ML model and traditional calculation methods strengthen 

further by ascribing significance to features like “poin”, “avg_3m_std”, “avg_3m”, 

“total_revenue”, and “total_revenue_std”. Each of these features offers a unique perspective 

into customer spending patterns and their related revenues, conforming with the RAR 

calculation formula (Equation 3.1). Furthermore, the model also recognise “avg_3m_std” and 
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“total_revenue_std” as top important features, representing customer spending volatility across 

the observed six semesters. The model's ability to factor in this volatility while calculating the 

RAR value mirrors the traditional methods and reinforces its own relevance and reliability. 

5.6 RAR Prediction Model: Approach B (Beta value) 

Figure 39 provides a comprehensive evaluation of the model's performance in terms of 

MAPE and RMSE across different numbers of features. The results demonstrate consistent 

improvements in both metrics as the number of features increases. Starting with 5 features, the 

MAPE gradually decreases from 25.08% to its lowest point of 21.51% at 17 features. This 

substantial reduction in MAPE highlights the enhanced predictive accuracy achieved by 

incorporating a larger set of features. Similarly, the RMSE shows a consistent decline from 

709,734 to 659,678 when using 17 features. Beyond 17 features, the improvement in RMSE 

becomes marginal, indicating diminishing returns in reducing the prediction error. Based on 

these findings, it is evident that the selection of 17 features represents the optimal configuration 

for this approach. This choice strikes a balance between maximizing predictive accuracy, as 

evidenced by the lowest MAPE, and avoiding unnecessary complexity. 

 

Figure 39 Approach B: Number of feature vs model performance (5-fold CV) 

5.6.1 Model Performance Evaluation Metric 

Table 22 provides a comprehensive overview of the model performance at different 

stages of development for Approach B. The Catboost model, initially trained with all features, 

achieved a MAPE of 21.77%, an MAE of 421,813, an RMSE of 647,108, and an 𝑅2 of 0.92. 

After feature selection, a slight improvement in MAPE was observed, reducing it to 21.44%. 
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However, the other metrics showed a minor increase in error. The random search 

hyperparameter tuning method further reduced the MAPE to 18.67%, and the subsequent grid 

search yielded an even lower MAPE of 18.35%, indicating improved prediction accuracy. 

However, the MAE and RMSE exhibited mixed results, increasing with random search but 

decreasing with grid search. Despite these fluctuations, the 𝑅2 remained stable at 0.92. The 

final model demonstrated a significant improvement in MAPE compared to the initial model, 

while the MAE and RMSE showed a slight increase in error. 

Table 22 Approach B: Model Development (5-fold CV) 

Model & Model Development Stage MAPE MAE RMSE 𝑹𝟐 

Catboost     

Initial model and all features 21.77 421,813 647,108 0.92 

Feature selection 21.44 429,666 660,020 0.92 

Random search hyperparameter tuning 18.67 428,995 677,393 0.91 

Grid search hyperparameter tuning 18.35 422,314 665,811 0.92 

XGBoost     

Initial model and all features 22.04 436,544 671,285 0.91 

Feature selection 21.84 441,744 679,921 0.91 

Random search hyperparameter tuning 20.32 427,497 660,792 0.92 

Grid search hyperparameter tuning 19.99 427,745 664,809 0.92 

Random Forest     

Initial model and all features 21.84 451,157 698,535 0.91 

Feature selection 21.82 452,722 698,729 0.91 

Random search hyperparameter tuning 21.05 449,444 696,134 0.91 

Grid search hyperparameter tuning 21.14 449,315 695,449 0.91 

 

The XGBoost model with all features produced an initial MAPE of 22.04%, which is 

slightly higher than the Catboost model. The other metric also performed slightly worse 

compared to Catboost model. Feature selection resulted in small reduction in MAPE to 21.84%, 

but the other metrics exhibit minor increase in error. Random search hyperparameter tuning 

lowered the MAPE to 20.32% and grid search further improved this to 19.99%. However, 

similar to the Catboost model, the MAE and RMSE fluctuated and the 𝑅2 remained constant 

at 0.92. The final model demonstrated improved performance in all metrics compared to the 

initial model with all features, albeit slightly worse than the final Catboost model. 

The Random Forest model initially achieved competitive results in MAPE at 21.84% 

compared to the other models but exhibited higher MAE and RMSE values. However, 

throughout the model development stage, the model performance increment is minimal. The 
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hyperparameter tuning only able to slightly improve the metric, where the final model has 

MAPE value at 21.14%, the MAE at 449,315 and RMSE at 695,449. While the final model 

improved performance across all metrics compared to the initial model, it still performed the 

worst among the three models. 

Comparing the three models, both Catboost and XGBoost consistently outperformed 

the Random Forest model in all metrics, with Catboost achieving the lowest final MAPE of 

18.35% after grid search hyperparameter tuning. XGBoost demonstrated slightly better 

performance in MAE and RMSE compared to Catboost, albeit with marginal differences. 

However, based on the overall performance and the significant improvement in MAPE, 

Catboost was selected as the final model, as it exhibited an adequate performance gap while 

only slightly underperforming in MAE and RMSE. 

5.6.2 Model Interpretation and Feature Importance Analysis 

5.6.2.1 Global Explanation 

This approach, unlike the others, incorporates the volatility of revenue from customers 

by considering the beta value as a measure of risk in RAR calculation. Although this approach 

differs significantly from the others, the most important feature for the model remains 

consistent, which is "poin". In terms of feature importance, "poin" dominates with a value 

nearly four times that of the second most important feature. Similarly, in the SHAP value 

analysis, "poin" retains its position as the most important feature, but without any significant 

difference in its impact. "Beta_total_return," which indicates the beta value for the total return 

from the customer, is considered the second most important feature based on feature 

importance and the third most important feature according to SHAP value. While "prob_churn" 

is still among the top 10 most important features in this approach, its rank and impact are not 

as high as in the other approach. The detailed result is shown in Figure 40. 
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(a) 

 

 

(b) 

Figure 40 Approach B: (a) Feature Importance and (b) SHAP value 
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5.6.2.2 Local Explanation 

Further evaluation using local explanation on the same data instance as the other 

approach reveals the impactful features according to SHAP value On the Figure 41, 

"total_revenue" and "avg_3m" are shown to have a positive impact, increasing the predicted 

result with similar SHAP value by 467,272 and 465,637 respectively. "beta_total_return" has 

a positive impact of 100,394, while "prob_churn" does not rank among the top 10 feature 

importances for this specific data point. On the other hand, according to LIME, the most 

important feature for this instance is "beta_total_return," which has a significant positive 

contribution of 1,762,681 on the predicted value. This value is more than double the value of 

the second most important feature, "hvc_tier_Gold," which has a negative LIME value of 

794,218. Interestingly, "prob_churn" is also among the top 5 feature importances according to 

LIME, with a positive contribution of 307,242. 

 

(a) 
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(b) 

Figure 41 Approach B: (a) SHAP value and (b) LIME value for data sample X 

For comparative purposes, an additional data point with a negative Beta value was 

selected, denoted as sample Z. The SHAP and LIME analyses were performed on this sample, 

and the results are presented in Figure 42. The feature "beta_total_return" emerged as the most 

influential feature in both SHAP and LIME explanations. According to the SHAP analysis, the 

negative Beta value had a significant negative contribution of -1,055,187 to the predicted result. 

Similarly, the LIME analysis highlighted the negative impact of the Beta value, with a high 

negative contribution of 3,001,641. These findings align with the observations presented in 

Subsection 5.2.2, which investigated the correlation between the Beta value and the calculated 

RAR. As established, the Beta value has a positive correlation with the RAR value. Therefore, 

in the case of sample Z, characterized by a negative Beta value of -3.05, the calculated RAR 

value is smaller than the actual total revenue. Consequently, the negative Beta value has a 

negative contribution to the predicted result. 
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(a) 

 

(b) 

Figure 42 Approach B: (a) SHAP value and (b) LIME value for data sample Z 

5.6.2.3 Dependence Plot 

Dependence plot analysis was conducted using SHAP to explore the interaction 

between the features and their corresponding SHAP values in Approach B. The top five most 

important features, according to the SHAP global explanation, were found to be consistent with 

Approach A: "poin," "avg_3m," "beta_total_return," "total_revenue," and "avg_3m_std." 

Therefore, the main feature selected for analysis was "beta_total_return," with the other top 
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five features serving as the secondary features. The dependence plots illustrating these 

interactions are presented in Figure 43. 

The findings from the dependence plots support the notion that the Beta value exhibits 

a positive correlation with the SHAP value. As depicted in the plots, higher Beta values are 

associated with higher SHAP values. However, it is important to note that the SHAP value 

differs from the RAR value. While the SHAP value tends to converge to zero as the Beta value 

approaches zero, positive Beta values do not necessarily result in positive SHAP values. In 

contrast, positive Beta values consistently yield higher SHAP values than the actual revenue. 

Interestingly, the interaction between the Beta value and the other features resembles the 

interaction observed between the probability of churn in the previous approach. Specifically, 

instances with high Beta values and high "poin" values tend to exhibit higher SHAP values, 

while those with low Beta values and low "poin" values tend to have lower SHAP values. 

However, unlike the previous approach, there appears to be a smaller amount of data with high 

values for the secondary feature. This suggests that the high values of the secondary feature are 

concentrated within a narrower range of Beta values. 

 

 

Figure 43 Approach B: SHAP Dependence plot of Probability of Churn 
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5.6.3 Model Validation 

The best model from approach B then validated using different splitting strategies to 

assess its performance. The splitting ratio ranges from 50:50 to 90:10 and the results presented 

in the Table 23. The result indicates the stable performance across splitting ratio, where the 

best performance is achieved by 80:20 splitting ratio. These findings indicate that the model 

exhibits robustness and stability across different split ratios, demonstrating its ability to 

generalize well to unseen data. 

Table 23 Approach B: Final Model Performances Across Different Split Strategies 

Split Ratio MAPE MAE RMSE 𝑹𝟐 
50:50 18.84  429,117   675,870  0.91 

60:40 18.41  427,052   672,814  0.91 

70:30 18.32  422,827   666,257  0.91 

80:20 18.32  421,986   665,482  0.91 

90:10 18.45  423,016   672,573  0.91 

 

Five-fold CV results for Approach B are displayed in Table 24. The finding is consistent 

with Approach A, where both the training and test sets present a reasonable level of consistency 

across all the performance metrics through the five folds. The model's ability to perform 

uniformly well on unseen data and the training data indicates the effective prevention of 

overfitting. The minor fluctuations across the different folds in the performance metrics further 

imply the model's stability. Notably, the model's performance is not significantly influenced 

by any specific subset of the data, underlining the model's robustness and generalizability. 

Table 24 Approach B: Final Model 5-fold CV Results 

Fold 
Train Test 

MAPE MAE RMSE 𝑹𝟐 MAPE MAE RMSE 𝑹𝟐 

1 14.75 336,476 551,978 0.9 18.41 421,542 663,835 0.9 

2 14.68 335,076 550,289 0.9 18.29 423,410 667,693 0.9 

3 14.77 337,057 553,040 0.9 18.08 419,802 661,276 0.9 

4 14.65 337,731 555,873 0.9 18.46 421,160 661,286 0.9 

5 14.71 335,086 549,399 0.9 18.5 425,654 674,963 0.9 

Avg 14.71 336,285 552,116 0.90 18.35 422,314 665,811 0.90 

  

Despite employing different approaches, the group split analysis in Approach B 

demonstrates a consistent pattern similar to the other approaches (Table 25). Test_group 3 

consistently exhibits the lowest MAPE, while test_group 4 consistently shows the highest 
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MAE and RMSE. However, it is important to note that the performance of the remaining groups 

remains stable across all metrics. This consistent pattern reinforces our confidence in the 

stability and reliability of the best model across different splitting methods. 

Table 25 Approach B: Final Model Group Split Results 

Test Train Test 

group MAPE MAE RMSE 𝑹𝟐 MAPE MAE RMSE 𝑹𝟐 

1 14.76 328,323 541,199 0.94 18.42 493,205 751,950 0.91 

2 14.31 334,576 551,253 0.94 18.29 402,007 638,864 0.91 

3 14.09 337,393 554,664 0.94 21.66 408,716 649,884 0.91 

4 14.89 333,949 546,087 0.94 18.46 624,200 897,520 0.89 

Avg 14.51 333,560 548,301 0.94 19.21 482,032 734,555 0.91 

 

 Learning curve analysis also performed on this approach to further investigate the 

learning efficiency and model robustness as showed in Figure 44. The finding is also similar 

with Approach A, where the training score increase with the size of the training set while the 

validation scores decrease. Furthermore, the gap between the training and validation score 

became smaller as the training size increases. This pattern indicate that the model is not 

overfitting as it is generalizing well to unseen data. 

 

Figure 44 Approach B: Final Model Learning Curve Analysis 

Additional validation of the model's output involves a comparative examination 

between impactful features determined by the ML model and variables stressed in conventional 
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calculation methods. Approach B employs a distinct RAR calculation formula outlined in 

Equation 4.2. In this formula, the discount rate equals the expected return from all customers, 

multiplied by the customer's Beta value. As such, the customer's Beta value emerges as a 

critical feature in traditional RAR calculation. Consistently, the final model also identifies the 

Beta value as a top-tier feature. It ranks within the top three features in the Global Explanation 

using SHAP and feature importance and persistently appears among top features in Local 

Explanation using SHAP and LIME. Furthermore, from Figure 42's dependence plot, a positive 

correlation is observable between the Beta Value and the SHAP value, with higher Beta values 

corresponding to lower SHAP values. This correlation aligns with traditional RAR calculation 

methods, specifically for this case. Given that the expected return from all customers is -1.3%, 

a negative Beta value will result in a positive discount rate, while a positive Beta value will 

yield a negative discount rate. And the positive discount rate will result a lower calculated RAR 

value and negative discount rate will result in higher RAR value than the actual revenue. 

The other top important features also signify the alignment with traditional calculation 

methods. The features like “poin”, “avg_3m_std”, “avg_3m”, “total_revenue”, and 

“total_revenue_std” also have been identified as the top important features. By focusing on 

these features, which represent various aspects of customer spending and derived revenue, the 

model stays consistent with the RAR calculation formula (Equation 3.1). Interestingly, features 

like “avg_3m_std” and “total_revenue_std” capture the volatility of customer spending, a 

natural occurrence over the six semesters of data collection. The inclusion of this volatility in 

the RAR calculation further proves the model's thoroughness and its alignment with 

conventional methods. 

5.7 Summary of Findings 

The following section presents a detailed summary of the primary findings from the analysis, 

focusing on model predictive power, insights from XAI analysis and the relevance with 

traditional RAR calculation. 

1. Predictive Power of Models 

a. The churn model operates with nearly the same performance when utilizing only 

the top 17 features as when incorporating all features, representing an 

approximate decrease in performance of only around 0.1% across all ML 

algorithms examined in this study. 
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b. Among the various models tested for churn prediction, the XGBoost classifier 

demonstrated superior accuracy and F1 score, outperforming other alternatives. 

c. The best performing model for predicting RAR value across all approaches was 

found to be the CatBoost regressor. The XGBoost also displayed competitive 

results and Random Forest consistently underperformed relative to the others. 

d. Comparing the model's performance with top 150 features versus top 17-18 

features for RAR prediction reveals negligible differences, with MAPE 

worsening by less than 0.5%. 

2. XAI analysis 

a. Across all approaches to RAR calculation, the feature "poin" consistently 

emerged as the most significant factor in Global explanations using both SHAP 

values and Feature Importance. 

b. For Approach A, the probability of churn surfaced as the second most crucial 

feature using Global Explanation with both SHAP value and Feature 

Importance. It often ranked as the most important feature in selected samples in 

Local Explanation using LIME and SHAP. 

c. In Approach B, beta_value stands out as the second most essential feature in 

Global Explanation, using both SHAP and Feature Importance, and often 

ranking as the top feature in Local Explanation. 

d. Probability of churn still ranks among the top features in Global Explanation for 

Approach B. 

e. Interaction patterns were observed between the churn probability, beta_value, 

and other top features, impacting the SHAP values in distinct ways. 

3. Relevance with traditional model 

a. A negative correlation exists between the probability of customer churn and the 

predicted RAR value. This correlation is aligned with the traditional calculation 

method. 

b. Beta value in approach B shows a positive correlation with the predicted RAR 

value. This correlation is also aligned with the traditional calculation method. 

c. Both the probability of churn in Approach A and the beta_value in Approach B, 

which rank as highly significant features, are in line with the traditional RAR 

calculations employed in this study. 
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d. Similarly, the features avg_3m, avg_3m_std, total_revenue, total_revenue_std 

consistently appear among the top features for both approaches A and B, further 

confirming their relevance in RAR calculation. 

These findings collectively provide a deeper understanding of the factors influencing churn 

predictions and RAR calculations, thereby facilitating the creation of more accurate and robust 

models for these purposes. 
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6 Conclusion 

This research presents a significant step forward in advancing the understanding of 

customers’ value within the telecommunications industry. It introduces and implements a novel 

approach to assessing customers’ value through the lens of Risk-Adjusted Revenue (RAR), 

offering a more comprehensive perspective on customer worth that takes into account not only 

potential revenue but also associated risks. To the best of our knowledge, the uniqueness of 

this work lies in its specific application to the telecommunications sector, marking the first time 

that RAR has been employed within this industry. This contributes to filling a clear research 

gap and broadens the scope of existing studies on RAR, which have previously been 

concentrated in other sectors. 

Moreover, the practical implications of this research are substantial. By providing 

telecommunications companies with a more nuanced understanding of their customers' value, 

the developed models allow for data-backed, tailored customer treatments and portfolio 

management. This capacity to better identify and understand customers could enable 

companies to optimize their profits and drive their business strategies in a more informed and 

efficient manner. 

Overall, the present research not only deepens the academic understanding of RAR but 

also demonstrates its potential as a valuable tool for customers’ value assessment in the 

telecommunications industry. As such, it can act as a springboard for further research and 

innovative practices in both the academic and industrial fields. 

6.1 Answer to Research Questions 

This study set out with the primary research question of identifying effective ways to 

apply ML techniques for predicting risk-adjusted CLV in the non-contractual (B2C) setting of 

the telecommunications industry. To fully address this central inquiry, the research was 

segmented into a series of sub-questions designed to holistically understand the current 

literature, identify gaps, and then propose, develop, and evaluate an innovative solution. The 

methodology employed was a combination of the DSRM as the main methodology on the study 

and the CRISP-DM as the guidance to build the ML model. This combination ensures a 

comprehensive approach to both the conceptual and practical aspects of the study. The primary 

findings suggest a robust and practical ML model that successfully predicts risk-adjusted CLV, 

that represented by RAR, while incorporating significant aspects of risk from the probability 

of customers' churn and the volatility of revenue. The subsequent paragraphs will delve into a 
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detailed discussion on how each sub-question was addressed and how the outcome contributed 

to answering the primary research question. 

SQ1. How has the incorporation of customers’ risk into CLV calculation evolved over 

time in the literature? 

The evolution of the incorporation of customers’ risk into CLV calculations over time 

has been largely influenced by the financial portfolio theory. Early efforts mainly drew from 

MPT and the CAPM, treating customers as risky assets with distinct risk profiles that needed 

management for optimal returns (Dhar and Glazer, 2003; Ryals, 2003). However, researchers 

highlighted CAPM's disregard for unsystematic risk, prompting a shift towards Markowitz's 

PST as a more comprehensive approach. This shift was showed by applications of PST in 

diverse contexts, such as (Sackmann et al., 2010) and B2B settings (Tarasi et al., 2011; Juhl 

and Christensen, 2013), and further extended through hybrid models integrating stochastic 

CLV modelling and ex-ante customer portfolio optimization (Norouzi and Albadvi, 2016). 

Recognizing limitations in models considering a single type of risk, the MSR approach 

emerged (Singh et al., 2013; Singh and Singh, 2016; Machado and Karray, 2022a). This 

approach considers various risk factors pertinent to specific industry and business settings, 

providing a more comprehensive understanding of customers’ risk. For example, the specific 

risk associated with customers varies widely between industries, necessitating distinct risk-

adjusted CLV metrics for each. With technological advancements, particularly the rise of AI-

enhanced predictive analytics powered by real-time data, further enhance the driver of the need 

for sophisticated risk-adjusted CLV models in the future. In conclusion, the journey of 

incorporating customers' risk in CLV calculation has been marked by evolution and adaptation, 

driven by the need for more precise, comprehensive, and context-sensitive models that more 

accurately capture and reflect the multifaceted nature of customers’ risk. Further insights on 

this evolution can be explored in Subsection 2.3.2. 

SQ2. What are the industries or domains where customers’ risk has been incorporated 

into CLV calculation? 

Incorporation of customers’ risk into CLV calculations has been observed across 

several industries, mainly clustered into three categories: FSI, B2C (non-FSI sectors), and B2B 

settings. The majority of studies (44%) were conducted in the FSI, spanning diverse sectors 

such as insurance, credit card services, and peer-to-peer lending. B2C sectors outside the FSI 

constitute the second largest group (30%), with industries ranging from e-commerce and 

pharmacy to airlines. B2B settings make up the remaining studies (26%), covering various 
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sectors like medical instrument providers and commodity companies. A detailed analysis can 

be found in Subsection 2.3.3. 

SQ3. What are the commonly used methods for incorporating customers’ risk into the 

calculation of customers’ value in the industry? 

The methods for incorporating customers' risk into customers’ value calculations depend on 

the specific application area as detailed in Subsection 2.3.4. Nevertheless, some common 

techniques are evident: 

• Mean-Variance Analysis: Predominantly used in financial portfolio concepts for 

customer portfolio optimization, this approach segments customers based on 

demographic features before predicting the optimal portfolio composition (e.g., Buhl & 

Heinrich, 2008; Homburg et al., 2009; Tarasi et al., 2011; Sackmann et al., 2010; 

Viviani et al., 2021; Machado & Karray, 2022b). Studies like Tarasi et al. (2011) and 

Viviani et al. (2021) leverage mean-variance analysis for optimizing portfolio 

composition, considering segment-specific variables and transition probabilities. 

• Direct Calculation & Predictive Modeling: For certain applications, risk-adjusted 

CLV is calculated directly through mathematical modeling (e.g., Ryals and Knox, 

2005), while others build predictive models, such as the scorecard predictive model by 

So et al. (2014), to identify more profitable customers. 

• Customer Segmentation & Modeling: Some studies use customer segmentation 

followed by risk calculation. For instance, Albadvi and Norouzi (2013) employ RFM 

segmentation, followed by Pareto/NBD modeling for risk-adjusted CLV. 

• Data Envelopment Analysis (DEA): DEA is used to compute measures of risk-

adjusted revenue, as demonstrated by Singh et al. (2013) and Singh and Singh (2016) 

in their respective studies. 

 

SQ4. What is the state-of-the-art ML model used to predict the risk-adjusted CLV in 

the industry? 

The state-of-the-art ML model for predicting risk-adjusted CLV in the industry as 

discussed in Subsection 2.3.5 is a hybrid ML framework, proposed by Machado & Karray 

(2022a). They predict the RAR of customer in p2p lending by leveraging the strengths of both 

supervised and unsupervised learning to efficiently handle high-dimensional datasets and 

produce more robust predictions. In this framework, unsupervised learning (clustering 
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algorithms like k-Means++, k-Means random, DBSCAN) is first employed to segment 

customer data, which is then used as a variable in supervised learning models (predictive 

algorithms like Adaptive Boosting, Gradient Boosting, Decision Tree, Random Forest, Support 

Vector Machine, and Artificial Neural Network) to estimate the RAR value. Among various 

combinations tested, Machado & Karray found that combinations of Decision Tree, Random 

Forest, or Gradient Boosting with k-Means++ outperform standalone models in predictive 

power and processing time. Hence, the hybrid ML approach presents significant potential for 

RAR prediction in the industry, offering vital guidance for future studies. 

SQ5. What is the most significant customer’s type of risks to be considered when 

assessing customers’ value in the Telecommunication industry? 

The SLR study identified nine different types of customers’ risks, with the most significant 

risks in the previous studies being: 

• Volatility of Customers’ Income: This risk indicates the variability or uncertainty in 

a customer's income, which can directly impact their spending behavior. It's a readily 

measurable risk that can be incorporated into CLV calculations. It is calculated using 

the variance in customer transactions over time. Different studies have used slightly 

different formulae, but all aim to capture this volatility. Wangenheim and Lentz (2005), 

Homburg et al. (2009), Singh et al. (2013), and Machado & Karray (2022a) are among 

the studies that have considered this type of risk. 

• Beta Risk: This risk comes from financial portfolio theory (CAPM and MPT) and 

measures the volatility of an asset's price fluctuations compared to a benchmark. It is 

often used to calculate the discount rate in CLV calculations. It has been incorporated 

in the studies by Wangenheim & Lentz (2005), Buhl & Heinrich (2008), Tarasi et al. 

(2011), Albadvi & Norouzi (2013), Singh et al. (2013), and Machado & Karray 

(2022b). 

• Customer Churn: This refers to the risk of a customer discontinuing their relationship 

with the company. It is now considered a significant risk for many companies, including 

those in the Telecommunication industry. Singh and Singh (2016), Hai-wei et al. 

(2006), Ryals (2003), and Ryals and Knox (2005) have all emphasized the importance 

of considering this risk in CLV calculations. 

Other industry-specific risks were also identified, such as PD in the financial services industry 

and claim risk in the insurance industry. However, the three above-mentioned risks are the 
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most significant when assessing customers’ value in the previous studies. The detailed 

discussion on this topic can be found in Subsection 2.3.6. 

SQ6. How much historical data and what time period should be considered to evaluate 

the risk-adjusted customers’ value in the industry? 

The time period and amount of historical data used for evaluating risk-adjusted 

customers’ value differ greatly based on the industry and the method of analysis. The shortest 

observation period was 39 weeks (Sackmann et al., 2010) and the longest was 10 years (Buhl 

& Heinrich, 2008). For the telecommunications industry specifically, a quarter of a year was 

considered appropriate (Homburg et al., 2009). On average, B2C sector studies used about 2.85 

years of data, B2B used 3.5 years, and FSI used 4.9 years. The number of customers observed 

also varied greatly, from as few as 10 in one study (Ryals & Knox, 2007) to as many as 2 

million in another (Machado & Karray, 2022a, 2022b). The methodology also impacts the 

required data volume. For instance, ML algorithms require larger datasets for accuracy. A 

comprehensive analysis is available in Subsection 2.3.7. 

SQ7. What specific risks identified from the literature are most relevant to the 

telecommunication industry, and how can these be quantified for inclusion in the 

ML model? 

In order to address the question of which specific risks, identified from the literature, 

are most relevant to the telecommunication industry and how these can be quantified for 

inclusion in the ML model, this study adapts and incorporates two distinct risks: the probability 

of customer churn and the volatility of revenue from customer that represented by beta value. 

The selection of the probability of customer churn as a risk factor is influenced by its 

high occurrence in the telecommunications industry, particularly amongst prepaid customers 

who are able to switch providers at any given time. To quantify this risk for inclusion in the 

ML model, the approach proposed by Ryals & Knox (2005) is followed. In this method, the 

customer's probability of churn is integrated into the formula for the discount rate, with an 

assumption made that the dataset used in the study is representative of the entire market. This 

churn probability is estimated using a ML model developed following the CRISP-DM 

framework and the ML pipeline, which presented in Section 5.1. 

The volatility of revenue from each customer is selected as the second risk due to its 

prevalence as a common risk across industries. The quantification of this risk uses the Beta 

value, which assesses the volatility of revenue from each customer compared to the volatility 
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of the market, following the CAPM theory as adopted by Dhar & Glazer (2003), Buhl & 

Heinrich (2008), and Machado & Karray (2022). This approach captures the variability and 

fluctuations in the customer's revenue contributions, thereby providing a more comprehensive 

and robust assessment of customers’ risk. 

Incorporating these two risks into the calculation of RAR value makes the metric more 

comprehensive and facilitates meaningful comparisons across experiments. It also provides a 

robust foundation for evaluating the financial impact of various risks on customer revenue, 

enabling informed decision-making and resource allocation. The method used to calculate 

RAR builds upon the base model introduced by Berger and Nasr (1998) but includes 

adaptations to the discount rate to account for the risk associated with each customer, which 

described in more detailed in Section 4.2. 

SQ8. How to develop a ML Model to predict the risk-adjusted CLV in 

telecommunication industry? 

The development of ML model tailored for the telecommunication sector to predict the 

risk-adjusted CLV, adhering to the structured approach of the CRISP-DM methodology and as 

illustrated in Figure 12. The pipeline integrated initial features that delved deep into customer 

behavior. These features captured transaction histories, service utilization patterns—spanning 

voice, broadband, and more—recharge behaviors, and device usage details. Monthly data 

underwent rigorous processing: missing values were addressed, categories streamlined, and 

new attributes introduced. Following this, the data was aggregated, and additional features were 

engineered, involving the creation of novel attributes and outlier management. Categorical 

variables were then encoded using OHE, and features were selected based on multicollinearity 

and correlation analyses, complemented by feature importance evaluation. Given the intricate 

dynamics and vastness of telecom data, algorithms such as CatBoost, XGBoost, and RF were 

selected. The dataset was scaled using a MinMax scaler, followed by hyperparameter 

optimization to improve the model's predictive capabilities. To ascertain reliability, the best-

performing model underwent validation using diverse data split methods and cross-validation. 

A spotlight was placed on feature importance analysis and XAI techniques, emphasizing the 

role of telecom-specific attributes in determining risk-adjusted CLV. Finally, the most 

influential features derived from the model were compared with variables used in traditional 

risk-adjusted CLV computations. An in-depth exposition of the ML model development 

technique is presented in Chapter 4, particularly in Sections 4.3 through 4.7. 
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SQ9. How does the strategy of splitting data into training and test sets affect the 

performance of the ML models for risk-adjusted CLV prediction? 

The analysis includes various strategies for splitting data to ensure the model's robustness. 

Train-test split ratios from 50:50 to 90:10 was examined. Across these various ratios, the model 

performance displayed minimal fluctuation, indicating the model's stability. 

A 5-fold Cross-Validation was also implemented. The ML model showed stable performance 

across both training and testing sets, demonstrating no signs of overfitting. Stability was further 

indicated by the insignificant fluctuation in performance metrics across different folds, 

indicating the model's performance isn't heavily reliant on any particular data subset. This 

demonstrates the model's generalizability and robustness. 

The model was further scrutinized using a group split strategy, with “region_tier” serving as 

the differentiating factor. Even though there were slight variations among the group splits, the 

model's performance remained consistently strong, emphasizing its robustness. 

Learning curve analysis was also conducted, using percentages of data ranging from 10% to 

80%. The trends indicated that as the training data volume increased, the model's ability to fit 

the training data decreased, while its generalizability to unseen data improved. The small 

difference between the training and validation scores at larger training sizes indicates that the 

model is not overfitting and is capable of generalizing to unseen data. 

For performance evaluation, a combination of MAPE, MAE, RMSE, and 𝑅2 metrics was used. 

These metrics give a comprehensive understanding of the model's accuracy, error rate, and its 

ability to explain variance in the data. The consistently strong performance across these metrics 

supports the model's robustness. 

In conclusion, the strategies employed for data splitting significantly contribute to determining 

the reliability and robustness of ML models for predicting risk-adjusted CLV. The model in 

this study exhibits stable performance, robust generalizability, and a significant ability to 

handle varying amounts and structures of data, validating its suitability for predicting risk-

adjusted CLV in the telecommunications industry. The detailed result for each approach could 

be found in Model validation subsection in Chapter 5. 

SQ10. What is the most important feature/variable to predict the risk-adjusted CLV in 

telecommunication industry? 

The ML model identified several key features as the most important predictors of risk-

adjusted CLV in the telecommunications industry. These are primarily the customers’ loyalty 
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point (poin), the average revenue in the last 3 months (avg_3m), including the standard 

deviation (avg_3m_std), and the total revenue (total_revenue) including its standard deviation 

(total_revenue_std). Notably, different approaches yielded a few additional significant 

features. In approach A, the probability of customers’ churn (prob_churn) emerged as an 

important predictor. This reflects the critical role customer retention plays in determining CLV, 

especially in the telecommunications industry where churn rates can significantly impact 

revenue. Meanwhile, in approach B, the customers’ beta value (beta_value) was identified as 

a significant feature. This illustrates the model's recognition of customers’ risk and its relation 

to overall customers’ value. This is particularly crucial in a risk-adjusted CLV calculation, 

where customers’ value is adjusted according to their associated risk. 

SQ11. How does the most important feature from the model compared to the traditional 

calculations’ method? 

The most important features extracted from the ML model align closely with key 

variables utilized in traditional calculation methods, thus affirming the model's validity. The 

top five features: "point", "avg_3m", "avg_3m_std", "total_revenue", and "total_revenue_std", 

essentially represent customer spending or revenue – a fundamental element in traditional CLV 

calculations. Interestingly, for Approach A, the ML model identified "prob_churn" as one of 

the top five critical features, mirroring its importance in traditional methods for this approach. 

Similarly, for Approach B, the model highlighted "beta_value" as a significant factor, aligning 

it with this approach's traditional methods. 

Furthermore, the model successfully captured that customer spending volatility 

substantially influences the RAR value, as inferred from the importance of the standard 

deviation of average revenue from the last 3 months and the total reveue. These features 

represent the spending variability during the observation period. Moreover, the final model's 

correlation between "prob_churn" and "beta_value" with the predicted RAR value is consistent 

with the correlations observed in traditional calculation methods. In this correlation, 

"prob_churn" exhibits a negative relationship with RAR, while "beta_value" has a positive 

correlation, further validating the model's accuracy and relevance in predicting RAR value. 

6.2 Implications 

6.2.1 Theoretical Implications 

The implications of this research for theoretical advancements are significant, offering 

novel insights and methodologies in the domain of the telecommunications industry. 
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Firstly, this study pioneers a research focus on calculating and predicting RAR in the 

telecommunications industry. This provides an original perspective that enriches the broader 

discourse on RAR and contributes to the body of knowledge by situating these processes within 

the unique context of the telecommunications sector. Secondly, this research contributes to the 

existing literature on integrating risk in customer valuation. It introduces two novel methods 

for calculating RAR, expanding the methodological toolbox available to researchers and 

practitioners alike in this field. This is a substantial step forward in understanding and 

quantifying customer-related risks in this industry. 

Thirdly, the application of ML for RAR prediction in this study marks a significant 

development. Only a handful of studies have fully utilized ML to predict RAR. Therefore, the 

use of ML in the study not only substantiates the potential of ML in this context but also 

demonstrates its practical application. This application strengthens the case for incorporating 

ML techniques in future research on RAR prediction. Lastly, this study has significant 

implications for the field of XAI. This research is the first to leverage XAI to assess feature 

importance in RAR modeling and compare its results with traditional calculation methods. This 

approach highlights its potential for delivering clearer, more understandable ML outcomes and 

sets a precedent for future research. 

6.2.2 Practical Implications 

The practical implications of the result of this study are manifold and offer significant 

potential for a more informed and effective marketing strategy. Firstly, the models can serve 

as robust tools for implementing targeted customer retention campaigns. The churn model 

could help identify the customer probability of churn, hence enabling the marketing team to 

devise personalized retention strategies to mitigate this risk. The marketing to choose to give 

campaign to the customer with medium to high probability to churn, as they are easier to be 

roped to stay, while for the customer that have high risk of churn, the marketing team could 

devise a plan to whether improve their retention that might need more budget allocation or just 

let them go.  

The RAR model, which incorporates churn risk, offers multifaceted advantages to the 

marketing team. It serves as a tool to identify valuable customers, thus presenting opportunities 

to not only safeguard but also grow the company's revenue. Tailoring marketing strategies to 

these high-RAR customers can help sustain and potentially increase their revenue 

contributions. Additionally, these models facilitate a more precise customer segmentation 
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based on churn risk and RAR value. For instance, immediate attention and targeted marketing 

interventions may be necessary for high-RAR customers with a high risk of churn. In contrast, 

customers with a low churn risk but high RAR could be the center of strategies designed to 

further amplify their spending. 

Moreover, the RAR model's integration of risk factors allows it to guide risk-informed 

decision-making within the marketing team, proving particularly beneficial when allocating 

budgets for retention programs. Customers posing a significant financial risk can be targeted 

more aggressively, enabling the marketing team to construct the most optimal customer 

portfolio according to their customer segments. Each segment, having unique needs, plans, 

budgets, and returns, calls for a tailored approach. In this way, the marketing team can devise 

strategies that maximize the trade-off between profit and retention efforts. In terms of product 

and service strategies, insights from the models regarding impactful features can inform 

targeted product recommendations and personalized offerings. This tailored approach can 

bolster customer satisfaction, thereby reducing churn and potentially amplifying RAR. 

Lastly, the identification of key features affecting churn and RAR can provide valuable 

feedback for product development and management teams. This information can be leveraged 

to refine the company's offerings, increasing customer satisfaction, and decreasing the risk of 

churn. Overall, integrating the churn and RAR models into marketing strategy can lead to a 

more data-driven approach, more effective resource allocation, improved customer retention, 

and ultimately, growth in risk-adjusted revenue. 

For the Company Specifically: 

This research's insights offer a potent framework for enhancing the company's 

marketing strategies. When the churn and RAR models are integrated into the company's 

systems, it could provide the marketing team with a new dimension to assess customers’ value. 

Feedback from company representatives highlighted the potential of these models in refining 

strategies for high-value customer retention and devising approaches for low-value customers. 

By capitalizing on this study's unique insights, the company can further sharpen its customer-

centric strategies, optimize marketing and product offerings, and solidify its revenue growth in 

a competitive market. 

6.3 Limitations 

There are several limitations to the research that need to be considered. One of the most 

significant limitations is the selection of risk parameters. The study primarily focuses on the 
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probability of customer churn and the Beta value as the source of customers’ risk. However, 

broader risk factors could be explored, including revenue volatility, geographical variances, 

and the fluid dynamics of customer segmentation over the observation period. Additionally, 

this study estimates the RAR based on total revenue, overlooking the diverse range of revenue 

sources within this sector, including voice, SMS, broadband, and digital offerings. Therefore, 

a more granular analysis of these components might yield a richer understanding of RAR value 

in the telecommunication industry. 

The limitations in this study stem from both the scope of data and the methodology 

adopted. Our analysis reveals that while the learning curve shows a notable enhancement in 

the model's predictive performance with an increasing sample size, the constraints on the size 

and duration of the available data inevitably impact the depth and accuracy of the insights 

gained. Furthermore, the study employs only three different ML algorithms for predicting the 

RAR value. The exploration of more sophisticated models, such as neural networks, could 

potentially provide a better understanding of customer behavior patterns. The optimization 

approach for hyperparameters, employing a combination of Random Search and Grid Search, 

also poses a limitation. Given the continuous nature of the hyperparameter values, the optimal 

value could potentially be missed, suggesting that a more sophisticated optimization method 

might yield superior results. 

Finally, the method employed for evaluating feature importance in this research, using 

standard SHAP values, represents another limitation. The significant features in predicting the 

RAR, as highlighted by SHAP values, predominantly reflect different forms of customer 

spending such as “poin”, “avg_3m”, and “total_revenue”. Also, there are “avg_3m_std” and 

“total_revenue_std”, which correlate with the main features mentioned before. However, while 

SHAP values offer a robust measure of feature importance, they do not account for the potential 

causal structures in the data (Janzing et al., 2019). The limitations of SHAP analysis stem from 

its tendency to distribute attribution equally over features that provide similar information, 

thereby putting all features on an equal footing in model explanation. This could overlook the 

intricate interdependencies among features and a more nuanced interpretation might be 

required to discern their true impact on RAR. 

6.4 Future Research 

From the results and limitations of the study, there are several areas to explore for future 

research. First, examining other risk factors inherent in the telecommunications sector could 
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significantly broaden the comprehension of customer behavior. Subsequent investigations 

might delve into a wider variety of risk factors, such as the shifting the customer segments due 

to the volatility of usage and exploring the risk associated with customer location. The 

probability of changing customer segments could be used as a method to capture the volatility 

of revenue from customers, which is inherent in all types of customers. On the other hand, the 

customer's location could be associated with the risk of competitor availability and network 

performance in the area. Furthermore, features related to customer location are regarded as an 

important feature in the customer churn probability model, hence deeper exploration could 

improve the understanding of the area.  

Moreover, enhancing the methodology for computing the RAR presents another 

potential area for exploration. This study has primarily focused on overall revenue, therefore, 

breaking down different revenue components in future research could provide a more 

comprehensive perspective on the RAR. The revenue components could encompass various 

telecom services, including voice, SMS, broadband, and digital offerings, offering a broader 

RAR view across the industry's services. Another area for future research is the use of advanced 

techniques like neural networks. This approach may reveal deeper patterns in customer 

behavior, leading to improvements in the prediction and calculation of RAR. Similarly, 

exploring more advanced methods for hyperparameter optimization, such as Bayesian 

optimization, might enhance the model's performance. 

Additionally, adopting advanced methods for assessing feature importance, such as 

causal and asymmetric SHAP values, that take into account potential interdependencies and 

causality within the data could provide a more detailed understanding of the effects of different 

features on RAR. In conclusion, these directions for future research could continue to enrich 

the understanding of RAR in the telecommunications industry and lead to more accurate and 

actionable insights. 
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Appendix 1 

 

Figure 45 Detailed overview of publication per year 
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Appendix 2 

Table 26 Sample data dictionary 

Feature Name Data Type Description 

msisdn int The mobile phone number associated with the customer. 

poin Int The loyalty points earned by the customer. 

total_revenue Int The total revenue generated by the customer. 

total_recharge Int The total recharge conducted by the customer. 

dominan_denomination Int 
The dominant or most frequent recharge denomination 

used by the customer. 

Dominan_recharge_channel obj The dominant channel used by the customer to recharge. 

avg_3m Int The average of last 3months revenue by the customer. 

voice/sms/broadband/ 

digital_services/ir/others 
Int The type of services used by the customer 

revenue_xxx Int The revenue generated by using the service 'xxx'  

transaction_xxx Int 
The total number of transactions for the service 'xxx' made 

by the customer 

duration_xxx Int The total duration of 'xxx' made by the customer  

volume_of_xxx Int The total volume of 'xxx'  

total_day_of_xxx Int The total number of days customer using 'xxx' service 

xxx_package Int The package related for service purchased by customer 

last_recharge/revenue Datetime The last recorded date of such transaction 

xxx_std Int 
Indicate the standard deviation of such value over the 

observation period 

xxx_pct_change Int 
Indicate the average change (in pct) of such value over the 

observation period 

status Obj The status of the customer's account or subscription. 

kabupaten Obj 
The name of the district or regency where the customer is 

located. 

kelurahan Obj 
The name of the sub-district or neighborhood where the 

customer is located. 

dominan_revenue Obj 
The dominant or most frequent revenue type or category 

for the customer. 

gender Obj The gender of the customer. 

Brand_x Obj The pricing plan/brand selected by customer. 

region_lacci_xxx Obj 
The region or location identifier based on the LAC-CI 

(Location Area Code-Cell Identity). 

los int The length of stay or tenure of the customer. 

device_type Int The type or model of the customer's device. 

Device_data_capable Int 
Indicates whether the customer's device is capable of 

using data services. 

Device_os_priority Int 
The priority or preference given to the customer's 

operating system. 

Device_network_prio Int 
The priority or preference given to the customer's network 

connection. 

data_usage_category Int 
The category or classification of the customer based on 

their data usage. 

Most_used_apps Int The name of the app ranked first by the customer. 
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Figure 46 Histogram of Sample Features 

Table 27 Sample Feature Correlation with Target Value 

Feature name RAR_total_revenue abs_value Rank 

avg_3m 0.839 0.839 1 

poin 0.729 0.729 2 

total_revenue 0.719 0.719 3 

avg_3m_std 0.684 0.684 4 

total_revenue_std 0.650 0.650 5 

total_recharge_std 0.612 0.612 6 

revenue_broadband 0.596 0.596 7 

revenue_broadband_std 0.541 0.541 8 

revenue_digital_services 0.461 0.461 9 

revenue_digital_services_std 0.442 0.442 10 

volume_broadband 0.438 0.438 11 

dominan_denomination 0.403 0.403 12 

segment_tier_poin_A 0.387 0.387 13 

customer_tier_A 0.368 0.368 14 

day_of_digital_services 0.367 0.367 15 

… … … … 

voice_pct_change -0.03 0.03 141 

region_lacci_02 -0.03 0.03 142 

most_used_apps_eCommerce 0.03 0.03 143 

transaction_voice_international_call 0.03 0.03 144 

dominan_recharge_channel_Retailer -0.03 0.03 145 

voice_package_A_user 0.03 0.03 146 

device_data_capable_UNIDENTIFIED -0.02 0.02 147 

transaction_voice_off_net 0.02 0.02 148 

transaction_voice_package_B -0.02 0.02 149 

region_lacci_12 -0.02 0.02 150 

dominan_revenue_Others -0.02 0.02 151 
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most_used_app_category_SocialNetw
ork 0.02 0.02 152 

duration_others 0.02 0.02 153 

dominan_revenue_Digital Services -0.02 0.02 154 

region_tier 0.02 0.02 155 

 

 

  

 

 


