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ABSTRACT 
 

Through a reconstruction of Gilbert Simondon's work using perspectives from contemporary 

philosophy of science, I pursue an ontogenetic study of machine learning —an investigation into the 

process by which machine learning models become what they are and do what they do —with the aim 

of understanding and addressing their role in knowledge production.  This investigation unfolds as two 

parts: Genesis and Genealogy. By studying the genesis of the ML-model, I seek to identify the role (or 

lack thereof) of human cognition in the formation of the ML-model and illustrate its significance for 

our knowledge about the world. By studying the genealogy of the ML-model, I aim to address how 

different scientific communities and their respective knowledge practices are affected by their interaction 

with and integration of machine learning models. 
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CHAPTER 1 

 ONTOGENETIC STUDY OF TECHNICAL OBJECTS 

 

INTRODUCTION 

As AI technologies increasingly take center stage in societal discourses, they invite rigorous reflections 

from a multitude of disciplines, with psychology examining the impacts of AI on human behavior, 

sociologists studying the broader changes to societal structures that it instigates, political science 

reflecting on how it influences governance and power dynamics, philosophy of mind investigating the 

nature of consciousness in AI, prompting questions about its potential for genuine understanding in a 

cognitive sense, and legal scholars investigating the regulatory measures, intellectual property issues 

concerning AI applications. Amid this multidisciplinary reflection, two branches of philosophical 

exploration emerge as particularly salient: i) the ethics and philosophy of technology (PhilTech) and ii) 

Philosophy of Science (PhilSci).  

PhilTech grapples with the profound moral implications and societal impacts of AI, raising 

essential questions about various ethical concerns arising out of its integration into societies and its 

potential to disrupt our existing norms and values. However, when reflecting on these issues, PhilTech 

in approaching AI as an object of investigation, fails to take into account the process that leads to it, the 

various underlying research practices that make possible the production of AI-applications and infuse 

them either intentionally or unintentionally with the socially disruptive potential they carry with them. 

Herein lies the particular space that falls under the purview of Philosophy of Science. PhilSci dives into 

the very heart of AI's methodological and foundational underpinnings, querying its epistemological 

basis, its underlying assumptions, and the nature of the scientific practices AI-applications arise out of.   
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Given that many of the ethical concerns arise from the technical structures underlying AI-

technologies, an intersection of PhilSci and PhilTech (a philosophy of technoscience) can help provide 

a more comprehensive understanding and normative insights concerning AI’s role in society. Such an 

intersection can be traced to the burgeoning field of Ethics & Epistemology of AI (Russo et al., 2023). 

Initiated by philosophers of science such as Federica Russo, EthEpiAI aims to address ethical issues 

concerning AI stemming from the ways in which Machine Learning models represent knowledge 

about the world (epistemology) and it does so by enabling an understanding of the process that leads to 

them. 

It is within this interdisciplinary field of the philosophy of technoscience that this project is 

situated in. This thesis follows an investigation into AI with the same aims and motivations as that of 

EthEpiAI in that I do seek to uncover the ways in which Machine Learning models represent 

knowledge about the world. However, instead of starting from PhilSci literature (as in the case of 

Russo et al. (2023)), I carry out this investigation by drawing on the work of the 20th century 

philosopher of technology, Gilbert Simondon.  

Gilbert Simondon is a French philosopher whose contributions to the field of philosophy of 

technology in his Du mode d'existence des objets techniques (1958), have largely gone unnoticed, with his 

work only being translated into English more than half a century after its initial publication. Decades 

before the advent of the field of technoscience, Simondon’s work already addresses the particular 

intersecting space between PhilTech and PhilSci, in his efforts to relate technologies to culture by 

providing an conceptual framework to understand their underlying modes of technical operation and 

the process of invention.  

Central to Simondon’s (1958/2011) project is the idea that technologies (or technical objects as 

he would refer to them as1) carry an identity that is independent of their practical ends. This is an 

identity concerning the knowledge they embody, both of their own internal operational schema (how a 

 
1 I shall follow this terminology of the “technical object” in the rest of this thesis, so as to better distinguish its material 
nature as that of a concrete technical artefact, as opposed to the a Heidegger’s (1977) understanding of ‘technology’ as a 
human activity or Ellul’s (2021) characterization of ‘technology’ as worldview.  
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technical object operates the way it does) and the knowledge about the real-world phenomena that they 

manipulate in their operation. This ‘epistemic’ identity, for Simondon, can only be accessed by 

understanding the ontogenesis of the technical object, the process by which a technical object becomes 

what it is and does what it does. Simondon’s focus on the ‘becoming’ of the technical object is 

analogous to the focus of EthEpiAI on the process that leads to the development AI-Technologies.  

Unlike previous philosophers of technology in the French tradition who drew on Simondon’s 

work such as Bernard Stiegler (1998) and Yuk Hui (2016), I approach Simondon as philosopher of 

science, and in doing so, I shall reconstruct his work by situating it within and relating it to 

contemporary PhilSci literature, albeit in the context of Machine Learning and its role in knowledge 

production.  

Research Question: 

In drawing on Simondon’s work and situating it within contemporary PhilSci literature,  the 

primary research question that this thesis aims to address is, How can an ontogenetic investigation of 

machine learning—an investigation into the process by which machine learning models become 

what they are and do what they do—enable an understanding of the role it plays in knowledge 

production and help address how it is (and whether it should be) incorporated into knowledge 

practices. 

Sub-questions: 

- [Part 1 : Genesis] When employing machine learning in knowledge production, how is our 

knowledge about the world affected by the process through which machine learning models 

come into existence? 

- [Part 2 : Genealogy] How does the mode of knowledge production specific to machine 

learning models interact and integrate with other epistemic communities and their respective 

knowledge practices? 



Kalidindi 4 
 

To address the above research question (and the sub-questions), I shall first set the stage in this 

chapter and explain what constitutes ontogenesis (1.1) and in doing so contrast it with the ontological 

approach of Hylomorphism, which Simondon seeks to critique in his work. Having explained 

ontogenesis as an approach to ontology, I shall then in 1.2 outline what constitutes an ontogenetic 

study of technical objects and then illustrate how it relates to approaches in PhilTech and PhilSci (1.3 

& 1.4). I will then in 1.5 conclude my overview of an ontogenetic study by outlining what its 

significance is in the context of Machine Learning models.  

After setting the stage in this chapter, the rest of this thesis is split into two parts, investigating 

the two aspects of ontogenesis, Genesis (Part I; Chapters 2 & 3) and Genealogy (Part II; Chapters 4 & 

5).  

Chapter 2 will investigate the genesis of technical objects and in doing so bring to surface the 

role of human cognition in the activity of invention. The central question this chapter would then seek 

to answer is: How is our knowledge about the world affected by the role of human cognition in the 

genesis of the technical object? Chapter 3 continues this discussion in the context of Machine Learning 

and addresses the question: How is our knowledge about the world affected by the role (or lack 

thereof) of human cognition in the genesis of the Machine-Learning model? 

While Genesis (Part I) focus on the coming into existence of a single technical object, 

Genealogy (Part II) shifts attention to how the technical object carry a long lineage of geneses, with 

technical objects moving from the community they arise out of and being instrumental in the 

production of new knowledge and invention of new technical objects in other communities. Chapter 4 

explores this genealogical aspect of ontogenesis and aims to answer the question: How do scientific 

communities extend their knowledge practices by interacting with and integrating technical objects 

that emerge from other scientific communities? Chapter 5 extends this discussion to Machine Learning 

models to answer the question: To what extent, and under which conditions, can scientific 

communities extend their knowledge practices by incorporating machine learning models, compared 

to how they incorporate other technical objects? 
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1.1 ONTOGENESIS AS A MOVE AWAY FROM HYLOMORPHISM 

Ontogenesis concerns the development of the individual; it is the process by which the pre-individual 

becomes the individual, or as Simondon would put it, it is the event that individuates the individual. 

Despite being traced in its origins to Greek metaphysics2, ontogenesis, today, is rarely studied in 

philosophical literature that engages with ontology and is instead most commonly employed in biology 

to refer to the development of an organism/ecosystem3. Central to Simondon’s larger project is a 

revitalization of this ontogenetic approach to metaphysics against the dominant hylomorphic 

tradition. Hylomorphism, as a philosophical doctrine traced back to Aristotle’s substantialism, 

advocates being as a composition of form (morphe) and matter (hyle) and that form actively determines 

matter, which remains passive and inert (Piatti, 2016). Despite not being explicitly maintained, 

hylomorphism has been proven powerful and persisted within numerous philosophical and scientific 

schools of thought: from the Kantian distinction between a priori forms of intuition and sensible 

matter, to this idea from developmental genetics that genetic code governs the development of the 

individual being and from anthropology the idea that material culture stems from the imposition of 

human forms on the environment. (Voss, 2020). 

For Simondon, the hylomorphic schema is insufficient for explaining the “genesis” of the 

individual because of its pre-supposition of a union of form and matter, and because it subsumes 

matter to form in its characterization of fixed forms as imposed on homogenous matter (Barthélémy, 

2012). For instance, someone who works with wood as a material cannot just impose the idea of a pre-

determined chair onto the wooden block. They would have to recognize its porous/non-porous, 

elastic/resistant nature and yield to the range of chair designs permitted by the material properties of 

wood. Therefore, Simondon would argue against the idea of a worker who has her product in mind 

before she produces it or a scientist who would understand technology as a mere application of already 

 
2 As the causa efficiens (κινοῦν). See Aristotle, Physics II 3, 194b29 in Apostle (1970) 

3 See Hill et al. (2010) for an overview of the usage of ontogenesis in developmental biology.  
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determined laws onto problems. Instead, there is an intermediate space between form and matter 

where ontogenesis is played out, a space characterized by a simultaneity of forms being materialized, 

and matter being rendered formable. Rather than forms being imposed on matter, ontogenesis 

acknowledges the qualities in matter that forms bring out and facilitate (Marks, 2006, p. 5).  

 

1.2 ONTOGENESIS OF THE TECHNICAL OBJECT 

In his Du mode d'existence des objets techniques (1958), Simondon’s critique to hylomorphism unfolds 

as an investigation of ontogenesis in the context of technology. An ontogenesis of technical objects 

distinguishes itself from traditional substantialist and essentialist ontologies —in that the latter would 

identify the technical object-artefact based on what it ‘is’ and what it ‘does’ (e.g., its utility, the 

materials that it is made of, the effects it has on society and how it is in turn affected by society) 

whereas an ontogenetic study would investigate the event-qua-process by which the technical object 

becomes what it is and does what it does (e.g., how it is invented, how it evolves, how it is maintained). 

For instance, in the case of the analog clock as a technical object, a hylomorphic ontology that focuses 

on its existence would identify the technical object by the form that the human imposes onto it. 

Accordingly, it would identify the clock as that which represents the flow of time (by its utility), that 

which fueled economic growth during the industrial revolution (by its effect on society), that which 

was societally constructed to meet the demands of a mechanical life (by how it is affected by society).  

In contrast, an ontogenetic study of the clock would shift attention to, say, how the human-

engineer identifies mechanisms by which potential energy in the clock can be translated into a 

consistent movement that can be rendered cognizable (in the act of invention; Chapter 2), and 

transformation of technical schema of the clock from one driven by a pendulum to one driven by a 

loaded-spring (in its evolution; Chapter 5), and the necessary human interventions to ensure the 

reliability and precision of its functioning over time. 

From the case of the mechanical clock, it is evident that what an ontogenetic study of 

technology draws attention to, that a philosophy rooted in the existence of a technology does not, is  i) 
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to its internal technical schema and ii) the role of the human in discovering and establishing this 

technical schema as a material bridge (during invention) between a human reality (e.g. time-keeping as 

the form-intention) and natural reality (e.g. physical properties of the loaded spring).  

Simondon outlines how the historical cultural neglect of the technical activity led to a 

misconstrued identity of technology based on its utilitarian outcomes. This is because a unique 

technical schema can be operationalized towards a wide range of practical ends, and a specific usage can 

be fulfilled by several technical schemas. Simondon illustrates this misidentification using the following 

example:  

“a steam engine, a gasoline engine, a turbine, and an engine powered by springs or weights are 

all equally engines, but there is a more genuine analogy between a spring engine and a bow or a 

cross-bow than between the spring engine and a steam engine; the engine of a pendulum clock 

is analogous to a winch, while an electric clock is analogous to a door bell or a buzzer. Usage   

unites these heterogeneous structures and operations under the banner of genera and species 

(…)” (Simondon, 1958/2011, p.25) 

This generalized mis-identification (or rather, reduction) of technical objects by their ends, results, and 

effects and not by their technical schemas is attributed by Simondon as a symptom of modern culture 

and a cause of alienation between the human and technical object. Following Simondon, it would then 

be important to recognize that the technical schema of say, the spring-engine, in my previous example, 

has an identity independent of its utility as the analog clock. Half a century after being written, 

Simondon’s project finds great relevance in our era characterized by an increased cultural alienation 

that arises out of the distance between complex technical schemas internal to modern technologies and 

the communities that employ them. More importantly, what makes Simondon’s contributions of 

particular significance now is that this mis-identification of technical objects by their results is not just 

a symptom of culture but is also embedded within academic and scientific research that concerns 

technology. In what follows in the next two sections of this chapter, I shall sketch an overview how an 
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ontogenetic approach to technical objects relates to contemporary approaches in Philosophy of 

Technology, and Philosophy of Science.  

 

1.3 HYLOMORPHIC UNDERPINNINGS OF PHILTECH 

The hylomorphic schema, as laid out above, with its emphasis on what happens at the two ends, form 

and matter, and its subsequent failure to acknowledge what happens between the two ends can be 

traced to literature in Philosophy of Technology. PhilTech approaches technical objects by their results 

(their ends, their utilities, and their effects) but not based on their technical schemas and the practices 

they arise out of. To add more weight to this claim is Federica Russo’s recent observation of the same. 

In her Techno-Scientific Practices (2022), she takes on the task of creating a bridge between the fields 

of PhilTech, STS, and Philosophy of Science (PhilSci), as a part of which she shifts attention to the 

origins of modern technologies in scientific practices and identifies how technical instruments have not 

been analyzed as a part and parcel of the scientific process (p. 65). As a part of her critique, she argues 

that “[PhilTech] already approaches technology and artifacts as “finished” final products and too little 

on the process that leads to them” (2022, p. 43). Russo’s observations thereby align with my own 

motivations in drawing on Simondon’s work to address the particular space, of the genesis of technical 

artefacts, that PhilTech fails to accommodate.  

Approaches in PhilTech play an essential role in modern society in their descriptive and 

normative contributions to the relationships between technology and society at different levels and 

there are great risks, as will be elaborated in later chapters, of not taking into account the ontogenetic 

aspect of the very technologies that are objects of their research. In summary, drawing attention 

towards the ontogenetic aspect of technical objects brings to surface the particular ways in which the 

technical activity exerts its own deterministic influence (in shaping how technologies are later 

instrumentalized for a particular utility or an effect on society) which is otherwise either unquestioned 

or remains as an implicit ideology in most, if not all, approaches in PhilTech. 

 



Kalidindi 9 
 

1.4 ONTOGENESIS AS EXTENDING THE PRACTICE-TURN IN PHILSCI 

It is common knowledge that technology is a part and parcel of scientific research, and one wouldn’t be 

wrong in directing their attention to scientific practices and philosophy of science when investigating 

the genesis of technical objects. While it is true that technologies do emerge out of scientific research, 

the characterization of the ways in which this emergence is played out remained hylomorphic within 

philosophy of science as well, at least until recent years.  

In the same way that the hylomorphic schema remained dominant within PhilTech, in its 

reduction of the technical object to its results, technical instruments in traditional positivist philosophy 

of science have been reduced as mere applications of scientific theories. In this theory-centered 

paradigm of philosophy of science, technical objects-qua-instruments had value only in so far as they 

were instrumental in evaluating and justifying a theory (Boon, 2015, p. 4) and any empirical 

achievements of these instruments in subsequent technological developments have instead been 

credited as a testament to the success of theories they were allegedly derived from (Boon, 2015, p. 27). 

If within the bare hylomorphic schema, being is the result of form imposed on matter, and if PhilTech 

is hylomorphic in so far as it understands technology as the imposition of human necessities on 

material reality, then traditional PhilSci mirrors the hylomorphic schema in its conception of 

‘instruments’ as the imposition of scientific theories on physical reality.  

However, this supremacy of theory and the conception of the instrument as being in its service has 

been recently deconstructed with the practice turn in PhilSci. Traced in its origins to the works of new 

experimentalists such as Ian Hacking and Allan Franklin, the practice turn brought to surface the 

active role that instruments play not just in confirming pre-made theories but in the construction of 

theories as well (Russo, 2022, p. 41).  The hylomorphic schema is thereby avoided because instruments 

are not simply derived from the imposition of scientific knowledge. In fact, knowledge of phenomena 

itself is co-produced in the interactions between theories and instruments (Russo, 2022, p. 67).  

Transitioning away from a theory-centered approach also meant that the practice turn brought 

with it a pluralist conception of science in challenging the notion of there being a single comprehensive 
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account of scientific knowledge. For instance, Roland Giere’s (2004) seminal argument that scientific 

statements do not directly refer to an aspect of reality, but that scientists use certain models to represent 

aspects of reality for certain purposes, carried with it a practical motivation, thereby making it possible 

for mutually inconsistent models of the same phenomena to co-exist in the scientific project in so far as 

they are directed at different purposes. The focus on purposes also signified that scientific inquiry is not 

exclusively driven towards uncovering ‘truth’, but is also driven with the goal of developing 

instruments that produce phenomena of utilitarian relevance in later technologies (Boon, 2015, p. 8, 

22). The practice turn with its deconstruction of the supremacy of the theory thereby shifts the focus 

of science from questions of truth to questions of utility and reliability. 

 Herein lies a danger that Philosophy of Science in Practice ought to remain wary of, in that the 

focus on the utilitarian relevance of scientific knowledge, and not on truth, opens doors for the return 

of an alternate hylomorphic schema, identical to one that dominates PhilTech, with scientific activities 

and their technical outputs being reduced to their utilitarian relevance. The practice turn, in moving 

away from the supremacy of the theory, inverts the hierarchy of values rendering science as not more 

true but more useful. This inversion while dethroning the theory, continues to preserve an opposition 

between the norm of utility and the norm of truth, leading to an anti-realist stance on scientific 

knowledge, as is traced in the works of Boon (Boon, 2020b) and Van Fraassen (2010). 

It is precisely within this opposition that Simondon’s ontogenetic project finds its greatest 

relevance for PhilSci in its nuanced demarcation of the operational from the practical. In Simondon’s 

words,  

“The technical operation is not arbitrary, pliable in every way to the whims of the subject 

according to the randomness of immediate utility; the technical operation is a pure operation that 

puts into play the veritable laws of natural reality; the artificial is something natural that has been 

solicited, not something false or human that has been mistaken for something natural” (Simondon, 

1958/2017, p. 260) 
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The technical operation, situated between nature and science, thereby retains an epistemic identity, 

grounded in the norm of truth that is independent of its utilitarian ends and is yet capable of being 

operational-ized towards these ends4. It is important to note that Simondon’s demarcation of the 

operational from the practical, as avoiding an epistemic nominalism, is not a notion that is entirely 

foreign to contemporary PhilSci. The necessary groundwork has already been done. Michela Massimi, 

for instance, does make a similar distinction in her Perspectival Realism (2022). She identifies scientific 

knowledge production to consist of two distinct perspectival modes. Perspectival1 [P1] (from a vantage 

point) constitutes the situatedness of scientific representation, in that the way a phenomenon is 

identified and assessed is affected by the experimental, theoretical, and technological resources specific 

to a particular scientific community. Perspectival2 [P2] (towards a vantage point) on the other hand 

refers to the directionality of the representation itself (Massimi, 2022). This entails the practical ends 

towards which a particular phenomenon is represented as opposed to how it is represented from a 

particular vantage point.  

What Simondon would add to Massimi’s demarcation is that technical resources aren’t simply 

resources as a part of P1 and the human isn’t simply passively connecting these two modes, P1 and P2. 

Instead, technics serves as a bridge that connects these two modes. The technical object which 

produces a technologically relevant phenomenon of utilitarian value is not one that already exists as a 

resource or is arrived at simply by an application of existing theoretical and experimental resources. It is 

one that is invented during the technical activity by an active human cognitive operation that connects 

P1 and P2 , as one that is grounded in the real5. As opposed to simply directing P1 (resources) towards P2 

(ends), the idea that the technical object embodies a knowledge owing to its bridging of the two realms 

while being grounded in the real renders every technical object as one that is serving both epistemic and 

utilitarian tasks. Or as Simondon would put it, “there are not two categories of technical objects, those 

serving utilitarian tasks and those serving knowledge; any technical object can be scientific and vice-

 
4 This line of argument has the potential to be extended into a realist stance on scientific knowledge from within a 
philosophy of science in practice – that is a task for a future research project.  
5 The role of human cognition that Simondon introduces isn’t foreign to philsci as well. (Boon, 2022) identifies the same 
and this will be contextualized and elaborated in the next chapter. 
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versa.” (Simondon, 1958/2017, p. 252). The type of epistemology Simondon advocates here with 

respect to technical objects is similar to one that PhilSci employs with models. Russo (2022) shows 

how models mediate between reality and theory and allows one to learn about the two sides they 

connect whereas technologies are only employed (p.100). For Simondon, however, technical objects 

themselves, would embody both these realms, utilitarian and epistemic. An ontogenetic study of 

technical objects thereby presupposes an epistemological dimension as well. This does not mean that 

model-instrument distinction is conflated, but rather that one now begins to approach the model not 

as model, but as a modelling –a practice that takes place during the act of invention in translating an 

abstract technical object (one grounded in P1) to a concrete technical object (one grounded in the laws 

of the real world), all while being directed towards P2 , and yet remaining independent of it.  

It is a pity that Simondon’s work remained underrepresented for more than half a century within 

Anglo-American philosophy literature. However, if it had gotten the attention it deserved at the time 

of writing, it would have confronted the then mid-20th century philosopher of science who was just 

beginning to acknowledge the practice turn; it would have perhaps denied her the optimism with 

which she leapt into the norm of utility and perhaps even denied the rest of the scientific community 

from recognizing the benefits of an engineering-paradigm in science. In the current era, however, the 

time is right for Simondon’s project to be integrated into both PhilSci and PhilTech and also as that 

which integrates the two. My elaboration of Simondon’s distinction between the practical and 

operational through the works of contemporary philosophers of science Russo, Massimi, and Boon is 

in fact an anticipation of how in later chapters, I shall reconstruct Simondon’s project not as one that 

externally confronts the philosopher of science, but one that is built from within PhilSci itself; a 

reconstruction that does not confront the scientist-engineer with a warning of the dangerous path 

ahead (as it would have if it got the same reception at the time when Simondon wrote it) but instead as 

a guide in helping navigate the epistemological issues that currently lie at the frontiers of technoscience, 

namely those epistemological issues concerning the complex technical object that is the Machine 

Learning model.  
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1.5 TOWARDS AN ONTOGENETIC EPISTEMOLOGY OF AI 

My reconstruction of Simondon’s project as an Ontogenetic Epistemology of Technical Objects 

(OETO) is definitely guided by this idea that the ‘time is right’, with i) the practice turn in PhilSci 

developing to a point where Simondon’s project would find its best relevance as was elaborated in the 

previous section, ii) PhilTech becoming aware of its own self-defeating disconnection with the process 

by which technologies come into existence, and lastly, iii) with authors like Russo (2022) and Radder 

(2009) pushing forward the need for an integration between PhilSci and PhilTech.  

At a broader level, it is important to note that OETO is then an intuitive response to the above 

outlined developments. Although pursuing an ontogenetic study would no doubt help identify and 

refine certain methodologies within both PhilTech and PhilSci, it is definitely not the case that these 

fields cannot continue operating without an OETO, or that there is a grave need for them to 

fundamentally re-think their ontological commitments to be aligned with those of an ontogenesis.   

However, what makes OETO, not just an intuitive response but a necessary response, is the 

particular role it can play in guiding these fields in their confrontations with the ‘alien’ subject that is 

AI. In what follows, I shall sketch an overview of why existing resources in PhilTech and PhilSci are 

insufficient in addressing certain epistemological concerns that arise out of the scientific development 

and societal implementation of Machine Learning models and identify the role that an OETO can play 

in this context. 

Firstly, as was discussed in 1.3, the hylomorphic undertones of PhilTech approaches imply that 

the process by which technologies come into existence (ontogenesis) is not explicitly acknowledged and 

that technical objects are instead assessed based on their results (e.g., utilities, effects on society, etc.), or 

sometimes based on what is needed for their ontogenesis, but not ontogenesis itself (e.g., capital that 

goes into scientific research; societal, political and cultural influences in driving the course of 

technological innovation, etc.). Such a strategy has been proven successful in the past in the 

anticipation and evaluation of emerging and potentially disruptive technologies, but it reaches a limit 

when PhilTech enters into the domain of AI. This limit can be illustrated as follows: let’s say there is a 
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strong societal need for a technology that fulfills a certain necessity. There are two technical schemas 

that fulfill this exact necessity in identical ways producing identical results in all contexts. It is the case 

that one of these schemas arises out of a fully human written algorithm and the other schema 

corresponds to a complex machine learning model with minimal human intervention. In this context, 

PhilTech approaches would be incapable of justifiably distinguishing between these two cases given 

that from the outside (when one looks at what goes in, and what comes out, as in a hylomorphic 

schema), the two technical activities appear to be identical. An OETO in the context of ML models 

can help de-mystify the technical activity because of which ML models become what they are and do 

what they do, and can help PhilTech make more informed decisions regarding their implementation in 

different social, political, and cultural spheres.  

Secondly, it is well-recognized by now, in contemporary PhilSci, that knowledge of phenomena 

is not produced by human agents alone by a direct application of theoretical, and methodological 

resources. Instead, Russo (2022) outlines how knowledge is co-produced in the interactions between 

human scientists and technical instruments and how instruments do not just mediate, but embody a 

certain epistemic agency. With her revitalization of the concept of poesis, Russo brings to surface the 

interaction and partnership between human and artificial epistemic agents in knowledge production. 

However, it is important, especially in the context of ML models, to investigate how this partnership 

/interaction is played out and how it is different from traditional instruments. Furthermore, it is 

important to recognize that when PhilSci literature approaches technical objects as artificial epistemic 

agents, they fail to acknowledge the human reality and the role of human cognition (or the lack 

thereof) in the ontogenesis of technical object which is otherwise labelled “artificial”. In doing so, one 

runs the risk of confronting the ML model as something external and alien to the human-scientist who 

participates with it in scientific practices, whereas in reality, the ML model, like other technical objects, 

follows a long line of evolution, carrying traces of both human and material features that cumulatively 

shape it into what it is now.  

More importantly, the advent of the AI paradigm also marks the practice-turn in PhilSci 

confronting a limit. This is because the ML model, with its emphasis on empirical results, its lack of 
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theoretical underpinnings, and the subsequent black-boxing of methodological, epistemological 

operations, serves as the absolute embodiment and hallmark of what it means to fully embrace the 

norm of utility over the norm of truth. How different scientific disciplines will incorporate ML models 

into their practices in the coming years will speak a lot about the scientific enterprise as a whole and 

where its commitments lie. An unhindered adoption of ML models in scientific practices would mark 

the completion of practice-turn, with an absolute shift from a traditional positivistic philosophy of 

science to one that defines what is true by what is useful. An OETO in the context of AI, with its 

demarcation of the operational from the practical, would serve as a guide in keeping the dominance of 

utility at bay. It would do so by equipping scientific practices with resources to reinvigorate their 

commitments to the norm of truth by strengthening their methodological and epistemological 

commitments, while continuing to direct technological innovation towards the norm of utility.  

Simondon’s own motivations in investigating the genesis of technical objects stemmed from 

technology being reduced to its finality (results) and the technical object not being understood 

through the technical activity that it arises out of. Simondon’s work was thereby directed at 

suppressing the cultural alienation between the human and the technical object that arises out of this 

misidentification. However, in the age of AI, investigating the genesis is not just relevant for 

suppressing this alienation and better representing the ML model in human culture. Ontogenesis, in 

the context of ML models, tackles deeper epistemological concerns as well. 

 In Part I: Genesis, as I layout the role played by human cognition (or the lack thereof) in the 

invention of the ML model, it is not to demystify the construction of the ML model to reach a better 

understanding of AI. Instead, it is valuable in so far as recognizing the particular role that human 

cognitive resources, and theoretical resources play in the construction of the ML model can help better 

address questions of accountability and reliability of ML-driven knowledge production.  

In Part II: Geneology, as I trace the genealogical lineage of ML models from its statistical 

foundations to their operationalization in distinct knowledge practices, it is not the question of 

milestoning their increasing empirical successes in diverse fields. Instead, it is to investigate how 
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machine learning as an epistemic tool transforms itself by interacting and integrating with existing 

epistemic communities and knowledge practices. Only then can we identify whether some forms of 

integration of ML models are more justified than others.  
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GENESIS 

  



Kalidindi 18 
 

CHAPTER 2 

GENESIS OF THE TECHNICAL OBJECT  

 

In the last chapter, I have shown how PhilTech and Positivistic PhilSci preserve a hylomorphic schema 

in their understanding of technical objects as derived from applying existing scientific knowledge onto 

human needs. This chapter uncovers how this is not such a straightforward process and that we do not 

directly arrive at technologies from applying existing knowledge. Instead, human cognitive capacities 

play a crucial role in the genesis of the technical object. This claim will be substantiated by drawing on 

Simondon’s conception of invention as an event that is made possible by the human creative capacity 

to imagine a future technical object by identifying and organizing existing scientific models in precise 

ways. I will further strengthen this claim, and in doing so go beyond Simondon’s own arguments, by 

drawing on PhilSci literature to show how human cognitive capacities play a role not just during 

invention, but also during the construction of the scientific model itself. Having identified the role of 

human cognition in both construction of the scientific model, and the subsequent invention of the 

technical object, this chapter will then outline the epistemological significance of this role, namely, 

how is our knowledge about the world affected by the fact that the genesis of the technical object relies 

on human cognitive capacities? Given the questionable role of human cognition in the genesis of the 

Machine-Learning object, answering this question will help better understand the adequacy of 

Machine Learning as an epistemic practice in Chapter 3. 

 

2.1 INTRODUCTION 

For Simondon, an investigation into the genesis of technical objects directs our attention to the 

particular moment of invention, an ontogenetic event before which the technical object only exists 

virtually, as a non-actualized potential in nature. The ontogenetic event, as laid out by Simondon over 
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the course of his book, is one that always has both an ontological and epistemological dimension. This 

is because the genesis of the technical object does not just lead to its material manifestation as its 

existence; it also brings with it the knowledge of the internal operational schema that it embodies; and 

knowledge about the phenomenon that the technical object produces (or manipulates).  

A technical object that is invented is then tied to the phenomenon that it seeks to produce (or 

manipulate) as a result of its functioning. For instance, a gyroscope is tied to our understanding of the 

phenomenon of conservation of angular momentum, which allows it to maintain its orientation; and a 

photographic filter is tied to the production of polarization as a phenomenon that reduces glare and 

reflection in an image. In these examples, it is important to recognize that the invention of these 

technical objects, as directed towards the production of particular phenomena, presupposes some form 

of epistemic access to those phenomena as a condition of their genesis. Scientific models provide this 

initial epistemic access to the world (or a phenomenon in the world) as a pre-requisite to the genesis of 

the technical object.  

Although Simondon does not explicitly refer to scientific models, he distinguishes between the 

abstract technical object and the concrete technical object. Abstract technical objects are a translation of 

an intellectual system (like how Giere (2004), conceptualizes scientific models as abstract objects 

derived from theory). Concrete technical objects, in contrast, are derived from the abstract technical 

object, and are embedded into real-word causes and effects following the activity of invention 

(Simondon, 1958/2017, p. 25-29). I thereby infer from Simondon’s work that the abstract technical 

object he points to is indeed similar to the way the model is employed in the semantic view in PhilSci. 

The semantic view, traced in the accounts of Suppe (1989) and Giere (2010). Cartwright (1983) and 

Morgan & Morrison (1999) (as cited in Boon 2020a) corresponds to the notion that there is a 

representational relationship between scientific models and real-world systems analogous to how 

semantic signs and symbols represent real world entities. The invention of the concrete technical object 

for Simondon, then starts from these ‘representational’-models or what he calls abstract technical 

objects, but remains a process that is not fully directed by them. Instead, the human plays an active 

role, as will be discussed in section 2.2, by weaving together elements from these models and other 
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epistemic resources towards particular practical ends by employing cognitive resources that are unique 

to her. Drawing on contemporary developments in PhilSci, particularly the conception of scientific 

models as epistemic tools and the emphasis on the process of model construction (Boon and Knuuttila, 

2009), I shall in 2.3, deviate from this Simondonean conception of the genesis of the technical object in 

arguing how the ontogenetic event is not just confined to the activity of invention alone but that it 

extends to the construction of the scientific model as well. To make my position explicit, I will be 

extending Simondon’s attribution of the human role to not just the activity of invention of the 

technical object but also the construction of the scientific model, in that in the same way the genesis of 

the technical object does not follow, for Simondon, from a direct application of scientific models 

(abstract technical objects), the activity of model construction too does not arise from a direct 

translation of existing theoretical resources. It is to be noted that from here onwards, to maintain 

clarity for the reader and avoid confusion, I will be referring to scientific models as models indeed, and 

not as abstract technical objects in the way Simondon refers to them, and that whenever I use the term 

‘technical object’, I’m in fact referring to a ‘concrete’ technical object in particular and not the abstract 

technical object that is the model.  

The genesis of the technical object i.e., the ontogenetic event, then, follows two activities: i) the 

construction of the model, ii) the invention of the technical object. The aim of this chapter is to 

investigate the ontogenetic event in both these activities and identify the role of human cognition, with 

the next chapter extending this investigation in the context of machine learning in particular. 

Accordingly, I will first, in 2,2 investigate what constitutes the activity of invention as laid out in 

Simondon’s work. After laying out the need for human cognitive abilities during the activity of 

invention, I will show how the human fulfills this need through her unique creative capacities, not only 

during the invention of the technical object, but also in the construction of the scientific model as well 

(2.3). Lastly, 2.4 will explore the epistemological implications of there being an active human 

involvement in the construction of the model and in the invention of the machine. In other words, I 

will be concluding this chapter, by answering the question, how is our knowledge about the world 

(both the world that the technical object operates on, and the world within the technical object 
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through which it operates) affected by the fact that human cognition plays a necessary role during the 

genesis of the technical object? 

  

2.2 INVENTION OF THE TECHNICAL OBJECT  

Before I dive into Simondon’s characterization of the activity of invention, it is important to 

distinguish invention’s unique contribution to the ontogenetic event from that of the construction of 

the scientific model. Models play a crucial role in scientific practices in that they provide an interface 

between the epistemic agent-scientist and the real-world system under investigation (Russo, 2022, p. 

93). While there is a vast body of literature in PhilSci on what constitutes a model, Contessa (2010, as 

cited in Boon (2020b)) distinguishes their ontological status into the following three types: material 

(e.g., anatomical models of body organs used by medical professionals), mathematical (e.g, 

epidemiological models such as the SIR model to understand the spread of diseases), and fictional 

models (e.g., the plate-tectonics model which imagines the movement of earth’s lithosphere as an 

interaction between plates, while the actual process is driven by complex geophysical phenomena). 

Each of these types of models play an instrumental role in producing knowledge about a phenomenon, 

which is further employed in the invention of a technical object that produces (or manipulates) this 

phenomenon (Boon, 2015). Why is it that there is then a distinct need for the activity of invention 

when scientific models already provide a comprehensive understanding of the underlying phenomena? 

Isn’t Fermi and Szlizard’s mathematical model of nuclear chain reaction sufficient to build a nuclear 

reactor? Isn’t Carnot’s ideal heat engine model sufficient for building internal combustion engines? 

It is important to note that the model itself does not carry with it all the sufficient epistemic 

resources for the invention of the technical object. This is because of the following reasons: Firstly, 

models themselves, even if they are material, cannot serve as concrete technical objects because of their 

dependency on the contexts of their construction, in that they cannot function beyond the scope of 

the controlled conditions created within say, the laboratory; Secondly, models do not give us a direct, 

unmediated epistemic access to an objective reality (Russo, 2022, p. 101). The ways in which scientific 
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models correspond to a real-world system is further mediated by the theoretical and experimental 

resources specific to the epistemic community that they arise out of (Massimi, 2022, p. 22); and lastly, 

models are instrumental in knowledge production in so far as they help isolate the relevant factors and 

simplify an otherwise complex phenomenon (Russo, 2022, p. 101-102) or as Giere (2006, as cited in 

Russo, 2022, p. 103) puts it, they serve as maps, in guiding epistemic agents in reaching a particular 

purpose, but they cannot alone fulfill this purpose.  

If scientific models can only mediate, isolate, and guide access to phenomena as discussed 

above, how is it possible that the inventor-engineer is able to invent concrete technical objects that 

produce phenomena in the real world? Answering this epistemological question is crucial to 

understand the true genesis of the technical object for Simondon and to do this, he directs his attention 

to the event of invention itself, which I will elaborate in what follows. 

Among the several engines and assemblages that Simondon employs as examples to lay out his 

arguments concerning the genesis of the technical object, of particular significance in the case of 

invention is the Guimbal Turbine, in a hydro-electric powerplant (1958/2017, p. 57). In what follows, 

I shall draw on this example to illustrate how scientific models are insufficient to account for the 

genesis of technical objects and identify the additional resources that the inventor-engineer needs to 

bring into the technical activity during invention.  

From my discussion earlier on the role of models in knowledge production, it would be the 

case that the knowledge of the phenomenon, of potential energy in water being able to be converted 

into electrical energy (from say, Faraday’s models of electromagnetic induction), precedes the invention 

of the hydro-electric generator. However, it is not simply a direct application of this (past) knowledge 

that produces the Guimbal Turbine. The model despite being constructed with the epistemic purpose 

of building a future hydro-electric generator, can have a determinate influence only in so far as it can 

help engineers make use of the understanding of the process of generating electricity from water (or 

perhaps creating a highly simplified prototype in the laboratory). In practice however, the internal 

electric parts would need to be constantly kept dry; the generator would have to be frequently turned 
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off to dissipate the heat; and the friction within the turbine needs to be minimized to not just make it 

more efficient but also to ensure that the turbine does not deteriorate over time.   

In the Guimbal turbine as a concrete technical object, however, there are two main elements, 

water and oil, each having their own multi-functional potentials. The water brings with it 1) a potential 

energy to activate the turbine, and 2) it helps dissipate heat away from the generator. The oil, on the 

other hand, can 1) lubricate the generator, 2) insulate the turbine, and 3) prevent water from leaking 

because of differences in pressure of the oil inside the box, and pressure of the water outside. Although 

the knowledge of these individual potentials precedes the invention of the turbine, it is at the moment 

of invention, that they are coupled into a concrete synergetic system that is self-maintaining. A 

coupling where the different functional capacities of both water and oil are interlinked to enable the 

reliable functioning of the generator, with water dissipating the heat from the generator while it 

simultaneously drives the turbine, and the oil insulating and lubricating the generator while 

simultaneously keeping the water from seeping into the crankcase (Simondon, 1958/2017, p. 57).  

This intricate, synergetic coupling is one that did not exist (in the past) before invention, and 

does not follow directly from existing knowledge (as it would in a hylomorphic schema), and for this 

reason, Simondon refers to the emergence of this coupling as a “conditioning of the present by the 

future” (1958/2017, p. 60). Herein lies the active role that human cognition plays in the genesis of the 

technical object because, for Simondon, only a thought capable of foresight and creative imagination 

can accomplish this conditioning, in so far as it requires a capacity to identify, isolate, and organize 

existing elements as symbols in such a way that they represent a future technical ensemble that does not 

exist yet (1958/2017, p. 60).  

How then does human cognition fulfill this role in the invention of the technical object?  To 

be able to invent the machine that fulfills a specific purpose, the human inventor, for Simondon, needs 

to represent to herself, in thought, the way of functioning (such as electricity generation) that coincides 

with a technical operation (such as that between the water and oil in the Guimbal turbine) that 

accomplishes that function (1958/2017, p. 249). In making this representation, the theoretical 



Kalidindi 24 
 

resources, and the situatedness of the inventor-engineer in a particular cultural epistemic community, 

would definitely play a role but only in so far as they help serve as a repository of models that she can 

potentially make use of. For instance, one could argue that the creative ability of, say, the poet remains 

independent of the vocabulary and grammatical structures of the language she chooses. In the same 

way, the ability of the inventor-engineer to represent to herself a future technical ensemble retains an 

identity independent from the various epistemic resources she has access to.   

Simondon further illustrates this role unique to human cognition through an analogical 

relation between the human and the machine, a relationship that doesn’t lead to 

anthropomorphization of the machine (as one that is commonly found in AI discourses6) but one that 

points to a kind of techno-morphization of human thought — that during invention, there is a relation 

between the mental functioning of the human and the physical functioning of the machine 

(1958/2017, p. 151). In Simondon’s words, “To invent is to make ones thought function as a machine 

might function, neither according to causality, which is too fragmentary, nor according to finality, 

which is too unitary, but according to the dynamism of lived functioning, grasped because it is 

produced, accompanied in its genesis” (Simondon, 1958/2017, p. 151). Therefore, it is only because 

the inventor-engineer can conceive of the not-yet-existing-machine’s operation in her own thoughts, 

i.e., to organize the epistemic resources she has access to (say, the model of the hydro-electric generator, 

fluid dynamics of water and oil, etc) in ways that coincide with the practical end that the machine 

would be directed towards, was it possible for the machine to come into existence.  

Having laid out what constitutes the activity of invention and having identified the role of 

human cognition during this activity, I will now turn to the preceding activity of the construction of 

the scientific model in the following section.  

 

2.3 CONSTRUCTION OF THE SCIENTIFIC MODEL: 

 
6 See Salles et al. (2020); Watson (2019) 
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Drawing attention to the activity of invention in the genesis of the technical object, in the previous 

section, serves to overcome the hylomorphic schema in showing how technical objects are not arrived 

at by a direct application of scientific resources and in doing so, brings to surface the active role played 

by the human in this activity. Although Simondon’s own project does not address it, drawing attention 

to the activity of the construction of the scientific model, like the activity of invention, also makes 

explicit the different modelling practices employed by the scientist-engineer, enabled by her own 

unique cognitive capacities. Such a perspective on scientific models, one that emphasizes the construct-

ing of the model as opposed to the representational qualities that it is otherwise known by (as is the case 

in the semantic conception of the model outlined in 2.1), can be traced in Boon and Knuutuila’s 

(2009) conception of models as epistemic tools. This alternative account of models recognizes their 

epistemic role by shifting attention from the way a scientific model ‘is’. Instead, the conception of 

models as epistemic tools emphasizes how it is the activities of model construction and manipulation 

(as a continuation of construction) that equip scientists with useful knowledge (i.e., in their enabling of 

different modes of scientific reasoning, in helping develop theories, and in being instrumental in the 

later invention of technical objects). For instance, Boon and Knuutila (2009) draw on the case of the 

construction of Carnot’s ideal heat engine to illustrate how at different points in the process of 

construction, the human-modeler actively makes choices such as what aspects of the real engine the 

model abstracts, what assumptions it makes, and what purposes7 it is directed towards. These choices, 

which from hereon, I shall refer to as methodological choices, constitute the construction of the model.  

Methodological choices would include i) the choice of the type of model to build depending 

on the purpose it would be directed towards; 2) which parts of the target system that the modeler takes 

into account and how she would abstract and idealize certain parts to be relevant for the modelling 

practice. 3) which existing scientific knowledge (other models and theoretical resources) to make use of 

in the construction of the model and 4) how the model is attached to the real world (through say, data 

 
7 Purposes in the case of Carnot’s ideal heat engine would include the need for an explanation of a limit to the performance 
of heat engines. This purpose would direct different choices such as what parameters are taken into account, what existing 
theoretical resources to employ. (see Boon and Knuutuila, 2009, p. 18) 
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and measurements) (Boon, 2020a, pp. 15–17).8 These methodological choices enable a justification of 

the model and allow us to approach models as intelligible entities given that we can reconstruct these 

choices, in so far as they are made by the scientist engineer.   

Of significance in this activity of model construction is that the ways in which different 

methodological choices are handled is actively enabled by the human and her own unique cognitive 

resources. In the same way an activity of invention presupposes, for Simondon, an anticipation of a 

future technical object by the human-inventor, the human-modeler would have to anticipate future 

materials and new phenomena that can be productive towards the epistemic purposes she intends to 

satisfy. Similar to Simondon’s arguments in support of the active role played by human cognitive 

resources in the invention of the technical object, Boon (2022) advocates the need for the same in the 

activity of model construction as well. She argues against the traditional belief that science is objective, 

and rational in the sense that ‘the world speaks for itself’, and brings to attention the otherwise 

trivialized contribution of human cognition in scientific practices (p. 124). Drawing on a Kantian 

epistemology, Boon makes the case for how the human cognitive apparatus possesses unique capacities 

such as the ability to identify relationships and analogies, and to imagine, conceptualize and transform 

observations into new concepts, all of which are essential for scientific research (p.114). Boon’s insights 

further strengthen Simondon’s argument that existing epistemic resources alone are insufficient to 

account for the genesis of technical objects. What Boon’s work would add to Simondon’s conception 

of the genesis is that it is not just within the intermediate space between the model and the functioning 

of the future technical object that human cognition plays its role, but also in the construction of the 

model itself. In the same way the creative capacities are directed towards the identification of a 

synergetic coupling between multiple pluri-functional elements (as is the case in the Guimbal turbine) 

during invention of technical object, the same capacities also find their significance in identifying 

relations and imagining new concepts that are productive in the construction of scientific models.  

 
8 Boon, (2020a) provides a systematic overview of these methodological choices articulated in a set of questions that guide 
modelers in the activity of construction and can enable other scientists to re-construct models to derive knowledge from 
them. These questions make up what is commonly referred to as the B&K method in PhilSci literature.  
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If these two ontogenetic events, the construction of the model and invention of the technical 

object, are both carried out by making active use of the unique cognitive capacities that the human 

brings into the technical activity, does that necessarily mean technical objects cannot exist at all 

without this role? What if there is an extremely useful technology that is offered to a human 

community by an alien species? If it is identical to other technical objects with the only difference 

being that it is one in which the human did not participate in the ontogenetic event, can we simply 

employ this alien-object in the way we employ other technical objects? From a hylomorphic 

perspective, there would indeed be no difference for the human between these two objects. There are, 

however, epistemological concerns that arise out of the use of technical objects that do not emerge 

from human activities of construction and invention. The next section brings these concerns to the 

surface in so far as making these concerns explicit will be later instrumental in the next chapter in 

distinguishing the genesis of traditional technical objects from that of machine learning models. 

 

2.4 EPISTEMOLOGICAL IMPLICATIONS OF THE ROLE OF HUMAN 

COGNITION IN THE GENESIS OF THE TECHNICAL OBJECT. 

Having established the role played by human cognition in the genesis of technical objects, I shall now 

draw insights from this to give an overview of the epistemological implications of this role. Particularly, 

I aim to address the question, how is our knowledge about the world (both the world that the technical 

object operates on, and the world within the technical object through which it operates), affected by 

the fact that human cognition plays a role in the construction of models and the invention of technical 

objects? In answering this question, I will first outline this idea of technical objects as bearers of 

knowledge made possible by the human reality embedded into them during invention. I will then 

illustrate how the process of invention itself (and that of construction as well) tells a story, one that can 

be made intelligible to those that later employ the technical object.  
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2.4.1 Technical Objects as Bearers of Knowledge: 

Because the technical object is one that is thought and invented by the human, and also one that 

operates in the real world, it carries with it a mixture of both a human reality9 and a natural reality 

(Simondon, 1958/2017, p. 251). Note that this mixture does not mean a compromise between the two 

realities, as it would be in the case of scientific models whose access to natural reality is mediated (or 

rather compromised) by existing epistemic resources (human reality).  Unlike the model, the technical 

object operates in the real world, embedded into its chains of causes and effects. Simondon thereby 

refers to this mixture as one that is stable, in that it doesn’t obscurely represent the natural world 

through human lenses, but that it rather “gives its human content a structure comparable to that of 

natural objects, and allows for the integration of this human reality into the world of natural causes and 

effects; the relation of man to nature, rather than being only lived and practiced obscurely [through 

say, the theory or the model], takes on a status of stability, of consistency, making it a reality that has 

laws and an ordered permanence" (Simondon, 1958/2017, p. 251). The technical object being 

grounded in the natural world, operating through its laws, is then a bearer of knowledge in that it can 

be studied inductively in the same way a scientist studies a natural phenomenon.  

In PhilSci literature, Baird (2004, as cited in Russo, 2022, p.140) acknowledges this capacity of 

instruments to be bearers of knowledge in that, like theories, they can also provide explanations and 

predictions. To make his case, Baird draws on how Thomas Davenport was able to invent the electric 

motor without the knowledge of electromagnetic theory, and that this invention later served to be 

instrumental in the development of the theory itself (Russo, 2022, p.140). While contemporary PhilSci 

does acknowledge this capacity of technical instruments to bear knowledge and the active role that they 

play in the development of theories, it fails to make explicit the fact that it is the role of human 

cognition during invention which infuses the instrument with this knowledge-bearing capacity. If we 

do not take into account this human cognitive role, the technical object would be instrumental in 

knowledge production only in so far as how any other natural object would be. In the case of the 

 
9 Human reality here (and whenever it is later mentioned) refers to all the theoretical resources, the human constructed 
models, and the human thought during invention. 
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natural object, one arrives at knowledge, only after approaching the object as a phenomenon through 

the lenses of various epistemic resources. What distinguishes the technical object from the natural 

object is that its mode of operation coincides with the human thought that it emerges out of. This is 

what renders the technical object not just as an instrument in the ‘process’ of knowledge production, 

but it in itself as a bearer of knowledge, because it doesn’t have to pass through the lenses of additional 

theoretical resources to be able to be understood10. This is what makes any invented technical object 

one that cannot be reduced to its practical ends, in that it retains an identity independent of it, one as a 

bearer of knowledge, signified by its operational schema materialized during the act of invention.  

 

2.4.2 The Two Stories: Construction of the Model and Invention of the Technical Object. 

In my discussion above, the idea there is a singularity between the mental functioning of the human 

and the physical functioning of the machine at the moment of invention, and that the technical object 

emerges as materialization of a human thought, implies that no matter how complex the internal 

schema of an invented technical object may seem from the outside, it can be rendered meaningful and 

intelligible through language. The genesis of the technical object therefore always tells a story, one of its 

invention, in so far as the human thought that materializes as the operation of the machine, during 

invention, is thought through linguistic elements.   

The importance of being able to tell a story becomes all the more relevant when one takes into 

account its role in scientific practices. Boon (2020b) shows how it is necessary for scientific models to 

be able to tell a coherent story in order to be considered valid, in that the model being able to be 

captured entirely in linguistic elements would allow other scientists to reconstruct how the model is 

constructed. Boon further argues how non-linguistic elements such as diagrams, pictures, and graphs 

may indeed aid in telling this story, but the story remains one that can be told through language (p.14). 

Russo (2022, p.114-116) also holds the ability to tell a coherent story, of how the model is built and 

 
10 One nevertheless still needs access to some epistemic resources but only those that one would need to mentally 
reconstruct the act of invention.  
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tested, as a condition for its validity, in that it enables other scientists not only access to the model’s 

construction, but also equips them with the ability to inquire and challenge the methods and results.  

There are then two stories, one of the construction of the scientific model, and the other of 

invention of the technical object. In the same way the story about the model finds its value in enabling 

the scientific community to reliably reconstruct and adopt certain models into their own individual 

practices, the story about the invention of the technical object would find its value not only in ‘users’ 

that later employ it, but also other scientists that make use of it in their practices as ‘instruments’ in 

knowledge production. While the importance of being able to tell the story about the model is 

apparent and well-recognized, the same in the context of the invention of the technical object does not 

get the attention it deserves. Simondon traces this failure to be the source of the alienation between the 

technical object and the human, in that not being able to reconstruct the act of invention obscures the 

user from “knowing” the machine by its technical schemas and instead reduces it to its practical ends. 

To simply use and employ the machine, without being able to reconstruct the information of the act of 

invention that it carries with it, Simondon says, is like employing a “book that would be used as a 

wedge or pedestal” (Simondon, 1958/2017, p. 253). To anticipate my discussion in the next section, 

these two stories in the context of Machine Learning models, would be i) the story of the construction 

of the ML-architecture (e.g. why a particular neural network is built with the particular size and 

structure that it has); and ii) the training of the ML-model (e.g. why does the ML-model output the 

result it does, which is the object of explainable AI research). 

In summary, this chapter, in investigating the genesis of the technical object brought to surface 

the epistemological importance of the role of human cognition in the acts of model construction and 

technical-object invention. The following chapter starts with a similar aim, that of investigating the 

ontogenetic event, albeit in the context of machine learning models. Throughout this investigation, I 

will identify different spaces where human participation in the genesis of the ML-object is 

distinguished from that in traditional technical objects, and bring to surface the epistemological 

implications of this difference for knowledge practices that make use of machine learning.  
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CHAPTER 3: 

GENESIS OF THE MACHINE LEARNING OBJECT 

 

3.1 INTRODUCTION 

Having laid out what constitutes the genesis of technical objects and the epistemological importance of 

the role of human cognition during this genesis, I shall now turn to an investigation of the genesis of 

Machine Learning models. I shall pursue this investigation as informed by insights from PhilSci and 

Simondon’s work that I have sketched in the previous section, and in doing so, I shall reconstruct the 

ways in which this genesis plays out and identify the possible epistemological implications of the same. 

More importantly, I’m interested in addressing the particular questions that my discussion in the 

previous section brought to surface, namely, what is the role of human cognition in the genesis of the 

ML model? Does the ML model carry with it a human reality in the way the traditional technical 

object does? Can the genesis of the ML model tell a story in the way the constructions of scientific 

models and inventions of technical objects do? 

Before I layout my investigation, one important clarification is to be made: Is the ML model a 

model in the way a scientific model, as laid out in the previous section, is a model? Or is it instead a 

concrete technical object? Although the term, ‘machine learning model’ is used across academic and 

professional settings, it is important to distinguish between those aspects of this entity (?) that fall 

under a model-ing practice and those that usually find their role in instrument-al practices. To avoid 

confusion, I shall use the two terms, ‘ML-Architecture’ and ‘ML-Object’ instead of the term ‘model’.  

My position is that it is the ML-architecture that is the product of a modelling practice. It is a 

model in so far as it is constructed as a scientific model would be (I shall elaborate on this in the 

following sub-sections). The architecture does not refer to an already trained-model. Instead, it refers 

to a schema such as a decision-tree or a neural network which is later employed to build (or train) what I 

call the ML-object (which in computer science discourses is nevertheless referred to as a model). The 
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ML-object that is trained and optimized to a problem, substituting invention (or at least aspects of it), I 

will argue, is not a model, but one that is a concrete technical object, albeit with a questionable process 

of invention. The ML-object’s identification as a model in academic discourses, I argue, is misguided: 

the ML-object may take the place of the model, in that it substitutes a task in a scientific practice which 

was previously the task of the model; the ML-object may also be a part of a modelling practice, like how 

any other scientific instrument is employed in the construction of models. The only exceptions are self-

supervised architectures such as the variational auto-encoder (VAE) and Word2Vec, where the values 

of the hidden layers themselves, and not the predictions, serve as encoded representations of 

phenomena, identical to how scientific models isolate and simplify a complex phenomenon through 

their own epistemic lenses. My identification of the ML-architecture as a model and the trained ML-

object as a technical object may seem misguided and is definitely not without limitations but I urge the 

reader to restrain from judgements before I make this clearer in the following sections.   

 

3.2 THE CONSTRUCTION OF THE ML-ARCHITECTURE 

In this section, I shall first compare ML-architectures to traditional scientific models and illustrate how 

information plays out as the phenomenon that is the object of their representation (3.2.1). I shall then 

draw a distinction between a pre-industrial ML practice and a post-industrial ML practice, to show 

how the former involved an active participation of the human in the construction of the architecture 

(3.2.2), whereas the latter downplayed this human role in order to privilege the empirical adequacy of 

the ML-objects subsequently built through the architecture (3.2.3). I will then conclude this section by 

drawing on my insights from the previous chapter to show the epistemological implications of the 

industrial turn in ML-research for (philosophy of) Science.  

 

3.2.1 ML-Architectures as Information Transducers 
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ML architectures serve as the ground upon which future ML-objects are trained. Examples of ML-

architectures include Decision trees, Support Vector Machines, and the different forms of 

convolutional, recurrent, and adversarial neural networks that reign dominance in the AI-world today.  

Architectures themselves do not have a predetermined end they are built towards, but certain 

presuppositions of the types of informational content they can extract from the data (e.g. sequential 

data, spatial data). This is similar to how scientific models provide certain understandings of a 

phenomena in question based on their own theoretical presuppositions. In order for my identification 

of the ML-architecture, in its construction and operation, as a scientific model (and as an outcome of a 

model-ing practice) to hold, I would first need to justify the target-system (qua phenomenon) that the 

architecture is directed towards. 

Firstly, it is important to recognize that the conception of scientific models as epistemic tools 

overcomes the semantic notion that there is a direct representational relationship between the model 

and some real-world system. Instead, the modeler often employs various levels of abstractions and 

idealizations in building the model at the end of which the model may not necessarily share any 

representational relationship with the real-world system but can however be used in the production, 

manipulation, and understanding of that system. For instance, Euclidean geometry can be productive 

in building, manipulating, and understanding different geometrical spaces and objects but it is in no 

way tied to a particular set of real-world systems. The Euclidean distance formula would retain an 

identity independent of the contexts that it would later be applied in and is abstracted and idealized to 

a point where it withholds no content (i.e., reference to a concrete real-world system). Euclid himself 

may have however employed and experimented with different real-world systems in constructing the 

models of Euclidean geometry but the phenomenon that the construct-ed model would refer to 

remains one without a concrete content.  

Like the Euclidean model, the phenomenon that is the object of the ML architecture is one 

without content, it is information in itself. Information here is understood in the way Simondon puts 

it, as a variability of forms (1958/2017, p. 150). It does not have content in that it is not form itself, but 

the variations that forms take, given a particular quantity of energy. Energy here is the carrier of 
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information, like how audio communications in telephone networks are carried via electric pulses. The 

maximum energy and zero energy would mean there are no pulses whatsoever, which would render 

either as no sound, or a constant sound, but not a meaningful varying sound. For audio 

communication to take place via the electric wires, energy has to be regulated in precise ways, with 

calculated increases and decreases, each corresponding to a particular sound. At the same time, the 

overall maximum-threshold for energy has to be kept at its lowest to avoid noise in the medium, i.e., the 

quantity of energy needs to be minimized to a point that best serves the spectrum of human voices.   

Information here is in these precise variations in energy, but it is not an absolute variability in 

that information distinguishes itself from pure randomness. In Simondon’s words “Information is thus 

halfway between pure chance and absolute regularity” (1958/2017, p. 150). To illustrate further, take 

the example of the 20th Century CRT TV. The TV cable gets its identity as a carrier of information not 

just because it can carry one particular image or fixed set of images, but because it can carry all 

variations of images that fit its energy-quantity (resolution and color-spectrum). And yet, the TV cable 

stops being a carrier of information if it projects purely random images, as is the case of the static white 

noise when no signal passes through the TV cable.  

In the same way, ML-architectures are modelled in a way to carry certain types of information 

(a particular energy-quantity spectrum), like how the TV works within its limits of resolution and 

color-spectrum, but it is not one particular form or a set of forms that it operates on. At the same time, 

every ML architecture has some mode of regulation that makes its operations distinguish itself from a 

purely random operation (through say, the loss-function, and back-propagation11). What then 

distinguishes the TV-signal from the ML-architecture is that the former is optimized to carry these 

variations of forms (energetic-pulses) with the highest fidelity, whereas the ML-architecture is designed 

to transduce a set of variations of forms in a particular energy-quantity into other variations of another 

energy-quantity in a precise manner.  

 
11 For an overview of backpropogation and loss function as regulatory methods in neural networks, See:  
https://towardsdatascience.com/how-does-back-propagation-work-in-neural-networks-with-worked-example-
bc59dfb97f48 
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To better understand this operation, take the case of a convolutional neural network (CNN) 

that is designed to classify a binary image of a hand-written digit into its digital equivalent. The model 

would take the 64 pixels x 64 pixels image as input and output a digit between 0 and 9. We can identify 

how there is a compression irrespective of whether the model outputs the correct label, in that the 4096 

bits [64x64] are transduced into a mere 10 bits.12 This compression, or rather transduction, is the 

condition by which the ML architecture operates and it does so from its genesis, albeit in purely 

random ways, leading to purely random results. The regulation, however, operationalized by say, the 

loss-function, makes changes to the channel’s internal nodes (the neurons) in such a way that the 

compression from 4096 to 10 bits takes place in a way that results in the correct label. Choices of the 

modes in which this compression and regulation plays out are not predetermined but one that the 

human-scientist actively makes. In what follows, I shall sketch the role of the scientist-engineer in 

making these choices in the construction of the ML architecture.  

 

3.2.2 The Role of the scientist-engineer in the construction of the ML-architecture  

From the previous section, it is evident that the construction of different ML architectures is driven 

towards carrying certain types of information (energy-quantity) and regulating this information in 

particular ways. This is analogous to how scientific models are driven towards regulating certain target 

systems as phenomena, and how this follows some form of regulation (abstractions and idealizations) 

by the epistemic resources the modeler employs, resulting in a meaningful representation of the target-

system.  

The construction of the ML-architecture, as in the case of the construction of the scientific 

model, relies on the active role that human creative capacities bring into play. Constructing the 

convolutional neural network, for instance, is made possible only by the human ability to 

conceptualize informational patterns in visual media as those that can be derived from abstracting 

 
12 Note that bits here are employed only to illustrate the process of transduction. In practice, neither a pixel nor a digit 
corresponds to a single bit.  
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different portions of an image at different levels (LeCun et al., 1989). Similarly, the construction of the 

recurrent neural network presupposes the idea that semantic information in textual data can be better 

derived sequentially than spatially (Jordan, 1997). As is the case in the scientific model, this 

construction does draw on existing theoretical resources as well. For instance, Information Bottleneck 

Theory (IBT) (Saxe et al., 2019), an epistemic resource commonly employed by computer scientists, 

advocates the idea that high-level patterns and generalizations are made possible by changes in the 

number of neurons in hidden layers. If the input layer in a neural network has over 4096 (64x64) 

neurons corresponding to a 64 pixels x 64 pixels image, then there being only 128 neurons in a certain 

hidden layer would mean that all the information in those 4096 neurons has to somehow pass through 

a tight 128 neuron layer. IBT advocates that this informational compression within hidden layers is 

what allows high-level patterns and generalizations to be made possible within the neural network.  

Computer scientists would thereby make use of IBT in making choices (such as the overall 

depth of the network and sizes of individual layers) while building their ML architectures. Because the 

various presuppositions of information and choices of the shape and size of the network are actively 

made by the scientist, the construction of the ML-architecture does tell a story. And it is a story that 

can be meaningfully interpreted by other scientists, making it possible to operationalize this 

architecture in their own practices, recreate it, make changes to it, or perhaps even question its validity 

by building an alternate architecture that contradicts the presuppositions and choices made.  

This practice that I have sketched above, with the scientist-engineer constructing the 

architecture with her own conscious decisions and choices, guided by theoretical resources, and being 

able to render this construction as a story, is a practice unique to the early decades of ML research and 

in recent years, as I will argue in what follows, has failed to sustain itself. Drawing on Sevilla et al. 

(2022) who identify a simultaneous exponential increase in both computational power and number of 

publications in ML research after 2010, I hereby make a distinction between a pre-industrial turn and a 

post-industrial turn in ML research demarcated by the year 2010. 
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3.2.3 The Industrial turn in ML Research 

The years leading to 2010 saw great leaps in computational power which made it possible for the first 

time to implement architectures such as CNNs (LeCun et al., 1989), RNNs (Jordan, 1997) and 

LSTMs (Hochreiter & Schmidhuber, 1997) in industrial settings. In addition, what makes this 

particular year of significance for me is a competition called the ImageNet Large Scale Visual 

Recognition Challenge (ILSVRC)13, a competition14 that invited researchers to develop an ML-model 

with the highest accuracy for recognizing a thousand different types of objects from natural images. 

The aftermath of this challenge saw a wide-spread societal recognition of machine learning’s abilities 

and invited investments by corporations towards its industrial applications, which until then was 

mostly confined to academic fields. This challenge, which continued every year ever since, marks the 

first time that the importance of empirical achievements (the results) were prioritized over the process 

that leads to the construction of the architecture at the research community level.  

Like the ImageNet challenge, following years have seen a flurry of popularized benchmarks and 

challenges such as the COCO15, TIMIT16, SQuAD17, BioASQ18, and several others. Most, if not all, 

research papers in machine learning which present new architectures or modifications to existing ones, 

have an entire section dedicated to their architecture’s performance on these benchmarks. This is 

further fueled by the idea that one needs to be able to beat the state-of-the-art model in these 

benchmarks to be able to publish their work in popular journals such as the IEEE (Yuan, 2020). 

The post-industrial turn in ML research thereby brought with it a series of architectures that 

privileged empirical results at the cost of a coherent and justified story of construction. Lipton & 

Steinhardt (2018), for instance, in their literature review of trends in contemporary ML research, note 

 
13 https://www.image-net.org/challenges/LSVRC/ 
14 What distinguishes this competition from preceding ones in the field of AI research such as the RoboCup and Loebner 
Prize is that ILSVRC is particularly directed at solving an epistemological task. It presupposes some form of knowledge 
embedded into the ML-object that can help it identify a wide range of images in the way a human would.  
15 https://cocodataset.org/ 
16 https://catalog.ldc.upenn.edu/LDC93s1 
17 https://nlp.stanford.edu/blog/cs224n-competition-on-the-stanford-question-answering-dataset-with-codalab/ 
18 http://bioasq.org/ 



Kalidindi 38 
 

how researchers, despite having achieved significant breakthroughs in various computational tasks, 

were often unable to identify and explain which factors are responsible for empirical gains. Whatever 

empirical successes they did present, it remained unclear whether it was the architecture that was 

responsible, or if it was the choice of hyperparameters, or instead the distribution of the dataset itself.  

To complicate this further, not being able to provide reasons for why they built the 

architecture in the way they did, did not stop researchers from ‘making up’ a story instead. Lipton & 

Steinhardt (2018, p.2) note how research papers on novel architectures offer speculations in the guise 

of explanations, which are later interpreted as authoritative given the presumed expertise of the authors 

and affiliations to popular tech companies. This failure to identify sources for empirical gains and 

increasing presence of ill-understood architectures (often referred to as the model zoo) have raised 

concerns regarding a lack of rigor within the field and the perception of Machine Learning as a form of 

alchemy (Hutson, 2018) 

 

3.2.4 Epistemological implications of the Industrial Turn in Machine Learning Research for 

Philosophy of Science. 

The practice-turn in (philosophy of) science, as sketched in the introduction, brought with it an 

emphasis on practical ends, but it nevertheless retained a norm of truth in its commitment to the use of 

methodological and epistemological criteria, as evidenced by norms such as the validity of the model 

being derived from a coherent story of construction. However, the post-industrial turn in ML research, 

as laid out above, in its utter disregard to process of architecture construction, marks the practice-turn 

in science confronting a limit, with the norm of utility being so excessively privileged that they render 

previous methodological and epistemological criteria unnecessary to validate the model. 

Furthermore, architectures such as the Transformer (Vaswani et al., 2017), native to the 

popularized GPT model, render existing theoretical resources such as the IBT that I have laid out 

above irrelevant for the model’s performance, because changes in the architecture become insignificant 

after one pours in an exceedingly large amount of computational power and massive datasets (Malik, 
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2021). Not only is this problematic because it is detrimental to the democratization of ML research, 

with only those who have access to these resources at these scales being able to deploy ML 

architectures, but also because it de-incentivizes research into other architectures and de-values existing 

novel architectures that were products of human ingenuity. For instance, before the advent of the 

power- and data-hungry Transformer, the LSTM architecture was commonly used in language tasks 

such as machine translation.  

Developed in 1997, and only implemented industrially in mid-2010s, LSTMs owe their 

existence to human creative potential. Not only did they solve the then technical problem of the 

vanishing gradient19 which made long-term semantic dependencies practically impossible, they did so 

using an intricate human design. By introducing specialized memory cells, the researchers, Hochreiter 

and Schmidhuber, crafted a mechanism that could retain and forget information over extended 

sequences, akin to the workings of human memory (Hochreiter & Schmidhuber, 1997). This 

conceptualization of LSTMs showcases the brilliance of human cognitive abilities in drawing 

inspiration from natural systems, as well as the relentless pursuit of innovative solutions to intricate 

challenges.  

In contrast, the Transformer, which by now has effectively replaced the LSTM in all language 

tasks, despite its slightly higher empirical gains, remains a rudimentary architecture, with its value 

primarily traced in its ability to employ large datasets and make use of a greater computational power. 

With the innovativeness of the architecture aside, what makes the LSTM significant is that the 

question, “how is the architecture able to solve language tasks?” would have an answer, one traced to its 

construction by its human developers. The Transformer on the other hand, despite several misguided 

speculations in research communities, does not provide a justified answer (M. Sullivan, 2023).  

Lastly, to conclude my discussion in this section, it is important to reiterate that the technical object is 

both one that serves a practical end, and one that bears knowledge in its materialization of a human 

thought. This knowledge, in the context of the abstract technical object that is the scientific model, is 

 
19 See Hochreiter (1998) for an overview of the vanishing gradient problem. 
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what makes the model valid. The post-industrial turn with its exclusive privileging of empirical results, 

as is evidenced by architectures such as the Transformer, effectively reduces the technical object to its 

instrumental identity. In the context of information and the process of transduction, Simondon 

highlights how it is in fact very easy to build machines that accumulate and transmit large amounts of 

energy, and that human ingenuity lies instead in building machines that efficiently transduce this 

energy (1958/2017, p. 156). A research community that holds an application such as ChatGPT and its 

underlying power- and data-hungry (energy-hungry) Transformer architecture as the exemplar of its 

achievements, would in effect be identical to one that privileges the use of a heavier stone with a greater 

force instead of a human-invented hammer.  

 

3.3 THE FORMATION OF THE ML-OBJECT 

The ML-object distinguishes itself from the ML-architecture, in the same way an atomic power plant 

would distinguish itself from the nuclear fission model. Like the scientific model which enables certain 

operations and constrains others, the ML-architecture too enables the capturing certain types of 

informational patterns and constrains others. The ML-object is one that is grounded on the 

architecture and yet is not fully determined by it. The architecture itself cannot be used towards a 

practical end; it has no finality (result). The scientist-engineer chooses an architecture and optimizes it 

to a particular task, by say, adjusting its parameters, and training it on a dataset. The genesis of the ML-

object is then the optimization event itself, that by which an instance of the architecture becomes a 

fully-trained ‘model’ ready to be operationalized in instrumental contexts.  

This section investigates the optimization event that makes the ML-object what it is. In 

particular, I seek to answer the question, what can the genesis of the ML-object through the 

optimization event, and the role played by the human in this event, tell us about the reliability of the 

knowledge we can produce using the ML-object? Answering this question unfolds as the sub-

questions: How is the human reality embedded in the ‘formation’ of the ML-objects different from the 

human reality embedded into ‘invented’ technical object? How is the story of the formation of the 
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ML-object different from the story told by the genesis of technical objects and the construction of 

(some) ML-architectures? Note that I use the term formation here to distinguish this ontogenetic event 

from that of invention, and the particular differences between the two will be made clearer in what 

follows. 

To answer the above outlined questions, I shall first, in 3.3.1, locate the context/community in 

which the genesis of the ML-object takes place. This will help illustrate the type of knowledge practice  

the ML-object is substituting or being instrumentalized in. Drawing on the role of human cognition in 

the invention of the technical object, as laid out in 2.3, I will illustrate, how the scientist-engineer does 

not participate in the genesis of the ML-object but nevertheless creates the conditions necessary for the 

genesis. In doing so, I will show how the scientist-engineer then succumbs to a hylomorphic schema, 

and consequently becomes a worker instead. The outcome of my investigation into the genesis of the 

ML-object will be laid out in 3.3.2 where I show how the lack of human participation entails the ML-

object as not having a story (and therefore not bearing knowledge) in the way technical objects do. I 

then, in 3.3.3, trace how approaches in explainable AI nevertheless try to project a story onto the ML-

object, even when it doesn’t have one, and I will then show why this is problematic. Lastly, I will 

conclude this section by pointing out how certain interpretable architectures can help reconstruct a 

story that is faithful to the formation of the ML-object, even if the human does not participate in this 

formation.  

3.3.1 The Context of Formation of the ML-Object 

Before I investigate the role played by the human in the genesis of the ML-object, I shall first address 

the contexts where this genesis takes place. Although construction of ML-architectures is situated in 

computer science communities, the formation of the ML-object rarely happens within it20. For 

instance, Meteorology would make use of ML-architectures from computer science communities to 

build weather forecasting networks, but these networks are trained and operationalized within the 

 
20 The only cases where the ML-object itself is operationalized within the CS community would be those where its results 
on say, certain benchmarks, serve as justifications for the architecture’s validity.   
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practice of Meteorology, in so far as the newly-formed ML-object substitutes existing weather models 

such as those based on atmospheric physics.  

It could be the case that meteorologists outsource this task to an ML-engineer, but the ML-

object being situated in the knowledge practice of weather prediction would in fact suggest the ML-

engineer temporarily becoming the meteorologist, as opposed to, say, meteorology becoming a sub-

practice of computer science. In this example, it is also important to note that although the ML-object 

substitutes the physics-based model, it cannot claim the label ‘model’ because i) the ML-object is not 

one that is constructed in the way scientific models are (this will be elaborated further), ii) it in itself 

does not directly draw on existing theoretical resources from meteorology, except indirectly through 

surface level choices made by the meteorologist-scientist like identifying relevant variables and curating 

the dataset, and iii) scientific models are able to provide predictions because they are able to represent 

and explain weather phenomena through their own lenses, as opposed to ML-objects that offer 

predictions of weather, without being able to say anything about the phenomena as such. 

Like the weather-predicting ML-object in Meteorology, we find similar instances in other 

epistemic communities, with earthquake-detecting neural networks showing the potential to substitute 

traditional geophysical models in Seismology, and CNNs being increasingly used in the place of 

traditional medical diagnostic models in medical communities. In all these epistemic communities, the 

process of construction, by which their traditional models came into to being, were those where the 

human would play an active role, as was described in section 2.3. However, this process, in the context 

of the ML object, only begins at the moment when the training starts, and ends when sufficient 

accuracy has been achieved to stop the training. The construction here, if it were to be called so, happens 

within closed doors with no participation from the human.  

3.3.2 The Scientist as a Worker in the Formation of the ML-Object 

The training of the ML-object happening within closed-doors does not mean there is no human reality 

in this construction. Although the human does not participate in the process of construction itself, she 

does play an active role in enabling it: It is the human that defines the problem as that which can be 
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handled by the machine, and identifies which ML-architecture is most suitable to handle that 

problem21; it is the human that curates the data that the network is trained on; it is the human that 

identifies which features (variables) are most relevant for the problem; and lastly, it is the human that 

evaluates the network and tunes its hyperparameters if its performance is not satisfactory22. All these 

activities in the construction of the ML-object are also reliant on the human’s own creative abilities. Is 

all this not enough to say that the ML-object is constructed by the human? 

No! Simondon would argue that the human-scientist here is simply creating the conditions 

necessary for the genesis of the ML-object and that the process of matter taking form, which in this 

case is the randomized-weights in individual neurons gradually changing to best fit the problem during 

training, remains not only out of the human’s control, but is also obscured from her. To illustrate this 

further, here’s a passage of Simondon’s commentary on the worker who molds clay to create a certain 

artefact:  

“He [the worker] prepares the clay, makes it malleable, without lumps, without air bubbles, 

and correlatively prepares the mold; he materializes the form by making it into a wooden mold, 

and makes matter pliable, capable of receiving information; then, he puts the clay into the mold 

and presses it; but it is the system constituted by the mold and the pressed clay that is the 

condition of the process of taking form; it is the clay that takes form according to the mold, not 

the worker who gives it its form. The working man prepares the mediation, but he doesn’t 

fulfill it; it is the mediation that fulfills itself on its own once the conditions have been created; 

even though man is very close to this operation, he does not know it” (Simondon, 1958/2017, 

p. 249) 

The human-scientist in preparing the conditions necessary for the ML-object’s genesis then, Simondon 

would say, stops being a scientist and instead takes on the role of a worker, in that she remains alienated 

 
21 Also, note that although the human-scientist has agency in identifying and choosing the right architecture, this choice 
may only be justified for architectures such as LSTMs and CNNs, as discussed in 3.2.2 , whose construction itself tells a 
story. A scientist making use of a post-industrial turn architecture such as the transformer, which does not carry with it a 
coherent story of construction, would be similar to a 17th century alchemist. 
22 See Kumar (2015) for an overview of the steps involved in training a neural network.  
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from the ontogenetic event, namely the process of taking form itself. I do however acknowledge that an 

actual scientist may be provoked by this accusation. Surely an activity like this is common in scientific 

practices. Scientists often use complex instruments like electron microscopes and mass spectrometers in 

their practices and they do not really ‘participate’ in the internal process through which these 

instruments do what they do. They calibrate the instrument if it does not work, or if they have reason 

to believe that it isn’t working as well as it should, but they only make use of its outputs and readings, 

right? How is this any different from using the ML-object as an instrument in the scientific process? 

Doesn’t this render all scientists as workers? 

What distinguishes the ML-object from other scientific instruments like an electron 

microscope is that the latter, in being a technical object which is invented, carries with it the knowledge 

of the human thought that materializes it in the ontogenetic event (as was discussed in 2.3). Scientists 

that make use of these invented instruments can and most often times are able to, reconstruct the same 

operation using their own cognitive resources. They know how and why the instrument works the way 

it works and being able to do this is of utmost importance in scientific practices because only then can 

the scientist be aware of the instrument’s own limits and capacities. A scientist continuing to employ 

the instrument without this knowledge, in the practice of producing new knowledge, is then in effect 

not a scientist but a worker. The ML-object however, in not being one that is a product of an 

invention, but instead a self-fulfilling formation, made possible by the human-created conditions 

denies, the scientist-worker knowledge of its ontogenetic event. This also marks the looming of a 

hylomorphic schema into the scientific practice itself. In the same way the worker only knows what 

goes into the clay-mold and what comes out, the scientist-worker only knows what goes into the 

machine (the conditions) and what comes out (the ML-object) but not what happens within.  

Now, if the ML-object is one that is not invented, and thereby one that cannot tell a story as an 

invention would, does it make it impossible for us to nevertheless derive this story? Can we not, after 

the ontogenetic event, reconstruct the story assuming it was a product of invention? As frivolous as this 

question may seem, this is the approach that contemporary post-hoc explainable AI  (XAI) approaches 
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take. In what follows, I shall investigate the epistemological assumptions made by these approaches and 

in doing so address their shortcomings and identify spaces in which they may continue to be valid.  

3.3.3 Deriving a Story in the Absence of One 

With the aim of maintaining reliability and trustworthiness while simultaneously employing complex 

black-boxed ML architectures, recent years have seen the advent of post-hoc explanatory methods, 

where a second model is created to explain the first model. This secondary model, unlike the black-

boxed ML-object is one that is constructed by a human and thereby does offer an intelligible story as 

explanation. However, post-hoc explainable methods operate on the assumption that this secondary 

model is identical to the ML-object. Sullivan (2022) for instance advocates how one can arrive at an 

understanding of the inner-workings of the ML model by resolving what she calls, link uncertainty. 

The resolution of link uncertainty would entail establishing a link between the scientific community’s 

understanding of the target system and the ML-object’s predictions. For Sullivan, resolving link 

uncertainty can help understand the ML model because explanations derived from the human 

scientific activity can serve as explanations for how the model ends up making predictions. However, 

establishing this link rests on the assumption that there being an equivalence of the same input features 

and the same predictions between the community’s human-constructed model and the machine 

learning model is sufficient to conclude that they both employ the same mode of reasoning in their 

operation.   

Such an absolute fidelity between the human conceptual model and the ML-object is not only 

unattainable, as is evidenced by Rudin (2019), who in her work shows how it is impossible to 

reconstruct calculations made within the ML-object in human-constructed models, but is also self-

contradictory, in that if there was indeed a conceptual model that is identical in its operation to the 

blackboxed ML-object, then one wouldn’t have to use the ML-object in the first place and could just 

make use of the conceptual model instead. Furthermore, a long-held belief that justified the use of XAI 

methods is that even if it is black-boxed, the ML-object does extract certain high level patterns from the 

data (generalizations) and that we can estimate what these patterns  by methods such as Saliency 
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Maps23 and Variable Importance24. However, Zhang et al., (2021) question the generalizing ability of 

neural networks by identifying how complex neural networks are able to achieve high levels of accuracy 

despite intentional errors in data. For instance, in a dataset of images of cauliflower and broccoli, there 

being a thousand different variations of the cauliflower image, but all these images having the same 

label say “Cauliflower”, meant that if the ML-object is performing with a high accuracy, then it must 

have been able to extract some real-world pattern about what a cauliflower is, despite differences 

between individual cauliflower-images. However, what Zhang et al.’s (2021) analysis shows is that the 

ML-object continues to perform with a high level of accuracy even if the images were mis-labelled. 

What this means is that if in the same dataset, the labels “cauliflower” and “broccoli” were assigned 

randomly to images of cauliflowers and broccolis, a model with sufficient training data and 

computational power would still be able to perform the classificatory task with the highest accuracy. 

An insight from Zhang et al.’s findings is that the ML-object does not necessarily find high-level 

patterns (generalizations) from the data, and that it instead optimizes itself to fit each data-point. If the 

ML-object does indeed perform well on test-dataset, then it is testament to how its own training data is 

so astonishingly exhaustive that any singular instance from the test-dataset would be almost identical to 

at least one of the instances in the training data. Building a secondary model to explain the black-boxed 

ML-object is then problematic in so far as the generalizations made by the human-constructed model 

may in no way align with the mode of reasoning employed by the ML-object 

Continuing to use these secondary models to understand the ML-object, would still be 

acceptable as long as one doesn’t consider their insights as ‘explanations’ but instead as ‘speculations’ or 

as how Rudin (2019) puts it,  ‘approximations’ of the ML-object’s modes of operation. Still, Sullivan’s 

conception of link-uncertainty does find its value, if not in enabling an understanding of the ML-

object itself, at least in enabling the scientists to make use of its functioning, as a guide to construct 

their own models of the target-system.  

 
23 Saliency maps can help determine which portions of an image are ignored and which portions are paid attention to in the 
model but they fail to address how the relevant information in an image is being used. 
24 Variable Importance is used to identify which features (variables) are being used to make a prediction. 



Kalidindi 47 
 

3.3.4 Reconstructing a Faithful Story through Interpretable ML-architectures 

So, if there is no intelligible story of the genesis of the ML-object and one cannot faithfully 

project a story onto it, does that render the ML-object fundamentally incapable of bearing knowledge 

in the way technical objects do?  

While this is more often than not the case with black-boxed architectures such as neural 

networks, there do exist fundamentally interpretable architectures which carry the marks of their 

genesis in their existence, and one can reliably reconstruct a story from studying their internal schemas. 

These include Decision Trees, Gradient Boosting Machines, and regression based models (Molnar, 

2020). ML-objects derived from these architectures stand as testaments to the knowledge bearing 

capacities of technical objects, in that one can legitimately study their internal schemas to gain 

knowledge about the phenomena they are directed towards.  

 If Architectures such as these truly enable the scientist-engineer access to their inner-workings, 

why aren’t they employed as much? The answer ML-engineers usually give is that there is a tradeoff 

between accuracy and interpretability (Bratko, 1997), and that in certain high-stakes contexts, a greater 

accuracy is to be prioritized to ensure the best possible outcomes, even if that means the model is way 

less interpretable and cannot be studied.  

This trade-off between accuracy and interpretability has nevertheless been challenged in recent 

years with researchers illustrating how this phenomenon does not exclusively arise from the 

architecture itself and that if the data is structured sufficiently, with a meaningful representation of 

features, there would be no significant performance difference between more complex neural networks 

and simpler interpretative architectures (Dziugaite et al., 2020; Rudin, 2019). 

Despite these challenges, a continued widespread emphasis on the use of black-boxed neural 

networks in contemporary ML research also points to a more sinister influence. Given the shift from 

academic to industrial settings that the post-industrial turn ML research has taken (as I’ve shown in 

3.2.3), Rudin (2019) also notes how there has been an incentive for researchers with industrial 

affiliations to privilege black-boxed models because companies can make better profits from 
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intellectual property afforded to a black box (p. 6). Such a sinister practice has reached even greater 

frontiers with companies like OpenAI, not only using fundamentally black-boxed models, but also 

refusing to share the data they are trained on (Greshgorn, 2020). What this implies is that very little 

story that these ML-objects do tell, at least about their conditions of genesis if it isn’t for the process 

itself, is also obscured. This is not only problematic because it does not allow us to validate the ML-

object’s results, but it raises concerns of a possible epistemic violence, with these models relying heavily 

on the knowledge contributions made by different epistemic communities and yet not acknowledging 

them. The next chapter, on genealogy, will further elaborate these modes of epistemic violence, that 

come into play when ML-objects interact with other knowledge practices. 
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CHAPTER 4: 

GENEALOGY OF TECHNICAL OBJECTS 

 

4.1 INTRODUCTION 

An ontogenetic study of technical objects cannot be complete without accounting for their 

genealogical dimension. The type of ontogenesis sketched out and investigated in the context of 

Machine Learning in Chapters 2 & 3 is that of the ontogenetic event, the coming into existence of a 

technical object. However, ontogenesis as an approach to ontology, transcends a singular event. In the 

same way the genesis of the organism follows not just the “birth” as an absolute event, but a long 

lineage of genetic events that eventually lead to the organism as a part of a species, the genesis of the 

technical object too, carries with it a genealogy of those that came before it, and those whose future 

geneses the object will be operationalized in.  

Such an “evolution” of the technical object is made possible because although the technical 

object is invented by the human, as a materialization of her thought, it can be detached from the 

inventor and the context of invention. Simondon says “the machine has a sort of impersonality which 

allows it to become an instrument for another man; the human reality that it crystallizes within itself is 

alienable, precisely because it is detachable” (1958/2017, p. 250).  This detachment from the original 

context of invention and a re-attachment in completely foreign contexts means that another human, 

despite not having invented the technical object herself, is nevertheless able to re-construct its 

invention, provided she is able to re-think the same thought as that of the inventor at the moment of 

invention.  

It is only because the technical object bears the knowledge (the story of invention) of its 

operational schema, and only because this knowledge can be re-constructed by another human, was it 
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possible for, say, the spring engine, which was initially used in the 15th century mechanical clock, to 

detach itself from the clock and be made use of in inventing the 16th century firearm. The 

impersonality of the technical object (its detachable and re-attachable character), for Simondon, 

establishes what he calls “technicity” as an inter-individual relationship. Technicity here is a mental and 

practical universe in which human beings communicate through what they invent (1958/2017, p. 

252).  

The genealogy of the technical object would then follow a series of communications. These 

communications are not just sequential with the technical object being invented, and re-invented in a 

linear path as it passes through different communities; they can also be complex and irregular, with 

multiple technical objects being grouped in a single activity of invention, as in the case of the first 

automobiles which trace their genealogy to both the combustion engine and the bicycle. What I would 

further make explicit in this conception of genealogy that Simondon does not is the active role played 

by the scientific model alongside invention; in that between every invention and re-invention is also a 

construction of the scientific model.  

To explain the genesis of the technical object, I have previously approached  construction and 

invention as individual activities with the former leading to the latter. Taking a genealogical lens 

however brings to surface how they are interconnected: with each scientific practice, relying on 

technical instruments (that have previously been invented) to construct scientific models, which are 

later made use of during the invention of new technical objects, which further find their 

epistemological role in other scientific communities in being instrumentalized in the construction of 

new scientific models. 

Taking into account the role of model construction as a part of the genealogical study further 

emphasizes the importance of the epistemic identity that the technical object embodies in addition to 

its practical identity; that with each new community it enters into, it makes possible the production of 

new knowledge within that community by enabling the construction of new scientific models that 

were previously impossible.  
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Investigating this epistemological role of the technical object through a genealogical lens is the 

aim of this chapter. In particular, I seek to answer the question, How is it that scientific communities 

are able to extend their knowledge practices by making use of technical objects that emerged from 

communities foreign to them? In other words, if technicity is indeed this inter-human communicatory 

relationship, does that mean all technical objects can establish this communication in the same way 

between all epistemic communities25? Can some technical objects integrate with certain epistemic 

communities better than others? Answering these questions in this chapter will later be instrumental in 

investigating (in chapter 5) whether and how the use of Machine learning can help scientific 

communities extend their knowledge practices.  

To answer the above questions, I shall first, in section 4.2, outline how technical objects are 

able to establish communicatory relationships (or what I will call technical bridges) between epistemic 

communities. I will then, in section 4.3, identify the other side, where such technical bridges cannot be 

established, and illustrate how this inability renders certain technical objects as detrimental to (or rather 

violent towards) other epistemic communities.  

 

4.2 TECHNICAL BRIDGES AND CONTINUOUS MODES OF PROGRESS  

To speak of technical objects as moving between sciences, one needs to first acknowledge that the two 

scientific communities (one that it emerges out of, and the other that it is later made use of in) between 

which the technical object finds itself in are not identical and are in fact heterogenous26. Subsequently, 

to speak of heterogenous communities within science, one needs to first acknowledge that the scientific 

project itself is not a product of a single genealogy of theoretical and empirical developments as the 

 
25 Note that from here onwards, I use the term epistemic communities in place of scientific communities. This is to expand 
my investigation to not just particular communities that are labelled “scientific” in the traditional sense but also other 
communities that engage with the production of knowledge. This includes indigenous communities like, say, the Inuit 
community in the arctic regions, who over a millennia developed their own understanding of the environment, wildlife, 
and climate patterns. 
26 In that it is not necessarily a technical bridge (a communicatory relationship) between communities if say, one is looking 
at the emergence of the electric motor from the electromagnet, all happening within the field of electrical engineering. 
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logical positivists would characterize it as, but that it is instead a heterogenous ensemble of epistemic 

communities with no single fixed foundation. Such is the conception of science that developments in 

PhilSci have paved the way to in the aftermath of the logical positivist movement: starting from this 

idea that scientific knowledge is unstable and always contestable (Kuhn, 1962; Lakatos, 1976) to how 

there are plurality of scientific perspectives each building models of the same phenomena in ways that 

are inconsistent with others (Massimi, 2022). 

This new post-logical positivist conception of science characterized by the existence of a 

plurality of scientific perspectives, each of which enables and guides the construction of scientific 

models from its own repository of theoretical and methodological resources (Boon, 2020b), entails that 

scientific knowledge claims can be held valid only in relation to a given perspective. Such a polarization 

of epistemic communities and the knowledge claims they produce may give the illusion that the 

scientific enterprise is fragmented and disconnected, with no inherent unity or interdependence 

between areas of research.   

Here-in lies the particular space that the notion of technical bridges finds its significance, in 

that technical objects, by being able to move through disciplinary boundaries, establish relationships 

between sciences —relationships that are not theoretical or methodological, but instead technical, 

with, in Simondon’s words, “each science being capable of making use of a certain number of other 

sciences for its own benefit, which it uses as technical sources in order to carry out the effect it studies” 

(1958/2017, p. 125). Therefore, while scientific knowledge claims are only valid within well-defined 

scientific perspectives enacted by specific epistemic communities, technical objects do not necessarily 

emerge out of the same epistemic community where they are later used in to advance scientific 

knowledge. It is in fact common to find technical objects emerging out of models from one scientific 

discipline being used in another foreign discipline.   

For instance, advancements in quantum physics building on top of Einstein’s concept of 

stimulated emission led to the construction of photonic lasers(Yam, 2004). Decades later, the 

technology was later instrumental in various applications in biology. In particular, CRISPR-Cas9 
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employs lasers to create holes in cell membranes, enabling the insertion of genetic material directly into 

the cell (Yang et al., 2022). This technology is now being incorporated into the field of medicine to 

develop gene therapies that have the potential to treat a wide range of genetic diseases. In this example, 

photonic lasers, as technologies emerging from quantum physics, are now serving as technical resources 

in the field of biology towards the development of the CRISPR-Cas9 technique, which is in turn 

employed in the field of medicine.  

Similarly, radio telescopes which were first developed in the field of astronomy to observe 

celestial phenomena were later adopted in the field of geology to create Deep Earth Imaging systems, 

enabling scientists to construct detailed images of the earth’s interior. These systems are now adopted 

in Environmental Science for predicting earthquakes and volcanic activity, being instrumental in 

disaster planning and mitigating potential damage from seismic events.   

The existence of these technical bridges between sciences suggests that the plurality of scientific 

disciplines is not a disjoint sent but one that is intersecting. Michela Massimi, in her Perspectival 

Realism (2022), refers to such an intersection to be indicative of a cross-perspectival assessment of 

knowledge claims, in that different scientific communities can justify the reliability of knowledge 

claims they generate through their dependence on material resources produced using knowledge from 

another community, which is in turn justified by another. Such a cross-perspectival assessment, which 

in itself is a mode of knowledge production, is possible because the technical object remains one that 

can be detached from the scientific model that it emerges out of. While scientific models are confined 

in their validity to the epistemic community they are situated in, technical objects that are built by 

making use of scientific models, in so far as they are invented, operate based on the laws of the real-

world (as was discussed in 2.3). This is what justifies the use of a particular technical object by an 

epistemic community even if the community has a different understanding of certain phenomena 

from that of the community whose models the technical object was drawn from.  

Now, for a technical bridge to be established, i.e., for an epistemic community to incorporate a 

technical object of a foreign origin into its own knowledge practice, two conditions have to be met: 
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Condition of Reconstructability: Firstly, it should be possible for the knowledge carried by 

the technical object (the story of invention) to be reconstructed by the recipient-scientist. This is 

because only when she know its capacities and limits, and how it does what it does, can the recipient-

scientist be able to reliably and justifiably use the technical object qua instrument in her knowledge 

practice (for say, constructing new scientific models). For instance, take the case of a mass-spectrometer 

as a technical bridge between pharmacology and physics. Initially developed by the British physicist, J J 

Thomson, mass spectrometers (Dronsfield, 2010) are now being used by pharmacologists to study 

drug reactions, and aid the discovery of new drugs. To be able to reliably use the mass spectrometer in 

her practice, the pharmacologist-scientist should be able to reconstruct its invention to “know” the 

instrument first. She should be able to recognize its limits (of say, the resolution, and accuracy) and 

how it could be sensitive to different environmental conditions such as air quality, temperature and 

humidity.  

Condition of Integrability : Secondly, it has to be the case that the technical object can be 

integrated alongside existing epistemic resources specific to the community; in that the use of the 

technical object should not invalidate the community’s own knowledge practice. For instance, native 

American tribes relied on a slash and burn agricultural technique. This practice has sustained the 

natives for thousands of years, providing a varied, healthy diet with low environmental impact (Fraser, 

2014). Adopting a technical object such as the plow in place of this technique, can only come at the 

cost of invalidating their practice, and all the knowledge that they have gathered over the years. In 

contrast, take the case of a biologist, employing a microscope instead of the naked eye. The microscope 

can be integrated alongside existing epistemic resources in that the biologist can continue her practice 

in the way she did before, with the microscope aiding and improving her own knowledge practice, 

without substituting it.  

Now, the establishing of a technical bridge, when these two conditions are met, that is if the 

technical object is “known” by the recipient-scientist and can be integrated into their knowledge 

practice, constitutes a continuous mode of epistemic progress. I trace this mode of progress from 

reconstructing Simondon’s commentary on 18th century technical improvements during which he 
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notes how “when man, while preserving the fruit of his training, exchanges an old tool for a new tool 

whose manipulation is the same, he has the feeling of having more precise, skillful, and rapid gestures” 

(1958/2017, p. 130). Such an incorporation of the tool, which does not make one’s own training 

invalid, entails, for Simondon, a continuous progress because the tool-user perceives this progress. A 

scientist that exchanges an optical microscope for an electron microscope recognizes how her own 

practice can be enhanced, made easier, or open possibilities for applying her epistemic resources that 

previously did not exist given the limitations that the older optical microscope had.  

Continuous modes of epistemic progress would then refer to the adoption of those technical 

objects that can establish a technical bridge between two communities, whose incorporation brings 

improvements to the recipient’s scientific practice, while allowing her to retain the theoretical and 

methodological resources specific to her epistemic community. Instances of continuous epistemic 

progress would include the invention of quartz clocks, which replaced mechanical clocks in many 

scientific applications due to their superior accuracy; and the invention of the digital pH meter which 

offered a more precise and quick method for measuring acidity and alkalinity compared to the 

traditional litmus paper.   

It is important to note that not all technical objects can establish technical bridges between 

communities and lead to an epistemic progress within the community they interact with. Sometimes a 

technical object can be detrimental to one or several epistemic communities and I shall outline these 

cases in the following section. 

 

4.3 AGGRESSIVE MODES OF PROGRESS AND TECHNICAL POWERBROKERS  

In addition to continuous modes of epistemic progress, which entailed an integration of a foreign 

technical object into an epistemic community’s own knowledge practice, there are what I call, 

aggressive modes of epistemic progress, traced to those inventions whose introduction is characterized 

by a substitution of the knowledge practice altogether. I trace this mode of epistemic progress from 

Simondon’s commentary on 19th century inventions such as the automatic weaving loom, and the 
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forging press which brought a sense of progress at the cost of invaliding the then practices of manual 

weavers and blacksmiths respectively (1958/2017, p.131). In building this notion of an aggressive 

mode of epistemic progress, I also draw inspiration from Gayathri Spivak’s (1988, as cited in Dotson, 

2011) concept of epistemic violence, which refers to the silencing of the marginalized communities 

through a removal of their ability to speak for themselves by invalidating their systems of knowledge, 

beliefs, traditions, and language. 

 It is important to note that aggressive epistemic progress in the context of scientific practices 

differs from that in industrial practices. For instance, development of new procedures and instruments 

in medicine and surgery brings changes that may seem aggressive in their rendering of previous 

techniques obsolete. However, I would argue that these changes still signify a continuous mode of 

epistemic progress in so far as they remain aligned with the theoretical and methodological resources 

specific to the discipline. Cases of aggressive epistemic progress in science would then include those 

inventions which served as catalysts for scientific revolutions or as justifications for privileging one 

scientific practice over another. For instance, the invention of the microscope lead to the birth of cell 

theory and microbiology which revolutionized our understanding of life at the microscopic level and 

made theories such as preformationism obsolete (Kaplan, 2019). 

Unlike a continuous mode of epistemic progress, an aggressive mode cannot bring with it an 

establishment of a technical bridge. This is because what ensures an incorporation of a technical object 

within an epistemic practice despite its foreign origin is that it can meet the two conditions of 

reconstrutability and integrability. Aggressive modes of epistemic progress cannot form technical 

bridges between epistemic communities because their coming into being can only arise from a 

usurping of one knowledge practice by another.   

If the material equivalent for continuous modes of epistemic progress is the establishment of 

technical bridges, then the equivalent for aggressive modes of epistemic progress is the enabling of what 

I would call, technical powerbrokers, in that they serve as justifications for substituting one knowledge 

practice for another or invalidating a knowledge practice of one community in the privileging of 
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another. To illustrate what I mean by technical powerbrokers, I draw on Massimi’s (2022) 

identification of two historical forms of epistemic injustice in scientific practices: i) Epistemic Severing: 

a surgical excision or removal of the contribution of particular communities from narratives about 

scientific knowledge production (p. 349) and ii) Epistemic Trademarking: a merchandising of 

scientific knowledge as a ‘trademark’ of one epistemic community at the expense of others who have 

historically contributed to such production (p. 362). 

While Massimi outlines these two modes of epistemic injustice in the context of interactions 

between epistemic communities, I’m particularly interested in cases where they arise out of the 

development of technical objects or techniques. To illustrate what I mean by technical objects serving 

as powerbrokers, I shall now employ Massimi’s two concepts of epistemic injustice through examples 

from colonial history in what follows in the two subsections below. 

Epistemic Trademarking and Rubber as a technical powerbroker: 

Indigenous tribes of South America have developed a knowledge practice over generations for 

the production of what they referred to as caoutchouc, which we now know by the name 

“rubber”. They used it to make various objects such as bottles, containers, and collapsible-

expandable hollow balls long before the advent of European colonizers (Domingues, 2020, p. 

591). This practice constituted a situated knowledge about their environment and its natural 

resources with indigenous communities being able to identify which species had which 

properties and uses. They knew what the right conditions were for cultivating these plants, and 

when to harvest them (Domingues, 2020, p. 591). A French scientific expedition during the 

colonial era recognized of how useful rubber can be in industrial applications and in 

subsequent years, indigenous knowledge about its production was exploited in various late-19th 

century applications such as telegraph cables, bicycle tubes, and belts and bumpers in steam 

machinery (Domingues, 2020, p. 592). The increased demand in industrial applications and 

the rubber-producing plant species being native to the Amazon, lead to further exploitation of 

Brazilian Indians, who were forced to work in miserable conditions. The intensification of 

rubber production lead to subsequent decline of the indigenous population altogether and a 
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disappearance of its epistemic role in the production of rubber (Domingues, 2020, p. 591). 

Indigenous knowledge, despite not having officially recognized at any time, continued to find 

its presence in later western scientific research on rubber (Domingues, 2020, p. 590). The 

technical knowledge around rubber (or rather, caoutchouc as it was originally referred to) 

production in the way we know it is then rendered as powerbroker, that has effectively been 

trademarked by western scientific communities, at the cost of invalidating the contributions 

made by indigenous populations in the development of these techniques.  

Epistemic severing and the Compass as a technical powerbroker: 

Long before the advent of the British colonization, aboriginal communities in Australia that 

did not have a written language practiced a novel technique of marine navigation based on 

song-lines that served as oral maps of the landscape (Norris & Harney, 2014). However, the 

introduction of the compass as a navigational instrument and its established reliability by the 

western nautical science community served to dismiss the legitimacy of this practice altogether 

with some historians such as Sharp (1964) even arguing that these techniques were too crude 

and primitive that it is only by accident and not by a navigational method that aboriginal 

communities were able to reach ocean islands (pp.7).  After two centuries post-colonization, 

the indigenous practice has largely been forgotten owing to its dismissal and exclusion from the 

broader scientific community. It is only very recently that anthropologists were able rediscover 

the scientific basis for these techniques suggesting that aboriginal Australian communities were 

in fact studying the natural world in the same way as modern scientists, albeit within their own 

cultural context (Norris, 2016). What is important in this case is not whether song-lines as an 

oral tradition are as effective and precise as the compass (which they very well may not be) but 

rather that they did in fact serve as techniques aboriginal communities could rely on in 

navigating the ocean for generations. The introduction of the compass in this case served as a 

technical powerbroker in justifying both the dismissal of the aboriginal practice altogether 

from narratives of scientific knowledge production and also the subsequent privileging of 

western nautical science.   
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At this point, one may however argue that aggressive modes of epistemic progress could perhaps be 

attributed, in a Kuhnian sense, to signify progress of the scientific enterprise as a whole given their role 

in scientific revolutions. Is not the move from a fragile oral-tradition based method to one as robust 

and universal as the compass a paradigm shift in a sense?  

It is important to recognize that what may seem from the outside as an extension of scientific 

knowledge altogether, may in fact arise out of what Spivak (1988) would call an epistemic violence, in 

the resulting ‘silencing’ of a particular community’s ability to retain knowledge systems of their own, as 

can be seen in the case of the Australian aboriginals. Furthermore, even contemporary PhilSci literature 

that validate pluralist conceptions of science (such as the one that Massimi (2022) advocates in her 

Perspectival Realism) legitimize modes of knowledge production by several distinct historically and 

culturally situated epistemic communities, thereby rendering aggressive modes of epistemic progress as 

possibly detrimental to the scientific enterprise as a whole. It is then not necessarily how universal or 

‘objective’ a technical object is in its operation that legitimizes it, but rather how specific communities 

have been able to develop certain techniques and technical objects from their own situated 

understanding of the world and that these techniques have served them reliably for purposes they 

directed them towards.  

As I now conclude this chapter and turn towards ML-Objects and how they may possibly serve 

as either technical bridges or powerbrokers, I would like to re-emphasize that there are crucial ethical 

(in terms of injustices to the historical contributions of certain epistemic communities) and 

epistemological (in terms of a hegemonic suppression of certain modes of knowledge production in an 

otherwise pluralist scientific enterprise) downsides to aggressive modes of epistemic progress.   
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CHAPTER 5  

GENEALOGY OF MACHINE LEARNING  

 

Taking a genealogical lens in the previous chapter helped us recognize that a technical object is not 

confined to the contexts (and communities) of its genesis. Instead, the technical object carries with it 

virtually the traces of future models whose construction it can enable, and knowledge that it can help 

produce in its interaction with different epistemic communities. These interactions can sometimes 

establish what I referred to as technical bridges and can be productive for both the community they 

arise out of (as a validation of the community’s own knowledge practice) and the community that later 

incorporates it (in terms of advancements it brings to the recipient-community’s knowledge practice). I 

have also shown how in some cases, these interactions may be violent, in that the technical object, 

rendered as a powerbroker, can be employed towards invalidating the epistemic contributions of a 

particular community. In what follows in this chapter, I shall extend my discussion of the ML-object as 

laid out in chapter 3 in the context of its interaction with other epistemic communities. 

In particular, I will first, in section 5.1, argue why ML-objects have a tendency to privilege aggressive 

modes of epistemic progress in their operation as technical powerbrokers and then outline how their 

continued use in knowledge production despite this tendency can be detrimental to the scientific 

enterprise. I will then in section 5.2, investigate possible ways in which this tendency can be suppressed 

and outline how they can continue to be useful in knowledge practices. 

 

5.1 THE ML-OBJECT AS A TECHNICAL POWERBROKER  

The empirical adequacy of the ML-object which draws in all the applause that ML-based industrial 

applications receive reaches a limit when it enters epistemic communities, in that empirical results 
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alone are not sufficient to justify their use in knowledge production. As was outlined in 4.2, for ML-

objects to be integrated into epistemic practices, as technical bridges, they would have to abide by the 

two conditions of reconstructability and integrability.  

In terms of reconstructability, my in the previous chapter 3 already pointed at how ML-objects 

cannot tell a story of invention and (in most cases) of construction of their underlying architectures. 

The ML-object not being constructed in the way scientific models are ,with an active role played by 

human cognitive resources (as was shown in 3.3.2) entails that the recipient who intends to employ the 

ML-object cannot reconstruct how and why they are built the way they are. Even efforts such as XAI 

to nevertheless reconstruct the ML-object qua model in intelligible ways would not be justified as 

evidenced by my discussion in 3.3.3. While it is indeed true that both scientific models and ML-objects 

provide predictions regarding a phenomenon, it is important to note that the understanding 

(representation) of the phenomenon is what makes these predictions possible in human-built scientific 

models which in the case of the ML-object remains inaccessible27. The non-reconstructability of the 

ML-object would mean one cannot make use of ML-objects in the invention of new technical objects 

in the way one would make use of scientific models. A continued use of ML-objects despite this non-

reconstructability would then point towards the negligence of the scientist-engineer in that she would 

in effect be employing a technical object whose capacities and limits she is unaware of. The non-

reconstructability of the ML-object and the subsequent inability to enable future constructions 

renders the ML-object as an isolated body of knowledge in that they cannot detach from their initial 

contexts (of the particular conditions that enabled their training) and re-attach to new epistemic 

contexts (guide the construction of new scientific models) in the way technical objects usually do, (as 

was discussed in 4.2).  

 
27 It is to be noted that I’m particularly referring to black-boxed ML-objects in this chapter whenever I refer to ML-objects. 
The simplest way to address many of the epistemic concerns I will layout in this chapter arising from the use of ML-objects 
is if one can just rely on purely interpretable ML-architectures such as decision trees, and generalized additive models. These 
architectures can be reconstructable, in allowing their construction to be rendered intelligible and can also be integrated 
into knowledge practices because the scientist-engineer can carefully curate the input features as guided by her own 
theoretical resources and can later verify from the interpretable operational schema of the model if the mode of reasoning 
employed by the model aligns with her own theoretical understanding of the target phenomenon.  
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In terms of the integrability condition, the ML-object’s epistemically isolated nature as shown 

above also means that they cannot be integrated into epistemic communities alongside their existing 

resources. This is because, say, a meteorologist cannot employ an ML-driven weather prediction model 

in the way she would use other instruments like thermometers in her practice to aid her model-ing of 

weather phenomena. It would in fact be a choice made from the outside, in that one would have to 

choose whether to rely on predictions from ML-object or from a meteorologist’s model. A societal 

adoption of purely ML-driven weather prediction tools would then suggest how the privileging of 

empirical results enabled the ML-object to be a powerbroker for computer science28 as an epistemic 

community, and leads to the sidelining of the historical contributions made by meteorology as a 

practice in the context of weather prediction. 

The ML-object’s inability to abide by the conditions of reconstructability and integrability 

renders them incapable of establishing technical bridges and thereby makes them unable to be 

incorporated into epistemic communities, at least in the way other technical objects are. A society 

dogmatized by the empirical achievements of the ML-object and continues adopt ML-objects in tasks 

of knowledge production that were previously undertaken by appropriate epistemic communities 

renders them as powerbrokers for computer science, in that this adoption can only come with 

epistemic injustices29.  

One can already trace cases of epistemic injustice in terms of both epistemic severing and 

trademarking within the few knowledge practices that ML-objects are being adopted in and I will 

outline these cases in the following section. 

 
28 As I refer to computer science as an epistemic community in different parts of this chapter, note that I’m particularly 
referring to the community as it became after post-industrial turn given its tight affiliations to tech companies.  
29 I would like to re-emphasize again that in this chapter, and in the thesis altogether, I’m only reflecting on ML-objects that 
are used exclusively in knowledge production. Consequently, my critical remarks and allegations of epistemic violence 
would not apply to say, ML-driven applications such as those of data entry, customer service, traffic management, email 
filtering etc. There can indeed be ethical concerns regarding these applications as well, probably because of their 
discriminatory features or their socially disruptive nature, but reflecting on these concerns is not the object of this research. 
Having said that, this project can nevertheless be productive for later research that does reflect on these concerns in 
particular. 
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5.2 EPISTEMIC INJUSTICES UNDERLYING THE ADOPTION OF ML-OBJECTS 

In terms of an epistemic severing, we already see how computer-vision based ML-objects, given 

their efficient classification of medical images are sidelining the practices of radiologists who have long 

produced a knowledge base that enabled their interpretation of medical images (Reardon, 2019). This 

severing of the contributions made by radiologists is analogous to the case of the Australian aboriginals 

I’ve laid out in the previous chapter: with the compass being the ML-object; and the British nautical 

science being computer science as an epistemic community. A similar case can be made in the case of 

weather-prediction, with ‘state-of-art’ neural networks such as Huawei’s Pangu-Weather, Nvidia’s 

FourcastNet, and Google DeepMind’s GraphCast (Heikkilä, 2023). The fact that these three projects 

are developed by industry leaders in ML-research further strengthens my identification of ML-objects 

as powerbrokers, with meteorologists’ historical epistemic contributions being sidelined by an almost 

hostile entry of the CS community into a knowledge practice that was previously outside its purview.  

We can also identify cases of epistemic trademarking with the “creative” potential of generative 

neural networks such as DALL-E and Stable Diffusion being deemed as major achievements by ML-

research, when such a feat was in fact only made possible by the contributions of several artistic 

communities whose creative works were non-consensually (Xiang, 2022) melded into the datasets that 

these networks were trained on. Furthermore, a study by Somepalli et al. (2022) questions the actual 

creative capacities of generative neural networks by showing cases where their “generations” merely 

reproduce the training data in that the network simply pieces together foreground and background 

objects that it has previously memorized. The study also shows how in some cases, the generated 

‘artwork’ is semantically equivalent to a source image within the dataset, while not being pixel-to-pixel 

identical. Observations such as these strengthen my argument these networks enable an epistemic 

trademarking, and makes one question to what extent the generated images are made possible 

exclusively because of the contributions made by neural network itself and those that train and own it.  
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From these cases of epistemic severing and trademarking I have outlined above, it is apparent 

that a widespread societal acceptance of ML-objects (whose initial waves we have begun to witness in 

recent years) can facilitate an epistemic violence to a wide range of communities, whose historical 

contribution to knowledge production finds itself invalidated or undervalued. In addition, the various 

phenomena that these communities have grown to represent and understand in their own situated 

ways falls under the risk of being transferred to the purview of a single epistemic community, that of 

the post-industrial turn computer science. 

 Such a homogenization and concentration of knowledge by a single community with a single 

set of values threatens the complex heterogenous network that contemporary pluralist conceptions of 

science hold dear and I shall investigate this threat in the following section. 

 

5.3 MACHINE LEARNING AND THE THREAT OF AN EPISTEMIC CRISIS 

It is important to note that the concentration of knowledge production within a single 

epistemic community is not just concerning because of the resulting epistemic injustice and how it 

threatens our ability to acknowledge different situated knowledge practices. It also has implications for 

the epistemic value of the knowledge produced. Self-supervised ML-objects such as the GPT built on 

transformer-based architectures are not directed at a curated set of parameters and measurements (as is 

the case in supervised ML-objects) but are instead trained on an assumption that the neural network 

optimizes itself to create the most complete picture given the data at hand. A totalizing optimization 

such as this serves to create a single ‘model’ that works for a wide range of purposes, as is the case in the 

later ChatGPT application. ‘Models’ such as these that paint a ‘complete’ picture, take into account 

every single extractable feature30 found within the data and are capable of being put into use in a wide 

range of contexts.  Sandra Mitchel (2020) illustrates how complete models can in fact be detrimental to 

knowledge production given that it is the different choices made by the human-modeler such as 

identification of features, abstractions and idealizations that make a knowledge inference possible (as 

 
30 Note that the identification of these features in this case remains one that is not curated by the human 
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was also  indicated in the B&K method laid out in 2.3). A model that accommodates every single 

property of the target phenomenon with the highest degree of precision and accuracy, would in fact 

fail to provide any useful knowledge of the phenomenon and instead replicates the properties of the  

phenomenon as a part of its functioning (Mitchell, 2020, p. 5). A more justified alternative would 

therefore entail building individual models, guided by different methodological choices, modelled by 

specific epistemic communities, directed at particular contexts (or purposes).  

For instance, given the same geospatial setting, one could build a wide range of maps, each 

designed for a particular epistemic purpose. A transit map of a city would be optimized to illustrate 

connections between different transport modes, enabling travelers to better navigate the public 

transportation system, plan their routes, identify transfer points, and estimate travel times. Such a map 

would deviate from the real geographical spatial distribution and would instead privilege the particular 

purpose, that of navigation, in its representation of the city. In contrast, a topographical map that 

privileges accurate graphic representations of natural formations like mountains, valleys and bodies of 

water would be optimized to help urban planners determine best locations for new infrastructure and 

can be critical for disaster management in helping identify say, areas that are at a greater risk of 

flooding.  

These two types of maps of the same city would privilege different features, simplify some of 

them and exclude others in ways that best fit the contexts in which they would later be operationalized 

in. The adequacy of the model in question would then be assessed not in terms of how 

comprehensively it captures the mechanisms of the target phenomenon into its own functioning with 

the most empirical adequacy but instead based on how well they serve and fit within a particular set of 

purposes and contexts (Mitchell, 2020, p. 7). 

Furthermore, a takeaway from my initial discussion of technical objects serving as bridges 

between communities was that the two communities that they bridge together were distinct 

heterogenous epistemic communities. It is not that there is a single dominant tradition that governs 

how different communities produce the knowledge they do. We live in an era where a technique as 
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unique as Acupuncture, built on the Chinese medical community’s understanding of the body as 

characterized by the flows of Qi, a non-physical life force (Ye et al., 2019), is being incorporated by 

western medical practitioners based on evidence of its therapeutic properties (White, 2009) despite 

western medical science’s physicalist understanding of biological phenomena. It is then not necessarily 

the case that it is one epistemic community that establishes technical bridges with several others but 

rather how these bridges make a complex rhizomatic network, each influencing and validating the 

other, to enable what Massimi (2022) calls a cross-perspectival assessment of scientific knowledge.  

 Accordingly, in the case of the CS research community pulling in different phenomena under 

its own epistemic purview, noteworthy is the privileging of empirical adequacy (precision and 

accuracy) over an intelligible understanding of reality altogether. The danger I have previously 

mentioned in 1.4 that machine learning posed to the practice turn in (philosophy of) science, in its 

exclusive privileging of the norm of utility and a complete disregard to the norm of truth, would then 

in fact not be limited to one domain of science but all those domains that ML-objects find their way 

into. Such a domination of methodological values specific to the post-industrial turn CS community 

also echoes what Russo (2022) calls methodological imperialism, characterized by an imposition of 

methodological criteria specific to one field onto other fields.   

I now conclude this section with the hope that arguments I have laid out above demonstrate 

how grave of a threat an ML-driven knowledge production can pose to the scientific project, both in its 

dissemination of pluralist conceptions of science and also in its disregard towards an intelligible 

understanding of the world. 

 

5.4 ML-OBJECTS AS STARTING POINTS FOR FUTURE SCIENTIFIC INQUIRY 

Having outlined the ML-object’s inability to establish technical bridges between epistemic 

communities and how they can be detrimental to the scientific project altogether, I will now, in this 

section, identify possible ways in which epistemic communities can still benefit from black-boxed ML-

objects in their knowledge practice even if they are not directly incorporated into the practice itself.  
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The type of interaction between epistemic communities and ML-objects that I will illustrate in 

this section as being productive for knowledge practices is one that neither establishes the ML-object as 

technical bridge nor as a technical powerbroker. The ML-object, I will argue, can help further the 

knowledge practice of a scientific community, if the community approaches the ML-object, not in the 

way it approaches other scientific instruments, neither in the way it approaches scientific models, but 

as it would approach an anomalous natural phenomenon that it seeks to reproduce. 

What does it mean for a scientist to approach an ML-object as they would a natural 

phenomenon?  I will illustrate what I mean with an example: 

In 1991, climate scientists observed a global average temperature drop of around 0.5 degrees. 

Initially, there was no explanation or understanding as to why this drop has occurred. Scientists have 

later traced how this drop was caused by an eruption of Mount Pinatubo volcano in Philippines. This 

identification has led to further research in the relationship between volcanic eruptions and global 

temperature levels, which further lead to the identification of the role of sulfur dioxide and other 

aerosols (which are injected into the atmosphere during volcanic eruption) in scattering solar radiation 

and thereby cooling the planet. This knowledge of the phenomenon has eventually led to the 

development of solar radiation management as a technique that would mimic the effects of volcanic 

eruptions with the aim of artificially reducing temperature levels.  

In the above example, the discovery of the phenomenon of the temperature drop served as a 

starting point for future inquiry. The scientists knew that there had to be some cause to this anomalous 

temperature shift and that has led them after a long line of research investigations to construct a model 

that mimics this phenomenon. In the same way, black-boxed ML objects can help serve as starting 

points for future inquiries despite them being un-understandable like the anomalous temperature shift 

phenomenon. For instance, Duede (2022) draws on the case of human-constructed geophysical models 

of earthquakes and how they have poorly functioned in relating mainshock and aftershock locations 

(2022, pp. 10). In this case, researchers have indeed built a fully black-boxed ML-object to predict 

aftershock locations based on the mainshock event. However, it is not the case that they employed this 
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network in the way they would employ other scientific instruments. They instead interpreted the ML-

object’s superior empirical performance as evidence that the existing human-built scientific model can 

be significantly improved. They knew their initial assumption of a relationship between aftershocks 

and mainshocks is indeed true from the black-boxed ML-objects performance. This served as a 

justification for them to continue on their current path of inquiry to further refine and improve their 

own model. The main insight from Duede’s case is that throughout the process, the ML-object 

remained black-boxed, and scientists remained foreign to its inner workings. Despite this opacity and 

despite there being no bridging between the theoretical resources themselves and the ML-object, neural 

network continued to influence the progress made within the discipline.  

The ML-object in this case was not integrated into the knowledge practice itself. It instead 

served as a starting point for future research in the same way the 1991 temperature drop did. If the 

scientists do end up constructing a better scientific model, the justification for this model would stem 

from the validity of their own model construction, and the theoretical resources from geophysics they 

made use of, but not from the neural network. The ML-object remained outside the knowledge 

practice while still guiding and enabling the researchers to build models in their own ways. The role 

played by the ML-object in this case can find its equivalence in similar situations across knowledge 

practices where scientists have some preconceptions about a phenomenon before constructing models. 

They could use an ML-object built with these preconceptions as its conditions to verify if the line of 

inquiry they are about to pursue can indeed be promising.  

It is important to note that the above outlined interaction between the ML-object and the 

epistemic community cannot be justified with all ML-architectures. In Chapter 3, I have distinguished 

ML-objects from ML-architectures and have shown how some architectures, particularly those before 

the industrial turn, do tell a story of construction in that they are built in the way they are because of 

intentional choices made by the architects, and they carry certain pre-established presuppositions about 

the kind of informational patterns they can recognize. The geophysical scientist would have to be 

aware of these presuppositions and be able to justify why the architecture is of the size and structure 

that it is, to be able to ascertain that the relationship between the aftershock and the mainshock does 
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exist. Such a justification cannot be arrived at by the use of certain post-industrial turn architectures 

such as the Transformer which cannot tell this story (as discussed in 3.2.4). In fact, if given access to 

sufficient data and a high enough computational power, the use of the transformer could show a 

exceedingly strong relationship between the mainshock and the aftershock event than what is truly the 

case. This can set unrealistic expectations for the geophysicists as they build their model and can de-

incentivizing them from looking at secondary factors.   

After taking a very justifiably critical stance on the use of ML-objects in knowledge production 

in the previous sections of this chapter, I wish I could have avoided ending this chapter with this 

slightly positive role that ML-objects can play in knowledge production, so as to not let these few 

benefits undermine the importance of my earlier critique. I have however laid out this aspect of the 

ML-object regardless of my own stance, to make room for some actionable normative insights as 

opposed to advocating an absolute outlawing of any influence of ML-objects on scientific practices. I 

would nevertheless still re-emphasize for the reader that the scope of the normative insights in this 

section is indeed limited and in no way does it undermine the epistemic threat that black-boxed ML-

objects pose to the scientific project.  
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CONCLUSION 

Having pursued an ontogenetic study of ML-objects in both their genesis and genealogy, this thesis has 

brought to surface i) how ML-objects can be distinguished from traditional technical objects both in 

their construction and in their instrumentalization in knowledge practices ii) the epistemic crisis that 

arises out of the lack of human participation in the construction of the ML-architecture and the 

invention of the ML-object and ii) the subsequent epistemic injustices that stem from a continued use 

of the ML-object in knowledge production, despite this lack.  

At a more disciplinary level, my reconstruction of Simondon’s work through contemporary 

developments in PhilSci would serve in establishing a bridge between PhilSci and ethics and 

philosophy of technology (PhilTech), by equipping the latter with conceptual tools such as i) the two 

criteria of reconstructability and integrability and ii) the two notions of epistemic violence namely, 

severing and trademarking. These conceptual tools would help strengthen PhilTech (which has 

otherwise remained hylomorphic in its approaches towards technologies) in its own critical reflections 

on AI applications and take into consideration their underlying processes of construction and 

invention.  

One could very well argue that my identification of the hylomorphic undertones of PhilTech 

and my emphasis on the need to take into account the ontogenetic aspect of technology may be 

misguided given that the developments in the so called “empirical turn” in PhilTech, characterized by 

approaches such as Post-Phenomenology and Value-Sensitive Design, do not just descriptively reflect 

on existing technologies, but also play an active normative role in their design and implementation. 

However, as I have shown in my account on the genesis of technical objects, it is important to 

recognize that the technical object retains an identity in its underlying technical schemas which remains 

independent of its later implementations in concrete applications. These schemas are pre-established by 

the activities of construction and invention thereby rendering the later design of artefacts to already 

take these schemas as starting points. Whether it is post-phenomenology in curating technical objects 

that fulfill specific mediations or Value-Sensitive Design in its attempts to design artefacts that embody 
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a specific set of values, the range of normative choices that designers can accommodate, while being 

guided by these approaches, is already constrained by the type of technical schemas that arise out of 

model construction and technical object invention. These fields would then be able to make largely 

surface level changes while leaving underlying modes of operation intact, or at best, choosing from an 

already existing set of technical schemas made available to them.  

  Furthermore, acknowledging the role of human cognition in the activities construction and 

invention and the subsequent rendering of technical objects as bearers of knowledge (2.4.1) would also 

serve as a critique to Heideggerean approaches in PhilTech that reduce technology to an immaterial 

attitude based on what can be done with it (as enframing31) and the subsequent mis-identification of 

science as being inherently technical by Heideggerean scholars32 in PhilTech. 

The main insight for PhilTech from my critical reflections on technical objects through 

Simondon’s work and PhilSci is then that drawing attention towards the ontogenetic aspect of 

technical objects brings to surface the particular ways in which the technical activity exerts its own 

deterministic influence (in shaping how technologies are later instrumentalized for a particular utility 

or an effect on society) which is otherwise either unquestioned or remains as an implicit ideology in 

most, if not all, approaches in PhilTech. 

I also hope the insights I have provided in this thesis can help both PhilSci and PhilTech assess 

individual AI-applications based on to what extent their stories of construction and invention (qua 

formation) can be reconstructed and whether they pose any threat of epistemic violence. It is 

important to recognize that there is nothing fundamental to the ML-architecture itself that makes it 

agent of an aggressive mode of epistemic progress. It is then quite unfortunate that among the several 

tedious tasks that human communities engage in, it is those of serious epistemic significance and those 

that require human participation the most that are being substituted (or face the threat of substitution) 

by state-of-art AI applications such as DALL-E and ChatGPT. While it could be true that such 

 
31 See Heidegger (1977) 
 
32 See Zwart (2022) 



Kalidindi 73 
 

applications may be justifiably adopted if rendered transparent in how they use and manipulate 

epistemic resources (as data) that other communities have historically contributed to, such a 

transparency cannot come from the use of XAI methods given their ‘approximatory’ nature (as I have 

shown in 3.3.3). Their adoption can nevertheless be justified if they do arise out of purely interpretable 

architectures. Given that ML-research is primarily being carried out either by industries or institutes 

with industrial affiliations, it is no surprise that the dominating ML-architectures are those that require 

resources which no one but the industry has access to, and these architectures being black-boxed 

because of an alleged technical limitation conveniently lets the industry monetize on research that on 

paper remains open-source. From my discussion in 3.3.4, it is evident that there is no fundamental 

technical limitation that forbids us from employing interpretable architectures and that if sufficient 

resources are pooled in, there is no reason to believe we cannot have interpretable architectures capable 

of performing complex computational tasks.  

 Although I have centered my discussions on scientific communities in particular and their 

ability to reconstruct the story of invention, Simondon’s project in the way he intended it to be wasn’t 

directed at just the scientific community. The kind of society that Simondon dreamt of is one where 

everyone who uses a technical object is able to “know” it by its true nature, by its underlying technical 

schemas and modes of operation. Only then can the hylomorphic schema be avoided and the human 

alienation from the technical object be resolved. This alienation, and users of technical objects not 

being able to reconstruct their inventions, has existed in societies long before the advent of the AI-

paradigm. It is because we live in such a society that the average person finds it unproblematic to 

transition from a technical object to an ML-object: how would it matter for someone if the weather 

predictions they receive arise out of human-constructed models or an ML-object, if the former was 

equally opaque to them begin with. Such an attitude was what enabled the post-industrial turn CS 

community to conveniently seep into other knowledge practices in the first place and continue their 

privileging of empirical results as the only criteria of validity with no regard for providing an intelligible 

understanding of the world. For a society that adopts and relies on ML-driven knowledge production, 
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it is not just the ML-object that is black-boxed —it is the historical contributions of different epistemic 

communities that are black-boxed; it is reality itself that is rendered black-boxed. 
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