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Abstract

This thesis explores the role of backchannels (BCs) in the collaboration between
humans and Conversational Agents (CAs). BCs, which are (non)verbal responses
or cues that an interlocutor provides to indicate their attention and understanding
in a conversation (e.g. ”uhu”, ”really?”), play a significant role in the establishment
of a mutual understanding and common ground. Incorporating BCs in a human-CA
collaborative context may make interactions feel more natural and human-like, which
may enhance the overall collaborative experience.

First, in order to establish a thorough understanding of the field of human-CA col-
laboration, using a systematic literature review, we provide an overview of 1) current
human-CA collaborative studies, 2) the respective collaborative models, and 3) the
evaluation methods used. We conclude that, although there is an increase in pop-
ularity within human-CA collaborative research, it still remains largely unexplored.
Furthermore, as most collaborative tasks are domain-specific, most studies define
their own task-specific collaborative model, with no universal model or framework
available. Finally, there’s notable variation in the evaluation methods used across
studies, mainly driven by the collaborative task’s specific objectives. This causes
most studies to evaluate the task performance or the user’s perception of the col-
laboration within their specific collaborative domain (e.g. pair programming, creative
games, discussions).

Subsequently, in order to conduct a user study in the context of human-CA col-
laboration using BCs, a BC model had to be implemented and evaluated. This model
was realised using the Voice Activity Projection (VAP) model, which provides online,
continuous, BC predictions using the voice activation of both the CA and the hu-
man. An initial user study, evaluating the perceived naturalness of the timing and
frequency of the generated BCs, suggests that the model is capable of producing
acceptable, natural-sounding BCs. However, as the study’s sample size was rela-
tively small, and the majority of the participants were Dutch, the results may not be
completely generalizable and may contain cultural biases.

Finally, we used the VAP model in a human-CA collaborative user study, imple-
menting a game to assess the influence of BCs on task duration and collaboration
perception. This study was conducted with 20 participants from 9 nationalities using

v



VI ABSTRACT

a 2X1 factorial design; the BC’s presence was used as the independent variable.
In line with the reviewed literature, evaluation metrics were chosen based on task
performance (i.e. task duration) and perceived collaboration. Results indicate that
user turns were generally shorter without the presence of BCs, with the first turn be-
ing statistically significantly shorter (p <0.05). A 5-point Likert scale survey showed
BCs reduced the perceived CA contribution (p <0.001); Other collaboration metrics
(e.g. trust, working alliance, cooperation, commitment), however, were unaffected.
These results may be explained by the BCs eliciting participants to speak longer due
to the absence of immediate positive feedback of understanding. The difference in
perceived contribution may be coupled with a shift in perceived responsibility by the
participant to contribute to the collaboration. Future work, however, is necessary to
refine the evaluation and better understand the inner workings of the participant’s
perceived collaboration.
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Chapter 1

Introduction

Adapted from Research Topics

Advancements in AI, notably in the fields of Natural Language Processing (NLP)
and Deep Learning, are rapidly revolutionizing various aspects of our lives. As these
technologies become increasingly sophisticated, they are being integrated more and
more into our daily tasks allowing us to solve ever-increasing complex tasks with the
use of AI [1]. Although some of these systems have the ability to even outperform
humans on certain clearly defined tasks [2], true artificial general intelligence (AGI)
(i.e. an intelligent agent which has the capacity to comprehend or pick up any intel-
lectual skill that a human can) may still be far off [3]. Therefore, to take full advantage
of AI, various researchers [3] argue that the most effective way for humans and AI
to work together will be through Hybrid Intelligence, which involves combining the
strengths of human intelligence and AI to achieve better results than either could
alone.

This type of collaboration aligns with the idea of intelligence augmentation, which
focuses on how AI can enhance human thinking and problem-solving abilities [4]. In-
telligence augmentation can help overcome limitations in human reasoning, mitigate
bias in decision-making, and reduce distractions during problem-solving, ultimately
leading to improved task-solving abilities [4], [5]. Advances in NLP and speech pro-
cessing have enabled human-AI collaboration using written or spoken natural lan-
guage [4], [6]. Consequently, AI-powered CAs have seen an increase in attention
within academic literature [4], [7]. During human-CA collaboration, the agent may
be able to take on the role of peer, facilitator, or expert [6], [7] in order to enable
intelligence augmentation.

Grounding is an essential aspect of human communication, where participants in
a conversation align their understanding and establish a common ground to ensure
effective communication [8]. In the context of human-CA collaboration, grounding
is just as crucial as it helps bridge the gap between the human user and the AI
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2 CHAPTER 1. INTRODUCTION

system [9]. Backchannels (BC), which are the minimal responses or cues that one
participant provides to indicate their attention and understanding in a conversation,
play a significant role in grounding [10]. Hence, incorporating BCs in AI systems
may make interactions feel more natural and human-like, which may enhance the
overall collaborative experience.

By investigating the role of BCs in human-CA collaboration, this thesis aims to
shed light on how these conversational cues can influence the effectiveness and
fluency of interactions between humans and AI systems. It seeks to explore how
computationally generated BCs can impact task performance and the user’s per-
ception of the collaboration. Through this exploration, we hope to gain a better
understanding of how to design CAs that foster more effective and engaging col-
laborations with humans. This work aspires to pave the way for more sophisticated
and productive collaborations between humans and AI, ultimately leading to more
capable and efficient problem-solving processes.

The thesis is structured as follows: Chapter 2 provides a comprehensive review
of the current state of human-CA collaboration research, with a focus on the different
models and corresponding evaluation methods. This chapter provides a groundwork
for our later exploration and sets the stage for a more nuanced investigation into the
role of BCs in human-CA collaboration. This chapter aims to provide an answer to
the following research questions:

RQ1. What techniques and approaches are used to design and develop systems
that support human-CA collaboration?

RQ2. How are these systems evaluated in terms of their success and effectiveness
in studies of human-CA collaboration?

Subsequently, in Chapter 3, we delve into the world of BCs and how they can
be modelled in human-CA interaction. To this end, a BC model is implemented and
evaluated using a survey. In order to evaluate whether the proposed BC model can
be used for a subsequent user study in the context of human-CA collaboration, we
aim to answer the following research questions:

RQ3. To what extent can the timing and frequency of computational BC models be
perceived as on par with human BCs?

Finally, building upon the insights from the previous chapters, Chapter 4 seeks
to understand the role of BCs in a human-CA collaboration task. A collaborative
game serves as the experimental platform where we evaluate whether the presence
or absence of BCs has an impact on the perceived collaboration by participants
and the duration of task completion. This chapter aims to provide answers to the
following research questions:
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RQ4. To what extent can CA BCs affect the task duration during a Human-CA col-
laborative task?

RQ5. To what extent can CA BCs affect the perceived collaborative fluency during a
Human-CA collaborative task?

This thesis aims to contribute to the growing body of human-AI collaboration
research by providing a comprehensive investigation into the role of BCs in this
context. Through systematic analysis and experimentation, it offers valuable insights
that could aid in designing more effective interactive systems, and hopefully, pave
the way for more nuanced and beneficial human-CA collaborations in the future.
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Chapter 2

Literature Review

Adapted from Research Topics

As mentioned in the previous chapter, Conversational Agents (CAs) have become
increasingly popular in various fields. Their collaboration with humans is a novel
and promising area of study, which offers opportunities to improve a range of tasks.
Although various literature reviews have made an attempt at making the field of
human-CA collaboration more accessible [4], [11], none have provided an overview
of the methods and algorithmic models used to enable human-CA collaboration.
Additionally, a clear overview of the methods used to evaluate these models is
also lacking; Poser and Bittner [4] conducted a systematic survey focussing on
teamwork-specific psychological concepts for the design of CAs, while Memmert
and Bittner [11], conducted a survey on human-AI collaboration in the context of
problem-solving. Therefore, in an attempt to make insights from human-CA collabo-
ration research more accessible, this chapter aims to answer the following research
questions:

RQ1. What techniques and approaches are used to design and develop systems
that support human-CA collaboration?

RQ2. How are these systems evaluated in terms of their success and effectiveness
in studies of human-CA collaboration?

By investigating the methods used in the development and evaluation of human-
CA collaboration models, this chapter aims to provide a theoretical basis for fu-
ture investigations conducted in this thesis. Our findings could potentially guide
researchers and practitioners in developing and assessing their own human-CA col-
laboration systems.

This chapter is structured as follows: Section 2.1 covers the theoretical back-
ground and establishes the definitions that will be used as the basis for the remain-
ing thesis. Section 2.2 will elaborate on the selected databases, keywords, and
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search methodology used during the systematic review. The reviewed literature cor-
responding to the research questions will be presented in Section 2.3. Finally, in
Section 2.4, the results and limitations will be discussed.

2.1 Background

2.1.1 Conversational Agents

Before we can understand the role of CAs in human-CA collaboration, it is first im-
portant to properly define the term conversational agent. According to Allouch et
al. [12], a CA is a type of dialogue system that enables the user to communicate
with a system using full natural language sentences. What differentiates a CA from
any other dialogue system, is its capability to both understand and generate natural
language using verbal (e.g. text and voice) methods of communication. Hence, dia-
logue systems can merely produce natural language text or speech, while CAs also
have the ability to understand and respond to utterances from the user. Additionally,
a CA can use nonverbal methods (e.g. face and body language) to increase user
engagement [13]. Hence, dialogue systems that require the user to input a specific
number or word to progress through the menu are not considered CAs because
the user’s input does not consist of full sentences. Similarly, systems that allow the
user to provide input through a limited set of pre-programmed commands while not
invoking a natural language response are also not considered CAs.

There are various ways to categorize CAs, including the way they communicate
with users, the tasks they can perform, and the specific domain or application they
are used in [12]. For this literature study, the definition of CAs is solely defined ac-
cording to the method of communication with the user. This is necessary as the
terms used to describe CAs within literature vary based on their method of commu-
nication. CAs that only communicate with users through text-based methods, such
as ELIZA [14] are called text-based CAs or chatbots. CAs that can interact with
users through voice, such as Siri or Cortana, are called voice-based CAs. Embod-
ied CAs, are CAs that have a virtual or physical body in addition to voice recognition
and speech generation abilities [14]. They can also communicate through facial or
body gestures. Literature uses multiple terms to identify both types of embodied
CAs; ranging from virtual avatars to digital humans for virtual-based agents to social
robots for physical-based agents [12]. Please see Figure 2.1 for an overview of the
CAs categorized by method of communication.
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Figure 2.1: Various CAs categorized by method of communication adapted from
[12]

2.1.2 Human-AI Collaboration

Before we can define conversational agents in the context of human-AI collaboration,
it is necessary to first define what collaboration between humans and AI entails. Ac-
cording to various researchers, human-AI collaboration refers to the concept of hu-
mans and intelligent systems working together to achieve a shared goal or task [3],
[11], [15]. In other words, it refers to the idea that humans and AI can complement
each other’s strengths and weaknesses. AI systems are capable of completing spe-
cific tasks efficiently, handling large amounts of information, identifying patterns, and
generating logical predictions [3]. In contrast, humans have the capacity for common
sense and other emotional traits like empathy and creativity [3]. Moreover, humans
can more easily adapt themselves to new environments or deal with unexpected
events [3], [15]. Additionally, we have the ability to handle incomplete information to
solve complex, abstract issues [16].

Although multiple studies have researched human-AI collaboration, there still
seems to be a lack of consistency regarding the definition of collaboration [15], [17].
Additionally, since this field of research is still relatively new, the topic has been
studied under a variety of terms (e.g. human-AI teaming or hybrid intelligence) [11].
Bedwell et al. [18] conducted a thorough literature review in which they identified the
various aspects of collaboration. According to their definition, collaboration can be
understood as an evolving process, which involves the active participation of two or
more social entities in joint activities, that aim to accomplish at least a single shared
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goal [18]. Collaboration is an evolving process in the sense that it is not deterministic
by nature. In other words, the outcome of the process is continually influenced by
the emerging mental states of the collaborators (e.g. values, motivations), collab-
orative behaviour (e.g. reasoning, problem-solving), and the environment in which
the activity takes place [18]. Social entities within the context of collaboration can be
considered as individuals, teams, and organizations. This is also what differentiates
teamwork from collaboration; while teamwork solely happens between individuals,
collaboration can also happen between collective entities. Moreover, collaboration is
reciprocal in the sense that the entities involved are proactive and mutually engaged.
An AI system that solely gives the user recommendations whenever the user asks
for it, can not be considered collaborative. Since the review conducted by Bedwell
et al. [18] is widely cited, it will be used as the foundation for the understanding of
collaboration for this study.

Finally, with regard to the definition of human-CA collaboration in specific, col-
laboration in this context can be defined as an evolving process, which involves the
active participation of social entities - of which at least one entity can be considered
a conversational agent - with the aim to achieve at least a single shared goal. Us-
ing this definition, the literature search keywords will be determined which will be
described more elaborately in the following section.

2.2 Methodology

Multiple literature searches were conducted using the ACM and IEEE Xplore digi-
tal libraries. The literature searches were conducted in an iterative manner during
which previous findings were used to alter the search queries with new relevant
search terms. During the first iteration, the following search query was used to
search in full article texts without any additional filters: (”Conversational Agent*” OR
”Virtual Human*” OR ”Digital Human*” OR ”Virtual Avatar*” OR ”Virtual Agent*” OR
”Virtual Assistant*”) AND (”Problem Solving” OR ”Problem-solving” OR ”Human-AI
collaboration” OR ”Creative problem solving” OR ”Creative problem-solving”). See
Table 2.1 for an overview of the results.

Database Initial hits Abstract review Full review
ACM 421 18 8
IEEE 31 6 1
Total 452 24 9

Table 2.1: Search results for the first review iteration.
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Database Initial hits Abstract review Full review + f/b
ACM 43 12 3
IEEE 98 7 3
Total 141 19 10

Table 2.2: Search results for the second review iteration and forward/backward (f/b)
search. Four additional papers were found using f/b search.

During the full paper review, it quickly became apparent that various interchange-
able keywords related to human-AI collaboration were missing (e.g. hybrid intelli-
gence and human-AI teaming). Moreover, cooperation and coordination were also
frequently used instead of collaboration. Therefore, an additional search was per-
formed with the following keywords as a possible substitute for human-AI collabo-
ration: ”team*” OR ”coordination” OR ”cooperation”. To keep the number of results
maintainable, the filters were adjusted to only search in the title and abstract. See
Table 2.2 for the results of the second search iteration. During the second iteration,
7 duplicate papers were found and excluded.

To synthesize the search results, the relevancy of the articles was first analyzed
by their title and abstract. An article’s relevance was determined by their proposed
type of human-CA collaboration and its correspondence to the definition mentioned
in Section ??. Subsequently, a full review of the article was conducted whenever an
article was deemed relevant. Finally, a forward and backward search was performed
to identify additional relevant studies. See Figure 2.2 for the process flow of the
article selection method.

2.3 Results

This section provides an overview of the reviewed literature with the aim to answer
the aforementioned research questions. The results are grouped by domain, as
the models and evaluation methods vary significantly per type of collaboration (see
Figure 2.3).

2.3.1 Collaborative Models

Group Discussions

Most of the human-CA collaboration studies found during this review revolve around
the augmentation of group discussions. Do et al. [19], for example, studied how a
chatbot can facilitate consensus reaching, encourage an even contribution by the



10 CHAPTER 2. LITERATURE REVIEW

Figure 2.2: Article selection process flow for both iterations combined.

participants and aid in organizing various opinions during a discussion. Most of the
tasks performed during these studies focussed on decision-making tasks. These
tasks range from planning a day trip [20] to ranking patients waiting to receive a
heart transplant [21]. Studies also frequently used open-debating, estimation, and
problem-solving tasks during which participants had to either discuss ethical issues
[22], estimate e.g. the height of the Eiffel Tower [20], or create an advertising slogan
[19] respectively.

Several methods and collaborative models were applied to enable the CA to aug-
ment group discussions. Kim et al. [22] based their chatbot on principles established
in prior work from psychology [23]–[25]. More specifically they used the think-pair-
share strategy to encourage collaborative discussions by facilitating independent
opinion formation and understanding the perspectives of others. As a result, the
chatbot supports these principles during the discussions by encouraging equal par-
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Figure 2.3: Overview of the types of CA used per domain by the reviewed literature

ticipation from all the participants. Bagmar et al. [21] partly designed their chatbot
based on principles from Group Decision Support Systems (GDSS) [26]. GDSS ex-
plores the idea of anonymity in group discussions and its impact on the contributions
and feedback made within those groups. Hence, the chatbot integrates these ideas
by guiding the conversation using the occasional interruption; these interruptions
can be directed to the entire group or privately to an individual.

Moreover, Kim et al. [20] conducted a specific need-finding study to discover the
traits a chatbot should possess to augment group discussions. Using the results
they develop a chatbot that aims to: 1) efficiently derive consensus within a given
time; 2) encourage even contributions by asking specific participants to speak up;
and 3) organize both the individual and the whole group’s opinion by summarizing
the main keywords. Subsequently, they modelled the cooperative behaviour of the
CA based on the quantity and quality of the contribution of group chat participants
by periodically computing the standard deviation of the number of messages and the
number of unique words for each member. Haring et al. [27] implemented a virtual
ECA to aid the discussion between military personnel during mission debriefs. They
used discuss, debate, and open communication strategies of conflict resolution [28]
as guidelines for their ECA. Finally, Do et al. [19] implemented a text-based CA that
used communication strategies intending to aid participants with decision-making
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tasks during chat discussions. These strategies include 1) messages sent to two
types of recipients (i.e. @user or @everyone); 2) messages sent in public/private
channels; 3) messages sent in which the CA asks a peer to aid an under-contributing
member.

Creative Games

Various papers found during this review also studied the impact of human-CA collab-
oration on creativity. During these studies, using the assistance of either voiced or
physically embodied CAs, participants were asked to perform a plethora of creative
tasks. These tasks ranged from performing various drawing activities [29]–[32], to
playing a creative video game [33], or zen rock gardening [34].

The methods and collaborative models used varied per study. To study the ef-
fects of human-CA collaboration on creativity during zen gardening, Kahn et al. [34],
based their physical ECA on principles from Interaction Pattern Design in Human-
Robot Interaction (HRI) literature [35]–[37]. These principles mainly refer to how a
participant can be introduced to a given task. Additionally, they developed 10 ad-
ditional interaction patterns that aimed to foster creativity during the given task. To
evaluate whether these patterns work, Kahn et al. [34] conducted a Wizard of Oz
study [38] during which the ECA was controlled by one of the researchers. Results
demonstrate that participants using the ECA engaged in the creative task longer and
provided around twice as many creative expressions compared to the participants
who didn’t use the ECA.

Multiple human-CA collaboration studies use and build upon the patterns pro-
vided by Kahn et al. [34]. Devasia et al. [33], for example, use ‘Pushing the Limits’,
‘Validate Decision’, and ‘Condier the Alternative’ patterns to engage children during
a creative problem-solving task. While interacting with a physical ECA, children had
to play a scaffolding game on a tablet during which they had to reach an objective by
building various contraptions. The ECA acted as a collaborative peer by demonstrat-
ing various scaffolding solutions, asking about possible alternative solutions, and
encouraging the use of varied objects. Another human-CA collaboration study [29]
implicitly used the ‘Validate Decision’ and ‘Reflect on Intuition’ patterns to develop a
voiced CA with the aim to foster creativity in children during a drawing game. Ad-
ditionally, they used collaborative strategies to overcome writer’s block [39], [40] by
allowing the CA to suggest and generate new drawings. Moreover, based on theo-
ries of embodied cognition [41], they aimed to foster creativity by enabling the CA
to respond and generate drawings based on real-time tellings by the child. Finally,
multiple studies [30]–[32] use findings from psychology and HCI [42], [43] which in-
dicate that children’s creativity is influenced by external factors (e.g. collaboration,
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reflection and question asking). Additionally, they use Boden’s [44] framework of
creativity to design creative behaviours by the CA during gameplay

Pair Programming

Another collaborative task performed during various human-CA collaboration stud-
ies was pair programming. Using the aid of a CA, participants were given the ob-
jective to solve existing security vulnerabilities [45], or to program the game tic-
tac-toe [46]–[48]. Kuttal et al. [47] conducted a pilot study to analyze the creative
problem-solving strategies and conversational styles used during human-human
pair programming sessions. Subsequently, they recommend transferrable guide-
lines from human-human to human-CA collaboration. These guidelines are based
on a driver/navigator collaborative model during which one individual actively pro-
grams, while the other reviews the code, makes suggestions, and asks questions for
clarification [49].

Finally, in a similar study, Robe et al. [46] used Shneiderman’s guidelines [50]
and Nielsen’s heuristics [51] with the aim to create suitable dialogue options. Due
to the social complexity of pair programming, all studies were conducted using a
Wizard of Oz method.

Information Gap Tasks

Lastly, various studies applied CAs during information gap tasks [52], [53]. Simpson
et al. [53] created a virtual reality environment in which a voiced CA had to guide
multiple players to hidden targets [53], [54]. The responses of the CA were iden-
tified using prior literature [55]–[57] and using a previous study during which they
analyzed human responses in the same context [58]. As a result, the CA’s dialogue
can be classified into three categories: 1) task action directives (e.g. giving direct
commands to the players); 2) information exchange (e.g. sharing information about
the environment); and 3) short, close-ended responses.

Moreover, a study conducted by Kontogiorgos et al. [59], explores the effect of
CA embodiment and failures during information gap tasks. More specifically, partici-
pants were instructed to prepare various meals using recipes provided by a CA. The
researchers were particularly interested in whether the participants used different
strategies to (re)establish common ground with the CA during the task, depending
on the CA embodiment and induced failures. To enable human-CA collaboration
during the experiments, Kontogiorgos et al. used a wizarded CA. The collabora-
tive model used during the study involved the following specific predefined dialogue
options:
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1. Next Instruction: This was used when the user had completed the current
step or specifically asked for the next ingredient in the recipe.

2. Clarification Answers: If participants sought clarity on any aspect of the task,
the CA could provide detailed information. Examples include answering ques-
tions about the location or identity of an ingredient, specifying quantities, or
giving simple affirmative or negative confirmations.

3. Repeat: The CA had the option to repeat the previous instruction for the benefit
of the user.

4. Incorrect: Whenever the participants chose the wrong ingredients, the CA
could alert and correct them.

This structure ensured a streamlined and focused interaction between the par-
ticipants and the CA, while still allowing for dynamic responses based on real-time
user needs and actions.

2.3.2 Evaluation Methods

Among the studies that included an evaluation, the most occurring experimental
setup was the mixed factorial design experiment. These experiments compare and
evaluate the difference between pre-defined dependent variables (e.g. quality of
the task output) based on multiple subject conditions (e.g. with CA or without). An
overview of the qualitative and quantitative measures found in this review is pro-
vided in Table 2.3. The measures are grouped by collaborative task (i.e. group
discussions, creative games etc.), as they vary significantly per context. Finally,
two dominant evaluation categories were discovered among the various collabora-
tive tasks; although not explicitly mentioned, all studies either evaluate the user’s
perception of the CA or the effect on the task performance, or both.

2.4 Discussion & Limitations

Due to advancements in deep learning, natural language processing, and AI, human-
AI collaboration will become ever more prevalent as it opens the door for intelligence
augmentation. As demonstrated during this study, various studies already pave the
way for the application of CAs in this context. However, due to the various kinds of
collaboration domains (e.g. group discussions, pair programming), and the social
complexity of collaborative tasks in general, human-CA collaboration has not yet es-
tablished general guidelines and still seems to be in its infancy; the reviewed studies
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use vastly different collaborative models and a significant amount still use Wizard of
Oz methods to control the CA. However, as the papers found using the systematic
review were mostly published in the last 3 years, human-CA collaboration research
seems to grow in popularity.

Furthermore, researchers have to be critical about the type of CA they use and
whether to actually use CAs or not, as some collaborative contexts may be better
suited for different kinds of AI systems. Although, for example, the pair programming
studies found during this review evaluate important aspects, it has yet to be seen
if a virtual ECA actually augments programming capabilities and is perceived as
useful by the target audience. Meanwhile, collaborative language models like Github
Copilot1 are being used by industry professionals for programming tasks. It has to be
noted, however, that the interaction capabilities with Copilot are limited, and a more
conversational style of interaction may result in other collaborative benefits [79].

Regarding the evaluation methods used during the human-CA collaboration stud-
ies, two evaluation categories were discovered among the various qualitative and
quantitative measures; studies evaluated the user perception of the CA and/or the
effect of the CA on task performance. However, as each type of collaboration re-
quires different collaborative models and aims at different types of outcomes, the
measures and metrics used between the studies vary significantly. While studies re-
garding creative games focus more on the evaluation of task performance and use
creativity metrics established in prior work from social psychology, pair programming
and group discussion studies focus more on the evaluation of the users’ perception
with the aim to develop collaborative guidelines for future research. Regarding the
similarities between the metrics used to evaluate user perception between the vari-
ous domains, domains with more linear tasks (i.e. pair programming and group dis-
cussions tasks) seem to focus more on the evaluation of the perceived usefulness
of the CA, while non-linear tasks (i.e. creative games) focus more on the perceived
engagement.

Finally, partly due to the novelty of human-CA collaboration research and the
multitude of terms used to describe it, various additional keywords were found that
were not used during the literature search (i.e. intelligence augmentation, social
robots). This is a limitation and, as a result, may require additional search iterations.
Furthermore, some studies were excluded from this review due to the incongruence
with our definition of collaboration. Studies that used CAs solely for teaching tasks,
for example, were excluded from this study as it was not deemed collaborative;
although debatable, teaching was not deemed collaborative as the goals between
the teacher and student differ. Hence, the used definition of collaboration may still
be too restrictive.

1Github Copilot: https://github.com/features/copilot
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2.5 Conclusion

This chapter covered a systematic analysis of the collaborative models and evalua-
tion methods used in human-CA collaboration research. According to our findings,
there is no single model that accounts for all forms of collaboration; instead, studies
either build models based on user preference studies or by drawing on prior social
psychology research. Additionally, the users’ perception of the CA and the CA’s im-
pact on the performance of collaborative tasks are the key metrics used to assess
human-CA collaboration studies. To conclude, as AI gets increasingly more pow-
erful, human-AI collaboration gets ever more prevalent. The findings of this study
contribute to future research by providing an overview of current human-CA collab-
oration research.

As we transition into the next chapter, we will delve deeper into the nuances of
human-CA collaboration, concentrating on an important yet underexplored aspect:
backchanneling. Building on our understanding of collaborative models and evalu-
ation methods, we will explore how BCs, as integral components of conversational
dynamics, can be modelled in human-ca interaction. In this chapter, we aim to as-
sess the extent to which computational BCs can emulate the naturalness of human
BCs. This is crucial in order to conduct a human-ca collaborative user study, uti-
lizing computational BCs (see Chapter 4). In doing so, we continue our pursuit of
understanding and enhancing human-CA collaboration.
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Chapter 3

Modelling Backchannels

The previous chapter contained a comprehensive analysis of the collaboration mod-
els and evaluation methods in human-CA collaboration research. It highlighted the
diversity of models and the lack of a standard approach, underscoring the impor-
tance of context-specific studies and approaches. Given the wide range of metrics
used to evaluate human-CA collaboration, user perception and task performance
were identified as key indicators. Building on this analysis, the next chapter (Chapter
4) will use this as a theoretical foundation to design a human-CA collaborative user
study. However, in order to conduct this experiment, it is first necessary to achieve
a better understanding of the concept of backchannels (BC), and how they can be
modelled for human-CA collaboration. BCs refer to short utterances or non-verbal
signals that signify active listening, comprehension, and encouragement, such as
”mm-hmm,” ”okay,” or nodding. Although they are considered to play a pivotal role in
effective communication and engagement in collaboration [10], no study has evalu-
ated their impact on human-CA collaboration. Hence, this chapter aims to explore
the modelling of BCs, and assesses whether their perceived naturalness can be ef-
fectively used in a human-CA collaborative user study. The guiding research ques-
tion for this investigation is:

RQ3. To what extent can the timing and frequency of computational BC models be
perceived as on par with human BCs?

The remainder of this chapter is organized as follows. Section 3.1 provides back-
ground information on grounding and common ground in conversations, as well as
an overview of BC models. Section 3.2 presents the methodology used in this study,
including the implementation of the used BC model and the survey conducted to as-
sess the perception of generated BCs. Section 3.3 presents the results of the study,
analyzing the generated BCs and survey responses. Section 3.4 discusses the find-
ings, limitations, and implications of the study. Finally, Section 3.5 concludes the
chapter.

19
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3.1 Background

3.1.1 Theory of Grounding

In order to understand the importance of BCs in a conversational context, it is nec-
essary to first understand the notion of both grounding and common ground. The
term ”common ground” was first introduced by Stalnaker [8] and refers to the estab-
lishment of a shared understanding between multiple people during discourse. This
notion uses a number of related ideas, including the concept of joint knowledge [80],
mutual knowledge or belief [81], and common knowledge [82]. Common ground can
be regarded as the confluence of these principles and is a vital part of successful
communication between people [83].

According to Clark [84], common ground can be categorized into four different
types; communal, specialised, personal, and local common ground. First of all,
communal common ground refers to the idea that a shared understanding can be
established among larger groups of people that belong to the same community (i.e.
people sharing the same faith or nationality). Specialised common ground can be
found amongst people that share a specific area of expertise or interest, such as
friends or colleagues [9]. Moreover, personal common ground occurs between two
interlocutors and can be defined as the collection of shared propositions between
the individuals. Finally, as an element of personal common ground, local common
ground can be understood as the shared understanding belonging to a piece of in-
formation obtained during discourse with a specific interlocutor. Clark [84] describes
this type of information as concrete observations, such as the opening hours of a
store or the price of a specific item.

To establish a common ground, individuals use the communicative technique
called ’grounding’. Grounding occurs during dialogue whenever interlocutors at-
tempt to update their shared understanding with new propositions [9]. According to
the grounding model proposed by Clark and Schaefer [85], grounding is established
during dialogue through communicative contributions. These contributions can be
divided into two different phases (see Figure 3.1). First of all, during the presentation
phase, interlocutor A presents an utterance to interlocutor B. A does so based on
the assumption that as long as B does not give any strong evidence of the contrary,
B understands what A is saying. Subsequently, during the acceptance phase, B
responds to A’s utterance by giving the appropriate amount of evidence of under-
standing. B does so on the assumption that once A registers the evidence, A will
believe B understands the utterance.

During the acceptance phase of the grounding process, communicative feed-
back is used to provide evidence of whether the interlocutor accepts or refuses the



3.1. BACKGROUND 21

Figure 3.1: Overview model of grounding as described by Clark and Schaefer [85].

utterance [9], [86]–[88]. Research suggests there are five different types of positive
evidence of understanding [83], [85]. First of all, an individual can provide evidence
by displaying various social signals that indicate they are paying attention (e.g. ap-
propriate eye gaze). Whenever a speaker may feel like they lost the attention of the
person they are talking to, the speaker may use phatic utterances to obtain addi-
tional evidence of understanding (i.e. ”Do you get what I mean?”). This category
of positive evidence is called ’continued attention’ and is often considered the most
basic form.

The second category, ’assertions of understanding’, establishes evidence by pro-
viding various acts of acknowledgement. This is generally paired with verbal assess-
ments (e.g. ”are you serious?”, ”oh really?”) or BCs responses (i.e. ”okay”, ”yes”,
”uhu”). Third, ’presuppositions of understanding’ establishes evidence whenever
the listener introduces a new topic which is relevant to the previously discussed
topic. Next, ’displays of understanding’ occur whenever the listener construes part
of the speaker’s intention behind their utterance. Finally, ’exemplifications of under-
standing’ occur whenever the listener exemplifies whatever they have construed the
speaker to have meant. More specifically, the listener can use paraphrasing or ver-
batim repetition of the speaker’s utterance to provide evidence. Moreover, they can
display sadness, disappointment, or any other empathic/iconic gesture that makes
the speaker feel understood.

Since grounding is relatively broad in terms of its scope, this thesis focuses on a
single aspect of grounding, which is vocal BCs. Hence, in the following subsection,
we will focus on BCs and how they can computationally be modelled.
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3.1.2 Backchannel Models

Regarding computational BC models, early models were mainly offline and used,
among other methods, decision trees based on prosodic and syntactic part-of-speech
features to predict BC relevance places (BRPs). BRPs are considered points in a
conversation where one of the listening interlocutors may provide a BC [89], [90].
For example, Cathcart et al. [91] used pause durations in combination with an n-
gram model to predict appropriate BCs behaviour. Generating real-time online BCs,
however, seems to be an even bigger challenge; although complex models gener-
ally provide higher accuracy, they also require more computing power, which makes
the timing of feedback increasingly difficult. Meena et al. [92], for example, trained
a real-time BC prediction model using prosodic and lexico-syntactic features using
automatic speech recognition. Moreover, various studies trained probabilistic se-
quential models that continuously predict the probability of whether a BC could occur
within a given time frame [93]–[95]. Recently, deep learning methods are being used
more frequently to predict the timing of appropriate BCs. For example, Hussain et
al. [96] trained a deep Q-network for BCs during human-robot interaction. Ruede et
al. [97] used prosodic features (i.e. energy and pitch) in combination with syntactic
word embeddings to train an LSTM model for BCs generation.

Regarding state-of-the-art BCs models, Voice Activity Projection (VAP) [98] is
a BC prediction model that uses a transformer-based [99] architecture to predict
the occurrence of turn-taking events (i.e. BCs and turn-takes). More specifically,
VAP uses Voice Activation (VA) (i.e. whether an interlocutor is talking or not) to
predict changes within the interlocutor’s VAP. To elaborate, the model uses the VAP
of two interlocutors to construct a VAP window which is used to model the future
VAP information over the course of the dialogue (see Figure. 3.2). This window
consists of a fixed number of bins that are considered to be either active or inactive,
determined by a VAP threshold. These windows are used as labels during training.

Using this architecture, Ekstedt et al. [98] trained three different models: 1) an
independent model that aims to predict the activation probability for each bin in-
dependently; 2) a discrete model that aims to predict the probability of a specific
combination of activated bins (e.g. there are 28 different bin combinations, predict
the probability for each combination); 3) a comparative model that predicts the VAP
ratio over the entire window, disregarding the bins.

The VAP model consists of a VA encoder followed by a window sequence pre-
dictor (see Figure. 3.3). As the input of the model, the raw audio waveforms at
the current timestep, the VA frame vector at the current timestep (V f

t ϵ{0, 1}2), and
the VA ratio from the beginning of the recording until the current timestep split into
five frames (V h

t ϵR5, {−inf : 60, 60 : 30, 30 : 10, 10 : 5, 5 : 0}) was used. The en-
coder module consists of two submodules, one contrastive predictive coding (CPC)
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Figure 3.2: VAP window as proposed by Ekstedt et al. [98]. The window consists of
8 bins, each colour representing the VA of one interlocutor over a period
of 2 seconds. The VA in each bin (left window) is extracted and used
to determine whether a bin is considered active or not (right window)
whenever it succeeds the specific threshold. An example of the output
of the three different models is shown on the right.

module [100] which processes the raw audio waveforms and one VA module which
processes the VA frame vector and VA history. The output of the encoder module
is the speech frame representation hspeech at timestep t (hspeech,t ∈ R256). Subse-
quently, the predictor module uses this speech representation as input for a causal,
decoder-only transformer layer [99] in combination with a linear layer to predict the
voice activation windows.

Figure 3.3: VAP model proposed by Ekstedt et al. [98]

As the model is not explicitly trained to predict BCs, Ekstedt et al. provide zero-
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shot classification tasks1 to classify specific turn-taking events. Hence, the authors
defined a set of VA bin conditions used to classify BCs (see Figure. 3.4). While
evaluating these zero-shot tasks, the discrete model has an average weighted F1-
score of 0.723, which is statistically significantly better compared to the alternatives.

Figure 3.4: Zero-shot BCs classification conditions; to be classified as a BCs, the
VA of the listening interlocutor has to be active for at least one of the first
three bins in the projection window. Adapted from Ekdstedt et al. [98].

As the VAP model is, currently, considered state-of-the-art, it will be used for
the remaining studies of this thesis. In the following section of this chapter, the
theoretical knowledge regarding backchannels - and the modelling thereof - will be
applied in the design of a user experiment to evaluate the perceived naturalness of
the frequency and timing of generated BCs.

3.2 Methodology

3.2.1 Backchannel Model

To address whether the perceived naturalness of the frequency and timing of gen-
erated BCs can be on par with human BCs, we implemented a BC model. Among
various BC models, the VAP [98] model, discussed in Section 3.1.2, demonstrated
promising outcomes and was therefore selected for this study. However, since VAP
solely provides the probability of a BC happening, we needed to introduce several
modifications to assess the perception of these BCs. For an overview of the en-
tire BC generation architecture, refer to Figure 3.5. Each individual module will be
described in the following paragraphs.

First, to generate the BC utterances using the probability provided by the VAP
model, a BC generation module was implemented. To trigger the BC utterances,
this module uses the BC probability output from the VAP model in combination with

1Within deep learning, zero-shot classification is used whenever a model tries to perform a task it
is not explicitly trained for; i.e. the model is trained to predict VA and not explicitly BCs.
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Figure 3.5: Overview of the architecture and various modules used to generate
BCs.

a probability threshold and a BC cooldown (See Algorithm 1). The cooldown was
necessary as it was likely that VAP produced multiple consecutive frames surpass-
ing the BC threshold; this cooldown prevented the module from triggering multiple
consecutive BC utterances every 500ms. To determine the appropriate BC thresh-
old, multiple thresholds were evaluated during a user survey (see Section 3.2.2).
The duration of the cooldown was determined in an informal experimental fashion;
after running various pilot studies we concluded that a cooldown of 2 seconds was
appropriate.

Algorithm 1 BC Generation Algorithm; the algorithm uses the BC probability (BC
prob.), probability threshold (BC threshold), and cooldown (BC cooldown) to deter-
mine when to trigger a BC or not.

for BC prob. in BC prediction stream do
if BC cooldown is not active then

if BC prob. > BC threshold then
- Trigger BC utterance
- Activate BC cooldown

end if
end if

end for

Second, as VAP requires a stereo input of two separate interlocutors, a module
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had to be built that combined both interlocutors’ audio streams into a single stereo
stream. Both a mono audio stream containing a monologue from one interlocutor
and a mono audio stream containing the generated BCs were used as input for
this module. Subsequently, the stereo stream was passed to the VAP module as
an audio recording module using a sample rate of 16khz, sample width of 2, and
a sample frame duration of 500ms. The audio recording module saved the stereo
stream to a file which could later be used for playback purposes.

3.2.2 Survey

A survey was conducted to evaluate whether the frequency and timing of the afore-
mentioned BC model would be perceived as on par with humans. The survey con-
sisted of 16 audio recordings in which the participants could hear two interlocu-
tors; one of which was giving instructions, while the other provided BCs. The audio
recordings used for both interlocutors were retrieved from the HCRC map task cor-
pus [101], which is a corpus of unscripted, task-oriented dialogues which has been
designed to support the study of spontaneous speech in general. For this study in
specific, 4 different audio segments of various interlocutors were used in which they
gave uninterrupted instructions. Moreover, a collection of around 6 short BC record-
ings made by the same interlocutor were extracted and used for the BC model. The
recordings of the instructions were approximately around 20 seconds each and the
BC recordings were triggered in random order by the BC model. Finally, the sur-
vey was reviewed and approved by the Ethics Committee Computer & Information
Science at the University of Twente.

As the VAP model can be configured using various parameters (i.e. probability
threshold P, prediction distance D), multiple configurations were evaluated using
the survey. These conditions were chosen in specific as noticeable differences were
found between the BCs, while still sounding relatively natural (e.g. a probability
threshold of 0.1 wasn’t used as it would result in almost a constant stream of BCs).
Hence, the following conditions for the experiment were used:

• D-P-: prediction distance of between 0 and 600ms and probability threshold of
0.4.

• D-P+: prediction distance of between 0 and 600ms and probability threshold
of 0.7.

• D+P-: prediction distance of between 600ms and 2s and probability threshold
of 0.4.

• D+P+: prediction distance of between 600ms and 2s and probability threshold
of 0.7.
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During the survey, the participant was instructed to rate a total of 16 segments
(i.e. 4 segments in each condition) based on how they perceived the naturalness
of the frequency and timing of the BCs. Each metric was assessed using a 5-point
Likert scale, where a rating of 1 indicated very poor quality and a rating of 5 indicated
quality on par with human performance. See Appendix B for the survey and please
see the footnote for the link to the audio samples used in the study2.

3.2.3 Participants

In total, 20 participants were recruited for the survey using the researcher’s personal
network and various social media channels (i.e. LinkedIn, WhatsApp). To partici-
pate in the experiment, one was required to be at least 18 years old and possess a
satisfactory level of English. Although the participant demographic consisted of var-
ious nationalities (i.e. South Korean, Chinese, French, Belgium, Dutch, and Irish),
the majority of the participants were Dutch.

3.2.4 Analysis

Both the BC audio recordings and the survey results were analysed extensively.
First, to mitigate bias, the BC recordings were annotated by two separate annota-
tors for BRPs. We chose to use multiple annotators as 1) there doesn’t seem to
be a reliable method to extract BRPs in a quantitative manner [102], and 2) multi-
ple annotators decrease the subjectiveness of the annotations and therefore make
the annotations more reliable. Subsequently, the inter-annotator reliability was cal-
culated using the Intersection over Union (IoU) method, which is also commonly
known as the Jaccard Index [103] (see Equation 3.1). We chose to use IoU as it
provides a normalized value, which is relatively easy to interpret and use. Finally,
the annotations were analysed regarding the error between the timing of the BCs
and the start/end of the BRPs. To determine whether there are statistically signif-
icant differences in the timing error between the various conditions, Mann-Whitney
U tests were applied.

IoU =

∑N
i=1 (eAi − sAi) · (eBi − sBi)∑N

i=1 (eAi − sAi) +
∑N

i=1 (eBi − sBi)−
∑N

i=1 (eAi − sAi) · (eBi − sBi)
(3.1)

2Youtube playlist containing the audio samples used in the survey: https://tinyurl.com/hkxpd37b

https://tinyurl.com/hkxpd37b
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Where:

N represents the number of intervals.
sAi and eAi are the start and end times of BRP i by annotator A, respectively.
sBi and eBi are the start and end times of BRP i by annotator B, respectively.

Regarding the analysis of the survey, the results were first assessed for normality
using the Shapiro-Wilk and the Kolmogorov-Smirnov test. Subsequently, Levene’s
test was conducted to examine the homogeneity of variances for the perceived tim-
ing and frequency of the BCs. Moreover, a two-way repeated measures ANOVA was
performed to analyze the effect of the prediction distance and probability threshold
on the perceived frequency and timing. Finally, a post hoc Tukey test was conducted
to further explain the ANOVA results.

3.3 Results

3.3.1 Annotations

As mentioned in the previous section, the BRPs within the BC audio recordings
have been annotated by two separate annotators. The inter-annotator agreement,
calculated using the IoU, is available in Table 3.1. The IoU value can be interpreted
as the degree of overlap or similarity between two sets of intervals. The IoU value
ranges between 0 and 1, with higher values indicating a greater degree of overlap
or agreement. A higher IoU value signifies a greater amount of overlap between the
intervals. For example, an IoU of 0.5 implies that half of the intervals from the two
sets overlap or align with each other.

Sample Nr. of BRPs by A Nr. of BRPs by B IoU
1th 8 5 0.410

2nd 6 5 0.330

3rd 4 4 0.430

4th 5 4 0.360

Table 3.1: The number of annotated BRPs by both annotators (A and B) and the
respective IoU value between the annotations.

Using only the overlapping BRPs of both annotators, the error between the timing
of the BCs and the annotated BRPs was computed; this timing error can be inter-
preted as the difference between the start of the BC and either start or end of the
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BRP. For example, when the BC gets triggered by the model exactly during the BRP,
the timing error is 0. While, when it gets triggered 1 second before the BRP, the tim-
ing error will be -1 seconds. We specifically chose to use the overlap of the BRPs
instead of the union, as it resulted in a more reliable dataset for analysis, minimizing
the potential for discrepancies that might skew the timing error data. See Figure D.1
and Table 3.2 for an overview of the timing errors using the aforementioned samples
and experiment conditions.

Condition Nr. of BC. Mean Std. Precision
P-D- 14 0.283 0.606 0.714

P-D+ 16 0.414 1.136 0.313

P+D- 6 0.000 0.000 1.000

P+D+ 9 −0.193 0.756 0.222

Table 3.2: The mean and standard deviation of the timing errors and the number of
BCs for each condition. The precision is calculated by dividing the BCs
with a timing error of zero by the total amount of BCs

Additionally, the normality of the data for each condition was assessed using
the Shapiro-Wilk and the Kolmogorov-Smirnov test. All the conditions, however,
exhibited non-normal distributions. Therefore, Mann-Whitney U tests were applied
to test for statistically significant differences between the conditions. The results
indicated that there were no significant differences between any of the conditions.

To determine whether there were any compounding effects caused by the differ-
ences in the used samples, the timing error was also computed for each individual
sample. See Table 3.3 for an overview of the timing errors per sample. Finally,
Mann-Whitney U tests didn’t denote any statistical significance between the sam-
ples.

Sample Nr. of BC. Mean Std. Precision
1st 12 0.103 0.523 0.500

2nd 14 0.282 1.228 0.500

3rd 11 0.048 0.617 0.455

4th 8 0.391 0.711 0.625

Table 3.3: Overview timing errors and amount of BCs, grouped by sample.

3.3.2 Survey

Regarding the analysis of the survey, first, a descriptive analysis was conducted
by grouping the data both by condition and sample (see Table 3.4 and Table 3.5).
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Figure 3.6: Timing error of the BCs relative to the BRPs, grouped per condition.

Subsequently, the normality of the data for each condition was assessed using the
Shapiro-Wilk and the Kolmogorov-Smirnov test. For the Shapiro-Wilk test, the data
exhibited a non-normal distribution. Similar results were obtained when applying
the Shapiro-Wilk test. Therefore, caution should be exercised when interpreting the
results.

Timing Frequency
Condition Mean Std. Mean Std.
P-D- 3.325 1.155 3.200 1.107

P-D+ 3.250 1.345 3.088 1.214

P+D- 3.450 1.168 3.150 1.045

P+D+ 2.188 1.115 2.325 1.016

Table 3.4: Overview survey results, grouped by experiment condition.

Levene’s test was conducted to examine the homogeneity of variances for the
perceived naturalness of the timing and frequency. Regarding the timing, Levene’s
test statistic was found to be 3.0449 (p = 0.0290), indicating a significant difference
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in variances among the groups. On the other hand, for the perceived frequency,
Levene’s test statistic was 1.7659 (p = 0.1536), suggesting no significant difference
in variances.

Timing Frequency
Sample Mean Std. Mean Std.
1st 3.550 1.157 3.338 1.006

2nd 2.738 1.040 2.700 1.024

3rd 3.013 1.345 3.025 1.067

4th 2.913 1.477 2.700 1.363

Table 3.5: Overview survey results, grouped by sample.

Finally, a two-way repeated measures ANOVA was performed to analyze the ef-
fect of the prediction distance and probability threshold of the BC model on the per-
ceived frequency and timing of the BCs. This revealed that there was a statistically
significant interaction between the effects of the prediction distance and the prob-
ability threshold for the perceived naturalness of the frequency (F(1, 19) = 8.755,
p = 0.008) and perceived naturalness of the timing (F(1, 19) = 20.426, p = 0.001).
Simple main effects analysis showed that the prediction distance did show a statisti-
cally significant effect on the perceived naturalness of the frequency (p = 0.001) and
timing (p = 0.001). Additionally, another simple main effects analysis showed that
the probability threshold did have a statistically significant effect on the perceived
frequency (p = 0.004) and timing (p = 0.001).

For both the perceived naturalness of the frequency and timing, a post hoc Tukey
test revealed that the P+D+ condition performs statistically significantly worse (p <

.05) compared to all the other conditions; there was no significant difference found
between the remaining conditions. An additional post hoc Tukey test revealed that
audio sample 1 demonstrates a significantly better-perceived timing compared to
the other samples.

3.4 Discussion & Limitations

In this study, we implemented a BC model based on the VAP model [98] to generate
BC utterances in conversations. We annotated the BC relevant places (BRPs) and
computed the timing errors between the start of the generated BCs and the BRPs.
Moreover, we introduced modifications to assess the perception of these BCs and
conducted a survey to evaluate the naturalness of the frequency and timing of the
generated BCs. The analysis of the BRP annotations and survey results provides
insights into the performance and limitations of the BC model.
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The BC annotations revealed the timing errors between the generated BCs and
the annotated BRPs. The mean timing errors varied across different conditions, but
no statistically significant differences were found. This suggests that the different
configurations of the BC model did not have a significant impact on the timing accu-
racy of the generated BCs. Furthermore, it is worth noting that, despite the relatively
low IoU, the precision of the BCs (BCs triggered exactly during the BRPs) for the D-
conditions are moderately high. These findings indicate that the D- BC model con-
ditions were able to generate BCs that align well with the annotated BRPs. Finally,
since the number of audio samples, annotations, and BCs used during this study
is limited, these results should be interpreted with caution. Future studies could
therefore focus on using a larger sample size to provide a more reliable statistical
analysis.

Furthermore, the survey results provided insights into the perceived naturalness
of the generated BCs. Participants rated the perceived naturalness of the frequency
and timing of the BCs on a Likert scale. The results indicated that the prediction dis-
tance and probability threshold had a significant interaction effect on the perceived
frequency and timing of the BCs. The analysis of simple main effects revealed that
both the prediction distance and probability threshold individually had a significant
effect on the perceived frequency and timing. Post hoc Tukey tests indicated that
the P+D+ condition performed significantly worse than the other conditions in terms
of perceived frequency and timing. This suggests that the combination of a longer
prediction distance and a higher probability threshold led to less natural-sounding
BCs. Furthermore, audio sample 1 was perceived to have significantly better timing
compared to the other samples; this may indicate that the difference in speaker is a
confounding factor.

While the survey results offer noteworthy insights, it’s important to acknowledge
certain limitations. Most notable among these is the relatively small sample size,
potentially restricting the wider applicability of our findings. Another important point
is that most participants identified themselves as Dutch, which might skew the in-
terpretation of BCs due to cultural influences. By augmenting the sample size and
diversifying the cultural backgrounds of the participants, we could attain a more in-
clusive comprehension of BC perception.

3.5 Conclusion

This chapter has shed light on the usefulness and limitations of the VAP model for
generating BC responses during conversations. The analysis of timing errors and
the annotation of BC relevant places (BRPs) have provided key insights into the
model’s effectiveness. Specifically, we found that the D- condition was successful in
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producing BCs that matched well with the BRPs. Furthermore, both of the evaluated
probability thresholds (i.e. 0.4% and 0.7%) resulted in relatively high precision (i.e.
0.714 and 1, respectively). Although the number of BCs in the P+ condition was
lower compared to the P- condition, according to the survey, this didn’t have a signif-
icant impact on the perceived naturalness of the frequency of the model. Therefore,
the settings of the P+D- condition will be used during the final user study in Chapter
4.

Considering these findings, we concluded that the VAP model, though not per-
fect, is good enough to be used in the next chapter. Therefore, the next part of our
research will look at how BCs influence a task involving human-CA collaboration.
We aim to understand if these BCs can affect the time taken to complete a task and
how they may affect the perceived collaboration with the CA. This continuation of
our study will further explore the potential of BCs in human-CA collaboration.
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Chapter 4

Collaborative Game

As concluded in the previous chapter, BCs play a pivotal role in the establishment of
common ground between humans, which is essential for collaboration. Hence, the
study in this chapter aims to delve into the role of BCs in a human-CA collaborative
context, investigating their influence on both the perceived collaborative fluency and
task duration. We chose these metrics in specific, as most human-CA collaboration
studies use either the perception of the participants or task performance for their
evaluations (as concluded in Chapter 2). Therefore this chapter aims to answer the
following two primary research questions:

RQ4. To what extent do CA backchannels affect the task duration during a Human-
CA collaborative task?

RQ5. To what extent do CA backchannels affect the perceived collaborative fluency
during a Human-CA collaborative task?

This chapter is structured as follows: Section 4.1 provides a literature review,
focussing on human-CA grounding and the evaluation of perceived collaboration.
This is followed by a detailed description of our methodology in Section 4.2, outlining
our experimental design, data collection, and analysis procedures. Our findings, as
presented in Section 4.3, shed light on the nuanced effects of backchannels on
perceived collaboration and task duration. We discuss these results in detail in
Section 4.4, explaining their implications for understanding collaborative interaction
dynamics. Finally, Section 4.5 concludes the chapter, reflecting on the key findings,
their implications regarding human-CA collaboration, and proposing directions for
future research.

35
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4.1 Background

Although the literature study in Chapter 2 provided a solid foundation for Human-CA
collaboration, this section aims to expand on that foundation in several directions.
First, we review several papers regarding grounding in a Human-CA collaborative
context. Subsequently, we elaborate on various evaluation methods to measure
collaboration, with a focus on the Subjective Fluency Metric Scales [104], which will
be used as one of the main evaluation methods during this study.

4.1.1 The Effect of Backchannels on Interaction

Although the available research regarding the effect of BCs on human-CA collabo-
ration in specific is limited, several studies have attempted to analyse the effect of
grounding on collaboration and communication in general; both in a human-human
and human-computer context. This section aims to establish an overview of this
literature.

First, in a study conducted by Gratch et al. [105], they investigated the effect of
BCs on rapport, likability, trustworthiness, and helpfulness between human subjects
and virtual agents. The study designed a face-to-face setup that captured the body
movement and voice of the listening interlocutor. These features were subsequently
used to animate and voice a CA. As a result, the speaking interlocutor could see the
other participant represented as a virtual avatar/agent on a screen. The experiment
had four conditions: 1) a control condition where both interlocutors had to commu-
nicate with each other in a face-to-face manner, without being represented as an
agent; 2) a mediated condition, which simulates the actual head motions and pos-
tural changes of the listening interlocutor; 3) a ’contingent’ agent condition, which
uses automatic BC behaviour that is aligned with the whatever the speaker is say-
ing; and 4) a ’non-contingent’ condition, which uses automatic BC behaviour that is
not aligned. Their results indicate that both ’non-contingent’ and ’contingent’ agents
were as effective as human listeners in creating rapport, likability, and trustworthi-
ness, as captured by a self-report scale. The mediated avatar condition was not as
effective, however. Although the mediated avatar was perceived as equally as like-
able and trustworthy as the other conditions, it was also perceived to be less helpful.
This effect, however, can be reduced to the confounding effects caused by technical
limitations.

In another study, Kontogiorgos et al. [59] discuss the importance of establishing,
maintaining, and repairing common ground in task-oriented dialogues when collabo-
rating with conversational interfaces. To elaborate, their study investigates if humans
respond similarly to agents with different embodiments, social behaviour and con-
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versational failures. Using three different wizarded CAs (i.e. one smart-speaker, one
embodied CA without gaze behaviour, and one with gaze behaviour), they asked the
participants to cook various dishes using the recipes provided by the CA. The re-
sults showed that the acceptance, clarification-seeking, and compliance behaviours
of the participants were influenced by the embodiment of the agent and the relia-
bility of its instructions. The study also used a referential communication task to
maintain consistency in robot and human behaviour across conditions. It was found
that participants exhibited more socially contingent interactions and increased gaze
towards a human-like robot compared to a less anthropomorphic one. However, the
lack of gaze behaviours in combination with an anthropomorphic body was counter-
productive in stimulating non-verbal grounding behaviours. This indicates that it is
not always favourable for CAs to be embodied or to use non-verbal backchannels
(e.g. nodding) to establish common ground.

Furthermore, a study conducted by Blosma et al. [10] explores how different con-
texts, tasks, and applications require varying interaction styles for conversational AI
systems. More specifically, it focuses on the impact of personality variation in CAs
and how it can enhance the usability of such systems. The study investigates if
differences in backchannel behaviour (audio and visual), particularly in embodied
conversational agents, can signal variations in the perceived personality of the sys-
tems. Two rating experiments were conducted to assess participants’ judgments of
personalities in both human and artificial communication partners. The results indi-
cate that feedback behaviour influences the perceived personalities of both humans
and AI partners. This understanding can guide CA developers in incorporating per-
sonality into BC generation algorithms, leading to improved perceived personality
and a stronger sense of presence for human users.

Several other studies emphasize the effect of BCs on the user’s perception of
the CA [106], [107]. Ding et al. [107], for example, derived various categories of
BCs and analyzed their specific effect on cognitive assessments with older adults.
They concluded two categories of BCs; reactive BCs (e.g. ”uhu”, ”yeah”), and proac-
tive BCs (e.g. ”really?”, ”keep going”). According to their study, involving 36 older
adult participants, proactive BCs are generally more appreciated. Moreover, they
identified that while reactive BCs are generally more backwards-looking, proactive
BCs can both be backward (e.g. ”really?”) and forward-looking (e.g. ”please keep
going”). While BCs are generally considered to elicit responses from the user and
prolong conversations [106], [108], forward-looking proactive BCs are considered to
have the strongest effect in this regard.

While focussing on BCs in a human-human context, Wolf [109] studied the ef-
fects of various BCs provided by listeners on the fluency of speaking interlocutors
who spoke in their second language (L2). The experiment was conducted using 14
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Japanese participants who all had an intermediate level of English. The participants
were instructed to perform three different oral tasks in English using three BC condi-
tions; i.e. verbal/nonverbal (V/NV), nonverbal-only (NV), and no backchannels (NB).
Results indicate that the participants were most fluent (on average) in the V/NV con-
dition, while the fluency got incrementally worse for the NV and NB conditions. The
differences in fluency between the V/NV and NB conditions proved to be statistically
significant. This indicates that BCs encourage communicative fluency.

Since grounding in communication is a multi-faceted and complex process, it re-
mains difficult to provide a thorough overview of all the effects BCs play within this
context. Moreover, the observations made by the literature reviewed in this study,
paint a contradictory view regarding the effect of BCs on task performance. When-
ever, for example, a user is instructed to solve a task as quickly as possible using the
aid of a CA, BCs generally encourage communicative fluency, which in return en-
ables a quicker establishment of mutual understanding. Conversely, BCs may slow
down the collaboration as they invite the user to continue talking for longer periods;
especially when forward-looking, proactive BCs are used. Finally, the literature on
the effect of BCs on the perception of humans appears to be more consistent. Gen-
erally, studies agree on the effect that BCs induce a stronger sense of presence
and increase the likability and helpfulness of the CA. Although debatable, it may
therefore be reasonable to extend this effect to the perceived collaboration.

4.1.2 Evaluating Collaboration

In the field of human-robot collaboration, there has been increasing focus on achiev-
ing ”collaborative fluency,” defined as the smooth interaction and integration of ac-
tions between human participants and their robot teammates [104]. The primary ob-
jective is not only to maximize the efficiency of the task at hand, but also to ensure
a seamless human-robot partnership. To measure this fluidity, several evaluation
metrics have been designed and utilized in ongoing studies [110]–[113]. In a recent
study, Hoffman [104] defines and categorizes both subjective and objective fluency
metrics within human-robot collaboration. The collaboration metrics discussed in the
study encompass subjective measures such as internally valid scales and individual
indicators, as well as four objective measures that could serve as reference points
for appraising the fluency of human-robot collaborative interactions.

The subjective metrics mentioned by Hoffman encompass both direct measure-
ments of fluency perceived in collaboration and the consequential outcomes of this
perception, such as the human collaborator’s trust in the robot, the robot’s perceived
contribution, its positive teammate traits, and the human’s belief in the robot’s com-
mitment to the team. The questions used in their research are listed in Figure 4.1.
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Figure 4.1: Various scales, related to human-robot collaboration, used in the study
by Hoffman [104]
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Finally, through the use of a user study, Hoffman concludes that there is a com-
plex relationship between multiple object metrics (e.g. human’s idle time, robot’s
functional delay) and the actual perception of fluency in a human-robot collabora-
tive setting. Interestingly, the study highlights that external observations of fluency
may not be as sensitive as the perceptions of the participants directly involved in the
collaboration, indicating a need for more participant-centric studies. Hoffman also
notes that other elements may play a role in the perception of fluency, such as the
correct and incorrect actions of the robot and human, the start and end times of ac-
tions, the relationship between the human and robot, and the repetition of actions,
which are aspects not currently addressed by the existing metrics.

4.2 Methodology

4.2.1 Experiment

To answer research questions 4 and 5, an experiment has been conducted using
a collaborative game (see Section 4.2.2). For this experiment, we used a 2X1
between-subject factorial design. To answer question 5, we used the perceived col-
laboration between the Human and CA as the dependent variable, while for question
4 we used the duration of each of the participant’s turns. The independent variables
used are whether the agent would use backchannels while listening to the partici-
pant (B+) or wouldn’t use any backchannels (B-).

Regarding the perceived collaboration, we used an altered version of the Sub-
jective Fluency Metric Scales [104] (see Section 4.1.2). The alterations had to be
made as the original scale mainly focused on human-robot collaboration and some
of the questions weren’t applicable to our context. As a result, the participants were
asked the answer the questionnaire depicted in Table 4.1 once they had completed
the task. Using 5-point Likert scale questions, the questionnaire aims to capture
the participant’s perception of various aspects of collaborative fluency with the CA
(i.e. contribution, working alliance, trust, positive traits, and several other individual
measures). Regarding the effect of backchannels on the task duration, we recorded
the timestamps whenever the participants started or finished their turn (i.e. pressed
or released the spacebar).
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Scale Sub scale Question
Contribution - (Reversed) I had to carry the weight to

make the team better.
Contribution - The assistant was the most important

team member on the team.
Contribution - The assistant contributed equally to the

team performance.
Contribution - (Reversed) I was the most important

team member on the team.
Contribution - The assistant had an important contribu-

tion to the success of the team.
Working alliance Bond The assistant and I understood each

other.
Working alliance Bond I believe the assistant liked me.
Working alliance Bond I was confident in the assistant’s ability to

help me.
Working alliance Bond (Reversed) I felt uncomfortable with the

assistant.
Working alliance Bond The assistant and I trusted each other.
Working alliance Bond I felt that the assistant appreciated me.
Working alliance Bond The assistant and I respected each other.
Working alliance Goal The assistant and I were working towards

mutually agreed upon goals.
Working alliance Goal (Reversed) I find what I am doing with the

assistant confusing.
Working alliance Goal (Reversed) The assistant did not under-

stand what I was trying to accomplish.
Working alliance Goal The assistant accurately perceived what

my goals were.
Trust - I trusted the assistant to do the right thing

at the right time.
Trust - The assistant was trustworthy.

CA Commitment - The assistant was committed to the task.
CA Commitment - The assistant was committed to the suc-

cess of the team.
Individual Measures Intelligence The assistant was intelligent.
Individual Measures Cooperation The assistant was cooperative.

Continued on next page
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Table 4.1 Continued from previous page
Scale Sub scale Question

Individual Measures Human commitment I was committed to the success of the
team.

Individual Measures Fluency The assistant and I worked fluently to-
gether.

Table 4.1: Altered Subjective Fluency Metric Scales, Subscales and individual measurements

Based on the various literature reviews conducted in this thesis, we hypothesize
that the effects of the independent variable are as follows:

H1. Participants in the B+ condition will have a longer task duration compared to
participants in the B- condition.

H2. Participants in the B+ condition will have an enhanced perception of collabo-
rative fluency compared to participants in the B- condition.

4.2.2 Collaborative Game

In order to evaluate the effect of backchannels on human-CA collaboration, a pro-
totype collaborative game was built. The main intention behind the design of this
prototype was to elicit responses from the participants that were long enough in
order for the CA to provide backchannels. This was especially challenging as most
task-oriented conversational interfaces - to this day - only require their users to speak
for relatively short durations [114]. This is partly due to the limitations of automatic
speech recognizers and the additional cognitive load required to formulate long ut-
terances. Since the HCRC map task [101], as described in Section 3.2.2, seemed
to provide responses from the interlocutors that were long enough to elicit an appro-
priate amount of backchannels, it served as the main inspiration for the game built
for this study. However, partly due to the complexity of the HCRC map task, which
was difficult to fully simulate using a CA, we had to simplify the design of the game.

With reference to the game interface provided in Figure 4.2, the collaborative
game goes as follows: The participant is instructed to guide the agent towards the
right locations (e.g. ”Go north until you reach location Y. Then turn right” etc.). At
each location, the agent will provide the participant with a part of the puzzle (i.e.
a code). This code designates the subsequent location, as shown in Table 4.2, to
which the participant must guide the agent. After 3 locations, the participant is asked
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by the agent to validate whether they managed to collect the correct code. Once the
participant presses the ”validate” button, the game will be finished.

To limit the probability and effect of any confounding factors as mentioned by
Hoffman [104] (i.e. differences in perceived collaboration due to e.g. speech recog-
nition errors), the agent was preprogrammed to always go to the right location - no
matter the instructions of the participant. This resulted in the design shown in Figure
4.3.

Code Location
33MT Modern Art Gallery
T3JT Daiso
ISP7 Emart24
59MN Harbor
L3OR City Hall
LMQ7 Lotteria
8Z9Y Olive Young

Table 4.2: In order to decipher the code provided by the agent to find the subse-
quent location, the participants had access to the information provided
in this table. Since the experiment was conducted in South Korea, the
names used for the locations were inspired by South Korean franchises
or landmarks
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Figure 4.2: The graphical interface used by the participants to play the game. The
numbers provided in this figure refer to the following:

1. Agent Status: the current status of what the agent is doing (i.e. responding,
listening, or waiting).

2. Agent Location: the current location of the agent. This will be updated once
the agent has reached any of the subsequent locations.

3. Starting Code: the first part of the code, which is provided by the agent at the
start of the game.

4. Remaining Code: every time the agent reaches any of the subsequent loca-
tions, it will provide a part of the remaining code.

5. Validate Button: once the participant has navigated the agent to three more
locations, the agent will ask the participant to press the validate button and
finish the game.
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Figure 4.3: Overview of the architecture regarding the collaborative CA and game.

To enable appropriate turn-taking behaviour in conjunction with backchannels
from the agent, we first designed a turn-taking module. Using this module the par-
ticipant can take a turn by pressing and holding the spacebar on their keyboard;
their turn will be finished whenever they release it. Using the spacebar for turn-
taking enabled us to 1) accurately record the start and end time intervals of their
turn; and 2) limit complexity and confounding effects caused by end-of-turn detec-
tion models. Although instructing the participant to use the spacebar to talk to the
agent may introduce additional cognitive load, research suggests that it does not
cause any significant hindrance for conversational interfaces [115]. Additionally, the
spacebar was used to (de)activate the backchannel model’s output; backchannels
were generated as long as the participant held the spacebar. An additional safety
measure was implemented to ensure the agent wouldn’t prematurely move to the
right location if the participant accidentally released the spacebar before finishing
their instructions; An error response (e.g. ”Sorry, but I don’t really know where to
go. Can you please give me a more elaborate explanation?”) would be triggered
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whenever the participant released the spacebar within 5 seconds of the start of their
turn.

The backchannel model used in this study uses the voice activity from the par-
ticipant, among other things, to generate backchannels at the right time during the
participant’s instructions (see Chapter 3 for an in-depth explanation of the model).
Based on the outcome of the previous experiment, the model uses a BC probability
threshold of 0.7 with a prediction window from 0 to 600ms. Moreover, the audio
files used for the backchannel utterances are segments taken from the HCRC map
task. The utterances chosen were both proactive and reactive, backward-looking
BCs as they reduce the elicitation of longer responses compared to forward-looking
BCs. We intentionally selected human utterances for generating backchannels since
those produced through text-to-speech (TTS) seemed overly repetitive and robotic.
While the remaining responses from the agent do employ TTS, we conducted an
informal assessment with different participants to determine whether they noticed
the use of two distinct voices. Initial responses indicate that the participants didn’t
notice remarkable differences until they were questioned about it.

In addition to the aforementioned modules, both a game and dialogue manager
module have been designed to keep track of the state of the graphical user interface
and agent. Utilizing these modules, we were able to program the agent through
a series of JSON1 files. Each file detailed a single turn and outlined the specific
actions the agent was to perform during that turn (see Appendix C for additional
details). The exact utterances used during this study were mainly written with the
aim of providing responses that are collaborative, friendly, and as non-repetitive as
possible. The TTS model used to generate the agent’s utterances is IBM Watson2.
The agent’s exact actions and dialogue can be found in Table 4.3.

1JSON is a lightweight format using JavaScript notation for data exchange between computers.
2IBM Watson TTS: https://www.ibm.com/products/text-to-speech

https://www.ibm.com/products/text-to-speech
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Turn Action Duration Utterance
1 Speak 5 sec. Hey there, my name is Emma. Let’s solve this task

together.
1 Speak 5 sec. Since you already got the instructions, let’s get to

it!
1 Speak 4 sec. Okay, let me send you my location.
1 Give location 2 sec. -
1 Speak 4 sec. There you go. You should be able to see it on your

map now.
1 Speak 5 sec. I will also send you the first part of the code. Once

you receive it, you should be able to give me direc-
tions on where to go next!

1 Give code 5 sec. -
2 wait 3 sec. -
2 Speak 5 sec. Alright, I should almost be there.
2 Speak 4 sec. Okay, I’m pretty sure I found it! Let me quickly up-

date my location
2 Give location 2 sec. -
2 Speak 5 sec. Hmm, I also just found the code. Give me a sec-

ond, I will send it to you.
2 Give code 4 sec. -
2 Speak 5 sec. Alright, where should I go next?
3 Speak 5 sec. Almost there!
3 Speak 5 sec. Okay, I made it. I’ll update it on your map.
3 Give location 4 sec. -
3 Speak 4 sec. And let me send you the new code as well.
3 Give code 2 sec. -
3 Speak 5 sec. Alright! What is the next location?
4 Speak 5 sec. Hold on. I am almost there.
4 Speak 5 sec. Okay, I made it.
4 Give location 4 sec. -
4 Speak 4 sec. Here is the last piece of the puzzle
4 Give code 2 sec. -
4 Speak 5 sec. This is the moment of truth... can you validate

whether the code is correct?
Outro Speak 5 sec. Great! It seemed to work. We solved the puzzle!
Outro Speak 5 sec. Thank you for helping me with this task. See you

next time!
Continued on next page
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Table 4.3 Continued from previous page
Turn Action Duration Utterance
Error Speak 5 sec. Sorry, but I don’t really know where to go. Can you

please give me a more elaborate explanation?
Error Speak 5 sec. Sorry, but I think I am missing some directions.

Can you tell me how I can get to the correct lo-
cation?

Table 4.3: The agent’s actions and utterances for each turn. The ’Outro’ turn will be triggered once
the participant presses the validate button. A random ’Error’ turn would be triggered whenever the
participant released the spacebar within 5 seconds.

Finally, in order to communicate between the game manager module and the
graphical user interface, a WebSocket server was implemented in Python using
FastAPI3. This server enabled communication from and to the user interface us-
ing JSON update messages. The user interface was built using vanilla Javascript,
HTML and CSS.

4.2.3 Participants

Regarding the participants, to better understand possible confounding factors, we
conducted a pre-experiment questionnaire in which the participants had to provide
information regarding their native language and their general experience using CAs
(see Figures 4.4 and 4.5 respectively). The experiment had a total of 21 participants,
which although originating from different countries, were all able to speak English
fluently. The participants were all university students at Pusan National University,
recruited via various social media channels (i.e. Whatsapp, Instagram, KakaoTalk).
The user study was reviewed and approved by the Ethics Committee Computer &
Information Science at the University of Twente.

3FastAPI website: https://fastapi.tiangolo.com/

https://fastapi.tiangolo.com/
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Figure 4.4: The number of participants separated by their native language.

Figure 4.5: The number of participants separated by how frequently they use a CA.
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4.2.4 Analysis

To analyse both the turn durations and the questionnaire results, various approaches
have been utilized. Regarding the turn durations, a statistical analysis was con-
ducted using both Welch’s t-test and a Mann-Whitney U test. Prior to these tests,
Shapiro-Wilk Test and Levene’s Test were applied to evaluate whether the necessary
assumptions were met to conduct the statistical analysis. Subsequently, regarding
the post-experiment questionnaire results, both Welch’s t-test and a Mann-Whitney
U test are also applied for the analysis; we use both parametric and non-parametric
tests as, within statistics, it is still highly debatable whether or not to use paramet-
ric tests for Likert scale data [116]. Finally, to analyse confounding factors caused
by the differences between the background of the participants in both conditions,
independent sample t-tests using a Bonferroni correction were performed for each
question comparing the responses of English speakers and non-English speakers
within each condition

4.3 Results

4.3.1 Task Duration

To conduct a statistical analysis regarding the effect of backchannels on the task
duration, we first removed 3 significant outliers using a Z-score of 2. In other words,
turns were removed of which the duration was either shorter or longer than 2 times
the standard deviation from the mean. This reduced the number of used participants
to 8 in the B+ condition and 10 in the B- (see Table 4.4, or Appendix D for more
detail).

B+ B-
Turn Amount Mean Std. Amount Mean Std.

1 8 32.277 15.344 10 18.016 6.402
2 8 37.495 14.45 10 30.942 10.777
3 8 36.226 15.478 10 28.243 8.276

Sum 8 105.997 43.203 10 77.200 23.103

Table 4.4: Descriptive statistics regarding each turn for both conditions.

Additionally, the normality of the data for each turn for both conditions was as-
sessed using the Shapiro-Wilk test (See Table 4.5). Turn 1 in the B- condition shows
significant results, hence we reject the null hypothesis of normality. However, we
fail to reject this hypothesis for the remaining conditions. Therefore, all the data (ex-
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cept for turn 1 in the B- condition) can be considered to be approximately normally
distributed.

B+ B-
Turn Test Statistic p-value Test Statistic p-value

1 0.938 0.588 0.728 0.002
2 0.967 0.876 0.936 0.511
3 0.950 0.706 0.910 0.279

Table 4.5: Shapiro-Wilk Test Statistics and p-values for condition B+ and B-

In order to assess the assumption of homogeneity of variance, Levene’s test was
conducted on the turn duration data (see Table 4.6). The results regarding turn
1 indicate a significant deviation from the assumption of equal variances, F(1, 18)
= 20.97, p < .001. This suggests that the variability in scores between groups is
significantly different at the first turn. However, for the second and third turn, the test
results were non-significant (F(1, 18) = 1.393, p = .256 and F(1, 18) = 3.004, p =
.104, respectively) suggesting that the assumption of equal variances holds true for
the last two turns.

Turn Test statistic p-value
1 10.099 0.006
2 0.786 0.388
3 1.578 0.227

Sum 1.992 0.177

Table 4.6: Results Levene’s Test of Homogeneity of Variance for each Turn.

Since the assumptions of normality and homogeneity of variance are only par-
tially met in some of the turns in some conditions, we apply both Welch’s t-test and
a Mann-Whitney U test using a Bonferroni correction (see Table 4.7). Regarding
turn 1, both Welch’s t-test (t=-2.65, p=0.024) and Mann-Whitney U test (U=19.0,
p=0.023) indicate statistically significant differences between the backchannel con-
ditions. However, for the second and third turns, no significant differences could be
found. Finally, the consistency between the two different tests, despite the partial
fulfilment of the assumptions, gives added confidence to these findings.

4.3.2 Perceived Collaboration

To evaluate whether backchannels influenced the participants’ perception of the col-
laboration, we analysed the results retrieved using the post-experiment question-
naire. We used Cronbach’s Alpha to compute the internal consistency and reliability
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Turn 1 Turn 2 Turn 3
Statistic p-value Statistic p-value Statistic p-value

Welch’s -2.650 0.024 -1.374 0.198 -0.933 0.366
Mann-Whitney 19.0 0.023 33.0 0.224 37.0 0.362

Table 4.7: Results from Welch’s t-test and Mann-Whitney U test using a Bonferroni
correction over the three turns. Regarding Welch’s t-test, the ’Statistic’
value denotes the t-value, which measures the size of the difference rel-
ative to the variation in the data; regarding the Mann-Witney U test, it
denotes the U-value, in which a small value indicates a larger difference
between the conditions.

of the scales. The obtained alpha values indicate a very good consistency for the
’Contribution’ scale (α = 0.908 for B+, and α = 0.891 for B-) while indicating moderate
to low consistency results for the remaining scales (see Tables 4.8, 4.9, and 4.10).
Therefore, the results provide a robust basis for assessing the impact of backchan-
nels on the ’Contribution’ aspect of collaboration. However, due to the less reliable
internal consistency scores for the ’Working Alliance’, ’Trust’, and ’CA Commitment’
scales, the conclusions drawn from these scales should be treated with caution.

B+ B-
Scale Mean Std. α Mean Std. α

Contribution 2.983 1.330 0.908 3.787 1.122 0.891
Work. Alliance 4.418 0.846 0.442 4.331 0.847 0.819

Trust 4.455 0.656 -1.636 4.418 0.846 -1.208
CA Commitment 4.55 0.921 -1.636 4.636 0.839 0.370

Table 4.8: Mean, Standard Deviation and Cronbach’s Alpha per scale per condition.

B+ B-
Subscale Mean Std. α Mean Std. α

Goal 4.550 0.705 -0.455 4.636 0.526 0.676
Bond 4.342 0.908 0.546 4.155 0.940 0.815

Table 4.9: Mean, Standard Deviation, and Cronbach’s Alpha for the ”Working Al-
liance’ subscales, grouped by condition.

We used both Welch’s T-Test and the Mann-Whitney U Test using a Bonferroni
correction to compare the means of both groups for each scale and to investigate
the differences in perceived collaboration between the two conditions (B+ and B-).
The results of these tests are summarized in Table 4.11. There was a significant



4.3. RESULTS 53

B+ B-
Measurement Mean Std. Mean Std.
Cooperation 4.900 0.300 4.909 0.287

Commitment Human 4.900 0.300 4.455 0.891
Fluency 4.600 0.490 4.636 0.481

Intelligence 4.300 0.780 4.636 0.643

Table 4.10: Mean and Standard Deviation for each individual measurement

difference in the perceived contribution between B+ and B- as evidenced by both
the Welch’s T-Test (t=-3.613, p<0.001) and the Mann-Whitney U Test (U=1316.0,
p=0.001). This suggests that backchannels indeed have a significant impact on the
perceived contribution to collaboration, with the B- condition experiencing a higher
level of contribution (see Figure 4.6). No significant differences were found between
the backchannel conditions in the ’Working Alliance’, ’Trust’, and ’CA Commitment’
scales. Likewise, when looking at the subscales of ’Working Alliance’ (i.e. ’Goal’ and
’Bond’) and the individual measurements (i.e. ’Cooperation, ’Human Commitment’,
’Fluency’ and ’Intelligence’, we found no significant differences between B+ and B-
conditions.

Welch’s T-Test Mann-Whitney U Test
Scale t p-value U p-value
Contribution* -3.613 0.000 1316.000 0.001
Work. Alliance 0.782 0.435 7133.000 0.292
Trust -0.550 0.586 223.000 0.943
CA Commitment 0.179 0.859 233.500 0.680
Working Alliance Subscales
Goal -0.623 0.535 863.000 0.858
Bond 1.217 0.225 3038.500 0.147
Individual Measurements
Cooperation -0.067 0.947 54.500 1.000
Human Commitment 1.490 0.161 70.000 0.169
Fluency -0.163 0.872 53.000 0.900
Intelligence -1.018 0.322 42.000 0.309

Table 4.11: Results Welch’s T-Test and Mann-Whitney U Test. * denotes a statisti-
cally significant difference.
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Figure 4.6: Box plots regarding Likert Scale answers for the ’Contribution’ scale.

Finally, since there was a disproportionate amount of native English-speaking
participants in B- compared to the B+ condition, we evaluated whether this resulted
in any confounding factors. Independent sample t-tests using Bonferroni corrections
were performed for each question comparing the responses of English speakers
and non-English speakers within each condition. For all questions, the p-values
exceeded a threshold of 0.05, suggesting that there was no statistically significant
difference in responses based on native language. This indicates that the dispro-
portionate amount of native English speakers didn’t significantly influence the exper-
iment results.

4.4 Discussion & Limitations

This research investigates the role of backchannels on perceived collaboration and
task duration in the context of human-CA collaboration. A collaborative game served
as our experimental environment, yielding important insights. Our data analysis indi-
cates that backchannels exhibited a notable influence on task duration, particularly
at the beginning of the interaction; the duration of the first turn was significantly
longer in the backchannel-present (B+) condition, as evidenced by Welch’s t-test
and Mann-Whitney U test. This can possibly be explained by the response elicitat-
ing effects of the BCs; due to the BCs, the participants are invited to keep their turn
and therefore speak for prolonged periods of time. Additionally, as participants are
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not provided with any positive evidence of understanding during their turn in the B-
condition, they may feel the need to end their turn to establish a mutual understand-
ing with the agent. Although the latter turns do not show a statistically significant
difference, the B+ turns remain longer compared to the B- turns (see Appendix D).
This, however, may be explained by the relatively small sample size; a larger sample
size may make the effect stronger and should therefore be studied more elaborately
in future research.

In addition to the effect on task duration, our data analysis also paints a nuanced
picture of the role backchannels play in the perceived collaboration. When evalu-
ating the perceived contribution to the collaboration, the presence of BCs led to a
lowered sense of contribution by the CA, which is supported by both Welch’s T-Test
and the Mann-Whitney U Test results. This may suggest - maybe counterintuitively -
that a participant, in the absence of BCs, feels more hesitant about whether the CA
understands their instructions, and therefore may experience an increased sense
of responsibility to establish a mutual understanding. This sense of responsibility,
in turn, may shift the participant’s focus away from the CA, which may explain the
increased perception of the CA’s contribution to the collaboration. Likewise, in the
B+ condition, the BCs may shift the participant’s focus more towards the CA. As a
result, the participant may experience an increased sense of shared responsibility
to contribute together with the agent. This, however, is still quite speculative and will
require further investigation.

Furthermore, in contrast to our initial expectations, we found that the presence or
absence of backchannels did not notably impact perceptions of ’Working Alliance’,
’Trust’, and ’CA Commitment’. Both Welch’s T-Test and the Mann-Whitney U Test
showed no meaningful differences between B+ and B- conditions for these metrics.
Still, given the moderate to low alpha values for these metrics, caution is required
when interpreting these non-significant results. The limited internal consistency may
suggest that these constructs are multi-faceted, or that the questions used to mea-
sure them did not fully capture the intended concepts. Future work could therefore
focus on refining these scales to improve their reliability and accuracy in capturing
participants’ perceptions of these aspects of collaboration.

4.5 Conclusion

As mentioned in Section 4.2, based on the literature reviews carried out in this thesis,
our hypothesis posited that the effects of the independent variable are:

H1. Participants in the B+ condition will have a longer task duration compared to
participants in the B- condition.
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H2. Participants in the B+ condition will have an enhanced perception of collabo-
rative fluency compared to participants in the B- condition.

In light of our findings, various conclusions can be made. First, regarding H1, our
results showed a trend in the expected direction, with participants in the B+ condition
generally taking longer to complete their turns relative to those in the B- condition.
This difference, however, was only significant for the first turn of the task; although
the latter turns were also still longer compared to the B- condition, they were not
statistically significant. Given these results, we fail to reject H1.

In contrast, the data for H2 contradicted our expectations. Participants in the
B+ condition reported a reduced perception of contribution by the CA compared
to those in the B- condition. Other factors of collaborative fluency (e.g. working
alliance, trust, commitment, intelligence and cooperation) didn’t show a noticeable
difference between the conditions. Moreover, given the relatively low alpha values
for these scales, their reliability is potentially questionable. Therefore, caution is
required when interpreting these scales. Given these results, we reject H2.

To conclude, BCs seem to have a significant effect on both task duration and
perceived collaborative fluency. According to the result of this study, the use of BCs
results in an overall increased task duration, while reducing the perceived contribu-
tion by the CA. These insights provide valuable considerations for designing more
effective interactive systems. Conversational systems that may the user to answer
short and concisely, for example, may not benefit from BCs, as they generally en-
courage the user to speak for longer durations. Conversely, if longer, more detailed
user responses are desired, or if a mutual understanding is of high importance, BCs
may be beneficial. While BCs might diminish the perceived contribution of the CA,
the design of the task and the agent’s responses could significantly influence this
outcome. A CA that, for example, is less dependent on the user and shows more
initiative may already change the perceived contribution. Therefore, more compre-
hensive research is required to fully understand the role of backchannels and to
develop more reliable measures for assessing perceived collaboration.



Chapter 5

Final Conclusion &
Recommendations

5.1 Conclusions

In this thesis, we have conducted a systematic analysis of human-CA collaboration
with a particular focus on the role of BCs. Over the course of three interconnected
chapters, we have evaluated current collaborative models and evaluation methods,
developed an effective BC generation model, and explored the nuanced impacts of
BCs on collaborative tasks.

First, in Chapter 2, we conducted a systematic literature review on the exist-
ing collaborative models and corresponding evaluation methods. With regard to
the techniques and approaches used to design and develop systems that sup-
port human-CA collaboration (RQ1), we found that despite the growing popularity
of human-CA collaboration research, it still remains relatively unexplored, with no
general collaborative models or framework available and evaluation methods vary-
ing significantly across studies. Furthermore, to answer the question regarding how
these systems are generally evaluated (RQ2), we found that the type of collaboration
and the goals of the tasks dictate the evaluation metrics, such as user perception
and task performance. We also identified that researchers need to carefully con-
sider the type of CA they use, as some collaborative contexts may be better suited
for different kinds of AI systems.

In Chapter 3, we evaluated the use of the VAP model for generating BC re-
sponses during conversations. More specifically, we questioned the extent to which
the timing and frequency of the BC model can be perceived as on par with hu-
man BCs (RQ3). Using a user survey and analysis of the annotations of BC relevant
places (BRPs), we found that a shorter prediction distance (i.e. D- condition, using a
prediction window from 0 to 600ms) produced BC aligning well with annotated BRPs.
Moreover, results indicate that both prediction distance and probability threshold sig-

57
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nificantly affected the perceived naturalness of the timing and frequency of the gen-
erated BCs. Additionally, we found that the model is capable of producing relatively
natural-sounding BCs, as evaluated by the perceived naturalness of the timing and
frequency of the generated BCs. However, as the study’s sample size was relatively
low, and the majority of the participants were Dutch, these results may not be gen-
eralizable and may contain cultural biases. Still, the model was of sufficient quality
to be used during the subsequent user study.

Finally, in Chapter 4, using the VAP model in the context of human-CA collab-
oration, we implemented a game to evaluate the effect of BCs. More specifically,
using this experiment we questioned the extent to which the presence of BCs af-
fects task duration (RQ4) and perceived collaborative fluency (RQ5). A user study
was conducted (using 20 participants from 9 different nationalities), using a 2X1
between-subject factorial design with the presence or absence of BCs as the in-
dependent variables. The participants’ earlier turns during the collaboration were
significantly shorter when BCs were not present (p <0.05), however, later turns
didn’t display any significant differences. Furthermore, using a 5-point Likert scale
survey, we evaluated the effect on various metrics regarding perceived collaborative
fluency. We conclude that the presence of BCs results in a significantly lower per-
ceived contribution by the CA (p <0.001). Other collaborative metrics (e.g. trust,
working alliance, cooperation, commitment), however, didn’t show any significant
differences. All in all, these results indicate that BCs generally increase task dura-
tion, while reducing the perceived contribution by the CA. However, since the alpha
values regarding the collaborative fluency scales, more comprehensive research is
required to fully understand the role of BCs and to develop more reliable measures
for assessing perceived collaboration.

On a final note, although BCs in the context of human-CA collaboration do influ-
ence both the task duration and perception of the CA, it is important to emphasize
the nuanced nature of collaboration. As evidenced by the systematic literature re-
view, collaboration covers a wide area of different contexts, goals, and objectives.
Consequently, it is difficult to conclude whether computational BCs play a positive or
negative role in collaboration. Collaborative systems that, for example, require the
user to complete a task as quickly as possible may not benefit from BCs - or maybe
even conversational interfaces - as BCs generally elicit longer user responses. How-
ever, systems with objectives that require elaborate descriptions (e.g. reporting inci-
dents, eliciting customer feedback) may be able to benefit from BCs. Furthermore,
with regard to the perceived collaborative fluency, it should be emphasized that the
perceived contribution may also be different depending on the collaborative task. A
system that, for example, would guide the user (instead of the other way around),
inherently has a higher contributing factor during the collaboration. Therefore, in
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order to better understand the multi-faceted role of BCs, they should be evaluated
during different collaborative tasks as well.

5.2 Recommendations

Moving forward, various recommendations can be made regarding future improve-
ments of this study and future human-CA collaboration research in general. First, fo-
cusing on this study specifically, future studies should aim to use larger sample sizes
while evaluating BC generation models and aim to diversify the cultural backgrounds
of the participants. This will improve the generalizability of the findings. Second,
given the inconsistent results on the impact of BCs on perceptions of ’Working Al-
liance’, ’Trust’, and ’CA Commitment’, among others, it would be beneficial to refine
the scales used to measure these metrics. Improving their reliability and accuracy
would provide a clearer picture of how BCs influence these facets of collaboration.

Furthermore, with regard to future human-CA collaboration research in general,
given the relatively unexplored nature of this field, future work could focus on es-
tablishing standardized collaborative models and evaluation methods. This would
ensure a common language and understanding in the field and facilitate more direct
comparisons between studies. Moreover, future research should also explore the
effects of other types of BCs (such as visual or body language cues) in addition to
the verbal BCs evaluated in this thesis. These non-verbal cues play a significant
role in human-human interaction and may provide additional richness in human-CA
collaboration. Additionally, they could explore the effects of more advanced BC mod-
els (e.g. models that predict whether BCs should be proactive or reactive). Finally,
the effect of BCs should be evaluated in different collaborative settings with differ-
ent kinds of goals and objectives as the perception of the collaboration may differ
depending on the context.

This thesis serves as a step toward understanding the intricate dynamics of
human-CA collaboration. By building upon the findings and recommendations pre-
sented here, future research can help enhance the effectiveness and usability of
collaborative CA systems.
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Appendix A

Timing errors grouped by sample

Figure A.1: Timing error of the backchannels relative to the BRPs and grouped per
sample.
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Appendix B

Backchannel Survey
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Appendix C

CA turn actions

Listing C.1: Example JSON file containing the specific type and duration of the ac-
tions the CA should perform in subsequent fashion. The ’key’ value
refers to the specific mp3 file that will be played during that action.

"actions": [

{

"type": "wait",

"duration": 3

},

{

"type": "speak",

"key": "description_journey",

"duration": 5

},

{

"type": "update_code",

"duration": 2

},

{

"type": "speak",

"key": "request_directions",

"duration": 5

}

]
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Appendix D

Turn Durations per Condition

Figure D.1: Frequency distributions for the turn durations per condition.
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