
1

Faculty of Electrical Engineering,
Mathematics & Computer Science

Exploring the potential use of FaaS
within an iPaaS infrastructure.

Julian M. Elsten
(s1796755)

research@elstenit.nl
Master Thesis

Business Information Technology
July 2023

Supervisors:
Dr.ir. M.J. Van Sinderen

Dr.ir. J.M. Moonen
Business Supervisor:

S. Kaya (eMagiz)

Faculty of Electrical Engineering,
Mathematics and Computer Science

University of Twente
P.O. Box 217

7500 AE Enschede
The Netherlands

1 Executive Summary
Enterprises increasingly adopt more systems and software to execute their daily activities. In order
to connect all these systems and software, a middleware solutions needs to be implemented in order
to create interoperability. A specific type of middleware that fills this gap are iPaaS platforms. These
integration Platform as a Service products create easy integrations between different applications
and systems by providing a platform where a user can design, test and deploy the integration. The
platforms can be run on-premise but are nowadays mostly ran in the public cloud.

In this research, we will be taking a closer look at the way of running these platforms in the public
cloud. Currently, customer environments containing the integrations are mostly ran in virtual private
cloud environments where one or more dedicated virtual machines are running the integrations. This
brings multiple problems due to the nature of these environments. First, the machine needs to be
scaled by investigating the maximal workload of an integration. This automatically means that the
machines are most of the time oversized for their average tasks resulting in higher cloud infrastructure
costs than actually needed. Secondly, in case of a growing integration a machines needs to be resized
which is currently manual devops work for the iPaaS platforms.

Serverless is often suggested as a flexible technology that saves on manual cloud configurations
and has many benefits for changing environments such as auto-scaling. In this research, we will be
looking at possible Function as a Service technologies that are suiting for a iPaaS platform in order
to improve scalability and reduce infrastructure costs.

In order to come up with a proposed solution, requirements were discussed with experts in the
field. These requirements were tested against a list of 10 commercial and open-source FaaS solutions.
This resulted in a final two frameworks to be tested in a prototype. To create the prototype, the
architecture of a typical iPaaS solution was investigated resulting in the baseline architecture as
prevailing architecture. Based on this baseline architecture, a target architecture was constructed
with the implementation of the FaaS framework. By comparing these two architecture, a gap analysis
and implementation plan is created which serves as input for the prototype.

With the prototype, the last requirements were validated such as checking the auto-scaling
capabilities, the costs, the configuration and maintenance needs and the security & isolation. It was
found that the open-source frameworks OpenFaaS and OpenWhisk fulfilled the most requirements as
set through the interviews. Finally, OpenFaas was chosen as the most suitable FaaS framework for
implementation on an iPaaS. However, as additional information needs to be researched still in future
research it was not yet recommend to the business of the case study to go all in for implementing
this technology but to start preparing the existing environment for future adoption.

This research contributed in multiple ways to practice and science by producing the following
artefacts: a baseline architecture of an iPaaS platform, a target architecture of an iPaaS platform
implementing opens-source FaaS technology. Recommendations for business in the case study con-
cerning easing the focus on vendor lock-in and preparing for future adoption of FaaS technology.

i

2 Acknowledgements
I would like to thank Dr.ir. M.J. Van Sinderen (Marten) and Dr.ir. J.M. Moonen (Hans) for their
extensive support and feedback during the production of this Master Thesis. A word of thanks also
goes to the eMagiz Team which helped me out with information and candidates for interviews when
needed. A special word of thanks goes out to Samet Kaya, who onboarded me to the eMagiz Team
and helped me greatly by keeping the research on the right track.

ii

3 Table of contents

Contents
1 Executive Summary i

2 Acknowledgements ii

3 Table of contents iii

4 Table of Figures vi

5 Table of Tables vii

6 List of acronyms viii

7 Introduction 1
7.1 Background . 1
7.2 eMagiz challenges . 1
7.3 Problem Statement . 2
7.4 Research Questions . 3
7.5 Structure . 4

8 State of the art 5
8.1 Method Literature Review . 5
8.2 Search Strategies . 6

8.2.1 SQ 1. (What cloud models are currently in use and what defines them? (SaaS,
PaaS (iPaaS) and IaaS)?) . 6

8.2.2 SQ2. What are the state-of-the-art serverless technologies/frameworks that
currently exist and in what way do they differ from each other?) 7

8.3 Cloud Models . 8
8.3.1 SaaS . 8
8.3.2 PaaS . 8
8.3.3 iPaaS . 9
8.3.4 Iaas . 10

8.4 Serverless Technology . 12
8.4.1 What is serverless? . 12
8.4.2 FaaS . 13
8.4.3 BaaS . 13
8.4.4 (Possible) Drawbacks . 14
8.4.5 Commercial Cloud Service Providers with Serverless services 14
8.4.6 Open-Source Serverless Frameworks . 14
8.4.7 Interoperability across cloud vendors . 15

9 Requirements 16
9.1 Method Expert Interviews . 16
9.2 Interviewees . 17
9.3 Costs . 17
9.4 Licenses . 17
9.5 Security . 18
9.6 Usability . 18
9.7 Workload . 18

iii

9.8 Summary . 19
9.8.1 Functional Requirements . 19
9.8.2 Non-Functional Requirements . 19

10 Serverless Solutions 20
10.1 OpenWhisk . 20
10.2 OpenFaaS . 21
10.3 Knative . 21
10.4 Fission . 21
10.5 Summary on remaining serverless frameworks . 22

11 Architecture 23
11.1 Method Solution Design/Architecture . 23
11.2 Baseline Architecture of iPaaS . 23

11.2.1 The business processes . 23
11.2.2 Applications and Technology . 25
11.2.3 Overview of baseline architecture . 27

11.3 Target Architecture of iPaaS . 28
11.4 Gap Analysis . 29

11.4.1 Scalability . 29
11.4.2 Resource Efficiency / Cost optimization . 29
11.4.3 Resiliency . 29
11.4.4 DevOps Automation . 29
11.4.5 Overview of required steps . 30

12 Prototype 31
12.1 Prototype . 31
12.2 Cloud Provider . 31
12.3 Kubernetes Cluster . 31
12.4 OpenFaas installation . 33
12.5 OpenWhisk installation . 35
12.6 Logging, Metrics and Dashboarding . 36

12.6.1 Logging and metrics OpenFaas . 36
12.7 Adapting the Java Application . 38

12.7.1 Deploying a function to OpenFaaS . 41
12.7.2 Deploying a function to OpenWhisk . 42

13 Validation 43
13.1 Scaling en Costs . 43

13.1.1 Autoscaling . 43
13.1.2 Costs . 48

13.2 Workload and Security . 51
13.2.1 Deployments and Maintenance . 51
13.2.2 Security & Isolation . 51
13.2.3 Costs . 52

13.3 Overview of tested requirements . 53

iv

14 Conclusion & Discussion 54
14.1 Revisiting the Research Questions . 54
14.2 Limitations . 57
14.3 Contributions . 57

14.3.1 Contribution to research . 57
14.3.2 Contribution to practice . 58

14.4 Recommendations . 58
14.5 Future Research . 59

Appendices 64

A Interview Script 64
A.1 Introduction . 64
A.2 About the interviewee/stakeholder . 64
A.3 About the iPaaS solution . 64
A.4 Serverless . 64
A.5 Finances . 65
A.6 Other systems on the market . 65
A.7 Conclusion . 65

v

4 Table of Figures

List of Figures
1 P2P Vs. Middleware Integrations [1] . 10
2 Possible Cloud Models and On Premises compared to each other, based on [2]. . . . 11
3 Serverless Infrastructure Vs. Legacy Infrastructure [3] 12
4 The process of running a serverless function [4] . 13
5 The process of invoking an action within OpenWhisk [5] 20
6 The deployment process in the current architecture. 24
7 The business processes that are conducted by an iPaaS provider. 25
8 Technology and application of the baseline architecture. 26
9 Baseline Architecture Overview . 27
10 Target Architecture Overview . 28
11 The OpenFaas Web interface after successful deployment. 34
12 The OpenFaas Grafana dashboard. 37
13 Function Rate when testing OpenFaaS Scaling. 45
14 Replica Scaling when testing OpenFaaS Scaling. 45
15 Flow of a request in OpenWhisk . 46
16 Costs of OpenWhisk on GKE . 48
17 Costs of OpenFaaS on GKE . 49

vi

5 Table of Tables

List of Tables
1 Summary of which chapter answers which research question. 4
2 Scenarios for use of iPaaS [6] . 9
3 Commercial CSP Serverless Solutions . 14
4 Open-source Serverless Solutions . 14
5 Summary of important properties of the resulting serverless frameworks. 22
6 Kubernetes Clusters on GKE . 32
7 Comparison of costs between Google Cloud and Amazon Web Services 50
8 Overview of which chapter tests which requirement anf if it was fulfilled or not. . . . 53

vii

6 List of acronyms

Acronyms
AI Artificial Intelligence. 1,

API Application Programming Interface. 1, 2, 13, 20, 24, 26, 43, 44, 46,

AWS Amazon Web Services. 10, 13–15, 21, 23, 30, 57, 59,

BaaS Backend-as-a-Service. 12, 13, 54,

CI/CD Constant Integration / Constant Delivery. 51,

CLI Command Line Interface. 13, 20, 21, 34, 42,

CPU Central Processing Unit. 21, 29, 48,

CRM Customer Relations Management. 1, 8,

CSP Cloud Service Providers. 2, 10, 13–15, 19, 20, 30, 54, 57, 59,

CTO Chief Technical Officer. 16, 17, 23, 38,

DNS Domain Name Service. 25,

EKS Elastic Kubernetes Service. 30,

ERP Enterprise Resource Planning. 1,

FaaS Function-as-a-Service. 12–14, 17, 18, 29, 54, 55, 57–59,

FR Functional Requirements. 16, 19,

GKE Google Kubernetes Engine. 49, 50,

GUI Graphical User Interface. 30,

HTTP Hypertext Transfer Protocol. 13,

IaaS Infrastructure-as-a-Service. 8, 10, 54,

IDE Integrated Development Environment. 34,

IOT Internet-Of-Things. 1,

IP Internet Protocol. 48,

iPaaS integration-Platform-as-a-Service. 1, 2, 8, 9, 23, 25, 27, 38, 53–55, 58,

IT Information Technology. 17,

JSON JavaScript Object Notation. 42,

MS Microsoft. 14, 57,

viii

NFR Non-Functional Requirements. 16, 19,

NIST National Institute of Standards & Technology. 8,

OS Operating System. 10, 54,

PaaS Platform-as-a-Service. 2, 8, 9, 54, 58,

RBAC role-based authentication control. 51,

RPS Requests Per Second. 44,

SaaS Software-as-a-Service. 1, 8, 9, 54, 59,

SQS Simple Queue Service. 21,

SSI semi-structured interview. 16,

SSL Secure Sockets layer. 51,

TLS Transport Layer Security. 51,

URL Uniform Resource Locator. 13, 34,

VM Virtual Machine. 2, 23, 29,

VPC Virtual Private Cloud. 24, 25, 28, 29, 55,

XML Extensible Markup Language. 38, 39,

ix

7 Introduction
7.1 Background
When looking back in history we see a constant demand for innovation in industry. These are
historically marked by the industrial revolutions. The first industrial revolution was represented by
the introduction of steam and water power. The second industrial revolution at the beginning of
the 20th century introduced electrical energy for running industry. The third industrial revolution
is based around automation with the aid of electronics and internet technology. Currently we are
still working on the 4th industrial revolution which was initially started in 2011. Companies were
seeking for more efficiency which encompasses technologies such as Enterprise Resource Planning
(ERP), Internet-Of-Things (IOT), cloud based manufacturing and social product development. [7].
In the paper of [7] it is mentioned that ”The goals of Industry 4.0 are to achieve a higher level of
operational efficiency and productivity, as well as a higher level of automatization”. One leading
aspect of the aspects of Industry 4.0 is data and industrial integration [8]. This is where middleware
solutions and iPaaS platforms come into play.

The trend of ongoing digitalization is currently shifting from Industry 4.0 into Industry 5.0 with
more tasks for Artificial Intelligence (AI) and integration of computers into the tasks of people [9].
As a result, more companies face the need for data integrations amongst different applications
and domains such as Customer Relations Management (CRM), Enterprise Resource Planning, IOT
systems, Smart manufacturing systems, Smart grid systems, Smart building systems etc. These
applications include Software-as-a-Service solutions but also legacy on-premise solutions. ”Interop-
erability between information sources is a first condition for meeting the challenges of data value
chain management” [10]. Due to this constantly growing complexity of different software solutions
adopted by companies it becomes increasingly hard to exchange data amongst different applications.
The number of Point to Point connections becomes exponentially higher with each addition of an
application. As a result, middleware solutions are on the rise to lessen the amount of needed connec-
tions and its appurtenant complexity. Possible components which can be considered middleware are
Enterprise Business Bus, Application Programming Interface (API), Message Queues, Data Stream-
ing and many more. By offering these types of middleware solutions into one low-code platform, a
company is able to setup data integrations amongst their applications in a low-code environment
provided on an As-a-service basis. Additionally, it is possible to change and adapt data to further
increase the value of such a solution compared to traditional middleware solutions. An example of
such a platform is eMagiz, an iPaaS provider based in The Netherlands.

7.2 eMagiz challenges
As explained in the previous section, there are many developments ongoing in current industry when
looking at digitization. With this ongoing digitization comes an increased workload and expectation
of customers. Currently, it is difficult to scale the existing and new customer’s environments due to
a traditional architecture based on virtual machines. Besides scaling is difficult, another aspect is
becoming increasingly more important which is the costs for the cloud infrastructure. Currently, we
are experiencing a so-called energy crisis which even further pushes up energy costs of computational
power. This is not only caused by demographic disturbances such as the war between Russia and
Ukraine but also through an increased focus on electrifying houses and businesses. We see more and
more business that are being denied a connection to the grid [11] making it important to use power
as efficiently as possible. Lastly, speed of development is an important aspect too. By facilitating
developers in easily deploying new features to the cloud infrastructure, the overall time it takes
before a feature is taken to production becomes lower, improving innovation and lowering the time
to market for new features. Taking these aspects into consideration it is important to look at newer
and state-of-the art cloud architectures for running the integration integration-Platform-as-a-Service
(iPaaS).

1

eMagiz is currently exploring cloud architectures for running their iPaaS solution as there are
many ongoing developments in this field (micro-services, containerization etc.). Due to the varying
workload of the integration platform solution current architectures based on Virtual Machine (VM)
are not an ideal solution. This is mainly because the size of the VM’s is decided on once beforehand
and cannot be easily changed without manual intervention and migration to a bigger or smaller
machine. Previous research has been done on whether or not it would be possible to run the
iPaaS solution in a Containerized architecture using Kubernetes [12]. A new architecture tailored
towards future change, scalability and further reduction of infrastructure costs is based on serverless
functions. Serverless runs a function on request and shuts down afterwards, eliminating the need to
administer the infrastructure needed to run traditional VM’s or Docker images. This architecture
holds benefits such as cost reduction as there is no need to pay for idle time and a fast time-to-market
as there is less need to work on configuration files of the underlying infrastructure.

Therefore, in this paper an investigation into the possibility to increase flexibility and scalability
while reducing costs and preserving the current reliability, security and the ability to operate cloud
agnostic of the platform is conducted. Research into whether or not serverless would be possible for
use within an low-code iPaaS solution, and if so in which form this would be, needs to be done.

7.3 Problem Statement
iPaaS platforms have underlying technologies such as event streaming, API gateways or messaging.
These technologies often encounter heavy traffic spikes and drops [13]. When traffic is not there,
ideally the machines running the processes to work with this traffic are not running and therefore
not costing any money.

Unfortunately, using traditional architectures based on VM’s or even more recent technologies
such as containerization (for example Kubernetes) never scale to zero and are therefore inducing
costs for running the platform. Serverless, a recent cloud technology, has been described to tackle
this problem as it can scale to absolutely zero yet can still scale up automatically in case of traffic
spikes [14] [13].

However, as serverless is a recent development introduced in 2015 [15] and only has been picking
up popularity in practice in recent years, a lot is still unknown and lacking in scientific research. As a
result, research needs to be done on whether serverless technology would be suiting to handle typical
iPaaS processes such as messaging and event streaming. Additionally, there are a lot of variations
within serverless technologies such as Open-source vs Commercial Cloud Service Providers (CSP).
Every variation has advantages and disadvantages which are effecting the applicability in a certain
use-case.

In recent years a lot more scientific research has been done on serverless technologies. However,
no research has been done on the applicability of serverless technologies in a Platform-as-a-Service
(PaaS) or specifically an integration-Platform-as-a-Service (iPaaS) scenario. This research aims to
identify which functions within a iPaaS solution can run serverless if there are any, which require-
ments are in place for running serverless and how to implement a serverless solution in such an
architecture.

2

7.4 Research Questions
Following the problem as stated in the problem statement section, research questions have been
defined.
The main research question is formulated:

MQ1. How can serverless be implemented for an iPaaS solution in order to improve scalability and
reduce infrastructure costs?

In order to come to a concise answering of the main research question, sub-questions have been
formulated as follows:

SQ1. What cloud models are currently in use and what defines them? (SaaS, PaaS (iPaaS) and
IaaS)?

SQ2. What are the state-of-the-art serverless technologies/frameworks that currently exist and in
what way do they differ from each other?

SQ3. Which functional and non-functional requirements are in place for a serverless architecture to
ensure similar business functionality, a decrease in costs and DevOps but increase scalability
for an iPaaS solution?

SQ4. How do the state-of-the-art serverless technologies/frameworks fulfill the elected requirements?

SQ5. What is the prevailing architecture of an iPaaS infrastructure?

SQ6. How can the state-of-the-art serverless technologies/frameworks be implemented into the cur-
rent typical iPaaS infrastructure?

SQ7. What measurable improvements on scalability and costs of infrastructure does the new archi-
tecture for implementing serverless technologies into iPaaS bring?

3

7.5 Structure
In this chapter 7 the Introduction, motivation, problem statement and Research Questions
are described.
In the upcoming chapters, the following information is described:

• In chapter 8 the State of the art is presented as a result of the literature analysis performed
prior to the design study. The answers of the literature research questions SQ1 - SQ2 can be
found and are concluded in this chapter.

• In chapter 9 the functional and non-functional requirements are gathered through liter-
ature research and expert interviews. These requirements serve as input for the solution design
and will be answering SQ3.

• In chapter 10 the state-of-the-art serverless solutions are investigated in depth to serve
as input and decision tool for the solutions design. This chapter will answer SQ4 partially for
requirements that can be answered through literature.

• In chapter 11 the baseline and targetarchitecture of the infrastructure of the iPaaS platform
are modelled. Additionally, a gap analysis between these two architectures is described. The
chapter is concluded with the steps to take to create the architecture architecture which serve
as input for the solution design. This chapter answers SQ5 and SQ6.

• In chapter 12 the process of creating the prototype is described in order to serve as input for
the validation chapter.

• In chapter 13 the prototype is used to validate the remaining requirements and open research
questions in order to be able to draw a conclusion.

• In chapter 14 the final results are presented and a conclusion is drawn answering the main
research question.

This results in the following table where all chapters contributing to a specific research question can
be found:

Research Question: In which chapter is it answered?
SQ1. In chapter 8 State of the Art
SQ2. In chapter 8 State of the Art
SQ3. In chapter 9 Requirements
SQ4. In chapter 10 Serverless Solutions and 13 Validation
SQ5. In chapter 11 Architecture
SQ6. In chapter 11 Architecture and 12 Prototype
SQ7. In chapter 13 Validation and 12 Prototype
MQ1. In chapter 14 Conclusion

Table 1: Summary of which chapter answers which research question.

4

8 State of the art
In this chapter, an in-depth literature research is conducted in order to gain a better insight in
the current state-of-the-art of serverless technologies and Cloud Model Architectures. Additionally,
important concepts are explained since many terms concerning serverless are mistakenly interchanged
and used. By conducting the background research, enough knowledge is acquired in order to conduct
a thorough design research in the later stage while using correct concepts and methods with state-
of-the-art information.

8.1 Method Literature Review
In order to conduct a thorough literature review, a structured literature review in conducted. In
this section, the procedure and search criteria including the results will be shown. For this research,
serverless and cloud models will be considered part of the field of Software Engineering. As a result,
the procedure as described by [16] will be used as a guideline for the systematic literature review.
As part of this procedure, a first step is to define and document the search strategy used.

For all the literature research questions, different search strategies are described underneath.
Overall, the database from Scopus is used which links to other databases accordingly. In the tables
in sections 8.2.1 and 8.2.2 the used search term and the results and descriptions leading to the
search are exactly described. The results found are from the query processed in August 2022. At a
different point in time, more or less results can be found as articles are added to this field of research
constantly.

Besides the use of standard literature it is also important to scan so-called ”grey literature” or
other sources such as conference proceedings, white-papers and technical reports to validate certain
outcomes and prevent systematic bias in systematic reviews [16]. Including Grey Literature into
the research yields many additional benefits as described by [17] these include ”gaining significant
knowledge from practitioners in addition to academic articles, reducing publication bias where stud-
ies only report positive findings and a way to address topics that are missing from conventional
academic sources.” Especially in the field of software engineering, many state-of-the-art technologies
are available through grey literature instead of traditional peer-reviewed literary sources.

In the study of [17] it is found that around 50% of the grey literature sources are unavailable
on the internet through servers or pages being taken offline. As this is not completely unavoidable
but this does not contribute to the replicability of this research, we attempt to use high-quality blog
articles and websites that are generally more likely to be around for a longer period.

This method will be used to fully answer SQ1. and SQ2. as well as partly SQ3. In order to
complement the answering of SQ3, the method of expert interviewing is used which is explained in
the following section.

5

8.2 Search Strategies
In this section, the search strategies used to gather scientific research papers is described.

8.2.1 SQ 1. (What cloud models are currently in use and what defines them? (SaaS,
PaaS (iPaaS) and IaaS)?)

Initial search: TITLE-ABS-KEY (cloud AND models) 143892 results.
Only results that
include information
on PaaS models as
well:

(TITLE-ABS-KEY (cloud AND models)) AND (
PaaS) 2227 results.

Limit to informa-
tion from the last
years 2017+:

(TITLE-ABS-KEY (cloud AND models)) AND (
PaaS) AND (LIMIT-TO (PUBYEAR , 2023) OR
LIMIT-TO (PUBYEAR , 2022) OR LIMIT-TO (
PUBYEAR , 2021) OR LIMIT-TO (PUBYEAR
, 2020) OR LIMIT-TO (PUBYEAR , 2019) OR
LIMIT-TO (PUBYEAR , 2018))

998 results.

Only results that
were within the
field of Computer
Science and in-
clude information
on SaaS and Iaas
services to get a
good comparison:

(TITLE-ABS-KEY (cloud AND models)) AND
(((PaaS)) AND (iaas)) AND (SaaS) AND
(LIMIT-TO (SUBJAREA , ”COMP”)) AND (
LIMIT-TO (PUBYEAR , 2023) OR LIMIT-TO (
PUBYEAR , 2022) OR LIMIT-TO (PUBYEAR
, 2021) OR LIMIT-TO (PUBYEAR , 2020) OR
LIMIT-TO (PUBYEAR , 2019) OR LIMIT-TO (
PUBYEAR , 2018) OR LIMIT-TO (PUBYEAR ,
2017))

368 results.

Filter to English
and final verisons
only:

(TITLE-ABS-KEY (cloud AND models)) AND
(((PaaS)) AND (iaas)) AND (SaaS) AND
(LIMIT-TO (SUBJAREA , ”COMP”)) AND (
LIMIT-TO (PUBYEAR , 2023) OR LIMIT-TO (
PUBYEAR , 2022) OR LIMIT-TO (PUBYEAR
, 2021) OR LIMIT-TO (PUBYEAR , 2020) OR
LIMIT-TO (PUBYEAR , 2019) OR LIMIT-TO (
PUBYEAR , 2018)) AND (LIMIT-TO (LAN-
GUAGE , ”English”)) AND (LIMIT-TO (PUB-
STAGE , ”final”))

280 results.

The results are ordered on ’relevance’ and after reading multiple abstracts, articles which might
contain useful information for answering this research question are analyzed in-depth resulting in
the section of 8.3. In the end a total amount of 8 articles were fully read to find relevant information
for use in this paper.

6

8.2.2 SQ2. What are the state-of-the-art serverless technologies/frameworks that
currently exist and in what way do they differ from each other?)

Initial search: TITLE-ABS-KEY (serverless) 1384 results.
Filtering to recent
years to confirm
up-to-date infor-
mation:

TITLE-ABS-KEY (serverless) AND (LIMIT-TO
(PUBYEAR , 2022) OR LIMIT-TO (PUBYEAR
, 2021) OR LIMIT-TO (PUBYEAR , 2020) OR
LIMIT-TO (PUBYEAR , 2019))

1065 results.

Filtering to only
English paper that
are final and within
the field of com-
puter science:

TITLE-ABS-KEY (serverless) AND (LIMIT-TO
(PUBYEAR , 2022) OR LIMIT-TO (PUBYEAR
, 2021) OR LIMIT-TO (PUBYEAR , 2020) OR
LIMIT-TO (PUBYEAR , 2019)) AND (LIMIT-
TO (PUBSTAGE , ”final”)) AND (LIMIT-TO
(SUBJAREA , ”COMP”)) AND (LIMIT-TO (
LANGUAGE , ”English”))

949 results.

Add ’Provider’ and
’Open Source’ to
the keywords in or-
der to find papers
focusing on the cur-
rent solutions’

(TITLE-ABS-KEY (serverless)) AND ((open
AND source)) AND (provider) AND (LIMIT-TO
(PUBYEAR , 2022) OR LIMIT-TO (PUBYEAR
, 2021) OR LIMIT-TO (PUBYEAR , 2020) OR
LIMIT-TO (PUBYEAR , 2019)) AND (LIMIT-
TO (PUBSTAGE , ”final”)) AND (LIMIT-TO
(SUBJAREA , ”COMP”)) AND (LIMIT-TO (
LANGUAGE , ”English”))

107 results.

Again, the resulting articles are ordered on relevance and selected for further investigation based on
reading through abstracts of suitable titled articles. In the end a total amount of 10 articles were
fully read to find relevant information for use in this paper.

7

8.3 Cloud Models
Nowadays, a lot of software, platforms and infrastructure is marketed on a ’as a service’ basis.
According to [18] the National Institute of Standards & Technology (NIST) describes the most
common types SaaS, PaaS and Iaas as:

• “Software-as-a-Service (SaaS). The capability provided to the consumer is to use the provider’s
applications running on a cloud infrastructure. The applications are accessible from various
client devices through either a thin client interface, such as a web browser (e.g., web-based
email), or a program interface. The consumer does not manage or control the underlying cloud
infrastructure including network, servers, operating systems, storage, or even individual appli-
cation capabilities, with the possible exception of limited user specific application configuration
settings.

• Platform-as-a-Service (PaaS). The capability provided to the consumer is to deploy onto the
cloud infrastructure consumer-created or acquired applications created using programming
languages, libraries, services, and tools supported by the provider. The consumer does not
manage or control the underlying cloud infrastructure including network, servers, operating
systems, or storage, but has control over the deployed applications and possibly configuration
settings for the application-hosting environment. A specific kind of PaaS is the type of iPaaS
or Integration Platform as a Service.

• Infrastructure-as-a-Service (IaaS). The capability provided to the consumer is to provision pro-
cessing, storage, networks, and other fundamental computing resources where the consumer
is able to deploy and run arbitrary software, which can include operating systems and appli-
cations. The consumer does not manage or control the underlying cloud infrastructure but
has control over operating systems, storage, and deployed applications; and possibly limited
control of select networking components (e.g., host firewalls).”

8.3.1 SaaS

Software as a service is software delivered over the internet where customers and users only pay for
usage of the application. As mentioned before, the user does not need to bother with installing the
software within on premises servers or any underlying infrastructure. As a result, the customer does
not need to be bothered by maintenance or updates of the software [19]. Secondly, scaling of the
application and the underlying hardware resources is done by the SaaS provider.

Some well-known example of SaaS applications are Salesforce CRM system [20], Google Apps
such as Gmail, Google Docs and Google Calendar [21] and Freshbooks.com invoicing software [22].

As SaaS can be considered as a blackbox technology where it is not clear where the data and
software is ran physically it can be hard to validate compliance in case of strict business policies.
Therefore alternatives such as IaaS or PaaS might be a better fit for certain use cases.

8.3.2 PaaS

Compared to SaaS, PaaS provides the platform to run software without the actual application and
data. These differences are visualized in figure 2. This makes that a user or client does not need
to bother with runtimes, operating systems and the underlying infrastructure. On the other side,
they are responsible for the software running on the platform and its associated updates and data.
These platforms are often provided by the CSP where the Infrastructure is managed too, such as
AWS Elastic Beanstalk. But it is also possible for other vendors to develop a platform and sell it
on a As-a-service basis where the underlying infrastructure is managed by them. Certain use cases
for a PaaS solution include integration solutions (iPaaS such as eMagiz [23] and Boomi [24]).

We will have a closer look at these specific type of Platform as a Service in the following section
on iPaaS.

8

8.3.3 iPaaS

An integration Platform as a service is a specific kind of PaaS. As the name suggests, it delivers a
platform where companies can setup business integration’s amongst their different pieces of software.
iPaaS is defined as ”suite[s] of cloud services enabling development, execution and governance of
integration flows connecting any combination of on-premises and cloud-based processes, services,
applications and data within individual, or across multiple, organizations” by [25]. As can be derived
from this definition, an iPaaS can be used to connect different systems and pieces of software together
in order to increase productivity and create business value. It does not matter where these systems or
software are running. This can be Software as a Service (Section: 8.3.1) systems or legacy on-premise
systems. In earlier times, point-to-point interfaces were used for inter-application communication
and data sharing [6]. As more and more companies transitioned into cloud computing and SaaS
applications, the need for an alternative became increasingly bigger resulting in the rise of the iPaaS
solutions.

An iPaaS solution makes complex integration tasks more easy by creating a low-code environment
where complex message and data operations are compiled in understandable graphical data flows.
Some scenarios for usage of iPaaS solutions can be found in table 2. By using iPaaS as a middleware
solution, a lot of additional connections between all the different applications are eliminated as seen
in figure 1. This makes the whole integration process easier to handle an manage as not every point-
to-point connection needs to be monitored 24/7. In literature iPaaS providers are also described as
”As an intermediary, the iPaaS provider thus connects the market side of the SaaS providers and
the businesses.” [26].

Scenario: Description: Example:

1. Cloud to
cloud

Integration between purely cloud-
based applications

User profiles in different social networks
are synchronized with contact data of a
cloud-based CRM.

2. Cloud to
on-premise

Integration of cloud-based applica-
tions with existing on-premise appli-
cations.

A cloud-based CRM system is con-
nected to a legacy ERP system to syn-
chronize customer data.

3. On-
premise to
on-premise

Integration solely between on-
premise applications.

Airlines of an alliance synchronize their
passenger information systems.

Table 2: Scenarios for use of iPaaS [6]

9

Figure 1: P2P Vs. Middleware Integrations [1]

8.3.4 Iaas

The least managed version of the As a service types is the Infrastructure-as-a-Service (IaaS). In this
type of service only the underlying infrastructure (such as Networking, Storage, Servers and Virtual-
ization) is managed by the CSP and the platform on top as well as the software running (Operating
System (OS), Middleware, Runtime, Data and Applications) is managed by the client/user. This
can be seen in figure 2.

The provider provides the virtualized computing resources over the internet. These resources
include storage, severs and the connecting network facilities [27]. A client can access these resources
through a system of the CSP where they van access the hypervisor to install virtual machines with
specific OS’s or other applications such as middleware applications (e.g. databases). By doing so, the
client has full control over their software stack without the need to bother with hardware resources
as needed in an on-premise solution.

Benefits of such an architecture include a faster, easier and more cost-efficient deployment as there
is no need to buy, upgrade, manage and support the underlying infrastructure. This is especially
suiting to changing workloads or experimental deployments as no long-term investments have to be
made and additional resources are easily added or scaled up.

Common CSP’s that provide IaaS services are Amazon’s AWS, Microsoft Azure, Google Cloud,
Digital Ocean and AliBaba Cloud.

10

Figure 2: Possible Cloud Models and On Premises compared to each other, based on [2].

11

8.4 Serverless Technology
In this section, serverless functions and commonly used terms and applications of severless tech-
nologies are explained including a brief analysis on the different cloud service providers (CSP) and
Open-Source Frameworks providing serverless services.

8.4.1 What is serverless?

Serverless technology is actually not a good name for the technology as you will still need servers
at places where calculations are made or storage is provided. Serverless is the term used for on-
demand execution of functions or other application where a client does not need to bother with any
of the platform provisioning. This yields some benefits as described in [28] ”Serverless computing
puts multiplexing and scalability to the next level by allowing providers to commit just the required
amount of resources to a particular application and utilize the resources for just the time needed to
execute an invoked function. Resources are scaled dynamically to meet the demand of user requests.
Unlike traditional cloud deployment models, where a number of computing instances are deployed
well in advance, serverless computing achieves nearly zero resource cost when there is no demand,
and scales to as many instances as needed to meet the traffic demand. Thus, serverless computing
could be both scalable and cost effective.” As can be seen in figure 4, Function-as-a-Service (FaaS)
takes away a lot of the infrastructure management tasks needed in legacy infrastructure. Using
serverless, there is the need to develop only the function. In legacy infrastructure, server selection,
security, schedulers, transaction managers need to be configured and deployed before an app can be
deployed.

Figure 3: Serverless Infrastructure Vs. Legacy Infrastructure [3]

Serverless is often seen as the successor of virtual machines in the field of virtualization [4] [29].
When comparing serverless with containerization, we see that these technologies are somewhat
intertwined. Especially when looking at the open-source framework that are often working on top of
a containerization technology as described in section 8.3. Each have their own benefits and use-cases.

Serverless is the overall technology of not dealing with underlying infrastructure. Two applica-
tions of serverless technology are Backend-as-a-Service (BaaS) and Function-as-a-Service (FaaS) or
Backend-as-a-Service and Function-as-a-service respectively. In the following sections, the difference
between these two concepts will be further explained.

12

8.4.2 FaaS

Another term which is often used with serverless is Function-as-a-Service (FaaS). Even though they
are often used interchangeably, this is not correct according to [30]. FaaS can be considered a
serverless technology but this does not mean that every serverless technology is concerned with
specifically functions only. In case of FaaS, a developer can focus solely on the application logic as
the code is executed on request (Message queue, Hypertext Transfer Protocol (HTTP) request etc.).
Most CSP FaaS Solutions do offer compatibility with multiple well-known high-level programming
languages such as Java, Go, Python, Node.JS, C#, Ruby and many more (Compatible with Amazon
Web Services (AWS)) The general process of running a serverless application consists of two phases:
Function Programming and Function Serving [4]. During Function Programming a function is
developed by the rules of the specific cloud service provider or framework. The function is deployed
to the platform over Command Line Interface (CLI) after the function is saved in a database and
the runtimes of the function are pushed to a repository. Lastly, a Uniform Resource Locator (URL)
is returned of the functions that can be used to invoke them. The invocation of a function is handled
during Function Serving. The URL provided by the function programming process can be called
manually or through another triggering service such as a message queue or API. When the function
is called, the load balancer or scheduler from the serverless platform fetches the function from the
database and prepares the environment to run the function, this environment is called a Sandbox.
After the platform loads the function specific files such as class files, the function is executed. This
process is graphically illustrated in figure 4. Big FaaS platforms that are well-known include AWS
Lambda, Azure Functions and Google Functions.

Figure 4: The process of running a serverless function [4]

8.4.3 BaaS

Backend-as-a-Service (BaaS) is another technology based on serverless technology. As described
in the previous section FaaS is the actual running of functions on request. On the other hand,
application-dependent services deployed by Cloud Service Providers can be considered as BaaS
applications. These include services such as Databases and Object Storage Services. In case of
BaaS, these services will automatically scale up and down based on the needed resources. By doing
so, there is no need to choose resources and storage as a developer.

13

8.4.4 (Possible) Drawbacks

Of course, serverless technology does not only have benefits. There are a couple of drawbacks which
need to be taken into consideration when looking at implementing a serverless platform. The most
mentioned possible drawback is the cold start problem of serverless functions. When scaling to
absolutely 0, there is no pod or machine running to immediately start the function in case a request
comes is. Therefore, frameworks and serverless services came up with the concept of a warm start.
Using this concept, a pod or machine is kept running constantly to immediately execute a function
when it comes in. This opposes the strategy of serverless where no resources are costing money
when scaling to zero, therefore the task and the requirements of the application of serverless need to
be well decided upon to prevent additional costs or high latency’s. Additionally, it is important to
validate that the connecting databases and storage services should be able to handle large amount
of concurrent connections when the serverless technology scales up.

8.4.5 Commercial Cloud Service Providers with Serverless services

The most well-known application of Serverless technology is through commercial Cloud Service
providers facilitating serverless functions to work on their platform. The most popular CSP’s that
provide these kind of services are AWS Lambda, Microsoft (MS) Azure Functions, Google Cloud
Functions. These platforms are included in the research and comparison of [31]. The three CSP’s
can be found in table 3.

AWS Lambda https://docs.aws.amazon.com/lambda/
Google Cloud Functions https://cloud.google.com/functions/docs
MS Azure Functions https://docs.microsoft.com/en-us/azure/azure-functions/

Table 3: Commercial CSP Serverless Solutions

8.4.6 Open-Source Serverless Frameworks

Besides the commercial cloud service providers that are offering FaaS services and their associated
drawbacks such as vendor lock-in and the heavy reliance on the services of the CSP (storage, message
queuing and database) [28], there are many Open-Source Serverless frameworks that provide server-
less functionalities to a certain degree. In this section we will be looking at the most popular ones
and compare and contrast the functionalities and technologies used by the frameworks. In current
literature, studies exist that compare serverless platforms. Articles that are used as input for this
section are [28], [31]. We will be comparing the in these articles mentioned serverless frameworks
on their properties. In the article of [31], the Open-Source FaaS platforms reviewed can be found in
table 4.

Apache Openwhisk https://openwhisk.apache.org/
Fission https://fission.io/
Fn https://fnproject.io/
Knative https://knative.dev/docs/
Kubeless https://github.com/vmware-archive/kubeless
Nuclio https://nuclio.io/
OpenFaaS https://www.OpenFaaS.com/

Table 4: Open-source Serverless Solutions

14

In the paper of [28] 4 open-source serverless frameworks are analyzed on their characteristics. These
are Knative, Kubeless, Nuclio and OpenFaaS which are all taken into consideration in the paper
of [31] too.

8.4.7 Interoperability across cloud vendors

In order to ensure interoperability across multiple cloud vendors and by doing so preventing vendor
lock-in the code needs to be written in a compatible way or through a specific framework such
as Spring Boot [3] or one of the open-source frameworks. Serverless services of commercial Cloud
Service Providers such as AWS Lambda or Google Functions often are made to work with additional
cloud services of the corresponding Cloud Service Providers (CSP).

15

9 Requirements
In this chapter, requirements for the target architecture using serverless are defined. Requirements
are obtained through literature research and expert interviews. The chapter will be concluded with
a summary on the requirements.

9.1 Method Expert Interviews
In order to come up with an effective design, it is important to integrate the requirements of stake-
holders into the design [32]. Besides the literature research, interviews are used to gather an in-depth
insight into experiences and expert knowledge. There are multiple possibilities for conducting an in-
terview. On the one hand we have the surveys or questionnaires with mostly closed-ended questions.
On the other hand, we have focus groups where people are engaged in brainstorming to enquire ex-
tended knowledge on a certain subject or design [33]. A third approach falls between these two and
is well-known as a semi-structured interview (SSI).

The process of setting up a semi-structured interview has 3 main phases. The first step is selecting
respondents and arranging the interviews. Because of time constraints and not a very large sample
group, it is decided to select a group of people based on their function profile and the associated
knowledge on a certain subject.

Secondly, the interview script is created. In this script it is important to state the goal of the
interview, how the answers are collected, how the answers are stored and who is allowed to see
them in the introduction. After this introduction, the subjects and some directions for questions
are written to guide the interview and make sure agenda points are not skipped leaving questions
unanswered.

The interview script can be found in appendix 14.5. The interview is carried out with experts
in the field. A total of 4 interviewees from Dutch iPaaS provider eMagiz are questioned. The
first interviewee is a Software Delivery Manager responsible for the delivery of software. Secondly,
the Chief Technical Officer (CTO) is interviewed. Thirdly, an external Cloud Architect working at
eMagiz but also at other Cloud Projects is interviewed before we concluded the interviews with the
Cloud Engineer of eMagiz.

Lastly, the answers of the interview need to be analyzed and converted into meaningful input for
the Functional Requirements (FR) and Non-Functional Requirements (NFR) sections 9. This is done
through selecting the mentioned and described requirements and plotting them on a MoSCoW pri-
oritization table. MoSCoW is the most cited method as used in software requirements prioritization
research and therefore a good fit for this specific research [34].

After the individual interviews, a group discussion took place with the interviewees to discuss
the prioritization of all the identified requirements. This resulted in the prioritized requirements as
can be found in chapter 9.

16

9.2 Interviewees
The expert interviews are all conducted with employees of a Dutch iPaaS platform called eMagiz.
This company is based in Enschede with over 20 years of experience in integration software.

The first expert interview was conducted with a delivery manager of the iPaaS platform. Being
a delivery manager, he is responsible and accountable for the development team. Additionally, the
finances and procurement concerning the Cloud Service Costs are managed and checked by this
person.

The second interview was conducted with the CTO of the iPaaS platform. As a CTO, this
person is responsible for the overall direction where the platform is heading. Another aspect, the
CTO is concerned with, is the licensing of the software and the licenses of the used frameworks and
packages.

The third interview was conducted with a Cloud Engineer being responsible for the cloud infras-
tructure of the iPaaS platform.

The fourth interview was conducted with a Cloud Architect working on the iPaaS environment.
The architect is responsible for the in-depth configuration of the cloud services needed to run the
iPaaS environment. This person is working in Information Technology (IT) for over 25 years and
therefore has been through many technology transitions (on-premise to Cloud, rise of the internet
etc.) making him a very valuable expert in the field.

Since every interviewee has different field of knowledge and expertise, not all questions from the
interview script were asked to the same people. Based on their role and expertise, questions touching
upon this knowledge is asked and documented from every interview.

This leads to 5 main categories of requirements: Costs, Legal, Security, Usability and workload.

9.3 Costs
During the interviews we could see that 3 out of the 4 interviewees are familiar with cloud costs
to a certain degree. One person is especially responsible for all the cloud costs within the iPaaS
company. As a result, a good insight into requirements on costs could be obtained during the
interviews. These result in the requirement that an estimation on the costs of the new architectures
needs to be constructed in the prototype phase and that the new architecture should lower or match
the current costs of the infrastructure. The new architecture cannot exceed the costs of the current
architecture.

9.4 Licenses
As with most software engineering requirements there are legal and regulatory requirements too.
During the interviews specific concerns about licenses and certificates were expressed. When looking
at licenses, it is important that the solution, whether this is a commercial or open-source solution,
can be used in a commercial product. When looking at software licenses, certain licenses do not allow
for commercial use making it unusable for this specific use-case. Additionally, literary sources such
as [31] state that ”The business view of our FaaS Platforms Classification Framework comprises
categories and dimensions of interest for project managers aiming to identify the FaaS platforms
complying with the high-level project requirements. These include, for instance, the license under
which a FaaS platform is released and whether the platform can be installed on-premise or not”.
This confirms the importance of such as requirement in this case.

17

9.5 Security
Since the iPaaS solutions can be used to transform and move sensitive data of the customers, security
is an very important aspect. Often customers demand certain certifications for a solution when it
comes to security. In the case of our interviewees, this is no different as they are ISO 27001 and
SOC2 compliant. In order to adhere to these compliance’s the requirements of isolation, availability
and security come up. Specific requirements concerning security and isolation would focus on data
being securely moved within the iPaaS platform and not accessible for the outside world or other
customer environments. Especially in the case of serverless where resources are often shared between
different environments to benefit the most from the scaling feature, attention needs to be paid to
this security aspect.

9.6 Usability
In order for the solution to lead to a successful implementation, it is important that the developers
and cloud engineers can work with it without too much of a hassle compared to the current workflow.
Therefore it is important that the solution is compatible with a currently used language such as Java
but also with current infrastructure products and frameworks such as kubernetes or Spring Boot.
In addition to this, the framework should be well-maintained in order to prove a certain quality
and believe in it from the community. Certain factors that can be used to measure this can include
Github stars, commits and contributors but also big companies that did adopt the technology. In
the article of [31] they say the following about this aspect: ”The Community category enables to
classify FaaS platforms based on the size, activity, and popularity of their development community.”

9.7 Workload
In 2 interviews, it was mentioned that the current workload of the cloud team (responsible for
running and developing the cloud infrastructure) is substantial. This is mainly due to the developing
and managing of a kubernetes cluster for running the new generation of the iPaaS solution. It
is mentioned that this should decrease when the cluster is completed but as the iPaaS platform
continues to grow and more customers are using it, it is expected to be a fairly large workload for
this team. Running certain components within the iPaaS platform on a FaaS framework should
decrease the amount of work involved in managing infrastructure and thus decreasing the workload
for this team. For now it is not expressed as a very high priority in the interviews conducted with
the experts.

18

9.8 Summary
The interviews and literature research lead to a list of requirements which are listed below. We
distinguish between Functional Requirements (FR) and Non-Functional Requirements (NFR). The
MoSCoW prioritization has been applied to these requirements after a group discussion with the
interviewees as described in the method.

9.8.1 Functional Requirements

FR1. The new architecture with serverless should reduce the workload for DevOps teams where
infrastructure needs to be configured and maintained.

FR2. Based on the workload of the system, the infrastructure must scale up to accommodate the
increased workload.

FR3. When there is no demand for a certain function to be ran, the machine(s) should scale to
zero.

FR4. For the new architecture, a cost estimation must be made as the new solution should lead
to a similar or lower cost than the current architecture.

9.8.2 Non-Functional Requirements

NFR1. The serverless solution should have a license that allows an iPaaS provider to use it in a
commercial product.

NFR2. The serverless solution must be well-maintained / actively developed.

NFR3. The serverless solution should be used by some big companies in order to prove a certain
magnitude within the field.

NFR4. The serverless solution should natively support the programming language (Java) as often
used by standard iPaaS solutions.

NFR5. The new architecture must take security and isolation (of client environments) into consider-
ation.

NFR6. The chosen solution should be open-source to provide CSP-agnostic capabilities.

NFR7. The chosen solution must be compatible with Kubernetes container orchestration framework.

NFR8. The chosen solution should be compatible with iPaaS typical triggers.

NFR9. The chosen solution could be having a business support in order to work through high-impact
problems.

19

10 Serverless Solutions
In this chapter, different open-source serverless frameworks are discussed and compared taking into
account the requirements resulting from the expert interviews and literature research in chapter 9.

In order to create a first selection of possible candidates for further research, we look at the ”must”
requirements which can be answered through literature research. This leads to the requirements: 1.
”The serverless solution must be well-maintained / actively developed.” (NFR2.), 2. ”The chosen
solution must be compatible with Kubernetes container orchestration framework.”(NFR7.) and 3.
”Based on the workload of the system, the infrastructure must scale up to accommodate the increased
workload.” (FR2.).

When eliminating solutions that do not fulfill requirement NFR2. We see that frameworks such
as Kubeless and Fn Project are not actively maintained anymore and therefore do not need any
further investigation.

When we apply the 2nd requirement (NFR 7.) concerning Kubernetes compatibility to the
resulting candidate solutions, we find that all 5 frameworks do work with Kubernetes and have
support for it. This results in OpenWhisk, Fission, Knative, Nuclio and OpenFaaS.

Lastly, the 3rd requirement (FR2.) about automatically scaling up is applied. Only Nuclio has
no support for this feature and therefor is not taken into consideration for this investigation.

Finally, 4 resulting frameworks are further investigated as a possible solution for use within an
iPaaS platform; OpenWhisk, OpenFaaS, Knative and Fission. We will take a closer look at these 4
and compare and contrast them in the following section.

10.1 OpenWhisk
The first developments for OpenWhisk are dating back to 2015 when a small team of researchers
within IBM research started working on serverless technology. A year later, the framework be-
came open-source on GitHub. IBM continued in the serverless scene with the development of IBM
Cloud Functions (A commercial CSP product). OpenWhisk became part of the Apache Software
Foundation in December 2016 [35].

Figure 5: The process of invoking an action within OpenWhisk [5]

OpenWhisk has a wide range of supported programming languages. The following runtimes can
be used with OpenWhisk .Net, Go, Java, JavaScript, PHP, Python, Ruby and Swift. Other language
which are not natively supported, can be ran using the Docker SDK on the Docker Runtime.

OpenWhisk actions (stateless functions) can be called in multiple ways. Actions van be invoked
using the OpenWhisk CLI, the OpenWhisk REST API, user-created API’s or automated by triggers
(classes or events send by event sources). This process is shown in figure 5.

OpenWhisk can be ran on an cloud-based Kubernetes cluster. Additionally it runs on server-
less providers hosting Apache OpenWhisk and support the OpenWhisk CLI such as IBM Cloud
Functions.

Website: https://openwhisk.apache.org/

20

10.2 OpenFaaS
OpenFaaS is one of the oldest framework around and launched in 2016 where it was initially founded
by Alex Ellis. Besides the free community edition of OpenFaaS, OpenFaaS Ltd - the company
behind OpenFaaS offers enterprise support for production environments making it an overall mature
framework. In 2020 they held the second position with a 10% user base. OpenFaas is also the most
popular framework on GitHub with 22.3K stars (November 2022). OpenFaaS has the ability to
do auto scaling as well as scale to zero. The function repositories and the framework itself can be
managed through the faas-cli tool as well as a through a GUI in from of a web interface. Several
programming languages are supported, these include NodeJS, Python, Java, Ruby, PHP, Go and
C#.

Although OpenFaaS can scale down to zero, they recommend to keep one function replica avail-
able to cope with the cold start problem. This can be a limitation for functions that need a fast
response time.

OpenFaaS has multiple triggers that it can work with. These include HTTP/Webhooks, NATS
Streaming and CLI. The Pro version of OpenFaaS had additional trigger services which include:
Apache Kafka, Postgres, AWS SQS, Cron Connector, MQTT Connector, Minio / S3, NATS Pub/-
Sub, AWS SNS, CloudEvents and RabbitMQ.

OpenFaaS has an extensive list of adopters on their github including companies like VMware,
Citrix, DigitalOcean and Bulletproof.

Website: https://www.openfaas.com/

10.3 Knative
Knative is a younger framework compared to the previous 2. Knative started in 2018. It can do
auto scaling and additionally scale to zero too. Knative works on the basis of serverless containers
in cooperation with Kubernetes. By doing this, it creates a serverless like development pattern but
in the end it cannot be considered a real serverless framework like the other 3 candidates. As it
might still be a good candidate for our use-case, it will be left in the comparison for now. Knative
is trusted by multiple big companies to run their serverless functions. These companies include
VMWare, IBM, Red Hat, Google and TriggerMesh [36].

Website: https://knative.dev/docs/

10.4 Fission
Fission works with Kubernetes too. The first release of Fission on Github dates back to 2017 and
the last updates and new versions are still released in 2022 being actively maintained and developed.
Python, NodeJS, Go, C#, PHP are officially supported programming languages. It does support
auto scaling based on Central Processing Unit (CPU) usage (it mentions that in the future, other
scaling metrics are implemented as well) and has a very fast Cold-Start of typically 100msec making
it stand out from other solutions. Fission mentioned many big users on their Github Page which
include companies as Apple and Unilever.

Website: https://fission.io/

21

10.5 Summary on remaining serverless frameworks
In this section, a comparison amongst the 4 chosen serverless frameworks is made and the results
are summarized in table 5 to create a concise overview for helping making a choice on the suitable
framework for use within an iPaaS solution.

OpenWhisk OpenFaas Knative Fission
Supported
Program-
ming Lan-
guages:

.Net, Go, Java,
JavaScript, PHP,
Python, Ruby,
Swift.

.Net, C#, Go,
Java, JavaScript,
Python, Ruby

C#, Go, Java,
JavaScript, PHP,
Pyton, Ruby, Rust

C#, Go, NodeJS,
PHP, Python,
Ruby, Bash

Supported
Triggers:

HTTP/Webhooks,
Timers(Alarm)

HTTP/Webhooks,
NATS Stream-
ing, CLI, Apache
Kafka, Postgres,
AWS SQS, Cron
Connector, MQTT
Connector, Minio
/ S3, NATS Pub-
/Sub, AWS SNS,
CloudEvents, Rab-
bitMQ

HTTP/Webhooks,
Message Queus,
Github, Git-
Lab, PingSource
(Timers), Redis-
Source, RabbitMQ,
Diverse 3rd Party
apps to work with
Amazon, Azure
and Google cloud
services.

HTTP/Webhooks,
Message Queues,
Timers, Kuber-
netes Events

License: Apache V2.0 MIT Apache V2.0 Apache V2.0
Used by big
companies:

IBM (Apache
Foundation)

VMware, Citrix,
DigitalOcean and
Bulletproof and
many more smaller
companies.

VMWare, IBM,
Red Hat, Google
and TriggerMesh

Fareye, Apple,
iQuanti, Gad-
get, CinnamonAI,
Armo, The So-
cial Audience,
KubeML, Unilever,
BD, Biofourmis,
Babylon

Table 5: Summary of important properties of the resulting serverless frameworks.

22

11 Architecture
In this chapter, a model of the baseline architecture will be described. This will act as a starting
point for the target architecture which implements the previous research of this thesis in order the
come up with a solution for the main problem at hand. Then, a gap analysis is conducted in order
to find out where and how certain architectural changes are contributing to solving the problem.
This gives an input for the implementation steps which need to be taken in order to convert from
the baseline to the target architecture. This will serve as input for the next chapter, the prototype.

11.1 Method Solution Design/Architecture
In an effort to create a design that suites the current architecture of the eMagiz iPaaS platform it
is important to get an insight in the current architecture of the platform. In order to do this, we
will be using Archimate Modelling to create a baseline architecture. In this baseline architecture,
current business processes and the application and technologies that enable these business processes
are modelled. This is done through researching images, models and presentations of eMagiz. After
a first modelling session, the model is discussed and fine-tuned with employees of eMagiz (CTO,
Cloud Engineer and Delivery Manager). When the as-is situation is made clear through the baseline
architecture model, we will continue with the to-be situation through the target architecture. This
will be the architecture which still supports current business processes but with the implementation
of the serverless solution as decided on in the literature research. When the baseline and target
architecture are clear and approved by the company, we can start identifying how to bridge the gap
between these two architecture. This will result in a gap analysis which reports the main differences
and changes that need to be made in order to transform the baseline architecture into the target
architecture. Finally, this will result in an implementation plan which will be tested by actually
developing a prototype of a serverless iPaaS platform.

11.2 Baseline Architecture of iPaaS
In order to find out where a serverless implementation would make sense and how to do this, the ’as
is’ situation needs to be modelled in a baseline architecture.

In order to come up with an iPaaS baseline architecture, a couple assumptions are made: All
iPaaS providers host their cloud environments at AWS, Azure or Google Cloud. [37] [38].

We will be looking at two main services of an iPaaS platform. The setup of a new customer
environment after an integration has been designed and the actual customer environment that re-
ceives, converts and sends messages across the platform and to other applications or endpoints. We
chose these two services as these are the mostly dealing with the infrastructure where the iPaaS in
running and therefore will probably be impacted the most by our implementation.

Only the parts of the architecture that are relevant to the scope of this investigation are modelled.

11.2.1 The business processes

The first process which we will describe and model is the process of launching a new integration
within the iPaaS environment. A customer can do this for example when a new piece of software
is added to their internal stack and they want the data to be synchronized with already existing
systems to improve data quality and reliability. The new integration is send to developers to test that
the integration is working correctly and yields the correct results. A Virtual Machine (VM) is chosen
which runs the integration. For now this machine’s size is based on experience of the developers by
other integrations. After testing and validating the integration, it is send to the portal and activated
(deployed) in order to start processing the messages.

This deployment process is described in figure 6. When we start at the left side of the model we
find that a customer or a partner of a customer starts an implementation by determining technical

23

requirements. This includes figuring out the formatting of the data, how to connect to existing
external services etc. Currently, when the technical requirements are clear, eMagiz developers choose
a adequately sized machine that is able to run the chosen integration. As auto-scaling is no option in
the current architecture, this is an important process in order to create a good customer experience
and deliver a qualitative service. Developing, testing and deploying the integration are business
processes which are taken care of by the platform itself after it has received a correctly configured
Virtual Private Cloud (VPC) environment. This whole process contributes to the main business
process of the platform, namely providing an integration platform. Other processes that complete
this main process are described in the following sections.

Figure 6: The deployment process in the current architecture.

Of course the service of providing an integration platform is not limited to just deploying an
integration environment but also consists of managing and actually providing the integration services
for the customer. Therefore two more business processes are added to the architecture; Processing
the customer’s data and managing the integration. In order to process data of the customer, three
main components or products that make up an typical iPaaS stack are described as API Management,
Event Streaming and Messaging.

In order to run the integration successfully, management of the integration is important in order to
act upon distortions and incidents. This is done by gathering metrics from the running integrations
and by implementing certain thresholds, create alerts and send these to developers and support
teams in order to mitigate possible incidents. Additionally, customers can often set thresholds and
alerts themselves as well to manage certain incidents which are dependent on their own software
and processes.

The total business processes architecture can be found in figure 7. The 3 processes together make
up the business service ’Providing an integration platform’. Additionally, managing an incident can
include changing or fixing a integration, hence the relation between these two processes.

24

Figure 7: The business processes that are conducted by an iPaaS provider.

11.2.2 Applications and Technology

Now the business processes of a iPaaS provider are clear, we need an underlying technology and
application layer to actually support these business processes. A couple of assumptions are made in
order to create a suitable model. Technology and Applications assumptions:

1. iPaaS providers run some sort of portal where a customer can create certain message- and
data pipelines. These pipelines are deployed to a Cloud Service Provider when finished.

2. Every customer has it’s own Virtual Private Cloud environment sized to their needs.

3. iPaaS providers have an ’Infra Cloud’ that takes care of general tasks that are needed by every
customer and are not customer specific. These services include a general Domain Name Service
(DNS) Resolver, Metrics and Logging and Image Storage.

In the technology view as visible in figure 8 we can observe one main application process and
two main application components. The process deploying an integration consists of two functions
being creating and building the image and setting up or provisioning this image to the infra cloud
Image Storage. The building process itself is initiated from the Portal Service where customers
create or code their specific flows. When a specific image is built and deployed, we can observe
the customer VPC being deployed to a cloud slot within the cloud platform. This VPC is than
specifically configured and scaled for a specific customer. Infra Clouds are machine configured by
the iPaaS providers to support multiple processes of an iPaaS provider that are not customer specific.
This included application services such as the main DNS Resolver, Metrics and Logging storage and
Image Storage.

In order to process messages and data send to the platform, customers connect their systems over
the internet to the main DNS Resolver in the Infra Cloud. Based on certain rules, this resolver knows
which type of messages or from a certain destination belong to a certain customer and than routes
this data to the correct Customer VPC. When messages arrive at the VPC, an internal Resolver

25

and Loadbalancer distribute the messages to the correct workers to start handling them. Depending
on the configuration of a customer, these workers can do actions such as translate formats, post to
a bus or queue or act as an API gateway.

Figure 8: Technology and application of the baseline architecture.

26

11.2.3 Overview of baseline architecture

When we combine the business, application and technology layer and connect the application services
and components to the business processes we can observe which part of the application layer is
responsible for serving which business process. The total overview of the baseline architecture for
current iPaaS providers can be seen in figure 9. This will be the starting point for the target
architecture where the improvements are added based on our previous research as described in the
previous chapters.

Figure 9: Baseline Architecture Overview

27

11.3 Target Architecture of iPaaS
In order to improve the problems as identified in the previous section, a to-be or target architecture
is modelled. The main architectural problem of making the architecture more scalable ready is
addressed by moving from a VPC based architecture to a kubernetes cluster with an serverless
framework running on it.

It is important to note that the business processes do not change. From the viewpoint of an
end-user there are no immediate changes visible in the software. Most changes are applied ”under
the hood” in the architecture of the infrastructure to optimize the use of cloud infrastructure and
therefore decrease costs.

Figure 10: Target Architecture Overview

28

11.4 Gap Analysis
In this section we will be investigating the steps that need to be taken in order to move from the
as-is situation with the baseline architecture to the to-be situation with the target architecture. In
order to structure this section, we will be looking at the problems that may arise in the baseline
architecture and how that will be improved with the target architecture.

11.4.1 Scalability

In the baseline architecture we find that because of the use of VPC’s for every customer’s environ-
ment, scaling is difficult. Especially when a customer’s environment has a lot of scheduled batch
processes that cause spikes in traffic and workload for the environment, it is possible that the VPC
runs out of resources. When this happens, environments can become unstable and slow or even
can lead to possible loss of data. As this can be disastrous to the customer this should be avoided.
In the target architecture we find that a customer’s environment is no longer based on non-scaling
Virtual Private Cloud but on a scaling FaaS framework. By doing so, the customer’s environment
will be able to scale in order to accommodate rises and spikes in workload and traffic to handle.
Additionally, when there is not a lot of workload going through the environment it will scale down
to a minimum as well. The functionality is called auto scaling and can be configured on specific
metrics such as requests per second or CPU and Memory usage.

11.4.2 Resource Efficiency / Cost optimization

Every VPC is sized to accommodate peaks to a certain degree in the customers’ integration envi-
ronment. By doing this, it automatically results in most VPC’s being oversized for their workload
under normal circumstances. This leads to inefficient use of resources of Cloud Providers. By mov-
ing towards the target architecture we have a scaling architecture that optimized resource usage by
running multiple environments and functions on a shared pool of resources. As a result, machines
need less overhead to run tasks and not every environment needs its fully own VM. As less resources
are needed to run the same task, cloud infra costs are likely to decrease too.

11.4.3 Resiliency

Another benefit of the target architecture over the baseline architecture concerns the aspect of
resiliency. Virtual machines are prone to failure in case of software issues or network disruptions. Of
course in the target architecture with a FaaS framework running on Kubernetes these issues are still
possible but it has built-in tools to accommodate these errors. For example when a function in a FaaS
environment becomes unresponsive or fails, the workload is taken by other instances to guarantee
correct handling of the workload. The same holds for the infra side of the target architecture where
services are restarted and auto-healed by Kubernetes mechanisms in case of a networking problem.

11.4.4 DevOps Automation

In current architecture, a lot of manual steps are involved when looking at the business process of
setting up a (new) integration. Especially when looking at the process of designing the integration,
manual input from developers in needed in order to correctly size the Virtual Private Cloud (VPC)
environment of the customer. In the new architecture, this sizing and manually buying of resources
is no longer needed as the environment automatically scales based on the workload of the client
environments

29

11.4.5 Overview of required steps

In order to create the target architecture starting from the identified baseline architecture, certain
steps need to be taken. These will be briefly explained here.

1. The first step is to create an cloud environment capable of running the serverless Framework
and it’s functions. In order to do this, I would advice to look at the current Cloud Service
Provider and create a cluster in the Kubernetes service of this CSP. In case of eMagiz this will
be the AWS Elastic Kubernetes Service (EKS). By doing this with the same CSP as currently
used in the baseline there is no additional change in GUI or for example billing structure.

2. The second step will be to install the serverless framework on the Kubernetes Cluster and
configure it to scale correctly based on the specific function it will carry out. Some functions
cannot scale to zero as they need to quickly react while others can scale to zero and work with
a slight delay.

3. Additional services needed to run the new environments need to be installed. These include
but are not limited to the metrics, dashboarding applications, loadbalancers, ingress services,
elastic storage services etc.

4. The most influential step will probably be the one that takes care of adapting the Java ap-
plications into ”serverless ready Java Functions”. This will need some rethinking of how the
applications are currently working and how they can be divided into separate functions. A
lot of testing needs to be done in this step to confirm correct working before moving it into
development environments.

5. After the testing and confirmation of correct implementation of the serverless version of the
Java applications we can start to connect to external services such as Kafka Event Streaming
busses and the Graphical User Interface (GUI) portal where customers create the flows. We
can see if changes in the portal reflect correctly in the serverless environment.

6. Different customers have different requirements and use different services in their stack. There-
fore, for most implementation environments an implementation planning should be considered
to check whether every environment will successfully run in the new infrastructures. As a re-
sult, there should be a transitioning period where customers move over to the new architecture
in staged periods. By doing this, environments can be reverted back to the old environment
in case something does not work as anticipated and there should be only minor disruptions for
the customers.

7. Finally, when customers are gradually moving over to the new infrastructure with serverless
technology, it opens up new doors to move to a more pay-per-use way of pricing instead of the
one size fits all pricing per license model which is currently in place.

30

12 Prototype
In order to validate the remaining requirements and to test whether or not our target architecture
addresses the identified problems, a prototype is created. In this prototype we will be installing two
open source serverless frameworks on a kubernetes cluster deployed on a public cloud provider. We
will be deploying two java functions (one synchronous and one asynchronous) to these frameworks
in order to test if they would work with typical workloads as used by eMagiz iPaaS.

12.1 Prototype
The last step before validation can be started is the actual production and development of the
prototype environment. According to Arnowitz et al. (2007) [39] a prototype in software making
can be useful to determine economical feasibility, evaluate stakeholder’s response to the product
and if the design solution or idea will actually work in the set environment. In order to create the
prototype, the scrum method is applied as agile framework. The total prototype will be developed
in 4 1-week sprints. After a basic prototype is delivered, small adjustments can still be made in
order to validate certain requirements. Such changes can for example be adding logging and metrics
capabilities in order to obtain quantitative data to validate certain requirements.

12.2 Cloud Provider
The first step of the prototype was to choose a public cloud provider that support a Kubernetes
cluster. The most well-known providers are Amazon Web Services (AWS) Google Cloud and Mi-
crosoft Azure Cloud. All of these have a specific service for running Kubernetes clusters, namely
Amazon Elastic Kubernetes Service (EKS) [40], Google Kubernetes Engine (GKE) [41] and Azure
Kubernetes Service (AKS) [42] respectively. After installation of the cluster, managing the cluster is
mostly done through the CLI tool Kubectl and through the specific serverless framework CLI’s. As
a result it does not matter where we deploy our cluster when looking at functionality. Therefore we
started looking at the costs of the different cloud providers as we want to be the prototype as cheap
as possible. On GitHub there is a list with Free Kubernetes trials and/or credits [43] which we used
to select our Cloud Service Provider for this Prototype. Google’s GKE offers a free trial with $300
credit for 90 days. When you sign up and validate with a business mail address (@business.com)
you get an additional $100 credit. Microsoft Azure (AKS) has a similar offering where a $200 credit
can be used for a 30 days period to run a kubernetes cluster. AWS does not have a free offering
as their free tier does not cover their EKS and needed EC2 instances. Taking these offerings into
consideration, the decision to work with Google Kubernetes Engine (GKE) for this prototype was
an easy one. Because pricing is an important requirement in this investigation, a check was done on
pricing across other Cloud Service Providers such as AWS and Azure. It was found that all three of
them have comparable prices for running an Kubernetes Cluster.

12.3 Kubernetes Cluster
In order to create a kubernetes cluster for every serverless framework two different Google Cloud
accounts are created with the trial credits added to them. OpenWhisk and OpenFaas both have
different system requirements when it comes to the underlying Kubernetes Cluster. In order to fulfill
these requirements we setup the following two Kubernetes Cluster in Google Kubernetes Engine as
found in table 6. As we are working from Europe it would have made more sense to choose a
European zone for the clusters to run in but as the America zones are cheaper, it is decided to go
with these instead for the prototype.

31

OpenFaas: OpenWhisk:
Control plane and Default Node
zones:

us-central1-a us-central1-a

Version: 1.25.7-gke.1000 1.25.7-gke.1000
Total size: 2 2
Machine type: e2-medium e2-medium

Table 6: Kubernetes Clusters on GKE

The clusters are provisioned through the command line interface (CLI) of Google Cloud. By
using this tool, it is possible to use a set of ”gcloud” commands to configure the clusters through
code and therefore prevent possible difference between the both install when we would be using the
GUI. The following command is ran in the CLI to install the clusters as specified in table 6:

gcloud container clusters create openwhisk \
--cluster-version=${k8s_version} \
--zone=us-central1-a \
--num-nodes=2 \
--machine-type=e2-medium \
--no-enable-cloud-logging \
--disk-size=30 \
--enable-autorepair \
--enable-network-policy \
--scopes=gke-default,compute-rw,storage-rw

When having a closer look at this command we can see that the cluster name is set in the first
line, in this case OpenWhisk but we will be creating one for OpenFaas as well. On the first line the
kubernetes version of the cluster can be specified. At the time of writing, the default stable version
is 1.25.7-gke.1000 on Google Cloud which we will be using. The zone specifies in which geographical
zone we want our cluster to be running. In order to save costs we will be using a US zone instead of
an EU zone for this prototype. The number of nodes in the cluster will be 2 in order to start off with.
This can be re-scaled up and down in a later stadium. The machine type is e2-medium (consisting
of 2vCPUs and 4GB memory). This is the minimal recommend size for OpenWhisk. OpenFaas can
run on less as well but in order to make sure both installations are running on comparable clusters,
we decided on the e2-medium machine type. We will not be using logging of the Google Cloud
environment. Disk size is 30GB as recommended to run OpenFaas and OpenWhisk. When a node
stops or breaks, we want it to automatically restart en repair the cluster. Therefore, we enable the
auto-repair variable. The last two lines apply some policies to the cluster to make sure it has the
correct rights to work correctly.

After some minutes waiting, both clusters are up and running and we are ready for installing the
FaaS platforms as described in the next section.

32

12.4 OpenFaas installation
After both clusters are configured and running in the Google Cloud, it is time to start installing
the chosen FaaS frameworks on it. In order to install the packages needed for OpenFaas we will be
using a package manager for Kubernetes. In this case this is HELM [44]. We can install the HELM
package manager with the following command:

$ curl -fsSL -o get_helm.sh https://raw.githubusercontent.com/helm/helm/main/
↪→ scripts/get-helm-3

$ chmod 700 get_helm.sh
$./get_helm.sh

At the time of writing, we are using helm version v3.11.3. which is the most recent stable release.
After the HELM is installed we can install OpenFaas using the helm charts.

Specifically for OpenFaaS there is another piece of software that helps installing and provides
many other useful pieces of software such as kubectl. This is called Arkade and is from the same
developer as OpenFaas. We install Arkade in a similar fashion as helm:

$ curl -sLS https://get.arkade.dev | sudo sh

After Arkade is installed, we use it to install OpenFaas as well:

arkade install openfaas --load-balancer

When we look briefly over this command we can find that we want to install the OpenFaas in
the namespace ”openfaas”. We want to use a LoadBalancer to expose the OpenFaas services to the
world so we pass an extra flag. Other options for this flag include using an NodePort or Cluster IP
with port-forwarding. This is mostly used in development environments and less suitable for our
prototype as it needs to connect to other endpoints and does not support TLS.

Now that OpenFaas sussecfully installed on our cluster we need to obtain some information
about the installation. In order to connect to OpenFaas we will need to have the IP address of the
external load balancer that exposes OpenFaas to the internet. We obtain this information through
the following commands:

kubectl get svc -o wide gateway-external -n openfaas

When accessing the IP through a web browser we are prompted to enter the username and
password which can be obtained through the following command:

kubectl get secret -n openfaas basic-auth -o jsonpath="{.data.basic-auth-password
↪→ }" | base64 --decode; echo

When entering all the information we can see a successful deployment of OpenFaas on our cluster
and we can start deploying some example functions through the OpenFaas ”function store”. This
can be found in figure 11.

33

Figure 11: The OpenFaas Web interface after successful deployment.

On this page a tip to use the faas-cli can already by found. faas-cli is the Command Line
Interface (CLI) tool to manage and deploy functions on OpenFaas. We will not be installing this
on the Google Cloud CLI but on the computer where the functions are developed. In this way,
functions can easily be build and deployed from the Integrated Development Environment (IDE) to
the OpenFaas environment.

We install the faas-cli with the following command:

curl -sSL https://cli.openfaas.com | sudo sh

By default, faas-cli will try to connect to an OpenFaas instance running as localhost on the same
machine. Since we are working with a cloud hosted OpenFaas instance we need to tell faas-cli where
we want it to connect to. We can do that by specifying the URL:

export OPENFAAS_URL= "IP of OpenFaas Instance"

Now that the tool knows where the OpenFaas instance is located we need to login to it in order
to execute commands. We use a command that logs in and saves a file to /.openfaas/config.yml for
following sessions:

echo -n "Password of the installation here" | faas-cli login --username admin --
↪→ password-stdin

That is it for the OpenFaas installation for now. In the upcoming sections we will be looking at
extending this installation with logging, metrics and dashboarding as well as deploying functions to
the framework.

34

12.5 OpenWhisk installation
In a similar fashion to the installation of OpenFaas we will be using HELM again to install tha
chart for OpenWhisk. Where the installation of OpenWhisk differs from OpenFaas is at the step of
installation where OpenFaas uses Arkade. For OpenWhisk we will be using so called YAML files as
OpenWhisk is not part of the Arkade environment and does not have a similar tool.

YAML is human-readable data serialization language sued to write configuration files. In this
file we can apply certain variables to the environment which we would like to configure. For this
specific case we will be using the following configuration:

whisk:
affinity:

enabled: false
toleration:

enabled: false
invoker:

options: "-Dwhisk.kubernetes.user-pod-node-affinity.enabled=false"
ingress:

apiHostName: openwhisk.elstenit.nl
apiHostPort: 443
apiHostProto: https
type: Standard
domain: openwhisk.elstenit.nl
tls:

enabled: true
secretenabled: true
createsecret: true
secretname: openwhisk-ingress-tls-secret
secrettype: kubernetes.io/tls
crt: GENERATED KEY
key: GENERATED KEY

annotations:
kubernetes.io/ingress.class: nginx
kubernetes.io/tls-acme: true
nginx.ingress.kubernetes.io/proxy-body-size: 0

There are a couple of line in this file which need some explanation such as the term ”affinity”,
”toleration” and the ”invoker”line. As we want an initial version for this prototype with only one
worker node. This saves us the configuration of worker nodes and control plane nodes for our
OpenWhisk environment. In the future we can still change these parameters as our environment our
prototype grows. The other lines are mostly concerned with configuring the ingress for accessing our
environment. This is done through the elstenit.nl domain as we already have access to this domain
but it would work with every other name too.

In order to create a value for the ”crt” and ”key” we van use a command to create hem in base64:

openssl req -newkey rsa:2048 -nodes -keyout tls.key -x509 -days 365 -out tls.crt
cat tls.key | base64
cat tls.crt | base64

35

12.6 Logging, Metrics and Dashboarding
In order to make sure that the platform is performing as expected and delivering a qualitative inte-
gration it is important to monitor and log the performance of the services, cluster and the functions.
In the current architecture this is done through the open-source logging software Prometheus [45]. As
Prometheus is compatible with Kubernetes as well as OpenFaas and OpenWhisk this is considered
as a good candidate for logging metrics.

Now that we have a tool for logging our metrics we want an additional piece of software in order
to transform these metrics into useful insights. This is done by creating a performance dashboard
through the open-source software Grafana [46]. In the following sections we will have a closer look
at the installation and setup of these frameworks.

12.6.1 Logging and metrics OpenFaas

With the basic installation of OpenFaas as described in section 12.4 comes Prometheus pre-installed
and configured to collect logs. This saves us the hassle of manually configuring it. Therefore we will
dive straight into the installation of Grafana dashboarding. In order to install Grafana we will use
the kubectl run command to deploy a container image to a Kubernetes pod on our cluster:

kubectl -n openfaas run \
--image=stefanprodan/faas-grafana:4.6.3 \
--port=3000 \
grafana

We are using a pre-made docker image which works with and is configured to OpenFaaS. In
this specific command we are specifying that the service should be available at port 3000 but this
can be changed as well. To access this container with the Grafana service we need to expose it
to the internet through a nodeport or loadbalancer. For ease of use and to save us the hassle of
port-forwarding we will be using the loadbalancer:

kubectl -n openfaas expose pod grafana \
--type=LoadBalancer \
--name=grafana

In order to test the Grafana dashboard we need to find the IP-address it is accessible on:

kubectl -n openfaas get svc grafana

36

When accessing this IP with the corresponding Grafana Port we set earlier, it will display the
login field. When we login with the standard credentials, we can find our first Grafana dashboard
displaying our OpenFaas metrics. This dashboard can be seen in figure 12.

Figure 12: The OpenFaas Grafana dashboard.

37

12.7 Adapting the Java Application
In order to run Java on the serverless environments, certain changes need to be made to the code.
OpenFaas and OpenWhisk both provide Java Templates that can be used to quickly develop an
serverless compatible application. In order to check whether or not the iPaas components are able
to be ran on the serverless frameworks we will be using a basic template that has some specific iPaaS
dependencies. The template is provided by the CTO of eMagiz and specifically for this project has
been stripped of unnecessary actions. The following code will be ran on the two test environments:

package com.emagiz.boot.application;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.ImportResource;

@SpringBootApplication
@ImportResource("classpath:emagiz-flows/*.xml")
public class eMagiz {

public static void main(final String[] args) {
SpringApplication.run(eMagiz.class, args);

}
}

The interesting part in this Java excerpt is that it uses an external Extensible Markup Language
(XML) file to add content to the program. By doing this, content of the code can change dynamically
based on the design of an integration by the end-user in the portal. In this example we will be using
the following XML file content that has bee built as a Hello World kind of application:

<?xml version="1.0" encoding="UTF-8"?>
<beans xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.

↪→ springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/integration http://www

↪→ .springframework.org/schema/integration/spring-
↪→ integration.xsd

http://www.springframework.org/schema/integration/http http
↪→ ://www.springframework.org/schema/integration/http/
↪→ spring-integration-http.xsd"

xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:si="http://www.springframework.org/schema/integration"
xmlns:http="http://www.springframework.org/schema/integration/http">

<http:inbound-gateway id="backend.receive.http" request-channel="backend.
↪→ channel.request-json" reply-channel="backend.channel.reply-json"

convert-exceptions="false" extract-reply-payload="true"
↪→ mapped-request-headers="(none)" mapped-response-
↪→ headers="(none)"

payload-expression="’{}’" supported-methods="GET" path="/
↪→ hello">

<http:header name="contentType" expression="’application/json’"/>
<http:header name="param_name" expression="#requestParams.getFirst(’

↪→ name’)"/>

38

</http:inbound-gateway>

<si:channel id="backend.channel.request-json" fixed-subscriber="false"/>

<si:json-to-object-transformer id="backend.transform.request" input-channel
↪→ ="backend.channel.request-json" output-channel="backend.channel.
↪→ request-object"/>

<si:channel id="backend.channel.request-object" fixed-subscriber="false"/>

<si:enricher id="backend.transform.hello-world" input-channel="backend.
↪→ channel.request-object" output-channel="backend.channel.reply-object
↪→ ">

<si:property name="greeting" expression="’Hello, ’ + (headers[’
↪→ param_name’] ?: ’world’) + ’!’"/>

</si:enricher>

<si:channel id="backend.channel.reply-object" fixed-subscriber="false"/>

<si:object-to-json-transformer id="backend.transform.reply" input-channel="
↪→ backend.channel.reply-object" output-channel="backend.channel.reply-
↪→ json"/>

<si:channel id="backend.channel.reply-json" fixed-subscriber="false"/>

</beans>

Additionally there will be an infra XML file to handle the authentication of users so not everyone
can use the application:

<?xml version="1.0" encoding="UTF-8"?>
<beans xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.

↪→ springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/security http://www.

↪→ springframework.org/schema/security/spring-security.
↪→ xsd"

xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:sec="http://www.springframework.org/schema/security">

<sec:http>
<sec:intercept-url pattern="/**" access="isAuthenticated()"/>
<sec:csrf disabled="true"/>
<sec:http-basic/>

</sec:http>

<sec:authentication-manager>
<sec:authentication-provider>

<sec:user-service><!-- password for all users is: 1 -->
<sec:user name="user1" password="{pbkdf2}

↪→ d9ab16838c7ed10e92a9216d1df621027325c88f6ea3bbb2207cb766d59a245f19bdd128662ed8c1
↪→ " authorities="ROLE_USER"/>

39

</sec:user-service>
</sec:authentication-provider>

</sec:authentication-manager>

</beans>

In this specific prototype we will be using the IDE IntelliJ since that is an IDE which is widely
used and the author is familiar with. Depending on which of the two framework we want to deploy
to, the procedure is a little different so we will be describing them both briefly here:

40

12.7.1 Deploying a function to OpenFaaS

In order to deploy a basic Java function to OpenFaaS, certain changes need to be made to the
function in order for it to be compatible with OpenFaaS. OpenFaas has templates available for
many programming languages including Java. We can pull these in to find out what OpenFaaS
specific elements need to be in the application. We will be using the faas-cli tool for this:

$ faas-cli template pull

Now we can create a project while using these templates:

$ faas-cli new --lang java11 emagiz-test --prefix="<your-docker-username-here
↪→ >"

This command will create a new project including necessary files. One of these files will be a YAML
file with OpenFaaS configuration parameters. By filling in the prefix parameter in the previous
command, the imagename will be prefixed with your Docker username needed for compiling the
image. There are other elements in the YAML file as well:

version: 1.0
provider:

name: openfaas
gateway: <ip-of-openfaas-cluster-here>

functions:
emagiz-test:

lang: java11
handler: ./emagiz-test
image: elstenit/emagiz-test:latest
labels:

com.openfaas.scale.min: "1"
com.openfaas.scale.max: "5"
com.openfaas.scale.factor: "20"

Most parameters in this file are pretty self-explanatory but the labels at the end are specifically
interesting. These will limit the scaling of an OpenFaas Application with the minimal and maximal
amount of replicas for a certain function and the factor by which it should scale. We will have a
closer look at this in the validation section.

For the sake of testing we can deploy this function to our OpenFaas Cluster by the following
command:

$ faas-cli up -f emagiz-test.yml

This command combines the build, push and deploy function into one. Since we are using local
docker for building, docker needs to be running and logged in via:

$ docker login

After successful deployment, the functions van be invoked through the web-interface or the CLI.

41

12.7.2 Deploying a function to OpenWhisk

In order to deploy a function to the Open-Whisk framework, a similar method is used as with
OpenFaas. OpenWhisk has a CLI tool called wsk for interacting with OpenWhisk services. The tool
can be downloaded from the GitHub repository and by adding the folder to the system PATH it is
accessible from all CLI tools on a computer.

In order to connect to our cluster it is important to tell wsk where it is and authenticate with
it. This can be done through the following command where we add the correct IP address of our
OpenWhisk installation and a authentication token:
$ wsk property set --apihost <master_node_public_ip>:31001
$ wsk property set --auth <TOKEN>

In order to test if the connection is set up successfully, we can list the installed packages within
the OpenWhisk installation by the following command:
$ wsk -i package list /whisk.system

When building Java functions for deployment to OpenWhisk, certain requirements need to be
met before the Java function van run on OpenWhisk. OpenWhisk is built around the JSON Ob-
ject as thus needs parameters parsed as a JavaScript Object Notation (JSON) object and it will
will return a response in the form of a JSON Object. In order to do this is uses the library:
com.google.gson.JsonObject.

An example of such a Java file correctly configured for use with OpenWhisk can look like:
import com.google.gson.JsonObject;

public class Hello {
public static JsonObject main(JsonObject args){

String name;

try {
name = args.getAsJsonPrimitive("name").getAsString();

} catch(Exception e) {
name = "stranger";

}

JsonObject response = new JsonObject();
response.addProperty("greeting", "Hello " + name + "!");
return response;

}
}

In order to deploy our own functions to OpenWhisk we need to create so-called actions. We can
compile the Java file for that as follows:
$ javac Hello.java
$ jar cvf hello.jar Hello.class

And finally, the specific OpenWhisk action is created by the following command:
$ wsk action create helloJava hello.jar --main Hello

Finally, the function can be invoked through wsk by the following command:
$ wsk action invoke helloJava --result

42

13 Validation
In this chapter we will be using the prototype to test our remaining requirements. Therefore we will
be using two main methods: Quantitative research and qualitative research. First the quantitative
research by comparing the metrics and data generated by the prototype to the baseline situation
based on non-scaling environments. Requirements that are tested by this method:

• FR2. Based on the workload of the system, the infrastructure must scales up to accommodate
the increased workload.

• FR4. For the new architecture, a cost estimation must be made as the new solution should
lead to a similar or lower cost than the current architecture.

Additionally, an interview will be conducted with the product manager and developer to gather
a qualitative insight into the requirements that are hard to validate using purely quantitative data.
This is an interview with both the product manager and the developer in order to encourage dis-
cussions in case of a disagreement on a statement. The requirements tested by this method are:

• FR1. The new architecture with serverless should reduce the workload for DevOps teams
where infrastructure needs to be configured and maintained.

• NFR5. The new architecture must take security and isolation (of client environments) into
consideration.

13.1 Scaling en Costs
In order to test remaining requirements as defined in chapter 9 and which could not be answered
by literature research a quantitative research is conducted. The research is done by building the
prototype as described in chapter 12 and setting up particular tests on it for auto-scaling (section
13.1.1) and the costs (section 13.1.2). These tests and their results are explained in the following
sections:

13.1.1 Autoscaling

First, requirement FR2. Based on the workload of the system, the infrastructure must
scale up to accommodate the increased workload. is tested. This is done by deploying an
example function to the OpenFaaS and OpenWhisk deployments in the Google Cloud and firing a
certain amount of API calls to it. When looking at the OpenFaaS installation, we are using the
CE (Community Edition) for prototyping. This version only supports one type of autoscaling [47].
This way of auto-scaling reads the usage of a function in RPS (Requests Per Second) from the
Prometheus Metrics service in order to know when it needs to fire an alert to the API gateway and
start a new instance. Synchronous as well as asynchronous calls to a function count towards this
method of auto-scaling. The rule when this alert is fired is configured in the Prometheus config file
of OpenFaaS:

alert.rules.yml: |
groups:

- name: openfaas
rules:
- alert: APIHighInvocationRate

expr: sum(rate(gateway_function_invocation_total{code="200"}[10s])) BY (
↪→ function_name) > 5

for: 5s

43

labels:
service: gateway
severity: major

annotations:
description: High invocation total on "{{ "{{" }}$labels.function_name

↪→ {{ "}}" }}"
summary: High invocation total on "{{ "{{" }}$labels.function_name{{

↪→ "}}" }}"

We can see here that if the amount of requests for a certain function exceeds 5 for 10s an alert is fired
to the API Gateway. Based on these alerts, we can configure rules how to handle. The amount of
instances serving the request should grow towards the maximal amount as configured in the YAMl
file of the example application. The scale factor is the amount of instances by which the system
should be scaled up. For this test we configured the YAML file for OpenFaas as follows:

version: 1.0
provider:

name: openfaas
gateway: <ip-of-openfaas-cluster-here>

functions:
emagiz-test:

lang: java11
handler: ./emagiz-test
image: elstenit/emagiz-test:latest
labels:

com.openfaas.scale.min: "1"
com.openfaas.scale.max: "5"
com.openfaas.scale.factor: "20"

This means that per alert coming from the alertmanager we will be scaling with 1 extra instance to
a maximal amount of 5. The pro version of OpenFaas does support scaling to zero (it does not leave
any ’warm’ replicas to immediately start processing the request) but as the Community Edition does
not we do not have to worry about that for now and we will keep a minimum of 1 replica active all
the time.

In order to monitor the scaling, we will be using the Grafana dashboard as described in section
12.6 which shows the amount of replicas per function over a certain amount of time. The variable we
are interested in for the replicas is generated by the API gateway and called ”gateway service count”.

In order to fire a big amount of requests to the function, we will be using the Postman API
platform [48]. By configuring a so-called ”runner” we can iterate a request multiple times over
a certain period. We configure the runners to send 2000 iterations of a request to our serverless
function. We set the delay to 0 to create as many requests as possible in a short timespan. The
request per runner are not send in bulk at once but after each other as soon as a response is received
back. Another benefit of using this method is that it will calculate the average response time of the
function which is of interest for testing our prototype as well. For loading our function we will be
running 5 runners with 2000 iterations each sending a total of 10000 requests to one function. After
the runners finish they will tell how long they have been running so we can calculate the Requests
Per Second (RPS) and see if the function scales accordingly.

The results are as follows, the 5 times 2000 iterations of the Postman Runner are all started
within 300ms from each other and take all 5 minutes (4 minute 56 seconds to 4 minute 58 seconds)
to fully complete the 2000 iterations of each runner. This means that each runner fired about 2000
requests in 297 seconds resulting in around 6.74 request per second per runner. Multiplying this
by 5 results in a total of around 34 request per second fired at the function. This can also be seen

44

in figure 13 retrieved from our Grafana dashboard connected to the OpenFaaS Prometheus. We
can see that the rate scales up and when all 5 of the runners are running constantly the increase
flattens down. As the framework is configured the launch 1 additional replica per alert, we expect
a steady increase in replicas as soon as the rate increases. This graph can be seen in figure 14 and
we find that the framework scales to our maximal amount of replicas of 5. As soon as the workload
drops, the replicas are scaled back down to our minimum of 1. As a result we can conclude that the
OpenFaas framework successfully passes the requirement ”to automatically scale in case of increased
workload.

Figure 13: Function Rate when testing OpenFaaS Scaling.

Figure 14: Replica Scaling when testing OpenFaaS Scaling.

45

On the other hand we have the OpenWhisk installation, this framework scales different from
OpenFaaS and we cannot specify a min and max amount of instances for a specific function. Open-
Whisk has similar to OpenFaas a controller (OpenFaas calls this the API gateway) which takes
requests and puts them in Kafka topics. OpenWhisk than has invokers which subscribe to these
topics and listen for new messages. The invokers take the request and deploy it to a worker that
actually executes the action. When there is no available worker, the invoker instantiates a new one
in order to serve the request. As long as the resources are not maxed out or do not hit any configured
limits, new workers can be instantiated by an invoker. In order to make this more clear we can have
a look at figure 15.

Figure 15: Flow of a request in OpenWhisk

In the image we see a controller which receives every message. Based on which function the
message needs to reach, it is put on a certain Kafka topic. This means that one controller can direct
messages to multiple different functions and their Kafka Topics.

What happens with OpenWhisk is that as long as the resources of the cluster are not maxed
out, invokers will be taking the messages from the Kafka topics and activate actions for them on
workers. As a result we cannot speak of a replica count as with OpenFaaS as it is just a number of
activations of actions. Therefore, there is a difference in the used metrics to prove scaling.

In order to tune this scaling, there are some parameters which can be changed from the default
in order to create a correct way of scaling for a specific installation. In this example we will be
deploying a basic API application similar to the one deployed to the OpenFaas environment. In
order to scale this application the parameters are tuned as follows:

limits:
actionsInvokesPerminute: 60
actionsInvokesConcurrent: 30
triggersFiresPerminute: 60
actionsSequenceMaxlength: 50
actions:

46

time:
min: "100ms"
max: "5m"
std: "1m"

memory:
min: "128m"
max: "512m"
std: "256m"

concurrency:
min: 1
max: 1
std: 1

log:
min: "0m"
max: "10m"
std: "10m"

These parameters are mainly there to prevent an overloading of the cluster. Lets briefly look
over the important ones. actionsInvokesPerminute limits the maximum amount of invocations per
minute, actionsInvokesConcurrent limits the maximum concurrent invocations, actionsSequence-
MaxLength indicates the maximum sequence length of an Action., triggersFiresPerminute limits the
maximum triggers invoked per minute.

Since there is no specific parameter for when to scale up (like in OpenFaaS, the scalefactor), we
will not change these for testing this requirement.

47

13.1.2 Costs

To wrap up the quantitative research for the validation we will have a look at the cost estimation of
running the serverless to answer requirement FR4. For the new architecture, a cost estimation
must be made as the new solution should lead to a similar or lower cost than the current
architecture. It is very hard to make an exact guess on the costs of running a serverless iPaaS.
Therefore we will be making an educated guess based on some assumptions. We will be using only
on-demand pricing since it is difficult to estimate the dynamic workload and therefore fit a contract
over on-demand pricing. For pricing a serverless framework running in a Kubernetes Cluster we
have two cost components. One static component and one dynamic component. The static costs
are costs that are independent of the load and data processed. The dynamic cost component is
dependent of the load and data processed by the system and therefore grows with the usage of the
framework.

We will first start by looking at the static cost component: Google Kubernetes Engine applies a
$ 0.10 per cluster per hour management fee resulting in around € 70.00 per month. Then there are
some networking fees that include services such as static IPs, loadbalancers and DNS.

The largest part of the costs is the Computing and Storage costs. These can be considered
dynamic since they change based on the load and traffic processed by the cluster. After running our
prototypes for 1 month in the Google Cloud we found the monthly costs of both frameworks to be
as in figures 16 and 17.

Figure 16: Costs of OpenWhisk on GKE

For OpenWhisk this totals to € 131.77 for one month. For OpenFaas the cluster had a problem
at the beginning of May where due to a configuration mistake the OpenFaaS installation did not
run anymore and needed a new installation. Therefore, we will be looking at the average for the
rest of the month and use this to calculate the monthly costs under normal use. We find a total of
€ 152,02 for the OpenFaaS cluster.

In order to get an idea of the costs when using the framework in production for an iPaaS we
estimate the amount of currently used machines fitting on the serverless framework. Due to confi-
dentiality, we cannot publish any exact current numbers on costs of the eMagiz iPaaS infrastructure.
However, in previous research within eMagiz [12] some numbers were made publicly available. In this
research it became clear that current VM’s have very varying utilisation based on the integrations
and it’s use.

Since the environments investigated in the research on Kubernetes [12] are still valid, we will
be using them here to make an educated guess on the costs. The first environments has a CPU

48

Figure 17: Costs of OpenFaaS on GKE

utilisation of around 6% on average during the day with peak times hitting just over 70% CPU
usage from 18:00 until 0:30. This environment consisted out of 32 CPU cores and 128GiB RAM.

The second environment had during weekdays an CPU usage between 8 and 18%. In weekends
this averaged at 4%. Some peaks around 55% were observed but these were very short. RAM usage
averaged around 50 %. This environment consisted out of 16 CPU cores and 64GiB RAM.

The last environment looked at in the Kubernetes research [12] had an average CPU usage of
around 8 and 9%. The RAM usage was around 80 and 71% with no spikes in RAM or CPU. It
consisted out of a 16 CPU cores and 64GiB RAM.

Overall we can state that the 3 environments are having more CPU and RAM available than
they on average need. When we multiply the usage to the amount of CPU and RAM available in
the set we know the amount of actually used CPU and RAM of the integration environments.

• For environment 1: 21 hours a day of 6 % CPU usage (21 * 0.06 * 32 = 40.32), 3 hours a day
of 70 % CPU usage (3 * 0.7 * 32 = 67.2). This means that an average of 4.48 core/hour is
needed to run this environment.

• For environment 2: 5 days a week 24 hours a day of 13 % CPU usage (5 * 24 * 0.13 * 16 =
249.6), 2 days a week 24 hours a day of 4 % CPU usage (2 * 24 * 0.04 * 16 = 30.72). This
means that an average of 1.67 core/hour is needed to run this environment every day.

• For environment 3: 24 hours a day of 8.5 % CPU usage (0.085 * 16 = 1.36) This means that
an average of 1.36 core/hour is needed to run this environment.

This means that when we combine the 3 environments we would need 9 cores to run them.
Of course, when all environments peak during the same time, this would not be enough but when
there are many environments combined in the serverless framework the changes of peaking at the
same time are pretty low while having enough room for scaling up a certain environment during
peak times. When looking at the GKE machine types, an e2-highcpu-16 would be suitable for this
with 16 cores CPU when purely looking at CPU. When we include RAM, e2-highmem-16 might
be a better choice as it still has 16 cores of CPU power but it has 128 GiB of RAM instead of
16. Monthly costs of this instance would be $527.8776 instead of the $24.45719 of the e2-medium
instance in the prototype. Total dynamic costs of the old situation would be around $1550 [12].
Dynamic costs of the new situation can be guessed around $560 when no peaks occur at the same

49

time. This educated guess provides a benefit of the new architecture with FaaS over the baseline
Architecture when taken into consideration that is is based on comparable usage of CPU and RAM.

It must be taken into consideration that these estimations are very rough as they are based on
numbers and statistics of currently developed integrations. In order to have these integrations work
on a FaaS basis, an overhaul of the code and architecture needs to be done and different CPU and
RAM usages may occur.

As our prototype was made in the Google Cloud and we can take the billing reports from there,
previous numbers are based on Google Cloud Costs. Since eMagiz is running their infrastructure
in the AWS or Amazon Web Services Cloud we will be comparing the pricing of these services in
order to validate whether they can be assumed comparable. In order to do so, a table 7 has been
created where we will list the costs of the used Google Kubernetes Engine (GKE) components and
their AWS counterparts and their costs. Overall, AWS is slightly more expensive than the Google
Cloud when looking at the costs of the compute instances. Costs taken for this table are from June
2023 and zones are chosen in America (us-central1-a for GKE and use-east-1 for AWS).

GKE: AWS:
Kubernetes Cluster Management Fee $0.10/hour $0.10/hour
Compute Engine (e2-medium,
t2.medium) $0.033503/hour $0.0464/hour

Table 7: Comparison of costs between Google Cloud and Amazon Web Services

Of course, cloud infrastructure costs are not the only costs that need to be taken into consid-
eration when looking at moving towards a serverless based infrastructure. The costs for actually
adapting the code and functions to work on a serverless framework as well as the continuing main-
tenance costs for keeping the cluster and framework updated need to be looked at. In order to get
a better understanding of these costs, a section about costs is included in the qualitative section at
13.2.3.

50

13.2 Workload and Security
As it hard to quantitatively measure every requirement, we conducted a qualitative research as
well. This research focused on the workload for the DevOps teams as well as the security and
isolation possibilities within the new solution. In order to gain an insight into whether or not these
requirements are fulfilled, a semi-structured interview is conducted with the product manager and
a developer of eMagiz iPaas solution. Both persons are invited to the same interview in order to
encourage discussions in case of a disagreement amongst them.

During this interview, the prototype of both serverless frameworks is demonstrated including the
process of deploying a new function to the frameworks. Since both persons are already familiar with
setting up and managing a Kubernetes cluster this is not explicitly demonstrated.

13.2.1 Deployments and Maintenance

After the demonstration, the interviewees are asked on their opinion about the process of deploying
a function to the serverless frameworks. Compared to the current architecture based on virtual
machines, this process is a big improvement in terms of time and complexity. Where previously, a
new machine needed to be configured and spinned up they now deploy just the function to the already
existing serverless framework directly from their IDE. OpenFaas is based around Docker images so
even the current Constant Integration / Constant Delivery (CI/CD) can easily be implemented
and not a lot of changes need to be made from the current workflow of deploying images. For
OpenWhisk, this is a bit different which is less in favour compared to OpenFaaS. As OpenWhisk
uses Java compiled actions over Docker Images it has no out-of-the-box support for an image storage
and therefore a CI/CD based on that. It has possibilities to work straight from GitHub but this would
mean that the current workflow needs a turnaround and therefore is the less favourable option of the
two and would not lead to a big decrease in workload compared to the current situation according
to the interviewees.

Secondly, is it asked how maintenance intensive they predict the proposed solution to be in
terms to managing the current VPC based machines. Currently, machines are updated and sized
manually per environment. In case of a multi-tenant solution only the Kubernetes Cluster including
the serverless framework needs to be updates. Scaling is done automatically for both frameworks
which saves the hassle of redeploying customers on new machines when their integrations grows
over time. Overall, the interviewees think it will lead to less maintenance time but it is hard to
add a figure in terms of time or hours to it. A side-note to add to this is that by moving to such
an architecture, more is happening in a kind of blackbox way and therefore it might be harder to
find and solve problems in case any arise. Therefore, the metrics and dashboarding functionality is
important and both frameworks do support these tools.

13.2.2 Security & Isolation

In order to validate whether or not the serverless frameworks are adequately equipped to provide
security and isolation measures we looked at the available technologies that are often used to provide
this. First, communication to and from the serverless framework, both frameworks are compatible
with a ingress controller. This controller provides the capabilities to access the services from outside
the cluster. This controller provides services such as Transport Layer Security (TLS) termination
and loadbalancing. By providing this Secure Sockets layer (SSL) functionality we can make sure that
only authorized senders are actually sending messages to the framework by using certificates. Due
to the limited time, we only looked at manually created certificates but both frameworks should
be compatible with certificate managers as cert-manager for Kubernetes [49]. Additionally, it is
mentioned that the cluster itself needs to be hardened but this can be done through Kubernetes
Security best practices. OpenFaas has explicit compatibility with role-based authentication control
(RBAC) which is a big plus since most developers are already familiar with this according to the

51

interviewees. Overall, OpenFaas has better documentation on the possibilities of security and hard-
ening. OpenWhisk might have some of these functions as well but it is less documented for sure
making it harder to implement.

In the case of a multi-tenant environment, isolation of data from different tenant is important.
First, we look at OpenFaas which runs it’s functions in individual pods to which rules can be
assigned that there is no communication across multiple simultaneously running functions. A similar
process happens for OpenWhisk which spins up a docker container for every function where isolation
can be enforced too. In case of isolation requirements, both frameworks do pass according to the
interviewees.

13.2.3 Costs

In order to say something useful about the costs of adapting the current applications and code to
a serverless approved variant we ask the interviewees to make a guess towards the amount of time
that is needed to move from the baseline to this solution. This can be considered a one-time cost
as it is not an ongoing process and in case of new functions being added to the platform, there is a
benefit as identified in the section on workload above.

A change in costs also occurs when looking at the maintenance of this solution. As already
mentioned in the part about workload, both interviewees foresee less maintenance compared to the
current architecture but it is hard to give an exact number in terms of hours or costs. In future
research it would be good to create a full-scale environment in order to gain more insight in the
amount of maintenance required by the new architecture implementing serverless technology.

52

13.3 Overview of tested requirements
In order to conclude our validation of the solution we will have a final look at the requirements as
set in chapter 9. In table 8 we explain in which chapter which requirement was tested during this
research and whether or not this requirement has been fulfilled.

Requirement: Where has it been tested? Outcome:
FR1. The new architecture with server-
less should reduce the workload for DevOps
teams where infrastructure needs to be config-
ured and maintained.

In chapter 13 Validation Partly fulfilled

FR2. Based on the workload of the system,
the infrastructure must scale up to accom-
modate the increased workload.

In chapter 10 Serverless Solu-
tions and chapter 13 Validation Fulfilled

FR3. When there is no demand for a cer-
tain function to be ran, the machine(s) should
scale to zero.

In chapter 10 Serverless Solu-
tions and chapter 13 Validation

Not fulfilled (Not
possible in free edi-
tions used in proto-
type.)

FR4. For the new architecture, a cost esti-
mation must be made as the new solution
should lead to a similar or lower cost than
the current architecture.

In chapter 13 Validation Partly fulfilled

NFR1. The serverless solution should have a
license that allows an iPaaS provider to use it
in a commercial product.

In chapter 10 Serverless Solu-
tions Fulfilled

NFR2. The serverless solution must be well-
maintained / actively developed.

In chapter 10 Serverless Solu-
tions Fulfilled

NFR3. The serverless solution should be
used by some big companies in order to prove
a certain magnitude within the field.

In chapter 10 Serverless Solu-
tions Fulfilled

NFR4. The serverless solution should na-
tively support the programming language
(Java) as often used by standard iPaaS solu-
tions.

In chapter 10 Serverless Solu-
tions Fulfilled

NFR5. The new architecture must take secu-
rity and isolation (of client environments) into
consideration.

In chapter 13 Validation Fulfilled

NFR6. The chosen solution should be open-
source to provide CSP-agnostic capabilities.

In chapter 10 Serverless Solu-
tions Fulfilled

NFR7. The chosen solution must be compat-
ible with Kubernetes container orchestration
framework.

In chapter 10 Serverless Solu-
tions and chapter 13 Validation Fulfilled

NFR8. The chosen solution should be com-
patible with iPaaS typical triggers.

In chapter 10 Serverless Solu-
tions and chapter 13 Validation Fulfilled

NFR9. The chosen solution could be having
a business support in order to work through
high-impact problems.

In chapter 10 Serverless Solu-
tions

Partly fulfilled
(OpenFaaS does,
OpenWhisk does
not.)

Table 8: Overview of which chapter tests which requirement anf if it was fulfilled or not.

53

14 Conclusion & Discussion
In this chapter we will be briefly looking back at the answering of the different sub questions. Than
we will draw a conclusion from these answers that will contribute in answering the main research
question: How can serverless be implemented for an iPaaS solution in order to improve scalability
and reduce infrastructure costs? Additionally, we will elaborate on the limitations and contributions
of this research. The chapter is concluded with recommendations for the company and some ideas
for future research on the topic of serverless within an iPaaS.

14.1 Revisiting the Research Questions
In this section we will be answering the research questions defined in chapter 7.4. In this research
we had a closer look at the suitability of serverless for use in iPaaS environments and how an iPaaS
provider could implement serverless. In order to answer this question, it was important to look at
certain requirements such as portability/vendor lock-in, scaling, security and costs. We will shortly
look at the sub questions of this research before continuing to answer the main research questions.

The first subquestion was SQ1. What cloud models are currently in use and what
defines them? (SaaS, PaaS (iPaaS) and IaaS)? which was answered through a literature
research in chapter 8. Overall, there are three main cloud models: SaaS, PaaS and IaaS. They
mainly differ in the amount of management that is done by the provider instead of by the enduser.
With SaaS, only the data in the application is managed by the user. The application, runtime,
OS, Servers, Networking etc. are all managed by the CSP. With PaaS, the application and data
is configured and managed by the user, all other components are managed by the Cloud Service
Provider. Lastly, the IaaS is a form where only the infrastructure including virtualization, servers,
storage and networking is provided by the Cloud Service Provider. Everything else is managed by
the user. Popular CSP’s such as AWS, Google Cloud and Microsoft Azure are examples of an IaaS.
The company where this research is conducted, eMagiz, is an example of a special kind of PaaS as it
delivers a platform where customers can build applications specifically targeted toward integrations.
This type of PaaS is called an integration-Platform-as-a-Service (iPaaS).

The second subquestion was SQ2. What are the state-of-the-art serverless technolo-
gies/frameworks that currently exist and in what way do they differ from each other?.
In order to answer this question, serverless technology is divided into two main types. Namely
Backend-as-a-Service (BaaS) which is mainly concerned with additional services of CSP’s that do
not need or need less management from the user. Secondly, the term Function-as-a-Service (FaaS)
is introduced which is the type we are mostly interested in in this research. FaaS makes it possible
to run on-demand functions without the hassle of managing the underlying infrastructure and ex-
tra services such as scaling. A research was carried out to find all state-of-the-art serverless FaaS
technologies. As a result we constructed a list with commercial and open-source serverless technolo-
gies. The commercial technologies include AWS Lambda, Google Cloud Functions and Microsoft
Azure Functions. Besides these commercial variants, we looked at the open-source versions as well
to prevent vendor lock-in. This resulted in the following frameworks: Apache OpenWhisk, Fission,
Knative, Kubeless, Nuclio and OpenFaaS. Besides the difference of open-source vs commercial the
technologies also differ on available documentation, user base, license and much more. This is de-
scribed in detail in chapter 10. This list is compared to the requirements as set in the following
subquestion to help decide on the correct technology to use in the proposed solution.

The third subquestion was not specifically literature related but was answered by an expert in-
terview session. The question was SQ3. Which functional and non-functional requirements
are in place for a serverless architecture to ensure similar business functionality, a de-
crease in costs and DevOps but increase scalability for an iPaaS solution?. This question

54

serves as an input for the requirements to test the available technologies against. Since there are
many possible solutions it is important to find out requirements that are of importance for when
such a technology is used within an iPaaS solution. This is done by interviewing multiple persons
individually through a semi-structured interview. As a result, a list of requirements was constructed
and prioritized via the MoSCoW method. This can be found in detail in chapter 9. The most im-
portant ”must requirements” resulting from the interviews are concerning the requirement that the
environment needs to auto-scale in case of an increased workload, the framework or technology must
be well-maintained and/or actively developed, the technology must be compatible with Kubernetes
container orchestration framework and the technology must provide measures to provide security
and isolation. In the following subquestion we will be answering how the different technologies and
frameworks actually fulfil these selected requirements.

The fourth subquestion was SQ4. How do the state-of-the-art serverless technolo-
gies/frameworks fulfill the elected requirements? which was answered through literature
and prototyping. Following sub question 3, a list of functional and non-functional requirements was
constructed. Some of these requirements could already be answered through literature research such
as the ability to work with Kubernetes or the requirement of having a license that allowed for use in
a commercial product. Other requirements needed a small-scale prototype of the serverless solution
to actually test the requirement. This prototype and the validation done with it can be found in
chapter 12 and 13. Overall it can be stated that the OpenFaas framework does fulfill most of the
requirements and OpenWhisk follows closely. The main difference between these two frameworks is
in terms of documentation and ease of use when looking at security and isolation.

The fifth sub question concerns the architecture an iPaaS solution. Specifically the infrastructure
that enables the functioning of an iPaaS platform. That resulted in SQ5. What is the prevailing
architecture of an iPaaS infrastructure? The architecture model was created on the basis of a
research at eMagiz. By interviewing and investigating their platform through internal documenta-
tion, the underlying technologies for providing the services of an iPaaS became clear which served as
input for the baseline architecture. The architecture was created with the ArchiMate 3.1 reference
in mind. It was found that the baseline architecture revolves around 3 main business processes,
namely: setting up an (new) integration, managing an integration and processing customer’s data
through an integration. In the baseline architecture these processes are handled in the application
layer by a VPC and Infra Cloud as well as additional services provided by the portal service of the
iPaaS.

The sixth sub question is SQ6. How can the state-of-the-art serverless technologies/frame-
works be implemented into the current typical iPaaS infrastructure?. In this question the
prevailing architecture is adapted in order to implement serverless technologies. A closer look is
taken at what components can be re-used from the prevailing architecture and which changes need
to be made in order to facilitate the serverless framework. This can be found in chapter 11. In this
chapter it was found that the main changes in architecture are actually occurring in the business
process where data of customers is actually processed. The portal for building and designing an
implementations is unchanged as well as the tools used to manage the integration. In order to create
the new architecture, the integration which is currently ran in a customer specific VPC is replaced
by a multi-tenant Kubernetes Cluster running an open-source FaaS framework to process functions
on request and with auto scaling capabilities.

The last sub question is SQ7. What measurable improvements on scalability and costs
of infrastructure does the new architecture for implementing serverless technologies
into iPaaS bring?. In order to answer this question, the prototype was validated by doing various
tests on it. These test varied from stress-testing the environment in order to prove and test the
auto-scaling functionality as well as making a cost estimation after running the environment for a
while. The results that were obtained showed that the autoscaling functionality worked as predicted
and that by auto-scaling the environment the workload could be handled without wasting resources
as in the baseline architecture. Additionally an improvement in costs was visible as there were less

55

costs for wasted resources.

56

Overall, the answers of these sub-questions contributed to the answering of the main research
question: MQ1. How can serverless be implemented for an iPaaS solution in order to
improve scalability and reduce infrastructure costs?. To describe the answers shortly, the
opensource frameworks OpenWhisk and OpenFaas can be used in a Kubernetes Cluster to run an
iPaaS environment while still maintaining portability. This adaption of a serverless framework leads
to less wasted resources as the functions of multiple integrations can all be ran on the same cluster
instead of spinning up a VPC for every customer. This change therefore leads to a improved scala-
bility and reduction of infrastructure costs while maintaining other requirements such as preventing
vendor lock-in and have compatibility with iPaaS typical triggers. The suggested architecture works
with tooling for logging and metrics that eMagiz is already familiar with, this helps in a transition
as the developers do not need to learn new tools. The biggest impact of this change is that every
integration needs to consist of a series of functions instead of consisting out of a full applications.
This would require a certain amount of reprogramming the current Java applications.

14.2 Limitations
During this research, certain choices were made which can act as a limitation. These limitations
should be taken into consideration when interpreting the findings and implications of this study.

• Temporal Constraints: Frameworks and technologies used and evaluated in this research are
active and available in the period from the October 2022 until March 2023. Choices in this
research are made based on the maturity and status of this time period. However, due to
the rapidly evolving nature of serverless computing it might be possible that new technologies
and frameworks might be more applicable or advantageous in the near future for a similar
use-case. Therefore, it is important to note that the findings and conclusions of this study are
constrained by the technological landscape as it existed during the research period and that
subsequent advancements may provide alternative solutions for achieving similar objectives.

• In this research, only open-source FaaS frameworks were considered for the prototype and
the following validation phase because of the ”must” requirements where the solution must be
cloud-agnostic. As most iPaaS platforms do actually focus on one specific CSP, this limitation
could be mitigated by having this requirement as a could instead of a must. In that case,
the commercial variants of FaaS by parties such as AWS, Google and MS Azure could be
validated by a prototype as well and this may yield different results. Especially when looking
at cost reduction and maintenance as this takes out the maintenance factor which open-source
solutions bring.

• This research focused on the implementation of FaaS within an iPaaS where the starting point
is the as-is or baseline architecture. The results of the research are therefore influenced by
earlier design choices of the iPaaS used in this case study instead of starting with a complete
blank paper.

14.3 Contributions
In this section, the contributions made by this research to both research and practice are discussed.
The findings and outcomes of this study have provided valuable insights and advancements in the
following areas:

14.3.1 Contribution to research

This research focused on giving guidelines for implementing serverless technology, specifically FaaS,
into an iPaaS platform. Currently, the scientific field of serverless is limited with only 1384 results in
Scopus at the end of 2022. As in this research multiple forms of serverless technologies are compared

57

with each other it results in a state-of-the art overview of where open-source serverless frameworks are
at nowadays and which are still looking to be promising participant(s) in the open-source serverless
market.

Overall, this research contributes to research by providing:

• A state-of-the-art comparison of available serverless FaaS technologies including commercial
and open-source solutions. Certain factors such as if the technology is actively developed, has
a license to use it commercially and if it has a large user-base with big companies amongst
their users to prove a certain magnitude are compared and contrasted in order to form an
overview. This information can be useful for other research to help deciding on the use of a
certain technology for testing or investigating.

• A baseline architecture of a prevailing architecture infrastructure of an iPaaS platform is
constructed. This architecture can be used in other researches about iPaaS technologies to
serve as in input or example of an possible architecture of an iPaaS platform. Additionally, it
can be used to compare the architecture to other PaaS Providers.

• The research provides guidelines for adopting serverless technology into an iPaaS platform
including tool selection and installation description. Aditionally, these guidelines hold for
other PaaS products with a similar baseline architecture.

• In this research we explored the potential use of FaaS within the context of an iPaaS infras-
tructure. As a result, during this research multiple follow-up questions arose which are further
explained in section 14.5 on future research.

14.3.2 Contribution to practice

The contributions to practice have similarities with the contributions to research. For example when
looking at possible candidates for a serverless project, this research can be used as a contribution
towards the final selection when similar requirements of this project are in place.

Overall, this research contributes to practice by providing:

• Guidelines for implementing serverless FaaS technology into an iPaaS platform including a
reasoned choice for the used framework based on the information retrieved in the time of this
research (2022-2023). Additionally, tools for additional services such as metrics and logging
are touched upon including its configuration.

• A architecture of the baseline and an architecture with serverless technology implemented
which can be used by the company to better understand their infrastructure and the connection
between the different technologies and tools used.

14.4 Recommendations
During this research it was found that specifically open-source frameworks are relatively new and
still on the rise and therefore lack extensive support through a community of users. As a result,
we would not yet recommend to go full open-source serverless even tough the benefits of serverless
technology in the field of iPaaS are described and present in this research. It should be noted that
as commercial variants are left out of the validation as they void the requirement on vendor lock-in,
these are more widely adopted and do possess the support of a larger community base. Overall, it
would be wise to keep following future advancements in the market of serverless FaaS technologies
and see how the support and wide adaptation grow the maturity of such technologies. By doing
this, it is likely to start changing the iPaaS platform’s architecture in a way to support these new
technologies as soon as possible and start to benefit from the improvements these technologies bring.
Additionally, we would recommend to lower the vendor lock-in requirement prioritization wise. As

58

currently most parts of the platform are already in running on AWS services it would be wise to look
into the possibilities that this CSP brings when looking at FaaS services. Eventually, eMagiz could
look into running the FaaS services simultaneously on another commercial variant such as Google
of Microsoft to cater to the client not wanting to connect to AWS.

lastly, we would like to encourage eMagiz to start looking into different pricing models. Currently,
the product is licensed on a per integration basis without taking into consideration the actual
amount of data that is processed by the integration. By moving towards an automatically scaling
environment, doors are opened toward a pay-per-use pricing model where the customers actually
pay for the amount of data that is processed by the integration.

14.5 Future Research
During this research, we gained valuable insights into the applicability of serverless FaaS technologies
in the field of iPaaS. However, due to resource and time constraints it is not possible to investigate
every aspect of the suggested solution and thus possible directions for future research were identified.
This section outlines potential future research directions to enhance the understanding, adoption,
and evolution of serverless FaaS within an iPaaS platform.

Because of time constraints, a prototype and validation where made with test functions and
test data specifically designed for this research by the iPaaS provider in order to test whether the
technology would work with functions used within the platform. To get a better insight and possibly
discover more information on costs and compatibility it would be wise to perform a large scale test
with real data processed by the platform. Possibly, running in a mirror configuration to see whether
the new architecture would be a suiting fit for the iPaas Provider. In order to do this, current data
’pipelines’ within the platform need to be adopted for use with a system based around functions
instead of around complete applications. After successful adaption to functions, one could start
processing production data and compare the performance to the old situation.

During this investigation, the input and testing were done with one iPaaS provider due to time
constraints. In order to validate whether or not the same results and conclusion are applicable for
other iPaaS providers as well, testing needs to be done with these providers. Even tough, most
providers are offering the same basics, the extra tooling can differ from provider to provider and can
influence the choice of architecture and technology.

This research only focused on the application of serverless FaaS technology within iPaaS envi-
ronments. It might be possible that this technology is applicable to other cloud models as well such
as SaaS. This might be especially interesting for environments that have to deal with big peaks in
the workload such as bulk data processing products. In order to prove this generalisation, additional
research needs to be done.

As mentioned in the limitations section, only open-source serverless technologies were taken into
consideration for the prototype and validation part of the investigation due to a prevention of vendor
lock-in through commercial variants. It is possible that a commercial variant of FaaS might actually
yield better results in terms of scaling and cost reduction. Therefore, it would be interesting to test
commercial variants against the open-source variants tested in this research.

Another possible direction for future research might be around looking at the possibilities of
FaaS technologies within an iPaaS when starting with an empty canvas instead of starting with
a baseline architecture as currently implemented by the company. As all design choices can be
optimized around the application of FaaS instead of already made design choices from the baseline
architecture, this may yield different results compared to the result of this research.

Another aspect which was encountered during this investigation was that a lot of the investigated
serverless frameworks had not been actively developed/maintained over the last couple of years.
Even tough, the serverless market is still on the rise when looking at the amount of scientific articles
recently written about it and the rising application in pratice. It might be interesting to research
on success factors of open-source serverless frameworks and why others are not successful anymore.

59

60

References
[1] A. Rahman, A. Luis, L. Ferreira, and M. Albano, “Message oriented middleware with qos

support for smart grids,” 07 2022.

[2] A. Modi, “Iaas vs. paas vs. saas,” Jun 2021. [Online]. Available: https://dev.to/cloudtech/
iaas-vs-paas-vs-saas-41d2

[3] “Spring and serverless.” [Online]. Available: https://spring.io/serverless

[4] Y. Li, Y. Lin, Y. Wang, K. Ye, and C. Xu, “Serverless computing: State-of-the-art, challenges
and opportunities,” IEEE Transactions on Services Computing, 2022.

[5] “Openwhisk documentation.” [Online]. Available: https://openwhisk.apache.org/
documentation.html#documentation

[6] N. Ebert, K. Weber, and S. Koruna, “Integration platform as a service,” Business and Infor-
mation Systems Engineering, vol. 59, no. 5, pp. 375–379, 2017.

[7] Y. Lu, “Industry 4.0: A survey on technologies, applications and open research issues,” Journal
of Industrial Information Integration, vol. 6, pp. 1–10, 2017.

[8] L. D. Xu, E. L. Xu, and L. Li, “Industry 4.0: state of the art and future trends,” International
Journal of Production Research, vol. 56, no. 8, pp. 2941–2962, 2018. [Online]. Available:
https://doi.org/10.1080/00207543.2018.1444806

[9] M. C. Zizic, M. Mladineo, N. Gjeldum, and L. Celent, “From industry 4.0 towards industry 5.0:
A review and analysis of paradigm shift for the people, organization and technology,” Energies,
vol. 15, no. 14, 2022. [Online]. Available: https://www.mdpi.com/1996-1073/15/14/5221

[10] S. El Kadiri, B. Grabot, K.-D. Thoben, K. Hribernik, C. Emmanouilidis, G. von
Cieminski, and D. Kiritsis, “Current trends on ict technologies for enterprise information
systems,” Computers in Industry, vol. 79, pp. 14–33, 2016, special Issue on Future
Perspectives On Next Generation Enterprise Information Systems. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0166361515300142

[11] T. Keyzer and M. D. Tebbens, “Netbeheerders: Stop met zonneparken daar waar nauwelijks
vraag naar stroom is,” Feb 2023. [Online]. Available: https://nos.nl/nieuwsuur/artikel/
2465631-netbeheerders-stop-met-zonneparken-daar-waar-nauwelijks-vraag-naar-stroom-is

[12] M. Woudstra, “Designing a container management solution to improve flexibility and
portability, and reducing cost for ipaas solutions.” May 2022. [Online]. Available:
http://essay.utwente.nl/90612/

[13] S. Eismann, J. Scheuner, E. V. Eyk, M. Schwinger, J. Grohmann, N. Herbst, C. L. Abad, and
A. Iosup, “The state of serverless applications: Collection, characterization, and community
consensus,” IEEE Transactions on Software Engineering, vol. 48, no. 10, pp. 4152–4166, 2022,
cited By :2.

[14] A. Ivanov, “Kubernetes vs. serverless: When to use and how to choose?” Jun 2021. [Online].
Available: https://dysnix.com/blog/kubernetes-vs-serverless-part-2/

[15] “Serverless framework,” Mar 2022. [Online]. Available: https://en.wikipedia.org/wiki/
Serverless Framework#:∼:text=Serverless%20supports%20all%20runtimes%20offered,2015%
20under%20the%20name%20JAWS.

61

https://dev.to/cloudtech/iaas-vs-paas-vs-saas-41d2
https://dev.to/cloudtech/iaas-vs-paas-vs-saas-41d2
https://spring.io/serverless
https://openwhisk.apache.org/documentation.html#documentation
https://openwhisk.apache.org/documentation.html#documentation
https://doi.org/10.1080/00207543.2018.1444806
https://www.mdpi.com/1996-1073/15/14/5221
https://www.sciencedirect.com/science/article/pii/S0166361515300142
https://nos.nl/nieuwsuur/artikel/2465631-netbeheerders-stop-met-zonneparken-daar-waar-nauwelijks-vraag-naar-stroom-is
https://nos.nl/nieuwsuur/artikel/2465631-netbeheerders-stop-met-zonneparken-daar-waar-nauwelijks-vraag-naar-stroom-is
http://essay.utwente.nl/90612/
https://dysnix.com/blog/kubernetes-vs-serverless-part-2/
https://en.wikipedia.org/wiki/Serverless_Framework#:~:text=Serverless%20supports%20all%20runtimes%20offered,2015%20under%20the%20name%20JAWS.
https://en.wikipedia.org/wiki/Serverless_Framework#:~:text=Serverless%20supports%20all%20runtimes%20offered,2015%20under%20the%20name%20JAWS.
https://en.wikipedia.org/wiki/Serverless_Framework#:~:text=Serverless%20supports%20all%20runtimes%20offered,2015%20under%20the%20name%20JAWS.

[16] B. Kitchenham, “Procedures for performing systematic reviews,” Keele, UK, Keele Univ.,
vol. 33, 08 2004.

[17] F. Kamei, I. Wiese, C. Lima, I. Polato, V. Nepomuceno, W. Ferreira, M. Ribeiro, C. Pena,
B. Cartaxo, G. Pinto, and S. Soares, “Grey literature in software engineering: A critical review,”
Information and Software Technology, vol. 138, 2021.

[18] C. Miyachi, “What is ”cloud”? it is time to update the nist definition?” IEEE Cloud Computing,
vol. 5, no. 3, pp. 6–11, 2018.

[19] K. Hashizume, E. B. Fernandez, and M. M. Larrondo-Petrie, “A pattern for software-as-a-
service in clouds,” in Proceedings of the 2012 ASE International Conference on BioMedical
Computing, BioMedCom 2012, 2012, pp. 140–144.

[20] “Cloud-apps en platform.” [Online]. Available: https://www.salesforce.com/nl/products/

[21] “Zakelijke oplossingen voor stroomlijning en samenwerking — google workspace.” [Online].
Available: https://workspace.google.com/intl/nl/business/

[22] “Invoice and accounting software for small businesses,” Jun 2022. [Online]. Available:
https://www.freshbooks.com/

[23] 2022. [Online]. Available: https://www.emagiz.com/

[24] 2022. [Online]. Available: https://boomi.com/platform/

[25] M. Pezzini and B. Lheureux, “Integration platform as a service: Moving integration to the
cloud,” Mar 2011. [Online]. Available: https://www.gartner.com/en/documents/1575414

[26] T. Neifer, D. Lawo, P. Bossauer, and A. Gadatsch, “Decoding ipaas: Investigation of user
requirements for integration platforms as a service,” in Proceedings of the 18th International
Conference on e-Business, ICE-B 2021, 2021, pp. 47–55.

[27] M. Boisvert, S. J. Bigelow, and W. Chai, “What is iaas? infrastructure as a service definition,”
Dec 2020. [Online]. Available: https://www.techtarget.com/searchcloudcomputing/definition/
Infrastructure-as-a-Service-IaaS

[28] J. Li, S. G. Kulkarni, K. K. Ramakrishnan, and D. Li, “Analyzing open-source serverless
platforms: Characteristics and performance,” in Proceedings of the International Conference
on Software Engineering and Knowledge Engineering, SEKE, vol. 2021-July, 2021, pp. 15–20.

[29] E. Marin, D. Perino, and R. Di Pietro, “Serverless computing: a security perspective,” Journal
of Cloud Computing, vol. 11, no. 1, 2022.

[30] C. Kidd and S. Wickramasinghe, “Serverless vs function-as-a-service (faas): What’s the
difference?” Aug 2021. [Online]. Available: https://www.bmc.com/blogs/serverless-faas/

[31] V. Yussupov, J. Soldani, U. Breitenbücher, A. Brogi, and F. Leymann, “Faasten your decisions:
A classification framework and technology review of function-as-a-service platforms,” Journal
of Systems and Software, vol. 175, 2021.

[32] I. Mohedas, S. R. Daly, R. P. Loweth, L. Huynh, G. L. Cravens, and K. H. Sienko, “The use
of recommended interviewing practices by novice engineering designers to elicit information
during requirements development,” Design Science, vol. 8, p. e16, 2022.

[33] W. Adams, Conducting Semi-Structured Interviews, 08 2015.

62

https://www.salesforce.com/nl/products/
https://workspace.google.com/intl/nl/business/
https://www.freshbooks.com/
https://www.emagiz.com/
https://boomi.com/platform/
https://www.gartner.com/en/documents/1575414
https://www.techtarget.com/searchcloudcomputing/definition/Infrastructure-as-a-Service-IaaS
https://www.techtarget.com/searchcloudcomputing/definition/Infrastructure-as-a-Service-IaaS
https://www.bmc.com/blogs/serverless-faas/

[34] P. Achimugu, A. Selamat, R. Ibrahim, and M. Mahrin, “A systematic literature review of
software requirements prioritization research,” Information and Software Technology, vol. 56,
06 2014.

[35] R. Rabbah, “The state of openwhisk,” Mar 2018. [Online]. Available: https://medium.com/
@rabbah/the-state-of-openwhisk-ae8c129e8a48

[36] “Knative is an open-source enterprise-level solution to build serverless and event driven
applications.” [Online]. Available: https://knative.dev/docs/

[37] S. Liao, “Boomi’s planned improvements to its hosting environ-
ment,” Oct 2021. [Online]. Available: https://community.boomi.com/s/article/
dellboomisplannedimprovementstoitshostingenvironment

[38] “Supported cloud regions.” [Online]. Available: https://docs.workato.com/datacenter/
datacenter-overview.html#data-center-locations

[39] J. Arnowitz, M. Arent, and N. Berger, “Effective prototyping for software makers,” Effective
Prototyping For Software Makers, 01 2007.

[40] “Amazon elastic kubernetes service (eks),” https://aws.amazon.com/eks/, 2023.

[41] “Google kubernetes engine (gke),” https://cloud.google.com/kubernetes-engine, 2023.

[42] “Azure kubernetes service (aks),” https://azure.microsoft.com/en-us/products/
kubernetes-service/, 2023.

[43] “Free kubernetes,” https://github.com/learnk8s/free-kubernetes, 2023.

[44] “Helm - the package manager for kubernetes.” [Online]. Available: https://helm.sh/

[45] Prometheus, “Prometheus - monitoring system and time series database.” [Online]. Available:
https://prometheus.io/

[46] “Grafana: The open observability platform.” [Online]. Available: https://grafana.com/

[47] “Openfaas autoscaling for the community edition.” [Online]. Available: https://docs.openfaas.
com/architecture/autoscaling/#legacy-scaling-for-the-community-edition-ce

[48] “Postman api platform.” [Online]. Available: https://www.postman.com/

[49] “Cloud native certificate management - x.509 certificate management for kubernetes and
openshift.” [Online]. Available: https://cert-manager.io/

63

https://medium.com/@rabbah/the-state-of-openwhisk-ae8c129e8a48
https://medium.com/@rabbah/the-state-of-openwhisk-ae8c129e8a48
https://knative.dev/docs/
https://community.boomi.com/s/article/dellboomisplannedimprovementstoitshostingenvironment
https://community.boomi.com/s/article/dellboomisplannedimprovementstoitshostingenvironment
https://docs.workato.com/datacenter/datacenter-overview.html#data-center-locations
https://docs.workato.com/datacenter/datacenter-overview.html#data-center-locations
https://aws.amazon.com/eks/
https://cloud.google.com/kubernetes-engine
https://azure.microsoft.com/en-us/products/kubernetes-service/
https://azure.microsoft.com/en-us/products/kubernetes-service/
https://github.com/learnk8s/free-kubernetes
https://helm.sh/
https://prometheus.io/
https://grafana.com/
https://docs.openfaas.com/architecture/autoscaling/#legacy-scaling-for-the-community-edition-ce
https://docs.openfaas.com/architecture/autoscaling/#legacy-scaling-for-the-community-edition-ce
https://www.postman.com/
https://cert-manager.io/

Appendices
A Interview Script
Serverless Technology within an iPaaS Interview Script Julian Elsten November 2022

A.1 Introduction
What is the research about: In this research the applicability of serverless technologies for iPaaS
solutions in order to improve scalability and reduce operational cloud costs.

What will be done with the answers of this interview: The answers of this interview are used
for the scientific research into constructing a method for implementing serverless technology for the
field of iPaaS providers. The answers will not be made publicly available to anyone else other than
the researcher and the supervisors of the research.

Goal of this interview: To come up with specific functional and non-functional requirements for
the final solution that incorporates serverless technology

Ask for permission to record the interview and make sure to state the given permission when
recorder is running.

A.2 About the interviewee/stakeholder
1. What is your name and what is your function title/role?

2. What are your responsibilities when looking at the iPaaS solution?

3. To whom are you responsible for performing these tasks?

4. What systems or software do you program on, on a regular or daily basis?

A.3 About the iPaaS solution
1. Can you describe the current architecture (Network and software stack) of the iPaaS solution?

2. What (Open Source) Frameworks are currently in use within the eMagiz Stack?

3. How are these frameworks/solutions chosen?

4. What are important considerations for choosing a certain framework/solution?

5. When looking at performance, are there specific numbers that need to be met for certain
processes within the iPaaS solution? (Speed, latency, scalability etc?)

6. Are there any legal requirements or other regulatory requirements that need to be met?

7. How would you describe the current workload on DevOps/Cloud technology?

8. How is security and isolation taken care of within the iPaaS solution? (And how is serverless?)

A.4 Serverless
1. Can you describe the term “serverless” in your own words?

2. Would (part of) the code of the iPaaS solution do you think would benefit of running serverless
the most?

3. Which team would need to maintain the serverless components of the infrastructure?

64

A.5 Finances
1. How are cloud infrastructure costs monitored?

2. Are Cloud infrastructure costs typically very stables from month to month or do they have
peaks and lows?

3. What are the typical clouds costs per month and what services are delivered for these costs?

4. How is pricing setup for the clients of the iPaaS solution?

5. What is a client exceeds bandwidth/storage limits?

6. What do you think of a pay per use pricing model?

7. How can serverless costs be best estimated?

A.6 Other systems on the market
1. Are you familiar with other systems available in the iPaaS market?

(a) What is their size?

2. How does their Architecture differ from yours architecture?

3. Why does it differ from yours?

4. Do you know of serverless plans for the future in any of the competition products?

5. Do other systems program in java as well or mostly in other languages?

A.7 Conclusion
1. Are there any other questions you think I should be asking, or anything else you want to tell

me?

2. Can I contact you again if I need to ask some follow-up questions?

3. Would you want to participate in a review of the requirements later on?

65

	Executive Summary
	Acknowledgements
	Table of contents
	Table of Figures
	Table of Tables
	List of acronyms
	Introduction
	Background
	eMagiz challenges
	Problem Statement
	Research Questions
	Structure

	State of the art
	Method Literature Review
	Search Strategies
	SQ 1. (What cloud models are currently in use and what defines them? (SaaS, PaaS (iPaaS) and IaaS)?)
	SQ2. What are the state-of-the-art serverless technologies/frameworks that currently exist and in what way do they differ from each other?)

	Cloud Models
	SaaS
	PaaS
	iPaaS
	Iaas

	Serverless Technology
	What is serverless?
	FaaS
	BaaS
	(Possible) Drawbacks
	Commercial Cloud Service Providers with Serverless services
	Open-Source Serverless Frameworks
	Interoperability across cloud vendors

	Requirements
	Method Expert Interviews
	Interviewees
	Costs
	Licenses
	Security
	Usability
	Workload
	Summary
	Functional Requirements
	Non-Functional Requirements

	Serverless Solutions
	OpenWhisk
	OpenFaaS
	Knative
	Fission
	Summary on remaining serverless frameworks

	Architecture
	Method Solution Design/Architecture
	Baseline Architecture of iPaaS
	The business processes
	Applications and Technology
	Overview of baseline architecture

	Target Architecture of iPaaS
	Gap Analysis
	Scalability
	Resource Efficiency / Cost optimization
	Resiliency
	DevOps Automation
	Overview of required steps

	Prototype
	Prototype
	Cloud Provider
	Kubernetes Cluster
	OpenFaas installation
	OpenWhisk installation
	Logging, Metrics and Dashboarding
	Logging and metrics OpenFaas

	Adapting the Java Application
	Deploying a function to OpenFaaS
	Deploying a function to OpenWhisk

	Validation
	Scaling en Costs
	Autoscaling
	Costs

	Workload and Security
	Deployments and Maintenance
	Security & Isolation
	Costs

	Overview of tested requirements

	Conclusion & Discussion
	Revisiting the Research Questions
	Limitations
	Contributions
	Contribution to research
	Contribution to practice

	Recommendations
	Future Research

	Appendices
	Interview Script
	Introduction
	About the interviewee/stakeholder
	About the iPaaS solution
	Serverless
	Finances
	Other systems on the market
	Conclusion

