
MSc Applied Mathematics
Final Project

PDE Based Neural Networks
for Arterial Hemodynamics
Estimation

Jente van Werven

Chair: prof. dr. Christoph Brune
Daily Supervisor: dr. Jelmer M Wolterink
Daily Supervisor: Julian M. Suk, MSc
External Member: dr. Felix L. Schwenninger

August, 2023

Mathematics of Imaging and AI (MIA)
Faculty of Electrical Engineering,
Mathematics and Computer Science,
University of Twente



CONTENTS

1 Introduction 6
1.1 Structure of this report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background 9
2.1 Deep learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Learning on Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Graph neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Graph-Based Methods on Arterial Manifold . . . . . . . . . . . . . . . . . . . . . 12
2.4 Mesh based methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Diffusion Net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 Shortcomings of DiffusionNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.7 PDEs on surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.8 Self-Adjoint Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.9 Discretizing the PDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.10 Solution Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.11 Fourier Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.12 Fourier on Meshes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Methods 26
3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.1 Arterial Mesh Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.2 Feature Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.3 Kernel Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Structure of the data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Wave Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 Spectral Wave Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 Network Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.6 Network Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.6.1 Oversmoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.7 Representational Power of Networks . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.8 Choice of Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.9 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Results 44
4.1 WSS estimation: quantitative results . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 WSS estimation: qualitative results . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 Blood Pressure Prediction: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4 BP: Qualitative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.5 Frequency reconstruction experiments . . . . . . . . . . . . . . . . . . . . . . . . 49
4.6 Oversmoothing and Dirichlet energy . . . . . . . . . . . . . . . . . . . . . . . . . 51

2



5 Discussion 53
5.1 Interpretation of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Limitations of the Spectral Wave Kernel . . . . . . . . . . . . . . . . . . . . . . . 54

5.2.1 Numerical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2.2 Conceptual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3 General limitations of our methods . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.4 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.5 Operator Bases: Beyond the Laplace Operator . . . . . . . . . . . . . . . . . . . 61

6 Conclusion 63

3



PREFACE

I would like to thank Julian Suk for his enthusiasm and support during this project. When I ran
into a problem, you were always eager to help me, whether it was about math or other things. I
really appreciate all your effort and support in helping me complete this thesis. I would also like
to thank Jelmer Wolterink for supervising me, I enjoyed this project a lot. I learned a lot from
our meetings, and your feedback, and I want to thank you both for encouraging me to keep
improving. I would also like to thank the additional members of my graduation committee, Felix
Schwenninger and Christoph Brune, for reading and evaluating my work.

Thank you to my family for helping me through the last 7 years. Thank you to my friends, who
cheered me on and supported me when I needed it and helped me through difficult times. Thank
you to Nienke and Lucas for your emotional support throughout this project, and to Lotte, Lucas
and Jarco for proofreading my work. Thank you to the amazing and kind people I met during
my time at the UT.

4



ABSTRACT

Learning on manifolds is an important and difficult task within deep learning. In order to learn on
a manifold, it is necessary to first discretize it. Many graph and mesh based techniques overfit
to the particular discretization of the discrete representation of the manifold. DiffusionNet [35]
1 shows multiple contemporary networks suffer from sensitivity to discretization, and proposes
spatial diffusion to define feature communication on the manifold. This makes their network less
sensitive to mesh discretization.

However, diffusion acts as a spectral low-pass filter, removing detail from the signal. Addi-
tionally, diffusion encourages local feature sharing but does not offer support for long-distance
feature sharing beyond diffusing the signal to a global mean.

We investigate the use of the hyperbolic wave equation to replace the diffusion dynamics in
DiffusionNet. We evaluate our method by learning biomedical signals dependent on local and
global manifold structure. We utilize a spectral kernel to evolve our network layers via the wave
equation, and show this kernel drops less high frequency coefficients from the signal than diffu-
sion. Finally, we derive several network architectures based on DiffusionNet using the spectral
wave kernel, and show they are outperformed by DiffusionNet.

1Sharp, N., Attaiki, S., Crane, K., & Ovsjanikov, M. (2022). Diffusionnet: Discretization agnostic learning on
surfaces. ACM Transactions on Graphics (TOG), 41(3), 1-16
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1 INTRODUCTION

Predicting and estimating signals on graphs and meshes has applications in biology [39], chem-
istry [17], and earthquake epicentre estimation [18]. Neural networks provide computationally
fast solutions while not explicitly requiring a model of the underlying signal dynamics. A graph
neural network (GNN) takes as input a graph or mesh. The GNN uses the topological structure
(edges, neighbourhoods) of the manifold that the signal lives on to learn a set of parameters
that maps to the desired output signal, via data-based training.

The message passing paradigm is a common structure for GNNs. In message passing graph
neural networks (MPNN), nodes in the graph exchange information about their features. Which
nodes are permitted to exchange information is controlled by how many edges lie between
them. For example, a 1-hop message allows neighbours to communicate their features with
each other.

This structure of communicating and updating node features via neighbourhoods works well on
graphs [17]. However, because neighbourhoods on a mesh are products of the discretization of
the surface rather than the surface itself, using neigbourhoods to define feature communication
is inconsistent. This is because there are many different ways to discretize the same surface
into a mesh. A neigbourhood on a fine mesh may enclose a smaller area than on a coarser
mesh of that same surface. Moreover, for some signals adaptive meshing is used, which im-
plies finer meshing in areas of high signal variation. Using neighbourhoods to define message
passing radius could result in overfitting to the mesh discretization [39].

Therefore, we look for a way to define the radius of information sharing on the manifold rather
than the mesh, minimizing the effect of the particular mesh discretization. One method recent
works have attempted is using a partial differential equation (PDE) to determine the information
sharing process on the manifold. Let ∆ be the Laplace-Beltrami operator, the Laplace operator
for a manifold. DiffusionNet [35] uses the heat equation, known as

∂u

∂t
= ∆u (1.1)

to define the contribution of vertices to the feature update. DiffusionNet takes as input a signal
defined on each vertex of the mesh, known as the input features. This vector is then diffused
spatially via the heat operator H(t) = e−∆t. The input features can be seen as the initial condi-
tion of the heat equation (1.1).
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Figure 1.1: As visualized on the right, diffusion operates smoothly on the manifold, a
clear advantage over the graph based method. However, further nodes have strictly
less influence than closer nodes on the convolution, suggesting a potential limitation in
long-distance feature communication. Image taken from [35] (twitter)

At the first layer of DiffusionNet, the input signal is diffused to a learned time t, which may
vary per channel. Then the spatial gradient of this diffused signal is found by a finite difference
method, and multiplied by a learned linear layer. This learned spatial gradient feature allows
the network to learn anisotropic filters. Finally, the original signal, diffused signal, and spatial
gradient feature signal are concatenated and passed through a multi-layer perceptron (MLP).

However, DiffusionNet has two shortcomings. First, the diffusion equation from a spectral per-
spective is a low-pass filter. Low-pass filters reduce the importance of high-frequency com-
ponents. These high frequency components are generally understood to be responsible for
defining detail in the signal. Using only diffusion to share vertex features may result in the
shared signal being too robbed of detail.

Secondly, from a spatial perspective diffusion simulates short-range feature communication.
Messages from distant neighbours are assigned strictly less weight than those from close neigh-
bours, making long-range feature communication difficult.

We augment DiffusionNet with the dynamics of the hyperbolic wave equation. We show this
PDE acts like a band-pass filter spectrally, and spatially allows for long-range feature commu-
nication. Specifically, we design three networks. The first is WaveNet, which structurally is
identical to DiffusionNet, but uses the spectral wave equation to propagate its features to al-
low the network to define long-range interactions. Secondly, we use a combination of the heat
and wave PDE, WaveDiffusionNet to first diffuse and then propagate the signal from a feature
channel. Our third network, the Parallel PDE Channels (PPC) evolves each feature channel
according to different PDEs and to different learned times, allowing the network to specify mul-
tiple short and long range interactions for a channel within in a single layer.

Several recent works on GNNs use the hyperbolic wave equation. These methods discretize
the PDE via implicit, explicit, a combination (known as ImEx), or multi-step methods. In con-
trast, we apply the spectral wave kernel developed for signals on graphs by [18] to evolve the
feature vector of WaveNet via the wave equation. Unlike explicit schemes, this method is sta-
ble unconditional on the timestep. Unlike implicit schemes, this method requires no large linear
system to be solved.

We test our network on a set of 2,000 synthetically generated coronary artery meshes, each
containing around 20,000 vertices. The mesh signals are the wall shear stress (WSS) and
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blood pressure (BP), both shown to be biologically relevant in assessing arterial health [42].
Both the WSS and the BP are computed via computational fluid dynamics, a way of numerically
evaluating a PDE. The WSS is influenced by local geometry, whilst the BP is caused by global
dynamics within the artery. This makes them suitable to evaluate the short and long-range in-
formation sharing capacity of our network.

We show that the spectral wave kernel produces wave-like behaviours, that are dependent on
the amount of basis vectors used in the projection. We additionally show a feature vector prop-
agated by the spectral wave kernel behaves in a wave-like manner.

We show that DiffusionNet reaches near state of the art performance on the above dataset.
Networks using the wave equation get outperformed by DiffusionNet.

1.1 Structure of this report

In chapter 2 we provide background on neural networks on graphs and meshes, as well as
theory needed to define and solve diffusion and wave equations on surfaces. We also provide
a brief introduction to spectral filtering, with focus on the intuition behind low and high frequency
components within a signal. In chapter 3, we discuss the dataset, neural network architectures
used, and evaluation metrics. We explain the experiments on estimating WSS and BP, and an
additional experiment detailing the ability of WaveNet to estimate high frequency signals. In
Chapter 4 we show our results and learned time parameters of the networks. A conclusion will
be provided in Chapter 5, and we discuss our results, including the shortcomings of the use
of the spectral wave kernel within our neural networks. We finally provide directions for future
research.
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2 BACKGROUND

2.1 Deep learning

A neural network, in its most general form, is a set of learned parameters that define a func-
tion that maps the training input to some desired output. The output is often referred to as the
label, and can take any shape: in classification, it is the class number, in segmentation it can
predict per element of the training the class it belongs to, and in regression, the most general
problem, it predicts per element a scalar or vector. We generally represent the network as a
graph, this allows us to visualize the way the network parameters are connected to one another.

Recent advancements have been made in image segmentation, language models etc. In all of
these cases, a neural network was trained using a large amount of data to make predictions
about new data.

We aim to estimate a signal on a manifold using neural networks, because evaluating a neural
network is quick, and the networks can learn any signal associated to the input mesh regardless
of whether we understand the underlying signal dynamics. However, defining a neural network
on a mesh is not trivial, because we wish to use the underlying structure of the manifold the
mesh represents.

2.2 Learning on Manifolds

Manifolds are embeddings of high dimensional spaces in low-dimensional settings. Some com-
mon manifolds are: spheres and other surfaces, the mobius strip, and RN . Being able to learn
and estimate signals living on manifolds is crucial.

One example of a complicated yet vital surface we wish to learn about are arteries. Some impor-
tant signals living on these manifolds are the blood pressure (BP) at every point on the surface,
as well as the wall shear stress (WSS) vector, again defined for every point on the surface. The
WSS is a vector that points in the direction of the stress force acting on an artery. Both the BP
and WSS are related to arterial health [42].

Ultimately, we cannot learn directly on the continuous manifold of, for example, the blood ves-
sel. This is due to computational limits and the fact that we cannot form a continuous model
in a computer simulation. Instead, the surface needs to be discretized to learn the signal. We
focus specifically on methods that discretize the manifold the data lies on into either graphs or
meshes. In our overview of current methods, we follow [7].

We first introduce prominent techniques for learning on graphs. This is followed by an example
of architectures that work well on graphs not being robust to remeshing. We then introduce
methods specific to meshes, including the key work inspiring our own investigation, DiffusionNet
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[35].

2.2.1 Graph neural networks

In a graph neural network (GNN), an input graph containing features defined on nodes and
edges is passed through several network layers. For example, for predicting whether new
edges will form between users of a social media platform, the nodes are the users, the edges
whether they are friends on the platform, and the node features could include their hobbies,
age, or geographical location. The GNNs task is then to use the information on the graph to
predict where new edges will develop between users.

Message passing neural network [17] The message passing paradigm is a strategy designed
for graph neural networks. In each layer of an MPNN, nodes may look at surrounding nodes
within a number of edge hops of them. They aggregate the features using an aggregation oper-
ator. This operator must be permutation-invariant, so that the order in which the node features
are seen does not matter. This is because there is no ordering consistent way to order the
neighbours. The node then updates its own features by passing the aggregated information
from its neighbours through a shared non-linear layer (MLP).

The most general form of GNN, the Message Passing Neural Network (MPNN), where the node
hidden state htv is updated via

ht+1
v = Ut(h

t
v,m

t+1
v ) (2.1)

mt+1
v =

(∑
j∈Nv

Mt(h
t
v, h

t
j)

)
(2.2)

where the
∑

j∈Ni
can be replaced by any permutation-invariant operator [17]. In the equation

above, Ut is some vertex update function shared for all vertices, mt+1 contains the aggregated
messages from the surrounding nodes, and Mt is a function that computes the message. The
two other major paradigms, Attentional GNNs and Convolutional GNNs can be expressed as
specific instances of MPNN.

Attentional GNN: rather than expressing fixed or learned weights relating features from one
node to another, Graph Attention Networks [43] define the weights to be a learned linear function
dependent on features of both nodes. Let hi denote the value of node i, and αij the edge weight
between node i and node j. Then the attention-based update of the feature hi is given by

hi = σ

(∑
j∈Ni

αijgj

)
, αij = a(hi, hj) (2.3)

Convolutional GNN: we can leverage the spectral convolution theorem to define node inter-
actions. This style of aggregation leads to fixed edge weights based on graph connectivity. [6]
As explained in section 2.10, a spectral transform may be defined for graphs, where V denotes
the spectral basis and Λ a matrix of eigenvalues. Then we may convolve a filter g(·) with our
signal u as

(g ∗ u) = V T g(Λ)V u (2.4)

Such networks were first popularized by [9]. Notably, the derived eigenbasis is dependent on
the mesh, and learned filters g(·) often do not represent the same information within different
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meshes [7]. For this reason, [12] uses properties of the graph wavelet transform [20], specifi-
cally the result relating the localization of a filter to the polynomial of its coefficients, to define
filters that are localized toK−hops of their central node. Recently, several works utilize wavelet
bases on graphs, inspired by the spectral graph wavelet transform designed by [20]. For a more
complete overview, we refer the reader to [7]

PDE Based: this is a loosely defined form of GNN, where the node dynamics are enforced via
PDEs rather than learned spectral filters or attention mechanisms. PDE based methods provide
both the message passing and vertex update rules for MPNN. However, it is argued in [6] that
we should see these networks as separate from MPNN. These networks provide interpretable
dynamics that evolve the features. Additionally, these dynamics do not require 1-hop or 2-hop
convolution sizes, rather, they are defined on the manifold [6]. There are several ways to de-
fine such a network, in general some non-discretized PDE operator L functions as the network
propagator:

ht = L(u, t) (2.5)

for some input feature u and hidden layer ht. PDEs are processes linking time and spatial do-
mains, and therefore a natural generalization of GCNs can be made by interpreting them within
this framework.

In [14], the authors build upon previous work [33] that explored the connection between ResNet
[21] CNNs on a grid and PDEs. They motivate searching for this connection by explaining PDEs
are well-understood and implementing networks via PDEs can have computational advantages.
Their work [14] proposes using a forward time discretization of a hyperbolic non-linear PDE and
parabolic non-linear heat equation to define network layers. Specifically, they solve the non-
linear heat equation using forward Euler and the non-linear hyperbolic wave equation using the
leapfrog method. Their network, PDE-GCN, uses a learned convex combination of both PDEs
to model its dynamics.

In [32], the hyperbolic wave equation is used to create a graph neural network that preserves
Dirichlet Energy, combating oversmoothing. Additionally, they reformulate a general GNN as
a PDE and subsequently observe that common MPNN and attentional network structures can
be related to steady states of the PDE defined by the features and layers. Let F (·) denote the
network parameters, and Xn the feature vector at layer n. Then

Xn = σF (Xn−1) (2.6)

By instead formulating their GNN via the discretized of the full PDE rather than the steady state,
the authors expect to gain access to a wider range of dynamics.

Another work related to PDEs on graphs is [2], which builds on DiffusionNet’s diffusive dynam-
ics and adapts them to a graph, where the discretization is a feature rather than a limitation. In
[2] the derivative of the heat kernel is used to achieve long-distancemessage passing on graphs.

Oversmoothing: When many layers of a GCN are stacked, the convolutional layers can lose
expressiveness, because each node in the graph carries the same feature. This phenomenon,
dubbed as ”oversmoothing”, is often proportional to the number of graph layers, and has been
linked to the spectrum of the Laplace operator. [27]

To measure oversmoothing, the Dirichlet energy has been proposed by [32]. The Mean Aver-
age Distance (MAD) may also be used, although this may be computationally unstable and is
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Figure 2.1: Visualization of curvature on manifolds and graphs, before and after edge
replacement to reduce negative curvature. Blue/red shows negative/positive quadrature.
Image taken from [41]

recommended against [31]. A comprehensive survey on the current state of oversmoothing can
be found in [31]

Solutions to the problem include different forms of normalization, as outlined in [27] and [31].
Additionally, ResNet structures can help. Finally, different forms of message passing that re-
semble continuous-time evolution of features according to dynamical systems have recently
become popular [31]

Bottleneck & Over-squashing: In some cases, such as regular message passing in a small-
world graph as highlighted in [41], the receptive field of a node i grows exponentially with the
radius of the convolution. This node receives messages from a large amount of nodes, that
need to stay in a vector of fixed size. This results in an over-squashing of features, and thus
information, in that node, making it a bottleneck. Recently, [41] has shown that edges with high
negative curvature cause bottlenecks in the graph, leading to over-squashing. They introduce
a new form of Ricci curvature for graphs to measure bottlenecks.

As a follow up, recent work has shown theoretically and empirically that inMPNNs over-squashing
is influenced by the specific structure of the message passing operator, and its effect can be
reduced by increasing the size of the hidden layers of the network. Additionally, the authors
use the idea of commute times to reason about which nodes in a graph may struggle to share
their information, and present graph rewiring, i.e. adding or removing edges from the graph, as
a potential solution. [13]

2.3 Graph-Based Methods on Arterial Manifold

GEM-CNN [19] was recently used in [39] to estimate the BP and WSS on a synthetic arterial
dataset. GEM-CNN is a mesh neural network borrowing heavily from message-passing neural
networks (MPNNs), a specific form of graph neural network (GNN).

GEM-CNN uses equivariance to the rotational group SE2 to make its message-passing opera-
tion on the mesh equivariant. An object f is equivariant to actions of a members of a group G
if f(g) =. We need equivariance to SE2 because on a mesh, vertices are connected via edges
that are based on the geometric structure of the underlying manifold. In order to have access to

12



this information, the network needs to be able to determine the angle between nodes. Because
there is no direction to call the origin, GEM-CNN takes arbitrary origins for the message-passing
step and ensures the output is equivariant to them.

However, GEM-CNN is sensitive to the specific meshing used to train the network. This can be
explained by the message passing paradigm intrinsic reliance on mesh structure to define which
nodes are permitted to exchange features. The MPNN does so via neighbourhoods, which on
a mesh can encompass very different area sizes, especially on a mesh with adaptive meshing,
where specific regions in the mesh are better approximated using more triangles. TheWSS and
BP are properties of the underlying manifold and not its discretization, thus despite GEM-CNNs
performance qualities we look for a network less sensitive to the mesh discretization.

Figure 2.2: GEM-CNN (left) and PointNet++ (right) evaluated on several remeshed artery
walls. GEM-CNN is sensitive to local mesh discretization. Figure taken from [39].

Ultimately, GEM-CNN is evidence that principles from GNNs do not always directly translate to
meshes. GNNs exploit the structure and connectivity of their graph rather than the underlying
manifold. Therefore, we investigate some networks specifically designed to estimate properties
of meshes.

2.4 Mesh based methods

Most generally, mesh based methods generalize the notion of convolution to the mesh. They
typically do this via a spatial perspective, using a patching operator to define their filter support.

A mesh defines a domain similar to a graph, where vertices contain features and are connected
via edges. However, the mesh is also a spatial structure, and we can define the distance be-
tween two vertices in a Euclidean way. Additionally, the connectivity of a mesh is geometrically
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Figure 2.3: Image of a mesh of a bifurcating artery.

defined, and only vertices that are close to each other typically form faces. Thus we have a lot
more structure to exploit in a mesh than a graph. We define a mesh as follows, taking inspiration
from [37]

Definition 2.4.1 (Mesh). A mesh is defined by M = (V, F ), where V = {v0, . . . , vn|vi ∈ R3}
is the set of vertices in R3 and F ⊆ {1, . . . , n}3 the set of faces. Faces define connections
between the vertices in V . For a triangle mesh, any f = (f1, f2, f3) ∈ F may contain at most
three vertices. Additionally, the mesh must satisfy the manifold criteria: an edge touches two
faces, a vertex must be surrounded by plane of faces, and that the mesh is oriented.

However, we still have no canonical ordering of the vertices. Suppose we desire to update any
given node on the mesh using a weighted average of only its neighbours, whilst taking into ac-
count the angles between the vertices. Then there is no way to define which direction is up a
or down, and therefore which vertex feature should receive which angle-based weight. [8]

This is an issue that has been tackled in many ways. GEM-CNN [38] defines gauge equivariant
convolution kernels. By projecting the features into the local tangent space of the node being
updated, and utilizing parallel transport to ensure that whichever arbitrary node we use to define
our origin, we still get a similar result, gauge-equivariance is achieved.

CNN: Several attempts have been made at translating CNN architectures to irregular domains
such as graphs and meshes. Geodesic CNN (GCNN) [24] uses geodesic distances to define
patches on the mesh, and uses a form of template matching to construct convolutional filters for
these patches. However, a limitation of this approach is that using the geodesic radius to define
the patch does not always result in ”topological disks” when the radius is large. [5] Building on
this, Anisotropic CNN [5] uses anisotropic diffusion to define directional patches. In anisotropic
diffusion, a tensor D(x) weights the diffusion depending on the direction and position

∂u(x, t)

∂t
= ∇ ·D(x)∇u(x, t) (2.7)

The anisotropic diffusion equation is a generalized version of the diffusion equation, and if
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D(x) = I we obtain the more conventional

∂u

∂t
= ∆u (2.8)

The heat kernel, intrinsic to the shape, does not suffer from the aforementioned issues of GCNN
as it is defined everywhere on the mesh. The anisotropic diffusion equation is incorporated into
the discretization strategy for the mesh Laplacian, and a spectral solution is used for fast com-
putation. MoNet [26] proposes a more general definition of a patching operator. Their particular
experiment uses Gaussian Mixture Models with learnable mean and covariance. The authors
note that Anisotropic CNN and Geodesic CNN are examples of MoNet with specific, hand-
crafted weight functions for the patch operator. MGCNN [30] defines equivariant convolution
on meshes using directional functions and template matching.

Random Walk: Additionally, some neural networks have explored a probabilistic way of ex-
ploring the mesh: rather than sharing spatial features via convolution or message passing,
MeshWalker [23] define a random walk over the mesh: at a vertex v, the walk can go to any
adjacent vertex u ∈ Nv with some probability p(v, u). This process is repeated a number of
times to simulate walking over the mesh, hence the name random walk. The sequence of ver-
tices is then processed by a Recurrent Neural Network (RNN), a type of network that excels in
analyzing sequential data.

Recently, a PDE-based mesh neural network based on the evolution of features on the surface
has emerged, called DiffusionNet [35]. This network aism to minimize the effect of mesh dis-
cretization.

2.5 Diffusion Net

In the paper on DiffusionNet [35], the authors show that a number of contemporary mesh neu-
ral networks are sensitive to discretization. Their method is built around avoiding this, by using
diffusion to define their feature update.

Rather than selecting a neighbourhood of nodes that may communicate, DiffusionNet defines
a spatial support for each feature channel on the mesh by learning a learned time parameter t.
It then diffuses those feature channels to a time t and applies a per-vertex MLP to the feature
vector. This is repeated for several layers. Because diffusion is anisotropic, spatial gradient
features are used to introduce anisotropy [35].

DiffusionNet uses the heat equation on the surface of the mesh to evolve the feature vector u
via

∂u

∂t
= ∆u (2.9)

DiffusionNet is that the diffusion occurs in a spatially motivated way, despite having a spectral
implementation. Additionally, the PDE dynamics evolve features continuously on the manifold,
rather than discretely per node. This eliminates the specific local discretization of the mesh as
much as possible.

By using the spectral theorem and previously discussed self-adjointness of the heat equation,
we may evolve a feature vector u0 to a diffused state ut via

ut = V T g(λ)V u0 (2.10)
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The use of the spectral heat kernel g(λ, t) = e−λt is intended to allow the network to select the
receptive field of the convolution. If t is large then the information sharing between vertices
of the mesh is global, if t is small the reverse is true. The time t is defined per channel, and
each channel may subsequently learn a different time. Below is a visualization of DiffusionNet’s
structure:

Figure 2.4: The above illustration, taken from [35], shows the structure of the layers
within Diffusion Net. DiffusionNet is composed of multiple Diffusion Blocks. Inside the
DiffusionNet Blocks, the input feature vector is fed to the output via skip-connection,
resembling the ResNet structure. Additionally, the input feature u is evolved by the heat
operator to a time t learned per-channel by each Block and concatenated to the skip-
connection. Finally, the evolved signal is used to construct spatial gradient features.
These three components thus form a vector of [3N, f ] withN the number of vertices and
f the dimension of the vertex features. The per-vertexMLP is then applied independently
to each node of the mesh, and the result of the MLP is added to the input signal u

DiffusionNet uses the ResNet [21] structure: given the initial feature u we learn a function resid-
ual function F (u) = H(u)− u and output

uout = F (uin) + uin (2.11)
We thus indirectly learn the mapping F (·) and form a skip-connection from uin to uout. The
ResNet [21] structure of Diffusion Net means layers are free to resort to the identity mapping,
which makes the network less likely to overfit.

Diffusion net is composed of multiple diffusion blocks, where spatial diffusion occurs on the
signal via spectral acceleration, and learned spatial gradient features create anisotropic filters.
Finally, at the end of each layer a per-vertex MLP is applied to the signal to update the hidden
signal, and at the final layer to predict the output signal.

2.6 Shortcomings of DiffusionNet

DiffusionNet’s spatial diffusion smoothes out high frequency components of the signal that
passes through its layers. This is due to the nature of the heat equation, which in the spec-
tral domain is much like a low-pass filter.

Specifically, suppose we have some output at layer 2 of the layer, u2. Then this signal is spatially
diffused, updating each node feature by averaging the signal around it. However, spectrally we
know that detailed, complicated information resides in the higher frequency eigenvectors. Dif-
fusion lowers the coefficients of those eigenvectors and therefore spatial diffusion makes the
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Figure 2.5: In the above visualization, each vertex has an associated feature vector
(f1, ..., fc), and a per vertex MLP is applied to this vertex’s feature vector. The weights of
this MLP are shared among all vertices. This also highlights the importance of message
passing in the GNN: without message passing via diffusion, the MLP would have no
notion of spatial structure of the mesh. [35]

signal more boring and less spatially variant. As we saw in section 3.2, the WSS signal is highly
spatially variant and its spectrum contains coefficients of high-frequency eigenvectors. Thus, a
low-pass filter may not provide sufficient ways to reconstruct such a signal.

Secondly, from a spatial point of view, information cannot be exchanged between two nodes
without also including the nodes between them. We can see this visually in Figure 2.7. In this
Figure we show a point source diffused to two different times. The degree to which the center
node affects those around it is directly proportional to the distance.

Within the context of DiffusionNet, in the hidden layer update the vertex features at the point
source would be updated via a weighted average of all vertices on the mesh, with the weighting
defined by how red the color of the vertex is. We see that close vertices always get higher
weights than distant vertices. DiffusionNet is only able to let distant vertices’ features affect
each other if the signal is diffused for a very long time, smoothing out any detail within it. This
lack of long-range feature communication could affect DiffusionNets ability to reconstruct com-
plicated signals on a mesh.

The authors mention in their work [35] that they acknowledge this smoothing out of features,
but believe it is sufficiently compensated for by the MLPs in the layers.
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Figure 2.6: The heat kernel g(λ) = e−λt is not capable of expressing preference to high
frequency features.

(a) Location of point source (red dot)

(b) Point source at t1 under diffusion
dynamics

(c) Point source at t2 = 2t1 under diffu-
sion dynamics

Figure 2.7: A point source is propagated via the heat kernel using a reduced basis of
256 eigenvectors. The diffusion kernel is not capable of expressing that a vertex further
away should be equally or more important than a vertex close by.
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2.7 PDEs on surfaces

In order to better understand what it means to model our neural network dynamics based on
PDEs, we discuss the heat and wave equations on a surface. We start with some definitions:

Definition 2.7.1 (Laplacian). Let V ⊆ Rn. The Laplacian ∆ of a scalar function u : V → R is
given by ∆ = −div(∇u), i.e. the divergence of the gradient of u

Since we are on a Riemannian manifold, we instead have the Laplace Beltrami operator. This
operator simplifies to the Laplacian on RN with Cartesian coordinates, and adapts the notions
of divergence of the gradient to a Riemannian manifold.

We can interpret the gradient ∇u as a way to describe the direction the function u is going.
The divergence at a point p ∈ V can be interpreted as a measure of how much of the vector
field is leaving versus entering an infinitesimal region dV . The divergence of the gradient, ∆,
represents the deviation from the value of p in a neighbourhood around p.

We could model the heat distribution of a room by, for example

∂u

∂t
= c∆u+ v(p) (2.12)

where v(p) is some potential function, possibly dependent on the spatial variable p, and c is a
diffusion coefficient, which we assume to be constant in both time and space. The equation
models the heat distribution over time, relating the time evolution of the temperature ∂u(p)

∂t at a
point p to the average temperature around it, ∆u(p).

The boundary conditions we impose on our PDE cause it to have a unique solution, if one ex-
ists. Another common PDE is the wave equation, known for its propagational dynamics. Many
different versions of wave equation exist, we choose to focus on the two-way wave equation

∂2u

∂t2
= c2∆u (2.13)

We can group second order PDEs by the behaviour they commonly exhibit as a result of their
coefficients. Three groups exist: parabolic, hyperbolic, and elliptic PDEs. The heat equation is
an example of a parabolic PDE, while the wave equation is a hyperbolic PDE. An elliptic PDE is
characterized by the smoothness of the solutions, and often the level sets of parabolic or hyper-
bolic PDEs result in elliptic PDEs. An example of an elliptic PDE is the Laplace equation∆u = 0.

2.8 Self-Adjoint Operators

Naturally, we desire a method of determining the solution to the PDEs that define our network
dynamics. To do this, we reformulate our problem in terms of functional analysis, and use the
spectral theorem to reformulate the PDE into a simpler form.

Definition 2.8.1 (Adjoint Operator). Let ⟨, ⟩ denote the inner product on the finite-dimensional
Hilbert space V, and let L denote a not necessarily bounded operator with domain V. Then the
adjoint operator denoted by L∗ is the operator that satisfies ⟨Lx, y⟩ = ⟨x, L∗y⟩

Definition 2.8.2 (Self-adjoint Operator). An operator L is said to be self-adjoint if it is its own
adjoint, i.e. L∗ = L
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A self-adjoint operator therefore commutes within the inner product

⟨Lf, g⟩ = ⟨f, Lg⟩ (2.14)

One property we can learn from this is that any eigenvalue must be real. Following [4], we let v
be an eigenvector of L with eigenvalue λ and unit length. Then

λ = ⟨Lv, v⟩
= ⟨v, Lv⟩
= ⟨Lv, v⟩
= ⟨v, Lv⟩
= λ

and the only λ that satisfy λ = λ are λ ∈ R. Crucially, if L is self-adjoint, it can be diagonalized
into

L = V ΛV T (2.15)

where Λ is the spectrum of L and V the orthogonal stacked matrix of eigenfunctions. This is
especially important in making sense of the operator exponential eL. The operator exponential
occurs naturally in semi-group theory, a branch of mathematics that can be used to organize
all solution operators of a PDE by defining the infinitesimal generator of a semi-group. More
importantly, we can use this to solve evolution equations. Many PDEs may take the form of

u(t) = eLtu0 (2.16)

When L is self-adjoint, we can diagonalize this expression using the spectral theorem, providing
us with a natural way of analyzing a certain class of PDE operators. Not all PDE operators are
self-adjoint, but a few important ones, such as the heat operator, and the Laplace operator, are.

2.9 Discretizing the PDE

Because we cannot directly work with the continuous manifold our signal is defined on, we
instead study the PDE on graphs and meshes. We first need a discrete approximation of the
Laplace-Beltrami operator. This discretization is not an artefact of FEM, rather, many different
mathematical approaches (FEM, discrete exterior calculus) arrive at the same discretization
[46]. The derivation below is based on FEM and follows [11][36]. Let us consider the Helmholtz
equation that defines the eigenfunctions of the Laplacian, with Dirichlet boundary conditions

∆u = λu (2.17)
u|∂Ω = 0 (2.18)

This is known as the strong formulation of the PDE. The strong form is difficult to solve directly, so
instead we solve the weak form, that gives us access to a class of solutions with less restrictions
on them. To obtain the weak form, we multiply with a test function ϕ ∈ H2 integrate both sides∫

Ω
ϕ∆u =

∫
Ω
ϕλu (2.19)

Applying Green’s First Identity, otherwise known as integration by parts, we obtain
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∫
Ω
∇ϕ · ∇u−

∫
∂Ω

u∇ϕ =

∫
Ω
ϕλu (2.20)

By using the boundary conditions, the integral over the boundary ∂Ω vanishes and we obtain∫
Ω
∇ϕ · ∇u =

∫
Ω
λϕu (2.21)

Via the Galerkin Approximation Theorem, we may approximate the solution to this PDE on our
mesh via the use of piece-wise linear basis functions. These functions, commonly known as
hat functions, can be differentiated to obtain a solution to the PDE. The right hand side can
conveniently be arranged into the cotangent matrix, whilst for the left hand side we are left with
a product of basis functions, which can be structured into what’s known within FEM as a mass
matrix. The discretized Helmholtz equation is then

Lu = λMu (2.22)

Unfortunately, the mass matrix is not diagonal. It has off-diagonal entries in a similar structure
to the adjacency matrix. When we use the formulation as derived from FEM, the mass matrix is
called consistent, and when we choose to approximate the mass matrix as diagonal, it is called
the lumped mass matrix. [36]
The matrix L is known as the cotangent matrix, first introduced by [29]. Many variations of the
discretized Laplace operator on a mesh exist, each with their own avdantages and disadvan-
tages. For example, the cotangent Laplacian is worse for diffusion purposes because the edge
weights are allowed to be negative for non-manifold meshes [48]. For a thorough treatment of
different discretizations and their strengths we recommend [48].

2.10 Solution Methods

Explicit Solution: based purely on the taylor expansion of the PDE around a point, both its
numerical stability and accuracy decrease as t gets larger [49]. However, the method only re-
quires a forward pass, through matrix multiplication, making it faster than the aforementioned
implicit solution at the expense of accuracy

yn+1 = yn + hf(yn, tn) (2.23)

Implicit solution: follows a similar procedure, but instead formulates the solution in an implicit
way, often requiring us to iteratively find the solution using for example a root finding method
[49].

yn+1 = yn + hf(yn+1, tn+1) (2.24)

In the implicit solution of the PDE, we discretize the time using the implicit scheme for ODE’s,
while discretizing in space using the cotangent Laplacian. The resulting matrix system is posi-
tive semi-definite (PDS), and therefore allows a Cholesky decomposition. This means it has a
faster solution than a general system of equations. Additionally, the implicit method is stable for
large time steps. However, solving with the cholesky factorization can take a lot of space on the
GPU. Additionally, this evaluation method of the PDE requires solving a system of equations
for each time t, and we solve a different PDE for each channel. Both of these issues make it
undesirable for use within a neural network.

Implicit-Explicit andMulti-Step Schemes Implicit-Explicit (ImEx) schemes aremethods of dis-
cretizing the PDE that borrow from both implicit and explicit methods. These methods attempt
to combine the unconditional stability of the implicit method with the ease of evaluation (not
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needing to solve a linear system) of the explicit method. For example, [32] uses the symplectic
Euler method to solve the wave equation with a damping term. Symplectic Euler discretizes a
pair of coupled ODEs by using the implicit method for one of them, and the explicit method for
the other, resulting in better stability. Similarly, [14] uses the leapfrog method to discretize the
wave equation describing their network dynamics.

Spectral Solution If L is self-adjoint, then by the spectral theorem L = V TΛV . Therefore,
discretizing the spatial Laplacian amounts to solving an eigenvalue problem. When the domain
does not change, this eigenbasis can be conveniently precomputed and the solution formulated
as an evolution equation. Suppose some PDE is solved by the operator eA, then

u(t) = eAt = eV
TΛV u0 (2.25)

A matrixM is Hermitian, or symmetric if A is real, if AT = A. A Hermitian matrix is a self-adjoint
linear operator, and admits a spectral decomposition. Computing the matrix exponential for a
general matrix is an expensive procedure, however for a Hermitian matrix this is simplified into

eAt = eV
TΛV t = V T eΛtV (2.26)

where V = V T is the unitary matrix of stacked eigenvectors of A and Λ the matrix of corre-
sponding eigenvalues. In the above equation, eV TΛV t = V T eΛtV due to V = V −1. Evaluating
B = eΛt amounts to elementwise exponentiation via B(i, i) = eΛ(i,i)t due to the diagonal na-
ture of Λ. Generally, if the differential operator is self-adjoint, the discretization attempts to
preserve this property [48] [46]. This is true for the Laplace operator, and the heat operator
H(t) = e−∆tH(0):

ut = e−∆tu0 = eV
T−ΛV tu0 = V T e−ΛtV u0 (2.27)

Thus, a Hermitian matrix may be decomposed into its eigenbasis, and its exponentiation is a
quick operation. This provides a computationally efficient way to map an initial state u0 to a
state ut, at the expense of precomputing the eigenbasis once (since the eigenbasis is intrinsic
to the mesh). For deep learning, such a fast way to evolve an initial state to a given time t is
essential.

2.11 Fourier Basis

The Spectral Theorem plays a key role in evolving certain PDEs. The Fourier transform is in-
timately linked with the Spectral Theorem. By extent, we can use Fourier theory to investigate
how our signal is being manipulated by, for example, the PDE dynamics. In the Fourier per-
spective, we interpret the eigenbasis of the Laplace operator as a Fourier basis. Before we
discuss the Fourier transform on meshes, we first give some intuition on how it can be used to
manipulate functions living on images.

Loosely speaking, we can define the Fourier transform for a function of two spatial variables as
follows [25]:

F (ω1, ω2) =

∞∑
n=−∞

∞∑
m=−∞

f(m,n)eiω1meiω2n (2.28)

We can interpret this as projecting our signal onto a basis of sines and cosines of varying fre-
quency ω. Crucially, these basis functions are mutually orthogonal, facilitating projection onto
them. Let n ̸= m be integers, then with the standard inner product ⟨f, g⟩ =

∫∞
−∞ f(x)g(x)dx
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⟨sin(nx), sin(mx)⟩ =
∫ ∞

−∞
sin(nx) sin(mx)dx = 0 (2.29)

This is known as the orthogonality of sines. Further, they indeed form a basis, via the Spectral
Theorem and the self-adjointness of the Laplace operator.

For simplicity’s sake, let us consider only images in greyscale, i.e. without colours. In the
discrete image domain, an image is known as a function of its pixels, let I = (0, ...,M) ×
(0, ..., N), then f(m,n) : (m,n) → [0, 1] for some (m,n) ∈ I, where f(m,n) expresses the
grayscale intensity of pixel (m,n). Then the Fourier transform can be expressed as [25]

F (p, q) =
N−1∑
n=0

M−1∑
m=0

f(m,n)e−
i2πpm

M e−
i2πqn

N (2.30)

The resulting function F (p, q) is again a function defined on I. Typically, the low frequency
components, i.e. (p, q) close to the boundary of I, contain the most information, and the high
frequent components generally contain sharp edges, details, and noise.

When we wish to manipulate the image, we can use our knowledge of where the information
resides to attenuate specific frequencies by designing a function that modulates (p, q). For
example, a low pass filter is designed to lower the weighting of high frequency components.
Because noise often resides in the higher end of the frequency, this filter is effective at denois-
ing. Similarly, a band-pass filter lowers the weighting of anything outside its particular frequency
band.

(a) Original raccoon image (b) Spectrum of raccoon image

Figure 2.8: Python implementation adapted from scipy-lectures

Consider the image of the racoon above. We may take the Fourier Transform of it, resulting in
2.8b. This frequency spectrum may be modulated as we see fit. In our case, we wish to re-
move low frequency components, so we set the coefficients of the first 10 components in the x
and y direction to zero. After applying the inverse Fourier transform we obtain the images below.
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(a) Low-pass filter (keep first 10 com-
ponents)

(b) High-pass filter (drop first 10 com-
ponents)

This is known as a high-pass filter, and the result is shown in 2.9b. We see that sharp edges
and other details are the only information preserved. We repeat this procedure but instead build
a low-pass filter that keeps only low frequency components. The resulting filtered image 2.9a
is blurry, almost all detail has been removed.

By filtering, we modulate specific basis functions corresponding to certain image frequencies.
By understanding the structure of the eigenbasis of the Fourier operator, we can reason about
which components of the signal we keep or discard.

The basis the Laplace operator defines is closely related to the Fourier basis for RN . In fact,
the Laplace operator defines a generalized Fourier basis for the manifold, in our case a mesh.
Therefore, many concepts can be transferred from traditional signal processing to our current
problem.

2.12 Fourier on Meshes

For a mesh of N vertices we define our Fourier basis V = [ϕ0, ..., ϕN ] such that

∆ = V TΛV (2.31)

via the spectral theorem. The eigenfunctions, or in the mesh domain eigenvectors by virtue of
their discretized nature, can be seen below. Note that with increasing λ we see an increase in
spatial variation of the eigenvector. This can be viewed as intrinsic to the Laplace operator: the
lowest eigenfunctions are the smoothest, where the Laplace operator is minimized.

Let f be a function defined on the vertices of a graph of N nodes, f ∈ RN . The analogue of the
Fourier transform for meshes and graphs is given by [20]

f̂(l) = ⟨ϕT
l , f⟩ =

N∑
n=1

ϕ(n)f(n) (2.32)

In other words, to find the frequency response at frequency l of our signal f we project f onto
the basis vector associated with λ. The inverse transform is similarly defined

f̂(l) = ⟨ϕl, f⟩ =
N∑

n=1

ϕ(n)f(n) (2.33)
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In matrix notation, a signal may be projected into the spectral domain and back via

f = V TV f (2.34)

An important caveat is that the matrix V is only unitary, i.e. V T = V −1 because the discretized
∆ is symmetric. For directed graphs (digraphs) or graphs with disconnected components this
is no longer the case, and we must actually compute V −1 [34].

The Laplace operator eigendecomposition gives us sufficient structure to define filters.

g(∆) = V T g(Λ)V (2.35)

Relating this back to PDE’s and their spectral decomposition, we see that in this case g(λ) =
e−λ, corresponding to the heat kernel, is a low-pass filter because all high-frequency compo-
nents are exponentially decayed.

25



3 METHODS

We first introduce our dataset and the signal we wish to estimate: the wall shear stress (WSS)
and blood pressure (BP). We also describe and motivate our choice of input features for the
networks.

Then, we give an overview of the different neural network structures, and motivate our architec-
tural choices. In order to predict the WSS signal on meshes, we chose to use DiffusionNet [35]
as a baseline, since all networks we create are derived from it. In particular, we introduce de-
rived networks using parallel wavelet based feature evolutions, and a specific class of wavelets
that evolves the feature state via the dynamics of the wave equation.

3.1 Dataset

3.1.1 Arterial Mesh Dataset

We use a synthetic dataset of coronary artery meshes created by [38] [39]. The meshes gen-
erated reflect properties of human coronary arteries. Both a dataset with single and a dataset
with bifurcating arteries is available.

From the synthetic mesh, the WSS and BP are computed by [38] using computational fluid
dynamics (CFD). The BP is expected to be a global signal, dependent on the shape of the
artery, whereas the WSS is mostly related to local vessel geometry [39]. The bifurcating artery
is expected to have a more challenging WSS to compute, as the dynamics of the fluid inside are
more complicated. We therefore choose to estimate biomarkers only on the bifurcating arteries.

The bifurcating coronary artery dataset contains 2,000 samples. We split the dataset randomly
into train, validation sets, keeping the test set fixed, via an 8:1:1 ratio. The split occurs randomly
per experiment, therefore each trained network has different train and validation sets from other
networks. However, the test set is kept the same for all experiments.
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Figure 3.1: Visualization of geodesic distance to inlet. Areas coloured blue are close to
the inlet, areas coloured red are further.

3.1.2 Feature Description

We compute features intrinsic to the artery surface. A notable exception is the geodesic dis-
tance to the inlet (Figure 3.1), where we permit ourselves the knowledge of where blood enters
the artery. Additionally, we use several features invariant to rigid transformation.

We say a signal f is invariant to rigid transformation, a composition of rotation and translation:

Tθ,xf =

(
Rθ Tx

0 1

)
f = f (3.1)

when the signal value at any node remains unchanged if the surface mesh is rotated or trans-
lated. Since PDEs such as the heat and wave equation are invariant to rigid transformations
applied to the surface, the kernel signatures also are. This can bemost easily verified by the fact
that the Laplace-Beltrami operator itself is an invariant operator, since it is intrinsic to the shape.

Invariance to rigid transformations can be a benefit: properties intrinsic to the shape of the ves-
sel such as the blood pressure do not depend on the shape’s orientation. Therefore, using
features that depend on the shape’s orientation to predict the BP may cause the network to
overfit. However, the WSS being a vector quantity, it is defined relative to some coordinate
frame. This means a random rotation or translation will change the WSS signal because the
frame of reference is now changed. Thus the WSS is equivariant to rigid translation: while the
actual vectors stay the same, because we observe them through an origin, the representation
does change under rigid transformation. Using invariant features removes the network’s ability
to distinguish between rotated features.

• Geodesics: to help the network understand the direction of blood flow in the artery, we
define the inlet to be where blood flows into the artery in accordance with the input features
used in [39]. For each vertex this geodesic distance is computed to the nearest inlet
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vertex using 1. The geodesic distance between vertices, or more generally points on the
arterial surface, is defined by the length of the path over the surface that connects them,
making it different from the Euclidean distance. The geodesic distance is invariant to rigid
transformation.

• Mesh Normals: this feature provides information about where the exterior of the mesh is.
At each vertex, a vector can be defined that is normal to the smooth surface. The normal
generated is based on the faces neighbouring the node. The mesh normals, being a
vector quantity, are equivariant to rigid rotation.

Additionally, we use two features related to PDE’s on meshes: the heat kernel signature [40],
and the wave kernel signature [1]. We use these features to provide information on the shape’s
intrinsic properties by characterizing the vertices by the evolution of heat and wave based pro-
cesses on the surface. They are invariant to rigid transformation, and offer information at mul-
tiple scales.

3.1.3 Kernel Signatures

Kernel signatures are feature descriptors based on the kernels of PDEs that describe processes
on the surface, These processes are dependent on local and global properties of the surface,
making these features useful in encoding information about the geometry of the surface or
shape.

The heat kernel signature (HKS) [40] and wave kernel signature (WKS) [1] are kernel-based
feature descriptors invariant to orientation preserving isometric deformations, and when used
as network inputs can make the network less sensitive, though not invariant, to rotation. [35]
We use these feature descriptors to provide compressed information about the shape beyond
its local geometry into the vertex features.

Heat Kernel Signature (HKS): given by the heat kernel distance between two points, it repre-
sents the amount of diffusion that occurs from a given point after some time t.

HKS(x, y, t) =
∞∑
i=0

e−λitϕi(x)ϕi(y). (3.2)

The HKS is multi-scale: for small t the value of the signature at a point x is primarily influ-
enced by the local geometry, the reverse is true when t is large. [40] This signature provides
the network with features created from both local and global geometric properties of the surface.

The HKS can be interpreted as the probability density function for Brownian motion on the man-
ifold. It is invariant under isometries (and thus rigid transformations), and stable under small
deformations of the manifold. This stability to deformation can be motivated by interpreting the
HKS(x, y) as the average of all paths possible between x and y in time t. [40]

1Potpourri3d
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(a) HKS scale 2 (b) HKS scale 4

Figure 3.2: HKS visualized at scale 2 and 4 of a logarithmic timescale. As the scale
and thus t increases, more heat leaves each vertex. Vertices in regions with low mesh
connectivity retain more heat, visualized in red.

Wave Kernel Signature (WKS): [1] following a similar principle to the HKS we may define the
WKS for a vertex x

WKS(x, e0) = Ce

∞∑
k=0

ϕk(x)
2e

(−e0−log(Ek))2

2σ2 . (3.3)

The WKS is inspired by the quantum mechanical Schrödinger wave equation

∂u

∂t
= i∆u (3.4)

and can be interpreted as the probability of a particle being at a particular location on the mesh,
given an unknown initial position of the particle, and some initial measurement of its energy e0.
The WKS differs from the HKS by not being time-dependent, instead the scale is the energy
level.

For the WKS a physical interpretation of scale also exists: particles with high energy are able to
travel out of areas more quickly, lower energy scales display confined spaces where particles
might become trapped. [1] This can be visualized in Figure 3.3
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(a) WKS scale 1 (b) WKS scale 2

Figure 3.3: WKS visualized at scale 1 and 2 of a logarithmic timescale. The scales rep-
resent energy levels of a quantum-mechanical particle with some unknown position. The
intensity values represent the probability of finding a particle in a given area. Particles
with high energy are able to travel out of areas more quickly, lower energy scales draw
confined space where particles might become trapped. [1]

3.2 Structure of the data

In this section we explore the biomedical data we are using, in order to better understand the
challenges the network faces.

Blood Pressure: we know pressure is a force applied to an area: P = F
A . Although pressure

is represented as a scalar quantity, this scalar is understood to be the magnitude of the force
normal to the area the pressure acts on. Pressure is a force acting on some area, the direction
of the normal vector of that area. The blood pressure (BP) is around the order of magnitude of
1.34 ∗ 105 millimeters of Mercury (mmHg). We rescale the pressure to Hg to prevent numerical
instabilities in the methods. The blood pressure at any point is given by a scalar, which is un-
derstood implicitly to be the magnitude of the normal vector at that point on the surface.

Wall Shear Stress: the WSS is a vector quantity of varying magnitude and varying direction
that is a result of movement of fluid parallel to the artery walls. We know that the WSS is related
to local geometry. We see in the image below an example of the x-coordinate of the WSS. Note
that the signal is decidedly smooth on most of the surface, however there are key parts where
the signal changes rapidly on points geodesically close to each other.
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Figure 3.4: Magnitude of the WSS signal. The WSS is a vector quantity at each point on
the surface. WSS vectors in areas near the bifurcation are subject to rapidly changing
magnitude

In order to better understand the spectral makeup of theWSS, we project the signal to a spectral
basis.

Spectral components & discretization: we can construct an orthonormal basis of eigenvec-
tors of the cotangent Laplacian [29], a common discretization of the Laplace-Beltrami operator
on manifolds represented by meshes. The cotangent Laplacian is given by

Li,j =


1
2(cot(αij) + cot(βij)), if (i, j) ∈ E and i ̸= j∑

j∈N(i)wij , if i = j

0 otherwise
(3.5)

where α and β are the angles that are opposite the edge (i, j). Any edge can only ever be part
of two triangle faces, and the angles not connected to the edge (i, j) are α and β respectively.

The matrix L is symmetric and positive semi-definite, allowing us to easily find its eigenbasis V
and diagonal matrix of eigenvectors Λ as

L = V TΛV (3.6)

The implementation uses DiffusionNet’s eigenvector estimation procedure, which in turn uses
the σ shift method implemented by Scipy [44]. Via this method, which requires a positive semi-
definite symmetric matrix, we can search for the eigenvectors in order of magnitude of their
eigenvalue. This way, we can compute the first k eigenvectors without needing to compute
the whole spectrum. The resulting eigenvectors are orthogonal with respect to M [35], i.e.
⟨ϕi, ϕj⟩ = ϕT

j Mϕi = 0 when i ̸= j, and normalized via V TMV = 1 [35].

We see the eigenvalues of the mesh are increasing in a linear way. The eigenvalues are all
real and positive, and the eigenvectors corresponding to low eigenvalues are spatially smooth,
whereas the higher eigenvectors of the cotangent Laplacian are spatially variant.
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Figure 3.5: Plot of k vs λk. The eigenvalues are increasing monotonously and never
negative.

(a) 5th eigenvector (b) 20th eigenvector

Figure 3.6: The x-component of the WSS is projected onto spectral bases of different
number of eigenvectors. The signal, expressed in the reduced bases, is then projected
back to the vertex domain. We see the jittery nature of the WSS signal is most present
in the reconstruction using the higher bases.

Spectral decomposition of WSS: we aim to discover which of the eigenvectors are best at
explaining the WSS signal. Since the eigenvectors are we orthogonal, the change of basis V
already expresses the best projection of each eigenvector onto our WSS signal. Additionally,
since the eigenvectors are normalized via ϕTMϕ = 1 [35] we may also assume that we can
interpret the spectral coefficients via equal weighting (i.e., one vector does not have significantly
higher norm).

In the following plots we show the WSS signal projected onto spectral bases of varying number
of eigenvectors, to investigate to what extent the high frequency eigenvectors are responsible
for the WSS signal. This is especially informative when considering DiffusionNet is, spectrally,
a low-pass filter. If the WSS contains a large amount of high-frequent information, diffusion
alone may not provide sufficient information sharing.
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(a) Ground truth WSS x-component (b) First 256 eigenvectors

(c) First 1700 eigenvectors (d) First 17,000 eigenvectors

Figure 3.7: The x-component of the WSS is projected onto spectral bases of different
number of eigenvectors. The signal, expressed in the reduced bases, is then projected
back to the vertex domain. We see the jittery nature of the WSS signal is most present
in the reconstruction using the higher bases.

Projecting the signal onto its lower-dimensional eigenbasis amounts to a compression problem,
or alternatively, a low-pass filter. In Figure 5.2 we see that 256 eigenvectors results in a very
smoothed out version of the signal, missing crucial details such as the dip near the end of the
left-most part of the vessel. This is better represented in the reconstruction using 1700 eigen-
vectors, suggesting at least some of the higher frequency, more spatially variant eigenvectors
play a role in the WSS signal. This is akin to the role of high frequent components in the spectral
domain of images, which often represent sharp edges or other details. In the WSS, the high
frequent components play a similar role, and while most information resides in the lower end of
the frequency spectrum, the high frequent features are still important for detail.
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Figure 3.8: Projection of WSS signal onto spectral basis of 256 eigenvectors. Plotted
are the absolute values of the basis coefficients needed to represent the WSS signal.
On the x-axis is the eigenvalue of the eigenvector associated with that coefficient, i.e.
the last entry, eigenvector 256, has λ256 around 1400. We see that the majority of the
information is captured by the lower end of the spectrum, as visually verified by Figure
5.2

.

3.3 Wave Dynamics

Where DiffusionNet uses the heat equation to update the feature vector and share information,
we are interested in using the wave equation. This is due to the fact that diffusion favours in-
formation sharing between close nodes, and from a spectral perspective removes detail. We
show that the wave equation does the opposite, allowing distant nodes to share their features,
propagating the vector via wave dynamics, and from a spectral perspective leaving certain high
frequency eigenvector bands active in the signal.

By wave dynamics we mean a movement of features from areas of high intensity to areas of
low intensity, typically transporting the majority of the mass or energy of the wave away from
the initial location.

From a spatial perspective we investigate the long-range dynamics visually via the evolution of
a point source (Figure 3.9a), and the evolution of one of the input feature vectors (Figure 3.10).
The long-range dynamics of the wave equation can be visualized via this point source in Figure
3.9a. We see in the image the point source, i.e. the mesh signal being zero at each vertex
except one, where it has a value of 1. The corresponding contribution of the feature of this node
on the feature of other nodes is visualized in the image.

The point source in Figure 3.9a emits a wave propagating outward over the surface, with signal
intensity appearing highest around the wavefront. We also see several other wavefronts, which
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are likely artifacts of the reduced eigenbasis and not intended behaviour. Additionally, the leg-
end is not symmetrical, which could point to a more negative weighting of the blue ring around
the initial red ring than apparent from the image. Still, the kernel selects a receptive field that
appears primarily influenced by the wavefront.

(a) Location of point source (red dot)

(b) Point source at t1 under wave dy-
namics

(c) Point source at t2 = 2t1 under wave
dynamics

Figure 3.9: A point source is propagated using a reduced basis of 256 eigenvectors via
the wave kernel. In stark contrast to diffusion, via the wave equation the contribution
of the point source’s feature can skip over neighbours, defining a ring where the wave
interacts the most, visualized in red.

In Figure 3.10 the wave equation is used to propagate an initial feature u forward in time. We
can interpret the feature evolution as follows: suppose there is a liquid covering the vessel. Ar-
eas where the initial feature u is red correspond to the liquid being lifted in its initial position, and
the blue areas where it is pushed below its resting position. Then the initial feature u is evolved
until time t, and the perturbation travels in a wavelike manner to the center of the vessel, where
it meets the other waves caused by the initial perturbed state u, and gets reflected back. We
can interpret this movement of the feature vector as constructive interference of multiple point
sources: nodes with positive displacement that are close to each other will create wave travel-
ling radially outward.
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(a) Initial feature distribution

(b) Feature after propagating the wave
equation for 10 timesteps

(c) Feature after propagating the wave
equation for 26 timesteps

Figure 3.10: An initial feature (a) is propagated for different amounts of time. The am-
plitude of the feature is conserved from (b) to (c). The wave equation provides a way
to propagate features over the mesh, to distant nodes. This shows the wave equation
should be a good candidate for long-range message passing over a manifold. The wave
equation is evaluated using the spectral wave kernel [18].

3.4 Spectral Wave Equation

Diffusion reduces detail in a signal and smooths it out, because it is a low-pass filter via its ker-
nel e−λt exponentially decreasing the contribution of high-frequency eigenvectors. On the other
hand, the wave kernel is a band-pass filter, allowing it to preserve details of the signal.

The spectral wave kernel we use is derived by [18]. The kernel is based on the wave equation
with zero initial velocity 

∂2u
∂t2

= −c2∆u, c ∈ R
∂u
∂t |t=0 = 0,

u|t=0 = x

(3.7)

In other words, given some initial perturbation x, and confining our PDE to an initial velocity of
zero, we find the solution of the dynamics after t seconds. This solution represents a movement
rather than diffusion of features: the features move across the surface in a wave-like manner.
Since the mesh is a surface without a boundary, we do not have any initial boundary conditions
to take into account.
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Because we are solving the wave equation on the mesh, we use the eigenfunctions of the cotan-
gent Laplacian as our spectral basis, and try to express the solution operator in this basis.{

u(t) = V g(Λ, t)V T

g(λl, t) = cos(t cos−1(1− sλl
2 ))

(3.8)

In the equation above, g(λl, t) represents an element-wise scaling of the entries of the diagonal
matrix of eigenvectors Λ. The matrix V is the stacked matrix of eigenvectors, s is the wave
speed, and λl the eigenvalue of the corresponding eigenvector vl in V .

This wave kernel g(λl, t) is stable only for wave speed s < 2
λm

where λm is the largest eigenvalue
of the eigenbasis. Additionally, the initial wave speed is taken to be zero. Although theoretically
the wave operator can be expressed without assuming an initial velocity of zero, [3], the result-
ing operator is numerically unstable.

(a) Spectral heat kernel g(λ) =
e−λtplotted for different λ

(b) Spectral wave kernel g(λl, t) =
cos(t cos−1(1 − sλl

2 )) plotted for differ-
ent λ

Figure 3.11: Comparison of spectral heat and wave kernels, for the same λ. Depending
on the value of t, the heat kernel drops coefficients for high frequency vectors. The wave
kernel does not do this, only dropping coefficients in certain frequency bands.

As seen in Figure 3.11, the kernel when plotted against time shows that different parts of the
frequency spectrum get activated at different times, much like a band-pass filter. Compare this
to a similar image of the diffusion kernel, which is a strictly decreasing exponential, and thus
the importance of high frequency components of features is always strictly lower than the low
frequency components of features.

As such, wave kernel can establish long-range interaction between vertcies, and spectrally pre-
serve detail within the signal.

Additionally, a spectral solution is computationally inexpensive, a very important property for
deep learning methods. We see this partially in DiffusionNet’s own paper, where large meshes
(20,000+ vertices) are not feasible to solve via the implicit method on the GPU due to memory
issues and computation time constraints. Because we wish to solve the wave equation for each
feature channel, and a typical DiffusionNet implementation uses around 100-200 channels, we
are evolving many initial feature vectors to different times t.
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The spectral solution is so computationally inexpensive because there is no system that needs
to be solved: unlike implicit methods, we do not need to solve a large system of equations, via
e.g. a cholesky decomposition. In our experiments, the implicit method for the heat equation
crashed because the resulting matrix problem took too much memory (over 20gb) on the GPU.
Conversely, networks using the spectral method use

u(t) = V T g(Λ)V (3.9)

which amounts to matrix multiplication, once the eigenbasis V of the mesh is found. The eigen-
basis is unique to the mesh, so it needs to be computed only once per mesh, accelerating
training. We may use a reduced basis of eigenvectors. This sacrifices accuracy of the PDE
evaluation, but reduces both computation time of the PDE solution and pre-computation time of
the eigenbasis.

Reduced basis: contemporary works using spectral diffusion compute only the first k vectors
of the eigenbasis. For diffusion this is natural since it is a low-pass filter, however for the wave
equation this results in some artefacts, as seen in 3.12

(a) Point source at t2 = 2t1 under wave
dynamics using full eigenbasis

(b) Point source at t2 = 2t1 under wave
dynamics using full eigenbasis

Figure 3.12: The above evolution of the point source was calculated with an eigenbasis
of 17,000 eigenvectors. We see that, in comparison to the reduced basis, the wave
contains a lot less oscillations, and the displacement is strictly localized around the center
of the point source. For diffusion, the image is indistinguishable from those calculated
with the reduced eigenbasis.

However, as seen in Figure 4.6 where features propagate over the mesh, in aggregate we
still observe wave dynamics even with the reduced eigenbasis. These properties could make
WaveNet more equipped to reconstruct high frequency components of biomarkers than Diffu-
sionNet.

3.5 Network Architectures

In this section we introduce the three main architectures we use: WaveNet, WaveDiffusionNet,
and Parallel PDE Channels (PPC). First, we show a building block shared by all of these net-
works: the wave block.

A wave block follows the same structure as a diffusion net block. It computes the solution of the
wave equation propagating until time t, for the initial feature map F . The solution of this PDE
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is found through the spectral form of the wave equation. This is implemented through using the
spectral wave kernel, rather than the spectral heat kernel.

WaveNet follows the same structure as Diffusion Net. The primary difference is the spectral ker-
nel used to evolve the features at each layer: in the spatial diffusion layer, instead of multiplying
each eigenvector’s contribution by g(λl, t) = e−λlt, wemultiply by g(λl, t) = cos(t cos−1(1− sλl

2 )).

Like DiffusionNet, in WaveNet the spatial gradient of the evolved feature ut is calculated, since
the wave kernel suffers from the same isotropy as the diffusion kernel. Structurally, the network
is identical to DiffusionNet because many of the operating principles have remained the same:
we use an isotropic PDE with a spectral representation to evolve the feature vector to some
time t.

WaveDiffusionNet Although the wave kernel offers many benefits in terms of long-range com-
munication, in some cases sharing information with neighbours is also important. For this rea-
son we consider a network where the feature vector u0 is first diffused via the wave equation
and then propagated via the heat equation, i.e. letting tw and th be learned parameters for the
heat and wave equations respectively, then u(tw, th) = cos(tw cos−1(1 − sλl

2 ))e−λlthu0. Our
motivation for combining the kernels is as follows: if DiffusionNet wants to share information
between distant neighbours, the feature vector gets diffused to a large amount. With a combi-
nation of wave and diffusion dynamics, the network is free to use the propagational element to
define long-range interactions, while using diffusion to spread the signal over the distant region.

Parallel PDE Channels Net (PPCNet) Where DiffusionNet diffuses a feature channel to a
time t which is learnt specifically for that channel, Parallel PDE Channels Net (PPCNet) applies
different PDEs with different learnt evolution times to the channel. By evolving the same ini-
tial feature to different learnt times and even via different PDEs, PPCNet is able to define long
(wave) and short (diffusion) interactions, and additionally optimize the time for each of those
interactions. This principle can be seen in Figure

Figure 3.13: Illustration of PPC network architecture. The network applies different PDEs
to the same channel, providing the MLP with multiple forms of spatial information. Not
shown is the skip connection from the input features to the output of the MLP.

We then find the spatial gradient features for each of these PDE evolutions of the channel. All
of the spatial gradient features and the evolved channels are concatenated into a single tensor,
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which the per-vertex MLP takes as input. We do this so the MLP has a richer form of spatial
information than one diffused signal, instead having access to multiple evolutions of the same
feature channel.

Another way we might motivate PPC is by comparing DiffusionNet to a transformer network.
Specifically, the structure of DiffusionNet resembles the encoder of a transformer: both a trans-
former andDiffusionNet usemultiple encoding layers stacked in series, eachwith skip-connections,
linear layers, and attention. Within DiffusionNet the attention comes from the diffusion PDE,
which is best interpreted via the Figures of point-sources we show in the previous section, Fig-
ure 3.9a and 2.7. In these sections, a particular weighting is attached to the features of every
vertex on the mesh (including the point source’s own feature). This can be viewed as a form of
spatially regularized attention, where the importance we assign each mesh vertex’s feature is
based on the diffusion or wave equation.

Where DiffusionNet uses single-head attention via allowing each channel a single attentionmap,
in PPC we implement a form of multi-head attention, giving each channel the ability to specify
multiple attention maps via the different PDEs and evolution times.

3.6 Network Hyperparameters

We train our networks using PyTorch [28] and Pytorch Geometric [15] For each network, we list
the most important hyperparameters. We also list some general hyperparameters all networks
use.

All networks have a hidden layer of size 200. In PPCNet this hidden layer size results in the first
layer of the per-vertex MLP containing more input nodes, because we concatenate the output
of multiple Spatial Gradient Feature modules and Spatial Diffusion modules and feed this to
the input. In this case, PPCNet has 7N input channels for the MLP, where N is the hidden
size. DiffusionNet on the other hand has 3N : the skip connection, spatially diffused signal, and
spatial gradient features.

We split the learning rate for general weights and biases in the network and the learned times.
The former use a learning rate of 3e− 4, and the latter of 3e− 3. This is done to encourage the
network to investigate several different realizations of the PDE process.

Additionally, all networks use the HKS and WKS, each initialized using a logarithmic scale and
taking the first 4 scales. The code implementation was found in [cite dominik pesh(?)]. We
use 256 eigenvectors to compute the HKS, WKS, and PDE solutions. Finally, we train for 200
epochs.

Model specific parameter choices: we initialize DiffusionNet at 0.0, as the authors do. For
WaveNet, we choose to initialize one network, WaveNet-low, to t = 1.5 and one to t = 3.0.
This choice was based on investigating point source evolution for several times and selecting
a promising radius. The higher time was intended to be biased towards long-range tasks such
as the blood pressure.

In our choice of initial t we avoid choosing t too small, since this somewhat resembles diffusion,
and we want to ensure the performance comes from using the wave kernel.
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Networks Initial Time
WaveDiffusion Wave: 3, Diffusion: 0
DiffusionNet Diffusion: 0
WaveNet-low Wave: 1.5
WaveNet-high Wave: 3
PPC Diffusion: 0, Wave: 3, Wave: 5

Table 3.1: Initial time parameters for all networks used.

3.6.1 Oversmoothing

Conventional deep learning techniques often use deep network structures, of multiple layers,
to facilitate a large number of parameters in their network. A network with more parameters is
generally able to represent more complex functions, via the Universal Approximation Theorem.

However, conventional message-passing GNNs suffer from oversmoothing [31] [27]. This phe-
nomenon causes all vertex features of a layer to become uniform after a certain amount of
layers, preventing the construction of deep GNNs.

Since DiffusionNet contains a spatial diffusion module that acts as a low-pass filter, smoothing
out the features, oversmoothing via stacking too many layers might be a problem for Diffusion-
Net too. We can measure how diverse the signal is through the Dirichlet energy of the vertex
features [31].

Definition 3.6.1 (Graph Dirichlet Energy). Let N denote the set of nodes for graph G = (V, E),
and let Xi be the value of a node feature at node i ∈ N . Then the Dirichlet Energy DE is given
by

DE(G) = 1

v

∑
i∈N

∑
j∈N

||Xi −Xj ||2. (3.10)

If the Dirichlet energy of the node features becomes low, it shows a lack of variation in the
information, pointing to oversmoothing [31][32]. We can thus measure the Dirichlet Energy of
the input features after each layer of a trained DiffusionNet. If the Dirichlet Energy goes down
each layer, this could point to issues of oversmoothing within DiffusionNet

3.7 Representational Power of Networks

In order to better understand the capacity of WaveNet and DiffusionNet to represent detail within
the signal, we train the network to reconstruct the WSS of one particular mesh. The WSS of
this mesh was high-pass filtered (the first 178 eigenvectors were dropped). We set to zero the
coefficients related to the first 178 = 0.7 · 256 because an eigenbasis of 256 is able to explain
most of the signal, as seen in Figure 4.6, suggesting the coefficients of the first 256 vectors
contain at least a large share of the low frequency information. We therefore filter out this low
frequency information by:

uhighpass = (u− (V TG(i)VMu) (3.11)

This way, we can see to what extent each network can fit a function to a high frequency signal.

By using the spectral wave kernel, which lets through more high-frequency information than the
diffusion equation, we expect WaveNet to outperform DiffusionNet in the reconstruction of detail
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within the signal. In order to test this, we examine each network’s ability to overfit to one train
sample.

Specifically, we remove all low-frequency eigenvectors from the signal, to keep only the detail
of the signal. We then train and test on the same one mesh. The networks we test are: Diffu-
sionNet, WaveNet (with high and low initial time), and PPC.

If the networks are not able to fit perfectly to the train sample, this would mean their represen-
tational capacity is low and they are not suitable for learning the signal.

Similarly, we train the above networks on a small dataset of 50 meshes containing only the
high frequent parts of the WSS signal (the first 178 eigenvectors were dropped). We drop
178 = 0.7 · 256 because our eigenbasis of 256 is able to explain most of the signal. The low
frequency information seems to reside in this range. We therefore filter it out by:

uhighpass = (u− (V TG(i)VMu)) (3.12)

where our lowpass filter is given by the diagonal matrix G(i, i) = 0 except for i < 178, where
G(i, i) = 1. In other words, from the original WSS we subtract a filtered WSS containing only its
lowest frequencies. By subtracting this low-pass WSS, we remove all low frequency content,
creating WSShighpass.

We evaluate this experiment only via the estimated magnitude of the WSS signal, since the
components are correlated to the magnitude.

3.8 Choice of Loss Function

Because the WSS is a signal that varies heavily spatially, we wish to ensure that not capturing
such spatial outliers is heavily punished. The L1 loss function, used as our default loss for all
networks, is by design poor at punishing outliers, favoring networks that stay close to the mean
of the signal. We therefore investigate DiffusionNet with L2 loss, to see if changing the loss
function could lead to more detail present in the highly spatially variant areas of the reconstruc-
tion.

3.9 Evaluation metrics

The WSS vector is estimated component wise: the network outputs a 3D vector at each vertex.
In order to compare these vectors to the ground truth WSS vectors we use the mean average
error (MAE) and mean cosine similarity (MCS), similar to [39]. The MAE is a measure of how
different the label and estimated WSS vectors are. The MCS is a supplementary metric that
measures whether the label vector y and estimated vector x point in the same direction. Al-
though the MAE is able to estimate the global estimation error, the MCS allows us to distinguish
between errors in vector orientation and vector magnitude. If the MCS is low and the MAE is
high, this would mean we estimate the correct direction of the WSS vector, but under- or over-
shoot in our prediction of the WSS vector magnitude.

Definition 3.9.1 (Mean Average Error). Let , then the mean average error (MAE) is given by

MAE =
1

N

∑
(x− y)2. (3.13)
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Definition 3.9.2 (Mean Cosine Similarity). Let , then the mean cosine similarity (MCS) is given
by

MCS =
1

N

∑ (x · y)
|x||y|

. (3.14)
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4 RESULTS

4.1 WSS estimation: quantitative results

DiffusionNet with L2 loss performs best, followed closely by DiffusionNet with L1 loss, and finally
WaveDiffusion. Both WaveNet-low and WaveNet-high diverge during training on the WSS.

WSS Networks NMAE Approximation Error Mean Cosine Similarity
WaveDiffusion 0.6 - 0.3 13.1 - 3.9 1.00
DiffusionNet L1 0.6 - 0.3 12.3 - 3.7 0.90 - 0.01
DiffusionNet L2 0.6 - 0.2 12.1 - 3.1 0.90 - 0.01
WaveNet-low 3.6 - 0.9 63.7 - 6.7 0.79 - 0.05
WaveNet-high 1.5 - 0.5 30.2 - 7.9 0.88 - 0.03
PPC 3.0 ±0.6 47.6 ±3.8 0.87 ±0.2

Table 4.1: WSS reconstruction metrics for all networks. DiffusionNet with L2 loss per-
forms best, followed closely by DiffusionNet with L1 loss, and finally WaveDiffusion. Both
WaveNet-low and WaveNet-high diverge during training.

4.2 WSS estimation: qualitative results

We investigate visually the performance of the networks trained to estimate the WSS. We reiter-
ate that although each network is trained to predict the WSS vector, i.e. (WSSx,WSSy,WSSz),
we compare the magnitude of the estimated signals, since the magnitude is correlated with the
components and more concise to interpret.

In Figure 4.1 we show theWSS estimates. Particularly difficult for the networks is the high inten-
sity red area at the bifurcation, where the signal sharply increases in magnitude. DiffusionNet-
L2 appears most succesful at estimating this correctly, followed by DiffusionNet with L1 and
WaveDiffusionNet. These results are corroborated by the quantitative results table, where these
networks have the lowest MAE. Both WaveNet-high and WaveNet-low diverge during training,
accumulating train and validation loss. For completeness we show their predictions, but these
are incomparably poor.
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(a) Ground truth |WSS| (b) DiffusionNet L1 |WSS| estimate

(c) DiffusionNet L2 |WSS| estimate (d) WaveNet-low |WSS| estimate

(e) WaveNet-high |WSS| estimate (f) WaveDiffusionNet |WSS| estimate

Figure 4.1: Visualization of the magnitude of the estimated WSS signal (|WSS|) by dif-
ferent networks. Particularly difficult for the networks is the high intensity red area at the
bifurcation, where the signal sharply increases in magnitude. DiffusionNet-L2 appears
most succesful at estimating this correctly, followed by DiffusionNet with L1 andWaveDif-
fusionNet. These results are corroborated by the quantitative results table, where these
networks have the lowest MAE. Both WaveNet-high and WaveNet-low diverge during
training, accumulating train and validation loss. For completeness we show their predic-
tions, but these are incomparably poor.

Additionally, we show the layer times for DiffusionNet, WaveNet and WaveDiffusionNet. The
layer times of diffusion modules tend to increase from 0, whereas the wave parameters are
initialized away from 0 at either 1.5 (WaveNet-low) or 3.0 (WaveNet-high, WaveDiffusionNet).
Where the learned diffusion parameters tend to increase monotonously in mean, the learned
wave parameters typically show more variability, going up and down. DiffusionNet with L1 and
L2 loss have similar learned times at epoch 200.

45



(a) DiffusionNet L1 (b) DiffusionNet L2

(c) WaveNet-low (d) WaveNet-high

(e) WaveDiffusion diffusion (f) WaveDiffusion wave

Figure 4.2: Evolution of mean times of each layer within the networks estimating WSS.
The mean times are found by averaging the times of all channel times at that layer, and
plotted per epoch. In all trained networks, the first layers tend to have the highest mean
time at epoch 200.

4.3 Blood Pressure Prediction:

Both WaveNet-low and WaveNet-high have a steeper training loss decrease than DiffusionNet.
However, this is not reflected in the validation performance, where all three networks perform
similarly. The MAE (Table x) is very low

When looking at the mean of all learned channel time parameters t per epoch, we see in both
WaveNet and DiffusionNet a preference for smaller time parameter in early layers. In the last
layer we see a striking difference, where the learned time becomes much larger. For diffusion
this causes the feature vector to move towards its steady state (uniform) heat distribution. For
waves, this means longer-range communication.
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BP Networks NMAE Approximation Error Mean Cosine Similarity
WaveDiffusion 0.1 0.1 1.00
DiffusionNet 0.0 0.0 1.00
WaveNet-low 0.0 0.1 1.00
WaveNet-high 0.0 0.0 1.00
PPC 0.0 0.0 1.00

Table 4.2: All networks achieve very low MAE and NMAE on the BP prediction task. This
suggests nearly perfect performance. However, as seen in the qualitative evaluation
(Figure ??), this is not the case.

The mean Dirichlet Energy of the channels as they passed through the layers remains fixed, for
all of the networks.
Qualitative evaluation The reconstruction of the BP identifies correctly which regions have
comparatively lower and higher BP than the mean. However, the reconstruction often under-
shoots in critical areas, where the ground truth varies rapidly between low and high BP in a
small area.

4.4 BP: Qualitative

For our qualitative analysis we investigate the estimated BP signal for all networks trained to
estimate the BP. The plots show the signal dynamics were replicated well by DiffusionNet,
WaveNet-high and WaveNet-low. These networks appear most succesful at estimating the de-
tail in the BP signal at the bifurcation. In the figure of PPCNet’s estimate, we see a low signal
magnitude at the bifurcation. Thus, despite having high quantitative performance, the visual
reconstruction of the signal misses detail.
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(a) Ground truth BP (b) DiffusionNet BP estimate

(c) WaveNet-low BP estimate (d) WaveNet-high BP estimate

(e) WaveDiffusionNet BP estimate (f) PPCNet BP estimate

Figure 4.3: Visualization of estimated BP signal by different networks. Particularly dif-
ficult for the networks is the high intensity red area at the bifurcation, where the signal
sharply increases in magnitude. DiffusionNet, WaveNet-high and WaveNet-low appear
most succesful at estimating this detail in the BP signal. In the figure of PPCNet’s es-
timate, we see a low signal magnitude at the bifurcation. Thus, despite having high
quantitative performance, the visual reconstruction of the signal misses detail.

Additionally we show the mean times of each layer for the BP estimation task.
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(a) DiffusionNet (b) WaveNet-low

(c) WaveNet-high (d) WaveDiffusion diffusion

(e) WaveDiffusion wave

Figure 4.4: Evolution of mean times of each layer within the networks estimating BP.
The mean times are found by averaging the times of all channel times at that layer, and
plotted per epoch. After a certain point, most layers stabilize in the BP prediction task.
In all trained networks, the last layers tend to have the highest mean time at epoch 200.

4.5 Frequency reconstruction experiments

On the 50 mesh dataset for estimating high-pass filtered WSS, WaveNet outperforms Diffusion-
Net.

Reconstruction NMAE Approximation Error Mean Cosine Similarity
WaveNet 0.6 ±0.1 26.6 ±3.1 0.91 ± 0.02
DiffusionNet 1.4 - 0.4 45.5 - 5.6 0.58-0.06

Table 4.3: WSS reconstruction metrics for the overfitting experiment on the dataset of
50 highpass filtered train samples. Though neither network attains a low error, WaveNet
outperforms DiffusionNet by a large margin.

In Figure 4.5 we see the WSS signal filtered to remove only the first 178 components. Despite
both networks significantly underestimating the signal strength, especially near the bifurcation,
WaveNet-high estimates appears to estimate the magnitude of the WSS more accurately than
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DiffusionNet.

(a) Ground truth high-pass filtered
WSS (first 178 eigenbasis components
removed)

(b) DiffusionNet estimation of high-
pass filtered WSS

(c) WaveNet-high estimation of high-
pass filtered WSS

Figure 4.5: Visualizations of estimated high-pass filtered WSS for DiffusionNet and
WaveNet-high. Both networks estimate correctly the structure of the signal, and which ar-
eas should be relatively low or high magnitude. However, both networks underestimate
the magnitude. Visually, the representations look nearly identical, though WaveNet’s
estimate appears to have a slightly higher magnitude near the bifurcation. Additionally,
DiffusionNet is unable to capture the wave-like signal variation of the ground truth, pro-
ducing an estimate that is a lot smoother.

Reconstruction NMAE Approximation Error Mean Cosine Similarity
WaveNet 0.9 22.1 0.89
DiffusionNet 1.0 25.6 0.88

Table 4.4: DiffusionNet and WaveNet attain similar performance in learning to estimate
the WSS on one mesh.
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(a) Ground truth high-pass filtered
WSS (first 178 eigenbasis components
removed)

(b) DiffusionNet estimation of high-
pass filtered WSS

(c) WaveNet-high estimation of high-
pass filtered WSS

Figure 4.6: Visualizations of estimated high-pass filtered WSS for DiffusionNet and
WaveNet-high on one mesh. Both networks again estimate correctly the structure of
the signal, and which areas should be relatively low or high magnitude. Visually, the
representations look nearly identical.

4.6 Oversmoothing and Dirichlet energy

DiffusionNet did not seem to have lower Dirichlet energy than wave-based networks. Further-
more, the Dirichlet energy of DiffusionNet did not appear to go down, rather it went up, as the
signal passed through the layers.
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WSS Networks After linear layer Layer 0 Layer 1 Layer 2 Layer 3

WaveDiffusion 350 800 2,092 4,043 4,558
DiffusionNet L1 333 1,007 2,718 4,736 5,095
DiffusionNet L2 307 1,033 4,125 5,985 6,341
WaveNet-low 253 61,192 150,287 244,793 314,139
WaveNet-high 218 26,705 75,836 134,509 162,239
PPC 262 185,312 250,005 533,926 610,894

Table 4.5: Dirichlet energy mean over all channels after the linear layer and at each sub-
sequent network layer, for networks trained to estimate the WSS. For each network, the
energy of the signal increases as it moves through the network. Notably, both WaveNets
have incredibly high energy. Values are rounded to the nearest whole number.

BP Networks After linear layer Layer 0 Layer 1 Layer 2 Layer 3

WaveDiffusion 93.018 93.018 92.927 92.927 92.927
DiffusionNet 100.586 100.81 100.924 100.924 100.924
WaveNet-low 59.539 61.33 62.035 62.035 62.035
WaveNet-high 52.647 52.907 52.907 52.907 52.907
PPC 100.702 100.913 100.913 100.913 100.913

Table 4.6: Dirichlet energy mean over all channels after the linear layer and at each
subsequent network layer, for networks trained to estimate the BP. For each network,
the energy of the signal increases as it moves through the network. The energy does
not undergo a large change in magnitude after the linear layer.
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5 DISCUSSION

In this section we interpret our results, and discuss the limitations of the wave kernel we use
specifically, and our methods generally. We discuss the answer to our research question, and
to what extent the limitations prevent us from answering it. We also provide some directions for
future research.

5.1 Interpretation of Results

DiffusionNet can learn signals on arterial meshes to a high degree of accuracy, as evidenced
by its close performance to GEM-CNN. However, some of the detail in the reconstructions
appeared to be missing, and the test performance was slightly lower than the state of the art,
GEM-CNN. Equipping DiffusionNet with an L2 loss function appeared to increase test accuracy.

Networks using the wave equation were not able to compete well with DiffusionNet, including
WaveDiffusion, which should theoretically have a more expressive kernel than DiffusionNet by
being a combination of diffusion and wave dynamics.

Although we cannot rule out potential other numerical schemes, we believe the spectral wave
equation within the framework of DiffusionNet does not give the network enough freedom to
learn the right feature dynamics for WSS prediction.

The PPC networks achieved poor performance, despite having more parameters and access to
more information about the signal via the different PDE channels. We expect this was caused
by the instability from training with the wave kernel, and potentially also from a lack of normaliza-
tion since so many channels were added in the PPC layers. However, our attempts to remedy
PPCNet’s performance issues via BatchNorm were unsuccesful.

We also showed that for smooth signals, the wave kernel propagates them in a wave-like man-
ner. We investigated the behaviour of the wave kernel via point sources, to get a better un-
derstanding of how vertices affect each other as the feature evolves over the surface, and find
evidence for wave-like behavior.

For the blood pressure prediction, our quantitative metrics were not suitable for a signal con-
centrated in magnitude around (µ − ϵ, µ + ϵ) where the mean of the signal µ >> ϵ. In other
words, the detail resides in a very small scale, making MAE and NMAE insufficient metrics. A
better approach would have been to center the BP signal around a normal distribution before
training the network, by reshaping it for each artery as

BPnormalized =
BP− µ

σ2
(5.1)

with µ and σ the mean and standard deviation of the blood pressure for that artery.
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It appears that even though the BP is a global feature, both waves and diffusion can approxi-
mate it equally well. This implies specific long-distance interactions may be less impactful than
previously thought, and the prediction of BP may simply require a feature vector containing
global information, which diffusion for large time does produce. Alternatively, it is possible our
wave based networks were not able to establish long-range feature communication.

WSShigh-pass filter reconstruction task: despite poor performance in theWSS task, WaveNet
was able to beat DiffusionNet in the reconstruction tasks for overfitting onto a small dataset. This
points to WaveNet potentially learning high frequency content better. However, since it was a
small dataset and the task was specifically to overfit onto the dataset, this does not necessarily
point to good performance on the test set.

Dirichlet energy: the Dirichlet energy did not change a significant amount per layer for the BP
prediction. A possible explanation is that the hidden layer signal did not change significantly
either, and the network perhaps didn’t need this many layers.

For the WSS we see the signal Dirichlet energy increase a lot. From these results, it does not
look like adding extra network layers would cause oversmoothing. This is something that could
be investigated in the future.

5.2 Limitations of the Spectral Wave Kernel

Both the spectral wave kernel, and our attempts to expose its properties, have some limitations.
We split these shortcomings into numerical and conceptual. Additionally, we discuss some gaps
in our understanding of the kernel’s behaviour, and how we could solve those where applicable.

5.2.1 Numerical

First, when t is large, we observed the point source dynamics get jittery and irregular, suggest-
ing the wave behaviour might only be present for early times. However, a continuous evolution
of a feature vector did not suffer from this behaviour, suggesting the numerical inaccuracies may
not be significant on a large scale. Similarly, the point source image (Figure 5.1) with reduced
eigenbasis shows multiple wavefronts coming from the source node. In contrast, the spec-
tral wave equation evaluated using an almost complete (17,000 out of around 19,000 vectors)
eigenbasis there was only one wavefront coming from the source node, but with irregularities
at the center. While the wavefronts in the image with 256 components could point to additional
numerical inaccuracies caused by projecting to a reduced basis, the full basis appears to have
irregularities at the center. We cannot rule out that these irregularities result from not having
access to the remaning 2000 basis vectors. However, neither wave propagates as expected.

54



(a) Point source at t = t0 under wave
dynamics using eigenbasis with 256
components.

(b) Point source at t = t0 under wave
dynamics using (nearly) full eigenbasis.

Figure 5.1: The above evolution of the point source on the right was calculated with an
eigenbasis of 17,000 eigenvectors, on the left with 256. We see that, in comparison
to the reduced basis, the wave contains a lot less oscillations, and the displacement
is strictly localized around the center of the point source. Additionally, the wave with
full basis has some irregularities at the center where certain nodes have a high value,
contrary to what we would expect.

Secondly, the spectral benefits of the wave kernel may be limited. Although the kernel itself
does not attenuate these basis vectors as much as DiffusionNet, some are still removed. It is
also good to check the coefficients generated by DiffusionNet, e−λit at each layer for each t, as
diffusion for a very small time does not remove as much high frequency information as for large
time. Investigating this would give us a better understanding of whether the low-pass property
of DiffusionNet is truly limiting it or not.

Additionally, it is unclear to what extent the basis vectors used in WaveNet (the first 256) con-
tribute to detail. A reconstruction of the WSS using only those eigenvectors was rather blurry.
It is possible that having access to these higher frequencies can still help WaveNet learn more
complicated signals. We could investigate how the spectrum of the hidden layer signal changes
as it goes through the layers, to verify whether the models are using high-frequency basis vec-
tors in the hidden layer signals.
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(a) Ground truth WSS x-component (b) First 256 eigenvectors

(c) First 1700 eigenvectors

Figure 5.2: The x-component of the WSS is projected onto spectral bases of different
number of eigenvectors. The signal, expressed in the reduced bases, is then projected
back to the vertex domain. We see the jittery nature of the WSS signal is most present
in the reconstruction using the higher bases.

We use point sources to help explain the wave dynamics. However, the point source in Figure
5.1 (a) shows multiple wavefronts coming from the source node. Both negatively and positively
weighted nodes play into the current nodes current update. It is hard to determine the mag-
nitude of the oscillations, but the sparseness we see and aim for in the point source with full
eigenbasis, is not achieved by the reduced eigenbasis. In future visualizations of point sources,
we believe plotting per vertex the absolute value of the wave propagated point source is more
descriptive, since that tells us the magnitude of the effect on that vertex.
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(a) Initial feature distribution

(b) Feature after propagating the wave
equation for 10 timesteps

(c) Feature after propagating the wave
equation for 26 timesteps

Figure 5.3: An initial feature (a) is propagated for different amounts of time. The am-
plitude of the feature is conserved from (b) to (c). The wave equation provides a way
to propagate features over the mesh, to distant nodes. This shows the wave equation
should be a good candidate for long-range message passing over a manifold. The wave
equation is evaluated using the spectral wave kernel [18].

We also propagate signals input features on the mesh (Figure 5.3) to verify the wave kernel’s
behaviour. Since these signals were themselves rather smooth, they may not have suffered as
much from the reduced eigenbasis. It is likely the wave kernel still has smoothing properties due
to its reduced eigenbasis, so high frequency components in the signal will still be attenuated
because they are projected to and from a reduced basis. This could be tested by propagating
signals containing more high frequency content and investigating visually whether the wave dy-
namics are still present.

Finally, the wave kernel g(λl, t) = cos(t cos−1(1− sλl
2 ) is defined relative to the maximum eigen-

value of the mesh, because we must choose s < 4
λmax

[18]. In our case, since we did not com-
pute the full spectrum for each mesh, we used s = 2

λmax
since λ > 0, giving us unconditional

stability. However, this means we do have varying wave speed across meshes, proportional to
their largest eigenvalue in the decomposition. While we do not expect this to have a big impact
on performance because the max eigenvalues are likely similar across different meshes, this
should be shown empirically or theoretically.

5.2.2 Conceptual

The point source interpretation of the spectral wave kernel may not be directly related toWaveNet.
Instead of showing the properties of the kernel visually via the evolution of a point source (Figure
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5.1), we should investigate the properties of the wave operator matrixH(t) = V T g(λ, t)V . While
the point source effectively takes one row from H(t) and therefore should show how the point
source influences the vertices around it, it would be good to examine H(t) more rigorously, to
determine the connection between propagating the point source and propagating a whole fea-
ture vector. A smaller mesh might make this easier, since the amount of vertex interactions is
minimized. If we improve our understanding of how the signal in the hidden layers is updated
via the PDE operator, we might be able to relate the DiffusionNet structure to existing network
structures such as Graph Attention, MPNN, and transformers.

Networks using the wave kernel are prone to divergence during training, in both train and vali-
dation/test loss. This could be a result of the learning rate being too high, but it could also mean
the wave kernel is not suitable for learning on surfaces within the DiffusionNet neural network
architecture. This is because DiffusionNet evolves the feature vector globally by a time t, which
makes long-distance interactions difficult to define since they are shared by all nodes.

Since the wave kernel is isotropic, a theoretical verification of whether the spatial gradient fea-
tures of DiffusionNet still apply would also be desirable.

This brings us to another limitation: the wave dynamics are the same on the whole surface. Hy-
pothetically, if the wave kernel allowed long-distance communication, relying on this in a layer
would be difficult, since the distance between vertices communicating is fixed over the entire
mesh due to a global learnt time t. A possible extension could be to instead solve the anisotropic
wave equation, similar to how [5] solves the anisotropic heat equation. By letting features prop-
agate at different speeds in different parts of the mesh, we might allow the network to express
more complex interactions. However, the anisotropic heat equation is already difficult to solve
for non time-varying coefficients, and in [5] a special anisotropic Laplacian is defined in order to
solve it.

Also, in [45] it is mentioned that linear spectral networks can only reconstruct signal frequencies
that are present in their input. Although our network is not a linear spectral network, meaning
high-frequency information can be added to the signal via the MLP, we still project our input
signal onto a spectral basis and scale it with a spectral filter. Especially for the wave network, it
could be that the absence of high frequency input features causes the waves to have minimal
impact.

The spectral wave kernel also requires computing the eigenbasis of the cotangent Laplacian in
advance. This presents two problems. The first is the choice of basis size. For diffusion, since
it is a low-pass filter the choice is easier, but since the wave equation is more like a band-pass
filter, it is difficult to choose how many eigenvectors the spectral kernel should have access to.
Secondly, precomputing the basis can be time consuming, and especially on surfaces which
only need to be evaluated once, may be a lot slower than other methods. Since the basis is
intrinsic to the surface, this is well worth it when evaluating multiple passes of the network on
the same surface.

It is currently unclear how diffusion to time t0 translates to a larger mesh, and whether this still
encompasses the same area as on a smaller mesh, or if the area is relative to the total area of
the shape. This could be important in the future when training models operating on manifolds
that are of varying spatial dimension.

The arteries used to investigate the wave dynamics were reasonably simple in shape, without
many branches or thinner parts. It is unclear to what extent the wave dynamics are present for
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larger, more complicated structures.

The above limitations of our method make it difficult to precisely determine which part of the
method caused poor results. Because propagating a feature over themesh in aggregate seemed
to yield wave-like behaviors, we estimate the numerical properties cannot be the sole cause of
the performance issues. The most impactful cause of the low performance seems to be the fact
that learning a single time parameter for the whole manifold at each layer is too general, and
goes against the nature of long-distance interactions.

Despite these limitations, we believe the results confirm that the spectral wave kernel is not able
to learn long distance feature interactions in a way that meaningfully helps the network predict
the WSS.

Additionally, since the kernel was initially developed for and used on a graph, it should be inves-
tigated whether the kernel works as expected on edges and corners such as the inlet, where
the mesh suddenly bends.

It is currently unclear how the spectral wave equation behaves on more complicated meshes.
When the surface is more complicated, we might need a larger portion of the Laplacian spec-
trum to obtain an accurate solution to our PDEs.

5.3 General limitations of our methods

For all trained models the validation performance varied even as the network appeared to have
converged in train loss, and the standard deviation of the errors was quite large for all models
as well. Thus, despite approximating the signal to a reasonable degree, the networks were still
inconsistent.

Evaluation metrics: the AE and MCS proved insightful metrics, however, it may be worth
investigating whether a metric more discriminative to outliers could help interpret signals. Visu-
ally, it is virtually impossible to compare the WSS estimations of different networks. Often the
estimates of different networks look similar, and the interpreter of the visualizations provides
only a subjective answer on whether key areas have been correctly estimated. Therefore, a
quantitative measure specifically tailored to regression of spatially variant signals on a mesh
based domain could be useful.

Another limitation of the MAE is the fact it is node based, whereas we wish to estimate the re-
construction on the surface. Therefore, the error should factor in the area of the faces via the
mass matrix M of the mesh, such as MAEnew(u) = MAE(M · u). In [22] and 1 some detail is
given on using Mass matrices on meshes to define energy norms.

Similarly, we currently output our signal at the mesh vertices. However, since we aim to predict
a signal of the underlying manifold and not the mesh, we might consider estimating the signal
on the mesh faces instead.

There is no bias toward estimating specific nodes or areas correctly. Because the WSS is spa-
tially variant over only a small number of nodes, the MAE does not provide a clear answer to
whether the network was able to estimate this information in the signal. Alternatively, an error
with a bias to certain high variance areas could be constructed. We suggest potentially using

1Link to post
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the spatial gradient of the signal on the surface as a way to weight the loss function toward
being more mindful of areas with high spatial variance.

Our Dirichlet energy calculation did not factor in local mesh resolution. Instead of DE = uTLu,
an alternative formulation should use the mass matrix to incorporate mesh areas. However,
we expect this does not greatly change the upward trend seen in the energy per layer of the
networks.

Crucial to the success of the Laplace operator is that it represents the underlying surface and
not the particular mesh discretization. Since DiffusionNet generalizes well to different meshes
[35] and they use the cotangent Laplacian, we assume this implies the Laplace operator is rea-
sonably stable under remeshing. However, we could investigate this more formally.

5.4 Future directions

Different PDEs: the reason we employ PDE’s is to regularize vertex interactions via a process
that occurs on the manifold, in this case the vessel surface rather than the mesh discretization.
We can explore different PDE’s, such as convection diffusion, or PDE’s with potential terms
such as the Hamiltonian. Similar to the WKS, we may be able to define our dynamics based on
where such a particle might be found.

Alternatively, we could use a random process to define our vertex feature communications. This
could be done via random walks such as done in [23], only with probabilities regularized by a
physical process, ensuring we select a vertex according to some probability distribution. This
avoids computational issues such as computing eigenbases or solving large PDEs. Random
processes are also linked to solving PDEs via the Feynman-Kac theorem, suggesting an in-
teresting theoretical link. For example, the Feynman-Kac theorem is used in [10] to solve their
diffusion process with a potential. Similar methods might be available for a variety of (parabolic)
PDEs.

Rotational Equivariance: for many signals it is important to have equivariant behaviour with
respect to rotation. This means, for example, if we predict the WSS and then rotate the pre-
dicted mesh, this gives the same result as first rotating the mesh and input features, and then
predicting the WSS.

For DiffusionNet this equivariance is not present in the network. In fact, by design the network is
invariant via its use of the dot-product in the spatial gradient features, and the fact that diffusion
is a process intrinsic to the surface [35].

Although we can achieve some level of rotational equivariance through data augmentation, i.e.
randomly rotating our training data and label, a theoretical approach such as used by [19] could
be helpful.

Alternative PDE kernels: the kernel we use, found by [18], creates dynamics that resemble
waves based on the hyperbolic wave equation. However, the difference between it and the
Schrödinger propagator ei∆, which solves the Schrödinger wave equation, could also be in-
vestigated to see if the latter has desirable properties. A starting point could be adapting the
method from [1], which also solves the Schrödinger wave equation.

Choice of Discrete Laplacian: the cotangent Laplacian is one scheme of many that exist to
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model the Laplacian. In [48] an elaborate treatment is given. For manifold triangle meshes the
cotangent Laplacian behaves well and is generally used. If the mesh is non-manifold or not a
triangle mesh, a different discretization may need to be used.

Coarse-to-fine method while DiffusionNet is able to estimate the overall structure of the sig-
nal, it is unable to reconstruct detail well. Similar to techniques in point-cloud registration, a
coarse-to-fine network architecture could be investigated, with DiffusionNet providing a robust
estimate, and another network skilled at learning detail could complete the last step. Using
wave dynamics for this network could work, since we saw WaveNet beat DiffusionNet purely on
reconstruction of high-frequency mesh signals. DiffusionNet could be used for a coarse WSS
estimate and WaveNet for refinement.

Batching: our current implementation does not support batching for either DiffusionNet or
WaveNet. Implementing this would allow us to train more quickly at the expense of using more
memory. This tradeoff is made more favorable due to the fact that DiffusionNet is a small model.

Uncertainty Prediction: the use of Machine Learning methods in medical setting must be
supported by a rigorous assessment of the uncertainty of the prediction. Commonly, dropout
layers can be used to provide a probabilistic estimate of the network’s uncertainty. Dropout
layers are layers within the network where connections have a chance p, specified per layer,
to be dropped: the weight on that layer will effectively become zero and no backpropagation
happens through that path. This prevents the network from overfitting onto certain connections
within the MLP. These dropout layers can be removed during testing by setting p = 0, how-
ever, we can also keep the dropout layer. By passing the same sample through the network
multiple times, the dropout layers will ensure we get different predictions. Through a process
called bootstrapping, we can estimate the bias and variance of the predictions for this sample.
If all the predictions are comparable, we can reason that the network is certain of its prediction.
However, if passing the same sample through the network twice results in dramatically different
predictions, we might decide not to trust the network’s estimation [16].

5.5 Operator Bases: Beyond the Laplace Operator

Hamiltonian: a spectral basis may also be defined using the Hamiltonian instead of the Lapla-
cian Beltrami Operator. The Hamiltonian allows us to use a potential function, defined on each
vertex of the mesh, which affects the way a signal diffuses. We could define a potential favoring
for example diffusion into areas near the bifurcation, to accumulate features there. [10]
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Figure 5.4: This figure, taken from [10], shows the process of spectral diffusion using the
basis from the Laplace Beltrami Operator, versus the Hamiltonian basis.

As seen in Figure 5.4, a diffusion process with a potential defined as the geodesic distance to
the lower leg diffuses anisotropically to regions with low potential.
An example application within coronary arterial meshes could be to define our potential function
as the geodesic distance from the inlet, which would make all the features diffuse toward those
the inlet. Such a method would provide a transferable approach to any mesh geometry, while
remaining a geometrically motivated feature communication mechanism.

Steklov Operator: Intrinsic operators such as the Laplacian lack the ability to differentiate be-
tween the cube with an inward bump and the cube with an outward bump. The Steklov Operator
is an extrinsic geometry operator. This operator is aware of the volume confined within the sur-
face, making it a good choice for arterial models. The authors describe natural generalizations
of PDE’s, HKS and WKS using it. [47][46]

Figure 5.5: Eigenfunctions of different operators on the cube with outward bump. Figure
taken from [46]
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6 CONCLUSION

DiffusionNet [35] generalizes well to arterial meshes and predicting complicated signals on
them. The robustness to discretization makes this a promising network architecture in med-
ical deep learning on surfaces.

The spectral wave kernel was unable to cause significant performance increase in the trained
networks for WSS or BP estimation. In some cases, the kernel appeared to cause instability
during training.

Though the spectral wave kernel appears to cause the feature to propagate in a wave-like man-
ner, this is not a conclusive result. Additionally, it is unclear whether the wave kernel was unable
to create long-range interaction, or whether only being permitted to learn time t for the whole
channel was a limiting factor for the kernel within WaveNet.

Finally, the wave kernel did show promise in the overfitting task, where networks overfit onto a
small subset of the training data. Estimating the high-pass WSS showed a clear performance
gap between WaveNet and DiffusionNet. This could hint at increased accessibility to higher
frequencies in WaveNet helping it reconstruct detail.
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