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Abstract

Monitoring digital twins of the railway infrastructure is safer, less erroneous and faster
compared to physical inspection. Digital representations of the railway environment are
often obtained via sensors that produce unlabelled point clouds. The point clouds need to
be semantically labelled to generate digital twins. Manual labelling requires substantial
effort. Deep learning has shown great potential in semantic segmentation tasks using su-
pervised learning. However, there are no publicly available railway datasets. This study
thus explores semi-supervised learning for point cloud semantic segmentation. Specifically,
two approaches are implemented. In the active learning approach, an algorithm is devel-
oped to select the most informative data. The SO-Net segmentation model is trained on
only a small portion of the most informative data. For the generative few-shot learning
approach, synthetic data is created based on a small labelled dataset. A PointNet++ model
is then trained on this synthetic dataset. Both approaches show promising results. The
active learning approach achieves over 95% of the performance compared to the fully su-
pervised method using 37.5% less labelled data. The performance of the few-shot learning
approach is equivalent to the state-of-the-art while training on only synthetic data. A
major challenge for point cloud semantic segmentation in the context of railways is the
inherent class imbalance in the data. Further research towards techniques that address
class imbalance could improve the performance of the models.

Keywords: deep learning, semi-supervised learning, point cloud, semantic segmentation,
railway
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Chapter 1

Introduction

The train is a commonly used means of transport for both people and freight. It accounted
for about 5.5% of the total passenger transport and 16% of the freight transport in the
EU in 2022 [21]. To keep the trains running safely and punctually, the rail environment
should be regularly monitored for damages and wear to fix defects quickly and perform
maintenance timely. The railway is often monitored manually by railway employees which
is unsafe, error-prone and time-consuming [34, 107]. Unsafe because the employees are
exposed to electrically charged parts of the wiring system and moving rail vehicles. Error-
prone because it is human to make mistakes. Time-consuming because of the physical
travelling to the location of inspection. Automating the monitoring process means em-
ployees are less exposed to dangers in the railway environment. And since computers are
efficient at repetitive tasks [61] there will be fewer errors on top of a faster execution time.

To automate the monitoring of railway tracks, digital twins could be generated. A
digital twin is best described as “the effortless integration of data between a physical and
virtual machine in either direction” [37]. This virtual model of the railway could then be
analysed by employees via a computer or, ideally, by the computer itself. Digital anal-
ysis ensures there is less manual inspection needed. Additionally, the remaining manual
maintenance and repairs can be thoroughly prepared beforehand saving time and reducing
error probability and safety risks.

To create digital twins, an efficient method to digitise the railway environment must be
developed. Due to the rapid technological advancements of recent years, several sensors
have been developed that can scan surroundings quickly and precisely. Most of these
sensors output a 3D point cloud. A point cloud is a set of points in a 3D space.

The initial step to produce a digital twin from an unlabelled point cloud is to se-
mantically segment the point cloud. Semantic segmentation is assigning every point to
a certain, user-defined class with a semantic meaning. From the segmented point cloud,
particular objects can be located and extracted to be reconstructed with CAD models.
A point cloud typically consists of millions of points, so manual semantic segmentation is
infeasible. Recent advances in machine learning have shown great potential in automating
tasks like semantic segmentation. The problem is that most methods rely on labelled data
to train the models and there are currently no publicly available datasets of labelled point
clouds of railway environments.

Because of the high cost of labelling point cloud data and the lack of publicly available
labelled railway datasets, using supervised learning to train machine learning models for
point cloud semantic segmentation is not a suitable solution. Semi-supervised learning
means only a part of the training data is labelled while the remaining part is unlabelled.
Semi-supervised methods have already shown to achieve state-of-the-art results in different
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CHAPTER 1. INTRODUCTION

machine learning tasks like image segmentation [6, 93, 137], image classification [132, 139,
144] and 3D object detection [136, 141]. These results motivate the research to extend
semi-supervised learning to the task of point cloud semantic segmentation.

In this work, two semi-supervised approaches are implemented for the point cloud
semantic segmentation task on railway data. One approach combines over-segmentation
and active learning and the other is a form of generative few-shot learning. The contri-
bution of this work is applying active learning and generative few-shot learning to point
cloud semantic segmentation of railway scenes thereby advancing the research of scene
understanding in the context of railways. By training the models on a publicly available
dataset, this work establishes a new benchmark for semi-supervised learning in the railway
domain. Furthermore, this study determines the applicability of existing techniques to the
railway domain and identifies domain-specific challenges.

1.1 Research question

The main research question this research attempts to answer is:

• How can semi-supervised learning be applied effectively to the semantic
segmentation of point cloud scenes of the railway environment?

Two solutions employing different semi-supervised paradigms are implemented to address
this question. The semantic segmentation performance is evaluated on a publicly available
point cloud railway dataset. The effectiveness is measured by comparing the performance
of the semi-supervised methods with fully supervised methods.

1.2 Limitations

This work focuses specifically on railway data from the Netherlands. However, the railway
infrastructure differs considerably per country [113]. Care must therefore be taken with
generalising the results gained in this study.

In addition, the semi-supervised learning here consists of exactly two techniques: active
learning and generative few-shot learning. There are other semi-supervised techniques like
self-supervised learning or embedded learning. Applying these techniques to the problem of
point cloud segmentation of railway data could lead to different results compared with this
study. Hence, this work is unable to provide a definitive conclusion about the performance
of semi-supervised learning in general on point cloud semantic segmentation on railway
data.

1.3 Structure

The remainder of this work is organised as follows: in Chapter 2 background information
and relevant studies are described. Chapter 3 presents the methodology followed in this
study. In Chapter 4 the results are listed. The results are discussed in Chapter 5, where
also a conclusion and recommendations for future work are given.
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Chapter 2

Background and related work

2.1 Semantic segmentation on images

Image semantic segmentation is the task of assigning each pixel in an image with a semantic
label. The task is predominantly solved using supervised learning because of the large
number of available labelled datasets [86]. The vast majority of models for image semantic
segmentation are based on Convolutional Neural Networks (CNN) [65], more specifically
Fully Convolutional Networks (FCN) [80]. FCNs take advantage of the well-known image
classification models (VGG [112], GoogleNet [115], ResNet [44], AlexNet [60]) but replace
the last fully connected layers with convolutional layers. Current state-of-the-art models
like SeeThroughNet [43] and InternImage [124] achieve high performance, reaching a mean
intersection over union (mIoU) of over 85% on the CityScapes dataset [23].

2.2 Point cloud data

To capture the inherent 3D structure of the railway infrastructure, the data could be
stored as point clouds instead of images. A point cloud is a set of points in 3D space
where each point is characterised by x-, y- and z-coordinates. Optionally each point has
extra attributes like intensity and colour depending on the type of equipment used to
gather the data [15].

Point clouds can be obtained from different sources like laser scanners, images and
videos. Typically the sensors in laser scanners use LiDAR technique to determine the
distances between objects and surfaces and the scanner [41]. Laser scanners have the
advantage of producing high-quality output no matter the light conditions as opposed
to digital cameras [29]. On the other hand, cameras can supplement the points with
colour information. Due to recent developments, LiDAR technology has become more
popular, accessible and widely used [129]. Consequently, more and more point cloud data
is gathered and made available as public datasets.

Point cloud datasets can be generally divided into two types. Datasets where the
point clouds represent a single object like a chair or car (ModelNet [128], ShapeNet [13])
and datasets where the point cloud captures an entire scene (Semantic3D [42], S3DIS [5],
SemanticKITTI [7]). The former type of dataset is used frequently for shape classification
and part segmentation. The latter is used more for semantic- and instance segmentation.
See Figure 2.1 for examples from both types of datasets. These types of datasets are so
different from each other that point cloud segmentation models are usually optimised for
one of them.
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CHAPTER 2. BACKGROUND AND RELATED WORK

(a) A chair from the ShapeNet dataset. (b) A town scene from the Semantic3D dataset.

Figure 2.1: Examples from an object point cloud dataset (a) and from a scene point cloud
dataset (b).

The datasets containing entire scenes can be further divided into indoor and outdoor
datasets. Indoor scenes are usually smaller and generally obtained via static scanners like
Kinect or from multiple images [77]. Outdoor scenes on the other hand could consist of
very large areas and are usually obtained with mobile laser scanners (MLS) or aerial laser
scanners (ALS) [30]. Indoor scenes typically have a higher point density and less noise,
which ease extracting relevant information from them for machine learning models.

2.3 Point cloud semantic segmentation

In recent years point cloud semantic segmentation has been researched extensively because
of its applications in fields such as autonomous driving and robotics [25, 131]. Before
machine learning became popular, structural methods were used for segmentation tasks.
Structural methods leverage the inherent geometrical properties in point cloud data to
segment them. Nowadays, machine learning and in particular deep learning methods are
being researched in the literature.

Deep learning methods for point cloud semantic segmentation can be grouped into
several categories based on the type of input data: end-to-end methods take a raw
point cloud as input, indirect methods a product derived from a point cloud and hybrid
methods take combined data from multiple different sources (e.g. point clouds + images)
as input [41].

Before the revolutionary PointNet model [99], indirect methods were primarily utilised
for point cloud segmentation [142]. Indirect methods transform the point cloud so that
convolution operations can be exploited. Projection-based methods project a point cloud
to a representation in 2D space and usually process them with 2D convolutional models.
Discretisation-based methods transform the point cloud into a 3D regular structure like
a voxel cloud, octree or kd-tree. The major disadvantage of indirect methods is that
inevitably information is lost during the transformation.

The PointNet model [99] meant a significant breakthrough for deep learning on point
cloud data since it was the first to take raw point clouds as input. PointNet captures the
global structure of point clouds as a feature vector. The authors built upon PointNet to
design the PointNet++ model [100] which also captures local structures. These methods
proved inspirational for future research and the underlying principle was used as a basis for
numerous other papers. Today, a legion of end-to-end models exists ranging from multi-
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layer perceptrons (MLP) [48, 98, 148], pointwise convolutions [71, 85, 145], recurrent
networks [51, 135, 149] to graph based models [64, 117, 126] among others.

Hybrid methods can draw upon more information than end-to-end methods. Unfor-
tunately, there is seldom additional data available. And if it is available, a way has to be
found to integrate the different data inputs. Therefore, the resulting hybrid models are
generally larger than non-hybrid models and suffer from long run-times [52] and/or a vast
number of trainable parameters [27].

The performance of current state-of-the-art point cloud segmentation models is not
yet up to par with the state-of-the-art in image semantic segmentation. The 2DPASS
model [133] currently achieves the best performance on the SemanticKITTI dataset with
a mIoU of 72.91 and on Semantic3D ConvPoint [9] achieves 77.7 mIoU2. A reason for the
performance difference is that point cloud data exhibits certain characteristics that make
it more difficult to work with than images.

2.4 Challenges of point cloud data

At first sight, it may seem straightforward to transfer the knowledge of image semantic
segmentation to point cloud semantic segmentation. Unfortunately, point cloud semantic
segmentation proves to be considerably more difficult because of the nature of point cloud
data [41].

Point clouds are irregular, unstructured and unordered, unlike 2D images, and are thus
a challenging data type to work with [8]. The following is a list of the most significant
challenging characteristics that are inherent to point cloud data. Sensor type, environment,
weather conditions and sensing distance influence the degree to which point clouds suffer
from these characteristics [72]:

• Irregularity: point clouds usually have non-uniform distributed point density.

• Unstructured: point clouds are not placed on a regular grid. Each point is scanned
independently and its distance to neighbouring points is not fixed.

• Unordered: a point cloud is a set of points, the order in which the points are stored
does not change the representation.

• Size: point clouds often contain millions of points taking up large chunks of memory
and thus it is time-consuming to process and analyse them.

• Noisy: point clouds can contain noise in the data produced for example by errors
of the scanner or moving objects [92].

• (Partial) Occlusion: point clouds suffer from (partial) occlusion of objects since
other objects may block them [40].

An extra challenge for railway scenes is the large variance in object sizes (a top bar can
be well over 20 metres long, while an insulator typically is around 30 centimetres [119])
and frequency of objects in the dataset resulting in a significant class imbalance in the
dataset.

There are currently no publicly available large-scale, labelled datasets of point clouds of
the railway environment. The datasets that are publicly available contain a limited number

1http://semantic-kitti.org/tasks.html#semseg
2http://semantic3d.net/view_results.php?chl=1
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CHAPTER 2. BACKGROUND AND RELATED WORK

of samples [118] or the annotations encompass only a few categories (cable + rail track)
[24]. However, point cloud segmentation of railway environments is actively researched
usually constituting a case study with custom data [39, 63, 66, 73].

2.5 Semi-supervised learning

With the lack of abundant available labelled data and the high cost of manual labelling,
supervised learning is not a feasible solution for point cloud segmentation on railway data.
Semi-supervised learning is learning with a training dataset consisting of both labelled
and unlabelled data where typically the labelled dataset is smaller [121]. Semi-supervised
learning can be categorised into different paradigms based on their underlying concepts.
With self-supervised learning, the model is pre-trained with a pretext task to learn one
part of the input from another part of the input whereby the labels are auto-generated
[58]. Examples of pretext tasks are next-word prediction or rotation prediction of images.
The knowledge gained from this pre-training can then be used in downstream tasks like
segmentation. Active learning and few-shot learning will be explained briefly in the next
sections.

Active learning

Active learning is a subfield of machine learning consisting of methods that can query
data samples from a pool of unlabelled data to be labelled by an oracle (often a human
annotator) [109]. The fundamental belief behind the active learning concept is that a
model could potentially reach a higher level of accuracy while using a smaller number
of training samples if it were allowed to choose the data it wants to learn from [20].
The model can employ different query scenarios. The most prevalent are stream-based
selective sampling, pool-based sampling and membership query synthesis [108]. Stream-
based selective sampling draws one unlabelled sample at a time and the model must
decide whether to query the sample or not. In the pool-based sampling scenario, the
model attempts to evaluate the entire dataset before it selects the best query or set of
queries according to some informativeness measure. Lastly, with membership query
synthesis the model is allowed to generate its own synthetic queries to be sent to the
oracle.

The query strategy evaluates the informativeness of unlabelled samples. Many differ-
ent strategies are developed in the literature and they can be broadly classified into the
following categories [108]:

• Uncertainty sampling: Query the samples whose label the model is most uncer-
tain about.

• Query-by-committee (QBC): Query the samples for which the committee (set
of models) most disagree.

• Expected model change: Query the samples that result in the greatest change of
the model if their labels are known.

• Variance reduction: Query the samples that minimise the variance of the future
error of the model.

• Estimated error reduction: Query the samples that minimise the expected future
error of the model.
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CHAPTER 2. BACKGROUND AND RELATED WORK

• Density-weighted methods: Query the samples that are most informative and
are representative of other samples.

Both uncertainty sampling and QBC are likely to query outliers since they are often
the most uncertain samples. Querying outliers will not result in more knowledge of the
underlying data distribution for the model. The main drawback of the expected model
change, variance reduction and estimated error reduction is their computational cost since
they calculate features over the whole model instead of over individual samples.

Few-shot learning

Few-shot learning (FSL) is a machine learning paradigm where the model output is based
on only a few labelled training samples. Stricter variants of FSL are one-shot learning
and zero-shot learning, where the model respectively uses only a single example or even
no examples at all. FSL techniques achieve good performance by making use of prior
knowledge about the data, model and/or optimisation strategy [125]. There are plenty
of different techniques to exploit this prior knowledge [95]. Generative FSL techniques
generate more labelled training samples with prior knowledge about the data for example
by manual augmentation [76, 111], learned augmentation [46, 62, 78, 143] or using a
Generative Adversarial Network [38] (GAN) [17, 84, 87]. Metric learning or embedded
learning embeds each sample in a lower dimension such that similar samples are close
together while dissimilar samples are far apart as calculated by a distance function [122,
147]. With multitask learning a few related tasks are learned simultaneously exploiting
task-generic and task-specific information [10, 50]. Another approach is to enhance the
models to better suit them for FSL tasks. Memory-augmented neural networks [106] and
memory-matching networks [12] contain memory components in the model while meta
networks [88] and CSN [89] use techniques to rapidly adapt parameters. Yet another
method is to modify the optimisation strategy to adapt models for FSL [36, 114].

2.6 Related work

In the literature, several studies apply semi-supervised learning techniques to tasks with
point cloud data. The work of [127] employs active learning with diversity-aware selec-
tion, while [110] utilises superpoints as query units in the active learning loops. In [120]
generative few-shot learning on railway crossings is researched. In [90] point cloud data
is generated from virtual railway scenes in a game engine to perform landmark detection.
However, none of these studies specifically focus on segmenting the railway infrastructure.

The student-teacher model in [53] is trained using self-supervised learning. Embedded
learning is used in [32] to segment railway data into six classes. These works focus specif-
ically on segmenting the railway infrastructure. The novelty in our work lies in applying
active learning and generative few-shot learning to segment point clouds of the railway
infrastructure. To the best of our knowledge, these semi-supervised techniques have not
been applied to the segmentation task on point cloud data of the railway.
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Chapter 3

Methodology

Two different approaches are taken to the task of point cloud semantic segmentation. Both
employ semi-supervised learning to minimise the manual labelling effort. One approach
leverages the active learning paradigm while the other is a form of generative few-shot
learning.

An overview of the active learning approach can be seen in Figure 3.1. First, the
catenary arches are split up into boxes (1). Then, superpoints are generated by applying
an over-segmentation method to the boxes (2). Finally, the active learning phase is started
by training a segmentation model on a small portion of labelled data (3). With the trained
model, the most informative superpoints are selected (4), labelled and added to the training
set (5). When the annotation budget for the round is reached, the model is trained on the
new training set before the next active round starts.

The main advantage of this approach is a reduction in labelling effort by both using
superpoints as query units as well as labelling only the most informative ones. Per-
point labelling will still result in millions of queries despite only a small percentage of the
full dataset being labelled. A disadvantage is that the over-segmentation method is not
perfect and will produce superpoints that overlap object boundaries. These superpoints
will cause incorrect labels when annotated. Moreover, the method relies on the correctness
of the oracle, but this can not be guaranteed since, in practice, the oracle is often human.
Another drawback is that the training loop is interactive and thus more time-consuming
than non-interactive training loops.

A schematic overview of the generative few-shot learning approach is visible in Fig-
ure 3.2. The first step is to extract individual objects from the labelled dataset (1).
Synthetic arches are created following object placement rules (2). The synthetic data is
used to train a model using supervised learning (3).

The primary benefit of the few-shot learning approach is that supervised learning can
be exploited. A serious drawback is that the generated data is specific to the used dataset
and domain knowledge is required to construct the object placement rules.

These two approaches were chosen because of their different benefits and because they
were feasible to implement within the time constraint. Active learning has proven to
achieve good performance for point cloud segmentation on shapes [110] and indoor scenes
[127], so it is reasonable to extend it to railway data. Generative few-shot learning also
shows promising results for point cloud segmentation on both outdoor scenes [68] and level
crossings [120].
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Original catenary arches

Labelled data 
(superpoints)

Unlabelled data 
(superpoints)

SO-Net 
model

(1) Split into boxes

(2) Over-segmentation

5-15% 85-95%

(3) Train model

New 
superpoints

(5) Label superpoints (4) Select superpoints

3x3x3m boxes (points)

3x3x3m boxes (superpoints)

Active learning 
round

Figure 3.1: A schematic overview of the active learning approach. First, the original arches
are split into boxes (1). Superpoints are generated by applying an over-segmentation
method on the boxes (2). After the SO-Net segmentation model is trained on a small
portion of labelled data (3), the active learning rounds begin where repeatedly superpoints
are selected (4), labelled (5) and added to the training data.

9



CHAPTER 3. METHODOLOGY

Individual objects

Original catenary arches

(1) Manual extraction

Synthetic arches

(2) Object placement rules

PointNet++ model

(3) Train model

Figure 3.2: A schematic overview of the generative few-shot learning approach. The first
step of the generative FSL approach is to manually extract individual objects from the
original catenary arches (1). Then, following object placement rules, a labelled synthetic
dataset is created (2). Finally, a PointNet++ model is trained on the synthetic data using
supervised learning (3).
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3.1 Dataset

The dataset used in this study contains catenary arches from railways in the Netherlands
[118]. This dataset contains 15 high-resolution point clouds of catenary arches. The
number of points per arch ranges from around 1.6 million to 11 million. The dataset is
labelled into 14 different classes. An example of an arch is presented in Figure 3.3. The
advantage of using this fully labelled dataset is that the implemented semi-supervised
methods can be compared to supervised methods.

Figure 3.3: Example of an original, unprocessed arch from the catenary dataset [118]
visualised by CloudCompare [19]. Different colours indicate different labels.

3.1.1 Preprocessing

Removing duplicate points

It was found that the dataset contained 33.039.193 duplicate points. Two points are
considered duplicates if their x-, y-, and z-coordinate are identical. The coordinates in the
dataset have a precision of five decimals. The duplicated points are probably due to the fact
that the original laser scanner had a higher precision, but the coordinates got rounded
down to five decimal places. The duplicated points were removed via CloudCompare
software [19].

Transforming labels

In the original dataset, the labels range from 0 to 16, where 0 is the unlabelled category.
Label 12 is not present in the dataset. Labels 11 and 13 originally represented tension
rods and tension rod foundations respectively, but are regarded as unlabelled objects in
this study. Consequently, their labels are set to 0 following the approach in [119] to
ensure a fair comparison with their results. The remaining 14 labels are transformed to a
consecutive range from 0 to 13 to ease processing later on. The final label scheme is listed
in Table 3.1.

3.2 Active learning approach

The idea behind the active learning approach is to select only the most informative data
samples for labelling. This way the manual labelling effort is reduced while the model is
still able to achieve relatively high performance. The manual labelling effort is further
decreased by selecting superpoints instead of points.

11
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Label Class

0 Unlabelled

1 Top bar

2 Messenger wire support

3 Drop post

4 Steady arm

5 Insulator

6 Pole

Label Class

7 Pole foundation

8 Dropper

9 Stitch wire

10 Wheel tension device

11 Contact wire

12 Top tie

13 Bracket

Table 3.1: The 14 label ids and their corresponding object class as used in this study.

3.2.1 Dividing into boxes

The samples in the catenary arches dataset [118] are not perpendicular to the x- and
y-axes and are also not centred around the origin (0,0,0). As a first preprocessing step,
all arches are rotated along the z-axis, so that the poles are aligned with the x-axis and
afterwards translated to the origin. The pole alignment algorithm is based on the fact
that the poles are (approximately) on a straight line (see Algorithm 1). The arches are
translated to the origin with the formula in (3.1) separately for every dimension (x,y,z), p̂
is the translated point and p is the original point.

p̂ = p− dmin − (
1

2
· (dmax − dmin)),where d is the dimension (x,y,z) (3.1)

Algorithm 1 Aligning the poles of point clouds to x-axis

Input: pole points = List of all pole points
Output: Rotation angle in radians over the z-axis to align poles with x-axis

avg x← average x-coordinate of pole points
positive points← all pole points with x-coordinate > avg x
negative points← all pole points with x-coordinate < avg x

pos avg x← average x-coordinate of positive points
neg avg x← average x-coordinate of negative points
pos avg y ← average y-coordinate of positive points
neg avg y ← average y-coordinate of negative points

x len← abs(pos avg x− neg avg x)
y len← abs(pos avg y − neg avg y)

return − tan−1 y len
x len

Next, surface normals for each point in the point clouds are calculated with Point Data
Abstraction Library (PDAL) [22] and stored in a compressed .LAZ file. The normals,
together with the coordinates, are input to the segmentation model. PDAL estimates the
normals based on the k nearest neighbours for each point. The k parameter was set to 25.

The average size of arches in the original dataset is 19.5x4.5x9.2m. The catenary arches
are split up into boxes of 3x3x3 metres for several reasons: to get more data samples, to
better fit the SO-Net model and to lower memory utilisation per batch. The specific
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Number of points Point density (p/m3) Volume (m3)

Minimum 529 44 0

Maximum 531.598 702.161 27

Average 42.990 40.556 5

Table 3.2: Statistics for the number of points, point density and volume of the bounding
box of the points inside the box. Note: A volume of zero is due to all points lying on a
plane.

size is a trade-off between the number of data samples and preserving spatial properties
of the objects. Smaller boxes result in more objects being split between multiple boxes
compromising the spatial structure of the objects. The left-bottom corners of the boxes
are determined by applying the following formulas to all three dimensions (x,y,z), where
dsize is the size of the boxes along dimension d:

start = dmin − (
1

2
· remainder),where remainder = dsize − (length mod dsize)

stop = start+ num boxes× dsize,where num boxes =

⌈
length

dsize

⌉
By using the remainder, the boxes are equally distributed at the edges of the point

cloud as can be seen in Figure 3.4 (c) and (d). If the start position is instead chosen to
be simply the minimum of the dimension, only the boxes at the other end will exceed the
bounding box of the arch and contain empty space as can be seen in Figure 3.4 (a) and
(b).

A downside of splitting the arches into boxes is that some spatial information is lost
because objects are divided between boxes. The loss of information could harm the perfor-
mance of both the over-segmentation and the semantic segmentation task. On the other
hand, the processing of these smaller point clouds is more efficient and less information is
lost at down-sampling.

Additionally, the .LAZ files are reformatted to .XYZ files containing only coordinates
and labels where each line represents a point. This is necessary since the C++ imple-
mentations of the over-segmentation methods do not have the functionality to read .LAZ
files.

Dataset statistics

The 3x3x3m boxes dataset consists of 22.354.689 points distributed over 520 boxes. Boxes
containing less than 512 points are excluded because it is deemed that they contain insuf-
ficient points to represent a meaningful representation of railway objects. Table 3.2 shows
statistics about the number of points, point density and volume per box. Here, volume
is the volume of the bounding box of the points and is calculated with (3.2). Table 3.3
shows the percentage of points for every object class as well as the percentage of boxes
containing points of the class. There is a large class imbalance.

volume = (x max− x min)× (y max− y min)× (z max− z min) (3.2)
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(a) Front-view of the division in boxes without
taking remainder into account.

(b) Side-view of the division in boxes without
taking remainder into account.

(c) Front-view of the division in boxes when tak-
ing remainder into account.

(d) Side-view of the division in boxes when tak-
ing remainder into account.

Figure 3.4: Boxes calculated without taking remainder into account (a)-(b) and with
taking the remainder into account (c)-(d).
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Class % points % box

Pole 40.45 44.62

Unlabelled 27.28 79.91

Top bar 13.98 23.46

Drop post 4.34 24.04

Pole foundation 4.19 15.0

Top tie 2.35 5.19

Steady arm 1.79 20.77

Class % points % box

Catenary wire 1.53 19.81

Messenger wire support 1.51 16.54

Bracket 0.91 3.85

Insulator 0.80 14.81

Stitch wire 0.41 16.54

Dropper 0.24 16.25

Wheel tension device 0.23 1.73

Table 3.3: The percentage of points per class in the 3x3x3 boxes dataset sorted by de-
scending percentage of points.

3.2.2 Over-segmentation

Unsupervised over-segmentation is commonly used as a preprocessing step for tasks like
clustering and semantic segmentation [94]. The output of over-segmentation are regions
that are perceptually similar called superpixels (2D) [102] or supervoxels/superpoints (3D)
[131]. The similarity is usually based on a combination of spatial, colour and geometric
features. An important characteristic of the resulting superpoints is that object boundaries
should be preserved because the error of non-preserved object boundaries will propagate
through to the segmentation. Additionally, it is also convenient if the superpoints have
a regular shape for further processing [130]. In this research, superpoints are used as the
units queried to the oracle in the active learning phase.

The performance of over-segmentation methods can be measured by different metrics.
The three most common metrics in the literature are boundary recall, under-segmentation
error and global consistency error. Originally, they were developed to measure the perfor-
mance of 2D over-segmentation but they can be easily extended to the 3D case.

Boundary recall [91] is defined as the fraction of ground truth edges that fall within
a certain distance d of at least one superpoint boundary point. A boundary point is a
point for which any of its k nearest neighbours has a different label than itself (k = 50 in
this work). The definition of boundary recall as used in this research is stated in (3.3).
Here, TP is the number of boundary points in the ground truth point cloud for which
exists a superpoint boundary point in range d while FN is the number of boundary points
in the ground truth point cloud for which does not exist a superpoint boundary point in
range d. In this work, d is set to 0.03m.

Boundary recall =
TP

TP + FN
(3.3)

Under-segmentation error [67] measures to what extent superpoints overflow the
ground truth segment borders. It is based on the observation that a ground truth segment
divides a superpoint into an out and in part. The implementation of under-segmentation
error as used here is defined in (3.4), where GT is the set of all ground truth segments,
sGT is a ground-truth segment and sp is a superpoint.

Under-segmentation error =
∑

sGT∈GT

∑
sp:sp∩sGT ̸=∅ |spout|

|sGT |
(3.4)

Global Consistency Error (GCE) [83] is a metric that simultaneously evaluates
over-segmentation error and under-segmentation error based on the intersection of su-
perpoints and the ground truth segments. GCE is regularised to range [0, 1], where
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Method Boundary recall Under-segmentation error GCE

BPSS 0.922 0.099 0.095

VCCS 0.924 1.158 0.070

VCCS-kNN 0.962 0.210 0.109

GPU-SS 0.994 0.239 0.217

Table 3.4: The performance of the different over-segmentation methods using a seed res-
olution of 0.15m and a voxel resolution of 0.01m on the subset of catenary arches. The
best scores are indicated by bold text.

0 indicates no error and 1 indicates the worst possible segmentation. The definition

used in this study can be found in (3.5), where Pij = (1 − |sGT i∩spj |
|sGT i|

) × |sGT i ∩ spj |

and Qij = (1 − |spi∩sGT j |
|spi| ) × |spi ∩ sGT j |. M is the number of ground truth segments, N

is the number of superpoints, sGT i is ground truth segment i and spi is superpoint i.

GCE =
1∑M

i

∑N
j |sGT i ∩ sj |

min(
M∑
i

N∑
j

Pij ,
N∑
i

M∑
j

Qij) (3.5)

Besides these metrics, the number of generated superpoints is also an important char-
acteristic. The number of superpoints should be significantly less than the number of
points in the dataset. In the worst case, the over-segmentation could lead to every super-
point containing exactly one point. This will be a perfect over-segmentation according to
the metrics discussed above, but neglects the goal of over-segmentation namely to reduce
the number of units to work with. In practice, the best over-segmentation generates as
large as possible superpoints while still attaining high values on the metrics.

The different over-segmentation methods tested in this study are Voxel Cloud Connec-
tivity Segmentation (VCCS) [94], Boundary Preserving Supervoxel Segmentation (BPSS)
[75] and GPU Supervoxel Segmentation (GPU-SS) [31] as well as a variant of VCCS,
called VCCS-kNN. VCCS-kNN works on points instead of voxels. Existing C++ imple-
mentations1,2 of these methods were applied to the boxes dataset. To quantitatively
measure the performance the three metrics as described above were implemented.

A subset of the arches dataset is used to speed up the testing. The subset consists of all
boxes from arches 01 01, 02 02, 03 01, 03 03 and 04 04 totalling 4.737.663 points contained
in 174 boxes. These arches are quite different from each other so the performance on this
subset will be a good indicator for the whole dataset.

All methods have a seed resolution which determines the size of the (initial) super-
points. Additionally, the methods using voxels instead of points (VCCS and GPU-SS) also
have a voxel resolution which determines the size of the voxels. The seed resolution was
set to 0.15m and the voxel resolution to 0.01m, as determined by exploratory research.
The results for all methods can be seen in Table 3.4. The number of superpoints gen-
erated varied per box and method, but is approximately 250 for this configuration. A
visualisation of the results is presented in Figure 3.5.

The BPSS method is selected to generate superpoints for the active learning phase as
it has good metric scores and relatively regular shaped superpoints (see Figure 3.5 (a)).

To get superpoints for all boxes, the BPSS method was executed on the full dataset of
520 boxes. The over-segmentation performance of the BPSS method is listed in Table 3.5.

1BPSS, VCCS, VCCS-kNN: https://github.com/yblin/Supervoxel-for-3D-point-clouds/tree/

master
2GPU-SS: https://github.com/dongxiao0401/GPUSupervoxelForPointCloud/tree/main
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(a) BPSS. (b) VCCS (c) VCCS-kNN. (d) GPU-SS.

Figure 3.5: The generated regions from the different over-segmentation methods for the
same input data using a seed resolution of 0.15m and a voxel resolution of 0.01m.

Boundary recall Under-segmentation error GCE

0.920 0.117 0.109

Table 3.5: Over-segmentation performance of the BPSS method on the full 3x3x3 boxes
dataset.

The total number of superpoints generated is 83.503. Compared to the 22.360.815 total
points, this is a reduction of more than 99% in terms of units. The distribution of su-
perpoint sizes can be viewed in Figure 3.6, the average size is approximately 268 points.
There is a substantial number of superpoints containing no more than six points, probably
due to noise and/or outliers.

The computed superpoint label for each point is added to the .XYZ file and via a
Python script added to the .LAZ file of the boxes. The attributes of the .LAZ files of the
3x3x3 boxes are shown in Table 3.6.

3.2.3 Active learning loop

The semantic segmentation is performed by the SO-Net model [69] since it achieved good
performance on point cloud segmentation. The encoder of this network consists of a
self-organising map (SOM) [59], fully connected layers and max pooling operations. The
produced global feature is fed into the segmentation network along with the normalised
point features and SOM node features to produce segmentation scores for all input points.

Before the active learning rounds are executed, the segmentation model is pre-trained
on a small portion of the data to get a somewhat meaningful segmentation result that the
first query selection can be based on. The small portion of initial supervised training data
has a significant influence on the performance of the active learning rounds [49, 138]. To

Name Description

xyz Array (n points, 3) with x-, y- and z-coordinates of all points

classification Array (n points) with the ground-truth label as int for all points (0-13)

normals Array (n points, 3) with the normal vector of all points

superpoint Array (n points) with the superpoint label for each point

Table 3.6: The attributes stored in the .LAZ files of box data.
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Figure 3.6: Histogram showing the size distribution of the superpoints where size is defined
as the number of points they consist of. The right-most bin contains all superpoints with
994 or more points.

ensure a fair comparison between the active learning experiments, the initial training data
and the validation data are fixed by randomly splitting the data with a fixed seed.

The query strategy used in this research combines uncertainty, feature diversity, class
diversity as well as location diversity for selecting the most informative superpoints.
Margin-based uncertainty (also called best-versus-second-best (BVSB) measure) is used
as an uncertainty metric since it better captures the model confusion than entropy-based
measures [56]. The uncertainty (U) for a superpoint is the sum of the margin-based uncer-
tainty for each point divided by the number of points in the superpoint. The formula for
uncertainty of a superpoint sp can be seen in (3.6), where ptθ1 is the highest probability
and ptθ2 is the second highest probability for point pt.

U(sp) =
1

points in sp

∑
pt∈sp

1− (ptθ1 − ptθ2) (3.6)

The feature vector of a superpoint is the normalised average of all point features of
the points constituting the superpoint. A point feature is a 128-dimensional vector from
the second-to-last layer of the SO-Net segmentation model. The feature diversity (FD)
of a superpoint sp is the minimum distance between the feature vector of sp and the
feature vectors of all other unlabelled superpoints (3.7), where S is the set of unlabelled
superpoints. The class diversity (CD) of a superpoint is determined by comparing its
feature vector to the feature vectors of the classes. The feature vector for a class c is
the normalised average of all feature vectors of superpoints that have label c. The class
diversity is the minimum distance between the feature vector and class feature vectors
(3.8), where C is the set of all classes.

FD(sp) = min(∥s⃗pfeature − s⃗feature∥ for s ∈ S), where ∥·∥ is the L2 norm (3.7)

CD(sp) = min(∥s⃗pfeature − c⃗feature∥ for c ∈ C), where ∥·∥ is the L2 norm (3.8)
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The formula for the informativeness (I) of a superpoint is given in (3.9), where α, β
and γ are user-defined parameters.

I(sp) = α · U(sp) + β · FD(sp) + γ · CD(sp) (3.9)

The location diversity is based on the box the superpoint belongs to. To select diverse
superpoints the diversity-aware selection procedure as described in [127] is implemented.
A superpoint with a lower informativeness score than another superpoint belonging to the
same box is penalised. This way the query selector is stimulated to select superpoints
from different locations in the catenary arches. The received penalty is dependent on the
decay rate and the number of superpoints from the same box with higher informativeness.
The adjusted informativeness (Ia) for a superpoint sp is calculated with (3.10), where n is
the number of superpoints with higher informativeness belonging to the same box as sp.
The algorithm that selects the superpoints for labelling is listed in Algorithm 2.

Ia(sp) = I(sp) · decay raten, where 0 < decay rate < 1 (3.10)

Algorithm 2 Selecting the most informative superpoints for an active learning round

Input: superpoints = List of all superpoints,
budget = the maximum number of points that may be selected each round

Output: List of superpoints selected for labelling

sort superpoints on adjusted informativeness in descending order

selected superpoints = empty list
index = 0

while budget > 0 do
current superpoint = superpoints[index]

if budget ≥ number of points in current superpoint then
Add current superpoint to selected superpoints

else if budget < 50 then
break

end if

index++
end while

return selected superpoints

It is important to note that in our case, each superpoint is annotated by giving all
points the same label, contrary to [127], where points in a single superpoint can be assigned
to different objects. This difference in annotation method influences the query strategy:
while intra-variety is important, in our case inter-variety between superpoints holds greater
significance.

Each active learning round has an annotation budget. The model queries as many
superpoints as possible to the oracle until the annotation budget is reached. The newly
annotated superpoints are added to the training set. The model parameters can then be
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reset for retraining or preserved for fine-tuning. In this study, the model is fine-tuned after
every active learning round since it is less time-consuming.

To compare the effectiveness of the specialised query selection algorithm, it is compared
against a random query selection strategy. This strategy involves selecting superpoints
at random for labelling and serves as a baseline for the performance of active learning
methods.

The active learning phase can be terminated once the model reaches the desired perfor-
mance. However, the model might need a significant amount of labelled data to attain this
performance. For this reason, the number of active learning rounds for the experiments is
fixed at seven.

3.3 Few-shot learning approach

The type of few-shot learning used in this approach is generative FSL [95]. Synthetic,
labelled data is created based on the small portion of labelled data that is available. This
way the training set is expanded and the segmentation can be executed on state-of-the-art
supervised point cloud semantic segmentation models.

3.3.1 Generating synthetic data

There are several strategies for generating synthetic data (see Section 2.5). Applying
manual rules to generate the synthetic data requires domain knowledge and produces rules
tailored for one specific dataset. Moreover, the generated rules probably will not cover all
possible variations [125]. Learning augmentations via machine learning models suffer less
from these characteristics. However, implementing these models is not straightforward.

In this study, the labelled training set is expanded by following object placement rules.
This is inspired by [120], where the objects that make up a level crossing are assembled to
generate the synthetic data. The objects are sampled from real point cloud data instead
of from 3D object models. Using point cloud samples ensures a better resemblance to real
point cloud data. For example, [82] used volumetric point clouds derived from 3D models
while real point cloud data is not volumetric. Using object placement rules was deemed
appropriate for the catenary arches dataset since it exhibits many geometrical properties
that can be captured in rules. For example, the top bar is always perpendicular to the
poles and stitch wires are always directly above catenary wires.

The first step was to split up every arch into 14 point clouds containing points belong-
ing to the same object class. These point clouds were then manually split into individual
objects. The individual objects were translated to the origin and oriented similarly. Ta-
ble 3.7 lists the number of individual objects obtained per class.

The unlabelled category was split into three different object categories (ground, pole-
like and wire-like objects) to construct different object placement rules per category. Fur-
thermore, only whole unlabelled objects are extracted and not individual noisy points.
Although some extracted objects were incomplete (see Figure 3.7). This can be due to
occlusion, too low precision of the scanner or imprecise labelling. These partial objects
were left in the object pool to increase robustness and simulate real-world data.

The object placement rules are listed in Table A.1 in Appendix A. These rules are
translated into a Python script to generate the new scenes. For all objects, randomness
is added to their final positions, ranging from a few centimetres to a maximum of two
metres. This randomness is added separately per dimension. The amount of randomness
depends on the dimension and type of object. Unlabelled objects, poles and top bars have
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(a) Catenary wire. (b) Pole foundation.

Figure 3.7: Some extracted point cloud samples from real point clouds are incomplete due
to occlusion, too low precision or imprecise labelling.

Label Category Count

0 Unlabelled (ground) 37

0 Unlabelled (pole-like) 34

0 Unlabelled (wire-like) 29

1 Top bar 14

2 Messenger wire
support

62

3 Drop post 16

4 Steady arm 64

5 Insulator 64

Label Category Count

6 Pole 40

7 Pole foundation 39

8 Dropper 54

9 Stitch wire 40

10 Wheel tension
device

8

11 Catenary wire 63

12 Top tie 8

13 Bracket 8

Table 3.7: The number of extracted, individual objects from the original arches per class.
Note: The unlabelled category is split up into three separate categories.

relatively large randomness. Smaller objects and objects that need to be placed a certain
way (e.g. bracket should be between pole and top tie) have relatively small randomness.

A dataset containing 750 synthetic catenary arches totalling 533.416.024 points was
created. Statistics about the number of points, point density and volume are listed in
Table 3.8. The point density of the synthetic- and original arches are comparable, though,
the synthetic arches are smaller in terms of both volume and number of points. Table 3.9
shows the distribution of points across each object class along with the percentage of arches
containing points of that class. The presence of classes in the arches is more uniform in
the synthetic data than in the original data. Only the messenger wire support, and to a
lesser extent top bar and drop post, are present in fewer arches. The distribution of points
is similar and thus the synthetic dataset has a large class imbalance as well. Although the
wheel tension device and unlabelled classes have significantly more points in the synthetic
dataset, the pole foundation and messenger wire support contain notably fewer points.
Figure 3.8 shows examples of the generated synthetic arches.

The synthetic dataset is not split up into boxes like in the active learning approach
because boxes lose spatial information about objects. Moreover, as many synthetic scenes
as needed can be generated with the object placement rules, so an insufficient number of
training samples is not an issue.

3.3.2 Class imbalance

As can be seen in Table 3.9, the dataset is highly imbalanced. The unlabelled category
consists of 45% of the total number of points, while five classes consist of less than 1%
each. It is more challenging for the model to learn about and correctly predict the under-
represented classes since it has less data to learn from and the learning process is dominated
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Number of points Point density (p/m3) Volume (m3)

Minimum 190.217 (283.172) 605 (604) 97 (310)

Maximum 1.836.916 (3.979.413) 4921 (4368) 1137 (2049)

Average 711.221 (1.490.721) 2210 (1957) 358 (855)

Table 3.8: Statistics for the number of points, point density and volume for the 750
synthetic catenary arches dataset. (In brackets are the statistics for the original catenary
arches dataset (after alignment and deleting duplicate points)).

Class Points (%) Points (%) Arch (%) Arch (%)

Unlabelled 45.04 27.30 100 100

Pole 28.03 40.45 100 100

Top bar 10.14 13.97 79.47 93.33

Drop post 3.24 4.34 75.87 93.33

Wheel tension device 3.05 0.23 95.07 20.0

Top tie 2.96 2.35 69.07 26.67

Pole foundation 2.28 4.19 94.4 100

Steady arm 1.37 1.79 99.73 100

Catenary wire 1.00 1.53 99.33 100

Bracket 0.95 0.91 65.87 26.67

Messenger wire support 0.71 1.51 59.33 93.33

Insulator 0.60 0.80 99.33 100

Stitch wire 0.44 0.41 98.27 80.0

Dropper 0.19 0.24 97.2 86.67

Table 3.9: The percentage of points per class with respect to the total number of points
and the percentage of arches in which the class is present for the 750 synthetic catenary
arches dataset. The italicised columns contain the statistics for the original catenary
arches dataset (after alignment and deleting duplicate points)).
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(a) Arch with two poles. (b) Arch with three poles and without top bar.

(c) Arch with six poles.

Figure 3.8: Examples of the generated, synthetic catenary arches. Different colours indi-
cate different labels.

by the majority classes [11]. In the literature, multiple strategies are developed for dealing
with the class imbalance problem. In this study, the focus is on adjusting the loss function
to improve the performance of the minority classes.

Traditionally, class imbalance can be handled with sampling strategies [55]. The most
straightforward approach involves removing samples from the majority classes and/or
duplicating samples from the minority classes. This method does not work in our case
since the samples themselves contain all classes. This technique could be applied when
generating the synthetic dataset or in the down-sampling step, but it is out-of-scope for
this research.

Adjusted loss functions

The loss function calculates the loss for every sample in the input. For each batch,
the model uses an optimizer together with backpropagation to adjust its parameters
(weights + biases) to minimise the loss. The minimisation process involves calculating
the gradient of the loss function. So the loss function influences the updating of the model
parameters and thus the learning process. In a non-weighted loss function, the loss for
each point in a sample contributes an equal amount to the overall loss. When the points
in the input are highly imbalanced, the loss depends primarily on the loss of the majority
classes. Thus the model will update its parameters to reduce the loss of the majority
classes [3] and does not learn much about the minority classes.

One technique to combat this problem is to adjust the loss function so that each class
equally contributes to the loss, despite having a different number of points in the input
[123].

A weighted loss function employs different weights for each class [47]. For example,
the inverse of the frequency of occurrence of the class in the whole dataset or batch could
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be used as a weight factor to increase the influence of the minority classes [26].
The focal loss function adds a factor to the loss function that reduces the relative loss

for well-classified samples, focusing more on the misclassified samples [74]. Originally,
the focal loss function is designed for binary classification but it can be easily extended
to multiclass classification. Focal loss (FL) for multiclass classification for a point p is
defined in (3.11), where ptpc is the probability that pt belongs to class c, αc is a balancing
factor for class c and γc is the focusing parameter for class c which should be greater or
equal to zero [14]. The term tc is 1 if c is the ground truth class, 0 otherwise. Here, log is
the natural logarithm.

FL(pt) = −
∑
c∈C

tc αc (1− ptpc)
γc log(ptpc),where C is the set of all classes (3.11)

The IoU loss is a loss function based on the intersection over union metric [150]. This
loss was originally developed for object detection, but it can essentially be applied to all
tasks that measure performance with the intersection over union. IoU loss (IoUL) for
semantic segmentation on a point cloud pc can be defined as in (3.12), where mIoU is the
mean IoU of all classes (defined in (4.3)). Samples that have a large IoU contribute less
to the loss while samples with a low IoU contribute more. IoU loss is defined on point
clouds and not on individual points as opposed to focal loss.

IoUL(pc) = 1−mIoU(pc) (3.12)

The IoU loss function can be combined with class weights to obtain a weighted IoU
loss function. It is defined in (3.13), where wc is the weight for class c and IoUc is the IoU
for class c (defined in (4.2)) and C is the set of all classes.

IoULweighted(pc) =
1

|C|
∑
c∈C

wc (1− IoUc(pc)) (3.13)

In this study, the loss is reduced to a scalar value for each batch by summing all losses
and dividing by the number of elements in the batch.
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Results

4.1 Evaluation metrics

To measure the performance of semantic segmentation, two metrics are used: accuracy
and intersection over union. Accuracy is defined as the ratio between correctly classified
points and the total number of points [35] (see (4.1)). Intersection over union (IoU) (also
known as the Jaccard index) measures the overlap between the predicted- and ground
truth regions [18]. The IoU for a point cloud pc is calculated per class (4.2). Besides,
the mean (mIoU) (4.3), median (4.4) and interquartile range (IQR) (4.5) of the IoUs are
calculated. The interquartile range measures the variability in the IoUs. The mean and
median are both an indication of the overall performance though the median is more robust
to outliers than the mean [104]. In (4.4) ious is a sorted list of the IoUs per class and n
is the number of classes. In (4.5) iouslargest is the sorted list of

⌊
n
2

⌋
largest values of ious

and ioussmallest is the sorted list of
⌊
n
2

⌋
smallest values of ious. Accuracy is not robust

against class imbalance since it is biased towards the majority class [2], thus in this work
IoU is chosen as the primary metric to measure the performance of the segmentation.

Accuracy(pc) =
TP + TN

TP + TN + FP + FN
(4.1)

IoUc(pc) =
TPc

TPc + FNc + FPc
(4.2)

mIoU(pc) =
1

|C|
∑
c∈C

IoUc(pc), where C is the set of all classes (4.3)

median IoU(pc) =

{
ious[n

2
−1]+ious[n

2
]

2 if n = even,

ious[n+1
2 − 1] if n = odd.

(4.4)

IQR(pc) = median IoU(iouslargest)−median IoU(ioussmallest) (4.5)

4.2 Experimental setup

The experiments are executed on a server with an Intel processor containing 56 cores and
a clock speed of 2.0 GHz and an NVIDIA A10 GPU with 24 GB of memory. The active
learning experiment is implemented with PyTorch 1.13.1 [96], while the few-shot learning
experiment makes use of TensorFlow version 2.11.1 [1]. This decision was made to profit
from existing implementations in the respective frameworks.
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Parameter R5% R10% R15% I5% I10% I15% S

Unlabelled 75.20 73.47 74.04 72.87 74.31 75.45 74.65

Top bar 59.15 64.84 62.83 64.70 66.82 67.19 72.66

Messenger wire support 59.05 63.52 64.38 65.44 71.55 70.41 60.55

Drop post 62.75 69.91 69.84 67.08 68.11 72.36 60.72

Steady arm 59.30 63.56 67.19 63.94 66.72 64.10 65.15

Insulator 48.05 53.42 55.11 48.03 54.99 48.94 49.53

Pole 80.18 80.89 78.84 80.07 80.50 80.01 77.39

Pole foundation 60.40 59.00 61.50 55.27 60.17 51.27 55.27

Dropper 61.38 63.64 64.52 64.20 56.89 62.88 53.21

Stitch wire 51.17 48.46 50.55 52.84 54.47 51.25 51.97

Wheel tension device 0.00 0.00 0.00 0.00 0.00 0.00 34.76

Catenary wire 65.36 62.19 65.45 64.99 62.59 69.27 76.81

Top tie 10.05 14.67 12.67 12.41 12.45 14.18 20.39

Bracket 14.40 0.92 0.29 10.29 2.99 17.66 25.19

mIoU 50.46 51.32 51.94 51.58 52.33 53.23 55.59

Median IoU 59.23 62.86 63.61 64.07 61.38 63.49 57.91

IQR 14.70 16.38 16.64 17.41 13.64 21.47 23.13

Mean Accuracy 82.34 83.01 82.94 82.52 83.37 83.74 82.54

Table 4.1: The results for the different active learning experiments. R = random query
selector, I = informativeness query selector and S = supervised.

4.3 Active learning

For the active learning experiments, the boxes are normalised to a range of [-1, 1] with the
formula in (4.6) before being fed into the model. This is required since the self-organizing
map (SOM) of the SO-Net model expects normalised data. The boxes are also randomly
down-sampled to 1024 points. A SOM with 64 nodes is trained offline for 80 epochs for
every input point cloud. Afterwards, random Gaussian noise is added to all points, surface
normals and SOM nodes. The used Gaussian distribution has a zero mean, a standard
deviation of 2cm and it is truncated at ±5cm.

Normalised point = (point− box center) / (
1

2
· box size) (4.6)

In each active learning round, the most informative superpoints are labelled and added
to the training set. The labelling is done by assigning all points in a superpoint to the
majority class within the superpoint. If there are multiple class labels with the maximum
count in the superpoint, one is chosen at random.

4.3.1 Experiments

Fully supervised baseline

As a baseline to compare the active learning method with, the SO-Net segmentation model
is trained in a supervised manner on 80% of the 3x3x3m boxes data and validated on the
remaining 20%. The results are averaged over ten runs to reduce the randomness of the
results. The results are listed in column S of Table 4.1. The hyperparameter configuration
for this experiment was determined via exploratory research and is given in Table 4.2.
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Parameter Value Parameter Value

Epochs 100 Learning rate 0.001

Batch size 32 Activation ReLU

Dropout 0.5 Batch normalisation Yes

Input points 1024 Surface normals True

Feature vector size 256 Optimizer Adam

Loss Cross-entropy

Table 4.2: Hyperparameter configuration for the fully supervised experiment on 3x3x3m
boxes dataset with the SO-Net model.

Parameter Value Parameter Value

Initial epochs 30 Annotation budget 5% of points (of all data)

Active epochs 15 Active learning rounds 7

Table 4.3: Hyperparameter configuration for the active learning experiments on 3x3x3m
boxes dataset with the SO-Net model.

Random query selector

Superpoints are selected for annotation at random in the random query selector experi-
ment. This experiment acts as a baseline to compare the informativeness query selector.
The hyperparameter settings for the active learning experiments as determined by ex-
ploratory research are listed in Table 4.3. The query selection is implemented so that
when the budget is below 50 points, the procedure is halted. This prevents the algorithm
from running a long time searching for small superpoints. The hyperparameters in Ta-
ble 4.2 are still valid, except for the epochs parameter. With this configuration, the model
is trained for 135 epochs on 40-50% of the total data in the final epochs depending on the
amount of initial training data.

Experiments with 5%, 10% and 15% initial training data were conducted. The results
presented here are averages over three runs. Only three runs were carried out for each
experiment because of time constraints: one run took about three hours to complete. The
results for the experiments with 5%, 10% and 15% initial data can be seen in columns
R5%, R10% and R15% of Table 4.1 respectively.

It is expected that the model’s performance will increase when the percentage of initial
training data increases because there is more data to learn from. Table 4.1 confirms this
hypothesis, both the mIoU and the median IoU increase as the amount of initial data
increases. The median IoU is significantly higher for all three experiments. This is due
to several classes with particularly low performance dragging down the mean IoU (wheel
tension device, top tie and bracket). Especially the wheel tension device class, as it scores
0 for all active learning experiments. This is because there are no points from the wheel
tension device class in the validation set. Without ground truth points, the intersection
and thus the IoU are zero.

The experiment with 15% initial data achieves 93.48% of the performance of the su-
pervised baseline in terms of mIoU. The performance suffers from the wheel tension device
class. It is important to note however that the model is trained for 35 more epochs in this
experiment than in the supervised experiment. But

From Figure 4.1 (a)-(c) it can be seen that there is an increase in training loss when
the first active learning round begins. This may be attributed to the model overfitting on
the initial training data. It can also be seen that the more initial training data, the smaller
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(a) R: 5% initial training data (b) R: 10% initial training data (c) R: 15% initial training data

(d) I: 5% initial training data (e) I: 10% initial training data (f) I: 15% initial training data

Figure 4.1: The training and test loss for the active learning method with random query
selection (R) and informativeness query selection (I). The blue and green colours indicate
active learning rounds.

the increase in training loss and the bigger the increase in test loss at the first epoch of the
first active learning round. The model overfits more when the amount of initial training
data is smaller, thus the bigger increase in training loss. The increase in test loss is a
consequence of the new training data modifying the model parameters considerably at
the first epoch causing more inaccurate predictions. The increasing test loss when more
initial data is used, is probably a consequence of the test loss being lower after the initial
training stage for larger percentages of initial training data.

Informativeness query selector

In the informative query selector experiment, the query selection algorithm described in
Section 3.2.3 is employed. The query selection is based on informativeness instead of
randomness. It is thus expected to achieve a higher performance than the experiment
with random query selection. Since superpoints of minority classes are considered more
informative, the class imbalance should be handled automatically by this query selection
algorithm. Again, experiments with 5%, 10% and 15% initial training data were conducted
and the results are averages over three runs. The hyperparameters are the same as the
active learning experiment with a random query selector described in the previous section.
Equivalent to the random query selector experiment, the query selection is stopped when
the budget is below 50 points.

The results in columns S5%, S10% and S15% in Table 4.1 seem to confirm the
hypothesis that selecting queries based on informativeness results in higher performance
than random queries. There is a noteworthy difference between mIoU and median IoU. The
mIoU slightly increases between random and informativeness query selection (5%: +1.12,
10%: +1.01, 15%: +1.29). The median IoU for the informativeness experiment is however
slightly lower (5%: +4.84, 10%: -1.48, 15%: -0.12), except for the experiment with 5%
initial data where the informativeness experiment scores almost five percentage points
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higher. This median IoU is likely an outlier since it is the highest out of all experiments.

From this experiment, it is not clear if the informativeness query selector handles the
class imbalance better than the random query selector. Looking at the four least present
classes (disregarding wheel tension device) two have a higher IoU (stitch wire: +2.79,
bracket: +5.11) and two a lower (dropper: -1.86, insulator: -1.54). Also, the IQR is not
significantly different from the random experiment, except for the I15% experiment where
it is considerably higher.

Interestingly, both the bracket (+5.11 IoU) and top tie (+0.55 IoU) classes are better
recognised by the model trained using the informativeness selector. These classes are
present in the least number of boxes (after the wheel tension device). This indicates that
the informativeness selector is more likely to pick data that it has not seen often.

In Figure 4.1 (d)-(f) the training and test losses are plotted for the experiments, they
are comparable to the plots of the random experiments although the test loss spikes are
less extreme.

The experiment with 15% initial data achieves 95.75% of the performance of the super-
vised baseline in terms of mIoU. It must be taken into account that the model is trained for
135 epochs instead of 100 as in the supervised experiment. On the other hand, the wheel
tension device class drags down the mIoU of the active learning experiment considerably.

The results from Table 4.1 provide evidence that the informative query selector achieves
better performance than the random query selector in terms of mIoU. This claim is con-
firmed by the fact that the informativeness experiment also achieves higher accuracy than
the random experiments.

4.4 Few-shot learning

4.4.1 Data preprocessing

The catenary arches are voxelised with the voxel centroid nearest neighbour method. The
voxel centroid nearest neighbour method divides the point cloud into voxels where each
populated voxel is represented by the centroid of its points (with two points, the voxel is
represented as the point closest to the voxel centre). Afterwards, the arches are down-
sampled to 131.072 points via random sampling to reduce their memory footprint. Both
procedures are implemented with PDAL [22] filters. The synthetic arches are normalised
by applying a scaling factor of 13.5m (half of the maximum dimension in the real catenary
arches dataset). Lastly, there are some random augmentations applied to each input
separately: random rotation between -180 and +180 degrees around the z-axis, random
translation of the point coordinates between -1m and +1m in all directions and random
noise. The random noise is selected from a truncated normal distribution with a mean of
zero and a standard deviation of 2cm and is truncated at ±5cm. This preprocessing is
identical to the preprocessing employed in [119] so that the results in this experiment can
be compared fairly to their results.

4.4.2 Experiments

The generative few-shot learning experiments are conducted on the modified PointNet++
[100] model as described in [119]. The difference with the original PointNet++ model is
a third set abstraction level to enhance the segmentation of smaller objects. The hyper-
parameters used for the experiments are found through exploratory research and can be
seen in Table 4.5. The training set is the full synthetic dataset consisting of 750 catenary
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Parameter NW BW GW FL IL [119]†

Unlabelled 73.80 74.30 73.76 73.28 26.85 69

Top bar 82.48 80.60 86.80 85.71 0.00 80

Messenger wire support 33.53 35.27 42.40 45.01 0.00 69

Drop post 91.28 84.11 91.80 90.14 0.00 81

Steady arm 56.27 59.44 60.84 53.04 0.00 58

Insulator 54.69 49.33 56.38 57.71 0.00 48

Pole 86.77 85.37 85.73 85.20 0.00 83

Pole foundation 55.23 63.15 54.55 40.92 0.00 67

Dropper 57.16 44.07 60.17 53.90 0.00 51

Stitch wire 65.89 40.89 65.95 69.43 0.00 71

Wheel tension device 85.41 79.51 85.26 80.93 0.00 70

Catenary wire 58.65 77.20 61.32 57.92 0.00 69

Top tie 62.92 70.39 76.94 70.35 0.00 83

Bracket 83.51 74.99 90.57 83.85 0.00 88

mIoU 67.69 65.62 70.89 67.67 1.92 71

Median IoU 64.41 72.35 69.86 69.89 0.00 69.5

IQR 27.24 30.18 25.56 29.95 0.00 14

Mean Accuracy 87.94 87.22 88.66 87.87 26.85 -

Table 4.4: The results for the different few-shot learning experiments. NW = non-
weighted cross-entropy loss, BW = batch-weighted cross-entropy loss, GW = global-
weighted cross-entropy loss, FL = focal loss, IL = IoU loss. †Results as reported in [119]
using a non-weighted loss function.

arches. After training the model is validated on the real catenary arches dataset consisting
of 15 arches.

The experiments were repeated three times to decrease the randomness of the results.
Averaging over three runs is a trade-off between reducing randomness and saving time
since a single run took approximately eight hours.

Non-weighted loss

The non-weighted loss experiment calculates the loss with the non-weighted cross-entropy
loss function. The results are listed under column NW in Table 4.4 and the loss plot can
be seen in Figure 4.2 (a). From Table 4.4 we can see that the mIoU differs largely per
class. Drop post has the highest with 91.28 while messenger wire support only has an
mIoU of 33.53. This difference is likely due to class imbalance in the training data. This
also shows in the performance of the majority and minority classes. The four classes with
the most points have an average IoU of 83.58 while the four classes with the fewest points
have an average of 52.82.

In [119] the same modified PointNet++model is trained on the original catenary dataset
and validated using leave-one-out cross-validation. The batch size is four and the model is
trained for 400 epochs with a learning rate of 0.01 followed by 200 epochs with a learning
rate of 0.001. The results of this experiment are listed in the right-most column ([119])
in Table 4.4. The training set in [119] consists of 14 arches, compared to the 750 arches
used in our experiment. The number of arches that the model sees during training is
comparable in both experiments, 8400 in [119] vs 7500 in our experiment. The model in
our experiment reaches 95.34% of the performance achieved in [119] in terms of mIoU.
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Parameter Value Parameter Value

Epochs 100 Batch size 6

Input points 131.072 Learning rate 0.01

Batch normalisation Yes Optimizer Adam

Loss Non-weighted cross-entropy

Table 4.5: Hyperparameter configuration for the few-shot learning experiments on the
synthetic catenary arches dataset.

The performance difference possibly arises from the nature of the training data. In our
experiment, the model is trained on synthetic data while in [119] the model is trained
on real-world data. The model in [119] is thus trained on data that better resembles the
validation data which likely causes higher performance.

The IoU of the wheel tension device (+15.41) and drop post (+10.28) classes is notably
better than in the experiment of [119], while the messenger wire support (-35.47), top tie
(-20.08), pole foundation (-11.77) and catenary wire (-10.35) score significantly lower. It
is plausible that this is due to the different class distributions in the training data of the
experiments. Remarkably, the drop post class has a lower point percentage (-1.10) and
arch percentage (-17.46) than in the original dataset and the top tie class has both a higher
point percentage (+0.61) and arch percentage (+42.40) (see Table 3.9). In the synthetic
dataset, the boundary between drop post and top bar is more apparent because there
exists some space between them instead of being directly connected. The model might
be able to better learn the distinction between drop post and top bar, hence the increase
in performance. Because the top tie is present in relatively many training samples, the
model might learn that it is likely a top tie is present in a sample. Then at validation, the
model also predicts many points as top tie. However, the validation set contains relatively
few top ties resulting in a high false positive count.

Weighted loss

In this study, the weighted loss function weighs the labels by the inverse of their frequency.
The inverse frequency for a class c is calculated by the formula in (4.7). The weights are
the normalised inverse frequencies as calculated by the formula in (4.8), where C is the
set of all classes.

IFc =
total points

points of class c
(4.7)

Wc = |C| ·
IFc∑

cl∈C IFcl
(4.8)

The loss function is weighted with both batch- and global weights. Batch weights
are calculated with the inverse frequency per batch and global weights with the inverse
frequency in the entire training set. Calculating the inverse frequencies every batch is
more computationally heavy than calculating it once and reusing them every batch. On
the other hand, each batch contributes an equal amount to the overall loss of the epoch
when using batch weights. With global weights, this is not necessarily the case. A batch
with relatively many points from minority classes contributes more than a batch with
relatively few points from minority classes. Larger batch sizes mitigate this effect since
the class distribution in the batches better resembles the distribution of the entire dataset.
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Figure 4.2: The training (red) and validation (blue) loss for the few-shot learning exper-
iment with different loss functions. The experiments are performed with the modified
PointNet++ model trained on the 750 synthetic arches dataset.
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The results of the experiment with a weighted loss function are listed in Table 4.4 in
the BW and GW columns for the batch-weighted and global-weighted loss respectively.
The loss plots can be seen in Figure 4.2 (b) and (c).

Because of the proportional weights per class, it is expected that the minority classes
will perform better than in the experiment with the non-weighted loss function.

The mIoU for the batch-weighted loss function is lower than for the experiment with
a non-weighted loss function while the median IoU is higher. Considering the six classes
consisting of 1% of the points or less, only catenary wire (+18.55) and messenger wire
support (+1.74) show a performance gain. Stitch wire (-25.0), dropper (-13.09), bracket
(-8.52) and insulator (-5.36) all experience a performance drop. A possible explanation
could be that the weights are relatively unstable. It could be that there are batches where
the point distribution is even more imbalanced than in the full dataset. The weights for the
minority classes in these batches are so substantial that they disrupt the learning process
for these classes, causing a worse IoU compared with the non-weighted loss function.

For the global-weighted loss function, both the mIoU and median IoU are higher than
the non-weighted loss function. The minority classes have also improved (messenger wire
support (+8.87), bracket (+7.06), dropper (+3.01), catenary wire (+2.67), insulator (+1.69),
stitch wire (+0.06)). This indicates that a global-weighted loss function does indeed handle
class imbalance better than a non-weighted loss function.

There is a significant difference between the performance of the batch-weighted and the
global-weighted loss. Particularly the messenger wire support and bracket classes increase
considerably. Those classes are present in relatively few arches (59.33% and 65.87% re-
spectively). This suggests that a global-weighted loss function is better at handling classes
that scantly appear in the training samples.

Another interesting result is that the validation loss for the weighted loss functions
(see Figure 4.2 (b) and (c)) fluctuates less than the loss from the experiment with a non-
weighted loss function (see Figure 4.2 (a)). This is an indication of a more stable training
process and leads to fewer variations in the results of different training runs.

Focal loss

An existing implementation of the focal loss function1 is used with the focusing parameter
γc = 2 for all classes and the balancing factor αc = 1 for all classes. The results are listed
under column FL in Table 4.4. The loss plot can be seen in Figure 4.2 (d).

Since the focal loss function focuses more on the misclassified samples than the well-
classified ones, it is expected that the focal loss will emphasise the minority classes because
they are relatively frequently misclassified. It is clear from the results that the mIoU is
similar to the non-weighted experiment and the median IoU is higher. Out of the six
minority classes, only the dropper (-3.26) class sees a significant decrease in performance.
The other minority classes have similar (bracket (+0.34), catenary wire (-0.73)) or better
performance (messenger wire support (+11.48), stitch wire (+3.54), insulator (+3.02)). This
indicates that focal loss is indeed able to implicitly address class imbalance to a certain
extent by focusing on misclassified samples.

Compared with the global-weighted loss, the mIoU for the focal loss experiment is
lower and the median IoU is similar. Focusing on the six minority classes, it can be seen
that three classes have a higher IoU for focal loss (stitch wire (+3.48), messenger wire
support (+2.61), insulator (+1.33)) and three have a higher IoU for global-weighted loss
(bracket (+6.72), dropper (+6.27), catenary wire (+3.40)). The increase is more significant

1https://github.com/artemmavrin/focal-loss/tree/master
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for the global-weighted loss and since it also has a higher mIoU, it can be concluded the
global-weighted loss function results in better performance than the focal loss function.

In Figure 4.2 it can be seen that the loss plot of the focal loss functions displays less
extreme peaks than the non-weighted loss plot. This indicates a more stable training
process when a focal loss function is employed. The focal loss and both weighted loss
plots are comparable.

IoU losses

The loss function must be differentiable in order to calculate its gradients which are used
to update the model parameters. The original IoU metric is not differential, hence a
differential approximation of IoU is used in the IoU loss function. The approximation of
mIoU for a point cloud pc is calculated by (4.9), where T⃗ pt is the ground truth label of

point pt as one-hot vector and P⃗ pt the predicted labels for point pt as probabilities [101].
The · symbol indicates the dot product operation.

mIoU ′(pc) =

∑
pt∈pc T⃗ pt · P⃗ pt∑

pt∈pc T⃗ pt + P⃗ pt − (T⃗ pt · P⃗ pt)
(4.9)

The weighted IoU loss function adds a weighting term to the approximation of the
mIoU in (4.9). The weighting term is a vector w⃗ with the weights for class i at index i.
The formula for the weighted mIoU for a point cloud pc is stated in (4.10), where T⃗ pt is

the ground truth label of point pt as one-hot vector and P⃗ pt the predicted labels for point
pt as probabilities. The · symbol indicates the dot product operation.

mIoU ′
weighted(pc) =

∑
pt∈pc T⃗ pt · P⃗ pt · w⃗∑

pt∈pc T⃗ pt + P⃗ pt − (T⃗ pt · P⃗ pt · w⃗)
(4.10)

Training the model with the IoU loss function resulted in poor performance. The
model did not learn patterns in the data but simply always predicted the class with the
highest point percentage in the training data. The model converged to this configuration
after about ten steps in the first epoch. Thus both the training and test loss are constant
during the entire training process, as can be seen in Figure 4.2 (e).

The unlabelled class is the class with the highest point percentage in the synthetic
arches dataset (see Table 3.9). Hence, the model in this experiment always predicts a
point to be of the unlabelled class. The results are identical for both the non-weighted
and weighted IoU loss. Therefore, the results are listed in a single column (IL) in Table 4.4.
The percentage of unlabelled points in the original catenary arches dataset is 27.30%. The
IoU of the unlabelled class is slightly different due to the down-sampling of the arches.

4.5 Summary of the results

The results of the active learning experiment show that the informativeness query selector
algorithm achieves higher IoUs than the random query selector algorithm. However, it
does not necessarily handle the class imbalance better. There does seem to be a significant
increase for the classes that are present in a limited number of input samples. Compared
with the supervised baseline, the active learning experiments perform reasonably well.
The informativeness experiment with 15% initial data achieves 95.75% of the performance
of the supervised baseline in terms of mIoU.
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The global-weighted loss function achieves the highest mIoU compared to the other
loss functions. The weights help to address the class imbalance in the dataset. The focal
loss is also able to address the class imbalance but to a lesser extent. The performance
is equivalent compared with the experiment conducted in [119]. The synthetic dataset
created in this work is thus a good representation of the real-world data and the model
is able to learn useful patterns from the synthetic data that are also present in real-world
data.

The IoU is generally higher for the few-shot learning experiment (global-weighted:
70.89 mIoU) than for the active learning experiment (I15%: 53.23 mIoU). The difference
is likely due to the nature and amount of the training data. The training data in the
active learning experiment consists of 520 boxes of each 1024 points, while the model in
the few-shot learning approach is trained on 750 full arches consisting of 131.072 points.
Furthermore, it is more difficult for the model in the boxes experiment to identify patterns
in the data since the spatial relations in the arches are not preserved in the boxes.

Both approaches demonstrate performance that is on par with their supervised coun-
terparts. Choosing the best approach depends on the use case. The main drawback of the
generative few-shot learning approach in this study is that the generated synthetic dataset
is very specific to the original catenary arches dataset. The active learning approach on
the other hand is generalisable to other tasks taking point cloud data as input: the active
learning loops and informativeness query selector work on any point cloud data. With
the active learning approach, the manual labelling effort is reduced considerably. The
training process is however interactive and thus more time-consuming than the few-shot
learning approach. The main advantage of the few-shot learning approach is that it can
take advantage of thoroughly researched supervised learning techniques.
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Discussion and conclusion

5.1 Discussion

The dataset used in this study is gathered from one specific part of the Netherlands. The
railway environment varies in different parts of the world (different terrain, signs, poles
for example) [113]. Moreover, the dataset is focused on catenary arches. Novel train
transportation techniques like magnetic levitation do not use arches. Hence, care must be
taken with generalising the results of this study to other railway datasets.

The hardware used in this study poses a substantial limitation. Out-of-memory errors
were frequently encountered throughout the training process. Down-sampling the input
data and small batch sizes are necessary to prevent memory errors. However, both mea-
sures limit the performance of the segmentation models. The results of the experiments
will likely improve if they are conducted on hardware that allows larger batch sizes and
less down-sampling.

The down-sampling applied to the point clouds in this study is random down-sampling.
The class distribution in the point clouds remains similar after the down-sampling step. A
solution that potentially better handles class imbalance is to down-sample the point clouds
based on the point distribution. Points from majority classes have a higher probability
of being removed than points from minority classes. This way the down-sampling step
creates a more uniform class distribution in the points clouds thereby reducing the class
imbalance in the dataset. A disadvantage of this technique is that it can only be applied
to labelled data, which is not always easy to obtain.

The active learning approach in this work is not yet mature enough to be used on
large unlabelled datasets. The oracle is fully automatic, which works in this case because
a labelled dataset is used. A mechanism that allows for smooth manual labelling by human
annotators should be developed to make the active learning approach feasible in practice.

Since the oracle is automatic, it is also difficult to measure the labelling effort per active
learning round. In this study, a percentage of points is used as the annotation budget, but
in practice, the number of clicks or the spent time will be more relevant budget units.

The option to run the active learning approach on the created synthetic dataset is not
explored in this work since the synthetic data is already labelled. Here, it is easier to train
on all the labelled data instead of selecting the most informative samples.

The generative few-shot learning approach creates new data by following object place-
ment rules. The main drawback is that this synthetic data is too specific to be used on
other railway datasets. To get a synthetic dataset that is more general, extra objects and
extra object placement rules are needed. The object placement rules should then take
more different objects into account which will result in more complex rules. Creating
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these rules will be a difficult and time-consuming task.

The synthetic data obviously should have a resemblance to the original data. However,
too much resemblance will likely lead to overfitting, especially if the initial dataset is small.
This overfitting will lead to a good performance on the original dataset but does not allow
for any generalisation to other datasets. On the other hand, if the synthetic data does
not resemble the original data enough, the model will not be able to learn patterns in the
original data. The synthetic data samples must be exactly in the middle of too much and
too little resemblance. The synthetic dataset produced in this work likely exhibits too
strong a resemblance to the original dataset since the object placement rules are derived
from the original data and the randomness introduced is limited.

In this work, the whole labelled catenary arches dataset is used to create the synthetic
data and thus in this particular case, the manual labelling effort is not reduced. On the
other hand, out of the 15 arches 750 new arches are created. So, from the total of 765
arches less than 2% is manually labelled. This approach thus shows that it is feasible to
generate synthetic data out of a small set of manually labelled data, hence reducing the
manual labelling effort.

The semi-supervised learning techniques applied in this study, seem to be suitable
techniques to solve the point cloud semantic segmentation problem for railway data. The
downside is that implementing it is considerably more difficult than supervised learning.
The advantage is that the manual labelling effort is reduced considerably. Since only
two semi-supervised paradigms are implemented and tested, a general conclusion about
semi-supervised cannot be drawn.

Deep learning has gained a lot of attention recently (think of ChatGPT) and is used
regularly as a solution to complex problems. Hence, it is reasonable to apply deep learning
to point cloud semantic segmentation. Nevertheless, deep learning might not always be the
most appropriate solution. Point clouds are large data structures that take up significant
amounts of memory. This limits the model- and batch size. Furthermore, deep learning
takes advantage of patterns and relations found in the data. Because of the diversity in
railway infrastructure, railway data possibly does not contain enough patterns and rela-
tions that the model can leverage for its predictions. These arguments raise the question
of whether deep learning is the best solution for point cloud semantic segmentation of
railway scenes.

Auto-encoder active learning approach

Initially, the idea behind the active learning approach was to first cluster the points in
the point cloud and then use these clusters as query units. The clustering is based on
the feature vectors learned from the auto-encoder described in [69]. At first, the auto-
encoder was trained with unsupervised learning on the catenary arches. However many
out-of-memory errors were encountered since the arches took up lots of memory, even
after downsampling. After hyperparameter tuning, the reconstruction results were not
sufficient (see Figure 5.1). It was then decided to split up the arches into boxes. As can
be seen in Figure 5.2, the results were much better.

Using the trained encoder from the auto-encoder, an initial segmentation was obtained
from the segmentation network developed in [69]. Without using any labelled data the
performance was not sufficient. Using 10% labelled data, the performance increased sub-
stantially. Now the segments could be used for active learning on the same segmentation
network.

However, the active learning rounds were not implemented for this method. The reason
is that it seems redundant to use a segmentation model to get an initial segmentation
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Figure 5.1: The reconstruction generated by the SO-Net auto-encoder of a catenary arch
(red) and the original catenary arch (green). A cluster is formed at the top-centre of the
arch.

(a) Side view. (b) Top view.

Figure 5.2: The reconstruction generated by the SO-Net auto-encoder (red) and the orig-
inal input data (green) when using 3x3x3m boxes as input.

which serves as input for the same segmentation model. If the initial segmentation model
is not performing well, the second segmentation model will probably also not perform
well. On the other hand, if the initial segmentation is good, then the end goal of semantic
segmentation is already reached by this intermediate step. Moreover, the segmentation
model predicts the class labels for each point while clustering just groups similar points
together without knowledge about object categories. Grouping similar points can be done
with simpler tasks than semantic segmentation.

Traditional clustering algorithms base the clustering on some feature set of the units.
The learned feature vectors from the auto-encoder representing the boxes could be used
with traditional clustering algorithms. However, since the goal is to cluster points and not
boxes, clustering did not seem appropriate in this setup.

At this time, the over-segmentation technique was brought up and considered a better
fit to generate the units for active learning.
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5.2 Conclusion

Point cloud semantic segmentation on railway data using supervised learning requires a
considerable amount of manual labelling effort because no labelled railway datasets are
available. Semi-supervised learning can be exploited to reduce the labelling effort. In
this work, two approaches following different semi-supervised paradigms are implemented.
This way it is attempted to get more insight into how to effectively apply semi-supervised
learning to the task of semantic segmentation of large-scale point clouds of the railway
environment.

Both active learning and generative few-shot learning can be effectively applied to the
semantic segmentation of large point cloud scenes of the railway environment. The active
learning approach with the informativeness query selector achieved over 95% performance
of the supervised baseline while using 37.5% less labelled data. The generative few-shot
learning approach with a global-weighted loss function achieved equivalent performance
as in [119] while training on only synthetic data.

Choosing which approach to use depends on the situation. If the data can be recreated
with relatively simple rules and generalisability it is not a critical requirement, generative
few-shot learning seems the best option. However, the active learning approach is more
general and can be applied to different point cloud datasets.

A major challenge encountered in this work for point cloud segmentation in the domain
of railway environments is the class imbalance in the data. The objects that need to be
recognised differ largely in size and thus also in the number of points in the dataset.
Developing better techniques to handle class imbalance will improve both approaches and
is thus an interesting topic for future research.

5.3 Future work

The models in this work suffer from class imbalance in the dataset even when measures
like adjusted loss functions are implemented. Future work could look into other or new
class imbalance techniques to improve the performance of models on class-imbalanced
datasets. An appropriate option is to extend networks with a memory module to alleviate
the problem of forgetting patterns from minority classes. The work in [45] could be taken
as a baseline to implement memory modules for segmentation models.

Recently, the explainability of artificial intelligence models has been broadly studied
[28, 33]. Explainability helps researchers understand the models better and so could
improve upon the shortcomings made visible through model understanding. Applying
explainability frameworks like SHAP [81] or LIME [103] on point cloud models could give
insight into further improvements of the models.

Another direction to explore is data fusion. In this work, the input data consists of
only point clouds with x-, y- and z-coordinates. If images are available, it could be helpful
to use them in combination with the point clouds [25]. Images provide extra information
like colour. Colour is an important factor in determining object boundaries [57, 140].
Adding colour information can improve the over-segmentation as well as the semantic
segmentation performance.

Furthermore, other forms of semi-supervised learning could be explored. For instance,
self-supervised learning where a feature representation is learned through a pretext task
which can be based for example on contrast learning [70] or reconstruction of incomplete
point clouds [151]. Another interesting approach is to combine active learning with region-
growing methods. Here, the oracle selects seed points that initialise the region-growing
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method. Region-growing algorithms have shown promising results on railway data [4, 152].
But generally, seed selection is the bottleneck so selecting them through an oracle could
alleviate this problem.

Another approach quite common in literature is to focus on one specific object category
in the dataset like (catenary) wires [16, 73] or rail tracks [105, 134]. These methods
are usually based on the geometric properties of the object categories. These structural
methods could be leveraged by detecting objects from sparse classes followed by a deep
learning model to detect the general objects. For example, first detecting the wires,
removing them from the point cloud and feeding the remaining points to a deep learning
model.

Yet another technique that could be investigated is segmentation refinement. Refine-
ment techniques try to improve the output of segmentation models. The most prevalent
refinement techniques are conditional random fields (CRF) [97, 116] and Markov random
fields (MRF) [54, 79]. Other techniques like the attention-based score refinement (ASR)
module [146] could also be explored.

Lastly, the oracle employed in the active learning rounds in this study is not a human
but an automaton. This is possible because the catenary arches dataset is labelled. In
practice, the labelled data is usually not available and an actual unlabelled pool must
be used. To improve the quality and reduce the effort of labelling, an efficient labelling
process for human annotators must be developed. This was deemed out-of-scope for this
study but is important to make the active learning approach practical.
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ability of Image Semantic Segmentation Through SHAP Values”. In: Proceedings of
the International Conference on Pattern Recognition, Computer Vision, and Image
Processing. ICPR 2022 International Workshops and Challenges. 2022, pp. 188–
202.

[29] M. Dassot, T. Constant, and M. Fournier. “The Use of Terrestrial LiDAR Tech-
nology in Forest Science: Application Fields, Benefits and Challenges”. Annals of
Forest Science 68 (2011), pp. 959–974.

[30] A. Diab, R. Kashef, and A. Shaker. “Deep Learning for LiDAR Point Cloud Clas-
sification in Remote Sensing”. Sensors 22.20 (2022), p. 7868.

[31] X. Dong, Y. Xiao, Z. Chen, J. Yao, and X. Guo. “GPU-Based Supervoxel Seg-
mentation for 3D Point Clouds”. Computer Aided Geometric Design 93 (2022),
p. 102080.

[32] A. R. Fayjie and P. Vandewalle. “Few-Shot Learning on Point Clouds for Railroad
Segmentation”. Electronic Imaging 35.17 (2023), pp. 100-1–100-1. url: https:
//library.imaging.org/ei/articles/35/17/3DIA-100.

[33] T. Fel, L. Hervier, D. Vigouroux, A. Poche, J. Plakoo, R. Cadene, M. Chalvidal, J.
Colin, T. Boissin, L. Bethune, A. Picard, C. Nicodeme, L. Gardes, G. Flandin, and
T. Serre. Xplique: A Deep Learning Explainability Toolbox. 2022. arXiv: 2206.04394
[cs.LG].

[34] H. Feng, Z. Jiang, F. Xie, P. Yang, J. Shi, and L. Chen. “Automatic Fastener
Classification and Defect Detection in Vision-Based Railway Inspection Systems”.
IEEE Transactions on Instrumentation and Measurement 63.4 (2013), pp. 877–888.

[35] E. Fernandez-Moral, R. Martins, D. Wolf, and P. Rives. “A New Metric for Evalu-
ating Semantic Segmentation: Leveraging Global and Contour Accuracy”. In: IEEE
Intelligent Vehicles Symposium (IV). IEEE. 2018, pp. 1051–1056.

[36] C. Finn, P. Abbeel, and S. Levine. “Model-Agnostic Meta-Learning for Fast Adap-
tation of Deep Networks”. In: Proceedings of the 34th International Conference on
Machine Learning. PMLR. 2017, pp. 1126–1135.

[37] A. Fuller, Z. Fan, C. Day, and C. Barlow. “Digital Twin: Enabling Technologies,
Challenges and Open Research”. IEEE Access 8 (2020), pp. 108952–108971.

[38] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville, and Y. Bengio. “Generative Adversarial Networks”. Communications of
the ACM 63.11 (2020), pp. 139–144.

[39] J. Grand́ıo, B. Riveiro, M. Soilán, and P. Arias. “Point Cloud Semantic Segmen-
tation of Complex Railway Environments Using Deep Learning”. Automation in
Construction 141 (2022), p. 104425.

[40] Y. Guo, F. Sohel, M. Bennamoun, J. Wan, and M. Lu. “A Novel Local Surface
Feature for 3D Object Recognition Under Clutter and Occlusion”. Information
Sciences 293 (2015), pp. 196–213.

[41] Y. Guo, H. Wang, Q. Hu, H. Liu, L. Liu, and M. Bennamoun. “Deep Learning for
3D Point Clouds: A Survey”. IEEE Transactions on Pattern Analysis and Machine
Intelligence 43.12 (2020), pp. 4338–4364.

[42] T. Hackel, N. Savinov, L. Ladicky, J. D. Wegner, K. Schindler, and M. Pollefeys.
Semantic3D.net: A new Large-scale Point Cloud Classification Benchmark. 2017.
arXiv: 1704.03847 [cs.CV].

43



BIBLIOGRAPHY

[43] D. Han, J. Yoo, and D. Oh. “SeeThroughNet: Resurrection of Auxiliary Loss by
Preserving Class Probability Information”. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition. 2022, pp. 4463–4472.

[44] K. He, X. Zhang, S. Ren, and J. Sun. “Deep Residual Learning for Image Recog-
nition”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2016, pp. 770–778.

[45] T. He, D. Gong, Z. Tian, and C. Shen. “Learning and Memorizing Representative
Prototypes for 3D Point Cloud Semantic and Instance Segmentation”. In: Proceed-
ings of the European Conference on Computer Vision (ECCV). Springer. 2020,
pp. 564–580.

[46] A. Heidari, J. McGrath, I. F. Ilyas, and T. Rekatsinas. “HoloDetect: Few-Shot
Learning for Error Detection”. In: Proceedings of the 2019 International Conference
on Management of Data. 2019, pp. 829–846.

[47] Y. Ho and S. Wookey. “The Real-World-Weight Cross-Entropy Loss Function:
Modeling the Costs of Mislabeling”. IEEE Access 8 (2019), pp. 4806–4813.

[48] Q. Hu, B. Yang, L. Xie, S. Rosa, Y. Guo, Z. Wang, N. Trigoni, and A. Markham.
“RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition. 2020, pp. 11108–11117.

[49] R. Hu, B. Mac Namee, and S. J. Delany. “Off to a Good Start: Using Clustering to
Select the Initial Training Set in Active Learning”. In: Proceedings of the 23rd In-
ternational Florida Artificial Intelligence Research Society Conference (FLAIRS).
Technological University Dublin, 2010, pp. 26–31.

[50] Z. Hu, X. Li, C. Tu, Z. Liu, and M. Sun. “Few-Shot Charge Prediction with Dis-
criminative Legal Attributes”. In: Proceedings of the 27th International Conference
on Computational Linguistics. 2018, pp. 487–498.

[51] Q. Huang, W. Wang, and U. Neumann. “Recurrent Slice Networks for 3D Seg-
mentation of Point Clouds”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2018, pp. 2626–2635.

[52] M. Jaritz, J. Gu, and H. Su. “Multi-View PointNet for 3D Scene Understanding”.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision
Workshops. 2019, pp. 3995–4003.

[53] A. Ji, Y. Zhou, L. Zhang, R. L. Tiong, and X. Xue. “Semi-Supervised Learning-
Based Point Cloud Network for Segmentation of 3D Tunnel Scenes”. Automation
in Construction 146 (2023), p. 104668. issn: 0926-5805. url: https : / / www .

sciencedirect.com/science/article/pii/S0926580522005386.
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Appendix A

Object placement rules

Name Amount [probabilities] Orientation Placement

Top bar 0-1 [0.2, 0.8] Like x-axis Center at x=0 and y=0, z=bit
lower than max pole height

Pole without top bar 2-4 [0.6, 0.3, 0.1] Like z-axis Symmetrical (-x, x), y=0, z=0

Pole with small top bar† 2-4 [0.4, 0.2, 0.4] Like z-axis Symmetrical (-x, x), y=0, z=0

Pole with large top bar† 2-6 [0.2, 0.1, 0.4, 0.1, 0.2] Like z-axis Symmetrical (-x, x), y=0, z=0

Pole foundation 0-1 [0.3, 0.7] on every pole Like pole z = pole z - 1
2 pole height, x/y

same as pole

Drop post 0-1 [0.05, 0.95] on top bar Like top bar Center at x=0 and y=0,
z=top bar z - 1

2 top bar height

Steady arm at drop post 0-2 [0.1, 0.3, 0.6] at every
pole/drop post

Perpendicular to drop post
and aligned with top bar

z = bottom drop post, x/y
same as pole

Steady arm at pole 0-2 [0.1, 0.8, 0.1] at every
pole/drop post

Perpendicular to drop pole
and aligned with top bar

z = 2
3 pole height, x/y same

as pole

Insulator 0-1 [0.1, 0.9] at every steady
arm

Same as steady arm At side where pole/drop post
is, z/y same as steady arm
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Messenger wire support on
small top bar

0-4 [0.25, 0.125, 0.25, 0.125,
0.25]

Same as top bar x = random on top bar, z/y
same as top bar

Messenger wire support on
large top bar

0-6 [0.2, 0.07, 0.2, 0.07, 0.2,
0.06, 0.2]

Same as top bar x = random on top bar, z/y
same as top bar

Wheel tension device 0-4 [0.3, 0.2, 0.3, 0.1, 0.1] on
every pole

Same as pole On front or back of post, z=
2
3 drop post height, x=same as
pole, y=pole y ±1

2 pole width

Catenary wire 0-1 [0.1, 0.9] on every steady
arm

Perpendicular to steady
arm/topbar and aligned with
z=0 plane

x = steady arm x ±1
2 steady

arm length, z/y same as
steady arm

Stitch wire 0-1 [0.1, 0.9] on every catenary
arch

Same as catenary wire z=catenary wire z + 1m, x/y
same as catenary wire

Dropper 0-2 [0.1, 0.7, 0.2] on every
catenary wire

On plane through catenary
wire and stitch wire

z = 1
2(catenary wire z + stitch

wire x), x/y same as catenary
wire

Top tie 0-1 [0.1, 0.9] at every stan-
dalone pole‡

Perpendicular to pole and
aligned with x-axis

On line y=0, z=bit lower than
max pole height

Bracket 0-1 [0.1, 0.9] at every top tie Same as pole, angle is same as
in original data

So that both points are touch-
ing top tie and pole

Unlabelled (ground) 0-8 [0.05, 0.05, 0.1, 0.2, 0.2,
0.2, 0.1, 0.05, 0.05]

Along z=0 plane At random positions,
z=bottom of pole

Unlabelled (pole-like) 0-5 [0.1, 0.2, 0.2, 0.2, 0.2, 0.1] Like z-axis Near the outer poles

Unlabelled (wire-like) 0-6 [0.1, 0.1, 0.2, 0.2, 0.2, 0.1,
0.1]

Perpendicular to top bar and
along plane z=0

z= 0.5m above top bar, x ran-
dom

Table A.1: The object placement rules. †A small top bar is defined as a top bar with a width of less than 20m. A large top bar has a width
greater or equal to 20m. ‡A standalone pole is defined as a pole without a top bar attached to it.
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