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Management summary 
Van Schoot Pompcentrum BV (VSP) is a company that handles all types of services related to clothes. 

These services are for example embroidery, tailoring, cleaning, and printing of clothes. The logistic service 

of delivery and pick up of the clothes within a couple of days is the main component of their success. VSP 

is facing a problem related to this logistic service from 2025 onward. The problem is that from 2025 diesel 

vehicles are not allowed in many city centers anymore. This forces them to use Electric Vehicles (EVs) 

from that moment. Another regulation that is changing for business-related vehicle leasing, is that from 

2025 all business lease vehicles need to be electric vehicles. VSP wants to get more insight into its logistic 

routing and optimize the current situation. Therefore, the goal of this research is to gain insight into the 

current performance of vehicle routing at VSP to be able to create new routes for the introduction of EVs. 

By doing this VSP is expanding its knowledge of its current performance and next to that, it will then also 

be able to handle the new regulations that are coming in 2025, while also pursuing sustainability goals. The 

main research question in this research is the following: 

How can VSP introduce electric vehicles to their routing logistics, while also improving the existing 

routes simultaneously? 

Current situation 

VSP is dealing with 225 cities or villages where customers are located. Within a city, multiple customers 

can be present, but for the routing, a city or village is seen as one location. The 24 routes in total are therefore 

dealing with 225 locations. The locations are divided over the two sets of routes. Tuesday-Friday has 116 

locations and Wednesday-Saturday has 109 locations. This division over the days is used to make sure that 

large customers are on different days, which ensures capacity is not a problem when visiting the locations. 

Next to the day, the division of the locations over the routes, each location has a handling time and some 

locations have time windows that need to be considered in the routes. The routes VSP use, give an outline 

of the cities and villages that need to be visited and one location can have multiple customers. The precise 

routes driven on these days are dependent on which exact customer placed an order or needs to get clothes 

returned. These routes for a day are based on the general routes.  

Solution approach 

To solve the problem VSP is facing, a 2-Phase solution approach is used. In Phase 1, the current situation 

(Vehicle Routing Problem with Time Windows, VRPTW) will be improved using a VNS/VND approach. 

These improved routes are then used as input for solving the new situation (Electric Vehicle Routing 

Problem with Time Windows, EVRPTW) where Phase 2 starts. The main problem with the new situation 

is where and how long to charge. The new situation is solved by using the improved routes and inserting 

electric chargers into these routes and determining how long a vehicle needs to charge at such a charging 

location. Briefly, Phase 1 improves the current situation by using VRPTW techniques and Phase 2 is 

inserting the charging locations to solve the EVRPTW for VSPs new situation. The insertion of chargers 

could be done by a heuristic for larger problems and by a solver for smaller problems.  
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Figure 1. Two-phase solution approach for solving the EVRPTW 

Results  

Experiments are performed on small size benchmark instances with 5-10-15 locations and large size 

benchmark instances with 100 locations. Furthermore, real-life instances are randomly generated based on 

customer data from VSP. Where small size instances with 5-10-15 locations and medium size instances 

with 40-50-60 locations are created. The approach can find solutions around a 5-15% average difference 

for smaller instances to the solution found by the Gurobi solver (Table 1) and solutions around a 60% 

average difference for medium or larger instances to the LP relaxation (Table 1). Which for a relatively 

simple approach is acceptable. However, a limitation is that the algorithm does perform better in a situation 

where not all locations have time windows. The problem becomes more difficult when more time locations 

have time windows. Performance on the real-life instances is relatively better than the performance on the 

benchmark instances. However, the solution approach is still able to solve the situations with more time 

windows. 

Table 1. Comparison performance on benchmark and real-life instances 

 Small size 

benchmark 

Large size 

benchmark 

Small size real-

life instances 

Medium size 

real-life instances 

Average difference 13.16% 62.11% 4.24% 63.55% 

Min difference 0.00% 45.37% -5.82% 56.93% 

Max difference 34.08% 76.22% 13.49% 73.55% 

 

Using the proposed solution approach, VSP can improve the current situation and determine routes 

including charging locations. For the routes on Tuesday-Friday, the routes for the situation including 

chargers are even shorter in terms of time compared to the current situation. However, for Wednesday-

Saturday, the routes are longer in terms of distances considering the total amount of kilometers. Therefore, 

more charging is needed, resulting in longer routes when charge times are included (Table 2).  
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Table 2. Overview improvements VSP 

 Current 

situation 

(VRPTW) 

New Situation  

 Times* Phase 1* 

(VRPTW) 

Phase 2* 

(EVRPTW) 

Distances Charge times Total time***  

Tuesday-

Friday 

6780 minutes  6452 minutes 

(-328 min)** 

6507 minutes  

(-273 min)** 

4550 km 74.5 minutes 6581.5 minutes 

(-198.5 min)** 

Wednesday-

Saturday 

6963 minutes  6619 minutes  

(-344 min)** 

6779 minutes  

(-184 min)** 

5970 km 231 minutes 7010 minutes 

(+47 min)** 
*Times are driving times + handling times, **difference compared to current situation, *** times include charge times 

Conclusion and recommendations 

The goal of this research is to gain insight into the current performance of vehicle routing at VSP to be able 

to create new routes for the introduction of EVs. When gaining these insights, VSP is also able to improve 

its current routing logistics. As the proposed solution method, first improves a generated initial solution or 

existing current routes, VSP could also improve their current routing, whereafter EVs are introduced into 

the Phase 1 solution to be able to establish routes for the new situation.  

From achieving the goal of this research, the following recommendations can be given to the company. 

These recommendations are regarding the next steps VSP can take to further investigate how in the coming 

years their routing logistics can be made electric. The recommendations for VSP are: 

1. Investigate the growth of the customers, as this has a lot of influence on the routing and the 

difficulty of determining good routes.  

2. Develop an agile tool that by using the proposed algorithms can help determine routes for changing 

situations. When the tool can handle all sorts of different situations like adding or changing 

customers, more flexibility in the routing can be established.  

3. Investigate if adding a hub at a more central location can help with reducing tour length for the 

locations that are most far away. The current location causes large travel distances in some 

situations, making the optimization of those routes difficult. 

4. When using the proposed solution approach, run the heuristic for a long enough time to ensure it 

escapes local optima. As the performance for larger instances can fluctuate. 

 

  



i 

 

Contents 
Preface .......................................................................................................................................................... ii 

Management summary ................................................................................................................................. iii 

List of figures ............................................................................................................................................... iv 

List of tables .................................................................................................................................................. v 

1  Introduction ............................................................................................................................................... 1 

1.1 Company Description ................................................................................................................... 1 

1.2 Motivation for the research ........................................................................................................... 1 

1.3 Problem Statement and goal ......................................................................................................... 2 

1.4 Research questions ........................................................................................................................ 3 

1.4.1 Main research question ......................................................................................................... 3 

1.4.2 Sub questions ........................................................................................................................ 3 

1.5 Scope ............................................................................................................................................. 4 

1.6 Limitations .................................................................................................................................... 4 

1.7 Approach ....................................................................................................................................... 4 

2 Current situation .................................................................................................................................... 5 

2.1 Routing process description .......................................................................................................... 5 

2.2 Current routes ................................................................................................................................ 6 

2.3 Current situation data .................................................................................................................... 8 

2.4 Performance current routes ........................................................................................................... 9 

2.5 Conclusion .................................................................................................................................... 9 

3 Literature review ................................................................................................................................. 10 

3.1 Vehicle Routing Problem ............................................................................................................ 10 

3.2 Mathematical formulation VRP and VRPTW ............................................................................ 10 

3.2.1 VRP formulation ................................................................................................................. 10 

3.2.2 VRPTW formulation ........................................................................................................... 12 

3.3 Optimization methods VRP(TW) ............................................................................................... 12 

3.3.1 Constructive Heuristics ....................................................................................................... 12 

3.3.2 Improvement heuristics ....................................................................................................... 14 

3.3.3 Neighborhood Operators ..................................................................................................... 15 

3.3.4 Neighborhood structures ..................................................................................................... 15 

3.3.5 Metaheuristics for solving VRPTW .................................................................................... 16 

3.4 Electric Vehicles in VRP(TW) ................................................................................................... 18 

3.5 Optimization methods EVRP(TW) ............................................................................................. 20 



ii 

 

3.6 Conclusion on literature .............................................................................................................. 22 

4 Solution approach ............................................................................................................................... 24 

4.1 Structure approach ...................................................................................................................... 24 

4.2 Current Situation (Phase 1 VRPTW) .......................................................................................... 25 

4.2.1 Mathematical formulation VRPTW .................................................................................... 25 

4.2.2 Solution approach current situation .................................................................................... 25 

4.2.3 Conclusion Phase 1 ............................................................................................................. 27 

4.3 New situation with electrical vehicles (Phase 2 EVRPTW) ....................................................... 27 

4.3.1 New input data for Phase 2 ................................................................................................. 28 

4.3.2 Mathematical formulation EVRPTW ................................................................................. 28 

4.3.3 Solution approach new situation ......................................................................................... 30 

4.3.4 Conclusion Phase 2 ............................................................................................................. 32 

5 Experiments ........................................................................................................................................ 33 

5.1 Description experiments and overview ....................................................................................... 33 

5.2 Benchmark instances .................................................................................................................. 35 

5.2.1 Small size instances ............................................................................................................ 35 

5.2.2 Large size instances ............................................................................................................ 40 

5.3 Generated real-life cases ............................................................................................................. 45 

5.3.1 Small size instances ............................................................................................................ 45 

5.3.2 Medium size instances ........................................................................................................ 50 

5.4 Results of the company (VSP) .................................................................................................... 55 

5.4.1 Tuesday-Friday ................................................................................................................... 55 

5.4.2 Wednesday-Saturday .......................................................................................................... 55 

5.5 Conclusion on experiments ......................................................................................................... 57 

6 Conclusions and recommendations ..................................................................................................... 58 

6.1 Conclusion .................................................................................................................................. 58 

6.2 Recommendations ....................................................................................................................... 58 

6.3 Future work ................................................................................................................................. 59 

6.4 Contribution to literature and practice ........................................................................................ 59 

References ................................................................................................................................................... 61 

Appendix ..................................................................................................................................................... 65 

Appendix A ............................................................................................................................................. 65 

Appendix B ............................................................................................................................................. 65 

Appendix C ............................................................................................................................................. 65 

Appendix D ............................................................................................................................................. 65 



iii 

 

Appendix E ............................................................................................................................................. 65 

Appendix F.............................................................................................................................................. 66 

Appendix G ............................................................................................................................................. 66 

Appendix H ............................................................................................................................................. 68 

 

  



iv 

 

List of figures 
Figure 1. Two phase solution approach for solving the EVRPTW .............................................................. iv 
Figure 2. Problem cluster for determining core problem VSP ...................................................................... 2 
Figure 3. Overview of performed steps ........................................................................................................ 4 
Figure 4.  Visualization current routes, red = TueFri, blue=WedSat ............................................................ 6 
Figure 5. Figure containing possible combinations of pairs of routes by Chiang & Russel (1996) ........... 16 
Figure 6. Two-Phase solution approach overview ...................................................................................... 24 
Figure 7. Pseudocode VNS/VND approach ................................................................................................ 26 
Figure 8. Parallel construction initial solution TUEFRI ............................................................................. 27 
Figure 9. Parallel construction initial solution WEDSAT .......................................................................... 27 
Figure 10. Example insertion of charging location for a single tour........................................................... 31 
 

  



v 

 

List of tables 
Table 1. Comparison performance on benchmark and real life instances ................................................... iv 
Table 2. Overview improvements VSP ......................................................................................................... v 
Table 3. Routes Tuesday-Friday ................................................................................................................... 6 
Table 4. Routes Wednesday-Saturday .......................................................................................................... 7 
Table 5. Time windows per location ............................................................................................................. 8 
Table 6. Route times for current routes ......................................................................................................... 9 
Table 7. Overview solution method EVRPTW .......................................................................................... 22 
Table 8. Data Electric Vehicle (eSprinter) .................................................................................................. 28 
Table 9. Overview of experiments .............................................................................................................. 33 
Table 10. Overview Small size benchmark experiments ............................................................................ 35 
Table 11. Small size benchmark instances Comparison ............................................................................. 37 
Table 12. Small size benchmark instances Experiment 1: Total Distance vs Total time............................ 38 
Table 13. Small size benchmark instances Experiment 2.1: Capacity ........................................................ 39 
Table 14. Small size benchmark instances Experiment 2.2: Charging speed ............................................. 39 
Table 15. Small size benchmark instances Experiment 2.3: Battery usage ................................................ 40 
Table 16. Overview of large size benchmark Experiments ........................................................................ 41 
Table 17. Large size benchmark instances comparison .............................................................................. 42 
Table 18. Large size benchmark instances Experiment 1: Total distance vs total time .............................. 43 
Table 19. Large size benchmark instances Experiment 2.1: Capacity ........................................................ 43 
Table 20. Large size benchmark instances Experiment 2.2: Charging speed ............................................. 44 
Table 21. Large size benchmark instances Experiment 2.3: Battery usage ................................................ 44 
Table 22. Overview Small size real-life experiments ................................................................................. 45 
Table 23. Small size real-life instances Comparison .................................................................................. 46 
Table 24. Small size real-life instances Experiment 1: Total distance vs total time ................................... 47 
Table 25. Small size real-life instances Experiment 2.1: Capacity ............................................................. 48 
Table 26. Small size real-life instances Experiment 2.2: Charging speed .................................................. 48 
Table 27. Small size real-life instances Experiment 2.3: Battery usage ..................................................... 49 
Table 28. Small size real-life Experiment 3 ................................................................................................ 50 
Table 29. Overview Medium size real-life experiments ............................................................................. 50 
Table 30. Medium size real-life instances Comparison .............................................................................. 51 
Table 31. Medium size real-life instances Experiment 1: Total distance vs total time ............................... 52 
Table 32. Medium size real-life instances Experiment 2.1: Capacity ......................................................... 52 
Table 33. Medium size real-life instances Experiment 2.2: Charging speed .............................................. 53 
Table 34. Medium size real-life instances Experiment 2.3: Battery usage ................................................. 54 
Table 35. Comparison and evaluation new routes Tuesday-Friday ............................................................ 55 
Table 36. Comparison and evaluation new routes Wednesday-Saturday ................................................... 56 
 



1 

 

 

1  Introduction 
In Chapter 1, we describe the company and give a motivation for the research. We state the problem 

statement and explain the research goal. Furthermore, we identify research questions that are needed to be 

able to understand the current situation, solve the core problem, and achieve the research goal. In the end, 

a scope, approach, and timeline of the research are given. 

1.1 Company Description 
Van Schoot Pompcentrum BV (VSP) is a company that handles all types of services related to clothes. 

These services are for example embroidery, tailoring, cleaning, and printing of clothes. In the ’70s, the 

company started small in the eastern parts of the Netherlands. In the meantime, the company and its 

customer base have grown a lot. VSP is at this moment the largest company in the Netherlands performing 

these kinds of services in a B2B environment. VSP’s main location is in Oldenzaal, which is a small atelier. 

Next to that, VSP has a location in Bad Bentheim, where around 30 people work, and a bigger facility in 

Poland. The location in Bad Bentheim is a depot and office space. A location in Poland is where all clothes 

are being handled, for example, tailored. Nowadays, they pick up and deliver thousands of clothes per week, 

where around 75% is tailoring. Tailoring is therefore also their main service. The logistic service of delivery 

and pick up of the clothes within a couple of days is the main component of their success.  

This logistic process is completely in the hands of VSP. This is done to be able to provide the best service 

times to their customers. They guarantee that the clothes that are picked by them are processed and delivered 

back to the customer within 3 days. The clothes are picked up and brought to the depot in Bad Bentheim. 

From there, the clothes are driven to Poland by truck to be tailored. This is done in a big facility where 

around 200 people work. After tailoring, the clothes are brought back to Bad Bentheim, where the vehicle 

will distribute the clothes back to the customers.   

One of the main goals that VSP has is to provide the best service for its customers. Therefore, they run the 

logistical process all for themselves. VSP gives the customer the ability to track their order through the 

track and trace system. VSP wants to provide a good and transparent insight into the logistical processes to 

their customers.  

1.2 Motivation for the research 
VSP is facing a routing problem from 2025 onward. The company is currently using diesel vehicles for the 

pickup and delivery of clothes to and from customers. These vehicles need to go into city centers a lot, as 

many customers of VSP are located there. The problem is that from 2025 diesel vehicles are not allowed in 

many city centers anymore (KVK, 2022). This forces them to use Electric Vehicles (EVs) from that 

moment. Another regulation that is changing for business-related vehicle leasing, is that from 2025 all 

business lease vehicles need to be electric vehicles (Wingerden, 2022). Therefore, the urgency to change to 

electric vehicle routing is there.  

Next to the obligation, the company also wants to be more sustainable. Making this a good opportunity to 

combine the new regulation with a company goal. VSP starts by looking into these options before the new 

rules are applied to establish the new routes before its needed.  

VSP is also getting questions from its customers about its sustainability goals. Many of these clothing 

companies have very extensive sustainability goals and therefore they find it strange when a diesel-powered 

vehicle picks up these sustainable clothes for one of their services. This research can contribute to the 

sustainability goals of the customers and VSP themselves. These things together make for enough incentive 
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to make sure that at least in 2025, but hopefully before that, EVs will be used to pick up and deliver clothes 

to their customers.  

Lastly, VSPs routes are never optimized before. The routes currently used are primarily based on the 

experience of personnel and drivers. Therefore, information on the performance of their routes is lacking. 

With this research, VSP is hoping to also get more insight into their logistic routing and optimize the current 

situation. Introducing new types of vehicles into their routes without having a good insight into their 

performance is very difficult. Therefore, this type of research can be of help to their new situation when 

also helping them in their current situation.   

In section 1.3, the core problem and knowledge problems are derived and explained. This results in the 

problem statement of this research. 

1.3 Problem Statement and goal 
To get to the core problem, first, all problems are stated. After knowing all problems, causes and effects are 

identified and put into a problem cluster. With the use of the problem cluster, the core problem is selected. 

After that, the core problem is made measurable.  

VSP is facing multiple problems concerning the routing of its vehicles. The first problem is that VSP is 

forced to switch to EVs from 2025 onward. They lack the knowledge on how they are going to deal with 

the lower range of the vehicles within their current routes. Another problem is that VSP is not sure how 

good their routes are performing at the moment. Again, there is a lack of insight into the process. It is hard 

to implement these new electric vehicles into their route if they are not sure if they currently have good 

routes.   

With both problems, the main component is the lack of insight into the performance of current routing 

processes. This is then also identified as the core problem (See Figure 2). As there is no insight into the 

current performance, routes are determined based on experience. This does not have to be a bad thing as in 

the current situation VSP is making a profit. The downside is that it is unclear if they could make more 

profit. Also, sometimes routes exceed the 10-hour work limit, which is not preferred by VSP.  

 

Figure 2. Problem cluster for determining core problem VSP 

The core problem is made measurable for the current situation in the following way. Here, the goal is to 

improve the performance by 5%. This is based on the KPIs used for the objective function. Currently, the 

routes are done in 13609 minutes (226,8 hours), and the goal for the current routes is to do this within 12929 

minutes (215,5 hours). After that, the focus will be on the introduction of EVs. As this situation is new, it 

is hard to make it measurable, however, we can evaluate the performance compared to the situation with 

the old vehicles.  
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The goal of this research is to gain insight into the current performance of vehicle routing at VSP to be able 

to create new routes for the introduction of EVs. By doing this VSP is expanding its knowledge of its current 

performance and next to that, it will then also be able to handle the new regulations that are coming in 2025, 

while also pursuing sustainability goals.  

1.4 Research questions 
In Section 1.4, research questions are stated concerning various parts of the research. First, the main 

research question is given, and after that the sub-questions.  

1.4.1 Main research question 

This research will contain an optimization of the current situation, however, the main goal is to create routes 

that can be performed by electric vehicles. Therefore, the main research question in this research is the 

following: 

How can VSP introduce electric vehicles to their routing logistics, while also improving the existing 

routes simultaneously? 

The main research question can be answered after completing Chapters 4 and 5. Before we can start solving 

the problem, the following sub-questions need to be answered to be able to answer the main research 

question. 

1.4.2 Sub questions 

Current situation 

One of the most important parts of a good foundation for this research is to get a good understanding of the 

current situation. In Chapter 2, a current system analysis will be performed. Therefore, the following sub-

research question is answered: 

What does the current routing situation look like and what is the performance of these routes? 

Modeling techniques 

To be able to improve the current situation and introduce EVs to the routing processes of VSP, an 

appropriate modeling technique needs to be used. With the use of a literature review in Chapter 3, modeling 

techniques will be identified and selected to be able to model the problem at hand. The following questions 

are answered: 

How are VRP problems formulated? How are different kinds of constraints modeled in VRP problems?  

Possible solution methods 

After knowing how VRP problems are modeled, it is important to have a good understanding of how a VRP 

is optimized. Within Chapter 3, the following research question is also answered about possible solution 

methods: 

What are optimization techniques used when dealing with a VRP problem and how can we deal with VRP 

problems that have large instances? 

Electric Vehicles 

The main goal of this research is to be able to determine routes that are performed by EVs. Therefore, the 

following research questions are answered concerning this topic: 

How does the formulation change when EVs are introduced to the VRP problem? What are the 

optimization techniques when dealing with the EVRP problem? 
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These questions will also be answered in Chapter 3, as we need to have a good understanding of how we 

can deal with VSP's problem to be able to answer the main research question. 

1.5 Scope 
In this research, the focus is on optimizing current routes and creating new routes when introducing EVs to 

the situation. VSP also mentioned that they were considering small depots in the form of hubs throughout 

the country to reduce travel times. This would be an extra problem in the form of a facility location problem. 

That is a new project and out of the scope of this research. This research focuses on the vehicle routing of 

new electric vehicles.  

This research will furthermore focus on the general layout of the routes. This means that the routes 

determined in this research will have the cities or towns in them and not the exact customer locations as 

these customers can differ from day to day, however, the cities or towns are almost always the same. 

1.6 Limitations 
For the current situation, the data that is used is provided by VSP. VSP has a system that tracks every move 

of every vehicle through all routes. Travel times from the past and present can be evaluated using this 

system. These times will be made general and not include exceptions about for example days with a lot of 

traffic jams. These are situations that are excluded when evaluating and creating routes for VSP. The use 

of data will be more extensively explained in the chapters regarding the modeling of the routes.  

1.7 Approach  
First, the current situation is modeled and optimized. After that, EVs will be introduced into the model to 

be able to create new routes including the use of EVs. This will result in the following overview of the 

chapters, where Chapter 2 is linked to sub-question 1, and Chapter 3 is linked to sub-questions 2, 3, and 4. 

And the main research question can be answered after Chapters 4 and 5.  

- Chapter 1: Introduction 

- Chapter 2: Current situation  

- Chapter 3: Literature review 

- Chapter 4: Solution approach 

- Chapter 5: Experiments 

- Chapter 6: Conclusion and recommendations  

This results in the following overview of steps that are performed during this research related to the given 

chapters above (see Figure 3): 

  

Figure 3. Overview of performed steps 
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2 Current situation 
In Chapter 2, the current situation of the routing logistics of VSP is described and analyzed. Next to the 

routing process and routes, input parameters for the model are given. Chapter 2 answers sub-research 

question 1. 

2.1 Routing process description 
At this moment, VSP has two sets of routes each set having 12 routes. These two sets correspond to two 

sets of days. These sets are Tuesday-Friday and Wednesday-Saturday. The idea is that when clothes are 

picked up on Tuesday, the customer will have them back on Friday and vice versa. This is the same for the 

clothes picked up on Wednesday and Saturday. At the end of the day, the drivers bring the clothes to the 

depot in Bad Bentheim. Here, the clothes are put in a truck that brings the clothes to the facility in Poland. 

There, the clothes are handled. After handling, the clothes are brought back to the depot in Bad Bentheim 

and the drivers bring them back to the customers. This all needs to happen within 3 days because as said, 

clothes pickup on Tuesday are back at the customer on Friday or if the clothes are picked up on Friday, 

they are back on Tuesday. This is the same for Wednesday and Saturday.  

In total, VSP is dealing with 225 cities or villages where customers are located. Within a city, multiple 

customers can be present, but for the routing, a city or village is seen as one location. The 24 routes in total 

are therefore dealing with 225 locations. The locations are divided over the two sets of routes. Therefore, 

Tuesday-Friday has 116 locations and Wednesday-Saturday has 109 locations. This division is kept in the 

optimization of the routes as it can give some problems to the customers if they are switched to the other 

day set. Furthermore, the routing also needs to take into account the amount of work that is sent to the 

facility in Poland. With the division of locations of the two sets of routes, the division of work is kept 

desirable. Next to the day the division of the locations over the routes, each location has a handling time 

and some locations have time windows that need to be considered in the routes. Typically in these types of 

problems, capacity can also be a constraint to be considered. VSP does not have this problem if the division 

of the days is kept. For now, the biggest customers are divided over different days and therefore capacity 

does not play a big part. This will be further explained in Chapter 4, as here the model will be given 

including all constraints. 

The routes VSP use, give an outline of the cities and villages that need to be visited and one location can 

have multiple customers. The precise routes driven on these days are dependent on which exact customer 

placed an order or needs to get clothes returned. These routes for a day are based on the general routes 

displayed and described.  
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2.2 Current routes 
Figure 4 displays all the locations and routes that are considered in the 24 routes. The red triangle is VSPs 

depot location. As mentioned, these are then divided over 2 sets of days Tuesday-Friday and Wednesday-

Saturday.  

 

Figure 4.  Visualization current routes, red = TueFri, blue=WedSat 

Figure 4 gives the current routes. VSP makes a distinction between the two sets of days, where the color 

red are the routes from Tuesday-Friday and the color blue is the routes from Wednesday-Saturday.  

With the locations clear, we show the current routes per day set in more detail. Section 2.4 evaluates the 

performance of these routes. Table 3 shows the routes for Tuesday-Friday. The sequence given from top to 

bottom is the sequence that is being driven by the drivers. All routes start and end at the depot in Bad 

Bentheim. 

Table 3. Routes Tuesday-Friday 
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In Table 4, we give an overview of the locations that are in routes for Tuesday-Friday. Here, the sequence 

from top to bottom is also the sequence that is driven. And again, the routes all start and end at the depot in 

Bad Bentheim. 

Table 4. Routes Wednesday-Saturday 
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2.3 Current situation data 
In this section, data from the current situation is described. This data is used in Chapter 4 as input data for 

the model that is made for the optimization of the current situation. To be able to focus on the models in 

Chapter 4 and illustrate the current situation here better, we give data regarding durations in this part. The 

matrix for the driving times is too large and therefore available in a supplement file in Appendix A. The 

travel times are extracted from the internet via an API called ‘OpenStreetMap’ that can be linked to Python. 

After collecting the driving times, the times are put in an Excel file to make them more readable. 

Every location has a service or handling time. This is the amount of minutes the driver is at that location. 

As these are also two large lists, these times are available in two separate files in Appendix B. We use a 

GPS buddy system that tracks every vehicle to estimate the service times of a location. To ensure these 

times are representative of the real world, we verified the times by a driver of VSP.   

Not every location has a time window. In total, 44 locations have one. A time window is the time before or 

after a location cannot be served anymore. This means that the driver needs to be at the location within the 

given time window for that location. These are displayed in Table 5. Here the end of the time windows are 

shown, every city also has an opening time window. The opening time window for most of the locations is 

09:30, as the stores open around this time. Some locations open somewhat earlier. 

Table 5. Time windows per location 

 

In Table 5, also some orange-marked numbers are present. VSP prefers to keep the time window, however, 

sometimes there is a possibility to park the vehicle just outside the city center and walk to the customer 

locations. Therefore, these can be considered soft time window constraints, while the time windows for the 

other locations are hard time window constraints. The difference between hard and soft time window 

constraints is that hard constraints need to be held at all costs and soft constraints could be violated if 

needed. Furthermore, the driver also needs to leave before the time window, meaning arrival time plus 

service times needs to be lower than these given times.  

Location Time window Location Time window

Apeldoorn 11:00 Leeuwarden 12:00

Zutphen 11:00 Middelburg 11:00

Doetinchem 12:00 Goes 11:00

Enschede 11:00 Gouda 12:00

Amsterdam Centrum 11:00 Dordrecht 11:00

Barneveld 12:00 Maastricht 11:00

Arnhem 11:00 Alphen ad Rijn 12:00

Nijmegen 12:00 Leiden 11:00

Amersfoort 11:00 Groningen 12:00

Utrecht 11:00 Hilversum 11:00

Woerden 12:00 Bussum 11:00

Den Bosch 11:00 Putten 11:00

Haarlem 11:00 Rotterdam Centrum 10:30

Deventer 11:00 Weert 12:00

Alkmaar 11:00 Eindhoven 11:00

Tilburg 11:00 Helmond 11:00

Kampen 11:00 Rijswijk 11:00

Zwolle 12:00 Den Haag 11:00

Wijchen 12:00 Breda 11:00

Veenendaal 13:00 Oosterhout 11:30

Ede 11:00 Roermond 12:00

Venlo 12:00
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2.4 Performance current routes 
For the performance of a route, we take the amount of minutes it takes to perform a route as the Key 

Performance Indicator (KPI). In Table 6, the times per route for both sets of days are given. These routes 

are calculated by adding up all the driving times between the locations in order of the route and handling 

times are also added for all locations in the route.  

Table 6. Route times for current routes 

 Tuesday-Friday Wednesday-Saturday 

Route 1 570 minutes (9.5 hours) 644 minutes (10.73 hours) 

Route 2 569 minutes (9.48 hours) 732 minutes (12.2 hours) 

Route 3 536 minutes (8.93 hours) 515 minutes (8.58 hours) 

Route 4 549 minutes (9.15 hours) 504 minutes (8.4 hours) 

Route 5 489 minutes (8.15 hours) 534 minutes (8.9 hours) 

Route 6 563 minutes (9.38 hours) 562 minutes (9.37 hours) 

Route 7 680 minutes (11.33 hours) 545 minutes (9.08 hours) 

Route 8 615 minutes (10.25 hours) 640 minutes (10.67 hours) 

Route 9 590 minutes (9.83 hours) 610 minutes (10.17 hours) 

Route 10 590 minutes (9.83 hours) 594 minutes (9.4 hours) 

Route 11 540 minutes (9 hours) 658 minutes (10.97 hours) 

Route 12 489 minutes (8.15 hours) 425 minutes (7.08 hours) 

Total Time 6780 minutes (113 hours) 6963 minutes (116.05 hours) 

 

The times given in Table 6, show that most of the times for the current routes are somewhere between 500 

and 600 minutes. This is also what VSP desires as drivers should work around 10 hours each day. 

However, in the times, it is visible that some routes do exceed this time. With the optimization of these 

routes, this is also a constraint that needs to be considered. VSP prefers to have no route exceeding this 

10-hour limit. For now, as can be seen in the total time, on average the routes are below 10 hours. In the 

case that now all routes can be within 10 hours, VSP prefers to have an average of below 10 hours.  

2.5 Conclusion 
In Chapter 2, the goal was to understand the current situation. By analyzing the process, the performance 

of the current process is identified. Sub research question 1 is answered with the routing process clear and 

quantifying the performance in terms of time.   

With this overview of the current situation, the next step is to get a better understanding of how VRP 

problems are solved and optimized. Next to that, we want to understand what the influence of EVs is on 

the routing of VSP logistics. In Chapter 3, a literature review is conducted to get information on these 

topics.  
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3 Literature review 
In Chapter 3, a literature review is performed. Here, the focus is to answer the research questions stated in 

Section 1.4. In specific, sub-questions 3, 4, and 5 are answered, regarding modeling techniques, possible 

solution methods, and electric vehicles. First, a general introduction to Vehicle Routing Problem (VRP) 

problems is given. In the end, a conclusion on the found literature is given, mentioning which parts of the 

review will be used to be able to achieve the research goal and solve the core problem.  

3.1 Vehicle Routing Problem 
Laporte (2007) gives the following description of the VRP. It is explained as a process where the aim is to 

design a set of 𝑚 minimum cost vehicle routes through 𝑛 customer locations, so that each route starts and 

ends at a common location and some side constraints are satisfied. Examples of common applications 

mentioned in the paper are newspaper round, food delivery, and milk collection.  

Dantzig & Ramser (1959) were the first to introduce a problem similar to the VRP. This problem was called 

the ‘Truck Dispatching Problem’. Not that many years later Clarke & Wright (1964) generalized this 

problem to a linear optimization problem, making it the VRP known today. After all these years, the VRP 

is one of the most studied problems in Operations Research.  

Braekers et al. (2016) mention in their literature review, that current VRP models differ a lot from the 

problem introduced around the early 60s. Nowadays, the aim is to incorporate real-life complexities into 

the problem. These complexities are, for example, traffic congestion, time windows for pickup and delivery, 

and input information that changes over time.  

Lenstra & Kan (1981) studied the complexity of the VRP and showed that the problem is NP-hard. 

Therefore, exact algorithms can be used to solve small problem instances. If the problem instances become 

too large, heuristics or metaheuristics are more suitable to solve the VRP. Real-life problems are most of 

the time too large, which results in the use of these heuristics.  

Cordeau et al. (2007) mention multiple variations of the VRP. The different types are: Classical VRP, VRP 

with Time windows (VRPTW), Inventory Routing Problem, and Stochastic VRPs. Lin et al. (2016) 

mentioned a new variant based on the Green Vehicle Routing Problem (GVRP) introduced by Erdoĝan & 

Miller-Hooks (2012), which is the Electric Vehicle Routing Problem (EVRP). Fernández Gil et al. (2022) 

show in their review that a lot of research is focused on the reduction of emissions gasses when considering 

the GVRP. Also, it shows that the transition to electric vehicles is researched frequently. In this literature, 

the focus will be on the VRPTW and EVRP. First, a closer look is taken at the formulation of VRP in 

general, later than also adding the use of time windows. Later, a further look is taken at how to incorporate 

EVs into these VRP and VRPTW types of problems. 

3.2 Mathematical formulation VRP and VRPTW  
In this section, the informal description and mathematical formulation of both the VRP and VRPTW are 

given and explained. Section 3.2.1 focuses on VRP problems in general, whereas Section 3.2.2 focuses on 

VRPTW.  

3.2.1 VRP formulation 

In literature, the VRP has been researched extensively. Therefore, a lot of different formulations of the 

problem can be found. In this literature review, the formulation of Kallehauge et al. (2005) is used. They 

have a VRPTW formulation, but we adapt that formulation for the classical VRP formulation, and section 

3.2.2 then shows their complete formulation for the VRPTW. 
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Kallehauge et al. (2005) define the problem as follows. The VRP has a fleet of vehicles 𝑉, a set of customers 

𝑁, and a directed graph 𝐺. The fleet is considered homogeneous, which means that all vehicles are identical. 

The constructed graph consists of |𝑁| + 2 vertices, where the customers are denoted 1,2, … , 𝑛 and the depot 

is vertex 0. The set of arcs, 𝐴, represents direct connections between the depot and customers and among 

the customers. No arcs are ending at vertex 0 or originate from vertex 𝑛 + 1. With each arc (𝑖, 𝑗), where 

𝑖 ≠ 𝑗, there is a cost 𝑐𝑖𝑗 and a time 𝑡𝑖𝑗, which may include service time at customer 𝑖. Each vehicle as a 

capacity 𝑞 and each customer 𝑖 a demand 𝑑𝑖. It is assumed that 𝑞, 𝑑𝑖 , 𝑐𝑖𝑗 are nonnegative integers.  The 

model then contains two decision variables 𝑥 and 𝑠. For each vehicle 𝑘 and arc (𝑖, 𝑗), where 𝑖 ≠ 𝑗, 𝑖 ≠ 𝑛, 

𝑗 ≠ 0, 𝑥𝑖𝑗𝑘 is define as  

𝑥𝑖𝑗𝑘 =  {
1, 𝑖𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑘 𝑑𝑟𝑖𝑣𝑒𝑠 𝑑𝑖𝑟𝑒𝑐𝑡𝑙𝑦 𝑓𝑟𝑜𝑚 𝑖 𝑡𝑜 𝑗 

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

The other decision variable 𝑠𝑖𝑘 is defined for each customer 𝑖 and each vehicle 𝑘 and it gives the time 

vehicle 𝑘 starts to service customer 𝑖. In the case that vehicle 𝑘 does not service customer 𝑖, the decision 

variable does not have a meaning and is therefore considered irrelevant. Kallehauge et al. (2005) state that 

the goal of the program is to minimize total cost in such a way that each customer is visited once and every 

route begins and ends at the depot.  

This informal description is then formalized in the following way by Kallehauge et al. (2005). 

𝑚𝑖𝑛 ∑ ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗𝑘

𝑗∈𝑁𝑖∈𝑁𝑘∈𝑉

                                                            (1) 

  s.t.  

∑ ∑ 𝑥𝑖𝑗𝑘 = 1

𝑗∈𝑁

, ∀𝑖 ∈ 𝑁,                                                  (2)

𝑘∈𝑉

 

∑ 𝑑𝑖

𝑖∈𝑁

∑ 𝑥𝑖𝑗𝑘

𝑗∈𝑁

≤ 𝑞, ∀𝑘 ∈ 𝑉                                              (3) 

∑ 𝑥0𝑗𝑘 = 1

𝑗∈𝑁

, ∀𝑘 ∈ 𝑉                                                          (4) 

∑ 𝑥𝑖ℎ𝑘

𝑖∈𝑁

− ∑ 𝑥ℎ𝑗𝑘

𝑗∈𝑁

= 0, ∀ℎ ∈ 𝑁, ∀𝑘 ∈ 𝑉                      (5) 

∑ 𝑥𝑖0𝑘 = 1

𝑖∈𝑁

, ∀𝑘 ∈ 𝑉                                                           (6) 

𝑠𝑖𝑘 + 𝑡𝑖𝑗 − 𝑀(1 − 𝑥𝑖𝑗𝑘) ≤ 𝑠𝑗𝑘 , ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑘 ∈ 𝑉, (7)  

𝑥𝑖𝑗𝑘 ∈ {0,1}, ∀𝑖, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝑉                                             (8) 

In this formulation, 𝑀 is a large enough number. The objective function given in (1), aims to minimize the 

travel cost. Constraint (2) makes sure that every customer is visited exactly once. With constraint (3), the 

program makes sure that the capacity of a truck is not exceeded.  Constraints (4) and (6) ensure that every 

truck will start and end in the depot, as this is customer 0. Constraint (5) will make a truck leave a customer's 
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location if it goes there. Lastly, constraint (7) creates a relation between the departure time of a truck at a 

customer and the next customer on the route. 

Kallehauge et al. (2005) also show a constraint that could incorporate a maximum amount of vehicles to be 

considered. This could be convenient if it is not sure if the routing could be done with fewer vehicles. The 

constraint looks like the following; 

∑ ∑ 𝑥0𝑗𝑘 ≤ |𝑉|

𝑗∈𝑁

, ∀𝑘 ∈ 𝑉, ∀𝑗 ∈ 𝑁                              (9)

𝑘∈𝑉

 

3.2.2 VRPTW formulation 

To be able to consider time windows for each customer 𝑖, Kallehauge et al. (2005) add parameters 𝑎𝑖 and 

𝑏𝑖, which are the opening and closing time of the time window for customer 𝑖 respectively. Next to these 

parameters, the following constraint also needs to be added. 

𝑎𝑖 ≤ 𝑠𝑖𝑘 ≤ 𝑏𝑖, ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝑉                                         (10) 

Constraint (10) makes sure that each customer is visited within their time window. If the vehicle arrives 

before the opening time, it needs to wait to serve customer 𝑖 until the time window is opened.  

3.3 Optimization methods VRP(TW) 
As mentioned in Section 3.1, the VRP and VRPTW problems are NP-hard problems and therefore exact 

algorithms can only be used for small instances of the problems (Lenstra & Kan, 1981). Therefore, in this 

section, the goal is to identify heuristics and metaheuristics to be able to solve large instances of these 

problems. The aim is to get a solution that is near optimal for these large instances.  

3.3.1 Constructive Heuristics  

First, a look is taken at constructive heuristics that can make an initial solution. Afterward, we consider 

improvement heuristics that can improve these initial solutions. Solomon (1987) mentions in his paper that 

constructive heuristics can be divided into sequential and parallel methods. Sequential methods create 

routes one route at a time until all customers are put into a route. Where parallel methods are scheduling 

routes simultaneously.  

3.3.1.1 Savings Algorithm (VRP) 

The first heuristic considered is the savings algorithm by Clarke & Wright (1964), which can be seen as a 

parallel method. This is a very well-known algorithm. Where every customer first has their own tour and 

the routes are determined by combining two routes based on the cost that can be saved from doing that. The 

savings of putting two routes together is done with the following equation: 

𝑠𝑎𝑣𝑖𝑛𝑔𝑠𝑖𝑗 = 𝑑𝑖0 + 𝑑0𝑗 − 𝑑𝑖𝑗 

Here 𝑖 and 𝑗 are both customer locations at the end or beginning of an existing route. A list is created with 

all possible combinations of end customers. The combination with the most savings is put together in a 

route. This is done until no savings can be made.  

3.3.1.2 Nearest Neighbor Insertion Algorithm (VRP) 

Joshi & Kaur (2015) mention that the Nearest Neighbor Insertion Approach is one of the easier algorithms 

to solve optimization problems. The idea is that all routes for all vehicles are empty at the start and that the 

location closest to the last added location is added next. This is done for a vehicle route until capacity is 

reached and a new route for an empty vehicle is created. This is done until all customers are served by the 
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routes. In general, it is used to create an initial solution as this approach is not known for creating near-

optimal solutions.  

3.3.1.3 Parallel construction approach (VRPTW) 

In the paper by Chiang & Russell (1996), a constructive heuristic is proposed. This is a two-phase approach 

to the VRPTW, it is a parallel construction approach with a simulated annealing tour improvement heuristic. 

The approach differs from other approaches as the improvement process is invoked periodically during the 

construction process. Applying an improvement procedure during route construction helps to improve 

solutions to the VRPTW when using a local search method (Chiang & Russell, 1996).  

The parallel construction procedure given in the paper is based on the insertion heuristic of Solomon (1987) 

but differs from the sequential approach in that a specified number of routes are constructed in parallel 

rather than one at a time. This parallel approach by Chiang & Russell (1996) is described as follows. They 

assume that there are 𝑛 customers that need to be served. For each customer 𝑖, let  

𝑞𝑖 = 𝑑𝑒𝑚𝑎𝑛𝑑 𝑓𝑜𝑟 𝑝𝑖𝑐𝑘𝑢𝑝 𝑜𝑟 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑓𝑜𝑟 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑖 

𝑠𝑖 = 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑖  

𝑒𝑖 = 𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡 𝑡𝑖𝑚𝑒 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑐𝑎𝑛 𝑏𝑒𝑔𝑖𝑛 𝑎𝑡 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑖  

𝑙𝑖 = 𝑙𝑎𝑡𝑒𝑠𝑡 𝑡𝑖𝑚𝑒 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑐𝑎𝑛 𝑏𝑒𝑔𝑖𝑛 𝑎𝑡 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑖  

𝑡𝑖𝑗 = 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡𝑤𝑜 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 𝑖 𝑎𝑛𝑑 𝑗  

𝑑𝑖𝑗 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡𝑤𝑜 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 𝑖 𝑎𝑛𝑑 𝑗  

𝑏𝑖 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑖𝑚𝑒 𝑤ℎ𝑒𝑛 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑐𝑎𝑛 𝑏𝑒𝑔𝑖𝑛 𝑎𝑡 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑖  

𝑏𝑖𝑗 = 𝑡𝑖𝑚𝑒 𝑤ℎ𝑒𝑛 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑐𝑎𝑛 𝑏𝑒𝑔𝑖𝑛 𝑎𝑡 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑗 𝑔𝑖𝑣𝑒𝑛  𝑡ℎ𝑎𝑡 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑖 𝑖𝑠 𝑖𝑛𝑠𝑒𝑟𝑡𝑒𝑑  

           𝑖𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑙𝑦 𝑏𝑒𝑓𝑜𝑟𝑒 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑗 𝑖𝑛 𝑡ℎ𝑒 𝑟𝑜𝑢𝑡𝑒  

𝑄𝑣 = 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑣, 𝑣 = 1,2, … . , 𝑉 

The calculation of 𝑏𝑖𝑗 is given by Chiang & Russell (1996) as the following: 

𝑏𝑖𝑗 = max {𝑒𝑗, 𝑏𝑖 + 𝑠𝑖 + 𝑡𝑖𝑗} 

They give that the arrival at customer 𝑗 before 𝑒𝑗 requires a wait time 𝑤𝑗, which is given as 𝑤𝑗 = 𝑒𝑗 − (𝑏𝑖 +

𝑠𝑖 + 𝑡𝑖𝑗). Arrival after 𝑙𝑗 is infeasible, therefore time window constraints are treated as hard constraints.  

Next, Chiang & Russell (1996) give that the parallel construction approach requires an initial estimate, 𝑉, 

of the number of vehicles required. This can be, for example, the number of existing routes. When 𝑉 is 

determined, the parallel insertion heuristic requires 𝑛 iterations, assigning one customer per iteration to the 

best available route. Customers are selected for route insertion in a particular order. Three ordering rules 

are used to make sure that the time window feasibility is kept during the construction phase. Rule one is for 

selecting the next customer based on the smallest early time window parameter 𝑒𝑗. Rule two is based on the 

tightness of the time window as calculated by 100(𝑙𝑗 − 𝑒𝑗) − 𝑑0𝑗, where 𝑑0𝑗 denotes the distances form 

the depot to customer 𝑗. The number 100 is used as a weight to emphasize the tightness of the time window 
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relative to the distance from the depot. The last rule is based on the largest value of 𝑑0𝑗. These rules together 

will generate three orderings of customers to be selected to be inserted into a route.  

Chiang & Russell (1996) describe two measures that can be considered for inserting customer 𝑗 between 

customers 𝑖 and 𝑘 on route 𝑟. These measures are 𝑐1 and 𝑐2 and are given as follows: 

𝑐1(𝑖, 𝑗, 𝑘) = 𝑑𝑖𝑗 + 𝑑𝑗𝑘 − 𝑑𝑖𝑘 

𝑐2(𝑖, 𝑗, 𝑘) = 𝑏𝑗𝑘 − 𝑏𝑘 

The measures are used in criterion 𝑐3(𝑟) as follows: 

𝑐3(𝑟) = 𝛼1𝑐1(𝑖, 𝑗, 𝑘) +  𝛼2𝑐2(𝑖, 𝑗, 𝑘),    𝑤ℎ𝑒𝑟𝑒                 𝛼1 + 𝛼2 = 1 

This criterion will then select the best route in the following way: 

𝑟 = 𝑎𝑟𝑔𝑚𝑖𝑛{𝑐3(𝑣); 𝑣 = 1,2, … . , 𝑉} 

The solution of the parallel insertion heuristic represents the best of six passes. The parameters used are 

(𝛼1 = 1, 𝛼2 = 0) and (𝛼1 = 0,  𝛼2 = 1). Together with the three ordering rules six passes are created to 

determine the best solution.  

Lastly, Chiang & Russell (1996) state that the initial choice for the number of vehicles can yield an 

infeasible solution with some customers unrouted. If this is the case, Solomon’s insertion heuristic can be 

used to schedule the set of unrouted customers. If all customers are routed within the number of vehicles, 

another iteration of the construction procedure with one vehicle less can be performed, to see if the number 

of vehicles can be lowered. 

3.3.1.4 Sequential Simulated Annealing, initial solution (VRPTW) 

As later will be discussed, the sequential simulated annealing procedure proposed by Woch & Łebkowski 

(2009) yields good results specifically for the VRPTW. In their paper, an algorithm is proposed to make an 

initial solution taking into account time windows. That algorithm starts with ordering all customers 

ascending by time window. A list with the smallest time windows is created first, and those customers will 

be placed on a route first to ensure that the most problematic customers are put in a correct position. First, 

a customer is tried to be put in a place on an existing route, but when this is not possible, a new route for 

this customer will be created. Next to a list with customers that have a small time window, there also is a 

list created with customers that have a larger time window. When the first list is completely gone through, 

the second list with customers is tried to fit in the routes that are made by going through the first list. This 

is done until all customers are placed on a route. The number of customers in the small TW and large TW 

lists can be varied.  

3.3.2 Improvement heuristics 

With improvement algorithms, the idea is to improvement solutions with relatively simple adjustments to 

the current solutions to maybe find better neighbor solutions. With these types of approaches, an optimal 

solution is not guaranteed and the search process is stopped when no better neighbor solution can be found.  

As stated in the work by Bräysy & Gendreau (2005), two acceptance strategies are commonly used in 

solution improvement methods. These strategies are first-accept (FA) and best-accept (BA). The first-

accept strategy selects the first neighbor that satisfies the predefined acceptance criterion. The best-accept 

strategy examines all neighbors satisfying the criterion and then picks the best one among them.  
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In the article by Dror & Levy (1986), they talk about a Greedy Algorithm, that first looks at the savings 

from all possible neighborhood solutions and then takes the neighbor with the biggest savings. This is an 

approach that uses a BA strategy to select a neighbor solution. This is done until no improvement can be 

made anymore. Such an algorithm is called greedy because it will also take the option with the biggest 

savings only taking into account the current solution. With taking the option that has the biggest savings 

now, it is not known if taking fewer savings first could have resulted in bigger savings later. These types of 

approaches, therefore, produce local optimum, where these solutions may be far from the optimal solution.  

3.3.3 Neighborhood Operators 

To be able to explore different solutions within a neighborhood structure, operators are needed to change 

the current solution to a new solution. In the paper by Goel & Gruhn (2008), 5 operators are described in 

relation to a VRP problem. These operators are Insert, Remove, Relocate, Replace, and Swap.  

Insert 

The Insert-operator chooses an unscheduled customer randomly and inserts it into the tour of the vehicle 

with the lowest costs. If the location cannot be feasibly inserted, the solution is not changed. 

Remove 

The Remove-operator chooses a scheduled customer randomly and removes it from the tour is it in.  

Relocate 

The Relocate-operator, which is also known as the MOVE-operator, randomly chooses a scheduled 

customer removes it from the tour it is assigned to, and inserts the customer into a random other tour for 

the lowest possible costs.  

Replace 

The Replace-operator will randomly choose and remove two customers from different tours and the first 

customer is inserted in the tour of the second customer in the place with the lowest costs. The second 

customer will not be reassigned. 

Swap 

The Swap-operator chooses two random customers and removes them from their current tours and inserts 

them into the respective other tour at the place with the lowest cost.  

3.3.4 Neighborhood structures 

When making use of metaheuristics or heuristics in general, it is important to have a neighborhood to be 

able to get results, as mentioned before, the neighborhood structure can have a significant impact on the 

eventual results. Chiang & Russell (1996) define a neighborhood as the following, where a neighborhood 

is a configuration that consists of those configurations that result from perturbing the initial one by the shift 

of customers from one route to another or the interchange of the location of two customers. A configuration 

can be seen as the number of vehicle routes and the assignment of customers to those routes without 

violation of time window constraints (Chiang & Russell, 1996). They state two types of neighborhood 

structures specifically for a simulated annealing algorithm, which are a modified version of the 𝑘-node 

interchange mechanism of Christofides & Beasley (1984) and a neighborhood that is based on the 𝜆-

interchange mechanism of Osman (1993).  

3.3.4.1 Neighborhood N1 

The description of Neighborhood N1 is done by Chiang & Russell (1996) as the following, consider a 

customer 𝑖 on route 𝑝 and the 𝐿 (𝐿 = 1) customers that follow customer 𝑖 on route 𝑝. Set 𝑀1 is defined by 
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customer 𝑖 and the 𝐿 customers that follow 𝑖 on route 𝑝. Set 𝑀2 is defined as the set of two customers not 

on route 𝑝 that are close to the customers in set 𝑀1. Specified, let the points 𝛼 and 𝛽 be the two customers 

on route p that immediately precede and succeed the set 𝑀1, respectively. The set 𝑀2 is generated by the 

two customers not on route p whose insertion cost using Euclidian distance metric between 𝛼 and 𝛽 is 

minimal, i.e. 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑗∉𝑅𝑝
𝑑(𝛼, 𝑗) + 𝑑(𝑗, 𝛽). The sets 𝑀1 and 𝑀2 define the size of neighborhood in the 

search process. With 𝐿 = 1, the number of customers in each of the sets 𝑀1 and 𝑀2 are two customers, 

which results in a total of four customers in 𝑀1 ∪ 𝑀2. They define the 𝑁1(𝑆) neighborhood of a given 

solution 𝑆 as the set of all neighboring solutions achievable by deleting the four customers in 𝑀1 ∪ 𝑀2 and 

re-placing them in all possible routes, taking into account the time window constraints.  

Each customer 𝑖 then has a 𝑈𝑖 = 𝑀1 ∪ 𝑀2, with the complete subset 𝒰 being 𝑈𝑖 , 𝑖 = 1,2, … , 𝑛. Within the 

simulated annealing heuristic at every iteration, the algorithm selects four customers in the subset 𝑈𝑖 and 

will evaluate possible route insertions. If the complete neighborhood would have been searched through, it 

would involve 𝑉4 possible route assignment combinations. This would yield an intractable computational 

effort for large instances. Making use of a preprocessing step can help to make it tractable, by first 

determining the best two routes for each point in 𝑈𝑖. This is done based on the criterion to determine the 

best two routes per customer 𝑐3 from section 3.3.1.3. This pre-step reduces the possible route options per 

subset 𝑈𝑖 to 24 = 16. The idea is that the neighborhood search partially searches through the large 

neighborhood and only looks at promising moves within the neighborhood. With looking through the 

options, constraints are taken into account.  

3.3.4.2 Neighborhood N2 

The second structure Chiang & Russell (1996) is a search method that examines all possible combinations 

of pairs of routes for exchange. Let permutation 𝜎 be the order of route indices for a given solution 𝑆 =

{𝑅1, … , 𝑅𝑠, … , 𝑅𝑡, … , 𝑅𝑉}, in that case, all possible combinations of pairs of routes (𝑅𝑠, 𝑅𝑡) can be examined 

without repetition in a following order as presented in the paper by Chiang & Russell (1996): 

 

Figure 5. Figure containing possible combinations of pairs of routes by Chiang & Russel (1996) 

Neighboring solutions are generated using (0,1), (1,0), and (1,1) operators that represent either a shift or 

exchange process. The first two represent a move of a customer from one route to the other. The last one 

represents an exchange of two customers between the two routes. The customers of the selected pairs of 

routes would be searched completely for possible improvement. Candidate solutions are chosen in an 

ordered manner 𝑆′ ∈ 𝑁2(𝑆), where 𝑆 is the previous solution.  

3.3.5 Metaheuristics for solving VRPTW 

In section 3.3.2, metaheuristics that can be used for solving the VRPTW problem will be discussed. First, 

multiple approaches found in the literature will be discussed and performance will be evaluated. The 

approach that seems the most promising in VSPs situation will be discussed in more detail. 
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Chiang & Russell (1996) show that a Simulated Annealing algorithm can give good performance for 

VRPTW, but they do state that the choice for the type of neighborhood structure appears to have a 

significant effect on algorithm performance. Afifi et al. (2013) also show in their paper that a simulated 

annealing algorithm can perform very well for a VRPTW problem. Woch & Łebkowski (2009) also indicate 

that the sequential simulated annealing can be successfully applied to the vehicle routing problem with time 

windows. Tavakkoli-Moghaddam et al. (2011) show that their proposed simulated annealing algorithm can 

find good solutions in a reasonable time. In the paper by Breedam (2001), a comparison between a heuristic 

and two metaheuristics is made. The heuristic is a descent heuristic and the metaheuristics are simulated 

annealing and tabu search approaches. Here, the author shows that the metaheuristic can perform better, 

however, between the two metaheuristics, one does not outperform the other.  

In the article by Kytöjoki et al. (2007), an efficient two-phase variable neighborhood search is presented. 

This method is specifically aimed at solving very large-scale real-life vehicle routing problems. Their search 

heuristic can find high-quality solutions for problem instances with up to 20,000 customers within 

reasonable times. Another variable neighborhood search approach is the one from Bräysy (2003), this is a 

modification of the variable neighborhood search of Mladenović & Hansen (1997), where with this new 

version also time windows are considered. The author reports good results for instances of up to 400 

customers, where it also outperforms other presented heuristics or metaheuristics. 

Another type of metaheuristic that is widely used to solve VRPTW problems are tabu search algorithm. An 

example of the implementation of a tabu search algorithm applied in a real-life case is done in the paper by 

Barbarosoglu & Ozgur (1999). They deal with the design of a heuristic algorithm to solve the VRP for a 

well-known distribution company in Turkey. They use a tabu search approach as this is known to provide 

good practical solutions. Their proposed theoretical performance was accepted and the company uses the 

method in its daily operations.  In the paper by Montané & Galvão (2006), another tabu search algorithm 

is proposed. Their algorithm uses three types of movements in terms of the gathering of inter-route adjacent 

solutions: relocation, interchange, and crossover movements. To be able to achieve diversification and 

intensification, they used two different strategies for selecting new customers. Either the first admissible 

movement or the best admissible movement. They report low computational times and good results in 

general for their proposed tabu search procedure.  

Lalla-Ruiz & Voß (2020) show in their paper that using a POPMUSIC matheuristic approach that uses 

reduced versions of the problem instance at hand as a sub-problem to solve the overall problem. They show 

that the obtained results indicate that it allows to improve majority of the best solutions provided by a solver 

while reducing the computational effort.  

Another metaheuristic that can be used for solving VRPTW, is the genetic algorithm. An example of a 

genetic algorithm is proposed in the paper by Ursani et al. (2011). They developed a localized genetic 

algorithm which at that time was outperforming other heuristics on small-scale problems. In the paper by 

Qiu et al. (2023), an improved memetic algorithm is proposed, which combines a genetic algorithm with 

procedures like local search procedures. They that the algorithm has good performance for small instances. 

As can be seen from the literature found, a lot of different heuristics or metaheuristics can be used and 

applied to solve the VRP or VRPTW. From all the given solution methods given, next, we will highlight 

one approach in more depth. Therefore, the idea behind the variable neighborhood search is discussed in a 

more detailed way. 
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Variable Neighborhood Search 

A variable neighborhood search (VNS) is a metaheuristic that explores the solution space through 

systematic changes in neighborhood structures (Mladenović & Hansen, 1997). A basic VNS consists of a 

local search procedure and a shake procedure which are executed alternatively until a stopping criterion is 

met. The local search procedure tries to find the local optimum, which ensures intensification. The shaking 

procedure randomizes the solution which leads the solution to other parts of the solution neighborhood. The 

shaking procedure ensures diversification (Bezerra et al., 2023).  

There are multiple VNS variants, but General Variable Neighborhood Search (GVNS) has an important 

property, as it uses Variable Neighborhood Descent (VND) as a local search method, it can return a local 

optimum concerning all used neighborhoods. This is an important property because these kinds of local 

optima are more likely to be a global optimum than a generated solution as a local optimum for one 

neighborhood (Bezerra et al., 2023). 

In the paper by Marinho Diana & de Souza (2020), the default VND is presented in the following way. 

There is a set of different neighborhood structures 𝑁𝑠 = {𝑁1(𝑠), 𝑁2(𝑠), … , 𝑁𝑘(𝑠)}. The procedure then 

starts with exploitation of the 𝑁1(𝑠) neighborhood, according to a defined search strategy for this structure. 

After the neighborhood exploitation of the first neighborhood, the exploitation of the second neighborhood 

𝑁2(𝑠) starts. If improvement in the second is found, the exploitation of the first neighborhood is resumed. 

If no improvement is found, the exploitation of the third neighborhood 𝑁3(𝑠) is started. This is repeated 

until the kth neighborhood structure is explored without improvement in the current solution or until some 

stopping criterion is satisfied (Marinho Diana & de Souza, 2020). The shake procedure is in essence a 

random search, where the procedure consists of selecting a solution of the neighborhood randomly (García-

López et al., 2002).  

3.4 Electric Vehicles in VRP(TW) 
In section 3.4, we will take a look at what happens to the VRP problem when EVs are implemented. In the 

last decade, EVs have been considered in a growing number of models and methods for vehicle routing 

problems (Qin et al., 2021).  

One element that needs to be added when dealing with EVs is charging. In general, the driving range of an 

EV is shorter and charging will take a longer time than refueling a diesel vehicle. In the paper by Qin et al. 

(2021), they state that the EVRP is a straightforward extension of the classic VRP by involving EVs and as 

mentioned the operations of recharging. Their presented model is based on the one given by Schneider et 

al. (2014).  

Recharging can be done with different charging strategies. Either the batteries are recharged fully or the 

batteries are charged partially. The latter can lead to significant time reduction (Keskin & Çatay, 2016). 

Therefore, first, the additions to the mathematical formulation of the model that considers full recharging 

are given. Second, we give the constraints and parameters needed to consider partial recharging strategies. 

In addition to the already given VRP formulation in section 3.2, some new sets, parameters, variables, and 

constraints need to be added based on the model given by Qin et al. (2021) and Schneider et al. (2014), for 

considering full recharging. The set 𝑁 is extended into 𝑁′ where 𝑁′ = 𝑁 ∪ 𝐹′, with the dummy set 𝐹′ 

related to the set 𝐹 of recharging stations. Parameter 𝑑𝑖𝑗 gives the distance between location 𝑖 and 𝑗. Next, 

a constant ℎ is used for battery consumption (per unit distance) and next to that each vehicle will now also 

have a battery capacity 𝑄. Being at a charging station, the difference between the present battery level and 
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a capacity of 𝑄 is recharged with a charging rate of 𝑔. A decision variable 𝑦𝑖 is used as the remaining 

battery level on arrival at a next customer location 𝑖.  

With these new sets, parameters, and variables, the following constraints will be added to the model based 

on the additions from Qin et al. (2021) and Schneider et al. (2014).  

∑ 𝑥𝑖𝑗𝑘 ≤ 1𝑗∈𝑁′,   𝑖≠𝑗 ,        ∀𝑖 ∈ 𝐹′, ∀𝑘 ∈ 𝑉,   (11) 

𝑠𝑖𝑘 + 𝑡𝑖𝑗𝑥𝑖𝑗𝑘 + 𝑔(𝑄 − 𝑦𝑖) − (𝑀 + 𝑔𝑄)(1 − 𝑥𝑖𝑗𝑘) ≤ 𝑠𝑗𝑘 ,   ∀𝑖 ∈ 𝐹′, ∀𝑗 ∈ 𝑁′, 𝑖 ≠ 𝑗, ∀𝑘 ∈ 𝑉,  (12) 

0 ≤ 𝑦𝑗 ≤ 𝑦𝑖 − ℎ𝑑𝑖𝑗𝑥𝑖𝑗𝑘 + 𝑄(1 − 𝑥𝑖𝑗𝑘),       ∀𝑗 ∈ 𝑁′, ∀𝑖 ∈ 𝑁, 𝑖 ≠ 𝑗, ∀𝑘 ∈ 𝑉, (13) 

0 ≤ 𝑦𝑗 ≤ 𝑄 − ℎ𝑑𝑖𝑗𝑥𝑖𝑗𝑘 ,         ∀𝑖 ∈ 𝐹′, ∀𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗, ∀𝑘 ∈ 𝑉, (14) 

With new constraint (11), the model ensures that each charging station must be visited at most once. As 

these charging stations are not customers, these locations do not have to be visited. In constraint (12), 

charging time is considered. In constraints (13) and (14), the battery levels are updated per visit of a 

customer or charging station. These constraints also ensure that the battery level will not go below 0. 

In the case of partial charging, the following new sets, parameters, variables, and constraints are added to 

the model. These additions are based on the model given by Keskin & Çatay (2016) and their model is 

based on the formulation given by Schneider et al. (2014). The difference in the model is that Keskin & 

Çatay (2016) add a decision variable 𝑌𝑖 which represents the battery state of charge on departure from 

recharging station 𝑖. Constraints (12) and (14) are adjusted to take the battery state of charge on departure 

into account in the following way. 

𝑠𝑖𝑘 + 𝑡𝑖𝑗𝑥𝑖𝑗𝑘 + 𝑔(𝑌𝑖 − 𝑦𝑖) − (𝑀 + 𝑔𝑄)(1 − 𝑥𝑖𝑗𝑘) ≤ 𝑠𝑗𝑘 ,  ∀𝑖 ∈ 𝐹′, ∀𝑗 ∈ 𝑁′, 𝑖 ≠ 𝑗,  (15) 

0 ≤ 𝑦𝑗 ≤ 𝑌𝑖 − ℎ𝑑𝑖𝑗𝑥𝑖𝑗𝑘 + 𝑄(1 − 𝑥𝑖𝑗𝑘),    ∀𝑖 ∈ 𝐹′, ∀𝑗 ∈ 𝑁′, 𝑖 ≠ 𝑗,  (16) 

With the adjustment in constraint (15), recharging times are now considering the decision on how much 

needs to be charged. Furthermore, gives constraint (16) the new battery state at station 𝑗, considering the 

decision to charge a certain amount at charging station 𝑖. Next to these adjustments, constraint (17) is added 

to give the boundaries of the added decision variable 𝑌𝑖. 

𝑦𝑖 ≤ 𝑌𝑖 ≤ 𝑄,       ∀𝑖 ∈ 𝐹′,   (17) 

Bac & Erdem (2021) show a model that also considers a different objective function to deal with the 

feasibility of the solutions for the EVRPTW. They add penalties to the objective function, whereas in a 

minimization problem, these penalties need to be zero to have a feasible solution. The objective function is 

given in (18). 

𝑚𝑖𝑛 ∑ ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗𝑘𝑗∈𝑁𝑖∈𝑁𝑘∈𝑉 +  ∑ 𝜃𝑖𝑖∈𝑁 + ∑ 𝑂𝑘𝑘∈𝑉       (18) 

Here, two new variables are added, which are 𝜃𝑖 and 𝑂𝑘, which are the deviation of the time windows and 

the overtime of a route respectively. Furthermore, Bac & Erdem (2021) add two constraints to keep track 

of these penalties. These constraints are (19) and (20). Constraints (21) and (22) and nonnegativity 

constraints.  

(∑ 𝑠𝑖𝑘 + 𝐻𝑖𝑥𝑖𝑗𝑘) − 𝑏𝑖𝑘∈𝑉 ≤ 𝜃𝑖,      ∀𝑖 ∈ 𝑁,    (19) 
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𝑂𝑘 ≥ 𝑠𝑛𝑘 − 𝑇𝑀,       ∀𝑘 ∈ 𝑉,   (20) 

𝜃𝑖 ≥ 0,         ∀𝑖 ∈ 𝑁,    (21) 

𝑂𝑘 ≥ 0,        ∀𝑘 ∈ 𝑉,   (22) 

With the mathematical formulation of the EVRTPTW considering both full and partial recharging 

strategies, in Section 3.5 a look will be taken at heuristics for solving the EVRPTW. 

3.5 Optimization methods EVRP(TW) 
When extending the VRP to be able to use EVs, some new algorithms and heuristics to solve the problem 

need to be explored. Euchi & Yassine (2022) propose a hybrid metaheuristic algorithm that can solve the 

electric vehicle routing problem with battery charging stations. In their problem, the vehicles have limited 

delivery capacity and rely completely on their limited battery capacity. The Hybrid Variable Neighborhood 

Search that is proposed shows that it can detect good quality solutions.  

Schneider et al. (2014) introduce the electric vehicle routing problem with time windows and recharging 

stations, which incorporates the possibility of recharging at any of the available stations using an 

appropriate charging scheme. Next to recharging, the proposed problem also includes freight capacity and 

customer time window constraints. To solve the problem, they propose a hybrid heuristic that combines a 

variable neighborhood search algorithm with a tabu search heuristic. Their results show that the proposed 

heuristic can have a high performance on newly designed instances, but also on benchmark instances. 

Keskin & Çatay (2018) also introduce an Electric Vehicle Routing Problem with Time Windows 

(EVRPTW), they see it as an extension of the well-known VRPTW where EVs are used instead of normal 

vehicles. They formulated the problem as a mixed integer linear program and solve small instances using a 

solver. For solving large instances, they propose a matheuristic approach that couples the Adaptive Large 

Neighborhood Search (ALNS) with an exact approach. They show the effectiveness of the proposed 

matheuristic on benchmark instances.  

Keskin et al. (2021) researched the EVRPTW and then also introduce stochastic waiting times at recharging 

stations. There is the possibility that there is a queue at the charging stations when not enough chargers are 

available. Their problem takes that situation into account. They present a two-stage simulation-based 

heuristic using ALNS. They show that their proposed simulation-based solution approach can provide good 

solutions in terms of quality and computational time. It also shows that the uncertainty in waiting times 

may have a significant impact on route plans.  

The paper by Bruglieri et al. (2015) presents a variable neighborhood search branching for solving 

EVRPTW. They mention that especially the poor battery autonomy is the Achille’s heel of EVs as many 

stops are needed. Their model aims to optimally route EVs for handling a set of customers in time 

considering the recharging needs during the trips. The paper proposes a mixed integer linear programming 

formulation of the problem, where the battery recharging level reached at each station is a decision variable 

to be able to generate more flexible routes. They minimize total travel, waiting, and recharging time, as 

well as they want to minimize the number of EVs deployed. Their solution method, which is the variable 

neighborhood search branching is designed for solving the problem within reasonable times. A comparison 

is also made with other models that let EVs always charge to full battery level. Where the presented model 

is able to outperform the models where full charging is considered.  

In the paper by Keskin & Çatay (2016), a model for partial charging as an extension of the general 

EVRPTW is presented. They develop an adaptive large neighborhood search algorithm that can solve the 
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problem efficiently. Their algorithm can effectively find high-quality solutions and they show that partial 

charging options may significantly improve routing decisions.  

Another approach to solving the EVRPTW is presented in the paper by Lam et al. (2022). They present a 

Branch-and-cut-and-price algorithm for the problem, considering Piecewise-linear recharging and 

capacitated recharging stations. They show that their algorithm is able to show good performance on 

benchmark instances.  

In the paper by Wang & Zhao (2023), the benefits of partial recharging strategies are researched. They 

propose a formulation of a Path-Based model and develop a hybrid large neighborhood search algorithm 

that combines a large neighborhood search algorithm with a set partitioning component. Their algorithm is 

benchmarked against state-of-the-art methods on public large-scale instances and can find new local 

optimal solutions. Demonstrating the benefits of partial recharging strategies. 

Erdelić et al. (2019) apply a metaheuristic approach based on the ruin-create principle to solve the 

EVRPTW. They consider full charging at the recharging stations and consider policies for single and 

multiple recharges during the route. Their metaheuristic was used to solve the problem for bigger instances 

and they used a commercial solver to solve the problem for smaller instances.  

Bac & Erdem (2021) research the optimization of electric vehicle charging schedules considering partial 

recharges. They propose a framework for EVRPs with VNS and VND heuristics. Constraints considered 

are time windows and partial recharging. They show that their proposed method can perform well for large-

size real-life problem instances.  

Mao et al. (2020) investigate the integration of multiple recharging options, which are partial recharging 

and battery swapping. They present an improved ant colony optimization (ACO) algorithm that is 

hybridized with insertion heuristic and enhanced local search to solve the problem. They show that their 

approach can also help save costs when using partial recharging and battery swapping. 

In the research by Raza et al. (2022), the recent advancements in reinforcement learning in solving VRP 

problems are presented. More and more research is published on using these techniques for solving VRP 

problems and its variants. Lin et al. (2022) propose an end-to-end deep reinforcement learning (DRL) 

framework to solve the EVRPTW. Their model is trained using gradient policy without rollout bassline. 

They show that their proposed model is able to efficiently solve EVRPTW instances of large sizes and 

performs better than the solution approach by Schneider et al. (2014). Another deep reinforcement learning 

application is done by Chen et al. (2022). Their paper proposes an end-to-end DRL method with a two-

stage training strategy. Their experimental results show that the proposed method outperforms the state-of-

the-art methods and is generalizable to different problem sizes as well. 

In Table 7, we give an overview of found solution methods for the EVRPTW problem. Per reference, we 

give the different features and solution approaches used in the articles. These references are found using 

the following search strings: 

- Electric vehicle routing problem with time windows 

- Electric vehicle routing problem with time windows solution method 

- Electric vehicle routing problem with time windows solution approach 

- optimization Electric vehicle routing problem with time windows 
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Table 7. Overview solution method EVRPTW 

 Features  

Reference Fully 

charging? 

Partial 

charging? 

Energy 

Consumption 

model? 

Solver or 

Heuristic? 

Amount of 

customers? 

Objective 

function?  

Real-life or 

artificial 

instances? 

Solution 

Approach 

Schneider et al. 

(2014) 

Yes No Battery level 

based on 

distance 
driven 

Heuristic; Solver 

(CPLEX 12.2) 

Heuristic: Up 

to 100; Solver: 

Up to 15;  

Minimize 

distance; 

Artificial Hybrid VNS/TS; 

Keskin & Çatay 

(2018) 

Yes No Battery level 

based on 

distance 
driven 

Heuristic; Solver 

(CPLEX 12.6.2) 

Heuristic: Up 

to 400; 

Solver: Up to 
15; 

Minimize 

energy cost; 

Artificial Matheuristic; 

Bruglieri et al. 

(2015) 

Yes Yes Battery level 

based on 
distance 

driven 

Heuristic; Solver 

(CPLEX 12.5) 

Heuristic: up 

to 10; Solver: 
up to 10; 

Minimize 

travel, 
waiting, 

recharging 

time; 

Artificial VNSB; 

Keskin & Çatay 

(2016) 

Yes Yes Battery level 

based on 

distance 
driven 

Heuristic; Solver 

(CPLEX 12.6.1)  

Heuristic: up 

to 200; Solver: 

up to 15; 

Minimize 

distance; 

Artificial ALNS;  

Lam et al. (2022) Yes No - Solver 

(Nutmeg); 

Solver: up to 

100;  

Minimize 

cost; 

Artificial BPC; 

Wang & Zhao 
(2023) 

Yes Yes Battery level 
based on 

distance 

driven 

Heuristic; Solver 
(Commercial 

solver) 

Heuristic: up 
to 1000 

customers; 

Solver: up to 
15 customers; 

Minimize 
distance and 

total fixed 

costs; 

Artificial Hybrid LNS; 

Bac & Erdem 

(2021) 

Yes Yes Battery level 

based on 

distance 
driven 

Heuristic; Solver 

(CPLEX) 

Heuristic: up 

to 1200; 

Solver: up to 
16; 

Minimize 

travel, 

waiting, 
recharging 

time; 

Real-life; 

Artificial 

VNS; VND 

Mao et al. (2020) Yes Yes Battery level 
based on 

distance 

driven 

Heuristic; Heuristic: up 
to 100; 

Minimize 
total cost; 

Artificial ACO;  

Lin et al.  (2022) Yes No Energy 

consumption 

given per 
arc(i,j) 

Heuristic; Solver 

(CPLEX 12.1,  

Matlab.) 

Heuristic: up 

to 100; Solver: 

up to 10; 

Minimize 

distance; 

Artificial DRL; 

Chen et al. (2022) Yes No Battery level 

based on 

distance 
driven 

Heuristic; Heuristic: up 

to 100; 

Minimize 

distance; 

Artificial DRL; 

Erdelić et al. 

(2019) 

Yes No Battery level 

based on 
distance 

driven 

Heuristic; Solver 

(CPLEX) 

Heuristic: up 

to 100; Solver: 
up to 15; 

Minimize 

distance; 
Minimize 

vehicles; 

Artificial ALNS; 

 

Table 7 gives a clear overview of the solutions method for solving EVRPTW. Section 3.6 gives a conclusion 

on the found literature and makes the connection between the literature and the situation at VSP.   

3.6 Conclusion on literature 
This chapter investigated on what is found in the literature and gave an overview of what of the found 

literature will be used in this research. With this literature review, the answers related to the research 

questions about Modeling techniques, Possible solution methods, and Electric Vehicles are found. 

From this literature, it is clear that the VRP problem is a subject that is very well and broadly researched. 

A lot can be found about this type of problem, therefore a lot of different approaches and formulations can 
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be found. From the found literature, the formulation given for the VRPTW and EVRPTW is used for 

modeling the situation of VSP.  

Chapter 4 shows a two phase solution approach where the goal is to break down the EVRPTW problem 

into two smaller sub problems which are solved in two phases, in a similar like fashion as shown in the 

paper by Lalla-Ruiz & Voß (2020). For the improvement of the current situation in Section 4.1, a VNS/VND 

approach is applied that is based on the approach by Bac & Erdem (2021). Which uses two neighborhood 

operators to select a neighbor solution. Section 4.1 will use two types of initial solutions; the current routes 

of VSP and solutions that are constructed by the parallel construction approach of Chiang & Russell (1996). 

For Section 4.2, an insertion heuristic is used to insert chargers in the best places with regard to the objective 

function. Here, the result from Section 4.1 is the initial solution where the chargers are inserted into.   
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4 Solution approach 
Chapter 4 shows the approach used to obtain solutions for the problem that VSP is facing. Section 4.1 shows 

the structure of the solution approach. Section 4.2 and Section 4.3 explains the approach in detail, where 

Section 4.2 focuses on Phase 1 of the solution approach and Section 4.3 on Phase 2 of the solution approach. 

4.1 Structure approach 
To solve the problem VSP is facing, a Two-Phase solution approach is used. First, the current situation 

(VRPTW) will be improved using a VNS/VND approach. These improved routes are then used as input for 

solving the new situation (EVRPTW). As the main problem with the new situation is where and how long 

to charge. The new situation is solved by using the improved routes and inserting electric chargers into 

these routes and determining how long a vehicle needs to charge at such a charging location. Phase 1 is 

improving the current situation by using VRPTW techniques and Phase 2 is inserting the charging locations 

to solve the EVRPTW for VSPs new situation. The insertion of chargers could be done by a heuristic for 

larger problems and by a solver for smaller problems. This charger insertion by the solver is a combination 

between metaheuristics and mathematical programming techniques, which in the related literature is 

denoted as matheuristic (Maniezzo et al., 2010). As shown in the review paper by Corona-Gutiérrez et al. 

(2022), the decomposition of problems started to have more presence as they provide an attractive 

combination of metaheuristics and mathematical models by partially solving reduced versions of the 

problem at hand. The goal here is to reduce the more difficult EVRPTW problem into two less difficult 

sub-problems, which are solved in the two phases of the proposed solution approach. Figure 6 shows the 

steps that are performed within the solution approach. Each arrow represents the routes at that moment in 

the solution approach, where in the different steps techniques are applied.  

 

Figure 6. Two-Phase solution approach overview 

Routes 
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The idea behind the approach is to split the difficult EVRPTW into two more simple problems. Solving 

these two simpler problems will then give a solution to the more difficult EVRPTW problem. The remainder 

of Chapter 4 will explain the approach in more detail.  

4.2 Current Situation (Phase 1 VRPTW) 
Section 4.2 gives the model and solution approach for VSPs current situation. Section 4.2.1 gives he 

mathematical formulation. Section 4.2.2 explains the improvement procedure which includes the 

VNS/VND part, initial solutions, the shaking procedure, and neighborhood operators. Section 4.2.3 gives 

a conclusion on how the result of this phase can be used as initial routes for solving the EVRPTW problem. 

4.2.1 Mathematical formulation VRPTW 

The mathematical formulation for the VRPTW problem faced in Phase 1 is the one given in Section 3.2.1 

and Section 3.2.2. This is a widely used formulation by Kallehauge et al. (2005). 

The model used is for the routes on Tuesday-Friday and Wednesday-Saturday. As the routes on these days 

have identical structures, only the inputs of the model change with the different locations that are put in for 

which belong to one of the day sets. The problem is therefore solved twice, once for each combination of 

days. Furthermore, the parameters are the inputs that are discussed and given in Section 2.2 and Section 

2.3. 

4.2.2 Solution approach current situation 

To solve the problem at hand, an improvement procedure is needed. As this is an NP-hard problem (Lenstra 

& Kan, 1981), using exact approaches for large problem instances is likely not to be feasible. Therefore, a 

solver is used for small instances of the problem and a metaheuristic is used to solve the larger real-life 

problem instances.  

Variable Neighborhood Search / Variable Neighborhood Descent 

The metaheuristic that is used to be able to optimize the problem is the VNS in combination with a VND 

local search procedure. Section 3.3.5 explains this approach in more detail. Here, we explain and describe 

our approach used to be able to improve VSPs current situation.  

The idea of the VNS heuristic is that a local search is used to find better neighborhood solutions and when 

no better solutions can be found, the algorithm ‘shakes’ the solution to be able to possibly escape that local 

optimum to be able to find better solutions. This ‘shake’ is a randomization of the solution for the algorithm 

to start using the local search again to find better solutions. It is called a Variable Neighborhood Search 

because the algorithm will first try to find the best possible solution using a neighborhood operator and it 

will continue to use that operator until no improvement can be found anymore. After that, it will use the 

next neighborhood operator until no better solution can be found. After all the operators cannot find an 

improvement anymore, the solution is shaken and the process starts over again. This is repeated until a 

stopping criterion is reached. In our case, the stopping criterion is the number of iterations performed by 

the algorithm. 

The Two-Phase solution approach is based on the framework by Bac & Erdem (2021) that use a VNS/VND 

approach for solving the EVRPTW problem. We based our approach on their VNS/VND approach to 

solving the VRPTW problem shown in Section 4.1. Figure 7 shows the pseudocode. 
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Figure 7. Pseudocode VNS/VND approach 

A pseudocode is a detailed yet readable description of what a computer program or algorithm should do. 

Both the VNS and VND part are shown, where the VND part is used within the VNS part. As a stopping 

criterion, the number of iterations is used for both functions. Furthermore, in the VNS part, the shaking 

procedure is implemented to be able to escape a local optimum. In the VND part, the algorithm goes through 

the different types of neighborhood operators to find better neighbor solutions.  

To be able to start with the metaheuristic, an initial solution is needed. Section 4.2.2 gives two types of 

initial solutions.  

Initial solutions 

As input for the VNS/VND, initial solutions are needed. Here, we use two types of initial solutions. One is 

using a construction approach, called the parallel construction approach (Chiang & Russell, 1996). Section 

3.3.1 explains this in full detail. Next to this construction approach, also the current routes that VSP use, 

are used as an input for the metaheuristic. These routes are given in Section 2.2.  

Figure 8 and Figure 9 show the routes for Tuesday-Friday and Wednesday-Saturday respectively that are 

generated using the parallel construction approach by Chiang & Russell (1996) (Section 3.3.1).  
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Figure 8. Parallel construction initial solution TUEFRI 

 
Figure 9. Parallel construction initial solution WEDSAT 

As can be seen, the routes look quite random, but the solutions do satisfy the time window constraints as 

many locations do not have time windows. Furthermore, these initial solutions have more routes than the 

12 routes that the company desires, to be able to get a time window feasible solution. This is dealt with in 

the improvement procedure by removing routes when a route is empty.  

Neighborhood operators 

To be able to find new solutions, neighborhood operators are used. In this case, we use two operators based 

on the operators found in Section 3.3.3. These operators are both based on a MOVE operator. Where the 

first operator picks a random location and places it in the best place in that current solution for the objective 

function. The second MOVE operator looks at all the locations and tries them separately on all places trying 

to find the best place considering the objective function and then picks the solution with the move of a 

single location that corresponds to the biggest improvement in the objective function.  

Shaking procedure 

The shaking procedure used is a straightforward one. Also, it does not destroy the whole structure of the 

solution and it considers feasibility in terms of time windows. The procedure picks a random location and 

searches for a location other than the current one that is feasible. The first place that is found will be picked 

as a new place for that location. This is done in total three times, so the solution is modified for three 

different locations in total.  

4.2.3 Conclusion Phase 1 

With the procedure for solving the VRPTW problem clear, the routes that Phase 1 results in can be used as 

routes for a normal VRPTW problem. However, Phase 2 will use these routes as an initial solution for 

solving the EVRPTW problem.   

4.3 New situation with electrical vehicles (Phase 2 EVRPTW) 
As the EVRPTW problem is a new situation, that is a more extensive problem, first, some new input data 

is given to complete the data needed for solving the EVRPTW problem (Section 4.3.1). Second, the 

mathematical model is given (Section 4.3.2). Last, the approach for solving the EVRPTW problem is 

described (Section 4.3.3).  
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4.3.1 New input data for Phase 2 

As the problem is extended to the EVRPTW problem. New input data is presented to be able to assess the 

full problem. Charging locations are added to the overview with locations. Furthermore, the travel time 

matrix is extended with the charging locations. As the number of charging locations in The Netherlands is 

quite large, the travel time matrix becomes much larger. In total 139 charging locations throughout The 

Netherlands are considered. These charging locations are based on the charging locations given by the 

website by FastNed. In addition to the VRPTW problem, here the problem includes charging locations. In 

total, the problem then includes around 250 locations. Therefore, to be able to solve the problem also all 

travel times and distances are needed for the locations including charging locations. The times and distances 

are determined in the manner as in Section 2.3. These can be found in Appendix C and Appendix D.  

The extension of the electric vehicle to the VRPTW problem comes with some data about this electric 

vehicle. Mercedes-Benz has provided data about the newest eSprinter that is released in the near future. 

This Mercedes can handle the load and has the largest driving range. This is the vehicle that VSP wants to 

use. Table 8 contains all data regarding the EV. 

Table 8. Data Electric Vehicle (eSprinter) 

Name Data Value  

Driving range ~400km 

Battery capacity  113 kWh 

Charging speed 10% to 80% within 42 minutes (1.667 kWh per minute charging) 

Battery consumption 113 kWh to 0 for 400km (3.5km per kWh, 0.28 kWh per km) 

 

This is the data provided by Mercedes and in Section 4.3.2 within the model formulation these are taken 

into account within the parameter part. Section 4.3.2 displays the mathematical formulation for the 

EVRPTW problem.  

4.3.2 Mathematical formulation EVRPTW 

The mathematical formulation of the EVRPTW is an extension of the VRPTW. Within the formulation, 

multiple sets, parameters, decision variables, and constraints are added. The formulation given is based on 

the formulation of Keskin & Çatay (2016). In specific, the model presented is Electric Vehicle Routing 

Problem With Time Windows Partial Recharging (EVRPTW-PR). We take this problem as in the case of 

VSP, the overall time of the route is of importance. Therefore, we do not want to waste time recharging 

fully when this is unnecessary. However, the model presented here does differ from the model from Keskin 

& Çatay (2016). We consider a set of vehicles to be able to set a maximum amount of vehicles. This is not 

done by Keskin & Çatay (2016). We include a set for the considered vehicles as is done in the VRPTW 

formulation by Kallehauge et al. (2005). Therefore, the formulation is a combination of these VRPTW and 

EVRPTW-PR formulations. Which results in the following sets, parameters, decision variables, and 

constraints for the EVRPTW-PR problem.  
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Sets: 

 𝐶0 𝑆𝑒𝑡 𝑜𝑓 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑑𝑒𝑝𝑜𝑡 0 

 𝐶 𝑆𝑒𝑡 𝑜𝑓 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 𝑒𝑥𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑑𝑒𝑝𝑜𝑡 0 𝑎𝑛𝑑 𝑛  

 𝑉 𝑆𝑒𝑡 𝑜𝑓 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑠 

 𝐹 𝑆𝑒𝑡 𝑜𝑓 𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠 

 𝑁′ = 𝑁 ∪ 𝐹′, 𝑤ℎ𝑒𝑟𝑒 𝑠𝑒𝑡 𝐹′ 𝑖𝑠 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑡𝑜 𝑠𝑒𝑡 𝐹 𝑜𝑓 𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠 𝑒𝑥𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑑𝑒𝑝𝑜𝑡𝑠 

 𝑁𝑛
′  𝑆𝑒𝑡 𝑜𝑓 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠 𝑒𝑥𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑑𝑒𝑝𝑜𝑡 0 

 𝑁0,𝑛
′  𝑆𝑒𝑡 𝑜𝑓 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑑𝑒𝑝𝑜𝑡 0 𝑎𝑛𝑑 𝑛  

Parameters: 

 𝑡𝑖𝑗 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 𝑖𝑡 𝑡𝑎𝑘𝑒𝑠 𝑡𝑜 𝑔𝑜 𝑓𝑟𝑜𝑚 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖 𝑡𝑜 𝑗 𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑠𝑒𝑟𝑣𝑖𝑛𝑔 𝑖 

 𝑎𝑖 𝑇ℎ𝑒 𝑡𝑖𝑚𝑒 𝑎𝑓𝑡𝑒𝑟 𝑤ℎ𝑖𝑐ℎ 𝑡ℎ𝑒 𝑑𝑟𝑖𝑣𝑒𝑟 𝑐𝑎𝑛 𝑠𝑡𝑎𝑟𝑡 𝑠𝑒𝑟𝑣𝑖𝑛𝑔 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖 

 𝑏𝑖 𝑇ℎ𝑒 𝑡𝑖𝑚𝑒 𝑏𝑒𝑓𝑜𝑟𝑒 𝑤ℎ𝑖𝑐ℎ 𝑡ℎ𝑒 𝑑𝑟𝑖𝑣𝑒𝑟 𝑛𝑒𝑒𝑑𝑠 𝑡𝑜 𝑙𝑒𝑎𝑣𝑒 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖 

 𝑑𝑖𝑗 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖 𝑎𝑛𝑑 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑗  

 ℎ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑢𝑠𝑒𝑑 𝑓𝑜𝑟 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 

 𝑄 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑓𝑜𝑟 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 

 𝑔 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑓𝑜𝑟 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 

Decision Variables: 

 𝑥𝑖𝑗𝑘 {
1, 𝑖𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑘 𝑑𝑟𝑖𝑣𝑒𝑠 𝑑𝑖𝑟𝑒𝑐𝑡𝑙𝑦 𝑓𝑟𝑜𝑚 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖 𝑡𝑜 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 𝑠𝑖𝑘 𝑇ℎ𝑒 𝑡𝑖𝑚𝑒 𝑎𝑡 𝑤ℎ𝑖𝑐ℎ 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑘 𝑠𝑡𝑎𝑟𝑡𝑠 𝑡𝑜 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖 

 𝑦𝑖𝑘 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑙𝑒𝑣𝑒𝑙 𝑜𝑛 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑎𝑡 𝑎 𝑛𝑒𝑥𝑡 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖 𝑓𝑜𝑟 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑘 

 𝑌𝑖𝑘 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑠𝑡𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑟𝑔𝑒 𝑜𝑛 𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 𝑓𝑟𝑜𝑚 𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑖 𝑓𝑜𝑟 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑘 

Objective Function: 

𝑚𝑖𝑛 ∑ ∑ ∑ 𝑡𝑖𝑗𝑥𝑖𝑗𝑘 , 𝑖𝑓 𝑖 ≠ 𝑗𝑗∈𝑁𝑛
′𝑖∈𝑁0

′𝑘∈𝑉        (1) 

Constraints: 

∑ ∑ 𝑥𝑖𝑗𝑘 = 1𝑗∈𝑁′ 𝑖𝑓 𝑗≠𝑖 ,𝑘∈𝑉   ∀𝑖 ∈ 𝐶,      (2)  

 ∑ 𝑥0𝑗𝑘 ≤ 1,𝑗∈𝑁     ∀𝑘 ∈ 𝑉,      (3) 

 ∑ 𝑥𝑖ℎ𝑘𝑖∈𝑁0
′ − ∑ 𝑥ℎ𝑗𝑘𝑗∈𝑁𝑛

′ = 0,  ∀ℎ ∈ 𝑁′, ∀𝑘 ∈ 𝑉,    (4)  

 𝑠𝑖𝑘 + 𝑡𝑖𝑗 − 𝑀𝑖𝑗(1 − 𝑥𝑖𝑗𝑘) ≤ 𝑠𝑗𝑘 ,  ∀𝑖 ∈ 𝐶0, ∀𝑗 ∈ 𝑁𝑛
′ , ∀𝑘 ∈ 𝑉, 𝑖 ≠ 𝑗   (5) 

 𝑎𝑖 ≤ 𝑠𝑖𝑘 ≤ 𝑏𝑖    ∀𝑖 ∈ 𝐶, ∀𝑘 ∈ 𝑉,     (6) 

 0 ≤ 𝑦𝑗𝑘 ≤ 𝑦𝑖𝑘 − ℎ𝑑𝑖𝑗𝑥𝑖𝑗𝑘 + 𝑄(1 − 𝑥𝑖𝑗𝑘), ∀𝑗 ∈ 𝑁𝑛
′ , ∀𝑖 ∈ 𝐶, 𝑖 ≠ 𝑗, ∀𝑘 ∈ 𝑉,  (7) 
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0 ≤ 𝑦𝑗𝑘 ≤ 𝑌𝑖𝑘 − ℎ𝑑𝑖𝑗𝑥𝑖𝑗𝑘 + 𝑄(1 − 𝑥𝑖𝑗𝑘), ∀𝑖 ∈ 𝐹0
′, ∀𝑗 ∈ 𝑁𝑛

′ , 𝑖 ≠ 𝑗, ∀𝑘 ∈ 𝑉,  (8) 

𝑠𝑖𝑘 + 𝑡𝑖𝑗𝑥𝑖𝑗𝑘 + 𝑔(𝑌𝑖 − 𝑦𝑖) − (𝑀𝑖𝑗 + 𝑔𝑄)(1 − 𝑥𝑖𝑗𝑘) ≤ 𝑠𝑗𝑘 ,   ∀𝑖 ∈ 𝐹′, ∀𝑗 ∈ 𝑁𝑛
′ , 𝑖 ≠ 𝑗, ∀𝑘 ∈ 𝑉        (9) 

𝑦𝑖𝑘 ≤ 𝑌𝑖𝑘 ≤ 𝑄,      ∀𝑖 ∈ 𝐹0
′,   (10) 

In the formulation above, 𝑀𝑖𝑗 are large constants that can be decreased to max{𝑏𝑖 + 𝑡𝑖𝑗 − 𝑎𝑗} , (𝑖, 𝑗) ∈ 𝑁. 

(1) is the objective function, which minimizes the total distance of all tours. Constraint (2) ensures that 

every customer is visited exactly once. Constraint (3) is used to give every vehicle the ability to leave the 

depot. Constraint (4) makes every vehicle leave a location once it enters a location. Constraint (5) keeps 

track of the arrival times at the locations. It ensures that the arrival time of the next location is later than the 

current location. Constraint (6) considers the time windows of location 𝑖. Constraints (7) and (8) ensure the 

battery levels are updated per visit to a charging station or customer location. These constraints also ensure 

that the battery level does not go below zero. Constraint (9) considers charging times and makes sure that 

when a vehicle leaves a charging station the arrival at the next location is after the arrival at the charging 

station. Constraint (10) gives the boundaries for the state of charge on departure from recharging station 𝑖.  

The model given is again solved two times. For both Tuesday-Friday and Wednesday-Saturday, the 

problem is solved. The problem for both sets is identical in terms of structure. Only the inputs change per 

day set.  

4.3.3 Solution approach new situation 

To solve the EVRPTW problem, we have split the problem into two phases. In Section 4.1, we explain 

these two phases in more detail. Section 4.3.3 will show how the result of Section 4.2 is used to be able to 

solve the EVRPTW problem given in 4.3.2.  

To be able to account for the driving range restriction given by the battery of an EV. We are inserting 

charging locations in the best position to the found routes for solving the VRPTW problem of phase 1. This 

is done using an insertion heuristic. The idea of the insertion heuristic is to see at which location the battery 

is too low to be able to reach the next location. For that location, we need to find the charging location that 

has the lowest cost of insertion for the location the vehicle is at and the next location in the tour. 

Figure 10 is an example of how a charging location is added using an insertion heuristic. In Figure 10, the 

white arrows show how the route would be driven by a normal vehicle. In other words, this is a solution for 

the normal VRP(TW) problem. In the case, the vehicle is electric, the battery would be empty before the 

end of the route as can be seen by the status of the battery that is updated per location in Figure 10. When 

the EV is arriving at Location 4, the battery is too empty to be able to reach Location 5. Therefore, a 

recharging location needs to be added. The two nearest recharging stations are Recharging Station 1 and 

Recharging Station 2. In this case, the insertion of Recharging Station 2 is more favorable than the insertion 

of Recharging Station 1 as the cost of insertion is lower. Therefore, a solution for the EVRP(TW) is the 

route given including the green arrows going by Recharging Station 2. For this approach to work the 

assumption is that recharging locations are well-distributed over the area of the locations. Otherwise, the 

insertion of a recharging location at the point the EVs battery is almost empty would give the situation that 

it would not be able to reach the next charger as well. Section 4.3.1 shows that for VSPs situation The 

Netherlands has a good distribution of recharging stations throughout the country.  
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Figure 10. Example insertion of charging location for a single tour 

As the remaining distance of the route to the ending depot is known. The charging decision at Recharging 

Station 2 is to charge the amount to be able to complete the route. This is considered a partial charging 

strategy.  

The mathematical formulation in Section 4.3.2 is how this problem is described and how it can be 

implemented into for example a solver. When using a (meta)heuristic, it is more difficult to check for 

feasibility considering applicable constraints. Therefore, when using the heuristic to solve the problem. A 

different objective function is used to be able to check the feasibility of a solution. Constraint (1) gives the 

objective function that is based on the one that Bac & Erdem (2021) use to check feasibility. 

𝑚𝑖𝑛 ∑ ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗𝑘𝑗∈𝑁𝑖∈𝑁𝑘∈𝑉 +  ∑ 𝜃𝑖𝑖∈𝑁 + ∑ 𝑂𝑘𝑘∈𝑉       (1) 

As given in the literature review, two variables are added, which are 𝜃𝑖 and 𝑂𝑘, which are the deviation of 

the time windows and the overtime of a route respectively. Furthermore, Bac & Erdem (2021) add two 

constraints to keep track of these penalties. These constraints are (2) and (3). Constraints (4) and (5) and 

nonnegativity constraints. These constraints are easier to use when implementing a (meta)heuristic than the 

formulation given in Section 4.3.2. 

(∑ 𝑠𝑖𝑘 + 𝐻𝑖𝑥𝑖𝑗𝑘) − 𝑏𝑖𝑘∈𝑉 ≤ 𝜃𝑖,      ∀𝑖 ∈ 𝑁,    (2) 

𝑂𝑘 ≥ 𝑠𝑛𝑘 − 𝑇𝑀,       ∀𝑘 ∈ 𝑉,   (3) 
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𝜃𝑖 ≥ 0,         ∀𝑖 ∈ 𝑁,    (4) 

𝑂𝑘 ≥ 0,        ∀𝑘 ∈ 𝑉,   (5) 

Next to applying the charger insertion heuristic, it is also possible to use the solution from the VNS/VND 

heuristic as input for a solver. This is called a matheuristic and for instances up to 15 locations, it can help 

speed up the solving process. The structure of the 2-Phase solution approach remains the same. 

4.3.4 Conclusion Phase 2 

With the insertion of chargers into the routes where necessary and the ability to check for feasibility, the 

solution approach for solving the EVRPTW problem is completed. The solution for VRPTW found in Phase 

1 is extended to be a solution for the EVRPTW in Phase 2. Chapter 5 displays numerical experiments to 

show the performance of the solution approach.  
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5 Experiments 
Chapter 5 investigates the performance of the proposed solution method by comparing results. Furthermore, 

various experiments are performed to see what influences solution quality and performance. Table 9 gives 

an overview of the section in Chapter 5. 

Table 9. Overview of experiments 

Section Description 

Section 5.1: Description experiments and overview 

Section 5.2: Benchmark instances 

- Section 5.2.1 Small benchmark instances (5-10-15 locations) 

- Section 5.2.2 Large benchmark instances (100 locations) 

Section 5.3: Randomly generated real-life instances 

- Section 5.3.1 Small size real-life instances (5-10-15 locations) 

- Section 5.3.2 Medium size real-life instances (40-50-60 locations) 

Section 5.4: Results of the company (VSP) 

- Section 5.4.1 Tuesday-Friday 

- Section 5.4.2 Wednesday-Saturday 

Section 5.5: Conclusion on experiments 

 

5.1 Description experiments and overview 
Section 5.1 gives descriptions of the comparisons and experiments performed in Section 5.2, Section 5.3, 

and Section 5.4. Section 5.2 uses benchmark instances given by the paper of Schneider et al. (2014). Section 

5.3 uses randomly generated instances. These instances are sampled from the real-life instances of the 

company (VSP). These instances are further explained within the given sections itself. 

Comparison 

With the comparisons, the goal is to identify the performance of the solution approach. In the different 

sections, the method is tested and compared in various manners. For smaller instances up to 15 locations, 

the comparison is done with the model in a solver (Gurobi). If the solver is not able to find the optimal 

solution within 3600 seconds, the MIP gap given by Gurobi is reported. The MIP gap is determined by the 

following formula in Gurobi (Miltenberger, 2023): 

 

This formula gives the difference between the Objective lower bound and the best found heuristic feasible 

solution. These two come closer to each other when the problem is optimized by Gurobi. When they are 

the same, the found solution is optimal. However, when Gurobi is not done within the given time limit, this 

gap can indicate if the found feasible is close to a possible optimal solution. For the smaller instances, the 

comparison also includes the gaps between the different solution approaches, as well as the solving time 

and number of used vehicles.  

For the larger instances, the solver is not able to find feasible solutions within a reasonable time, therefore 

for these instances, the approach is compared with the LP relaxation of the problem. This LP relaxation is 

calculated using the model in Gurobi, but the binary decision variables that determine the routes, are relaxed 
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to a continuous variable between 0 and 1. Furthermore, the comparison for all instances reports and 

evaluates the number of vehicles used and solving time in seconds.  

Parameter selection 

To be able to perform experiments, first, the parameters need to be determined based on what can influence 

the solution provided by the solution approach when these parameters are tuned. We conclude that a 

different objective function might influence the solutions as sometimes faster routes in terms of time have 

longer distances in terms of kilometers.  

Furthermore, the expectation is that when driving range is increased by either increasing battery capacity 

or improving battery usage, solutions should improve. Next to that, charging speed can influence the total 

time of the routes and also the arrival time at a location after charging. Which could give more options in 

terms of feasibility considering time windows.  

Experiment type 1: Objective function 

The first experiment is done to see how the solution is influenced by the objective function that is used. 

Two objective functions are used: 

- Total distance  

- Total time 

The goal is to identify the differences in the solutions and find the causes of these differences. Experiment 

type 1 is done in Section 5.2.1, Section 5.2.2, Section 5.3.1, and Section 5.3.2. 

Experiment type 2: Input settings 

With the second type of experiment, the goal is to determine what the influence of the various input 

parameters is. The varied input settings are the charging speed at a charging location, the battery capacity 

of the vehicle, and the battery usage of the vehicle. Here, the charging speed is the amount of unit distance 

charged in one unit of time. The battery usage is the amount of battery usage for one unit distance. An 

overview of the input settings is as follows: 

- Experiment 2.1: Capacity 

- Experiment 2.2: Charging speed 

- Experiment 2.3: Battery usage 

Experiment type 2 is done in Section 5.2.1, Section 5.2.2, Section 5.3.1, and Section 5.3.2. 

Experiment type 3: Charging strategy 

The third experiment is to see what kind of influence the charging strategy has on the determined solutions. 

Here, two charging strategies are used. The first strategy is a partial charging strategy (Section 4.3.3). The 

second strategy is a fully charging strategy, where every time a vehicle visits a charging station the battery 

of the vehicle is fully charged.  

- Partial charging strategy 

- Fully charging strategy 

The goal is to see how the charging strategy influences the quality and performance of the solutions. 

Experiment type 3 is done in Section 5.3.1. 
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Section 5.1 shows what kind of experiments will be performed. Next, Section 5.2 will show the results for 

the benchmark instances and Section 5.3 will give the results for the real-life instances. Last, Section 5.4 

gives the results determined for VSP. 

5.2 Benchmark instances 
Section 5.2 will show the performance of the solution approach compared to a solver (Gurobi) and 

Matheuristic. Next to that, multiple experiments are performed to get an idea of the influence of the input 

settings (Section 5.1).   

5.2.1 Small size instances 

Section 5.2.1 contains small size instances varying in the number of customer locations. The instances 

either contain 5, 10, or 15 locations. These instances are based on the instances from Schneider et al. (2014), 

but modified as the problem instances in that paper also consider load and capacity. These constraints are 

not considered in the situation of VSP and therefore also not in the solution approach. Therefore, the found 

solutions are not compared with the results reported by Schneider et al. (2014). Table 10 displays which 

experiments are done. Furthermore, various features and settings are displayed in Table 10. In the 

comparison, 36 instances are considered. With the experiments, 12 instances are used. The reason for this 

is time restrictions. Furthermore, the settings that are given are based on the input settings given by 

Schneider et al. (2014). In bold, the aspect that is changed or compared is highlighted. This gives an easy 

overview of what is done within the various experiments. The capacity given in Table 10, is the battery 

capacity of the electric vehicle. Furthermore, the velocity that is given, is the amount of distances unit 

travelled in one time unit. 

Table 10. Overview Small size benchmark experiments 

 Section 5.2.1 (Small size benchmark instances) 

 #Instances Approaches Objective 

function 

Settings Charging 

strategy 
Comparison 36 Gurobi vs 

Matheuristic vs 

VNS/VND 

Total distance Velocity = 1, 
Capacity = (77.75, 60.63)* 

Charging speed = (3.49, 0.49, 

0.39)* 
Battery usage = 1 

Partial charging 
strategy 

Experiment 1 12 Gurobi Total distance vs 

Total time 

Velocity = 2, 

Capacity = 77.75, 

Charging speed = 3.49, 
Battery usage = 1 

Partial charging 

strategy 

Experiment 2.1 12 Gurobi Total distance Velocity = 1, 

Capacity = 70 vs 90 

Charging speed = 3.49, 

Battery usage = 1 

Partial charging 

strategy 

Experiment 2.2 12 Gurobi Total distance Velocity = 1, 
Capacity = 77.75 

Charging speed = 2.5 vs 5, 

Battery usage = 1 

Partial charging 
strategy 

Experiment 2.3 12  Gurobi Total distance Velocity = 1, 
Capacity = 77.75 

Charging speed = 3.49, 

Battery usage = 0.9 vs 1.1 

Partial charging 
strategy 

*Input settings depending on which instances, varying between given inputs 

For the comparison in performance, Gurobi is used to obtain the optimal solution if possible within a 

reasonable time. The other approaches are compared with the found Gurobi solution. Table 11 contains the 

comparison, where the number of vehicles, objective value, solving time, and gap are reported.  
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Gurobi is able to find the optimal solution for almost every instance. However, Gurobi does difficulties 

with the problems containing 15 customer locations. Here, it is visible that multiple times gaps are reported 

around 10%-15%. As the time limit was set to an hour, it is unclear whether Gurobi would have found the 

optimal solution within a reasonable time.  

As the matheuristic, uses Gurobi in the second part of solving the problem instances, the reported objective 

values are almost identical. However, for instance c103C15, the matheuristic is performing considerably 

worse than Gurobi. From the solutions, it is unclear why this is exactly the case, as both approaches used 

Gurobi in the end. Furthermore, the goal of the matheuristic is to improve solving time by giving an initial 

solution to Gurobi. From the 36 instances, this type of improvement concerning solving time happened 5 

times.  

VNS/VND-CIH can find the same solution as Gurobi on 5 occasions. Next to that, for 6 instances the result 

is within 5% of the Gurobi solution. Another 6 instances are within a 5%-10% difference compared to the 

Gurobi solution. The rest of the instances are all above a 10% difference, where it seems the solution 

approach sometimes seems to have difficulties with overcoming a local optimum where it would have been 

beneficial to add an extra vehicle to the solution. The large reported differences are all having fewer vehicles 

than the Gurobi solution. As there are no load capacity and demand constraints, some of these instances 

can be solved with fewer vehicles to give a feasible outcome. However, the objective value could have been 

improved using more vehicles, but therefore the VNS/VND needs to overcome these local optima. In some 

cases, it can do that and it some cases, it is not able to do that. However, the VNS/VND is no ran for 10 

iterations, where if this number is increased, the chance of finding better solutions is increasing. Here, that 

is not considered due to time restrictions. 
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Table 11. Small size benchmark instances Comparison 

 Solver (Gurobi) VNS/VND-Solver 

(Matheuristic) 

VNS/VND-CIH (Heuristic) 

Instances: 

C#locatio

ns 

#v

ehi

cle

s 

Obj. LP 

relaxatio

n 

Time(s) MIPga

p (%) 

#ve

hicl

es 

ΔObj% Time(s

) 

#ve

hicl

es 

ΔObj

% 

ΔLPrel

ax% 

Time(

s) 

c101C10.txt 4 393.56 145.08 60.47 0.00% 4 0.00% 51.89 4 0.00% 54.73% 68.85 

c101C5.txt 4 247.15 129.45 0.62 0.00% 4 0.00% 2.78 4 0.00% 47.13% 22.43 

c103C15.txt 3 265.81 168.14 3600.90 13.37% 4 39.73% 3606.77 2 27.00% 53.83% 112.94 

c103C5.txt 3 165.67 104.89 1.64 0.00% 3 0.00% 2.35 1 30.84% 56.21% 19.58 

c104C10.txt 2 273.93 167.30 19.60 0.00% 4 0.00% 28.62 1 17.27% 49.47% 54.37 

c106C15.txt 3 275.13 105.72 12.41 0.00% 3 0.00% 30.90 2 34.08% 74.67% 120.22 

c202C10.txt 2 243.20 124.57 7.30 0.00% 2 0.00% 10.45 1 27.75% 62.99% 37.20 

c202C15.txt 3 369.56 197.14 137.23 0.00% 3 0.00% 167.40 1 4.03% 48.81% 102.31 

c205C10.txt 2 228.28 114.17 2.01 0.00% 2 0.00% 3.80 2 21.85% 60.91% 62.59 

c206C5.txt 3 236.58 122.82 1.42 0.00% 3 0.00% 2.46 1 8.17% 52.32% 24.72 

c208C15.txt 2 300.55 168.76 60.20 0.00% 3 0.00% 49.71 1 23.45% 57.01% 115.60 

c208C5.txt 1 158.48 76.14 0.56 0.00% 1 0.00% 3.29 1 6.57% 55.11% 21.53 

r102C10.txt 3 249.19 129.66 9.60 0.00% 3 0.00% 14.56 2 4.17% 50.14% 46.83 

r102C15.txt 5 418.80 162.94 3601.23 8.95% 6 0.09% 3604.98 5 0.00% 57.81% 149.61 

r103C10.txt 3 202.85 105.77 490.90 0.00% 3 0.00% 497.08 1 12.27% 54.26% 67.29 

r104C5.txt 2 136.69 85.09 1.03 0.00% 2 0.00% 1.43 1 26.22% 54.07% 25.78 

r105C15.txt 4 336.15 154.48 175.34 0.00% 5 0.00% 92.17 1 8.39% 57.90% 114.96 

r105C5.txt 2 156.08 107.36 0.55 0.00% 2 0.00% 1.82 1 20.35% 45.21% 22.06 

r201C10.txt 3 217.68 137.54 8.44 0.00% 4 0.00% 7.29 2 23.68% 51.78% 61.26 

r202C15.txt 4 358.00 168.46 3600.98 9.42% 4 0.00% 3604.46 1 13.61% 59.35% 124.69 

r202C5.txt 1 128.78 95.84 2.71 0.00% 1 0.00% 5.67 1 10.98% 33.75% 22.47 

r203C10.txt 1 218.21 121.14 41.20 0.00% 1 0.00% 44.37 1 24.37% 58.01% 59.71 

r203C5.txt 1 179.06 115.99 2.85 0.00% 1 0.00% 4.28 1 11.13% 42.43% 23.53 

r209C15.txt 2 293.20 173.10 414.32 0.00% 2 0.00% 453.14 1 5.66% 44.30% 124.67 

rc102C10.txt 4 423.51 215.56 5.57 0.00% 4 0.00% 24.08 2 2.38% 50.31% 50.07 

rc103C15.txt 4 394.65 155.86 3600.86 17.44% 4 0.00% 3606.23 3 19.57% 68.24% 130.30 

rc105C5.txt 3 238.05 105.41 4.46 0.00% 3 0.00% 3.95 3 0.00% 52.42% 21.05 

rc108C10.txt 3 345.93 197.82 19.37 0.00% 3 0.00% 20.34 2 6.14% 46.33% 57.20 

rc108C15.txt 4 371.40 160.10 3601.12 16.02% 4 0.00% 3604.88 2 15.40% 63.53% 131.34 

rc108C5.txt 3 253.93 128.61 4.29 0.00% 3 0.00% 4.58 1 2.96% 50.86% 17.79 

rc201C10.txt 3 310.06 135.57 4.89 0.00% 3 0.00% 7.42 2 0.24% 56.38% 65.43 

rc202C15.txt 4 405.53 160.92 205.12 0.00% 5 0.00% 173.63 1 4.95% 62.28% 140.14 

rc204C15.txt 2 310.58 200.96 3601.33 12.52% 2 0.00% 3604.74 1 0.54% 35.65% 125.17 

rc204C5.txt 1 176.39 84.23 5.30 0.00% 1 0.00% 5.48 1 26.24% 64.78% 25.79 

rc205C10.txt 2 325.98 169.88 7.42 0.00% 2 0.00% 9.27 1 32.65% 64.90% 64.38 

rc208C5.txt 1 167.98 83.84 1.78 0.00% 1 0.00% 1.92 1 0.94% 50.56% 25.85 

Average 2.69 271.57 138.34 647.64 2.16% 3.14 1.11% 648.84 1.92 13.16% 54.12% 68.33 

  

Experiment 1: Objective function 

Table 12 displays the results of using a different objective function for solving the problems at hand. Here, 

it is visible that the solutions will come out the same. The values in terms of distance and number of vehicles 

are identical, however, solving time does differ for multiple instances. These differences in solving time 

are also not consistent for one of the two objective functions used. Furthermore, when considering total 

time, on average fewer vehicles are used. An expected outcome here could have been that by optimizing in 

terms of time, routes could go by longer routes in terms of distances that are quicker to ride. However, that 

is not what happened with these problem instances.  
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Table 12. Small size benchmark instances Experiment 1: Total Distance vs Total time 

Objective: Total Distance (Gurobi) Total time (Gurobi) 

Instances: 

C#locations 
#vehicles Obj.(Distance) Time (s) MIPGap 

(%) 

#vehicles ΔObj% 

(Distance) 

Time (s) 

c101C10.txt 4 393.56 19.97 0.00% 4 0% 37.98 

c101C5.txt 3 247.15 0.45 0.00% 3 0% 1.29 

c103C15.txt 3 350.01 3600.73 7.00% 3 0% 3601.15 

c103C5.txt 3 165.67 1.50 0.00% 3 0% 1.23 

c104C10.txt 4 273.93 19.91 0.00% 3 0% 20.16 

c106C15.txt 3 271.21 10.73 0.00% 3 0% 15.17 

c202C10.txt 2 243.20 4.55 0.00% 2 0% 4.62 

c202C15.txt 5 369.56 125.35 0.00% 3 0% 89.73 

c205C10.txt 2 228.28 2.19 0.00% 2 0% 1.23 

c206C5.txt 3 236.58 1.16 0.00% 3 0% 0.87 

c208C15.txt 2 300.55 24.71 0.00% 4 0% 18.38 

c208C5.txt 1 158.48 0.84 0.00% 1 0% 0.87 

Average 2.92 269.85 317.67 0.58% 2.83 0.00% 316.06 

 

Experiment 2.1: Capacity 

Table 13 gives the results for Experiment 2.1 for the small size benchmark instances. The expectation is 

that fewer vehicles are needed when increasing the capacity. Furthermore, the distance can go lower 

because when a vehicle has more capacity, less charging is needed. This will reduce the total distance when 

charging stations can be skipped. Table 13 shows that these expected observations are indeed happening. 

Most of the problem instances show less total distance and less number of vehicles. When capacity is 

reduced, Gurobi also was not able to find the optimal solution on 2 occasions, where on one occasion the 

problem even became infeasible (indicated with (-) in Table 13).  

It is clear that more battery capacity results in better solutions as fewer charges are needed and therefore 

the problem becomes more like the normal VRPTW problem, where finding feasible solutions is much 

easier. The total distance or time of the solutions can be reduced due to fewer visits to charging stations, 

where driving distance is saved, next to also saving charging time at these charging locations.  
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Table 13. Small size benchmark instances Experiment 2.1: Capacity 

Capacity: Capacity-70 (Gurobi) Capacity-90 (Gurobi) 

Instances: 

C#locations 
#vehicles Obj.(Distance) Time 

(s) 

MIPGap 

(%) 

#vehicles ΔObj% 

(Distance) 

Gap 

(%) 

Time 

(s) 

c101C10.txt 4 402.15 118.54 0.00% 3 -4.46% 0.00% 16.70 

c101C5.txt 4 250.04 0.85 0.00% 3 -6.09% 0.00% 0.56 

c103C15.txt 3 374.12 3600.86 13.19% 3 -8.09% 0.00% 2310.93 

c103C5.txt 3 165.73 1.31 0.00% 2 -3.52% 0.00% 0.60 

c104C10.txt 3 273.93 11.35 0.00% 2 -1.00% 0.00% 24.61 

c106C15.txt 4 323.34 61.19 0.00% 3 -16.12% 0.00% 7.64 

c202C10.txt 2 251.95 3.39 0.00% 4 -3.47% 0.00% 3.90 

c202C15.txt 3 375.90 261.49 0.00% 3 -2.58% 0.00% 384.25 

c205C10.txt - - - - 2 - 0.00% 1.77 

c206C5.txt 4 236.58 0.89 0.00% 2 -6.17% 0.00% 1.31 

c208C15.txt 2 300.55 9.79 0.00% 3 -0.71% 0.00% 47.37 

c208C5.txt 1 164.34 0.66 0.00% 2 -3.74% 0.00% 0.74 

Average 3.00 283.51 370.03 1.20% 2.67 -5.09% 0.00% 233.37 

 

Experiment 2.2: Charging speed 

Table 14 shows the results for Experiment 2.2 on the small size benchmark instances. Here, the goal is to 

see what the influence of charging speed is on the objective value. The comparison includes Charging 

speeds 2.5 and 5.0. This means that one distance unit is charged in 2.5 or 5.0 time units. The expectation is 

that the faster the charging speed, the better the performance also in time of distances and number of 

vehicles. The results also show that this is the case. The reasoning behind this is that when less time is 

needed to charge, time windows constraints that are infeasible with slower charging speed become feasible 

due to charging time savings. For this reason, the number of needed vehicles can then also be reduced. 

However, in many cases, the solution is the same for both charging speeds and when there is a difference 

in the total distance of the routes, these differences are not that large. 

Table 14. Small size benchmark instances Experiment 2.2: Charging speed 

Charging 

speed: 

Charging speed-2.5 (Gurobi) Charging speed-5.0 (Gurobi) 

Instances: 

C#locations 
#vehicles Obj.(Distance) Time 

(s) 

MIPGap 

(%) 

#vehicles ΔObj% 

(Distance) 

Time (s) 

c101C10.txt 3 392.36 43.38 0.00% 4 0.31% 34.47 

c101C5.txt 3 247.15 1.05 0.00% 3 0.00% 0.79 

c103C15.txt 2 350.00 3601.28 6.86% 4 6.16% 3600.89 

c103C5.txt 3 165.67 1.39 0.00% 3 0.00% 1.97 

c104C10.txt 2 273.93 29.79 0.00% 2 2.19% 35.13 

c106C15.txt 3 271.21 7.05 0.00% 4 7.50% 12.49 

c202C10.txt 2 243.20 5.42 0.00% 2 0.00% 3.48 

c202C15.txt 3 369.56 91.68 0.00% 4 1.96% 274.43 

c205C10.txt 2 228.28 2.00 0.00% 2 0.00% 1.54 

c206C5.txt 2 236.21 1.36 0.00% 3 0.16% 1.37 

c208C15.txt 2 300.55 14.43 0.00% 2 0.00% 19.39 

c208C5.txt 1 158.48 0.65 0.00% 1 0.00% 0.59 

Average 2.33 269.72 316.62 0.57% 2.83 1.52% 332.21 
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Experiment 2.3: Battery usage 

Table 15 gives the results of Experiment 2.3. Different amounts of battery usage per distance unit are 

compared. This is comparable to increasing the battery capacity, nevertheless, these experiments are 

performed to ensure the results are the same. It is possible that soon, one of the two options will be cheaper 

to realize for the car manufacturer and therefore driving range could be extended by either increasing the 

battery efficiency or battery capacity. 

Table 15 displays results that are indeed comparable with Experiment 2.1. The total distance of the found 

solutions is less in most instances. Next to that, the more efficient battery can use fewer vehicles due to the 

larger driving range. Again, the reasoning behind this is that fewer charges are needed which reduces 

distances to possible charging locations. Next to that, the time at these charging locations is not needed 

when fewer charges are done, leading to a shorter total time. 

Table 15. Small size benchmark instances Experiment 2.3: Battery usage 

Battery 

usage: 

Battery usage-0.9 (Gurobi) Battery usage-1.1 (Gurobi) 

Instances: 

C#locations 
#vehicles Obj.(Distance) Time 

(s) 

MIPGap 

(%) 

#vehicles ΔObj% 

(Distance) 

Time (s) 

c101C10.txt 3 384.81 29.25 0.00% 4 2.27% 68.96 

c101C5.txt 3 245.42 1.05 0.00% 4 1.88% 1.05 

c103C15.txt 2 343.84 3600.80 4.04% 2 8.81% 3600.74 

c103C5.txt 2 159.90 1.12 0.00% 3 3.65% 3.19 

c104C10.txt 3 273.93 13.62 0.00% 3 0.00% 51.63 

c106C15.txt 3 271.21 3.52 0.00% 4 19.22% 35.44 

c202C10.txt 2 243.20 2.13 0.00% 2 3.59% 9.51 

c202C15.txt 3 368.05 92.54 0.00% 4 2.13% 222.50 

c205C10.txt 2 228.28 2.26 0.00% - - - 

c206C5.txt 2 221.98 0.83 0.00% 3 6.58% 6.28 

c208C15.txt 3 298.41 15.64 0.00% 2 0.72% 139.57 

c208C5.txt 1 158.20 0.56 0.00% 1 3.88% 4.75 

Average 2.42 266.44 313.61 0.34% 2.91 4.79% 376.69 

 

5.2.2 Large size instances 
This section shows a comparison and the experiments, however, this time the comparison is done between 

the VNS/VND-CIH and the LP relaxation solution as Gurobi is not able to solve large instances for the 

EVPRTW. Next to that, the experiments are all performed with the VNS/VND-CIH approach. Table 16 

gives the experiments done in Section 5.2.2. Here, also the input settings are given based on the 

benchmark instances by Schneider et al. (2014). 
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Table 16. Overview of large size benchmark Experiments 

 Section 5.2.2 (Large size benchmark instances) 

 #Instances Approaches Objective 

function 

Settings Charging 

strategy 
Comparison 26 VNS/VND vs LP 

relaxation 

Total distance Velocity = 1, 
Capacity = (79.69, 117.66, 

66.28)* 

Charging speed = (3.39, 2.29, 
0.45)* 

Battery usage = 1 

Partial charging 
strategy 

Experiment 1 9 VNS/VND Total distance vs 

Total time 
Velocity = 2, 

Capacity = 77.75, 

Charging speed = 3.49, 

Battery usage = 1 

Partial charging 
strategy 

Experiment 2.1 9 VNS/VND Total time Velocity = 1, 
Capacity = 70 vs 90 

Charging speed = 3.39, 

Battery usage = 1 

Partial charging 
strategy 

Experiment 2.2 9 VNS/VND Total time Velocity = 1, 

Capacity = 77.75 

Charging speed = 2.5 vs 5, 

Battery usage = 1 

Partial charging 

strategy 

Experiment 2.3 9  VNS/VND Total time Velocity = 1, 

Capacity = 77.75 
Charging speed = 3.39, 

Battery usage = 0.9 vs 1.1 

Partial charging 

strategy 

*Input settings depending on which instances, varying between given inputs 

Table 17 shows the overview of the comparison between the found solution of VNS/VND-CIH and the LP 

relaxation solution. The gap is around 50%-75% for most instances. Comparing these percentages to the 

gaps for the smaller instances (Table 11) shows that in general, these percentages are a bit larger. However, 

it does not deviate a lot from the smaller instances. Taking into account that the gaps found for the smaller 

instances are mostly within in 25% gap of the optimal solution, the performance from the large instances 

can be considered okay. An advantage of this approach is that it is able to find a solution overnight, whereas 

a solver would never be able to do that. Therefore, a lot of time saving is done and solutions can be found 

relatively quickly. Furthermore, the solutions can improve when the algorithm is run longer.  
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Table 17. Large size benchmark instances comparison 

 LP relaxation 

(Gurobi) 

VNS/VND-CIH 

Instances Obj.(Distance) #vehicles Obj. (Distance) ΔLPrelax% Time (s) 
c101_21.txt 308.66 8 1232.66 74.96% 5691.84 

c102_21.txt 308.66 6 1164.63 73.50% 14529.72 

c103_21.txt 308.61 6 931.42 66.87% 11458.62 

c104_21.txt 308.58 5 1104.93 72.07% 8118.86 

c105_21.txt 308.57 7 1260.56 75.52% 8307.83 

c106_21.txt 308.57 6 1055.56 70.77% 6384.28 

c107_21.txt 308.57 10 1297.61 76.22% 5732.23 

c108_21.txt 308.57 7 990.22 68.84% 7761.02 

c109_21.txt 308.57 7 1140.47 72.94% 10638.24 

c201_21.txt 460.38 6 1090.79 57.79% 3598.02 

c202_21.txt 460.38 5 1218.76 62.23% 7347.88 

c203_21.txt 460.38 1 1071.27 57.03% 3228.91 

c204_21.txt 460.38 1 851.50 45.93% 2610.84 

c205_21.txt 460.38 3 1112.22 58.61% 2765.77 

c206_21.txt 460.38 4 1037.94 55.65% 5469.42 

c207_21.txt 460.38 2 972.21 52.65% 4127.60 

c208_21.txt 460.38 4 1056.65 56.43% 5592.57 

r101_21.txt 566.09 16 1796.85 68.50% 8152.04 

r102_21.txt 566.09 13 1676.87 66.24% 7674.49 

r103_21.txt 566.09 8 1274.27 55.58% 3178.34 

r104_21.txt 566.09 3 1073.43 47.26% 4062.73 

r105_21.txt 566.09 9 1449.99 60.96% 2959.12 

r106_21.txt 566.09 10 1477.71 61.69% 5655.38 

r107_21.txt 566.09 6 1213.72 53.36% 3549.06 

r108_21.txt 566.09 3 1036.29 45.37% 2898.15 

r109_21.txt 566.09 7 1343.97 57.88% 4163.65 

Average 444.43 6.27 1189.71 62.11% 5986.79 

 

Experiment 3: Objective function 

Table 18 displays the influence of a different objective function. Here, it seems that when using Total 

time as an objective function the solutions perform better in terms of total distance when comparing the 

solutions to optimizing in terms of Total distance. However, when the total time performs worse, it 

performs way worse. It seems that it gets easier stuck in worse local optima and when Total distance 

optimization gets stuck in local optima, it already found a better solution compared to when optimizing on 

Total Time gets stuck in local optima. It is hard to say or not running the algorithm for more iterations 

could benefit one of the two objective functions more than the other, however, running more iterations 

will almost certainly in both cases increase the quality of the found solution. Nevertheless, due to time 

restrictions, the algorithm is run for only 5 iterations.  
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Table 18. Large size benchmark instances Experiment 1: Total distance vs total time 

Objective: Total Distance (VNS/VND-CIH) Total Time (VNS/VND-CIH) 

Instances #vehicles Obj.(Distance) Time (s) #vehicles ΔObj% 

(Distance) 

Time (s) 

c101_21.txt 8 1559.51 4979.55 8 -0.30% 8829.44 

c102_21.txt 9 1546.03 3160.75 9 35.76% 1702.49 

c103_21.txt 5 1302.24 6212.53 5 -5.53% 8411.88 

c104_21.txt 6 1156.90 4541.13 6 -10.49% 9364.43 

c105_21.txt 8 1340.32 2620.30 9 84.95% 1414.86 

c106_21.txt 11 1562.58 2150.41 8 -20.89% 6672.96 

c107_21.txt 10 1383.48 2559.86 11 40.45% 1359.59 

c108_21.txt 6 1190.43 2373.82 7 77.59% 1293.92 

c109_21.txt 8 1288.04 3006.46 8 -18.59% 8862.67 

Average 7.89 1369.95 3511.65 7.89 20.33% 5323.58 

 

Experiment 4.1: Capacity 

Table 19 gives an overview of Experiment 2.1 for large size benchmark instances. Here, the expectation is 

again that more capacity leads to better solutions. With 6 out of the 9 instances, this is the case. For instance 

c102_21, it seems that the algorithm got stuck in a local optima as the solution is a lot worse than the less 

capacity solution and the solving time is a lot shorter. The shorter solving time is an indication that no 

improvements could be found anymore as the algorithm would have continued if it was improving. 

Nevertheless, the expectation to find better solutions with more capacity is achieved in most cases.  

Table 19. Large size benchmark instances Experiment 2.1: Capacity 

Capacity: Capacity-70 (VNS/VND-CIH) Capacity-90 (VNS/VND-CIH) 

Instances #vehicles Obj.(Distance) Time (s) #vehicles ΔObj% 

(Distance) 

Time (s) 

c101_21.txt 8 1232.26 5219.64 8 1.10% 4948.81 

c102_21.txt 6 1143.39 11084.97 9 115.71% 602.82 

c103_21.txt 6 969.60 9848.69 6 -1.30% 10486.13 

c104_21.txt 5 1144.17 7099.26 5 -4.93% 7101.02 

c105_21.txt 7 1297.38 7548.76 9 47.82% 575.84 

c106_21.txt 9 1844.94 548.63 6 -43.46% 5933.32 

c107_21.txt 10 1321.24 3766.22 10 -1.57% 3710.11 

c108_21.txt 8 1074.29 5567.88 8 -4.12% 6223.88 

c109_21.txt 7 1177.65 7438.70 7 -0.78% 7700.30 

Average 7.33 1244.99 6458.08 7.56 12.05% 5253.58 

 

Experiment 4.2: Charging speed 

Table 20 shows the results of Experiment 2.2 for large size benchmark instances. Here, the results are not 

as expected. The expectation is that the faster charging time would lead to better results. However, the 

results show that charging speed does not seem to be a big problem when optimizing in terms of distance 

for larger instances. The time windows allow for comparable solutions, even when longer stops need to be 

made for the extra charging time.  
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Table 20. Large size benchmark instances Experiment 2.2: Charging speed 

Charging 

speed: 

Charging speed-2.5 (VNS/VND-CIH) Charging speed-5.0 (VNS/VND-CIH) 

Instances #vehicles Obj.(Distance) Time (s) #vehicles ΔObj% 

(Distance) 

Time (s) 

c101_21.txt 8 1243.31 5345.77 8 0.00% 4543.70 

c102_21.txt 6 1164.06 13570.03 6 0.00% 13382.30 

c103_21.txt 6 935.46 12804.53 6 0.00% 12776.16 

c104_21.txt 5 1110.32 7463.32 5 0.00% 7724.80 

c105_21.txt 7 1245.40 8336.70 7 0.00% 8155.35 

c106_21.txt 6 1032.39 6428.33 6 0.00% 6132.73 

c107_21.txt 10 1325.64 4068.84 10 0.17% 4205.56 

c108_21.txt 8 1031.11 6353.12 7 -4.59% 8753.36 

c109_21.txt 7 1182.56 7413.33 7 0.00% 7345.39 

Average 7.00 1141.14 7976.00 6.89 -0.49% 8113.26 

 

Experiment 4.3: Battery usage 

Table 21 shows that in general when battery usage is higher and thus battery efficiency is lower, the 

solutions are more likely to be worse. This is in line with the results seen for Experiment 2.1 for large size 

benchmark instances. Where the reasoning, that more driving range leads to fewer charge visits and less 

charging time still can be applied. Nevertheless, for some of these larger instances, the solutions for both 

the amounts of battery usage yield the same objective value. With instance c102_21 for battery usage 1.1, 

the algorithm seems to get stuck into a local optimum, as the solution is a lot worse than battery usage 0.9. 

This can be derived from the solving time. The heuristic will have a lower running time because as long as 

the heuristic can keep improving the found solution, it will continue. In the case, the heuristic is not able to 

escape the local optimum with the shaking procedure, it will be done by improving the solution relatively 

quickly and the total solving time will be a lot faster. This faster running time as a result of fewer 

improvements, results in a worse overall solution.   

Table 21. Large size benchmark instances Experiment 2.3: Battery usage 

Battery 

usage: 

Battery usage-0.9 (VNS/VND-CIH) Battery usage-1.1 (VNS/VND-CIH) 

Instances #vehicles Obj.(Distance) Time (s) #vehicles ΔObj% 

(Distance) 

Time (s) 

c101_21.txt 8 1243.31 5085.33 8 0.00% 5192.987 

c102_21.txt 6 1164.06 15286.77 6 -9.95% 17134.66 

c103_21.txt 6 935.46 10830.53 9 138.95% 590.5741 

c104_21.txt 5 1110.32 7424.56 5 0.00% 7756.334 

c105_21.txt 7 1245.40 8195.27 9 53.40% 573.1777 

c106_21.txt 6 1032.39 6099.70 6 0.00% 6090.414 

c107_21.txt 10 1325.64 4058.50 10 0.00% 4064.435 

c108_21.txt 7 970.91 7549.59 8 6.20% 6720.405 

c109_21.txt 7 1182.56 7133.45 6 -3.57% 10804.97 

Average 6.89 1134.45 7962.63 7.44 20.56% 6547.55 

 

After evaluating the results from the comparisons and experiments for small and large benchmark instances, 

the following can be concluded. Creating a larger driving range by increasing capacity or improving battery 
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efficiency results in better solutions in general. Charging speed seems to play a smaller role in the outcome 

of the solutions.  

Next to the experiments, the benchmark instances show that the heuristic can be performed quite okay. 

On average 13% gap with the solution given by Gurobi using a one-hour time limit. However, the solving 

time of the heuristic is on average a lot faster (Table 11).  

Section 5.3 continues with comparisons and experiments on instances based on real-life data from VSP. 

5.3 Generated real-life cases 
This section performs an analysis of cases based on real-life data. Here, the instances are randomly 

generated from the data that is available from VSP. Section 5.3.1 will perform experiments (Section 5.1) 

on small instances containing 5, 10, or 15 locations (Appendix G). Each of these amounts has 5 instances, 

which results in a total of 15 instances. Section 5.3.2 contains an analysis of medium size instances. Here, 

the instances again are randomly generated based on the data from VSP. The reason medium size instances 

are used is that there are around 115 locations in the dataset from VSP. If 100 locations would be sampled, 

all instances would look similar. Therefore 40, 50, or 60 locations are sampled with each having 5 instances, 

resulting in 15 medium size instances (Appendix H). 

5.3.1 Small size instances 

This section evaluates performance and experiments in the same manner as done in Section 5.2.1. 

Additionally, the goal is to see if, from these different instances, the same conclusion can be drawn. Table 

22 gives an overview of the experiments done in Section 5.3.1 with their settings and features. Here, the 

settings are based on the real-life situation of VSP. Therefore, the battery capacity is 380, as this stands for 

the driving range in km of the used Mercedes eSprinter. The other input settings are also based on the data 

that is used for VSPs situation. 

Table 22. Overview Small size real-life experiments 

 Section 5.3.1 (Small size real-life instances) 

 #Instances Approaches Objective 

function 

Settings Charging 

strategy 
Comparison 15 Gurobi vs 

Matheuristic vs 

VNS/VND 

Total time Velocity = 1, 

Capacity = 380 

Charging speed = 0.1667 
Battery usage = 1 

Partial charging 

strategy 

Experiment 1 15 Gurobi Total distance vs 

Total time 

Velocity = 1, 

Capacity = 380 

Charging speed = 0.1667 
Battery usage = 1 

Partial charging 

strategy 

Experiment 2.1 15 Gurobi Total time Velocity = 1, 

Capacity = 250 vs 500 

Charging speed = 0.1667, 

Battery usage = 1 

Partial charging 

strategy 

Experiment 2.2 15 Gurobi Total time Velocity = 1, 
Capacity = 380 

Charging speed = 0.1 vs 

0.2, 

Battery usage = 1 

Partial charging 
strategy 

Experiment 2.3 15  Gurobi Total time Velocity = 1, 

Capacity = 380 

Charging speed = 0.1667, 
Battery usage = 0.5 vs 1.5 

Partial charging 

strategy 

Experiment 3 15 Gurobi Total time  Velocity = 1, 

Capacity = 380 
Charging speed = 0.1667 

Battery usage = 1 

Partial charging 

strategy vs 

Fully Charging 

strategy 
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Table 23 shows the comparison between the Gurobi, matheuristic, and VNS/VND-CIH. First off, it is 

visible that when the number of locations are increasing the running time and gap are increasing. Even 

Gurobi reports gaps between 10% and 30% when running for one hour. Especially when 15 locations are 

considered, the running time of Gurobi reaches the time limit and the optimal solution is not found. This 

occurred in Section 5.2.1 in the same manner and confirms that these problems become increasingly more 

difficult when locations are added. 

The matheuristic shows a similar performance as Gurobi. However, 2 times Gurobi found a better solution 

and 1 time the matheuristic found a better solution. In all these cases, these solutions were not the optimal 

solution. Furthermore, in two cases the matheuristic found the optimal solution faster than Gurobi. 

Nevertheless, the goal of trying to improve solving time by giving Gurobi an initial solution does not work 

as consistently as expected. 

The VNS/VND-CIH solution approach shows promising results compared to Gurobi. Most instances are 

within a 10% difference with the Gurobi solution. However, as can be seen, the gap reported by Gurobi is 

around 15%-30% for the 10 and 15 location instances. This means that the gap for the VNS/VND-CIH 

solution is even bigger. The biggest advantage of the VNS/VND-CIH is the running time. These are 

constant and do not increase a lot when larger problems are being optimized.  

The results are comparable with the results in Section 5.2.1. Taking into account that Gurobi displays some 

larger gaps and the VNS/VND-CIH smaller gaps, the difference with the possible optimal seems to be the 

same.  

Table 23. Small size real-life instances Comparison 

 Solver (Gurobi) VNS/VND-Solver 

(Gurobi) 

VNS/VND-CIH 

Instances 

c#locations 
#v

ehi

cle

s 

Obj. LP 

relax

ation 

Time(

s) 

MIPg

ap 

(%) 

#vehi

cles 

ΔObj

% 

Time

(s) 

#vehic

les 

ΔObj% ΔLPr

elax

% 

Time

(s) 

Instance 1c5 1 696.00 596.00 0.65 0.00% 1 0.00% 1.56 1 0.14% 14.49% 5.71 

Instance 2c5 1 468.00 311.00 0.96 0.00% 1 0.00% 2.22 1 13.49% 42.51% 6.36 

Instance 3c5 2 666.00 514.00 1.04 0.00% 2 0.00% 3.51 1 4.31% 26.15% 9.40 

Instance 4c5 1 587.00 435.00 0.60 0.00% 1 0.00% 3.13 1 5.17% 29.73% 9.90 

Instance 5c5 1 393.00 305.00 0.96 0.00% 1 0.00% 3.04 1 0.00% 22.39% 6.76 

Instance 6c10 1 679.00 477.00 395.41 0.00% 1 0.00% 444.95 1 1.74% 30.97% 6.50 

Instance 7c10 1 773.00 570.00 3600.70 8.80% 1 0.00% 3602.97 1 3.25% 28.66% 4.87 

Instance 8c10 2 1061.00 618.00 3601.65 18.47% 2 0.00% 3603.88 3 10.16% 47.67% 5.09 

Instance 9c10 1 590.00 458.00 91.03 0.00% 1 0.00% 61.70 1 1.34% 23.41% 5.02 

Instance 10c10 1 683.00 466.00 3600.83 13.76% 1 0.00% 3603.05 1 0.00% 31.77% 5.45 

Instance 11c15 3 1469.00 819.00 3606.93 33.22% 3 0.95% 3605.83 3 10.26% 49.97% 9.65 

Instance 12c15 2 1281.00 795.00 3601.52 22.17% 2 0.00% 3605.37 2 7.38% 42.52% 9.11 

Instance 13c15 2 1146.00 822.00 3601.62 14.57% 2 1.57% 3610.73 2 12.05% 36.91% 9.15 

Instance 14c15 2 1161.00 788.00 3601.82 18.43% 2 -3.27% 3606.44 2 0.09% 32.19% 9.56 

Instance 15c15 3 1510.00 897.00 3601.77 31.26% 3 0.00% 3606.48 3 -5.82% 37.14% 9.93 

Average 1.60 877.53 591.40 1953.8 10.71% 1.60 -0.05% 1957.66 1.60 4.24% 33.10% 7.50 

 

Experiment 5: Objective function 

Table 24 gives the results of  Experiment 1 for the small size real-life instances. The results show that for 

instances with 5 locations, both objective functions are capable of finding the optimal solution. When the 

amount of locations is increased to 10, the performance of both objective functions is similar but a 

MIPgap is reported by Gurobi. When 15 locations are considered, the two objective functions are 
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displaying different results. The reported MIP gaps are considerable and for each instance, one of the two 

objective functions outperforms the other.  

Table 24. Small size real-life instances Experiment 1: Total distance vs total time 

Objective: Total Distance (Gurobi) Total time (Gurobi) 
Instances 

c#locations 
#vehicles Obj.(Distance) Time (s) MIPGap 

(%) 

#vehicles ΔObj% 

(Distance) 

Time (s) 

Instance 1c5 1 643.00 0.68 0.00% 1 0.2% 1.80 

Instance 2c5 1 491.00 0.71 0.00% 1 0.0% 2.89 

Instance 3c5 2 774.00 1.11 0.00% 2 0.1% 1.75 

Instance 4c5 1 548.00 0.77 0.00% 1 0.0% 0.79 

Instance 5c5 1 357.00 0.94 0.00% 1 0.3% 1.39 

Instance 6c10 1 487.00 236.85 0.00% 1 0.0% 371.36 

Instance 7c10 1 661.00 3600.85 15.28% 1 0.0% 3600.79 

Instance 8c10 2 904.00 3600.78 26.99% 2 0.0% 3601.04 

Instance 9c10 1 470.00 15.85 0.00% 1 0.2% 49.41 

Instance 10c10 1 522.00 3600.75 24.33% 1 0.9% 3600.89 

Instance 11c15 3 1144.00 3602.11 55.86% 3 1.0% 3607.48 

Instance 12c15 2 1047.00 3601.71 31.14% 2 -17.8% 3609.23 

Instance 13c15 2 988.00 3601.49 32.19% 2 -11.1% 3601.89 

Instance 14c15 2 887.00 3601.70 20.74% 2 6.0% 3601.98 

Instance 15c15 3 1043.00 3602.06 46.02% 3 11.6% 3601.87 

Average 1.60 731.07 1937.89 16.84% 1.60 -0.57% 1950.30 

 

Experiment 6.1: Capacity 

Table 25 displays the outcome of Experiment 2.1 for the small size real-life instances. The expectation is 

that more capacity leads to better solutions as less charging is needed. When less charging is needed, the 

vehicles save time not driving to charging stations as well as saving time charging at these stations.  

Table 25 shows that more capacity indeed confirms this expectation. The solutions where more capacity 

is available are all better except for the last instances. It is unclear, why in this case the lower capacity is 

better than having more capacity as having less capacity should also be an option for having more 

capacity as in both situations a partial charging strategy is used. It could be that the solution space for 

having a smaller capacity is smaller and Gurobi can find better solutions quicker, whereas the solution 

space for having more capacity is larger, and therefore Gurobi could have more difficulty going through 

this larger space results in a worse solution in the given time limit. 
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Table 25. Small size real-life instances Experiment 2.1: Capacity 

Capacity: Capacity-250 (Gurobi) Capacity-500 (Gurobi) 

Instances 

c#locations 
#vehicles Obj.(Distance) Time 

(s) 

MIPGap 

(%) 

#vehicles ΔObj% 

(Distance) 

Time (s) 

Instance 1c5 - - - - 1 0% (MIPgap) 1.42 

Instance 2c5 1 556.00 3.68 0.00% 1 -13.24% 1.95 

Instance 3c5 - - - - 1 0% (MIPgap) 2.21 

Instance 4c5 2 608.00 1.66 0.00% 1 -10.95% 1.43 

Instance 5c5 1 372.00 2.66 0.00% 1 -3.91% 1.30 

Instance 6c10 1 554.00 1469.92 0.00% 1 -13.99% 264.29 

Instance 7c10 1 718.00 3602.80 12.18% 1 -8.62% 3602.46 

Instance 8c10 2 1070.00 3602.97 27.75% 2 -21.87% 3602.41 

Instance 9c10 1 488.00 62.98 0.00% 1 -4.72% 117.41 

Instance 10c10 1 540.00 3601.49 15.42% 1 -3.25% 3604.74 

Instance 11c15 3 1215.00 3609.34 35.88% 3 -5.84% 3614.11 

Instance 12c15 2 1084.00 3605.41 19.29% 2 -7.75% 3610.32 

Instance 13c15 2 1013.00 3605.55 23.30% 2 -8.69% 3608.61 

Instance 14c15 2 1052.00 3606.66 20.70% 2 -27.67% 3606.62 

Instance 15c15 2 1019.00 3603.67 24.13% 3 4.77% 3609.00 

Average 1.62 791.46 2336.83 13.74% 1.53 -9.67% 1949.89 

 

Experiment 6.2: Charging speed 

Table 26 shows the outcome of Experiment 2.2 for the small size real-life instances. It shows that for the 

instances up to 10 locations no substantial differences can be seen. However, the instances containing 15 

locations, show different results. With these instances, the expected outcome is seen. Which is that a faster 

charging speed (0.1 time unit for charging one distance unit) results in better solutions in general. However, 

for two instances, the slower charging speed outperforms the faster speed. The results in general correspond 

with the outcome of Experiment 2.2 in Section 5.2.1.  

Table 26. Small size real-life instances Experiment 2.2: Charging speed 

Charging 

speed: 

Charging speed-0.1 (Gurobi) Charging speed-0.2 (Gurobi) 

Instances 

c#locations 
#vehicles Obj.(Distance) Time 

(s) 

MIPGap 

(%) 

#vehicles ΔObj% 

(Distance) 

Time (s) 

Instance 1c5 1 644.00 2.54 0.0% 1 0.00% 2.56 

Instance 2c5 1 491.00 7.55 0.0% 1 0.20% 3.12 

Instance 3c5 2 775.00 3.45 0.0% 2 0.00% 3.91 

Instance 4c5 1 548.00 2.55 0.0% 1 0.00% 2.43 

Instance 5c5 1 358.00 2.87 0.0% 1 0.00% 3.05 

Instance 6c10 1 487.00 1391.67 0.0% 1 0.00% 439.31 

Instance 7c10 1 661.00 3606.04 8.9% 1 0.00% 3604.07 

Instance 8c10 2 904.00 3602.86 18.9% 2 0.00% 3603.90 

Instance 9c10 1 471.00 250.59 0.0% 1 0.00% 90.04 

Instance 10c10 1 527.00 3604.15 13.3% 1 0.00% 3604.22 

Instance 11c15 3 1170.00 3604.85 34.3% 3 1.35% 3606.23 

Instance 12c15 3 1142.00 3605.39 23.8% 3 -1.96% 3603.86 

Instance 13c15 2 903.00 3604.69 16.8% 2 10.33% 3608.00 

Instance 14c15 2 875.00 3613.37 12.1% 2 10.90% 3615.27 

Instance 15c15 3 1047.00 3604.46 27.4% 2 -8.50% 3604.80 

Average 1.67 733.53 2033.80 10.37% 1.60 0.82% 1959.65 
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Experiment 6.3: Battery usage 

Table 27 gives the results for Experiment 2.3 for small size real-life instances. Lower battery usage should 

result in better solutions, as more driving range is achieved when the battery uses less charge when driving 

the same amount of distance. However, the results do not present these expectations immediately. For the 

instances with 5 locations, the lower battery usage (0.9) achieves better solutions when solving to 

optimality. When the number of locations is increased, both situations have trouble finding optimal 

solutions and the reported MIP gaps increase. When 15 locations are considered, these gaps enlarge and no 

battery usage is consistently better than the other. 

Table 27. Small size real-life instances Experiment 2.3: Battery usage 

Battery 

usage: 

Battery usage-0.9 (Gurobi) Battery usage-1.1 (Gurobi) 

Instances 

c#locations 
#vehicles Obj.(Distance) Time 

(s) 

MIPGap 

(%) 

#vehicles ΔObj% 

(Distance) 

Time (s) 

Instance 1c5 1 644.00 5.62 0.00% 1 8.65% 6.26 

Instance 2c5 1 491.00 8.66 0.00% 1 0.20% 9.38 

Instance 3c5 1 778.00 9.51 0.00% 1 0.00% 8.17 

Instance 4c5 1 548.00 4.87 0.00% 1 0.00% 5.14 

Instance 5c5 1 358.00 9.85 0.00% 1 3.76% 5.14 

Instance 6c10 1 487.00 2399.61 0.00% 1 1.22% 3452.29 

Instance 7c10 1 661.00 3605.08 9.95% 1 0.00% 3604.47 

Instance 8c10 2 904.00 3602.66 14.89% 2 5.44% 3604.76 

Instance 9c10 1 471.00 71.98 0.00% 1 0.00% 71.26 

Instance 10c10 1 527.00 3604.57 14.06% 1 0.00% 3602.47 

Instance 11c15 3 1156.00 3606.59 33.70% 3 12.16% 3605.67 

Instance 12c15 2 1077.00 3606.13 20.86% 2 -0.37% 3612.94 

Instance 13c15 2 979.00 3606.44 18.61% 2 -8.42% 3610.76 

Instance 14c15 2 951.00 3614.91 17.00% 2 -8.07% 3605.76 

Instance 15c15 2 909.00 3604.31 20.09% 2 17.06% 3605.07 

Average 1.47 729.40 2090.72 9.94% 1.47 2.11% 2160.64 

 

Experiment 7: Partial charging strategy vs Fully charging strategy 

Table 28 gives the results for Experiment 3, where the goal is to see whether charging strategies influence 

the quality of the solutions. In terms of distances for the first 10 instances, it is visible that there is no 

difference between the two strategies. The extra charging times do not conflict with the time window 

constraints, resulting in the same performance of the routes. When considering 15 locations, the two 

strategies do differ in terms of performance. It shows that using a full charging strategy can outperform the 

partial charging strategy within the given time limit. However, with the partial charging strategy, fully 

charging is also an option, therefore the solution found by the fully charging strategy should be achievable 

by the partial charging strategy. The reason for this result could be the same as for Experiment 2.1, where 

having less capacity leads to a smaller solution space where Gurobi can maybe find better solutions within 

this space in the given time limit. Where having more capacity or in this case more charging options, leads 

to a bigger solution space which gives the model more difficulty finding the same solution within the same 

time frame.  
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Table 28. Small size real-life Experiment 3 

Charging 

strategy: 

Partial charging strategy (Gurobi) Fully charging strategy (Gurobi) 

Instances 

c#locations 
#vehicles Obj.(Distance) Time 

(s) 

MIPGap 

(%) 

#vehicles ΔObj% 

(Distance) 

Time (s) 

Instance 1c5 1 696 0.65 0.00% 1 0.00% 1.53 

Instance 2c5 1 468 0.96 0.00% 1 0.00% 1.44 

Instance 3c5 2 666 1.04 0.00% 2 0.00% 1.68 

Instance 4c5 1 587 0.60 0.00% 1 0.00% 2.43 

Instance 5c5 1 393 0.96 0.00% 1 0.00% 1.66 

Instance 6c10 1 679 395.41 0.00% 1 0.00% 56.79 

Instance 7c10 1 773 3600.70 8.80% 1 0.00% 2648.54 

Instance 8c10 2 1061 3601.65 18.47% 2 0.00% 3602.74 

Instance 9c10 1 590 91.03 0.00% 1 0.00% 25.77 

Instance 10c10 1 683 3600.83 13.76% 1 0.00% 3602.12 

Instance 11c15 3 1469 3606.93 33.22% 3 0.94% 3606.25 

Instance 12c15 2 1281 3601.52 22.17% 2 -6.13% 3608.34 

Instance 13c15 2 1146 3601.62 14.57% 2 0.35% 3605.01 

Instance 14c15 2 1161 3601.82 18.43% 2 3.09% 3606.60 

Instance 15c15 3 1510 3601.77 31.26% 2 -12.52% 3607.79 

Average 1.60 877.53 1953.83 10.71% 1.53 -0.95% 1865.25 

 

5.3.2 Medium size instances 

This section considers medium size instances that are randomly generated from the VSP data. The instances 

consider 5, 10, and 15 locations, where for each amount of locations 5 instances are sampled (Appendix 

H). Section 5.3.2 shows the results of the experiments given in Table 29. 

Table 29. Overview Medium size real-life experiments 

 Section 5.3.2 (Medium size real-life instances) 

 #Instances Approaches Objective 

function 

Settings Charging 

strategy 

Comparison 15 VNS/VND vs LP 

relaxation 

Total distance Velocity = 1, 

Capacity = 380 

Charging speed = 0.1667 
Battery usage = 1 

Partial charging 

strategy 

Experiment 1 15 VNS/VND Total distance vs 

Total time 

Velocity = 1, 

Capacity = 380 
Charging speed = 0.1667 

Battery usage = 1 

Partial charging 

strategy 

Experiment 2.1 15 VNS/VND Total time Velocity = 1, 

Capacity = 250 vs 500 

Charging speed = 0.1667, 

Battery usage = 1 

Partial charging 

strategy 

Experiment 2.2 15 VNS/VND Total time Velocity = 1, 
Capacity = 380 

Charging speed = 0.1 vs 

0.2, 

Battery usage = 1 

Partial charging 
strategy 

Experiment 2.3 15  VNS/VND Total time Velocity = 1, 

Capacity = 380 

Charging speed = 0.1667, 
Battery usage = 0.5 vs 1.5 

Partial charging 

strategy 
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Table 30 shows the comparison between the LP relaxation and the best-found heuristic solution for the 

medium size real-life instances. The gaps reported lie around 60%-70%. To put these numbers into 

perspective, these numbers are compared to the gaps with the LP relaxation for the small size real-life 

instances (Table 23). It shows that the gaps reported for the medium size instances are around 30% larger 

than the gaps reported for the small size instances. Some of these solutions for the smaller instances are 

close to optimality, but others also still report a MIP gap in a range from 10% to 30%. This would indicate 

that these solutions for the medium size real-life instances are not great. However, these solutions could 

possibly be improved if the algorithm is run for more iterations. When a company wants to ensure that their 

solutions improve, the iterations can be increased. This will increase solving time. That is the tradeoff the 

company has to consider.  

Table 30. Medium size real-life instances Comparison 

 LP relaxation 

(Gurobi) 

VNS/VND-CIH 

Instances 

c#locations 
Obj.(Distance) #vehicles Obj. (Distance) ΔLPrelax% 

(Distance) 

Time (s) 

Instance 1c40 584 4 2040 71.37% 84.49 

Instance 2c40 864 5 2139 59.61% 92.79 

Instance 3c40 759 4 2072 63.37% 89.50 

Instance 4c40 906 3 2293 60.49% 71.37 

Instance 5c40 760 5 2176 65.07% 95.20 

Instance 6c50 887 4 2221 60.06% 117.10 

Instance 7c50 1066 4 2946 63.82% 133.23 

Instance 8c50 782 5 2320 66.29% 143.64 

Instance 9c50 1016 4 2359 56.93% 114.47 

Instance 10c50 877 4 2448 64.17% 86.96 

Instance 11c60 1082 5 2839 61.89% 335.21 

Instance 12c60 1115 5 2889 61.41% 299.84 

Instance 13c60 731 5 2764 73.55% 194.41 

Instance 14c60 1003 5 2754 63.58% 246.70 

Instance 15c60 936 5 2440 61.64% 156.68 

Average 891.20 4.47 2446.67 63.55% 150.77 

 

Experiment 8: Objective function 

Table 31 shows that when considering two different types of objective functions, optimizing in terms of 

total time outperforms optimizing in terms of total distance. Especially when 10 or 15 locations are 

considered, the solution of optimizing for total time seems to perform better. Looking at Experiment 1 for 

other instances, it is visible that this is not always the case. There, one of the two objective functions is not 

outperforming the other consistently. With these randomly generated instances, especially when the number 

of locations is increasing, times and distances can differ a lot. When a lot of locations within the Randstad 

region are considered, times can increase a lot when distances are not that big. Therefore, the importance 

of some connections between locations increases when optimizing is done in terms of time. This can lead 

to better solutions. However, when looking at the smaller instances, this behavior is not seen. Therefore, it 

is hard to conclude what influences the performance to be better for optimizing based on total time.  
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Table 31. Medium size real-life instances Experiment 1: Total distance vs total time 

Objective: Total Distance (VNS/VND-CIH) Total Time (VNS/VND-CIH) 

Instances 

c#locations 
#vehicles Obj.(Distance) Time (s) #vehicles ΔObj% 

(Distance) 

Time (s) 

Instance 1c40 4 1903.00 76.97 4 -0.05% 74.75 

Instance 2c40 3 2063.00 60.55 5 4.76% 68.77 

Instance 3c40 4 2238.00 50.72 4 -11.62% 59.59 

Instance 4c40 4 1995.00 51.05 3 9.24% 49.23 

Instance 5c40 4 2134.00 51.81 4 5.49% 71.40 

Instance 6c50 5 2417.00 104.45 5 0.45% 112.69 

Instance 7c50 4 2911.00 65.71 4 -0.76% 98.57 

Instance 8c50 5 2701.00 93.79 5 -4.25% 120.95 

Instance 9c50 4 2450.00 121.17 4 -4.43% 94.71 

Instance 10c50 4 2427.00 105.28 4 -0.58% 76.51 

Instance 11c60 5 2787.00 171.79 6 9.84% 173.46 

Instance 12c60 5 2520.00 114.97 5 7.79% 164.73 

Instance 13c60 6 3194.00 106.82 6 -9.38% 170.77 

Instance 14c60 5 2887.00 148.65 5 -11.38% 167.57 

Instance 15c60 5 2571.00 136.55 5 -3.71% 122.41 

Average 4.47 2479.87 97.35 4.60 -0.57% 108.41 

 

Experiment 9.1: Capacity 

Table 32 displays the results of Experiment 2.1 for medium size real-life instances. The expectation is that 

more capacity leads to better solutions. Here, in general, that is the case. Where having a bigger capacity 

leads to better solutions. From the 15 instances considered 10 instances have better solutions when having 

more capacity. This is in line with the results found for Experiment 2.1 in Section 5.2.1, Section 5.2.2, and 

Section 5.3.1.   

Table 32. Medium size real-life instances Experiment 2.1: Capacity 

Capacity: Capacity-250 (VNS/VND-CIH) Capacity-500 (VNS/VND-CIH) 
Instances 

c#locations 
#vehicles Obj.(Distance) Time (s) #vehicles ΔObj% 

(Distance) 

Time (s) 

Instance 1c40 4 2007.00 105.30 4 -7.33% 112.5603 

Instance 2c40 4 2229.00 114.12 4 -1.78% 102.0815 

Instance 3c40 4 2188.00 165.36 4 -7.73% 120.6476 

Instance 4c40 4 2085.00 164.77 4 -18.00% 125.9284 

Instance 5c40 3 2061.00 147.95 4 4.54% 134.2486 

Instance 6c50 5 2484.00 250.59 5 -1.47% 343.7665 

Instance 7c50 4 3015.00 252.57 4 -12.71% 259.4468 

Instance 8c50 4 2584.00 282.70 5 -24.89% 291.3974 

Instance 9c50 4 2497.00 280.30 4 3.18% 250.7028 

Instance 10c50 5 2574.00 255.43 5 -2.59% 189.265 

Instance 11c60 6 2969.00 406.67 6 -3.74% 304.6982 

Instance 12c60 5 2657.00 242.50 5 1.56% 277.7513 

Instance 13c60 4 2635.00 343.69 6 9.64% 260.6532 

Instance 14c60 5 2702.00 421.95 6 6.63% 324.5281 

Instance 15c60 5 2667.00 371.78 5 -5.21% 323.5711 

Average 4.40 2490.27 253.71 4.73 -3.99% 228.08 
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Experiment 9.2: Charging speed 

Table 33 shows the results of Experiment 2.2 for medium size real-life instances. Section 5.3.1 indicates 

that having a faster charging speed should result in better solutions. However, that behavior is not 

completely visible here. A lot of solutions lay close to each other in terms of performance. Needless to say, 

having a faster charging speed does have a slightly better performance, however, it is not as convincing as 

for the other instances where Experiment 2.2 is considered.  

Table 33. Medium size real-life instances Experiment 2.2: Charging speed 

Charging 

speed: 

Charging speed-0.1 (VNS/VND-CIH) Charging speed-0.2 (VNS/VND-CIH) 

Instances 

c#locations 
#vehicles Obj.(Distance) Time (s) #vehicles ΔObj% 

(Distance) 

Time (s) 

Instance 1c40 4 1997.00 142.70 4 -3.47% 152.95 

Instance 2c40 3 1990.00 153.46 5 5.46% 138.17 

Instance 3c40 3 1969.00 107.32 4 7.08% 132.72 

Instance 4c40 4 2116.00 180.92 3 1.12% 89.00 

Instance 5c40 4 2270.00 148.85 4 1.05% 91.93 

Instance 6c50 4 2333.00 202.98 5 1.85% 205.20 

Instance 7c50 4 2683.00 139.63 4 2.75% 127.01 

Instance 8c50 5 2493.00 145.69 5 -9.63% 223.89 

Instance 9c50 4 2547.00 141.78 4 -19.19% 116.41 

Instance 10c50 4 2507.00 111.51 5 0.91% 140.27 

Instance 11c60 5 3042.00 186.38 5 -4.54% 213.27 

Instance 12c60 5 2485.00 220.42 5 6.79% 229.81 

Instance 13c60 6 2746.00 186.81 5 2.45% 145.97 

Instance 14c60 5 2740.00 221.56 5 -6.86% 223.48 

Instance 15c60 5 2484.00 235.88 5 14.93% 169.66 

Average 4.33 2426.80 168.39 4.53 0.05% 159.98 

 

Experiment 9.3: Battery usage 

Table 34 shows the results of Experiment 2.3 for medium size real-life instances. The general expectation 

of having more driving range resulting in better solutions is not confirmed here. The extra driving range is 

here created due to having a more efficient battery does not seem to lead to better solutions. It is unclear 

what the cause of this situation is. The solving times for considering a worse battery efficiency are not 

that much lower, which does not indicate that the algorithm got stuck in a local optimum. However, the 

performance of the two battery usages does lay close for many instances. Still, the expected outcome is 

not visible in these results.  
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Table 34. Medium size real-life instances Experiment 2.3: Battery usage 

Battery 

usage: 

Battery usage-0.9 (VNS/VND-CIH) Battery usage-1.1 (VNS/VND-CIH) 

Instances 

c#locations 
#vehicles Obj.(Distance) Time (s) #vehicles ΔObj% 

(Distance) 

Time (s) 

Instance 1c40 4 1923.00 87.45 4 -2.67% 85.00 

Instance 2c40 4 1829.00 109.28 4 21.54% 121.28 

Instance 3c40 4 2165.00 113.38 4 -8.47% 106.98 

Instance 4c40 4 2338.00 115.65 3 -14.50% 76.33 

Instance 5c40 4 2215.00 128.41 4 -1.61% 93.88 

Instance 6c50 5 2651.00 227.62 4 -17.51% 180.18 

Instance 7c50 4 2965.00 235.56 4 -8.81% 216.65 

Instance 8c50 4 2237.00 262.45 4 2.23% 152.10 

Instance 9c50 4 2440.00 187.24 4 3.25% 187.02 

Instance 10c50 5 2905.00 284.61 4 -11.52% 322.38 

Instance 11c60 5 2937.00 231.60 6 -5.19% 433.53 

Instance 12c60 5 2622.00 230.25 5 -5.43% 326.68 

Instance 13c60 5 2813.00 244.21 6 1.99% 294.55 

Instance 14c60 5 2632.00 313.91 5 -2.02% 380.97 

Instance 15c60 5 2400.00 393.32 5 1.80% 355.31 

Average 4.47 2471.47 211.00 4.40 -3.13% 222.19 

 

Having performed the experiments and comparisons for the real-life instances, the following can be 

concluded. As with the benchmark instances, it shows that increasing driving range establishes better 

solutions. Next to that, Experiment 3: Charging strategy shows that both charging strategies perform quite 

the same.  

Table 23 shows that the performance of the heuristic is quite good with an average gap to the solution by 

Gurobi of around 4% with a lot faster solving time.  
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5.4 Results of the company (VSP) 
The goal of this research is to solve the EVRPTW for the new situation of VSPs routing logistics. Section 

5.4 displays the best-found solution using the proposed solution approach. The solutions given are solutions 

for the EVRTPW problem on Tuesday-Friday (Section 5.4.2) and Wednesday-Saturday (Section 5.4.2).  

5.4.1 Tuesday-Friday 

Error! Reference source not found. displays the routes for Tuesday-Friday of VSP routing logistics. The 

blue triangles depict a charging location. The black dots are normal locations. As can be seen, not a lot of 

routes need charging during the route. This is caused by the total distance of the routes. When the length of 

routes does not exceed the capacity of the vehicles, which is 380 kilometers for the Mercedes eSprinter, 

then charging during the routes is not needed. The route can remain the same as what it was or in this case 

the optimized route from Phase 1.  

Table 35 gives a comparison between the current situation and the new routes. Chapter 2 gives a full 

analysis of the current situation. Here, the times are compared and as we can see is that the total time can 

be reduced by quite an amount, but to be able to do that some routes are getting longer. These longer routes 

are still within the desired amounts. Furthermore, Table 35 also gives the distances of the new routes. This 

is given because it gives a quick overview of how many charges are needed and the number of minutes that 

need to be charged based on the data from Mercedes. Combining the total charge times with the total time 

of the routes shows that this total time is still less than the route times of the current routes.  

Table 35. Comparison and evaluation new routes Tuesday-Friday 

 Tuesday-Friday 

(Current) 

Tuesday-Friday (New) 

 Times* Phase 1* Phase 2* Distances Charge times 

Route 1 570 minutes  228 minutes 228 minutes  170 km (0 charges) 0 minutes 

Route 2 569 minutes 611 minutes 612 minutes 383 km (1 charge) 0.5 minutes 

Route 3 536 minutes  504 minutes 504 minutes 260 km (0 charges) 0 minutes 

Route 4 549 minutes  410 minutes 410 minutes 284 km (0 charges) 0 minutes 

Route 5 489 minutes 569 minutes 569 minutes 361 km (0 charges) 0 minutes 

Route 6 563 minutes  634 minutes 640 minutes 454 km (1 charge) 11 minutes 

Route 7 680 minutes  700 minutes 707 minutes 478 km (1 charge) 15 minutes 

Route 8 615 minutes  693 minutes 698 minutes 521 km (1 charge) 22 minutes 

Route 9 590 minutes  665 minutes 681 minutes 512 km (1 charge) 20 minutes 

Route 10 590 minutes 534 minutes 534 minutes 369 km (0 charges) 0 minutes 

Route 11 540 minutes 385 minutes 405 minutes 417 km (1 charge) 6 minutes 

Route 12 489 minutes  519 minutes 519 minutes 341 km (0 charges) 0 minutes 

Total 

Time 

6780 minutes  6452 minutes 6507 minutes 

(Δ-273 min) 

4550 km 74.5 minutes 

*Times are driving times + handling times 

The layout of the routes with names of the locations can be found in Appendix E. Here, the complete 

overview with the cities' names is given.  

5.4.2 Wednesday-Saturday 

Section 5.4.2 evaluates the solution for the routes on Wednesday-Saturday. The routes are shown in the 

same way as in Section 5.4.1, where the blue triangles depict charging locations and black dots are the 

normal locations. In this set of routes, the biggest problem is the orange route, because these locations lay 

far away from the depot. It is hard to improve route time as the time of getting to those locations is already 

longer than some other routes. 
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Table 36 gives a comparison of route times for the current and new routes for the Wednesday-Saturday 

routes. Here, we can see that the same is happening with the routes for Tuesday-Friday. To be able to 

shorten the times for most routes, other routes become longer within the desired times. Table 36 also gives 

the distances and the charge times for the new routes. Here, it is visible that the distances in this set of routes 

are much higher than with the routes of Tuesday-Friday. It has an impact on the charge times. With these 

routes, a lot more charging is needed as the distances are larger. This results in more charging time. In this 

case, the amount of saved time with the Phase 1 solution is not enough to compensate for the amount of 

charging that needs to be done. However, the total time of the routes including charging does not become 

much longer because of the improvement done in Phase 1. The layout of the routes for Wednesday-Saturday 

with names of the locations are given in Appendix F.  

Table 36. Comparison and evaluation new routes Wednesday-Saturday 

 Wednesday-

Saturday (Current) 

Wednesday-Saturday (New) 

 Times* Phase 1* Phase 2* Distances Charge times 

Route 1 644 minutes  652 minutes 654 minutes  482 km (1 charge) 16 minutes 

Route 2 732 minutes  746 minutes 863 minutes 833 km (2 charge) 2x35 minutes 

Route 3 515 minutes  503 minutes  527 minutes 445 km (1 charge) 10 minutes 

Route 4 504 minutes  569 minutes  555 minutes 570 km (1 charge) 30 minutes 

Route 5 534 minutes  597 minutes  602 minutes 476 km (1 charge) 15 minutes 

Route 6 562 minutes  476 minutes 513 minutes 432 km (1 charge) 8 minutes 

Route 7 545 minutes  439 minutes 439 minutes 340 km (0 charge) 0 minutes 

Route 8 640 minutes  582 minutes 603 minutes 505 km (1 charge) 20 minutes 

Route 9 610 minutes  615 minutes 662 minutes 550 km (1 charge) 26 minutes 

Route 10 594 minutes  570 minutes 565 minutes 468 km (1 charge) 14 minutes 

Route 11 658 minutes  638 minutes 564 minutes 520 km (1 charge) 22 minutes 

Route 12 425 minutes  232 minutes 232 minutes 349 km (0 charge) 0 minutes 

Total 

Time 

6963 minutes  6619 minutes 6779 minutes 

(Δ-184 min) 

5970 km 231 minutes 

 *Times are driving times + handling times 
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5.5 Conclusion on experiments 
Chapter 5 considered multiple comparisons and experiments to identify the performance of the proposed 

solution approach and identify the influence of various input settings on the solution outcome. With 

different types of instances for each of the presented experiments (Section 5.1), the following conclusions 

can be made. 

First off, it is clear that enlarging the driving range, by either increasing battery capacity or improving 

battery efficiency, leads to better performance in general. The logical explanation for that is that with more 

capacity less charging is needed. When less charging is needed, the routes have to visit fewer charging 

stations which saves time and distance. Furthermore, time at a charging station is additionally saved when 

less charging is needed. This conclusion is also what lies within the expectation and is confirmed by the 

performed experiments.  

Looking into the performance of the model and the proposed solutions approach, it is visible that Gurobi 

shows good performance. Within the given time limit, solutions are found with multiple optimal solutions 

as well. Looking into the performance of the VNS/VND-CIH, this is not as good as some of the approaches 

found in the literature (Chapter 3). However, it is a simple to apply approach that still can generate 

reasonable solutions. Looking at Section 5.3.1, it is visible that the performance on the small real-life 

instances is quite good. This correlates with Section 5.4. which shows that the current situation of VSP can 

be improved using Phase 1 and EVRPTW for their new situation can be solved with Phase 2.  

The main conclusions based on the experiments are the following: 

1. In general, creating more driving range by increasing battery capacity or improving battery 

efficiency, ensures better solutions. 

2. The performance of the heuristic is good for smaller real-life instances, however, for medium real-

life, small benchmark, or large benchmark instances, the performance is acceptable for an easy-to-

use approach like the proposed method. 

3. The heuristic is a relatively simple-to-use approach that can help improve a VRPTW situation and 

solve the EVPRTW in a new situation for real-life cases.  
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6 Conclusions and recommendations 
Chapter 6 concludes the research that is performed. Section 6.1 discusses whether the main research 

question is answered. Furthermore, we will evaluate the proposed solution method, indicate its flaws, and 

see if VSP can use it for its EV routing logistics. Section 6.2 states recommendations for the company with 

regard to the implementation of the found solution, but also what can be done to get even better results. 

Section 6.3 gives recommendations for future work and Section 6.4 shows what the contribution is to 

literature and practice. 

6.1 Conclusion 
The goal of this research is to gain insight into the current performance of vehicle routing at VSP to be able 

to create new routes for the introduction of EVs. When gaining these insights, VSP is also able to improve 

its current routing logistics. Therefore, this research wants to answer the main research question: 

How can VSP introduce Electric Vehicles to their routing logistics, while also improving the existing 

routes simultaneously? 

The proposed solution method improves VSP’s current routing in phase 1, where EVs are introduced into 

the phase 1 solution to be able to establish routes for the new situation in phase 2. Therefore, we can 

conclude that the research question for VSP is answered. 

Furthermore, concluding on the generalizability of the proposed solution approach, it is shown in Chapter 

5 that it can find good solutions for smaller instances and okay solutions for medium or larger instances. 

Which for a relatively simple approach is acceptable. The approach uses a construction heuristic that can 

find initial solutions for problems containing time windows, which in Chapter 5 shows it can find solutions 

for every instance if the problem is not infeasible.  

However, a limitation is that the algorithm does perform better in a situation, where not all locations have 

time windows. Section 5.3 shows that in the real-life instances, the performance is relatively better than in 

the performance on the benchmark instances in Section 5.2. The benchmark instances have more time 

windows compared to real-life instances. As the solution approach is designed for the situation of VSP, in 

case more time windows are considered, the performance becomes less good. However, the solution 

approach is still able to solve the situations with more time windows.  

6.2 Recommendations  
This section gives some recommendations for VSP where to focus when further investigating the new 

situation of implementing EVs. As said, this research shows the potential and do-ability of the 

implementation when considering the current customer base. 

The first recommendation is directly related to the customer base. As the new situation is 2 years away, it 

is a good idea to investigate whether or not the customer base is going to grow. This has a significant impact 

on the difficulty of the EVRPTW problem at hand. And if it is a changing factor, determine how to 

systematically handle adding new customers. This is related to the next recommendation. Which is 

developing a tool, to help with the determination of the routes. An agile tool that can be used in multiple 

settings and updated with the new locations to make decisions on the routes. The proposed method can 

provide a base for such a tool.  

The third recommendation is to consider different hubs or depots throughout the country. This was also 

discussed before this research but intentionally left out to see what is possible without considering hubs. 

When evaluating the process and inputs, it becomes clear that some routes just cannot be shortened as the 
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locations in these routes are far away from the depot. This is mainly due to the depot being at a place that 

is not that centered in the country. Therefore, most of the driving time in routes is going from and to be 

depot. After showing that routes are possible in this situation, it is not directly clear what happens when the 

customer base is growing. The chance of having even more time problems when the customer base is 

reasonably large. Possibly the use of a new depot location that is closer to these locations can help greatly.    

The fourth recommendation is related to the proposed solution approach and limitations discussed in 

Section 6.1. As the performance of the solution approach can fluctuate, the recommendation is to run 

enough iterations when using the approach to ensure that the heuristic can escape local optima and ensure 

the best performance the algorithm is capable of. 

6.3 Future work 
This section contains the recommendations for future work. Trying to identify the gaps that are left after 

the completion of this research. 

The first recommendation for future work is related to the third recommendation in Section 6.2. The biggest 

problem that VSP is facing is the location of the current depot. That location causes some routes to be 

impossible to improve as initial driving times to these locations cannot be shortened in the current situation. 

Therefore, as the third recommendation suggests, the consideration of a second depot or hub is a suggestion 

for future work. A lot of time can be saved when the initial drive to these locations can be saved. However, 

future research needs to be done to see where this needs to be, but also how VSP can still ensure that these 

clothes can go to Poland in the truck that leaves from the existing depot. This combination of the 

determination of the location as well as the layout of the process can be very beneficial for VSP. 

The second recommendation for future work is to see if the proposed solution approach can be improved 

in relation to problems that consider more time windows. As Chapter 5 shows the performance of the 

heuristic is better when the problem considers fewer time windows. This makes sense, however, within the 

found literature in Chapter 3, other approaches can find better solutions that are closer to the found solutions 

by a solver. Therefore, it could interesting to see if the proposed solution method can also achieve better 

performance. The generalizability of the proposed solution method would then be better if a company or 

VSP faces more time windows.  

The third recommendation is to investigate in what kind of situation the EVRPTW can be solved as the 

VRPTW again. At some point in time, electric vehicles can be charged as fast as fueling is done now or the 

driving range is enlarged to a point it can go as far as a normal car. Nevertheless, it is interesting to keep 

this development in check, as this era of solving the EVRPTW could be a transition phase, where eventually 

the problem returns to the VRPTW.   

6.4 Contribution to literature and practice 
This section includes an overview of the contribution this research has to the literature. Next to that, the 

contributions to practice are stated.  

As far as we know, within the current literature, there is no other two phase solution approach that first 

optimizes the VRPTW problem and then uses this solution as an initial solution for solving the EVRPTW 

problem. Within the literature, there are multiple two-phase approaches related to the EVRPTW problem, 

however these approaches, for example, focus on first clustering the customers and then determining the 

routes (Li et al., 2023). Furthermore, the paper by Li et al. (2023) was published during the development of 

the proposed solution approach in this research. 
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Furthermore, as far as we know, not much research can be found that test their approaches in real-life 

instances. There are researches considering large instances, however, the consideration of real-life instances 

of 100 locations is not found frequently. Therefore, this research adds insights into how a solution approach 

as the proposed one would perform in a real-life situation. 

In addition to that, this method is a relatively easy-to-use approach for solving an EVRPTW problem. 

Therefore, it can lead to improvements with regard to routing performance without putting too much effort 

in. Relative to other approaches used in literature, this can be used in practice. That is shown by the 

experiments performed on real-life instances and the results for VSP. 

  



61 

 

 

References 
Afifi, S., Dang, D. C., & Moukrim, A. (2013). A simulated annealing algorithm for the vehicle routing 

problem with time windows and synchronization constraints. Lecture Notes in Computer Science 

(Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 

7997 LNCS, 259–265. https://doi.org/10.1007/978-3-642-44973-4_27/TABLES/1 

Bac, U., & Erdem, M. (2021). Optimization of electric vehicle recharge schedule and routing problem with 

time windows and partial recharge: A comparative study for an urban logistics fleet. Sustainable Cities 

and Society, 70, 102883. https://doi.org/10.1016/J.SCS.2021.102883 

Barbarosoglu, G., & Ozgur, D. (1999). A tabu search algorithm for the vehicle routing problem. Computers 

& Operations Research, 26(3), 255–270. https://doi.org/10.1016/S0305-0548(98)00047-1 

Bezerra, S. N., Souza, M. J. F., & de Souza, S. R. (2023). A variable neighborhood search-based algorithm 

with adaptive local search for the Vehicle Routing Problem with Time Windows and multi-depots 

aiming for vehicle fleet reduction. Computers & Operations Research, 149, 106016. 

https://doi.org/10.1016/J.COR.2022.106016 

Braekers, K., Ramaekers, K., & Van Nieuwenhuyse, I. (2016). The vehicle routing problem: State of the 

art classification and review. Computers & Industrial Engineering, 99, 300–313. 

https://doi.org/10.1016/J.CIE.2015.12.007 

Bräysy, O. (2003). A Reactive Variable Neighborhood Search for the Vehicle-Routing Problem with Time 

Windows. Https://Doi.Org/10.1287/Ijoc.15.4.347.24896, 15(4), 347–368. 

https://doi.org/10.1287/IJOC.15.4.347.24896 

Bräysy, O., & Gendreau, M. (2005). Vehicle Routing Problem with Time Windows, Part I: Route 

Construction and Local Search Algorithms. Https://Doi.Org/10.1287/Trsc.1030.0056, 39(1), 104–

118. https://doi.org/10.1287/TRSC.1030.0056 

Breedam, A. Van. (2001). Comparing descent heuristics and metaheuristics for the vehicle routing problem. 

Computers & Operations Research, 28(4), 289–315. https://doi.org/10.1016/S0305-0548(99)00101-

X 

Bruglieri, M., Pezzella, F., Pisacane, O., & Suraci, S. (2015). A Variable Neighborhood Search Branching 

for the Electric Vehicle Routing Problem with Time Windows. Electronic Notes in Discrete 

Mathematics, 47, 221–228. https://doi.org/10.1016/J.ENDM.2014.11.029 

Chen, J., Huang, H., Zhang, Z., & Wang, J. (2022). Deep Reinforcement Learning with Two-Stage Training 

Strategy for Practical Electric Vehicle Routing Problem with Time Windows. Lecture Notes in 

Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in 

Bioinformatics), 13398 LNCS, 356–370. https://doi.org/10.1007/978-3-031-14714-2_25/FIGURES/3 

Chiang, W. C., & Russell, R. A. (1996). Simulated annealing metaheuristics for the vehicle routing problem 

with time windows. Annals of Operations Research, 63, 3–27. https://doi.org/10.1007/BF02601637 

Christofides, N., & Beasley, J. E. (1984). The period routing problem. Networks, 14(2), 237–256. 

https://doi.org/10.1002/NET.3230140205 

Clarke, G., & Wright, J. W. (1964). Scheduling of Vehicles from a Central Depot to a Number of Delivery 

Points. Operations Research, 12(4), 568–581. https://doi.org/10.1287/OPRE.12.4.568 

Cordeau, J. F., Laporte, G., Savelsbergh, M. W. P., & Vigo, D. (2007). Chapter 6 Vehicle Routing. 

Handbooks in Operations Research and Management Science, 14(C), 367–428. 



62 

 

 

https://doi.org/10.1016/S0927-0507(06)14006-2 

Corona-Gutiérrez, K., Nucamendi-Guillén, S., & Lalla-Ruiz, E. (2022). Vehicle routing with cumulative 

objectives: A state of the art and analysis. Computers & Industrial Engineering, 169, 108054. 

https://doi.org/10.1016/J.CIE.2022.108054 

Dantzig, G. B., & Ramser, J. H. (1959). The Truck Dispatching Problem. Management Science, 6(1), 80–

91. https://doi.org/10.1287/MNSC.6.1.80 

Dror, M., & Levy, L. (1986). A vehicle routing improvement algorithm comparison of a “greedy” and a 

matching implementation for inventory routing. Computers & Operations Research, 13(1), 33–45. 

https://doi.org/10.1016/0305-0548(86)90062-6 

Erdelić, T., Carić, T., Erdelić, M., & Tišljarić, L. (2019). Electric vehicle routing problem with single or 

multiple recharges. Transportation Research Procedia, 40, 217–224. 

https://doi.org/10.1016/J.TRPRO.2019.07.033 

Erdoĝan, S., & Miller-Hooks, E. (2012). A Green Vehicle Routing Problem. Transportation Research Part 

E: Logistics and Transportation Review, 48(1), 100–114. https://doi.org/10.1016/j.tre.2011.08.001 

Euchi, J., & Yassine, A. (2022). A hybrid metaheuristic algorithm to solve the electric vehicle routing 

problem with battery recharging stations for sustainable environmental and energy optimization. 

Energy Systems, 14(1), 243–267. https://doi.org/10.1007/S12667-022-00501-Y/FIGURES/9 

Fernández Gil, A., Lalla-Ruiz, E., Gómez Sánchez, M., & Castro, C. (2022). A Review of Heuristics and 

Hybrid Methods for Green Vehicle Routing Problems considering Emissions. Journal of Advanced 

Transportation, 2022, 1–38. https://doi.org/10.1155/2022/5714991 

García-López, F., Melián-Batista, B., Moreno-Pérez, J. A., & Moreno-Vega, J. M. (2002). The parallel 

variable neighborhood search for the p-median problem. Journal of Heuristics, 8(3), 375–388. 

https://doi.org/10.1023/A:1015013919497/METRICS 

Goel, A., & Gruhn, V. (2008). A General Vehicle Routing Problem. European Journal of Operational 

Research, 191(3), 650–660. https://doi.org/10.1016/J.EJOR.2006.12.065 

Joshi, S., & Kaur, S. (2015). Nearest Neighbor Insertion Algorithm for solving capacitated vehicle routing 

problem. 2015 2nd International Conference on Computing for Sustainable Global Development 

(INDIACom). 

Kallehauge, B., Larsen, J., Madsen, O. B. G., & Solomon, M. M. (2005). Vehicle routing problem with 

time windows. Column Generation, 67–98. https://doi.org/10.1007/0-387-25486-2_3/COVER 

Keskin, M., & Çatay, B. (2016). Partial recharge strategies for the electric vehicle routing problem with 

time windows. Transportation Research Part C: Emerging Technologies, 65, 111–127. 

https://doi.org/10.1016/J.TRC.2016.01.013 

Keskin, M., & Çatay, B. (2018). A matheuristic method for the electric vehicle routing problem with time 

windows and fast chargers. Computers & Operations Research, 100, 172–188. 

https://doi.org/10.1016/J.COR.2018.06.019 

Keskin, M., Çatay, B., & Laporte, G. (2021). A simulation-based heuristic for the electric vehicle routing 

problem with time windows and stochastic waiting times at recharging stations. Computers & 

Operations Research, 125, 105060. https://doi.org/10.1016/J.COR.2020.105060 

KVK. (2022). Elektrisch rijden: deze maatregelen komen op je af. https://www.kvk.nl/advies-en-



63 

 

 

informatie/innovatie/duurzaam-ondernemen/elektrisch-rijden-deze-maatregelen-komen-op-je-

af/#:~:text=Vanaf 2025 mogen gemeenten zero,emissie zones niet meer binnen 

Kytöjoki, J., Nuortio, T., Bräysy, O., & Gendreau, M. (2007). An efficient variable neighborhood search 

heuristic for very large scale vehicle routing problems. Computers & Operations Research, 34(9), 

2743–2757. https://doi.org/10.1016/J.COR.2005.10.010 

Lalla-Ruiz, E., & Voß, S. (2020). A POPMUSIC approach for the Multi-Depot Cumulative Capacitated 

Vehicle Routing Problem. Optimization Letters, 14(3), 671–691. https://doi.org/10.1007/S11590-

018-1376-1 

Lam, E., Desaulniers, G., & Stuckey, P. J. (2022). Branch-and-cut-and-price for the Electric Vehicle 

Routing Problem with Time Windows, Piecewise-Linear Recharging and Capacitated Recharging 

Stations. Computers & Operations Research, 145, 105870. 

https://doi.org/10.1016/J.COR.2022.105870 

Laporte, G. (2007). What you should know about the vehicle routing problem. Naval Research Logistics 

(NRL), 54(8), 811–819. https://doi.org/10.1002/NAV.20261 

Lenstra, J. K., & Kan, A. H. G. R. (1981). Complexity of vehicle routing and scheduling problems. 

Networks, 11(2), 221–227. https://doi.org/10.1002/NET.3230110211 

Li, M. ; ;, Hao, J. A., Lai, K. K., Yu, L., Chai, J., Ding, N., Li, M., & Hao, J. (2023). A Two-Phase Approach 

to Routing a Mixed Fleet with Intermediate Depots. Mathematics 2023, Vol. 11, Page 1924, 11(8), 

1924. https://doi.org/10.3390/MATH11081924 

Lin, B., Ghaddar, B., & Nathwani, J. (2022). Deep Reinforcement Learning for the Electric Vehicle Routing 

Problem With Time Windows. IEEE Transactions on Intelligent Transportation Systems, 23(8), 

11528–11538. https://doi.org/10.1109/TITS.2021.3105232 

Lin, J., Zhou, W., & Wolfson, O. (2016). Electric Vehicle Routing Problem. Transportation Research 

Procedia, 12, 508–521. https://doi.org/10.1016/J.TRPRO.2016.02.007 

Maniezzo, V., Stützle, T., & Voß, S. (2010). Matheuristics: Hybridizing Metaheuristics and Mathematical 

Programming. Springer Verlag, 10, 1–282. 

http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Matheuristics#1 

Mao, H., Shi, J., Zhou, Y., & Zhang, G. (2020). The Electric Vehicle Routing Problem with Time Windows 

and Multiple Recharging Options. IEEE Access, 8, 114864–114875. 

https://doi.org/10.1109/ACCESS.2020.3003000 

Marinho Diana, R. O., & de Souza, S. R. (2020). Analysis of variable neighborhood descent as a local 

search operator for total weighted tardiness problem on unrelated parallel machines. Computers & 

Operations Research, 117, 104886. https://doi.org/10.1016/J.COR.2020.104886 

Miltenberger, M. (2023). What is the MIPGap? https://support.gurobi.com/hc/en-

us/articles/8265539575953-What-is-the-MIPGap- 

Mladenović, N., & Hansen, P. (1997). Variable neighborhood search. Computers & Operations Research, 

24(11), 1097–1100. https://doi.org/10.1016/S0305-0548(97)00031-2 

Montané, F. A. T., & Galvão, R. D. (2006). A tabu search algorithm for the vehicle routing problem with 

simultaneous pick-up and delivery service. Computers & Operations Research, 33(3), 595–619. 

https://doi.org/10.1016/J.COR.2004.07.009 



64 

 

 

Osman, I. H. (1993). Metastrategy simulated annealing and tabu search algorithms for the vehicle routing 

problem. Annals of Operations Research, 41(4), 421–451. 

https://www.academia.edu/4688179/Metastrategy_simulated_annealing_and_tabu_search_algorithm

s_for_the_vehicle_routing_problem 

Qin, H., Su, X., Ren, T., & Luo, Z. (2021). A review on the electric vehicle routing problems: Variants and 

algorithms. Frontiers of Engineering Management 2021 8:3, 8(3), 370–389. 

https://doi.org/10.1007/S42524-021-0157-1 

Qiu, F., Geng, N., & Wang, H. (2023). An improved memetic algorithm for integrated production 

scheduling and vehicle routing decisions. Computers & Operations Research, 152, 106127. 

https://doi.org/10.1016/J.COR.2022.106127 

Raza, S. M., Sajid, M., & Singh, J. (2022). Vehicle Routing Problem Using Reinforcement Learning: 

Recent Advancements. Lecture Notes in Electrical Engineering, 858, 269–280. 

https://doi.org/10.1007/978-981-19-0840-8_20/FIGURES/4 

Schneider, M., Stenger, A., & Goeke, D. (2014). The Electric Vehicle-Routing Problem with Time 

Windows and Recharging Stations. Https://Doi.Org/10.1287/Trsc.2013.0490, 48(4), 500–520. 

https://doi.org/10.1287/TRSC.2013.0490 

Solomon, M. M. (1987). Algorithms for the Vehicle Routing and Scheduling Problems with Time Window 

Constraints. Https://Doi.Org/10.1287/Opre.35.2.254, 35(2), 254–265. 

https://doi.org/10.1287/OPRE.35.2.254 

Tavakkoli-Moghaddam, R., Gazanfari, M., Alinaghian, M., Salamatbakhsh, A., & Norouzi, N. (2011). A 

new mathematical model for a competitive vehicle routing problem with time windows solved by 

simulated annealing. Journal of Manufacturing Systems, 30(2), 83–92. 

https://doi.org/10.1016/J.JMSY.2011.04.005 

Ursani, Z., Essam, D., Cornforth, D., & Stocker, R. (2011). Localized genetic algorithm for vehicle routing 

problem with time windows. Applied Soft Computing, 11(8), 5375–5390. 

https://doi.org/10.1016/J.ASOC.2011.05.021 

Wang, W., & Zhao, J. (2023). Partial linear recharging strategy for the electric fleet size and mix vehicle 

routing problem with time windows and recharging stations. European Journal of Operational 

Research, 308(2), 929–948. https://doi.org/10.1016/J.EJOR.2022.12.011 

Wingerden, J. van. (2022). “KABINET VERPLICHT ELEKTRISCHE LEASEAUTO PER 2025.” 

AutoWeek. https://www.autoweek.nl/autonieuws/artikel/vanaf-2025-moet-nieuwe-leaseauto-

volledig-elektrisch-zijn/?referrer=https%3A%2F%2Fwww.google.com%2F 

Woch, M., & Łebkowski, P. (2009). Sequential Simulated Annealing for the Vehicle Routing Problem with 

Time Windows. Decision Making in Manufacturing and Services, 3(2), 87–100. 

https://doi.org/10.7494/DMMS.2009.3.2.87 

 

  



65 

 

 

Appendix  

Appendix A 
The Excel file ‘traveltimedata’ contains the matrix with all the driving times between all combinations of 

locations. If the reader wants to see the file, it can be requested by the author.  

Appendix B 
For the service times, there are two files containing these times. The same as for the travel time matrix, it 

can be requested by the author, if the reader wants to see the file. These files are ‘Locations coordinates2 

tuefri’ and ‘Locations coordinates2 wedsat’.  

Appendix C 
An Excel file including a matrix with all travel times between all locations including charging locations can 

be requested by the author. These are such large files, that cannot be presented in the report itself. 

Appendix D 
An Excel file including a matrix with all distances between all locations including charging locations can 

be requested by the author. These are such large files, that cannot be presented in the report itself. 

Appendix E 
['Depot', 'Hengelo', 'Lichtenvoorde', 'Aalten', 'Winterswijk', 'Sudlohn', 'Ahaus', 'Depot1']  

['Depot', 'Amsterdam Centrum', 'Maarssen', 'Bilthoven', 'Zeist', 'Soesterberg (KPU)', 'Leusden', 'Lunteren', 

'Barneveld', 'Kootwijkerbroek', 'De Hucht', 'Depot1']  

['Depot', 'Arnhem', 'Duiven', 'Zevenaar', 'Didam', 'Ulft', 'Doetinchem', 'Zelhem', 'Vorden', 'Borculo', 

'Enschede Haven', 'Enschede', 'Depot1']  

['Depot', 'Amersfoort industrie', 'Amersfoort', 'Nijkerkerveen', 'Nijkerk', 'Voorthuizen', 'Rijssen', 'Almelo', 

'Depot1']  

['Depot', 'Utrecht', 'Utrecht Leidsche Rijn', 'Harmelen', 'Woerden', 'Ijsselstein', 'Nieuwegein', 'Houten', 

'Driebergen', 'Woudenberg', 'Depot1'] 

['Depot', 'Wijchen', 'Grave', 'Rosmalen', 'Den Bosch', 'Waalwijk', 'Kaatsheuvel', 'Dussen', 'Werkendam', 

'Gorinchem', 'Leerdam', 'Zaltbommel', 'Opheusden', 'Heteren', 'Gelredome', 'Depot1'] 

['Depot', 'Schiphol', 'Halfweg', 'Haarlem', 'Beverwijk', 'Wormerveer', 'Purmerend', 'Zaandam', 'Amsterdam 

Noord', 'Soest', 'Baarn', 'Bunschoten', 'De Slaag', 'Schalkhaar', 'Deventer', 'Het Veelsveld', 'Depot1'] 

['Depot', 'Alkmaar', 'Bergen', 'Den Helder', 'Schagen', 'Heerhugowaard', 'Hoorn', 'Lelystad', 'Han Stijkel', 

'Emmeloord', 'Wijhe ', 'Raalte', 'Nijverdal', 'Depot1'] 

['Depot', 'Vught', 'Oisterwijk', 'Udenhout', 'Tilburg', 'Bavel', 'Baarle Nassau', 'Uden', 'Oss', 'Druten', 

'Gelredome', 'Elst', 'Oldenzaal', 'Depot1'] 

['Depot', 'Apeldoorn', 'Apeldoorn Noord', 'Hattem', 'Kampen', 'Zwolle', 'Lemelerveld', 'Emmen', 

'Klazienaveen', 'Emmer-Compascuum', 'Haselünne', 'Depot1'] 

['Depot', 'Minden', 'Stadthagen', 'Bad Oeynhausen', 'Munster', 'Munster-Nienberge', 'Het Veelsveld', 

'Depot1'] 
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['Depot', 'Zutphen', 'Doesburg', 'Nijmegen', 'Nijmegen Zuid', 'Ede', 'Veenendaal', 'Rhenen', 'Wageningen', 

'Bennekom', 'Renkum', 'Oosterbeek', 'Depot1']] 

Appendix F 
['Depot', 'Jubbega', 'Drachten', 'Surhuisterveen', 'Leeuwarden', 'Franeker', 'Sneek', 'Balk', 'Delfstrahuizen', 

'Joure', 'Heerenveen', 'Wolvega', 'Steenwijk', 'Meppel', 'Panjerd', 'Lageveen', 'Hoogeveen', 'Depot1'] 

['Depot', 'Krabbendijke', "'s-Gravenpolder", 'Goes', 'Vlissingen', 'Middelburg', 'Terneuzen', 'Zaamslag', 

'Vliedberg', 'Vliedberg', 'Oostburg', 'Sluis', 'Heinkenszand', 'Middelharnis', 'Tolnegen', 'Depot1'] 

['Depot', 'Gouda', 'Rotterdam Alexandrium', 'Capelle ad Ijssel', 'Rotterdam Ijsselmonde', 'Ridderkerk', 

'Dordrecht', 'Geldermalsen', 'Tiel', 'Varakker', 'Varakker', 'Depot1'] 

['Depot', 'Roermond', 'Maastricht', 'Meerssen', 'Beek', 'Sittard', 'Heerlen', 'Kerkrade', 'Het Veelsveld', 'Het 

Veelsveld', 'Depot1'] 

['Depot', 'Bodegraven', 'Alphen ad Rijn', 'Leiderdorp', 'Leiden', 'Katwijk', 'Leimuiden', 'Hoofddorp', 

'Amstelveen', 'Amsterdam Bijlmer', 'Weesp', 'Almere', 'Laren ', 'Tolnegen', 'Tolnegen', 'Depot1'] 

['Depot', 'Onstwedde', 'Veendam', 'Assen', 'Haren', 'Groningen', 'Leek', 'Appingedam', 'Winschoten', 'Het 

Veelsveld', 'Het Veelsveld', 'Depot1'] 

['Depot', 'Hilversum', 'Bussum', 'Huizen', 'Putten', 'Ermelo', 'Harderwijk', 'Nunspeet', 'Epe', 'Oene', 'Depot1'] 

['Depot', 'Rotterdam Hesseplaats', 'Rotterdam Hillegersberg', 'Rotterdam Centrum', 'Schiedam', 'Maassluis', 

'Vlaardingen', 'Hoogvliet', 'Hellevoetsluis', 'Spijkernisse', 'Rotterdam Zuidplein', 'Waddinxveen', 

'Tolnegen', 'Tolnegen', 'Depot1'] 

['Depot', 'Weert', 'Helmond', 'Eindhoven', 'Eindhoven Wildenberg', 'Eindhoven Woensel', 'Veldhoven', 

'Waalre', 'Valkenswaard', 'Bladel', 'Reusel', 'Sevenum', 'Horst', 'Geulenkamp', 'Geulenkamp', 'Depot1'] 

['Depot', 'Pijnacker', 'Delft ', "'s-Gravenzande", 'Naaldwijk', 'Rijswijk', 'Den Haag', 'Voorburg', 

'Leidschendam', 'Zoetermeer', 'Tolnegen', 'Tolnegen', 'Depot1'] 

['Depot', 'Oosterhout', 'Bavel', 'Breda', 'Bergen op Zoom', 'Roosendaal', 'Etten Leur', 'Made', 'Tolnegen', 

'Tolnegen', 'Depot1'] 

['Depot', 'Venlo', 'Depot1']] 

Appendix G 
#instance 1 

Customer locations=[3, 7, 72, 78, 90] 

Charging locations=[132, 179, 182, 234, 245] 

 

#instance 2 

Customer locations=[6, 44, 81, 92, 93] 

Charging locations=[140, 199, 210, 229, 245] 
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#instance 3 

Customer locations=[7, 51, 64, 98, 106] 

Charging locations=[117, 159, 169, 176, 194] 

 

#instance 4 

Customer locations=[21, 28, 42, 50, 94] 

Charging locations=[130, 154, 224, 240, 255] 

 

#instance 5 

Customer locations=[4, 20, 32, 40, 89] 

Charging locations=[132, 184, 224, 236, 239] 

  

#instance 6 

Customer locations=[1, 9, 21, 39, 51, 55, 78, 79, 90, 91] 

Charging locations=[121, 125, 131, 138, 153, 168, 188, 217, 233, 248] 

 

#instance 7 

Customer locations=[16, 32, 38, 43, 48, 61, 76, 81, 91, 110] 

Charging locations=[131, 148, 164, 167, 168, 185, 226, 231, 234, 238] 

 

#instance 8 

Customer locations=[2, 23, 44, 45, 49, 59, 71, 89, 110, 114] 

Charging locations=[117, 122, 126, 129, 131, 150, 212, 219, 245, 251] 

 

#instance 9 

Customer locations=[8, 17, 23, 27, 31, 66, 100, 106, 108, 111] 

Charging locations=[128, 153, 166, 189, 200, 219, 227, 239, 248, 254] 
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#instance 10 

Customer locations=[2, 16, 34, 48, 57, 64, 82, 105, 110, 112] 

Charging locations=[120, 143, 154, 157, 164, 169, 207, 221, 225, 244] 

 

#instance 11 

Customer locations=[2, 4, 7, 13, 27, 32, 33, 34, 48, 52, 55, 57, 77, 113, 115] 

Charging locations=[120, 122, 127, 135, 145, 151, 175, 176, 180, 206, 208, 220, 226, 244, 248] 

 

#instance 12 

Customer locations=[11, 18, 21, 26, 34, 41, 46, 53, 73, 80, 84, 88, 90, 99, 113] 

Charging locations=[121, 127, 146, 147, 154, 155, 168, 175, 187, 199, 216, 219, 220, 234, 238] 

 

#instance 13 

Customer locations=[2, 16, 25, 28, 36, 43, 46, 50, 55, 63, 79, 82, 89, 92, 103] 

Charging locations=[120, 121, 122, 151, 159, 165, 168, 175, 181, 212, 221, 223, 229, 252, 253] 

 

#instance 14 

Customer locations=[11, 14, 28, 32, 38, 44, 51, 65, 75, 77, 83, 85, 90, 100, 106] 

Charging locations=[130, 137, 150, 168, 174, 193, 196, 199, 209, 213, 214, 223, 228, 240, 242] 

 

#instance 15 

Customer locations=[2, 13, 16, 31, 33, 34, 43, 44, 50, 58, 62, 66, 74, 104, 112] 

Charging locations=[119, 121, 132, 139, 152, 155, 168, 182, 204, 221, 224, 225, 227, 229, 237] 

Appendix H 
#instance 1 

#Customer locations=[2, 3, 6, 16, 18, 19, 21, 22, 27, 33, 34, 35, 38, 41, 43, 44, 48, 49, 50, 52, 57, 62, 65, 

69, 70, 75, 78, 81, 82, 83, 86, 88, 97, 98, 107, 110, 112, 113, 114, 115] 

#Charging locations=[117, 127, 133, 134, 136, 137, 145, 146, 148, 152, 156, 160, 162, 165, 173, 176, 177, 

182, 190, 191, 196, 202, 212, 219, 222, 237, 243, 249, 250, 251] 
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#instance 2 

#Customer locations=[6, 9, 10, 11, 12, 16, 21, 24, 25, 33, 37, 40, 44, 45, 50, 59, 62, 68, 74, 76, 77, 79, 80, 

83, 86, 90, 94, 95, 98, 103, 104, 106, 107, 108, 109, 112, 113, 114, 115, 116] 

#Charging locations=[125, 130, 133, 134, 135, 139, 142, 145, 149, 157, 158, 159, 162, 165, 180, 182, 183, 

192, 195, 199, 204, 208, 220, 233, 240, 241, 243, 244, 252, 253] 

 

#instance 3 

#Customer locations=[1, 2, 3, 4, 6, 10, 13, 18, 25, 26, 28, 31, 32, 38, 43, 45, 48, 59, 61, 64, 65, 68, 69, 71, 

74, 77, 80, 82, 83, 87, 90, 91, 92, 94, 100, 102, 107, 109, 110, 114] 

#Charging locations=[119, 125, 131, 133, 135, 136, 148, 149, 150, 153, 156, 157, 159, 162, 169, 172, 173, 

175, 185, 205, 210, 211, 212, 215, 222, 223, 236, 237, 247, 250] 

 

#instance 4 

#Customer locations=[7, 10, 12, 15, 16, 18, 19, 21, 22, 25, 26, 36, 38, 40, 42, 43, 46, 47, 48, 50, 53, 56, 57, 

62, 63, 67, 68, 70, 72, 84, 89, 90, 91, 98, 99, 105, 109, 111, 112, 116] 

#Charging locations=[126, 127, 129, 135, 139, 143, 146, 147, 148, 150, 154, 155, 159, 162, 163, 172, 173, 

179, 193, 196, 197, 200, 204, 206, 214, 215, 229, 236, 247, 248] 

 

#instance 5 

#Customer locations=[4, 5, 7, 9, 11, 13, 15, 18, 19, 22, 27, 29, 34, 35, 36, 37, 39, 45, 46, 47, 49, 53, 62, 66, 

68, 74, 75, 76, 77, 80, 84, 95, 100, 102, 103, 104, 109, 110, 112, 115] 

#Charging locations=[118, 122, 126, 128, 130, 133, 136, 137, 140, 142, 145, 147, 153, 155, 156, 164, 171, 

172, 173, 187, 193, 212, 216, 217, 218, 219, 221, 244, 247, 251] 

  

#instance 6 

#Customer locations=[1, 2, 3, 4, 5, 6, 12, 13, 16, 18, 19, 22, 23, 25, 26, 28, 33, 34, 35, 38, 39, 40, 46, 50, 

51, 53, 56, 57, 62, 66, 68, 73, 75, 76, 78, 82, 88, 89, 93, 94, 98, 100, 102, 103, 104, 106, 107, 108, 113, 

116] 

#Charging locations=[117, 120, 121, 123, 129, 130, 131, 141, 147, 151, 152, 153, 156, 162, 168, 170, 173, 

175, 178, 179, 195, 198, 199, 200, 202, 204, 206, 208, 209, 210, 214, 219, 229, 232, 235, 240, 251, 252, 

253, 254] 

 

#instance 7 
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#Customer locations=[3, 5, 7, 8, 11, 12, 13, 17, 20, 27, 28, 29, 31, 33, 34, 35, 36, 37, 40, 41, 42, 44, 45, 48, 

50, 53, 54, 59, 62, 64, 70, 71, 72, 73, 74, 75, 76, 78, 79, 83, 85, 87, 90, 93, 96, 98, 100, 104, 107, 116] 

#Charging locations=[119, 124, 131, 133, 135, 141, 149, 152, 153, 154, 157, 158, 159, 165, 168, 171, 176, 

177, 179, 182, 185, 187, 191, 192, 194, 195, 198, 207, 214, 215, 224, 227, 231, 233, 235, 237, 241, 242, 

243, 252] 

 

#instance 8 

#Customer locations=[5, 6, 12, 13, 16, 17, 18, 19, 20, 21, 23, 25, 26, 27, 29, 31, 32, 33, 39, 40, 41, 42, 44, 

54, 57, 59, 61, 62, 64, 65, 70, 74, 75, 81, 83, 85, 86, 88, 89, 94, 95, 96, 97, 102, 103, 104, 105, 108, 112, 

113] 

#Charging locations=[121, 122, 125, 126, 133, 137, 140, 141, 143, 145, 151, 156, 158, 160, 163, 169, 171, 

173, 176, 189, 195, 200, 204, 206, 207, 211, 212, 213, 221, 222, 223, 226, 229, 233, 238, 239, 241, 242, 

249, 253] 

 

#instance 9 

#Customer locations=[2, 7, 10, 11, 18, 25, 28, 29, 32, 35, 37, 40, 41, 43, 44, 47, 48, 52, 53, 54, 55, 56, 57, 

58, 59, 62, 64, 71, 74, 77, 80, 83, 84, 89, 91, 93, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108, 111, 

114, 115] 

#Charging locations=[124, 128, 135, 136, 142, 143, 144, 146, 153, 157, 172, 173, 176, 177, 178, 179, 181, 

186, 193, 194, 199, 200, 202, 204, 205, 210, 214, 217, 219, 225, 226, 228, 233, 236, 243, 246, 247, 249, 

250, 253] 

 

#instance 10 

#Customer locations=[2, 3, 5, 6, 14, 18, 20, 28, 30, 31, 35, 36, 39, 42, 43, 46, 47, 49, 50, 53, 55, 56, 57, 60, 

61, 63, 68, 72, 73, 78, 80, 85, 86, 88, 89, 90, 93, 94, 97, 98, 100, 101, 103, 106, 107, 108, 110, 112, 113, 

114] 

#Charging locations=[126, 127, 129, 131, 134, 137, 139, 141, 143, 144, 145, 147, 153, 154, 155, 156, 157, 

158, 159, 162, 165, 166, 178, 179, 182, 193, 194, 197, 201, 208, 216, 218, 230, 234, 239, 245, 246, 248, 

250, 253] 

 

#instance 11 

#Customer locations=[3, 4, 5, 11, 12, 13, 14, 15, 16, 19, 20, 21, 22, 23, 24, 26, 30, 31, 32, 33, 35, 37, 40, 

41, 44, 46, 49, 56, 57, 60, 61, 63, 64, 68, 69, 70, 71, 72, 74, 75, 76, 77, 79, 80, 82, 83, 84, 86, 90, 93, 94, 

96, 101, 102, 103, 106, 108, 110, 112, 113] 
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#Charging locations=[120, 121, 123, 127, 129, 132, 135, 136, 140, 142, 143, 147, 149, 154, 159, 164, 167, 

170, 173, 176, 178, 182, 184, 185, 191, 193, 195, 196, 197, 198, 212, 213, 217, 218, 219, 221, 224, 227, 

228, 236, 237, 238, 239, 242, 243, 244, 245, 246, 251, 254] 

 

#instance 12 

#Customer locations=[1, 2, 4, 6, 8, 9, 10, 13, 19, 25, 27, 29, 30, 31, 32, 35, 36, 37, 38, 39, 40, 42, 44, 45, 

46, 47, 50, 52, 53, 54, 55, 56, 59, 60, 61, 62, 65, 72, 74, 75, 77, 78, 79, 80, 81, 83, 85, 87, 90, 91, 92, 94, 

96, 100, 101, 103, 106, 108, 110, 116] 

#Charging locations=[117, 118, 120, 121, 122, 130, 131, 139, 140, 141, 142, 144, 146, 149, 153, 156, 159, 

163, 165, 168, 176, 181, 186, 190, 191, 197, 203, 204, 205, 206, 208, 211, 215, 219, 226, 228, 229, 230, 

231, 232, 233, 235, 236, 239, 242, 244, 245, 251, 254, 255] 

 

#instance 13 

#Customer locations=[1, 4, 5, 6, 9, 11, 13, 14, 17, 22, 23, 24, 26, 27, 28, 29, 30, 32, 33, 34, 36, 37, 38, 39, 

41, 42, 43, 44, 46, 48, 49, 51, 52, 58, 59, 61, 64, 69, 70, 71, 75, 77, 78, 80, 81, 82, 84, 85, 88, 90, 92, 93, 

98, 102, 104, 105, 106, 108, 115, 116] 

#Charging locations=[118, 122, 128, 129, 131, 132, 133, 136, 140, 145, 149, 151, 154, 155, 156, 157, 158, 

159, 165, 167, 168, 169, 170, 171, 176, 177, 179, 187, 193, 194, 198, 200, 202, 208, 212, 215, 225, 226, 

228, 231, 234, 237, 239, 241, 243, 246, 249, 250, 251, 252] 

 

#instance 14 

#Customer locations=[1, 2, 5, 7, 8, 15, 16, 17, 18, 19, 20, 21, 22, 23, 26, 27, 28, 30, 32, 35, 37, 38, 40, 41, 

42, 44, 45, 46, 48, 53, 54, 55, 56, 59, 63, 66, 68, 71, 74, 76, 78, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 97, 

98, 99, 103, 104, 105, 106, 110, 116] 

#Charging locations=[118, 124, 128, 134, 135, 136, 137, 139, 145, 149, 156, 159, 160, 164, 166, 172, 174, 

178, 179, 180, 184, 187, 191, 193, 194, 195, 200, 202, 204, 205, 206, 207, 208, 210, 212, 213, 215, 216, 

219, 229, 230, 238, 241, 242, 244, 246, 249, 250, 254, 255] 

 

#instance 15 

#Customer locations=[1, 2, 3, 6, 8, 9, 10, 11, 16, 19, 20, 21, 22, 25, 26, 27, 31, 32, 34, 35, 36, 37, 39, 42, 

45, 46, 47, 48, 50, 54, 55, 56, 57, 67, 69, 71, 73, 75, 76, 78, 79, 82, 84, 85, 86, 91, 92, 93, 94, 98, 99, 101, 

103, 106, 107, 109, 112, 113, 114, 116] 

#Charging locations=[121, 126, 127, 135, 136, 137, 139, 140, 142, 144, 146, 147, 149, 151, 153, 156, 157, 

158, 161, 164, 166, 171, 172, 174, 179, 180, 181, 188, 193, 195, 198, 201, 203, 206, 209, 212, 217, 218, 

220, 224, 225, 237, 238, 239, 240, 246, 248, 250, 252, 255] 


