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ABSTRACT 

Iron-bearing minerals such as jarosite, goethite and hematite act as proxies, indicating the presence of 

underlying mineralization with high economic potential, especially in areas where valuable ore deposits may 

be concealed beneath the sediments. Consequently, mapping of these minerals using multispectral satellite 

imagery has been a subject of research for several decades. Geological Remote Sensing techniques, such as 

band ratio, are valuable in iron mineral mapping because they effectively emphasize the spectral signatures 

of specific minerals. Iron minerals exhibit distinct absorption features in the VNIR spectral range, making 

it crucial to have a multispectral sensor with high spectral resolution at the VNIR to identify and 

discriminate them. 

Sentinel-2, a high resolution satellite sensor, with multiple narrow bands at the VNIR compared to the 

fewer bands of ASTER and Landsat 8 at the VNIR is employed for this study. Twenty-nine high-resolution 

spectra collected from the created synthetic minerals were resampled to Sentinel-2 resolution. Existing band 

ratios were tested to evaluate whether they discriminate between iron minerals or not. Subsequently, the 

shortcomings of the existing band ratios led to the development of novel band ratios. 

Iron-bearing mineral distribution in a real-world setting was explored using novel band ratios. The 

distributions of hematite and goethite were determined using band ratios (B4/B3) and (B3/B2), 

respectively, with significant matching to a published hyperspectral map. However, discrepancies become 

evident in discriminating jarosite using the (B5+B11)/B12 ratio, potentially due to overwhelming 

absorption features from other minerals. The combination of the band ratios into a composite enhanced 

the discrimination.  

The findings show the success of the proposed band ratios in identifying hematite and goethite minerals 

and highlights the significance of integrating band ratios as composite in mineral discrimination. In addition, 

this research has successfully produced high-quality spectra of iron minerals thereby adding to the existing 

spectral libraries, and can be used as reference for future studies. Finally, this study highlights the challenges 

related to interaction of iron minerals with minerals in real world, making discrimination difficult. 
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INTRODUCTION 

1.1 Background 

Iron is one of the most abundant elements in Earth’s crust, accounting for approximately 5.1% of its 

composition by weight. It is widely distributed and forms various rock-forming minerals, including iron 

oxides, sulfides, and silicates. Therefore, naturally occurring compounds that contain iron as their primary 

component are referred to as Iron-bearing minerals in this study. These minerals contribute to diverse rocks 

in the Earth's crust, including basalt, granite, gneiss, shale, and sandstone (Bigham et al., 2018). 

Furthermore, Iron-bearing minerals are strongly attracted to various metals, effectively capturing and 

retaining them within the soil matrix. This phenomenon plays a crucial role in the scavenging and 

concentration of ore-forming metals released during weathering processes and in the sequestration of 

potentially harmful elements in soils and sediments (Edwards & Atkinson, 1986). Consequently, their high 

affinity for metal binding is essential in geochemical processes and environmental studies because it 

influences the distribution and availability of metals in the Earth’s crust and affects soil fertility and 

environmental quality (Bullock et al., 2021). In addition, studies have shown that surface iron-bearing 

minerals act as proxies, indicating the presence of underlying mineralization with high economic potential, 

especially in areas where valuable ore deposits may be concealed beneath barren sediments (Bigham et al., 

2018; Butt & Zeegers 1992; Cogram, 2018). Moreover, the studies also demonstrate that each Iron-bearing 

mineral is associated with a specific chemical, geological and environmental process, all of which bear 

significant implications. Consequently, the identification and discrimination of these minerals have become 

crucial. 

 
Figure 1 This Figure demonstrates the essential spectral distinctions between iron-bearing minerals, 
presenting the band positions of the relevant multispectral sensors (from this study). 

However, conducting this activity in the field using rock sampling can be tedious and time-consuming and 

cannot be performed in extensive and inaccessible areas. Therefore, geological remote sensing (GRS) can 

offer fast tools for identifying these minerals, primarily using satellite sensors like the Sentinel-2 (Table 1) 

with high spectral resolution in the electromagnetic spectrum's visible near-infrared (VNIR) wavelength 

range. The GRS is based on the spectral analysis of minerals and rocks (Cooper et al., 2002; Cudahy & 

Ramanaidou, 1997; Hewson et al., 2001; Hunt, 2012; Kokaly et al., 2017; Salisbury et al., 1989; Swayze et 
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al., 2014). GRS techniques, such as band ratio, are valuable in mineral mapping because they effectively 

emphasize the spectral signatures of specific minerals and minimize topography's influence. This technique 

enhances the detection of narrow variation in the spectral reflectance characteristics of rocks and minerals. 

Furthermore, this technique involves dividing the values of one spectral band by another and calculating 

the spectral reflectance ratio between the two bands (Crowley et al., 1989), thereby highlighting the spectral 

differences between specific minerals in the scene. For instance, iron-bearing minerals possess characteristic 

spectral absorption features at particular wavelength positions (Clark et al., 1993; Cudahy & Ramanaidou, 

1997; Hunt, 2012; Kokaly et al., 2017; van der Meer et al., 2012). By performing band ratio on satellite data, 

researchers can create ratio images that enhance the contrast of these absorption features, aiding the 

mapping and identification of iron-bearing minerals in various geological formations. Several band ratios 

have been proposed for mapping iron mineral groups, as shown in Table 1. The band ratio approach has 

acquired recognition and has been applied in various studies, including those conducted by Goetz & Rowan 

(1981), Kalinowski & Oliver (2004), Rowan et al. (2003), and van der Meer et al. (2012). 

Table 1 An overview of Sentinel-2 bands according to Copernicus-derived user requirements (modified 
after Drusch et al., 2012). 

Band 
Band 

ID 
Band 
Name 

Band 
center 
(nm) 

FMWH 
(nm) 

Spectral 
resolution 

(nm) 

Spatial 
resolution 

(m) 

Radiometric 
resolution 

(bits) 

1 B1 
Coastal 
Aerosol 

443 442.5 20 
60 

12 

2 B2 Blue 490 492.7 66 

3 B3 Green 560 559.2 36 

10 4 B4 Red 665 664.3 31 

5 B5 VRE 705 703.5 15 

6 B6 VRE 740 740.1 15 
20 

7 B7 VRE 783 781.8 20 

8 B8 NIR 842 828.9 106 10 

8A B8A NIR 865 864.3 21 20 

9 B9 
Water 
Vapor 

945 944.5 20 
60 

10 B10 Cirrus 1375 1372.9 31 

11 B11 SWIR 1610 1613.3 91 
20 

12 B12 SWIR 2190 2202.9 175 

 

Spectral libraries like the USGS spectral library (Clark et al., 1993; Kokaly et al., 2017) are critical for 

hyperspectral and multispectral remote sensing analysis, containing spectroscopic measurements of field 

and laboratory samples (Zhou et al., 2017). These libraries offer an abundance of spectral data beneficial 

for remote sensing analysis; however, their practical application presents certain limitations. 

One of these limitations is encountered when discriminating between related minerals because the spectra 

in these libraries are gathered from a wide array of sources, as observed in the metadata (Kokaly et al., 

2017). These minerals often coexist with other minerals and impurities in varying proportions and 

compositions. However, The USGS library does not have comprehensive descriptions for all its samples, 

as indicated in the metadata (Kokaly et al., 2017). This limitation can impact the accuracy of information 

derived from a spectrum’s composition. Therefore, the spectrum of hematite, for instance, could originate 

from a sample having a different set of impurities than those in goethite or jarosite. This heterogeneous 

nature of the spectral data introduces a level of variability that might affect the accuracy of mineral 

identification.  

Furthermore, it is essential to note that different spectrometers were used to collect spectra in the USGS 

spectral library, and this may introduce variations when comparing the spectra of different minerals (Kokaly 
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et al., 2017). This is due to the inherent properties of the spectrometer, which include its sensitivity, 

resolution, and accuracy, among other technical specifications. The spectrometer essentially measures the 

light absorbed, reflected, or emitted across a certain range of wavelengths from a material (Dahm & Dahm, 

2020). Therefore, different spectrometers, with varying levels of sensitivity and resolution, can yield slightly 

different spectral measurements for the same material. For example, if the spectrometer used in the USGS 

library has a higher resolution, it could detect minor features in the spectrum that a less sensitive instrument 

might miss. This could lead to perceived differences when comparing spectra. Similarly, the accuracy of the 

spectrometer in the detection and quantification of spectral features can impact the comparison results. In 

essence, the spectrometer’s features and specifications can impact the comparison of spectra, potentially 

leading to discrepancies when interpreting the data. 

Consequently, the complexity of this variability suggests a need for synthetic minerals in controlled, 

laboratory-based studies with known proportions, composition, and the same spectrometer. Such studies 

could analyze the impact of specific impurities on the spectral characteristics of each iron mineral in a 

controlled setting. This would highlight the impurities’ effect on the minerals’ spectral signatures and 

enhance the precision of mineral identification. However, it’s important to note that using standardized, 

laboratory-based spectral libraries isn’t without implications. One significant implication is the risk of 

incorrect identification (Zhou et al., 2017). Therefore, while standardized spectral libraries offer 

convenience, they present certain challenges, especially in mineral mapping, that need to be carefully 

considered. 

Three iron-bearing minerals (jarosite, goethite, and hematite) were chosen for this research. Jarosite with a 

chemical formula of KFe3(SO4)2(OH)6, known for its characteristic yellow-to-brownish-yellow color, also 

known as an iron-hydroxy sulfate mineral, and goethite with a chemical formula of FeO(OH)), and a 

yellowish-brown color, and it is most thermodynamically stable. While, hematite with a chemical formula 

Fe2O3, and a distinct color of reddish-brown to black appearance, it is a common iron-bearing mineral 

found in soils, sediments, and rocks known for its high thermodynamic stability (Bigham et al., 2018). The 

choice of jarosite, goethite, and hematite for the focus of this study was based on their abundance and 

distribution (Bigham et al., 2018; Schwertmann, 1958), their distinct spectral signatures (Cudahy & 

Ramanaidou, 1997), their coexistence, and their significance in both geology and environmental science 

(Cogram, 2018). The occurrence and distribution of the iron minerals are presented in Table 2. 

Firstly, these minerals are very common, making them important for understanding the geology and 

geochemistry of the Earth’s crust. Iron is one of the most abundant elements on Earth, and these three 

minerals are widespread iron-bearing minerals (Bigham et al., 2018; Schwertmann, 1958). Their abundance 

means that they play key roles in various geological and geochemical processes. Secondly, each of these 

minerals has a distinct spectral signature, which makes them particularly suitable for study using remote 

sensing techniques. The unique spectral features of these minerals make them identifiable and 

distinguishable in the data collected, thus enabling important conclusions about the geology and mineralogy 

of the areas under study to be drawn. Thirdly, these minerals are associated with specific chemical, 

geological, and environmental processes, each having its unique implications. For instance, jarosite is 

commonly found in oxidized zones of sulfide ore deposits, and it is associated with acidic, sulfate-rich 

environments, which are often the result of human activities like mining, serving as repositories for 

potentially hazardous elements (Cogram, 2018). On the other hand, goethite is the most stable iron oxide 

in ambient conditions and often forms as a result of the weathering of other, less stable iron minerals. 

Similarly, hematite is known for its stability and is an important mineral in banded iron formations, which 

are a significant source of iron ore (Bigham et al., 2018). In addition, jarosite has also been found on the 

surface of Mars (Farrand et al., 2009), which is a very oxidizing environment. The presence of jarosite on 
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Mars suggests that there was once liquid water on the planet, as jarosite formation requires both water and 

oxidizing conditions. 

Table 2 An overview of secondary iron-bearing mineral occurrence and distribution (modified after Bigham 
et al., 2018; Cogram, 2018; Schwertmann, 1958). 

Iron minerals Color Environment of formation Distribution 

Jarosite 

KFe3(SO4)2(OH)6 

yellow-to-

brownish-

yellow 

Highly oxidized and acidic 

environment 

(Acid mine drainage; Mars) 

Localized, 

small-scale (also found on 

Martian surfaces) 

Goethite 

(FeO(OH)) 

yellowish-

brown 

Low-temperature;  

Weathering environments 

(oxidizing): cool, moist conditions 

that involve higher terrain and rich 

biological material 

Global (entire planet) to 

Continental (geographic 

region) to Landscape 

(particular area) to 

Stratigraphic (specific 

rock formation or layer) 

Hematite 

(Fe2O3) 

reddish-

brown to 

black 

Higher-temperature; 

Aerobic soil: prevalent in tropical, 

subtropical, dry, semi-arid, and 

Mediterranean regions, with higher 

concentrations and lower levels of 

organic matter content. 

Continental to Landscape 

to Stratigraphic 

Finally, the relevance of these minerals in exploration studies, particularly in relation to valuable ore 

deposits, made them an interesting choice. These minerals can act as proxies indicating the presence of 

underlying mineralization with high economic potential, especially in areas where valuable ore deposits may 

be concealed beneath barren sediments like the Cuprite area, Nevada, US (Swayze et al., 2014). Moreover, 

Kosk (2010) observed a significant occurrence of hematite, goethite, and jarosite in the supergene setting. 

They proposed that the process of mapping gossans in gold deposits can serve as proxies for exploration. 

Moreover, Swayze et al. (2014) proposed that the detection of fine-grained jarosite at specific locations in 

the Cuprite area, through electronic absorption, indicates the active oxidation of sulfide minerals near the 

surface. Therefore, by focusing on jarosite, goethite, and hematite, this study seeks to add to the previous 

work on mapping iron minerals with remote sensing data by employing Sentinel-2 sensors to discriminate 

between these minerals, thereby contributing to the development of more effective mineral exploration. 

1.2 Previous Work 

Iron-bearing mineral mapping using multispectral satellite imagery has been a subject of research for several 

decades (Crowley et al., 1989; Goetz and Rowan, 1981; van der Meer et al., 2014). However, Iron-bearing 

minerals exhibit distinct absorption features in the VNIR spectral range, making it crucial to have a high 

spectral resolution to identify and map mineral species accurately. Therefore, the development and 

utilization of satellite-based remote-sensing techniques for iron mineral mapping have evolved with 

advances in satellite technology. The advent of early satellite sensors, notably the Landsat series introduced 

in the 1970s, comprising Landsat 5 and 7, marked a significant milestone in geological remote sensing. 

These pioneering multispectral imaging instruments have opened new avenues for researchers to explore 

the potential of mapping iron minerals. By capturing data across multiple spectral bands, these satellites 

have facilitated initial investigations into identifying and characterizing iron-bearing minerals on the Earth's 

surface. 

In 1981, the seminal work of Goetz & Rowan (1981) marked a groundbreaking milestone in geological 

remote sensing, particularly in iron mineral mapping. By leveraging the capabilities of Landsat Multispectral 
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Scanner (MSS) satellites, they generated the first-ever maps of distinct iron mineral groups, including ferric 

iron oxides, ferrous iron oxides, and iron sulfates. This pioneering research demonstrated the feasibility of 

utilizing early satellite sensors to discriminate between groups of iron minerals and set the stage for 

subsequent advancements in the field. 

Consequently, researchers have turned their attention to Landsat Thematic Mapper (TM), which offers a 

relatively improved spectral resolution compared to its predecessors. This advancement has allowed for 

more accurate and quantitative determination of iron content (Andrews Deller, 2006). Subsequently, TM 

has been used in several geological investigations (Sabins, 1999; Schetselaar et al., 2008; van der Meer et al., 

2012). Notably, it has been employed to distinguish between ferric and ferrous oxide groups (using the 

band ratio B3/B1) and argillic and non-argillic materials (using the band ratio B5/B7) (Abrams, 2000; 

Abrams & Hook, 1995; Yamaguchi et al., 1998). 

However, despite this progress, the spectral resolution of Landsat TM remains limited, preventing a clear 

distinction of various absorption features. Consequently, the full potential of detailed iron mineral 

identification and mapping is still limited. Despite its limitations, Landsat TM has paved the way for further 

research and acts as a stepping stone towards developing more advanced sensors capable of resolving finer 

spectral features for comprehensive geological remote sensing analyses. 

As satellite sensor technology advanced and new cutting-edge sensors, such as the Advanced Spaceborne 

Thermal Emission and Reflection Radiometer (ASTER), were deployed, researchers were granted access 

to unprecedented high-resolution multispectral data. ASTER is an Earth-observing instrument launched 

onboard the National Aeronautics and Space Administration’s (NASA) Terra satellite in December 1999. 

This sensor offers a notable improvement in spatial and spectral resolution, especially in the shortwave 

infrared (SWIR) bands, surpassing the capabilities of earlier sensors (Figure 1), as highlighted in the studies 

by Hewson et al. (2001) and Mars & Rowan (2010). It has a high spatial resolution, with VNIR and SWIR 

sensors providing a 15-meter pixel size and a TIR sensor with a 90-meter pixel size. 

Consequently, these technological breakthroughs present a transformative opportunity for the geological 

remote-sensing community, particularly in mineral mapping, effectively utilizing various ASTER band 

ratios to create comprehensive maps of surface mineral distributions, further refining our understanding of 

geological remote sensing applications. Despite the numerous advantages of ASTER, one significant 

constraint lies in the low spectral resolution of VNIR, which restricts its capability to accurately map iron 

minerals with diagnostic features predominantly present in the VNIR wavelength range of the 

electromagnetic spectrum. 

Furthermore, the launch of Landsat 8 Operational Land Imaging (OLI) in February 2013 marked a 

significant milestone in GRS. Developed and launched by NASA as part of the Landsat program, OLI's 

improved capabilities, equipped with a high spectral resolution in the VNIR wavelength range of the 

electromagnetic spectrum, made it valuable for upgrading iron minerals map. Consequently, researchers 

have utilized OLI for iron mineral mapping, as demonstrated in the studies conducted by Ducart et al. 

(2016) and van der Werff & van der Meer (2016). However, as demonstrated (Figure 1), the spectral bands 

of these sensors were not finely tuned enough to resolve the narrow spectral variation between the 

individual iron-bearing minerals; jarosite, goethite, and hematite. 

Subsequently, the continuous advancement of satellite sensor technology presents researchers with exciting 

opportunities with the launch of the Sentinel-2 Super Spectral Imager (SSI). Its enhanced spectral and 

spatial capabilities and frequent revisit times have captured the attention of researchers exploring its 

potential for geological studies. Sentinel-2 is part of the Copernicus project, a joint effort between the 

European Space Agency (ESA) and European Commission (EC). The ESA created a set of next-generation 

Earth observation missions for the Global Monitoring for the Environment and Security Program. 
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Sentinel-2 was deployed with two satellites in 2015 and 2017, with a short revisit time at the equator (every 

five days) in polar orbit when both satellites fly concurrently. It has a large field of view (290 km). In 

addition, the sensor is equipped with a high spatial resolution with a 13-band set spanning the VNIR 

through the SWIR wavelength regions (Table 1) (Drusch et al., 2012). This mission provides data with 

enhanced spectral, spatial, and temporal resolutions in the VNIR wavelength region compared with Landsat 

8 and ASTER and can be used in various GRS applications (van der Meer et al., 2012). However, in this 

study, bands 1, 9, and 10 were excluded from the analysis considering two primary factors: spatial resolution 

and design purpose. Specifically, these bands possess low spatial resolution, which could potentially limit 

the accuracy of the mineral discrimination results. Moreover, the primary functions of these bands are not 

favorable to the investigation. For instance, Band 1 has been primarily designed to detect aerosol scattering 

and cloud cover, while Band 9 is mainly used for aerosol retrieval and Band 10 is for cloud detection 

(Drusch et al., 2012). 

Over the years, some researchers have conducted research utilizing the Sentinel-2 in the field of GRS 

(Mielke et al., 2014; Transon et al., 2018; van der Meer et al., 2014). However, its application in this field 

remains quite limited. This can be attributed to the fact that the primary mission of the satellite is 

environmental monitoring, as underlined by van der Meer et al. (2014). Interestingly, these studies have 

demonstrated the feasibility and potential of using Sentinel-2 for geological investigations, paving the way 

for further research and application in this field. For example, in a study by Mielke et al. (2014), various 

contemporary and next-generation satellite sensors were assessed for their efficacy in mapping iron feature 

depth. By evaluating the strengths and limitations of different satellite sensors, their research employed a 

complex band-ratio approach, leveraging multiple narrow VNIR bands of Sentinel-2 to assess the depth of 

the iron-bearing features. The result was the relative depth of the iron feature, which revealed the presence 

of iron in large amounts and could be accounted for by the ASTER band ratios (Hewson et al., 2001). Their 

research findings revealed that Sentinel-2 was better equipped and outperformed other multispectral 

sensors in accurately measuring iron feature depth. 

Furthermore, ongoing research on the potential of Sentinel-2 in geological research has led to the 

emergence of innovative and novel discoveries. For instance, a recent study by van der Werff & van der 

Meer (2015) focused on exploring the VNIR bands of Sentinel-2, employing three band ratios to map the 

mineralogy related to a hydrothermal alteration regime, demonstrating the valuable applications of Sentinel-

2 data in characterizing hydrothermal mineral assemblages. However, this work continues on that and goes 

a step further than the existing work by discriminating between different iron minerals. Therefore, this 

study aims to explore the potential of the relatively narrow VNIR bands of Sentinel-2 as well as the two 

bands in the SWIR, which cover the specific wavelength range that iron-bearing minerals exhibit diagnostic 

features. Moreover, it is essential to acknowledge the availability of multispectral sensors, such as SPOT, 

GeoEye, WorldView, and other high-resolution satellite sensors that offer significant advantages over their 

predecessors regarding spectral and spatial resolution and specific view geometries. However, these higher-

resolution sensors come at a cost, limiting access to researchers and organizations with budget constraints. 

1.3 Statement of the problem 

Previous research has focused on using the features of wavelength position and depth of maximum 

absorption at 900 nm to map iron mineral groups (van der Werff & van der Meer, 2015). However, this 

study expands the scope by considering other diagnostic features observed at wavelength ranges, such as 

the red, blue, and green wavelengths range. This study goes a step further, from recognizing groups of iron 

minerals to discriminating individual minerals, thereby addressing the gap. 
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Table 3 Existing band ratios from the literature, and the band numbers, as indicated in the table, are specific 
to each sensor (modified after Cudahy & Ramanaidou, 1997; Kalinowski & Oliver, 2004; Rockwell, 2013; 
van der Meer et al., 2014; van der Werff & van der Meer, 2016). 

Sensor Fe3+ oxides Fe2+ oxides 

ASTER B2/B1 - B4/B3 - - 
B5/B3 + 

B1/B2  

 B5/B4 

Landsat 

5&7 
- B3/B1 B5/B4 

B3/B1× 

(B3+B5)/B4 
- 

B7/B4 + 

B2/B3 

(B2+ B5)/ 

(B3+B4) 
- 

Landsat 

8 OLI 
B4/B3 B4/B2 B6/B5 

B4/B2× 

(B4+B6)/B5 

B4+B6/

B5 

B7/B5 + 

B3/B4 

(B3+B6)/ 

(B4+B5) 
B7/B6 

Sentinel-

2 
B4/B3 B4/B2 

B11/ 

B8 

B4/B2× 

(B4+B11)/ 

B8 

(B4+B11)

/B8 

B12/B8 

+ B3/B4 

(B3+B11) 

/(B4+B8) 

B12/ 

B11 

 

1.4 Objectives 

The primary objective of this study was to discriminate between specific iron-bearing minerals using 

Sentinel-2’s VNIR bands. 

Sub-objectives and Research Questions 

1) To analyze the diagnostic features of pure iron-bearing minerals using spectroscopy to evaluate the 

applicability of spectral features from the USGS spectral library. 

a) Do pure samples reconfirm what we know from the USGS library regarding the two mineral 

groups (Fe+2 and Fe+3)? 

b) How much can be depended on the USGS spectral library for pure minerals? 

2) To assess the visibility of diagnostic spectral features of iron-bearing minerals in controlled mixtures 

related to their naturally occurring forms. 

a) Can the diagnostic spectral features of iron-bearing minerals be distinguished in mixtures? 

b) How do the spectral features of pure iron-bearing minerals and their mixtures compare? 

3) To investigate the existing band ratios proposed for Sentinel-2  and other sensors to identify the specific 

iron-bearing minerals and mixtures that can be identified using these ratios. 

a) Can the band ratios suggested for other sensors be used in Sentinel-2?  

b) Which iron-bearing minerals can be identified using the existing Sentinel-2 band ratio methods? 

c) Which iron-bearing minerals have not been discriminated against using the existing Sentinel-2 band 

ratios from the published literature? 

5) To modify or create new band ratios that can be used to discriminate against specific iron-bearing 

minerals that cannot be achieved using existing band ratios. 

a) Which iron-bearing minerals have not been discriminated against using the existing Sentinel-2 band 

ratios from the published literature? 

6) To evaluate whether the Sentinel-2 band ratios can identify specific iron-bearing minerals by comparing 

them to the hyperspectral analysis of Cuprite, Nevada. 

a) Which iron-bearing minerals are discriminated against using high-resolution methods, such as 

hyperspectral data, and which ones were found with multispectral data? 

b) How does Sentinel-2's output compare to the hyperspectral output that has been published? 
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2 DATA AND METHODOLOGY 

2.1 Data 

This section provides a description of the datasets and methods that were used in this study. The first set 

of data used was the USGS Spectral Library; Then the second was chemical substances (acid, base, etc.), 

solutions, and reagents (Table 4). In addition, sterilizing agents were also used in cleaning, such as Nitric 

acid, Hydrogen peroxide, Ethanol, and Ultra-pure water (de-ionized). These were used in the preparation 

and synthesis of about 29 samples of pure iron-bearing minerals (Jarosite, Goethite, and Hematite) and 

their respective mixtures (e.g., with Calcite and Quartz). The mixtures were carried out in such a way that 

it reflects a natural concentration in varying proportions, as shown in Table 6. The Geoscience Laboratory 

at ITC, University of Twente, was used for all the laboratory work, from sample preparation to analysis.  

2.1.1 Materials for the Synthesis 

Furthermore, Hyperspectral data of the synthetic minerals and the USGS Spectral Library were used to 

analyze the diagnostic features of the iron-bearing mineral, whereas Multispectral data of the Sentinel-2 

imagery was employed for band ratio and validation. 

Table 4 Chemical substances used for the synthesis 

 Name of chemical Chemical formula Quantity used Provider 

1 Ferric nitrate Fe(NO3)3·9H2O 50 g Merck KGaA 

2 Ferric chloride FeCl3·6H2O 50 g Merck KGaA 

3 Ammonia NH3 (liquid) - Merck KGaA 

4 Ferric sulfate hydrate (Fe2(SO4)3·nH2O) - Sigma Aldrich 

5 Sodium hydroxide NaOH - Sigma Aldrich 

6 Potassium hydroxide KOH - J.T. Baker Chemicals B.V. 

7 Ammonium hydroxide Na4OH - J.T. Baker Chemicals B.V. 

8 Calcite CaCO3 3.75 g Boom B.V. Meppel 

9 Quartz SiO2 3.75 g Boom B.V. Meppel 

10 Nitric acid HNO3 - J.T. Baker Chemicals B.V. 

11 Hydrogen peroxide H2O2 - J.T. Baker Chemicals B.V. 

12 Ethanol C2H6O 50 mL - 

13 Ultra-pure water (de-ionized) H2O 500 mL - 
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2.2 Methods 

In this section, the methodology employed to achieve the experiments and analysis is discussed. The first 

part discusses the analysis of the USGS Spectral Library, followed by the synthesis of the minerals in the 

second part. The third part involves the analytical techniques, and the fourth discusses the spectroscopical 

analysis. 

2.2.1 Analysis of the USGS Spectral Library 

Reflectance spectra of numerous minerals and rocks are available in the USGS Spectral Library, and these 

spectra can be used to distinguish between different minerals and categorize them according to their spectral 

characteristics. However, this study focused on contrasting and comparing various iron minerals by first 

employing hyperspectral data and then resampling to multispectral data. Thus, the applicability of the USGS 

Spectral Library for this study is crucial, and the following steps were taken: 

i. Spectral Features of Iron Minerals were reviewed 

The spectral characteristics of iron minerals were reviewed, particularly their absorption features in the 

VNIR range of the electromagnetic spectrum. 

ii. Familiarization with the USGS Spectral Library 

Understanding the contents of the USGS Spectral Library was the first step that was conducted in this 

study. The library's contents were examined to gain insight into the available spectrums for iron minerals. 

The relevant iron minerals (Jarosite, Goethite, and Hematite) and associated minerals (Quartz and Calcite) 

were identified, and data on their spectral properties were acquired. 

iii. Comparison of spectral signatures 

The spectral signatures of several iron minerals in the USGS Spectral Library were compared (Figure 7a-

b). This is aimed at providing information on the consistency or not of the spectral features when in 

association or mixture with various minerals. The shape, position, and depth of the deepest feature and the 

strength and position of the spectral peaks were given particular consideration. These characteristics set 

one iron mineral apart from another. 

Table 5 The various spectrometers utilized in the USGS spectral library to measure spectrum (modified 
after Kokaly et al., 2017) 

Spectrometer 
Wavelength 
range (nm) 

Wavelength 

range, (cm
–1

) 
Bandpass description 

Beckman 200–3000 50,000–3,333 Standard setting 

ASDFR 

350–2500 28,571–4,000 

full range Standard resolution, 
average band passes of 5, 12, and 11 nm 

ASDHR 
High-resolution model, 

average band passes of 5, 9, and 9 nm 

ASDNG 
Next Generation model, 

average band passes of 5, 6, and 6 nm 

AVIRIS 370–2500 27,027–4,000 
Approximately 10 nm across the wavelength range 

of the sensor 

Nicolet FTIR 1120–21600 8,928–46 4 cm-1 across the range 

 

2.2.2 Synthesis and Analytical Techniques 

The synthetic processes used to create iron-bearing minerals and mixtures will be covered in this section. 

An illustration of the synthesis is shown in Appendix 1-2. Following that, the analytical techniques will be 

described. Among these techniques are XRD and ASD analysis, as well as sample preparation and setup. 



Discrimination of individual Iron-bearing minerals with the Sentinel-2 Super-Spectral Imager 

10 
 

Finally, as the final approach for this study, multispectral analysis will be discussed. The methodology will 

be followed in a systematic order, beginning with sample preparation (sample selection, preparation, and 

synthesis), then sample analysis (XRD and ASD spectral analysis), and ultimately multispectral data 

processing. 

Synthesis of K-Jarosite end-member 

The Jarosite synthesis was adapted from the work of (Driscoll & Leinz, 2005). To produce K-Jarosite, ferric 

sulfate hydrate (Fe2(SO4)3·nH2O) (provided by Sigma Aldrich) and potassium hydroxide (KOH) (provided 

by J.T. Baker Chemicals B.V.) were used. An illustration is shown in Appendix 1-2. 

1. In 100 mL ultrapure water, 17.02 g ferric sulfate hydrate (Fe2(SO4)3·nH2O) and 5.60 g potassium 

hydroxide (KOH) were dissolved. 

2. Then, the solution was prepared in a covered glass beaker and set on a 95°C stirring hot plate 

(Appendix 1-2). 

3. For 4 hours, a moderate boil was kept going. The solution was then taken off the stirring plate and 

left to settle (Appendix 1-2). 

4. The liquid phase was decanted off once the sediment had settled, and the precipitate was 

thoroughly washed in de-ionized water twice. 

5. The solid product was dried for 24 hours in a 110°C drying oven. 

6. About 9 g of K-jarosite was obtained after drying and collecting the material.  

Synthesis of Na-Jarosite end-member 

The synthesis of Na-Jarosite involves using ferric sulfate hydrate (Fe2(SO4)3·nH2O) (provided by Sigma 

Aldrich) and sodium hydroxide (NaOH) (provided by Sigma Aldrich) was used (Driscoll & Leinz, 2005). 

1. First, in a glass beaker with 250 mL of ultrapure water, dissolve 17.02 g of (Fe2(SO4)3·nH2O) and 

3.99 g of NaOH. 

2. On a stirring plate, the solution was put to a moderate boil and left undisturbed for 4 hours 

(Appendix 1-2). 

3. Similar to the previous synthesis procedures, the solution was removed from heat, drained, rinsed 

with 100 mL of de-ionized water, and dried at 100°C overnight. 

4. The dried product weighed 20.7 g. 

Synthesis of Goethite 

Goethite is an iron oxyhydroxide with FeO(OH) chemical formula. The formation of goethite is indicated 

by the oxidation state change of Fe2+ (ferrous) to Fe3+ (ferric) iron, allowing goethite to exist at the Earth's 

surface. It was synthesized through a precipitation method that involved the use of an analytical grade ferric 

nitrate (Fe(NO3)3·9H2O) (from Merck KGaA) and Potassium Hydroxide (KOH) (from J.T.Baker 

Chemicals B.V.). The work of (Jaiswal et al., 2013) was adopted in the synthesis of goethite. 

1. In a 1 L sterilized beaker, 50.0 g of analytical grade Fe(NO3)3·9H2O was dissolved in 0.5 L of de-

ionized water. 

2. For 24 hours, the solution was hydrated at a pH of 1.6 and stirred constantly using a magnetic 

stirrer. 
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3. Then, 2.5 M KOH solution was added drop by drop until the solution reached a pH of 12. 

4. The thick suspension was aged in a thermostatic oven at 60 °C for ten days. 

5. Finally, the goethite paste was dried in an oven at 60°C. 

6. The product was ground to powder, and 

7. 11.80 g of goethite was produced. 

Synthesis of Hematite 

As demonstrated, the Hematite synthesis was adapted from the work of Sankadiya et al. (2016). The 

synthesis of hematite was carried out by simple precipitation. A stoichiometric amount of FeCl3·6H2O 

(provided by Merck KGaA) and liquid NH3 (provided by Merck KGaA) were used. 

1. A stoichiometric amount of FeCl3.6H2O powder was added to 100 mL of de-ionized/ultra-pure 

water to form a solution. 

2. Then, 12g of NaOH in 100 mL water was added drop by drop to the solution under constant 

stirring. 

3. At pH = 8, Fe2O3 gradually precipitated out. 

4. The precipitate was then filtered and washed several times to remove the excess base (Appendix 

1-2) 

5. After that, it was dried at ambient conditions for 12 hours. 

6. The product was then calcinated in a Muffle furnace at 3000C and 4000C for 24 hours (Appendix 

1-2). 

7. The product was ground, and a reddish brown was obtained, 

8. Weighed 53.74 g of hematite 

2.2.3 Characterization of the products (synthetic minerals) 

X-ray diffraction (XRD) spectra were utilized to characterize the synthesized products. The concept is that 

a crystalline material's atomic and molecular structure may be determined by scattering an incoming X-ray 

beam in different directions specified by the crystalline structure. This was achieved by the products being 

first prepared by powdering them. 

1. Powdering of the product 

Powdered product was achieved by grinding the iron mineral products (Jarosite, Goethite, Jarosite) with a 

mortar and pestle to prepare it for XRD and ASD analyses. 

This was achieved by placing the samples horizontally on the goniometer of the D2 PHRASER 

diffractometer. Thereafter, the X-ray tube (rays source) sends rays on the sample, and a detector counts the 

number of X-rays scattered by the sample. The diffracted X-rays from the crystal planes in the powdered 

phases at different diffraction angles show peaks with variable intensities. Each phase or mineral's 

diffraction pattern is determined by its crystal structure, crystallite size, and lattice strain. These were 

captured on a 2θ scale in the wide-angle region from 60 to 800 using a CuKα1 radiation wavelength of 1.54 

Å on a 30 kV/10 mA D2 PHASER diffractometer. The data was collected after 12 cycles (repeat) within 

45 minutes to have a very good counting of statistics and subsequently comparing the resultant diffraction 

pattern to Joint Committee on Powder Diffraction Standards (JSCPD) database. The JSCPD database is an 
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ideal tool for determining the characteristics of various crystalline substances, and it also acts as a reference 

for comparison and validation. 

2. Preparation of mixtures of Iron-Bearing Minerals 

This procedure was conducted by mixing the various minerals in different proportions. Weighed using 

weighing balance. Firstly, the weighed minerals were mixed using a spatula in an aluminum foil. Afterward, 

more mixing was done using a pestle and mortar by gently grinding the clumps till they became wholly 

mixed and even. The samples were stored in a well-labeled aluminum foil and nylon sample bag. 

Calcite was mixed with the iron-bearing minerals in different proportions, and quartz (provided by Boom 

B.V. Meppel) was also mixed in different proportions with the iron-bearing minerals (Table 6). 

2.2.4 Building spectral libraries 

Spectral Analysis of the Synthetic Iron Minerals 

An ASD Fieldspec Full Range Spectrometer was used to measure high-resolution laboratory reflectance 

over the wavelength range of 350 to 2500 nm, with a halogen lamp for illumination and a Spectralon panel 

as a white reference. The ASD spectrometer has a spectral resolution of 5 nm from 350 to 1000 nm and an 

11 nm resolution from 1000 to 2500 m. A total of twenty-nine (29) spectra for each synthetic mineral were 

acquired for this study. The following procedure was used to collect data. It is important to note that the 

spectra were measured in two different sessions. 

1. The powdered iron minerals were placed on a flat glass holder, and the top was leveled. 

2. Fieldspec was used to collect the spectra. 

3. The spectral measurements were carried out using RS3 software which is wirelessly connected to 

the instrument, 

4. The measurements were repeated five times, and the average was obtained.  

5. Further processing of the data, such as splice correction that fixes the spectral discontinuity caused 

by the use of three detectors located at 1000 nm and 1800 nm, was carried out with the aid of 

ViewSpecPro software.  

6. The spectra were then exported in ASCII format and  

7. The ENVI program was used to examine and analyze the various spectra. 

8. The data were exported to Excel for further analysis. 

Resampling of high-resolution spectra to Sentinel-2 

High-resolution spectra of twenty-nine (29) iron mineral samples (listed in Table 6) were resampled to 

eleven (11) bands of Sentinel-2 (excluding bands 1 and 10) (Figure 9). Landsat 8 and ASTER were also 

resampled to evaluate how well they perform at distinguishing various iron minerals compared to Sentinel-

2 (Figure 9). The resampling procedure was conducted in ENVI Software utilizing the response function 

of the Sentinel-2 bands. In the process of resampling the hyperspectral spectra to align with the multi-

spectral spectral resolution, the response function was used. This technique was essential to ensure the 

compatibility of the hyperspectral data with the spectral response of the multi-spectral sensors, thereby 

allowing for more accurate comparison and analysis of the data. In addition, it gives a better approximation 

of the original spectral features while accounting for the broader band width of the multi-spectral sensors. 

This approach helps maintain the important spectral information and provides a better comparison between 

the different data sets. It helps to minimize the effects of spectral distortion and spectral smoothing that 

could occur during the resampling process. 
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2.2.5 Band Ratio 

This section discusses the technique that explores the opportunity that various iron minerals present 

distinctive spectral features, including unique absorption and reflection features along specific wavelength 

regions. Consequently, this method involves employing specific band ratios to take advantage of these 

variations and successfully distinguish between different iron minerals. Based on the unique characteristics 

of the iron minerals’ absorption, the best band combinations are chosen. A lot of thought went into 

avoiding spectrum overlap or confounding effects from other combinations. After Resampling was carried 

out successfully, a spectral variation approach in the various bands of Sentinel-2 was employed to 

distinguish the individual iron-bearing minerals. 

The following band ratio techniques were used. 

a) Simple band ratio 

For example, in band a/band b, the reflectance values in band A are divided by the values in band 

b for each pixel. The resulting value will be high if the reflectance in band A is significantly higher 

than in band b and low if the reflectance in band a is lower than or similar to band b. 

b) Band-ratio combination (summation) 

Combining the two band ratios by summing them provides a composite value that incorporates 

information from the spectral ranges of the bands involved. 

c) Relative absorption band-depth technique 

The Relative absorption band depth approach (Figure 2) involves dividing the sum of the two 

highest-reflectance spectral bands in the spectral wavelength range, which may or may not be in 

sequence, by the deepest absorption feature (Crowley et al., 1989). 

 

Figure 2 True and relative absorption band depth concept (modified after Crowley et al., 1989). 

The distribution and relationship between the band ratios for different iron-bearing minerals were observed 

by visualization and analysis of the scatter plot. A ‘supported triangular trend’ technique was employed to 

aid in identifying trends, patterns, or clusters among the iron-bearing minerals based on their band ratios. 

This technique provides valuable insights into the spectral characteristics and distinguishing features of 

different minerals, which are crucial for mineral identification and discrimination.  

The ‘supported triangular trend’ in this context refers to a specific distribution pattern of mineral data 

points associated with three main classes of iron minerals that occupy distinct vertices of a triangle. This 

2 
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triangular distribution can provide a clear graphical representation of the relationships and distinctions 

between the minerals. The position of each point on the plot represents the specific combination of band 

ratios for a given mineral. Thus, each mineral is represented by a point on the plot, where the x-axis 

corresponds to the band ratio Bx/By, and the y-axis corresponds to the band ratio Ba/Bb. This makes it 

possible to analyze the associations among the minerals using the available band ratios, as well as the 

performance of the ratios to distinguish the different iron-bearing minerals. 

Assessments of the Existing band ratios 

This technique begins with testing each band ratio in the laboratory to examine their capability to distinguish 

between iron minerals. One key metric used in this assessment is the distinguishable score. In essence, this 

score is a numerical representation that differentiates one mineral from another based on the specific band 

ratio. The higher the distinguishable score, the greater the difference between minerals as per the band ratio 

in question. This was conducted on twenty-nine (29) synthetic iron mineral samples (Table 6) ranging from 

pure iron minerals (jarosite, goethite, and hematite) to iron mineral mixtures and mixes with other minerals 

(quartz and calcite).  

To achieve this, five steps were followed systematically to observe the relationship between these minerals, 

their mixtures with each other, and with other minerals, and to determine which of these band ratios 

distinguishes between the iron minerals. 

1. First step: test band ratios on pure iron minerals and examine their performance 

2. Second step: test band ratios on mixtures of iron minerals with each  

3. Third step: test band ratios on iron minerals with mixtures of quartz  

4. Fourth step: test band ratios on iron minerals with mixtures of calcite 

5. Fifth step: test band ratios on iron minerals with mixtures of both Quartz and Calcite 

Experimenting with new band ratios 

The results of the analysis of the existing band ratios were used to demonstrate the iron mineral that can 

be distinguished by the band ratios. This was achieved by following the steps described below: 

1. Step 1: Compute the band ratios for each of the Sentinel-2 bands (excluding bands 1 and 10): 

compute the band ratios of each band with all the other bands. 

2. Step 2: Identify and select the band ratio that identifies a specific iron mineral (jarosite, goethite, 

hematite); that is the ratio that assigns the highest score to a specific iron mineral. 

3. Step 3: Experiment with the ratios of pure iron minerals using a scatterplot. 

4. Step 4: Experiment with the ratios of iron minerals with mixtures of each other. 

5. Step 5: Experiment with the ratios of iron minerals with mixtures of quartz. 

6. Step 6: Experiment with the ratios of iron minerals with mixtures of calcite. 

7. Step 7: Experiment with the ratios of iron minerals with mixtures of quartz and calcite. 
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Evaluation of the New Band Ratios 

The evaluation involves a detailed comparison of the novel band ratios with published reference data in a 

real-world geological context from the Cuprite area (shown in Figures 3a and b). The accuracy or lack 

thereof of matching with reference data, the ability to identify specific minerals, and how applicable it is to 

real-world geological settings define success or failure. Two types of reference data from the Cuprite area 

were used: 1). A mineral map using the 400 to 1300 nm electronic absorption band of the AVIRIS data, 

reflecting the spectrally dominant iron-bearing minerals, and 2). A mineral map covering the 1300 to 2500 

nm vibrational absorption wavelength region of the AVIRIS data shows other spectrally dominant minerals 

such as clays, micas, sulfates, and carbonates. Successful discrimination between the iron minerals in the 

generated S2 imagery compared to the reference maps indicates that the ratios work. Therefore, the 

performance of these ratios in a real world geological setting like a Cuprite area was analyzed to ensure 

practical applicability beyond a controlled laboratory setting. 

The google earth engine platform was used to evaluate the capability of the novel band ratios in 

discriminating iron-bearing minerals on Sentinel-2 imagery covering the Cuprite mining district in Nevada, 

USA. Sentinel-2A Level-1A surface reflection image collection from January 2019 to January 2020 was used 

in this study. This dataset, which is 7.5 km by 7.2 km in dimensions, is cloud-free and covers the Cuprite 

region. The Sentinel-2A data includes ten VNIR and three SWIR bands. The specifications and 

characteristics of these bands, including their respective spectral ranges and resolutions, are outlined in 

Table 1. 

The Cuprite region was chosen because of the distinct geological and climatic features that make it a 

particularly fitting site for this research. Firstly, the Cuprite area falls under the arid to semi-arid climate 

category. This climatic condition leads to limited vegetation cover, reducing the spectral interference from 

vegetation, which often complicates iron-bearing minerals remote sensing studies. Secondly, the region is 

well-known for its mineral diversity, particularly the iron-bearing minerals of interest: goethite, hematite, 

and jarosite. The rich presence of these minerals, owing to the area’s significant geological activity, provides 

ample data for examination. Furthermore, the Cuprite area has been serving as an excellent test site for 

remote sensing applications in geology for years (Mars & Rowan, 2010; Rowan et al., 2003; Swayze et al., 

2014). This is due to its exposed surface mineralogy and the well-documented studies available for validation 

(Swayze et al., 2014). 
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Figure 3a Mineral map utilizing the 400 to 1300 nm electronic absorption band of the AVIRIS data, showing 
the spectrally dominant Iron-bearing minerals at Cuprite. 

 
Figure 3b Mineral map of the 1300 to 2500 nm vibrational absorption wavelength region of the AVIRIS 
data, showing the spectrally dominant clays, micas, sulfates, and carbonates at Cuprite. 

3a 

3b 
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3 RESULTS 

In this section, the results of mapping iron minerals with the new band ratios for eventual evaluation are 

presented, paving the way for their subsequent evaluation. The section is divided into five distinct 

subsections. The initial subsection presents the findings derived from the laboratory experiment and 

subsequent characterization efforts. The second subsection shows the spectroscopic analysis conducted on 

synthetic iron minerals. The third subsection assesses the relevance and applicability of the USGS Library 

in the context of this study. The fourth subsection is dedicated to the analysis of the existing band ratios, 

illustrating their strengths and potential limitations. Lastly, the fifth subsection presents the novel band 

ratios that have emerged as a result of this study, revealing their potential implications and capability in 

discriminating iron minerals. 

3.1 Laboratory Experiment and Characterisation 

In the laboratory synthesis of the minerals, a systematic method was employed for assigning identification 

to the samples based on their composition and proportions. This classification is delineated in Table 6. For 

instance, the ID "Gth-010" was attributed to 100% pure goethite, containing no mixtures of other minerals. 

Conversely, the ID "Gth75Q25" designates a compound consisting of 75% goethite and 25% quartz. 

Likewise, the ID "Gth50Q50" signifies an equal proportion of goethite and quartz, with each constituent 

making up 50% of the mixture. The ID "Gth25Q075" represents a mixture of 25% goethite and 75% 

quartz. This identification system was applied uniformly across all mineral samples and mixtures, ensuring 

a coherent representation of the constituents within the synthesized products, thereby providing an 

equitable basis for comparison.  

Table 6 Samples description and identification 

 Sample ID Description 

1 Gth-010 100% Goethite 

2 Hm-100 100% Hematite 

3 Jsk-100 100% K-Jarosite 

4 JsNa-100 100% Na-Jarosite 

5 Gth75Q25 Goethite 75%; Quartz 25% 

6 Gth50Q50 Goethite 50%; Quartz 50% 

7 Gth25Q75 Goethite 25%; Quartz 75% 

8 Gth75CaCO25 Goethite 75%; Calcite 25% 

9 Gth50CaCO50 Goethite 50%; Calcite 50% 

10 Gth25CaCO75 Goethite 25%; Calcite 75% 

11 Gth75Jsk25 Goethite 75%; K-Jarosite 25% 

12 Gth50Jsk75 Goethite 50%; K-Jarosite 50% 

13 Gth25Jsk75 Goethite 25%; K-Jarosite 75% 

14 Hm75Q25 Hematite 75%; Quartz 25% 

15 Hm50Q50 Hematite 50%; Quartz 50% 

16 Hm25Q75 Hematite 25%; Quartz 75% 
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17 Hm75CaCO25 Hematite 50%; Calcite 50% 

18 Hm50CaCO50 Hematite 50%; Calcite 50% 

19 Hm25CaCO75 Hematite 25%; Calcite 75% 

20 Hm75Gth25 Hematite 75%; Goethite 25% 

21 Hm25Gth75 Hematite 25%; Goethite 75% 

22 Hm75Jsk25 Hematite 75%; K-Jarosite 25% 

23 Hm50Jsk25 Hematite 50%; K-Jarosite 50% 

24 Hm25Jsk75 Hematite 25%; K-Jarosite 75% 

25 Hm50JsNa50 Hematite 50%; Na-Jarosite 50% 

26 Jsk75Q25 K-Jarosite 75%; Quartz 25% 

27 Jsk50Q50 K-Jarosite 50%; Quartz 50% 

28 Jsk50CaCO50 K-Jarosite 50%; Calcite 50% 

29 Jsk25CaCO75 K-Jarosite 25%; Calcite 75% 

3.1.1 Characterisation of the products 

In this section, results from the X-Ray Diffraction (XRD) analysis conducted on the minerals jarosite, 

goethite, and hematite are illustrated. The peak patterns obtained were compared to the profiles published 

in the Joint Committee on Powder Diffraction Standards (JCPDS) database for the respective iron-bearing 

minerals. This validates the reliability of the synthesized minerals used in the research. Full details of the 

XRD analysis, including specific peak positions and how they relate to their crystal system, will be presented 

in the discussion chapter of this study, as illustrated in Figure 4a - c below. 

 
Figure 4a Synthetic XRD pattern shows distinct peaks, with the most intense peak often observed around 
17 and 29 degrees 2-theta and other smaller peaks at different angles. 

4a 
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Figure 4b Goethite XRD profile shows a strong diffraction peak around 21 and 37 degrees 2-theta and 
other smaller peaks at different angles. 

 

 

 
Figure 4c Hematite XRD pattern characterized by several peaks. The most intense peak is usually observed 
around 33 and 36 degrees 2-theta, and other smaller peaks at different angles. 

  

4b 

4c 
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3.2 Spectroscopic analysis 

Firstly, the observation of the products’ different shades of color as they relate to the spectral features is 

analyzed. Then the second part is a comparison of the spectra with the USGS Spectral Library as it relates 

to the study (Figure 5). This section concludes with spectral analysis of the products in different proportions 

and compositions, demonstrating the relationship between mixtures (gangue) and spectral features. 

3.2.1 Spectral Analysis of the synthetic minerals 

The synthetic minerals exhibit absorptions caused by electronic processes involving crystal field and charge 

transfer absorption in the VNIR (380 - 1000 nm) electromagnetic spectrum (Figure 5). In addition, jarosite 

absorbs in the SWIR due to the Fe-OH bond. Spectra collected in the lab revealed that hematite absorbs 

at 520 and 867 nm, goethite at 659 and 929 nm, and jarosite at 906 nm, characteristic of the crystal field 

absorptions. An absorption characteristic resulting from charge transfers can also be observed at 436 nm, 

474 nm, and 520 nm for jarosite, goethite, and hematite, respectively (Table 7). 

Table 7 Observed wavelength positions of absorption characteristics in iron-bearing minerals (findings 
from the current study). 

 

VNIR SWIR 

Charge transfer 

absorptions 

Crystal field absorptions 
Fe-OH 

Absorptions 
Second deepest 

feature 
Deepest feature 

Jarosite 

100% 
436 - 906 2267 

Goethite 

100% 
474 659 929 - 

Hematite 

100 % 
520 660 867 - 

 
Figure 5 High-resolution reflectance spectra of iron minerals exhibiting distinct VNIR absorptions caused 
by crystal field and charge transfer processes (from this study). 

5 

906 

929 

867 

659 

2267 

520 
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Figure 6 shows photography of different shades of colors of the synthetic minerals (iron-bearing minerals). 

The colors observed range from pale yellow (jarosite) and brown (goethite) to deep red (hematite). The pale 

yellow jarosite absorbs the blue light, while the goethite appears brown, with absorption also in the blue 

wavelength region. In contrast, hematite displays a deep red color and strongly absorbs the blue and green 

wavelength regions of the spectrum (Figure 5). 

 

Figure 6 Powdered products of synthetic iron-bearing minerals (from current study). 

3.2.2 Comparison with the USGS Spectral Library  

The analysis and evaluation of the USGS Spectral Library show that the spectra of the specific iron minerals 

are available in different proportions and mixtures (Table 8, Figure 7a - c). A comparison of produced iron-

bearing minerals and available spectra from the USGS library is illustrated in Figure 7a - c. The compositions 

of hematite spectra range from quartz, mica, and kaolinite, while the quantities vary from 2% to unspecified. 

The spectra of jarosite from the USGS Library show the broad feature around 900 nm and 2250 nm, just 

like the synthetic mineral (Figure 7c). However, some spectra exhibit shallow depth, weak shoulders, and 

additional features like Goethite0.02+Quartz_GDS240_BECKa_AREF, Chlor+Goethite_CU93-

4B_Phyl_BECKa, and Hematite_HS45.3_ASDFRb. These differences coincide with the information 

shown in Table 9, where variety in composition and spectrometer were tabulated from the metadata. 

Furthermore, the spectrum of Jarosite_GDS98_K_90C_Syn_NIC4a does not have features in the VNIR 

coinciding with the spectrometer specification. Also, Jarosite_WS368_(Pb)_BECKc spectrum exhibits 

weak iron features (Figure 7c). Similarly, the spectra of goethite and hematite from the USGS Library and 

synthetic mineral exhibit features around 900 nm, although some exhibit deep feature diagnostic of the 

minerals while others appear shallow. 

  

Hematite Goethite Jarosite 

6 
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Table 8 Summary of USGS Spectra metadata of the iron minerals (modified after Kokaly et al., 2017). 

Iron mineral Spectra ID (USGS) 
Spectro
meter 

Mixtures (Gangue) 

Quartz 
(wt %) 

Calc
ite  
(wt 
%) 

Mica  
(wt %) 

Feldspar 
(wt %) 

Other 
mixtur
es wt% 

Jarosit
e 

Jarosite_GDS636_K_Penalt325
um_ASDNGa 

ASD - - - - 
No 

impurit
y 

Jarosite_GDS98_K_90C_Syn_
NIC4a 

Nicolet - - - - 

No 
impurit

y 
Synthet

ic 

Jarosite_WS368_(Pb)_BECKc 
Beckma

n 
- - - - 

Cerussi
te, 

alunite, 
lead 

Jarosite_on_Qtzite_BR93-
34A2_BEC Ka 

Beckma
n 

Yes 
(unspeci

fied) 
- 

Musco
vite 

- - 

Goet
hite 

Goethite0.02+Quartz GDS240 
BECKa AREF 

Beckma
n 

98 - - - - 

Goethite_Phyllite CU91-236A 
ASD 

Yes 
(unspeci

fied) 
Yes 

Musco
vite, 

Biotite 

Plagiocla
se 

Other 
impurit

ies 

Goethite MPCMA2-B 
FineGradjBECKb AREF 

Beckma
n 

Yes 
(unspeci

fied) 
Yes 

Musco
vite 

Microcli
ne, 

- 

Chlor+Goethite_CU93-
4B_Phyl_BECKa 

Beckma
n 

- - 
Musco

vite 
- 

Chlorit
e, 

Magnet
ite 

Hema
tite 

Hematite.02+Quartz.98_GDS7
6_ BECka 

Beckma
n 

Yes 
(unspeci

fied) 
- 

Musco
vite 

Yes 
(unspeci

fied) 

Quartzi
te, 

Kaolini
te, 

Hematite_GDS69.g_lt10um_N
IC4dcc 

Nicolet 
Yes 

(unspeci
fied) 

- - - 
Maghe
mite 

Hematite_FE2602_ BECKkb 
Beckma

n 
- - - - 

Pyroxe
ne, 

Feldsp
ar 

Hematite_HS45.3 ASDFRb 
ASD 

Yes 
(unspeci

fied) 
- - - 

Maghe
mite 
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Figure 7a Mineral spectra from the USGS Spectral Library (Kokaly et al., 2017) against synthetic jarosite 
spectra (from the current study). 

 

Figure 7b Mineral spectra from the USGS Spectral Library (Kokaly et al., 2017) against synthetic hematite 
spectra (from the current study). 

7a 

7b 
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Figure 7c Mineral spectra from the USGS Spectral Library (Kokaly et al., 2017) against synthetic hematite 
spectra (from the current study). 

  

7c 
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3.2.3 Spectral Analysis of the Synthetic Iron minerals 

As the concentration of the synthetic iron mineral increases or decreases, the intensity and hue of the color 

vary, as shown in Figure 6. In addition, absorption features become narrower with less intensity as the 

concentration varies. Consequently, analysis of a mixture of goethite and jarosite spectra combines 

individual spectral features, which results in a new, more complex spectral signature. The spectra of the 

mixtures exhibit a combination of absorption and reflection bands from both minerals. More also, the 

shades of color go from brown to pale yellow as the concentration varies (Figure 6). Furthermore, 25% 

hematite with a lighter shade of brown exhibits narrower features around 500 nm compared to 100% 

hematite with deep red color and possesses a broader and more intense feature (Figure 6).  

 

 

Figure 8a Spectra of pure goethite, jarosite, and their mixtures. Each mixture exhibits combined 
characteristics. 

 

 

Gth-100 Gth075Jsk025 Gth050Jsk050 Gth025Jsk075 Jsk-100 

8a 
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Figure 8b Spectra of pure hematite and its mixture with calcite against spectra of calcite from the USGS 
spectral library. b). Picture showing different shades of hematite in varied concentrations. 

  

Hm-100 Hm75CaCO25 Hm50CaCO50 Hm25CaCO75 

8b 



Discrimination of individual Iron-bearing minerals with the Sentinel-2 Super-Spectral Imager 

27 
 

3.3 Band Ratios 

3.3.1 Multispectral Sensor Resampling and Comparison 

The outcomes from the process of resampling spectra to match the resolutions of multispectral sensors - 

namely Sentinel-2, Landsat 8, and ASTER is presented in this section. This step was carried out with the 

intention of facilitating more effective comparisons and supporting subsequent band ratio experiments. 

The subsequent Figure 9 provides a comparison of high-resolution spectra obtained from synthetic iron 

minerals, as recorded by the ASD, with their resampled equivalent in Sentinel-2, Landsat 8, and ASTER. 

To aid in visual clarity, the plotted spectra have been offset. Starting from the bottom, the ASD spectra for 

synthetic minerals are illustrated in black. The resampled Sentinel-2 spectra are depicted in green, while red 

represents resampled OLI spectra. At the top, are the resampled ASTER spectra. Each spectral plot is 

marked with small dots that denote the bands of the corresponding sensors. Due to the ASD’s extensive 

band range, its spectra display a smoother curve. 

 

Figure 9 Resampled spectra of jarosite, goethite, and hematite to ASTER, OLI, and Sentinel-2. Graphs are 

offset.  
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3.3.2 Assessments of the Existing band ratios 

This section focuses on the evaluation of various band ratios cited in the literature, specifically B4/B3; 

B4/B2; B11/B8; (B4/B2)×(B4+B11)/B8; (B4+B11)/B8a; (B12/B8)+(B3/B4); (B3+B11)/(B4+B8); 

(B4+B11)/B8a (Table 3). From the analysis, it was found that the B4/B3 ratio yielded a distinguishable 

score that effectively separated hematite from jarosite and goethite. This outcome is illustrated in Figures 

10-12, and the corresponding analysis is summarized in Table 9. Subsequently, based on these results, three 

band ratios from the existing set were chosen to further investigate their proficiency in distinguishing 

between the iron minerals. Moreover, the analysis of other band ratios has also been performed and is 

included in the Appendix 1-2 for a comprehensive reference. 

Scatterplot of (B11/B8) vs (B4/B3) 

This section tested the existing band ratios (B11/B8) against (B4/B3). Figure 10a shows the resampled 

spectra of the minerals and the corresponding band positions, denoted by small circles, that were used in 

the ratios. The band ratios were first explored using scatterplots of pure iron minerals, and the relationship 

showed a nonlinear distribution. The experiment was continued with mixtures of iron minerals, followed 

by Quartz and Calcite mixtures. Also, using a supported triangular trend, Figure 10b illustrates the 

relationship between iron minerals and their varying compositions. The result shows that the iron minerals 

were assigned distinct scores, with hematite mixtures receiving a high score from both ratios, while goethite 

mixtures gaining an intermediate score from B11/B8 and a low score from B4/B3, and jarosite mixtures 

receiving lower and intermediate scores from B11/B8 and B4/B3, respectively.  

Furthermore, the observation from the results shows that B4/B3 assigned distinct scores to hematite than 

goethite and jarosite, whereas B11/B8 appears to assign a different score to the minerals when tested on 

pure minerals, as illustrated in Figure 15b. However, as mixing begins with other minerals, it mixes the 

scores and does not discriminate between the minerals, as shown in Figures 10c - 10f. 

 

Figure 10a Resampled spectra of the minerals and the corresponding band's position denoted by small 
circles that were used in the ratio (B11/B8) against (B4/B3). 

10a 
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Figure 10b Scatterplots of (B11/B8) vs. (B4/B3) for the pure iron minerals with the supported triangular 
trend illustrating the relationship between pure iron minerals. 

 

Figure 10c Supported triangular trend illustrates the relationship between iron minerals and their varying 
compositions. 
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Figure 10d Iron minerals mixtures with quartz show hematite assigned high scores, jarosite intermediate 
scores, and goethite low scores by B4/B3. Goethite is assigned an indistinct score by B11/B8, some scores 
of goethite overlap with both jarosite and h 

 

 

Figure 10e Depicts a linear relationship between hematite and jarosite by B4/B3, with both ratios assigning 
distinct values to each; however, goethite appears to have indistinct scores by B11/B8. 
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Figure 10e Scatterplots of (B11/B8) vs. (B4/B3) show iron minerals assigned distinct scores, with hematite 
mineral mixtures receiving a high score from both ratios, while goethite mixtures gaining an intermediate 
score from B11/B8 and a low score from (B 
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Scatterplot of  (B4/B2)×(B4+B11)/B8 vs (B4/B3) 

This band ratio was first investigated for pure iron minerals, and the relationship suggested a nonlinear 

distribution. Mixtures of iron minerals were then tested, followed by mixtures of quartz and calcite. In 

Figure 11a, the resampled mineral spectra are illustrated with the specific band positions used in the ratio 

(B4/B2)×(B4+B11)/B8 against (B4/B3), marked by small circles. The scatterplot shown in Figure 11b 

does not reveal any discernible trend for the iron mineral compositions. Moreover, Figure 11c presents a 

scatterplot where iron minerals are indistinctly scored by the (B4/B2)×(B4+B11)/B8 ratio, while a distinct 

differentiation is made by the (B4/B3) ratio. Similarly, Figure 11d supports the previous observation with 

the (B4/B3) ratio distinctly scoring the minerals in contrast to the (B4/B2)×(B4+B11)/B8 ratio. 

Conclusively, Figure 11e displays a scatterplot for the iron minerals that highlights a nonlinear relationship 

between the two ratios. Additionally, the typical supported triangular trend is found ineffective for these 

specific iron mineral mixtures.  

 
Figure 11a Resampled spectra of the minerals and the corresponding band's position denoted by small 
circles that were used in the ratio (B4/B2)×(B4+B11)/B8 against (B4/B3). 

11a 
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Figure 11b Scatterplot shows no preferred trend by the points of iron minerals composition. 

 

 

Figure 11c Scatterplot show iron minerals assigned indistinct scores by (B4/B2)×(B4+B11)/B8, while 
(B4/B3) assigned distinct scores to the minerals. 
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Figure 11d Scatterplot shows the iron minerals are assigned indistinct scores by (B4/B2)×(B4+B11)/B8, 
whereas the (B4/B3) ratio assigned distinct scores to the minerals. 

 

 

Figure 11e Scatterplots of (B4/B2)×(B4+B11)/B8 vs (B4/B3) for the iron minerals show a nonlinear 
relationship, and the supported triangle trend does not work between the mixtures of iron minerals.   
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Scatterplot of  (B4/B2)×(B4+B11)/B8 vs (B12/B8)+(B3/B4) 

This section presents the result from evaluating the band ratios (B4/B2)×(B4+B11)/B8 and 

(B12/B8)+(B3/B4). Figure 12b displays a scatterplot with a linear trend, uniquely scoring each pure iron 

mineral. In contrast, Figure 12c scatterplot reveals ambiguous scores assigned by the ratios, and a clear 

triangular trend for mineral composition is absent. Furthermore, Figure 12d shows the scatterplot suggests 

a trend aligned with mineral composition, yet the ratios assigned indistinct scores to the minerals. Figure 

12e scatterplot shows a linear correlation, but the mixtures of iron minerals are assigned indistinct scores. 

Lastly, Figure 12f illustrates scatterplots for all iron mineral mixtures, and they, too, assigned indistinct 

scores when evaluated by the ratios. 

 
Figure 12a The resampled spectra of the minerals and the corresponding band's position, denoted by small 
circles, that were used in the ratio (B4/B2)×(B4+B11)/B8 vs (B12/B8)+(B3/B4). 

12a 
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Figure 12b Scatterplot shows a linear trend by the points of pure iron minerals assigning each mineral a 
distinct score. 

 

 

Figure 12c Scatterplot show iron minerals assigned indistinct scores by (B4/B2)×(B4+B11)/B8 vs 
(B12/B8)+(B3/B4), no supported triangle trend for mineral composition. 
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Figure 12d Scatterplot shows the iron minerals are assigned indistinct scores by (B4/B2)×(B4+B11)/B8 vs 
(B12/B8)+(B3/B4). Trend follows composition, but the ratios assigned indistinct scores. 

 

 

Figure 12e Scatterplots of (B4/B2)×(B4+B11)/B8 vs. (B12/B8)+(B3/B4) show a linear relationship, and 
the supported triangle trend does not work between the mixtures of iron minerals. 
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Figure 12f Scatterplots of all iron minerals with mixtures are assigned indistinct scores by 
(B4/B2)×(B4+B11)/B8 vs (B12/B8)+(B3/B4). 

This assessment was conducted on all the existing band ratios, and the outcome shows that only (B4/B3) 

adequately assigned distinct scores, thereby discriminating between the minerals. This is summarized in 

Table 9 below, and the analysis is available in Appendix. 

Table 9 Summary of the findings from the analysis of band ratios for discriminating between the iron 
minerals. 

 Existing band ratios plot against each other Performance on Fe-minerals 

1 B11/B8 B4/B2 indistinguishable 

2 B11/B8 B4/B3 Distinguishes hematite 

3 B11/B8 B12/B11 indistinguishable 

4 B11/B8 (B4+B11)/B8a indistinguishable 

5 (B3+11)/(B4+B8) (B4+B11)/B8a indistinguishable 

6 (B12/B8)+(B3/B4) (B4+B11)/B8a indistinguishable 

7 (B12/B8)+(B3/B4) (B4/B2)×(B4+B11)/B8 indistinguishable 

8 B4/B2 B4/B3 indistinguishable 

9 (B4/B2)×(B4+B11)/B8 B4/B2 indistinguishable 

10 (B4/B2)×(B4+B11)/B8 B4/B3 indistinguishable 

11 (B4/B2)×(B4+B11)/B8 B11/B8 indistinguishable 
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3.4 Experimenting with new band ratios 

This section shows the results of experimenting with new band ratios that can assign distinct scores to the 

minerals. This is a result of the outcome from the results of the analysis of the existing band ratios in Table 

3 from section 3.3.4, which demonstrates that only hematite was assigned distinct scores by the (B4/B3) 

band ratio. In contrast, jarosite and goethite minerals appeared to have indistinct scores, as illustrated in 

Figure 10f. Therefore, further analysis of the band ratio is required to distinguish the other iron minerals. 

Firstly, Table 10 shows the result from the examination of the relationships between S2 bands and spectral 

features of iron minerals. Consequently, the analysis shown in Table 10 guided the choice of band ratios 

that were experimented on the iron minerals. Furthermore, in this study, a scoring system was employed to 

evaluate the new band ratios in discriminating specific iron minerals. The scoring ranged from High 

(indicating distinctively high scores in comparison to the other minerals), Intermediate (distinctively in-

between scores), and Low (distinctively low scores).  

Table 10 Displays relationships between bands and spectral features of iron-bearing minerals. 

Relationship between bands and spectral features 

Bands Jarosite Goethite Hematite 

B2 Absorption Absorption Absorption 

B3 Absorption Peak Absorption 

B4 Peak Absorption Absorption 

B5 Peak Absorption Absorption 

B6 Peak Peak Peak 

B7 Absorption Peak Shallow absorption 

B8 Absorption Absorption Absorption 

B8A Absorption Absorption Absorption 

B9 Absorption Absorption Shallow absorption 

B11 Peak Peak Peak 

B12 Absorption Peak Peak 

Table 11 provides a summarized overview of the experimental results obtained from the newly developed 

band ratios. As these are summarized results, detailed discussions and further elaborations related to the 

experiments will be presented in Figures 13-15 in the subsequent sections of the study. The objective of 

this summary shown in Table 11 below is to provide an initial understanding of the results and 

interpretation of the experiments. Various techniques, including simple band ratio, the combination of band 

ratios, and the relative absorption band depth approach, have been utilized in this study. For the simple 

band ratio technique using the (B3/B2) band ratio, it was experimented for differentiating goethite, utilizing 

data from Table 10. The results showed goethite receiving distinct scores, while jarosite and hematite were 

assigned low scores (as shown in Figure 13). Moreover, the ratio (B3/B4) was tested, but its performance 

was inadequate in terms of assigning distinct scores to the minerals (as shown in Figure 13). Similar 

performances were encountered with (B7/B9), which assigned indistinct scores to the minerals. 

Nevertheless, when these two ratios were combined to form (B3/B4)+(B7/B9), the ability to assign distinct 

scores to the minerals improved, as shown in Figure 13. 

Subsequently, the (B5/B12) ratio was investigated for its potential to identify jarosite and differentiate 

between the minerals. However, this ratio did not perform well (as shown in the Appendix 1-2). To 

overcome this, the (B5+B11)/B12 band ratio was derived using the Relative Absorption Band Depth 

approach as illustrated by Figure 2, section 2.3.4) to enhance the discrimination between the minerals and 

identification of jarosite. The scatterplot depicted in Figure 14 shows that this ratio successfully assigned 

distinct scores to the minerals. Therefore, using the band ratio (B5+B11)/B12, jarosite received a high 
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score, goethite an intermediate score, and hematite a low score. This analysis presents promising results for 

the novel band ratios in identifying and discriminating iron-bearing minerals. Detailed analyses and 

discussions of these results will be elaborated upon in the figures in the following sections. 

Table 11 Summary of novel band ratios performances on discriminating the iron-bearing minerals 

Techniques and performance of the band ratio 

Technique Simple Band Ratio Band Ratios Combination 
Relative 

Absorption Band 
Depth 

Band ratio B3/B2 B5/B12 
(B3/B2)+ 
(B7/B9) 

(B3/B4)+ 
(B7/B9) 

(B5+B11)/ 
B12 

Band 
ratio 

scores 

High Jarosite Jarosite Goethite Goethite Jarosite 

Intermediate Goethite Goethite Jarosite Jarosite Goethite 

Low Hematite Hematite Hematite Hematite Hematite 

 

Scatterplots of (B3/B2) vs (B3/B2)+(B7/B9) 

This section shows the result from the experiment conducted for the band ratio (B3/B2) vs 

(B3/B2)+(B7/B9). The result showed a linear trend and correlation, uniquely scoring each pure iron 

mineral. Goethite received distinct high scores, while jarosite intermediate and hematite were assigned low 

scores. However, some points appeared to overlap when the mixtures were added (Figure 13c), especially 

between jarosite and hematite. These band ratios are correlated, assigning distinct scores to varied mineral 

compositions. The correlation is a direct relationship, meaning that as (B3/B2) changes, (B3/B2)+(B7/B9) 

changes; therefore, there is a consistent change in the band ratios. 

 

Figure 13a The resampled spectra of the minerals and the corresponding band's position, denoted by small 
circles, that were used in the ratio (B4/B2)×(B4+B11)/B8 vs (B12/B8)+(B3/B4). 
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Figure 13b Band ratios show a linear trend and correlation, uniquely scoring each pure iron mineral. 

 
Figure 13c shows band ratios are correlated, assigning distinct scores to varied mineral compositions. 
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Scatterplots of (B3/B4)+(B7/B9) vs (B5+B11)/B12 

This section presents the result from experimenting with the band ratios (B3/B4)+(B7/B9) vs. 

(B5+B11)/B12 aimed at discriminating goethite and jarosite, respectively. The results showed jarosite 

receiving distinct high scores, while goethite and hematite were assigned intermediate and low scores by 

(B5+B11)/B12 ratio, respectively as shown in Figure 14; in contrast, (B3/B4)+(B7/B9) assigned goethite 

distinct high scores, jarosite intermediate and hematite low scores.  

The observation from the scatterplots shows a clear supported triangle trend supporting varied mineral 

composition. A general nonlinear trend with the plots positioned in a triangular trend for the pure minerals 

is illustrated in Figure 14b. On the other hand, Figure 14c shows each mineral mixture appears to follow a 

linear trend, where the less iron mineral composition moves towards a central point, and higher amounts 

of iron minerals in the mixtures are closer to the pure iron mineral plot. Consequently, the band ratios 

appear to be correlated; as one band ratio changes, the other band ratio change. In some cases, the 

correlation is either positive or negative. For example, in Figure 14d, mixtures of hematite+jarosite and of 

hematitie+goethite exhibit a positive correlation by the ratios, while for the mixtures of goethite+jarosite, 

a negative correlation is observed, one ratio increase, and the other decrease. 

 

Figure 14a Resampled spectra of the minerals and the corresponding band's position denoted by small 
circles that were used in the ratio (B3/B4)+(B7/B9) vs (B5+B11)/B12.  

14a 
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Figure 14b Scatterplot shows a nonlinear trend with plots positioned in a triangular trend. Each mineral is 
assigned distinct scores. 

 
Figure 14c Scatterplot shows iron minerals mixtures assigned indistinct scores by (B3/B4)×(B7/B9) vs 
(B5+B11/B12), depicting a supported triangle trend for varied mineral composition. 
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Figure 14d Scatterplot shows the iron minerals assigned distinct scores by (B3/B4)×(B7/B9) vs 
(B5+B11/B12). The triangular trend depicts varied composition; however, the points move towards the 
center. 
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3.5 Evaluating the Novel Band Ratios 

The preceding analyses and experiments within controlled environments have yielded novel band ratios 

that demonstrate the potential to discriminate between the various iron-bearing minerals. However, the 

actual applicability and effectiveness of these ratios in real-world settings remain a concern that this section 

seeks to address. The Cuprite area, known for its mineral diversity and complex geological characteristics, 

is selected as the reference location for this investigation. Therefore, the evaluation involves a detailed 

comparison of the novel band ratios with published reference data in a real-world geological context 

(Cuprite area). The accuracy or lack thereof of matching with reference data, the ability to identify specific 

minerals, and how applicable it is to real-world geological settings define success or failure. It is crucial to 

highlight an important distinction between the classifications adopted in this research and the reference 

data. The hyperspectral map referenced in this study is a “hard classification” approach. This method 

allocates each pixel in the dataset to a single class, indicating that the pixel belongs entirely to that class and 

no other. Conversely, this study employs a “soft classification” approach, where each pixel determines the 

probability or proportion of that pixel belonging to each class. Hence, instead of classifying a pixel into a 

specific class, a range of possibilities reflecting the mixed nature of real-world environments is given.  

Two reference maps of the AVIRIS data from the Cuprite area were utilized. The first map highlights the 

dominant iron-bearing minerals within the 400 to 1300 nm electronic absorption wavelength range (Figure 

3a). The second map showcases the primary clays, micas, sulfates, and carbonates in the 1.3- to 2.5-μm 

vibrational absorption wavelength range (Figure 3b). 

3.5.1 Single-band Gray Image 

Figure 15a shows a map in single-band gray created by the existing band ratio (B4/B3). The brightest pixel 

(i.e., highest value) highlighted hematite distribution in the area. This is observed in the central and the east 

part of the image. On the other hand, Figure 16a shows the map produced by (B3/B2), where the 

highlighted area in the southwestern part of the image was intended to discriminate goethite; however, in 

the image, the bright pixels highlight mixtures of iron minerals. This is according to the published map, 

which classified these areas as mixtures of iron minerals, as shown in Figure 16b. Finally, Figure 17a shows 

the map produced by (B5+B11)/B12, where it highlights the distribution of argillic alteration zones in the 

west and east of the image; however, this ratio was intended to discriminate jarosite. 

 

 

 

 

 

 

 

 

 

 

 

 



Discrimination of individual Iron-bearing minerals with the Sentinel-2 Super-Spectral Imager 

46 
 

 
Figure 15a Single-band gray image generated by the band ratio (B4/B3) is shown here, with the highest value indicating the hematite distribution. Notably, hematite 
is highlighted in the central part of the map and to the east. 15b Mineral map utilizing the 400- 1300 nm electronic absorption band of the AVIRIS data, showing the 
spectrally dominant Iron-bearing minerals at Cuprite. 
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Figure 16a. Single-band gray image generated by the band ratio (B3/B2) highlighted mixtures of iron minerals distribution; however, the ratio discriminates goethite 
in the laboratory, predominantly in the southwest part of the image and some central part. Figure 16b  Mineral map utilizing the 400- 1300 nm electronic absorption 
band of the AVIRIS data, showing the spectrally dominant Iron-bearing minerals at Cuprite. 
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Figure 4Figure 17a Single-band gray image generated by the band ratio (B5+B11)/B12 highlights alteration zones, particularly in the west and east of the image. 
Alunite has the brightest pixels than kaolinite. 17b Mineral map of the 1300 to 2500 nm vibrational absorption wavelength region of the AVIRIS data, showing the 
spectrally dominant clays, micas, sulfates, and carbonates at Cuprite.  
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3.5.2 False Color Composite (RGB) map 

This section shows a mineral map generated by combining three band ratios in RGB (B4/B3), (B3/B2), and (B5+B11/B12) to display the distribution of the iron-

bearing minerals in the area. The Red color denotes Hematite; Green is a mixture of iron minerals with Goethite dominance; Blue is Alunite + Kaolinite + Jarosite. 

Furthermore, the RGB map is being compared with the published hyperspectral map.  

 

Figure 18 RGB false color composite map generated by combining three band ratios (B4/B3), (B3/B2), and (B5+B11/B12) shows the distribution of the iron-
bearing minerals in the area. RGB: Red color denotes Hematite, Green is a mixture of iron minerals with Goethite dominance, and Blue is Alunite + Kaolinite + 
Jarosite. 18b Mineral map utilizing the 400- 1300 nm electronic absorption band of the AVIRIS data, showing the spectrally dominant Iron-bearing minerals at 
Cuprite. 
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Figure 19a RGB false color composite map generated by combining three band ratios (B4/B3), (B3/B2), and (B5+B11/B12) shows the distribution of the iron-
bearing minerals in the area. RGB: The Red color denotes Hematite, Green is a mixture of iron minerals with Goethite dominance, and Blue is Alunite + Kaolinite 
+ Jarosite. 19b Mineral map of the 1300 to 2500 nm vibrational absorption wavelength region of the AVIRIS data, showing the spectrally dominant clays, micas, 
sulfates, and carbonates at Cuprite. 
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Figure 20a. Single-band gray image generated by the band ratio (B3/B4)+(B7/B9) highlighted mixtures of Goethite with other iron minerals distribution; the ratio 
discriminates goethite in the laboratory. Here it show it did not show clear distribution. Figure 16b  Mineral map utilizing the 400- 1300 nm electronic absorption 
band of the AVIRIS data, showing the spectrally dominant Iron-bearing minerals at Cuprite. 
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Figure 21 RGB false color composite map generated by combining three band ratios (B4/B3), (B3/B4)+(B7/B9), and (B5+B11/B12) shows the distribution of the 
iron-bearing minerals in the area. RGB: Red color denotes Hematite, Green is from (B3/B4)+(B7/B9) and show a lot of mismatches, and Blue is Alunite + Kaolinite 
+ Jarosite. 18b Mineral map utilizing the 400- 1300 nm electronic absorption band of the AVIRIS data, showing the spectrally dominant Iron-bearing minerals at 
Cuprite.
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4 DISCUSSION 

This chapter intends to interpret the findings of this study, juxtaposing them against the established 

knowledge, explaining the methodologies, the significance of the results, and the potential implications for 

future mineralogical and remote sensing research. The chapter is divided into sections. Firstly, the Spectral 

features of iron minerals are discussed, where the applicability of the spectra from the USGS library is 

discussed, followed by a discussion on Pure Iron Minerals and Mixtures and their Influence on spectral 

features. The section deals with Multispectral Analysis, where Resampling and Comparison of Multispectral 

Sensors were discussed, followed by Band ratios analysis of existing and novel ratios, and finally, a 

Comparison of Sentinel-2 and Hyperspectral Output was presented. Firstly, the spectral features of iron 

minerals, examining the relevance of spectra from the USGS library, was discussed. This is succeeded by 

an exploration of pure iron minerals and mixtures and their respective implications on spectral features. 

The section then presents the multispectral analysis, highlighting the resampling and comparison of 

multispectral sensors. Further, the evaluation of band ratios focuses on both existing and novel ratios. To 

conclude, a comparative analysis of Sentinel-2 and Hyperspectral output is presented. 

4.1 Spectral Features of Iron Minerals 

The identification and mapping of minerals depend on understanding their distinctive spectral features and 

how they behave when interacting with other materials or environments. This section investigates the 

diagnostic characteristics of iron minerals and their associated mixtures, examining them in both laboratory 

and natural settings.  

Following the analysis and evaluation of the USGS Spectral Library, it was observed that the spectra of 

specific iron minerals, such as hematite, jarosite, and goethite, are present in varied proportions and 

compositions (Table 8; Figure 7a-c). This means that the spectrum of hematite could be collected from a 

sample with impurities different from that of goethite and the same with jarosite, as discussed below. 

Consequently, it does not provide a leveling ground for comparing the influence of gangue or impurities 

on the various iron-bearing mineral spectra. For example, comparing the spectra of synthetically produced 

hematite (depicted in red) with the spectra available from the USGS library, the observation shows a 

considerable range in composition from the samples. These include mixtures with quartz, mica, and 

kaolinite, with quantities varying from 2% to unspecified amounts. These varied mineral proportions and 

compositions are not exactly available in goethite and jarosite. Their spectra, as illustrated in Table 8 and 

Figures 7 a-c, also have different sets of mineral mixtures in varied proportions. 

The preceding discussion addresses the research questions. To provide further clarity, specific answers to 

these questions are detailed below. For instance, in Figure 7a, the jarosite spectra obtained from the USGS 

library display the characteristic broad features around 900 nm and 2250 nm, akin to the synthetic mineral 

samples. However, deviations in the spectral signatures were observed, with some spectra exhibiting 

shallower depths, weaker shoulders, and additional features. These variations are consistent with the 

metadata presented in Table 8, indicating differences in composition and spectrometer usage. In addition, 

the spectrum of Jarosite_GDS98_K_90C_Syn_NIC4a lacks features in the VNIR region due to the 

limitations of the spectrometer used in its collection. Furthermore, the spectrum of 

Jarosite_WS368_(Pb)_BECKc exhibits weak iron features, indicative of a distinct mineral composition. 

Similarly, the spectra of goethite and hematite from the USGS library and synthetic mineral samples display 

features around the 900 nm wavelength. However, some of these spectra exhibit deeper features that are 

characteristic of the minerals, while others appear shallower. Also alien features are also observed. This 

variation in depth of spectral features and introduction of new features highlights the effect of different 

mineral compositions and illustrates the broad spectral diversity within the same mineral type. 
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Consequently, these findings serve as a demonstration of the distinct spectral features that are necessary to 

consider when identifying and discriminating iron minerals using remote sensing techniques. This also 

highlights the invaluable utility of the USGS Spectral Library as a comparative tool and highlights the need 

to consult the USGS Library metadata before using spectra. Also, the applicability of the spectra from the 

USGS library depends on the objective of the study to be conducted. 

The applicability of the USGS spectral library should be considered in the context of the specific research 

objectives and the limitations of the data. Therefore, the extent to which one can depend on this library for 

comparing pure iron minerals and mixtures depends on several factors. For example, it does not contain 

the spectra of all minerals that occur naturally and artificially and the variation in proportions and 

compositions of the samples. It is often beneficial to supplement library data with additional measurements 

or field observations specific to the study at hand. 

4.1.1 Pure Iron Minerals and Mixtures 

The XRD analysis results from section 3.1.1 showed distinct and characteristic peaks for each pure iron 

mineral. For jarosite, peaks were identified at the specific 2θ angles, corresponding to its unique crystalline 

structure established in the JCPDS database. The XRD pattern of the jarosite shows distinct peaks 

corresponding to the trigonal crystal system, with the most intense peak often observed around 26-28 

degrees 2-theta (Figure 4a). At the same time, the XRD profile of goethite showed a similar match, with 

sharp and clear peaks corresponding to the documented crystallographic planes of goethite. The profile 

shows a strong diffraction peak around 21 degrees 2-theta and other smaller peaks at different angles. This 

profile reflects the orthorhombic crystal system as documented in the JCPDS database (Figure 4b). 

Moreover, the XRD patterns of hematite displayed characteristic peaks consistent with the established 

hematite profile in the JCPDS database. The peaks are sharp, signifying a very well-crystallized sample. The 

most intense peak is observed around 33 degrees 2-theta and several peaks. This profile reflects the 

rhombohedral crystal system as established in the JCPDS database (Figure 4c). These results confirmed the 

purity of these iron-bearing minerals, as each mineral’s distinct diffraction pattern matched the known 

structures in the JCPDS database. The ability to match these specific mineral profiles with the established 

profile validates the synthetic minerals created. Conclusively, the XRD analysis provided a robust method 

of verifying the crystal structure of the synthesized minerals, thus confirming the reliability of the 

synthesized minerals used in this study. 

The spectral characteristics of the synthetic minerals were determined using the VNIR (380-1000 nm) 

electromagnetic spectrum, highlighting the absorptions caused by electronic processes such as crystal field 

and charge transfer absorption. For example, hematite showed characteristic crystal-field absorptions at 

520 and 867 nm, goethite at 659 and 929 nm, and jarosite at 906 nm (Figure 5). Hence, the earlier studies 

affirm the findings of this research as they coincide in demonstrating that each mineral possesses unique 

absorption features, which are reflective of its crystalline structure and composition. 

Furthermore, charge transfer absorptions for the minerals jarosite, goethite, and hematite were observed at 

436, 474, and 520 nm, respectively (Figure 5). In addition, jarosite has absorption at 2250 nm attributed to 

Fe-OH vibrational process (Figure 5). This indicates electron transitions between the different energy levels 

and hence, influences the spectral features of the minerals, thereby providing a basis for identification and 

discrimination. This indicates that the potential to employ the VNIR spectral signatures to distinguish 

between iron minerals in practical situations is highlighted. On the other hand, a hyperspectral sensor is 

capable of utilizing the SWIR feature, while a regular multispectral sensor, perhaps with the exception of 

ASTER, cannot do so. This means while a hyperspectral sensor can detect finer details in VNIR and SWIR 

wavelength regions, a typical multispectral sensor may lack this capacity, limiting its use in distinguishing 

certain minerals. 
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Furthermore, in an effort to improve the quality of the spectra that were acquired from spectral analysis 

using the ASD contact probe, attempts were made to manufacture pellets (Appendix 1-2). These pellets 

were prepared with 32 mm D/A ATLAS series dies (Specac) by applying 20 tons to compress 2 g of 

powdered goethite in 25-ton hydraulic pellet pressure (Specac), as shown in Appendix 1-2. This procedure 

was performed without moisture. However, the fragility and friability of the pellets, as well as the 

contamination of the binder, render this unachievable. Nevertheless, spectra of high quality were collected, 

and the aim was achieved. 

Moreover, as shown in Figure 6, the physical properties of the synthetic minerals, mainly their different 

shades of colors, were unique and consistent with the literature discussed in the introduction. These colors 

directly reflect the type of wavelengths the mineral absorbs, reflects, and transmits, which is closely related 

to the electronic processes occurring within the mineral’s crystal structure. Each mineral exhibits a unique 

color due to its unique absorption and reflection characteristics across the visible spectrum. For example, 

jarosite appears pale yellow because it absorbs light in the part of the spectrum associated with blue and 

violet. On the other hand, goethite is brown because it absorbs light in parts of the spectrum corresponding 

to blue and green. Hematite exhibits a deep red color due to the absorption of light in the blue-green 

portion of the spectrum. These color differences arise from the “color centers,” which are specific points 

in a crystal lattice that can absorb and emit light of specific wavelengths. This result is also supported by 

previous research (Hunt, 2012). Recognizing these unique color-spectra relationships is crucial in the 

spectral analysis of minerals and their practical applications. However, one must keep in mind that while 

color can provide an initial clue, it alone cannot confirm the presence of a specific mineral due to factors 

like impurities, weathering, and variations in light conditions. Hence, it is often used in combination with 

other spectral features, such as absorption features in the NIR and SWIR wavelength regions, which can 

provide additional evidence for mineral identification. 

4.1.2 Influence of mixtures on iron mineral spectral features 

The study further revealed that changes in the concentration of synthetic iron minerals resulted in variations 

in the spectral intensity and color hue. For example, the mixture of hematite with calcite introduces 

absorption at 2250 nm and thus causes trouble differentiating the hematite from the jarosite (Figure 8b). 

Also, as the hematite concentration increased, the spectral features at 900 nm became broader and more 

intense, and the color deepened to a rich red color (Figure 8b). Similarly, mixtures of goethite and jarosite 

formed complex spectral signatures, where the two minerals introduce their features to the spectra (Figure 

8a). Consequently, this suggests that mineral mixtures complicate the spectral signatures, making 

identification and discrimination more challenging. Therefore, the diversity in spectral compositions 

suggests that various proportions and mixtures of other minerals in natural environments can influence 

iron-bearing minerals’ spectral signatures and color manifestation. This is crucial because it may result in 

incorrect mineral identification, thereby affecting remote sensing and mining exploitation. 

The diagnostic spectral features of iron-bearing minerals can be distinguished within mixtures, depending 

on some conditions. These include the type of the mixture, the proportion of iron-bearing minerals relative 

to other minerals in the mixture (Figure 8a-b), and the specific sensor employed, as delineated in Table 8. 

Although the spectral characteristics of the iron minerals might experience subtle intensity variations, their 

positions, and shapes remain representative. Hence, while some mixtures might influence reflectance levels 

marginally, they do not introduce any notable spectral features in the region of interest. Even though the 

spectral features of pure iron-bearing minerals bear a resemblance to those in mixtures, the distinctions are 

mainly obvious in the depth of the features and potential additional characteristics based on mixture 

composition (as illustrated in Figure 8a-b). Mixtures with calcite and quartz tend to increase the reflectance 

levels of iron minerals, yet the diagnostic features persist as representative. For instance, within the VNIR 

wavelength domains, mixtures comprising quartz might increase reflectance while diminishing absorption 
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feature intensity; however, they do not introduce any obvious new features to the spectrum (as seen in 

Figure 8a-b). 

4.2 Multispectral Analysis 

The comparison of high-resolution spectra of synthetic iron minerals collected using the ASD with Sentinel-

2, Landsat 8, and ASTER spectra offers valuable insights, as discussed in section 3.3. As Figure 9 illustrates, 

ASTER and Landsat 8 possess fewer bands in the VNIR wavelength region; thus, they lack bands at some 

wavelength positions where iron minerals have diagnostic features (Figure 1). This implies that these sensors 

may be limited in accurately identifying or discriminating iron-bearing minerals based on their spectral 

characteristics. In contrast, Sentinel-2 displayed a broader band presence in the VNIR than in ASTER and 

Landsat 8. This could provide a better spectral match with the high-resolution spectra of iron minerals, 

thus enhancing its ability to discriminate between minerals. This difference substantiates the choice of 

Sentinel-2 used in this study. 

4.2.1 Existing band ratio analysis 

Eight band ratios were evaluated to assess their success in discriminating the iron minerals. The assessment 

indicated that only one of these ratios (B4/B3) assigned a distinguishable score to hematite from jarosite 

and goethite (as illustrated in Table 11, Figure 10-12). As demonstrated in Figure 10, scatterplot analysis of 

pure iron minerals revealed a nonlinear distribution. This relationship was consistent when iron minerals 

mixtures were added and maintained with quartz and calcite mixtures. The scatterplot analysis showed that 

the band ratio (B4/B3) effectively discriminates hematite from goethite and jarosite, while (B11/B8) does 

not offer distinct discrimination between the minerals (Figure 10). Furthermore, scatterplots of band ratios 

(B4/B2)×(B4+B11)/B8 and (B12/B8)+(B3/B4) also showed that these ratios did not adequately 

distinguish between the minerals (Figure 12a-f). Hence, this suggests that while one existing band ratio can 

discriminate specific minerals, others may not distinguish the minerals. And this opens up a need for 

additional analysis and experimentation to provide more comprehensive mineral discrimination.  

4.2.2 Novel band ratios experiment 

The insufficiency of the existing band ratios, except for (B4/B3), emphasized the need to explore new band 

ratios that can more effectively discriminate between the minerals. Consequently, an initial analysis of the 

relationship between resampled Sentinel-2 bands and the spectral features of the iron minerals revealed 

specific relationships that were explored to discriminate the minerals (jarosite, goethite, and hematite) 

(Table 11). From the analysis, it can be observed that there are significant variations in the spectral 

characteristics of jarosite, goethite, and hematite across different Sentinel-2 bands. Consequently, this 

analysis forms a foundational basis for further experimentation with novel band ratios, as demonstrated in 

Figures 13 - 15. 

Firstly, the analysis starts by testing single-band ratios to determine their success in distinguishing spectral 

features. The results from these tests, however, proved to be insufficient in providing the desired 

discrimination, as illustrated in section 3.4. Given the limitations of single-band ratios, the potential of 

combining multiple ratios was explored. Through the use of scatterplots, these combinations were 

examined (Figure 13-15). It was this approach that yielded the desired results, as discussed in section 3.4. 

This development from single to combined ratios highlights the complexities in iron-bearing mineral 

spectral discrimination and highlights the importance of iterative testing in identifying optimal techniques 

for specific minerals. 

The experiment using the band ratios (B3/B2) vs. (B3/B2)+(B7/B9) aimed at discriminating goethite show 

a linear trend (Figure 13a-c). This is evident with goethite consistently obtaining high scores, which not 
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only signifies its distinct spectral response but also highlights the utility of the band ratios in identifying the 

responses. Meanwhile, the allocation of intermediate scores to jarosite and low scores to hematite 

demonstrates a recognizable trend, which is beneficial for classification (Figure 13). However, the presence 

of overlapping points of jarosite and hematite when mixtures come into play, highlights the challenge of 

differentiating closely related or spectrally similar minerals (Figure 13c). While goethite stood out distinctly, 

jarosite and hematite will be classified together because they share a spectral neighborhood. Consequently, 

the overlap between jarosite and hematite indicates the complexity of using just one band ratios for 

differentiation, especially in terrains where mineral mixtures are prevalent. Furthermore, the correlation 

observed between the band ratios shows that one ratio can be used to validate the other. Since the 

correlation is strong, using both band ratios is redundant for this application because the aim is to 

discriminate between the minerals. therefore, one ratio (B3/B2) suffices. 

Following limitations observed with the initial explored band ratios (B5/B12), (B3/B4), and (B7/B9), 

further band ratio analysis was conducted. More promising results were obtained by employing the Relative 

Absorption Band Depth technique and combining band ratios. Consequently, further analysis involving the 

(B5/B12) band ratio was introduced at the discriminate jarosite and the minerals. A deeper analysis 

considered incorporating band B11 into the formula, utilizing the Relative Absorption Band Depth 

approach as discussed in section 2.3.4. This method is based on the spectral feature of jarosite having a 

peak at B5 and B11 and absorption at B12, in contrast to goethite and hematite, both of which show 

absorption at B5 and peaks at B11 and B12. The results indicate that the band ratio (B5+B11)/B12 

discriminates the minerals, assigning a high score to jarosite, an intermediate score to goethite, and a low 

score to hematite (Figure 14b). On the other hand, combining two band ratios (B3/B4) and (B7/B9) shows 

improvement in the discrimination of goethite, jarosite, and hematite minerals. Consequently, the new band 

ratio (B3/B4)+(B7/B9) was introduced, and the results illustrated in Figure 14d demonstrate the 

discrimination of the minerals. 

The (B5+B11)/B12 ratio provided discrimination between the iron minerals, with the jarosite obtaining 

distinct high scores, signifying its unique spectral signature in this ratio (Figure 14d). Goethite and hematite, 

however, were assigned intermediate and low scores, respectively. This is in contrast to the band ratio 

(B3/B4)+(B7/B9), where goethite assigned high scores, followed by jarosite and hematite (Figure 14d). 

Such contrasts reveal the varied spectral features of these minerals and the sensitivity of different band 

ratios towards them. Furthermore, the scatterplots offer insights into the behavior of these minerals, 

especially in their pure forms versus their mixtures. The supported triangular trend observed in Figure 14c 

provides a representation of the variation in mineral composition. This is highlighted by the distinct position 

of the pure minerals in a nonlinear trend (Figure 14b-d).  

This trend highlights the variable spectral behavior of the iron minerals based on their purity and mixture 

composition. In addition, one of the key observations was the clear correlation between the band ratios. 

This correlation appears both positive and negative depending on the mixtures, as shown in Figure 14d, 

and it can be an instrumental tool for the iron mineral classification. This is illustrated in the mixtures of 

iron minerals, as shown in Figure 14d; the positive correlation observed in the hematite+jarosite and 

hematite+goethite mixtures by the band ratios indicates a consistent and predictable behavior between 

these minerals. This is juxtaposed by the mixtures of goethite+jarosite, where a negative correlation is 

observed (Figure 14d). Such relationships suggest a counteractive behavior between these minerals when 

viewed through (B3/B4)×(B7/B9) vs (B5+B11/B12) band ratios.  

In addition, Figure 14b-d further highlights the behavior of the mineral mixtures by suggesting that as the 

iron mineral composition in these mixtures decreases, the data points tend to converge towards a central 

point, as illustrated in Figure 14d. This means that as the purity of the mineral decreases or as the mixture’s 

proportion increases, the plots trend linearly toward the center. This is illustrated in Figure 14d by the 
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mixtures of iron minerals with quartz and calcite. The band ratios show a positive correlation for hematite 

mixtures with quartz and calcite and a negative correlation for goethite mixtures with quartz and calcite. 

Similarly, the ratios show a negative correlation for jarosite mixtures with quartz and calcite. Lastly, the 

triangular trend highlights the varied composition of the minerals; as mixtures become complex, the trend 

indicates a combining behavior of the data points, moving towards the center and mixing. It is essential to 

highlight, as depicted in Figure 8b that employing band 12 can be challenging in natural environments 

where calcite minerals dominate. It reveals that when mixed with calcite, both goethite and hematite display 

absorption around 2250 nm. Such an overlap makes distinguishing goethite and hematite from jarosite and 

other carbonate minerals challenging. This scenario highlights a practical challenge, given that iron minerals 

in nature do not occur in a pure state 

4.2.3 Comparison of Sentinel-2 and Hyperspectral Output 

The eastern area of the single-band gray image (Figure 15a) generated by (B4/B3) show bright pixel in the 

areas characterized as hematite by the published map (Figure 15b). These locations and the central part of 

the image have bright pixels, which coincide with hematite distribution in the published map. Interestingly, 

this ratio captures small areas in the central area, as shown in Figure 15a. 

On the other hand, the single-band gray image (Figure 16a) generated by (B3/B2) shows the distribution 

of mixtures of iron minerals around the western part of the image; however, the ratio, when tested in the 

laboratory, discriminated goethite. This does not coincide completely with the published map, keeping in 

mind that this study employed a soft classification, unlike the hard classification of the published map 

(Figure 16b). In addition, the area marked as CG is characterized as chlorite in the published map is also 

highlighted. Although, the western area received intermediate brightness than the central, with a very bright 

pixel. This can be attributed to two factors or both. Firstly, this area has been documented by Swayze et al. 

(2014) to be a propylitic alteration zones, where the rocks have experienced low to moderate temperature 

hydrothermal alteration caused by iron and magnesium-bearing hydrothermal fluids forming chlorite and 

magnetite, and both subsequent weather to form goethite, when there is a presence of oxygen and moisture, 

leading to the oxidation of the iron(II) in chlorite to form iron(III) in goethite. The brightness may come 

from the goethite or their mixture. Secondly, the coexistence of both chlorite and goethite is possible, both 

being products of hydrothermal alteration processes, and both can capture features in the VNIR when 

chlorite has iron. 

In addition, surrounding the chlorite area (CG) in the published map, which is denoted by C1, is also 

highlighted by the image of the (B3/B2) band ratio (Figure 16a). This area is classified as iron minerals, as 

shown in Figure 16b. Other bright pixels in the image are classified as iron minerals with a broad 980 nm 

band with white mica by the published hyperspectral map. However, white mica has no significant 

electronic absorptions but exhibited prominent features in the vibrational spectral region SWIR and hence 

did not interfere with the identification of the coexisting iron minerals in the VNIR, with a broad feature 

closer to 980 nm. Consequently, the brightness is due to iron minerals in the VNIR, and this ratio may have 

worked here because goethite is dominant. In addition, mica has been mapped at the location by a map 

generated by SWIR wavelength, as shown in Figure 17b. Therefore, C1 is characterized as a mixture of 

goethite and iron minerals, with goethite being the dominant iron mineral. 

The central area shown in Figure 17, the single-band gray image generated by the (B5+B11)/B12 ratio, 

intended to discriminate jarosite, shows very bright pixels in areas documented as no detection in the VNIR 

range published map as shown in Figure 16b. These are the alteration zones documented in the SWIR 

published map (Figure 17b). Consequently, this can be attributed to the influence of much stronger 

absorptions of kaolinite and alunite at 2265 nm (Figure 17b) corresponding to band 12, thereby 

overwhelming the vibrational absorption feature of Jarosite at 2265 nm, as shown in the image by 

(B5+B11)/B12 (Figure 17a). Similarly, the three blobs in the south are known as Alunite Hills (Swayze et 
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al., 2014) and are highlighted by (B5+B11)/B12. This is from the influence of the deep alunite feature 

around B12, with a very low reflectance value that makes the ratio show a very bright pixel, thereby 

overwhelming the jarosite feature. Depending on the geological condition, for instance, in an area where 

there is an absence of aluminum-rich rocks and jarosite is high in abundance, this ratio may work in 

identifying jarosite.  

Furthermore, the central area, between the two alteration zones, often shows varied brightness ranging 

from low to intermediate to low. The variation may be attributed to variation in the composition. This area 

has been reported as an intercalation of propylitic alteration zones with advanced argillic zones. Therefore, 

the variation is attributed to mixtures of jarosite, goethite, and hematite intercalating with advanced argillic 

minerals (Figure 15b and 17b). In addition, the hyperspectral map also classified these areas as mixtures, as 

shown in Figures 15b and 17b. 

Beyond single-band analysis, this study combines the selected band ratios to produce a map in RGB false 

color composite; this is because the ratios did not work individually but did when put together, thereby 

illustrating the distribution of the iron-bearing minerals collectively. Further, this map is compared with the 

published hyperspectral map to validate the similarities and ensure the accuracy of the observations.  

A notable observation shows an area, denoted as 3M, that a single ratio did not highlight (discussed in 

section 3.5.2), where the composition is a mixture of the three minerals as documented by the published 

map (Figure 15b). This area was not visible in the individual images generated through the different band 

ratios, as shown in Figures 15a-17a. However, it was observed in the RGB image developed by combining 

these band ratios. This observation highlights the improved accuracy in mineral identification when 

combining the band ratios, as opposed to utilizing them individually. The combined band ratio map shows 

similarities with the published hyperspectral map except for the distribution of jarosite. The observations 

suggest that hematite predominantly occupies some parts of the central and eastern parts of the map, with 

dominance in around the eastern region coinciding with the published map, while goethite is concentrated 

mainly in the southwest and some parts of the central regions. This also coincides with the published map. 

In contrast, jarosite does not appear to be discriminated by any of the novel band ratios. Therefore, the 

success of the novel band ratios is validated by their coinciding with the goethite and hematite distributions 

observed in the published maps. 
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5 CONCLUSION 

The spectral analysis of iron minerals offers information that is important for various applications. 

However, understanding the complexities and variations associated with spectral signatures is crucial for 

accurate mineral identification and discrimination. This research bridges some of the existing knowledge 

gaps and emphasizes the importance of a comprehensive approach that takes into account the composition 

and sensor when interpreting mineral spectra. 

Among the eight evaluated existing band ratios, only (B4/B3) conclusively discriminates hematite from 

both jarosite and goethite. Other band ratios either group some minerals together or do not distinguish 

between them effectively. Although some existing band ratios may be utilized for Sentinel-2, their 

applicability is not comprehensive. Notably, existing band ratios struggle to differentiate goethite and 

hematite distinctly. The shortcomings of existing band ratios led to the development of novel band ratios. 

The complexity of discriminating iron-bearing minerals spectra means that a combination of band ratios is 

necessary. For instance, the band ratios (B3/B2) vs. (B3/B2)+(B7/B9) discriminated goethite in the 

laboratory, while in the real world is. Meanwhile, the band ratio (B5+B11)/B12 successfully differentiated 

jarosite from both goethite and hematite. However, this ratio worked in the laboratory, but it was not 

successful in the real world because of the influence of alunite on band 12. Further, the ratio 

(B3/B4)+(B7/B9) discriminated goethite in the laboratory and but it did not work in real-world settings. 

Furthermore, the spectral behavior of iron minerals varies, particularly when they are in pure form versus 

when they are in mixtures. The correlation between band ratios is influenced by the minerals’ composition 

in the mixtures. This suggests that mineral mixtures can introduce challenges in discrimination, especially 

when using a singular band ratio. Iron minerals, when combined with quartz and calcite, display specific 

trends based on their composition and mixture ratios, revealing the complexity of mineral behavior. 

Similarly, in natural environments, the presence of other minerals, especially carbonate minerals like calcite, 

can introduce complications in the discrimination of iron-bearing minerals. For instance, the overlap 

observed in the 2250 nm range when goethite and hematite mix with calcite signifies potential error when 

using certain band ratios in calcite-dominant terrains. 

In the real-world setting of the Cuprite area, hematite distribution was successfully identified with bright 

pixel patterns signifying hematite distribution in the eastern and central parts of the image generated by the 

ratio (B4/B3). This observation was consistent with the published map. Similarly, the (B3/B2) band ratio 

mainly displayed goethite’s distribution, specifically towards the western region. Notably, there were 

inconsistencies compared with the published map, which may be attributed to various factors: the 

coexistence of chlorite and goethite and differences in classification methods between the soft classification 

of this study and the hard classification of the published map. Furthermore, the combined band ratio in the 

RGB false color composite has proved beneficial, especially when the individual band ratios were 

insufficient in mineral identification. The generated RGB image revealed areas that the single ratios did not 

highlight, where the composition is a mixture of the three minerals, as shown in section 3.5.2.  Therefore, 

this shows the advantage of using combined band ratios over single band ratios. In addition, discrepancies 

were observed in the identification of jarosite using the (B5+B11)/B12 band ratio. This could be attributed 

to the overwhelming vibrational absorption features of minerals like kaolinite and alunite, potentially 

masking the weaker absorption feature of jarosite. 

Finally, the study has successfully identified specific iron minerals, particularly hematite and goethite, in the 

real-world setting that display consistency with the reference map, utilizing novel band ratios produced 

using Sentinel-2 bands. The band ratios (B4/B3) identified hematite, whereas (B3/B2) highlighted mixtures 

predominantly consisting of goethite and other iron minerals, and (B5+B11)/B12 identified mixtures of 

jarosite, alunite, and kaolinite. Moreover, (B3/B4)+(B7/B9) worked in the laboratory but did not in the 
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real-world. In addition, this research has successfully produced high-quality spectra of iron minerals, thereby 

adding to the existing spectral libraries, and can be used as a reference for future studies. Also, the study 

revealed the challenges related to the interaction of iron minerals with minerals in the real world, which 

may pose discrimination difficult. 
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5.1 Research questions 

1. How much can be depended on the USGS spectral library for comparing pure iron minerals and 

mixtures? 

Although the USGS spectral library is a fundamental tool, its coverage of iron minerals has notable gaps 

that impact its reliability for band ratio tests and comparison. The laboratory tests have demonstrated the 

behaviour of iron minerals in mixtures and the variations in their spectra that result from mixtures that are 

not fully represented in the library. 

2. Can the diagnostic spectral features of iron-bearing minerals be distinguished in mixtures? 

The diagnostic spectral features of iron-bearing minerals can be distinguished within mixtures, depending 

on some conditions. These include the type of the mixture, the proportion of iron-bearing minerals relative 

to other minerals in the mixture (Figure 7a-c), and the specific sensor employed, as delineated in Table 8. 

Although the spectral characteristics of the iron minerals might experience subtle intensity variations, their 

positions, and shapes remain representative. Hence, while some mixtures might influence reflectance levels 

marginally, they do not introduce any notable spectral features in the region of interest. 

3. How do the spectral features of pure iron-bearing minerals and their mixtures compare? 

While the spectral features of pure iron-bearing minerals bear a resemblance to those in mixtures, the 

distinctions are mainly obvious in the depth of the features and potential additional characteristics based 

on mixture composition (as illustrated in Figure 7a-c). Mixtures with calcite and quartz tend to increase the 

reflectance levels of iron minerals, yet the diagnostic features persist as representative. For instance, within 

the VNIR wavelength domains, mixtures comprising quartz might increase reflectance while diminishing 

absorption feature intensity; however, they do not introduce any obvious new features to the spectrum (as 

seen in Figure 7a-c). 

4. Can the band ratios suggested for other sensors be used in Sentinel-2? 

Many of the existing band ratios were originally proposed for different sensors, as highlighted in Table 3. 

This suggests that Sentinel-2 possesses bands equivalent to those of the other sensors, as depicted in Figure 

9. Consequently, these ratios are applicable to Sentinel-2. 

5. Which iron-bearing minerals can be identified using the existing Sentinel-2 band ratio methods? 

The outcome of the result section shows that hematite can be identified and discriminated from other 

minerals using an existing band ratio (B4/B3), while others can be identified as a group of iron minerals.  

6. Which iron-bearing minerals have not been discriminated against using the existing Sentinel-2 band 

ratios from the published literature? 

Goethite and hematite have not been individually discriminated using the existing band ratios as discussed 

in section 3.3.1. 

7. Which iron-bearing minerals are discriminated against using high-resolution methods, such as 

hyperspectral data, and which ones were found with multispectral data? 

Hyperspectral data, with its high-resolution bands, effectively discriminates among a variety of iron 

minerals, notably jarosite, goethite, and hematite, as illustrated in section 3.5. On the other hand, 

multispectral data, due to its limited spectral resolution, primarily discriminates between goethite and 

hematite, as shown in Figure. This limitation using multispectral data arises from its broader bands, which 

capture less spectral detail compared to hyperspectral data. 
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8. How does Sentinel-2’s output compare to the hyperspectral output that has been published? 

Sentinel-2 output may show a more generalized representation or mineral distribution when mapping 

spectrally closely related minerals. For instance, when mapping jarosite in a real-world setting that has 

alunite or kaolinite associated with it, it may lead to overlapping spectral signatures and, subsequently, 

difficulty in discriminating between the minerals. This is demonstrated in section 3.5. Figures 18-19. 

5.3 Recommendations 

1. For accurate interpretation of spectral data, it is recommended to check the type of mixture, the 

proportion of iron-bearing minerals in relation to other components, and the specific sensor used. 

2. It is recommended that in mineral exploration, especially in regions known for iron ore deposits, 

prioritize the use of the band ratio (B4/B3) due to its proven success in distinguishing hematite. 

3. The limitations of existing band ratios emphasize the need to continue developing and testing novel 

band ratios, especially those that show promise in laboratory settings but not in real-world 

applications.  

4. It is important to investigate how goethite interacts spectrally with common minerals like chlorite 

because of their association in some geological contexts where they coexist, like the cuprite area. 

Future studies should explore further the implications of mixtures and aim for advanced techniques 

that can handle the challenges posed by spectral variability. 

5. It is recommended to employ a data fusion approach that merges spatial information from sentinel-

2 data with subsurface information from geochemical and geophysical data, such as magnetic data, 

to explore the magnetic properties of the subsurface and radiometric data to detect radioelement 

concentrations. 

  



Discrimination of individual Iron-bearing minerals with the Sentinel-2 Super-Spectral Imager 

64 
 

REFERENCES 

Abrams, M. (2000). The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): 
Data products for the high spatial resolution imager on NASA’s Terra platform. International Journal of 
Remote Sensing, 21(5), 847–859. https://doi.org/10.1080/014311600210326 

Abrams, M., & Hook, S. J. (1995). Simulated Aster Data for Geologic Studies. IEEE Transactions on Geoscience 
and Remote Sensing, 33(3), 692–699. https://doi.org/10.1109/36.387584 

Andrews Deller, M. E. (2006). Facies discrimination in laterites using Landsat Thematic Mapper, ASTER 
and ALI data-examples from Eritrea and Arabia. International Journal of Remote Sensing, 27(12), 2389–
2409. https://doi.org/10.1080/01431160600586050 

Bigham, J. M., Fitzpatrick, R. W., & Schulze, D. G. (2018). Iron oxides. In Soil Mineralogy with Environmental 
Applications (Vol. 7, pp. 323–366). Wiley Blackwell. https://doi.org/10.2136/sssabookser7.c10 

Bullock, L. A., James, R. H., Matter, J., Renforth, P., & Teagle, D. A. H. (2021). Global Carbon Dioxide 
Removal Potential of Waste Materials From Metal and Diamond Mining. Frontiers in Climate, 3. 
https://doi.org/10.3389/fclim.2021.694175 

Butt, C. R. M., & Zeegers, H. (1992). Regolith exploration geochemistry in tropical and subtropical terrains. 
Regolith Exploration Geochemistry in Tropical and Subtropical Terrains. https://doi.org/10.1016/0375-
6742(93)90050-v 

Clark, R. N., Swayze, G. A., Gallagher, A. J., King, T. V. V., & Calvin, W. M. (1993). The U.S. Geological 

Survey, Digital Spectral Library: Version 1 : 0.2 to 3.0 μm. U.S. Geological Survey Open File Report 93-
592, 1, 1326. 

Cogram, P. (2018). Jarosite. In Reference Module in Earth Systems and Environmental Sciences. Elsevier. 
https://doi.org/10.1016/b978-0-12-409548-9.10960-1 

Cooper, B. L., Salisbury, J. W., Killen, R. M., & Potter, A. E. (2002). Midinfrared spectral features of rocks 
and their powders. Journal of Geophysical Research: Planets, 107(4). 
https://doi.org/10.1029/2000je001462 

Crowley, J. K., Brickey, D. W., & Rowan, L. C. (1989). Airborne imaging spectrometer data of the Ruby 
Mountains, Montana: Mineral discrimination using relative absorption band-depth images. Remote 
Sensing of Environment, 29(2), 121–134. https://doi.org/10.1016/0034-4257(89)90021-7 

Crowley, J. K., Williams, D. E., Hammarstrom, J. M., Piatak, N., Chou, I. M., & Mars, J. C. (2003). Spectral 
reflectance properties (0.4-2.5 μm) of secondary Fe-oxide, Fe-hydroxide, and Fe-sulphate-hydrate 
minerals associated with sulphide-bearing mine wastes. Geochemistry: Exploration, Environment, Analysis, 
3(3), 219–228. https://doi.org/10.1144/1467-7873/03-001 

Cudahy, T. J., & Ramanaidou, E. R. (1997). Measurement of the hematite: Goethite ratio using field visible 

and near‐infrared reflectance spectrometry in channel iron deposits, Western Australia. Australian 
Journal of Earth Sciences, 44(4), 411–420. https://doi.org/10.1080/08120099708728322 

Dahm, K. D., & Dahm, D. J. (2020). Theoretical Models of Light Scattering and Absorption. In Near-
Infrared Spectroscopy: Theory, Spectral Analysis, Instrumentation, and Applications (pp. 37–60). Springer 
Singapore. https://doi.org/10.1007/978-981-15-8648-4_3 

Driscoll, R. L., & Leinz, R. W. (2005). Methods for Synthesis of Some Jarosites: U.S. Geological Survey Techniques 
and Methods 5-D1. 5. 

Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, C., Laberinti, 
P., Martimort, P., Meygret, A., Spoto, F., Sy, O., Marchese, F., & Bargellini, P. (2012). Sentinel-2: 
ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sensing of Environment, 
120, 25–36. https://doi.org/10.1016/j.rse.2011.11.026 



Discrimination of individual Iron-bearing minerals with the Sentinel-2 Super-Spectral Imager 

65 
 

Ducart, D. F., Silva, A. M., Toledo, C. L. B., & De Assis, L. M. (2016). Mapping iron oxides with Landsat-
8/OLI and EO-1/Hyperion imagery from the Serra Norte iron deposits in the Carajás Mineral 
Province, Brazil. Brazilian Journal of Geology, 46(3), 331–349. https://doi.org/10.1590/2317-
4889201620160023 

Edwards, R., & Atkinson, K. (1986). Ore deposits formed by weathering. In Ore Deposit Geology and its 
Influence on Mineral Exploration (pp. 274–313). Springer Netherlands. https://doi.org/10.1007/978-94-
011-8056-6_7 

Farrand, W. H., Glotch, T. D., Rice, J. W., Hurowitz, J. A., & Swayze, G. A. (2009). Discovery of jarosite 
within the Mawrth Vallis region of Mars: Implications for the geologic history of the region. Icarus, 
204(2), 478–488. https://doi.org/10.1016/J.ICARUS.2009.07.014 

Goetz, A. F. H., & Rowan, L. C. (1981). Geologic remote sensing. Science, 211(4484), 780–791. 
https://doi.org/10.1126/science.211.4484.781 

Hewson, R. D., Cudahy, T. J., & Huntington, J. F. (2001). Geologic and alteration mapping at Mt fitton, 
South Australia, using ASTER satellite-borne data. International Geoscience and Remote Sensing Symposium 
(IGARSS), 2, 724–726. https://doi.org/10.1109/igarss.2001.976615 

Hunt, G. R. (2012). SPECTRAL SIGNATURES OF PARTICULATE MINERALS IN THE VISIBLE 
AND NEAR INFRARED. Https://Doi.Org/10.1190/1.1440721, 42(3), 501–513. 
https://doi.org/10.1190/1.1440721 

Jaiswal, A., Banerjee, S., Mani, R., & Chattopadhyaya, M. C. (2013). Synthesis, characterization and 
application of goethite mineral as an adsorbent. Journal of Environmental Chemical Engineering, 1(3), 281–
289. https://doi.org/10.1016/j.jece.2013.05.007 

Kalinowski, A., & Oliver, S. (2004). ASTER processing manual. Geoscience Australia, 37(October), 1–40. 

Kokaly, R. F., Clark, R. N., Swayze, G. A., Livo, K. E., Hoefen, T. M., Pearson, N. C., Wise, R. A., Benzel, 
W. M., Lowers, H. A., Driscoll, R. L., & Klein, A. J. (2017). USGS Spectral Library Version 7: U.S. 
Geological Survey Data Series 1035. U.S. Geological Survey. http://pubs.er.usgs.gov/publication/ds1035 

Koski, R. A. (2010). Supergene Ore and Gangue Characteristics. In Usgs. 

Mars, J. C., & Rowan, L. C. (2010). Spectral assessment of new ASTER SWIR surface reflectance data 
products for spectroscopic mapping of rocks and minerals. Remote Sensing of Environment, 114(9), 2011–
2025. https://doi.org/10.1016/j.rse.2010.04.008 

Mielke, C., Boesche, N. K., Rogass, C., Kaufmann, H., Gauert, C., & de Wit, M. (2014). Spaceborne mine 
waste mineralogy monitoring in South Africa, applications for modern push-broom missions: 
Hyperion/OLI and EnMAP/Sentinel-2. Remote Sensing, 6(8), 6790–6816. 
https://doi.org/10.3390/rs6086790 

Rockwell, B. W. (2013). Automated Mapping of Mineral Groups and Green Vegetation from Landsat 
Thematic Mapper Imagery with an Example from the San Juan Mountains, Colorado. U.S. Geological 
Survey Scientific Investigations Map 3252, 25. http://pubs.usgs.gov/sim/3252/ 

Rowan, L. C., Hook, S. J., Abrams, M. J., & Mars, J. C. (2003). Mapping hydrothermally altered rocks at 
Cuprite, Nevada, using the advanced spaceborne thermal emission and reflection radiometer (Aster), 
a new satellite-imaging system. Economic Geology, 98(5), 1019–1027. 
https://doi.org/10.2113/gsecongeo.98.5.1019 

Sabins, F. F. (1999). Remote sensing for mineral exploration. Ore Geology Reviews, 14(3–4), 157–183. 
https://doi.org/10.1016/S0169-1368(99)00007-4 

Salisbury, J. W., Walter, L. S., & Vergo, N. (1989). Availability of a library of infrared (2.1-25.0 μm) mineral 
spectra. American Mineralogist, 74(7–8), 938–939. 



Discrimination of individual Iron-bearing minerals with the Sentinel-2 Super-Spectral Imager 

66 
 

Sankadiya, S., Oswal, N., Jain, P., & Gupta, N. (2016). Synthesis and characterization of Fe2O3 
nanoparticles by simple precipitation method. AIP Conference Proceedings, 1724. 
https://doi.org/10.1063/1.4945184 

Schetselaar, E. M., Tiainen, M., & Woldai, T. (2008). Integrated geological interpretation of remotely sensed 
data to support geological mapping in Mozambique. Special Paper of the Geological Survey of Finland, 
2008(48), 35–63. 

Schwertmann, U. (1958). The Effect of Pedogenic Environments on Iron Oxide Minerals (pp. 171–200). 
https://doi.org/10.1007/978-1-4612-5046-3_5 

Swayze, G. A., Clark, R. N., Goetz, A. F. H., Livo, K. E., Breit, G. N., Kruse, F. A., Sutley, S. J., Snee, L. 
W., Lowers, H. A., Post, J. L., Stoffregen, R. E., & Ashley, R. P. (2014). Mapping advanced argillic 
alteration at Cuprite, Nevada, using imaging spectroscopy. Economic Geology, 109(5), 1179–1221. 
https://doi.org/10.2113/econgeo.109.5.1179 

Transon, J., d’Andrimont, R., Maugnard, A., & Defourny, P. (2018). Survey of hyperspectral Earth 
Observation applications from space in the Sentinel-2 context. In Remote Sensing (Vol. 10, Issue 2). 
MDPI AG. https://doi.org/10.3390/rs10020157 

Van der Meer, F. D., van der Werff, H. M. A., & van Ruitenbeek, F. J. A. (2014). Potential of ESA’s Sentinel-
2 for geological applications. Remote Sensing of Environment, 148, 124–133. 
https://doi.org/10.1016/j.rse.2014.03.022 

van der Meer, F. D., van der Werff, H. M. A., van Ruitenbeek, F. J. A., Hecker, C. A., Bakker, W. H., 
Noomen, M. F., van der Meijde, M., Carranza, E. J. M., de Smeth, J. B., & Woldai, T. (2012). Multi- 
and hyperspectral geologic remote sensing: A review. In International Journal of Applied Earth Observation 
and Geoinformation (Vol. 14, Issue 1, pp. 112–128). Elsevier B.V. 
https://doi.org/10.1016/j.jag.2011.08.002 

van der Werff, H., & van der Meer, F. (2015). Sentinel-2 for mapping iron absorption feature parameters. 
Remote Sensing, 7(10), 12635–12653. https://doi.org/10.3390/rs71012635 

van der Werff, H., & van der Meer, F. (2016). Sentinel-2A MSI and Landsat 8 OLI provide data continuity 
for geological remote sensing. Remote Sensing, 8(11). https://doi.org/10.3390/rs8110883 

Yamaguchi, Y., Kahle, A. B., Tsu, H., Kawakami, T., & Pniel, M. (1998). Overview of advanced spaceborne 
thermal emission and reflection radiometer (ASTER). IEEE Transactions on Geoscience and Remote 
Sensing, 36(4), 1062–1071. https://doi.org/10.1109/36.700991 

Zhou, S., Jiang, K., Chen, H., & Wang, Z. (2017). Correlation effects and hidden spin-orbit entangled 
electronic order in parent and electron-doped iridates Sr2IrO4. Physical Review X, 7(4). 
https://doi.org/10.1103/PhysRevX.7.041018 

  

  



Discrimination of individual Iron-bearing minerals with the Sentinel-2 Super-Spectral Imager 

67 
 

APPENDICES 

Appendix 1: Mineral synthesis and analytical techniques 
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Appendix 2a: Mineral synthesis and preparations 

                  

 

Appendix 2b: Pellets  
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Appendix 3: Spectra of jarosite against alunite, kaolinite and band 12 

 

 

Appendix 4: Spectra of goethite against chlorite and Sentinel-2 bands 

 

  



Discrimination of individual Iron-bearing minerals with the Sentinel-2 Super-Spectral Imager 

70 
 

Appendix 5: Spectra of jarosite + quartz  

 

 

Appendix 6: Spectra of jarosite + calcite  
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Appendix 7: Spectra of goethite + quartz  

 

        
 

 

Appendix 8: Spectra of goethite + calcite 
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Appendix 9: Spectra of hematite + quartz 

 

 

Appendix 10: Spectra of goethite + quartz 
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Appendix 11: Spectra of hematite + goethite 

 

Appendix 12: Spectra of goethite + jarosite 
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Appendix 13: Scatter plots B4/B3 vs B4/B2 

 

 

Appendix 14: Scatter plots B4/B2×(B4+B11)/B8 vs B4/B2 
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Appendix 15: Scatter plots B4/B2×(B4+B11)/B8 vs B11/B8 

 

 

 

Appendix 16: Scatter plots (B4+B11)/B8a vs B11/B8 
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Appendix 17: Scatter plots (B3+11)/(B4+B8) vs (B4+B11)/B8a 

 

 

 

Appendix 18: Scatter plots (B11/B8) vs (B4/B2) 
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Appendix 19: Scatter plots (B11/B8) vs (B12/B11) 

 

 

 

Appendix 20: Scatter plots (B12/B8)+(B3/B4) vs (B4+B11)/B8a 

 

 

 


