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Abstract—The morphing attack poses a significant threat to
face recognition systems, as it undermines the unique link
between identity and identification documents. Therefore, the
need for morphing attack detection is imperative. In this paper,
we proposed a novel patch-based morphing attacks detection
approach. The facial regions from the images were cropped
and divided into 30 patches. This methodology facilitates a
straightforward expansion of the dataset size. We conducted
a comprehensive analysis comparing different combinations of
feature extraction networks and score fusion mechanisms. The
findings demonstrate that the utilization of Se Resnet50 as the
feature extractor, combined with either the average or machine
learning score fusion method, produces satisfactory results during
the test phase. In particular, the D-EER for intra-dataset tests
is 0%, and the highest D-EER observed for cross-dataset tests is
merely 12.1%. However, when conducting cross-dataset testing,
morphs generated with STYLEGAN2 exhibit an exception to this
trend. Subsequently, extensive experiments with the optimal com-
bination were conducted to investigate the influence of various
training settings on the outcomes. The findings unveiled that when
subjected to images generated by STYLEGAN2 from distinct
datasets, a model exclusively trained on STYLEGAN2-generated
images exhibited enhanced capabilities in generalization. Fur-
thermore, there are certain similarities in the artifacts observed
in both landmark-based and GAN-based morphed images.

I. INTRODUCTION

Due to its non-intrusive nature, the Face Recognition System
(FRS) finds extensive application across diverse scenarios,
including surveillance, border control, and access control.
Automated border control (ABC) deployed at airports is one of
the most critical applications of face biometrics, where identity
verification will be carried out by comparing an image stored
in an electronic Machine Readable Travel Document (eMRTD)
such as an e-passport with a live captured image.

However, FRSs have the inability to accurately detect
manipulated images, especially for those made by morphing
technology, which has now been demonstrated to be a potential
threat to face verification scenarios. Multiple studies [1]–[3]
have demonstrated the vulnerability of FRSs to morphing
attacks, and the results are not encouraging. Face morphing
manipulation allows for the combination of facial features of
two subjects into one image. This enables the potential for
two individuals who bear resemblance to each other to share
a single identity document, thereby disrupting the exclusive
association between an individual and their corresponding
identity document. Fig. 1 shows an example of the resulting
morph. Subject 1 and subject 2 generate the morphed image,
which visually resembles both two contributing subjects.

In a recent investigation [1], an initial study uncovered the
possibility of an attack carried out through the utilization of a
morphed image within the ABC context. This morphing-based

Fig. 1: Example of face morphing

attack demonstrates practical feasibility, as certain regions
permit citizens to submit ID photographs for the acquisition of
official identification documents, thus presenting a substantial
opportunity for such attacks. Moreover, existing research has
found that it is inherently challenging for humans to recognize
unfamiliar faces in small-sized pictures [4]. Faced with mor-
phed images, even observers with prior knowledge are unable
to achieve successful verification [5]. Although live enrollment
would be an ideal solution to prevent forgery, it is not available
in all countries. Additionally, issued electronic documents that
contain biometric features also have potential security risks
[4].

In spite of the high severity, the process of generating
morphed images does not require any specialized knowledge.
There are a plethora of free tools available on the internet that
allow a criminal to generate high-quality falsified images, such
as FaceMorpher1 and FaceFusion2.

Therefore, under such circumstances, the adoption of a
morph attack detection system becomes indispensable. Tra-
ditionally, most existing morph attack detection systems have
relied on processing complete facial images to make decisions.
In this study, we propose and investigate a groundbreaking
method for morph detection that is based on patch segmen-
tation. Instead of directly feeding the entire image into the
detection system for evaluation, our approach assigns scores
to small square regions extracted from the face. By segmenting
the complete image, we can substantially increase the dataset
size. We compare three feature extractors, namely Resnet50,
Se Resnet50, and VGG19, along with three score combination
methods (average, majority vote, machine learning) in the
patch-based detection scenario. The results of the intra-dataset
test show excellent performance when utilizing the network
architectures Se Resnet50 and Resnet50. Furthermore, the
cross-dataset test results based on Se Resnet50 and VGG19
are also promising, except for morphs generated with STYLE-
GAN2. No matter which feature extractor is used, if the trained

1https://github.com/alyssaq/face morpher
2www.wearemoment.com/FaceFusion

https://github.com/alyssaq/face_morpher
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model proves effective on the test set, implementing a fusion
strategy can obviously improve detection accuracy. We also
conduct extensive experiments with the optimal combination
to assess the performance disparities under different training
settings. In summary, we investigate one overall question and
a few sub-questions:

Research Question 1: How to employ patch-based method-
ologies in DMAD scenario?

Research Question 2: Which combination of network archi-
tecture and score fusion method is best suited for patch-based
morph detection?

Research Question 3: What disparities manifest in the
detection performance of models generated through distinct
training settings?

The paper is organized as follows. In Section II, the process
of face morphing and existing detection methods are discussed.
Additionally, an overview of patch-based approaches in face-
related areas is provided. Section III introduces a novel patch-
based detection scheme. The subsequent Section IV provides
a detailed exposition of our experiment’s design. This section
further presents an analysis of the obtained results. The last
section V closes the paper with the conclusion and future
work.

II. RELATED WORK

A. Face Morphing Generation

Numerous studies have been conducted to explore and
develop techniques for generating morph images. Broadly, it
can be categorized into two directions: landmark-based morph
image generation and GAN-based morph image generation.

In the context of landmark-based methods, the initial step
involves determining the coordinates of prominent facial com-
ponents in two images (I0, I1), such as the mouth, eyes,
and nose. Manual annotation is the most direct and accurate
approach, but it can be time-consuming. Alternatively, auto-
matic annotation algorithms can be employed, although they
may not provide the same level of precision. A commonly
utilized landmark detector is Dlib [6]. Once the landmarks are
determined, geometric warping is performed, often employing
Delaunay triangulation [7]. During the warping process, the
contribution of I0 and I1 is controlled by a parameter known
as αw. Finally, texture blending is applied, where another
parameter αb governs the contribution of I0 and I1 during
the blending stage. This step combines texture details from the
original images, resulting in a visually appealing and seamless
morph image.

To overcome the issue of inaccurate landmark annotations,
researchers have proposed a deep learning-based approach for
morph generation. Unlike the landmark-based method, which
necessitates the manual annotation of reference points, the
GAN-based method employs a projection network to derive
the latent vectors of I0 and I1. The morphed image’s latent
vector is generated based on a weighted average value, and
the resulting vector is employed to generate the final morphed
image.

B. Morph Attack Detection

There have been numerous research teams proposing vari-
ous techniques for detecting morphed images, which can be
classified into two categories based on the number of input
images: Single Image Morph Attack Detection (SMAD) and
Differential Morph Attack Detection (DMAD). The following
is an overview of these two methods.

1) Single Image Morph Attack Detection (SMAD): Sin-
gle image detection, also known as no-reference detection,
involves analyzing a single image as input and determining
whether it is a morphed image. The detection scheme for
a single image is shown in Fig. 2a. Numerous works have
focused on the single-image scenario, which is also considered
to be more challenging compared to DMAD.

Several studies have employed texture descriptors as a
means of detection. This choice is predicated on the conjecture
that morphed images may exhibit ghosting artifacts in the hair
or neck regions due to imprecise overlapping. Furthermore,
automated algorithms commonly generate morphs with half-
shade effects on the pupil. In [2], Local Binary Patterns (LBP)
[8], and Binarized Statistical Image Features (BSIF) [9] have
been used to extract discriminative texture features resulting
from morph image processing, followed by the classification
task performed by SVM with RBF. Similarly, [10] expanded
upon this research by employing high-dimensional LBP fea-
ture vectors, yielding promising outcomes. The author in [11]
conducted an experiment to replicate real-world scenarios by
scanning printed images with two different scanners. The
experimental findings demonstrate a higher level of difficulty
in detecting printed and scanned morphed image compared to
digital morphed images when subjected to the same texture
descriptor.

Forensic image analysis approaches focus on detecting
traces left by the morphing process on the image, such as
sensor pattern noise or inconsistent illumination. [12] imple-
ments image source identification using Fourier spectrum of
sensor pattern noise, which provides the quantized statistics
features for linear SVM training. In a related study [13], the
author undertook an analysis of facial highlights and derived
an estimation of the light source’s position. This information
was subsequently utilized to generate a synthesized highlight
region, allowing for a comprehensive comparison with the
original image.

Deep learning-based methods rely on convolutional neural
networks (CNNs) and can be categorized into two types based
on their specific implementation. The first type involves using
an existing face recognition network to extract features without
fine-tuning it [10]. Such research is considered to reduce
the risk of overfitting because it does not contain specific
morph information in the training task. Secondly, fine-tune
the CNN by re-training it on morphed images. For instance, in
[14], AlexNet [15] and VGG19 [16] were re-trained to obtain
complementary feature to train a Collaborative Representation
Classifier. Despite undergoing the process of retraining, the
experimental results revealed that the network exhibited a
tendency to make judgments solely based on specific artifacts.
To address this issue, a method for occluding regions of the
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(a) SMAD Scheme

(b) DMAD Scheme

Fig. 2: morphing attack detection scheme [20]

image was proposed in [17].
2) Differential Morph Attack Detection (DMAD): The

DMAD will load two images simultaneously, one serving as a
reference (i.e., a Suspect Morph), while the other is used as a
probe (i.e., a Trusted Live Image). In certain cases, such as in
the ABCs scenario, the biological image stored in the eMRTD
is the suspect morph, while the live image acquired during the
verification procedure is the probe. The accuracy of DMAD
can be enhanced by incorporating additional information. The
DMAD scheme is depicted in Fig. 2b.

DMAD can be segregated into two research directions. The
first involves a direct comparison of the two input images
in order to compare the biometric features of the face. This
approach extracts the features of the potential morph and the
live image, followed by a comparison of these features [3]. It is
commonly to observe that SMAD approaches are adapted for
application in DMAD scenarios. However, in [18], researchers
introduced an innovative detection method solely for DMAD.
This method leverages the differences in landmarks between
the two images for detection. Another one is to inverse the
process of morphing [19]. If the given image is a morph, it
is possible to reconstruct the second subject by eliminating
the live image (first subject) from the morphed image. In the
subsequent comparison, FRSs are likely to reject it due to
discrepancies in facial features.

C. Patch-based Works

The utilization of patch-based approach has found appli-
cations in diverse research domains. In a recent study [21],
a groundbreaking two-stream methodology is introduced for
the detection of presentation attacks, combining both local and
holistic features. To extract local facial features, a patch-based
CNN is employed. The authors indicate that the use of patch-
based CNN enables the augmentation of the limited available
samples. Instead of rescaling the full image, local patches
remain the the discriminative information at the original res-
olution. Also, one famous patch work—the LBP [8] widely
utilized as a texture extractor, can effectively capture the
texture characteristics of the patch area. A notable advantage
of using LBP is its robustness to illumination variations since
each pixel’s LBP value is compared with its neighbors. In

the research described in [22], a composite model called
ConvNet-RBM is employed for facial verification. Each facial
image in the dataset is divided into twelve distinct groups,
which differ in terms of facial areas and color channels.
Within each group, eight modes of patterns are generated using
various transformations, such as flipping. The ConvNet model
compares corresponding modes from two face images and
generates an outcome indicating whether they belong to the
same individual. The author highlights that each group focuses
on different facial features, resulting in optimized decision-
making when utilizing Restricted Boltzmann Machines (RBM)
for final classification. A patch-based method for face verifi-
cation is also suggested by [23]. Resize, area division, color
channel alteration, and horizontal flipping are used to enlarge
each face’s ten patches into a total of 120 images. Then,
60 CNNs process these photos. All the extracted patches
features are forwarded to the Joint Bayesian [24] for the last
classification. It is empirically shown that the complementary
features obtained from these patches significantly contribute to
achieving a notably high accuracy score on the LFW dataset
[25]. Furthermore, the researchers evaluate the test accuracy
by considering the number of patches used.

In classification tasks, where each patch contributes to
producing a result, it becomes essential to employ a method
for effectively fusing these patch results. The method of
combining the classification outputs can be classified into two
categories based on the type of classifiers used, as elaborated
in [26]. The first category is the hard-level combination,
which can be achieved by employing a common mechanism
known as the majority vote scheme. The second category
is the soft-level combination, where the classifier outputs
posteriori probability. Various fusion methods, such as the
sum-rule, product rule, max rule, median rule, min rule, and
neural networks, can be employed based on this metric level
information. In [27], the author proposes MASWOD that can
effectively utilize the information from individual classifiers
to make the final decision. It is possible to change from hard-
level combination to soft-level combination. [28] presents a
method that employs the Confusion Matrix and Similarity to
obtain the metric level information from classifiers that do not
output posteriori probability.

III. PROPOSED SCHEME

To detect morphed images in differential scenarios, we
propose the patch-based MAD pipeline. In this section, we
provide details on how to use patches for morph detection. Fig.
3 shows the general framework of the approach, which starts
with loading two images simultaneously - one is a trusted live
image, and the other is a possibly morphed image. Both images
are processed to extract patches based on the same rules,
and the features of corresponding patches are concatenated
to be the input for the classifier. Finally, the score fusion is
conducted to enhance the performance.

A. Pre-Processing

In order to ensure that the two patches are located in the
same position of the two pictures during feature comparison,
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Fig. 3: Patch-based detection pipeline

it is necessary to perform face alignment and face crop-
ping on the input image before patch extraction. Both face
alignment and face cropping in our approach are performed
using a CNN-based face detector utilizing the Dlib [6]. The
method can minimize the impact of various backgrounds when
comparing facial patches. It is worth noting that conducting
face alignment prior to face cropping effectively prevents the
occurrence of uninformative black regions that may arise due
to the alignment process. In order to facilitate subsequent
segmentation and training procedures, we have resized the
cropped faces. Our image resizing strategy was inspired by
the dimensions used in [3], specifically 720 × 960 pixels.
However, considering that our experiments solely involve
facial parts, we have adjusted the cropped images to a size
of 480 × 576 pixels accordingly.

B. Patch Extraction

After having undergone identical pre-processing, the two
face images that are of equal size are sent to the patch
cutter. The patch processor should be configured to divide
both images into an equal number of patches using the built-in
method. The patches of the two pictures can be matched one
by one in a comparative analysis.

The patch extraction method we employed for experimen-
tation is complete image segmentation, which is known for
its simplicity and ease of implementation. This technique
involves dividing the image directly into uniform patches. The
feasibility of this approach has been validated in previous
works such as [29] and [30]. In our work, we referred to the
patch size utilized in [21] and divided each image into a total
of 30 patches, each measuring 96 × 96 pixels.

C. Feature Extraction

The feature extraction technique utilized in SMAD can also
be employed in DMAD. The detailed methodology for texture
descriptors, forensic image analysis, and deep learning can be
found in the second section. In theory, these feature extraction
methods can be used in the patch context, but we focus on
deep learning in the paper. Based on previous research, the
neural network architecture shown in Table I has demonstrated
viability in detecting morphs across the entire face [14] [31].
These architectures are therefore strong contenders for use
in extracting patch-based features for analysis. In Experiment

TABLE I: Network architectures

Dataset Network

ImageNet [32]
Se ResNet50 [33]

ResNet50 [34]
VGG-19 [16]

1, we employed three network architectures to assess their
performance. However, in subsequent experiments, we exclu-
sively utilized the network architecture that demonstrated the
highest performance in Experiment 1. Before forwarding the
features into the classifier, two feature vectors extracted from
corresponding patches must be concatenated.

D. Classification

With the additional information contained in the trusted
live patch, it is feasible to assess differences between those
two feature vectors. In the study of [3] [18], Random Forest,
AdaBoost, Gradient Boosting, SVM were compared. Sup-
port Vector Machines (SVMs) exhibited commendable results
among various machine learning-based classifiers.

E. Combination

To determine the final decision, we employed three distinct
methods in our experiment: majority voting, score averaging,
and machine learning. In Experiment 1, we applied all three
methods to assess their effectiveness. However, in subsequent
experiments, we focused on the fusion mechanism that exhib-
ited superior performance in Experiment 1.

The majority vote mechanism comprises two distinct stages
(see 1 and 2). In the first stage, this classifier assigns a score
si to each patch. These scores are subsequently compared
to a predefined threshold t, enabling the determination of
the individual patch’s judgment result. Next, the votes Vi of
individual patches within each image are summed, resulting in
the calculation of the final score, denoted as S. Subsequently,
S is compared against a predefined threshold T , in order to
arrive at the ultimate decision for the entire image.

Vi =

{
0, si < t

1, si ≥ t
(1)
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D =


genuine, S =

n∑
i=1

Vi < T

impostor, S =

n∑
i=1

Vi ≥ T

(2)

The second score fusion mechanism entails employing
the average score of patches within an image to determine
its classification. If the computed average score surpasses a
predefined threshold value T , the image in the reference is
categorized as ”morph,” as demonstrated in 3.

D =


genuine, S =

1

n

n∑
i=1

si < T

impostor, S =
1

n

n∑
i=1

si ≥ T

(3)

The machine learning approach involves constructing a
novel feature vector by utilizing the scores of the 30 patches
within the image. This newly formed feature vector is then
inputted into an SVM classifier to generate the final score S.
Similarly, if the obtained score exceeds the threshold value T ,
the final decision D is designated as ”impostor”.

IV. EXPERIMENTS AND RESULTS

This section describes the employed datasets, the involved
morph algorithms, and the evaluation metrics. Subsequently,
we conducted a comparison of various combinations of fea-
ture extraction network architectures and patch score fusion
methods. The most effective combination was employed in
extensive experiments to explore the influence of training data
on the performance of the system.

A. Creation of MAD Dataset

To investigate DMAD, it is necessary to consider not only
the reference image (bona fide and morphed image), but also
an additional probe, such as live images captured at the eGate.
The reference images adhere to stringent criteria concerning
the environment, lighting conditions, and other factors. For
instance, in accordance with ICAO regulations, the distance
between the eyes in reference images should be no less than
90 pixels. However, the probe images are obtained within a
semi-controlled setting, less constraints on lighting, posture,
facial expression, and other variables.

The experiment employed three distinct datasets, namely
FRGC [35], PUT [36], and FRLL [37].

1) FRGC: FRGC is a widely utilized dataset for MAD
tasks, offering high-resolution reference and probe images
captured in diverse environments. For each identity in our
experiment, two passport-quality images were selected, one for
bona fide purposes and the other for generating morph images.
Each reference image had a corresponding probe image. The
dataset was partitioned into non-overlapping identities, with
121 subjects allocated to the training set, 41 subjects to the
validation set, and 41 subjects to the test set.

2) PUT: The PUT dataset, with a limited number of iden-
tities, comprised images captured under controlled conditions,
exhibiting variations in facial appearance due to different head
orientations. If there were two images of an identity with
the head in a forward position, one was used as a bona fide
image, and the other for morph generation. Regarding probes,
efforts were made to select images with slightly tilted heads.
Ultimately, only 88 identities fulfilled the criteria, and all of
them were used for training.

3) FRLL: In contrast to the previous two datasets, we
directly employed the publicly available FRLL-Morph dataset
[38], which is based on FRLL. The morphed images in the
FRLL-Morph dataset are significantly compressed, resulting in
a much lower resolution compared to morphed images from
other sets. All subjects in this dataset were used for cross-
dataset performance evaluation.

Six different algorithms were employed for morph genera-
tion in experiments.

• OpenCV: This open-source morphing tool utilizes Dlib
for landmark detection 3. It generates Delaunay triangles
for wrapping and blending. Notably, Opencv adds ad-
ditional keypoints in areas such as shoulders and image
edges for morph generation. However, due to the absence
of keypoints outside the facial region, ghosting artifacts
can be observed.

• Webmorph: This online landmark-based generation tool
[39] is specifically designed for FRLL and requires 189
landmark points, a criterion fulfilled only by FRLL.
Nevertheless, noticeable ghosting artifacts can still be
observed, particularly in areas like hair.

• Combined Morphs: Proposed in [40], this novel
landmark-based morphing method employs Dlib land-
mark detection. The algorithm effectively avoids ghosting
artifacts by splicing the synthesized region of the face
into a wrapped face. Furthermore, Poisson image editing
is employed to enhance the natural appearance of the
morph images.

• UBO: This method, utilized in the paper by the University
of Bologna [41], is similar to Combined Morphs as it
involves the splicing of the synthesized facial region with
the external region, but it employs weighted blending at
the edges.

• UTW: It is a morphing algorithm developed at the Univer-
sity of Twente [42]. Similar to Combined Morphs, it in-
corporates background replacement but uses the STASM
[43] landmark detector instead.

• STYLEGAN2 [44]: This GAN-based algorithm generates
highly natural images with minimal visible artifacts. It
employs a pre-trained projection model to obtain latent
vectors for the input images, which are then interpolated
to generate the morphed image.

• MIPGAN [45]: It is an improved algorithm based on
STYLEGAN. The newly introduced loss function ensures
the identity preservation of the morphed image.

3https://learnopencv.com/face-morph-using-opencv-cpp-python/

https://learnopencv.com/face-morph-using-opencv-cpp-python/
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(a) Original (b) Normalized

Fig. 4: White Balance

TABLE II: Combination Elements

Dataset Action Method Number

FRGC
original UTW 1

STYLEGAN2 2

normalization UTW 3
STYLEGAN2 4

PUT original STYLEGAN2 5

We selected two distinct methods, a landmark-based ap-
proach UTW and a GAN-based method STYLEGAN2, in
the training phase. Additionally, we utilized a tool called
whitebalance 4 to modify the overall style of the FRGC
dataset, as depicted in Fig. 4. Each row in Table II illustrates
various elements for constructing different training sets. For
ease of reference, we assigned the numerical identifier to each
one. Table III presents the diverse settings utilized for each
experiment. All experiments will perform tests utilizing the
FRGC dataset (referred to as FRGC-Morph) and FRLL-Morph
dataset, with detailed particulars provided in Table IV.

B. Performance Evaluation

In all experiments, the assessment of outcomes will rely
on the evaluation metrics of APCER (Attack Presentation
Classification Error Rate) and BPCER (Bona Fide Presentation
Classification Error Rate), which are commonly employed in
the context of morphing attack detection. These metrics are

4http://www.fmwconcepts.com/imagemagick/whitebalance/index.php

TABLE III: Experiment settings

Experiment Train
1 1+2
2 1+2+3+4
3 1+5
4 1
5 5
6 2
7 4

TABLE IV: Test set

Dataset Morphed Images Bona fide

FRGC-Morph

UTW 27

80STYLEGAN2 13
UBO 27

MIPGAN 14

FRLL-Morph

Combined Morph 74

85Webmorph 81
OpenCV 81

STYLEGAN2 82

TABLE V: Images in Training Set - Experiment1

Source Dataset Morphed Images Bona fide

FRGC UTW 131 192STYLEGAN2 73

defined in ISO/IEC 30107-3 [46]. APCER quantifies the ratio
of morph attack presentations that are inaccurately classified as
bona fide presentations, while BPCER measures the proportion
of bona fide presentations that are inaccurately classified as
morph attack presentations. The DET (Detection Error Trade-
off) curve is constructed by plotting the values of APCER and
BPCER with varying the threshold. Moreover, the detection
model’s accuracy is assessed using D-EER (Detection Error
Equal Rate), which quantifies the error rate when the APCER
and BPCER are the same.

C. Experiment 1 - Training on the Original FRGC with UTW
and STYLEGAN2

In Experiment 1, we assessed the model’s ability to gener-
alize when trained exclusively on the FRGC dataset, while uti-
lizing both the UTW and STYLEGAN2 morphing generation
algorithms. Furthermore, we combined the three feature ex-
traction networks with three patch fusion methods mentioned
in Section 3. The most effective combination was chosen
as the feature extractor and score combination technique for
subsequent experiments. The training data information can be
found in Table V.

For the sake of analytical convenience, we conducted sep-
arate tests on the images generated by different morph algo-
rithms in the FRLL-Morph dataset. The detection performance
is presented in the Table VI.

When employing Se Resnet50 as the feature extractor, it is
evident that regardless of the morph generation algorithm, the
detector can effectively distinguish between bona fide and mor-
phed images as long as the test images are also from FRGC.
Conversely, in the context of cross-dataset , it is observed that
morphed images produced by STYLEGAN2 are the most dif-
ficult to detect. Although cross-dataset testing has traditionally
posed difficulties for morph detection due to varying dataset
characteristics, our methods still exhibit generalized capability
for morphed images generated by Combined Morph, OpenCV,
and Webmorph. Notably, despite the noticeable presence of
artifacts outside the facial region in OpenCV-generated im-
ages, the patch-based detector primarily relies on the cropped
facial region, which remains challenging to discern. However,
the scenario changes significantly when Resnet50 is utilized
for extracting features. Regardless of the employed scoring
fusion method, the detector can only accurately distinguish
images from the FRGC dataset. With the exception of morphed
images generated by OpenCV, the model exhibits an inability
to effectively process the remaining images from the FRLL-
Morph dataset. This discrepancy indicates that the weights
assigned to the channels have a substantial impact on the
model’s performance. When the VGG19 network architecture
is employed as the feature extractor, even samples from the
FRGC dataset can result in classification errors. Morphed
images generated by STYLEGAN2 remain challenging to

http://www.fmwconcepts.com/imagemagick/whitebalance/index.php
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TABLE VI: Detection performance for different Morph algorithms

D-EER (in %)
Experiment Feature Extractor Fusion Methods Combined Morphs OpenCV STYLEGAN2 Webmorph FRGC-Morph

1

Se Resnet50

Without Fusion 15.3 26.2 54.5 20.0 5.8
Average 1.2 12.1 55.7 3.6 0.0

Vote 1.9 12.7 52.6 4.2 0.0
Machine Learning 1.2 12.1 55.7 3.6 0.0

Resnet50

Without Fusion 47.8 36.6 47.3 51.2 9.8
Average 46.6 19.3 45.5 56.7 0.0

Vote 52.6 21.1 45.5 62.0 0.0
Machine Learning 45.9 21.1 40.7 54.2 0.0

VGG19

Without Fusion 8.4 26.6 60.5 9.0 9.3
Average 0.7 18.1 62.9 4.2 0.6

Vote 1.2 19.9 65.2 2.4 2.5
Machine Learning 1.9 15.7 62.9 3.6 1.2

2 Se Resnet50 Average 46.7 12.7 41.3 53.0 0.0
3 Se Resnet50 Average 24.5 17.5 29.9 30.7 0.0
4 Se Resnet50 Average 70.4 48.8 52.7 66.9 10.6
5 Se Resnet50 Average 27.8 29.5 22.7 39.1 27.9
6 Se Resnet50 Average 0.0 4.8 37.7 0.0 32.9
7 Se Resnet50 Average 6.3 3.0 37.7 9.6 24.2

detect. However, regardless of the feature extractor utilized,
when the trained model demonstrates effectiveness on the test
set, the accuracy of detection can be enhanced through the
implementation of a fusion strategy.

The decline in performance during cross-dataset testing
could be attributed to several factors. In contrast to FRGC-
Morph, the morphed images contained within the FRLL-
Morph dataset have undergone a compression process that
eliminates many morphing traces, thus leading to a decline
in the performance of the detection system. Additionally,
observable visual discrepancies between the FRGC and FRLL
datasets are evident. In light of this observation, we will
proceed with subsequent experiments to evaluate the perfor-
mance variations of models trained on distinct training sets.
To determine the optimal combinations, we evaluated three
feature extraction networks and three score fusion mechanisms
by calculating the average value of all D-EERs except for
STYLEGAN2 (FRLL-Morph) column. Our findings indicate
that the combinations of Se Resnet50 with average and
Se Resnet50 with machine learning are the optimal choices.
We selected Se Resnet50 with average fusion for the subse-
quent experiments.

D. Experiment 2 - Training on the Original and Normalized
FRGC with UTW and STYLEGAN2

In Experiment 2, in order to achieve a visual similarity with
the FRLL dataset, a technique known as ”white balance” was
employed to modify the visual appearance of images from
the original dataset (FRGC). The details of the training set
in Experiment 2 are presented in Table VII. The model’s
detection performance is depicted by the DET curve shown
in Figure 5.

The experimental results indicate improvements in the
model’s performance when detecting images generated by
STYLEGAN2, yielding D-EERs of 41.3%. The finding sug-
gests that altering background style might have the potential
to enhance the effectiveness of the detector when dealing
with images generated by this morph tools. However, for
morphed images generated by other algorithms, it appears

TABLE VII: Images in Training Set - Experiment2

Source Dataset Morphed Images Bona fide

FRGC UTW 73 146STYLEGAN2 73

FRGC (Normalization) UTW 73 146STYLEGAN2 73

Fig. 5: DET curve of Experiment 2

that the application of white balance has a detrimental effect,
leading to a decrease in the patch-based detection system’s
performance. Nonetheless, the system can still accurately
differentiate morphed images from the FRGC dataset.

E. Experiment 3 - Training on the PUT with UTW and
STYLEGAN2

In Experiment 3, a novel dataset called PUT was introduced
into the training set, which differs significantly from the
FRGC dataset in terms of background lighting. The images
in PUT exhibit a predominantly whitish color, resembling the
visual style of FRLL. The details of the images utilized in
Experiment 3 are presented in Table VIII. Figure 6 illustrates
notable changes in the detection results compared to the
experiment 1. These changes primarily manifest in the model
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TABLE VIII: Images in Training Set - Experiment3

Source Dataset Morphed Images Bona fide
FRGC UTW 74 74
PUT STYLEGAN2 76 76

Fig. 6: DET curve of Experiment 3

exhibiting higher error rates when presented with images
generated by Combined Morphs, OpenCV, and Webmorph.
This signifies that images produced by STYLEGAN2 using
the FRGC dataset are important for the detection of landmark-
based morph images in the FRLL-Morph test set. However,
encouragingly, the performance of the new model has signif-
icantly improved for images generated by STYLEGAN2 in
FRLL-Morph.

F. Experiment 4 - Training on the FRGC with UTW

Experiment 4 reveals the distinct performance of a model
trained on UTW-generated images using FRGC when applied
to diverse test sets. The specific details of the training set
can be found in Table IX. Notably, as depicted in Figure
7, during cross-dataset testing, the model’s generalization
capability diminishes, resulting in significantly high D-EER
when faced with all morphed images. Although the D-EER
on FRGC-Morph reaches 10.6%, the primary errors origi-
nate from images generated by STYLEGAN2. The model
demonstrates proficiency in detecting images generated by
UTW and MIPGAN algorithms, but it encounters classification
errors when confronted with images generated by UBO. These
findings indicate that landmark-based and GAN-based morph
images may possess limited shared features.

G. Experiment 5 - Training on the PUT with STYLEGAN2

Experiment 5 was dedicated exclusively to training the
model using samples generated by STYLEGAN2 based on
PUT dataset. The quantities of morphed and bona fide images
are presented in Table X. The experimental results depicted in

TABLE IX: Images in Training Set - Experiment4

Source Dataset Morphed Images Bona fide
FRGC UTW 131 131

Fig. 7: DET curve of Experiment 4

TABLE X: Images in Training Set - Experiment5

Source Dataset Morphed Images Bona fide
PUT STYLEGAN2 76 76

Figure 8 demonstrate that the model exhibits a certain degree
of detection effectiveness for STYLEGAN2-generated images
in FRLL-Morph. The D-EER for STYLEGAN2 (22.7%) is
even lower than the D-EER observed in Experiment 3 (29.9%).
This implies that a model trained exclusively on images
created by STYLEGAN2 can exhibit improved adaptability
when confronted with STYLEGAN2-generated images from
different datasets. Additionally, it shows the ability to per-
ceive landmark-based morphed images, suggesting that both
GAN-based morphs and landmark-based morphs share similar
characteristics to some extent. Furthermore, it is apparent
that the detection system exhibits significant errors when
confronted with images from the FRGC dataset. However,
further analysis reveals that this is primarily attributable to
the presence of landmark-based images in the FRGC test set.
When encountering images generated by STYLEGAN2 and
MIPGAN algorithms from the FRGC-Morph, the model can
still accurately distinguish them.

Fig. 8: DET curve of Experiment 5
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TABLE XI: Images in Training Set - Experiment6

Source Dataset Morphed Images Bona fide
FRGC STYLEGAN2 74 75

Fig. 9: DET curve of Experiment 6

H. Experiment 6 - Training on the Original FRGC with
STYLEGAN2

Experiment 6 aims to investigate the detection performance
of the generated model by exclusively utilizing morph im-
ages generated by STYLEGAN2 based on the FRGC. The
experiment’s training set information and experimental results
are presented in Table XI and Figure 9, respectively. Upon
testing on FRGC-Morph, the model demonstrates a D-EER
of 32.9%, solely attributed to landmark-based morph images
within the test set. In contrast to the D-EER value of 55.1%
observed in Experiment 1, the new model exhibits a lower
D-EER of 37.7% when confronted with images generated by
STYLEGAN2 in the FRLL-Morph. This observation provides
additional support for the inference made in Experiment 5. A
model solely trained on images produced by STYLEGAN2
showed the better generalized capability when presented
with STYLEGAN2-generated images originating from diverse
datasets. Nevertheless, the figure exhibits an approximate 15%
elevation when contrasted with the D-EER from Experiment
5. This discrepancy is likely attributed to the significant
disparities in background style between the FRGC dataset and
FRLL-Morph dataset.

I. Experiment 7 - Training on the Normalized FRGC with
STYLEGAN2

With the aim of delving more directly into the poten-
tial positive impact of white balance on the detection of
STYLEGAN2-generated Morph images during cross-dataset
testing, the present experiment employed normalized images
for training the detection model. Comprehensive training
specifics are shown in Table XII. The performance of detection
across various morph algorithms is in Figure 10. In comparison
to Experiment 6, the normalization strategy resulted in a
slight reduction in detection error rates for OpenCV-generated
images and FRGC-Morph. Similarly, when examined using the
FRGC-Morph dataset, the model exhibited a D-EER of 24.2%,

TABLE XII: Images in Training Set - Experiment7

Source Dataset Morphed Images Bona fide
FRGC (Normalization) STYLEGAN2 74 75

Fig. 10: DET curve of Experiment 7

exclusively ascribed to landmark-based morph images within
the test set. However, the D-EER for images generated by
STYLEGAN2 remained consistent with the values observed
in Experiment 6. This unexpected difference from the initial
inference highlights the need for further investigation to un-
derstand potential factors.

V. CONCLUSION

In summary, our experimental findings provide evidence
that utilizing patches for morphing attack detection is a viable
approach, and the application of the scores fusion technique
notably enhances the detection accuracy. By employing the
Se resnet50 feature extractor in conjunction with the average
fusion method, the proposed scheme showcases flawless per-
formance on the FRGC-Morph test set. Additionally, despite
the compression applied to the morph images in FRLL-
Morph, it also demonstrates satisfactory detection results
on the FRLL-Morph (with the exception of STYLEGAN2).
Through conducting extensive experiments, we note that the
training data significantly influences the performance of the
final detection system. Despite the distinct generation meth-
ods employed for GAN-based morphs and landmark-based
morphs, we discovered that when the training set exclusively
comprises morphed images generated by STYLEGAN2, the
resulting model can still exhibit some level of recognition
for landmark-based morphs. Futhermore, a model exclusively
trained on images generated by STYLEGAN2 demonstrated
superior generalizability when confronted with STYLEGAN2-
generated images originating from different datasets.

Nevertheless, the current findings only indicate that en-
hancing the resemblance between the backgrounds of training
and test images holds the potential to better detect morphs
generated by STYLEGAN2. Nonetheless, this pattern may
not always manifest clearly. Further experimentation is re-
quired to analyze it. Moreover, since a substantial majority
of morphed images within the FRLL-Morph dataset have
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undergone significant compression, introducing images with
varying resolutions during the training process could overcome
it. In order to achieve a higher level of detection performance,
additional exploration for the quantity and size of patches , as
well as the approach used for segmenting is required.
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