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1 Samenvatting

Dit onderzoek omvat de beoordeling van de vorm van de ondersteunende spieren van de
bekkenbodem gedurende de dag. Voor vrouwen nemen over het algemeen de klachten
gedurende de dag toe. Er is onderzocht of dit terug te zien is in de levator plate (LP)
shape, de vorm van de het mediale aanhechtingspunt van de levator ani, met behulp van
de statistische methode principal component analysis (PCA).
Er hebben 60 vrouwen, waarvan 15 met een bekkenbodemverzakking en 45 zonder bekken-
bodemverzakking, deelgenomen aan dit onderzoek. Al deze vrouwen werden in de ocht-
end, middag en namiddag gedurende een dag gescand, wat heeft geleid tot een totaal van
171 bruikbare scans. Vervolgens werd er met behulp van (PCA) een analyse uitgevoerd
om de verschillen in LP shape gedurende de dag in beeld te kunnen brengen. Op deze
data werd een statistische test, de Two-Way ANOVA, toegepast.
Hieruit blijkt dat er geen significant verschil is in de ligging en vorm van de LP shape
gedurende de dag. Wel is er een significant verschil te zien in LP shape tussen vrouwen
met en zonder een bekkenbodemverzakking (p<0.01) met een meer dorsaal gelegen LP
shape voor de vrouwen met een verzakking.
Concluderend kan er gezegd worden dat er gedurende de dag geen verschil is in LP shape
bij vrouwen met een verzakking.
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2 Introduction

Pelvic organ prolapse (POP) is a common condition affecting 25 − 41% of middle-aged
and elderly women [1]. It is a condition described as a downward displacement of one or
more of the pelvic organs, including the bladder, uterus, bowel and rectum. Symptoms
associated to POP include vaginal bulging, irritative bladder, voiding difficulty and defe-
catory difficulty [2]. Besides that, women have reported that they experience an increase
in symptoms during the day, especially after a prolonged time on their feet or during or
after lifting [3].

Currently, the most used evaluation method of POP is called POP quantification (POP-
Q). This is a physical examination which is executed with the patient in supine position.
Due to this supine position the results can lead to underestimation of POP, since the effect
of gravity is neglected. To stimulate the effect of gravity, the patients are instructed to
put strain on their pelvic floor. However, the effect of the strain is dependent on the
instructions of the physician and the ability of the patients to relax their pelvic floor
muscles [1]. Imaging techniques such as ultrasound and magnetic resonance imaging
(MRI) are used to gather more information about both the diagnosis and management
of POP. MRI is a valuable technique, since it can visualize several of the pelvic organs
and supportive structures at once [4].

In recent studies, the added value of upright MRI has been looked into [1]. Upright
imaging enables a realistic image of the placement of the pelvic organs and surrounding
structures including the levator plate (LP), since women experience most of their symp-
toms in standing position. The levator plate is the shelf on which the pelvic organs rest
[5]. According to literature, there are significant changes in the anatomy of the pelvis
and the extend of the prolapse when a patient is scanned in upright position compared to
supine position [6, 7]. Subsequently it has been shown that there is a significant difference
between upright and supine MR imaging regarding the LP shape. The LP shape starts
near the coccyx and ends near the anal sphincter. A shape with a slightly steeper slope
usually corresponds with the LP shape of POP women [8]. Besides that, the LP shape
has a steeper slope in upright position than in the supine position [6], which indicates
that evaluation of POP in standing position may provide greater insight in the diagnosis
and management of POP.

In the research of Schmidt et al. [9] the statistical method principal component analysis
(PCA) was used to visualize the LP shape. PCA is a dimensionality reduction method
that is used for large data sets [10] and could be of great use in this research to visualize
the LP shape.

As there is a correlation between prolapse and LP shape and women have reported to
experience more symptoms by the end of the day, it is of interest to study the extend
of POP during the day in standing position. Besides that, PCA is the method that can
be used to visualize the LP shape and make the shapes quantitatively comparable. We
hypothesize that at the end of the day the LP shape will have a slightly steeper slope
than at the beginning of the day for women with POP.
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3 Background information

3.1 Pathophysiology of pelvic organ prolapse

3.1.1 Pelvic floor support

The pelvic floor is mostly supported by the interactions between the levator ani and
pelvic connective tissue [11]. The main contributing muscles to pelvic floor support are
the levator ani and the coccygeus muscles and together they form the pelvic diaphragm
(Figure 1, 2). The levator ani exist out of the pubococcygeus and the iliococcygeus
muscles which together cover a large part of the inferior pelvic outlet from medial to
lateral [5]. The median raphe, where the two sides of the levator ani meet, is called the
levator plate (LP). As can be seen in Figure 2, it is the midline posterior to the rectum
[11]. When the body is in upright position, the LP should be horizontal while supporting
the rectum and upper two thirds of the vagina [5]. It acts as a kind of trampoline,
receiving and resisting sudden increases in abdominal pressure [12].

Figure 1: This figure shows a depiction of the pelvic diaphragm from the inferior view. It
can be seen that the levator ani and coccygeus muscles cover most of the inferior pelvic
outlet [5].

3.1.2 Pelvic organ prolapse

Pelvic organ prolapse (POP), as already has been mentioned, is a condition that describes
the pelvic floor descent. Symptoms that usually occur are vaginal bulging, irritative
bladder, voiding difficulty and defecatory difficulty [2]. Problems with the pelvic support
system, which can lead to POP, can occur due to several factors, which are combined
most of the time. These factors include age, pregnancy, childbirth, heavy lifting, pelvic
surgeries, connective tissue disorders, pelvic neuropathies, congenital factors, stress and
others [12]. A weakened or damaged levator ani is a large contributor to problems with
the pelvic support system. Once the levator ani weakens, the levator hiatus enlarges,
which makes prone to prolapse. Due to intra-abdominal pressure the pelvic organs can
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Figure 2: This figure shows a schematic view of the muscles in the pelvic floor. The
muscles involved in the levator ani have been marked yellow in the inferior and lateral
view. Besides that, the LP has been marked with blue in the inferior view and a blue
line has been drawn at the place of the LP in the lateral view [13].

start to push down on the pelvic support system, which causes it to descend and make
the pelvic organs prolapse [11, 12].

3.2 Principal component analysis

Principal component analysis (PCA) is a statistical method that is widely used for
analysing large data sets. It can be used to identify patterns in data and express this
data in a way that it emphasizes their similarities and differences [14]. Large data sets
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with large numbers of variables are difficult to interpret. The analysis of these data sets
can be simplified by reducing the dimensionality of these data sets, although this causes
some loss of statistical information [15]. This loss of information is worthwhile, because
due to the dimensionality reduction the data sets have become easier to visualize and
analyse. Choosing how much information will be lost, depends on what the PCA is used
for. If the PCA is used for visualisation purposes only, usually two or three PCs will be
retained. If the PCA is mainly used for dimensionality reduction, one can choose the
error to be as small as one desires. So for example an error of 5%. The main goal of
PCA is to reduce dimensionality of a data set while preserving as much information as
possible [10]. This is done by finding the principle components (PCs). They maximize
the variance and reduce to solving an eigenvalue/eigenvector problem [15].

Before the PCA a normalisation or standardisation has to be done. Here this is called the
first step. PCA is sensitive to variances of the initial variables, which makes performing
standardization prior to the PCA crucial [10]. Standardization can be done by subtracting
the mean from each value of each variable and dividing this by the standard deviation:

z =
x− µ
σ

with x being the value, µ being the mean, σ being the standard deviation and z being the
standardized value. A normalisation can also be performed by removing any rotation,
translation and scaling. This can also be called the alignment and scaling of the data
[16].

The second step is the computation of the covariance matrix. This step focuses on finding
any correlations between the variables [10]. The covariance matrix is always a square
matrix where the number of rows and columns is equal to the number of dimensions. A
data set with 3 variables, x,y and z, gives a 3x3 matrix:

Cov =

Cov(x, x) Cov(x, y) Cov(x, z)
Cov(y, x) Cov(y, y) Cov(y, z)
Cov(z, x) Cov(z, y) Cov(z, z)

 .

The covariance values down the diagonal are the covariance of the variable with itself
(Cov(x,x) = Var(x)), which leads to those values being the variance of each variable.
Besides that, the covariance is commutative (Cov(x,y) = Cov(y,x)), so the matrix is
symmetrical about the diagonal [10, 14].

The sign of the covariance states something about the correlation: when the covariance
is positive, then the two variables increase together and they are correlated. When the
covariance is negative, then the two variables decrease together and they are inversely
correlated [10].

The third step is the computation of the eigenvectors and eigenvalues of the covariance
matrix. In this step the PCs are identified. As defined by Zakaria [10], PCs are new
variables build as linear combinations of the initial variables in such a way that they
are uncorrelated (so orthogonal) to each other. A PC represents the direction of the
data with the maximal amount of variance and is expressed as the eigenvector of the
covariance matrix. In other words, the direction of the axes with the most variance are
the eigenvectors, which are the PCs. A visualisation of the eigenvectors is shown in Figure
3. The amount of variance in each PC is given by the eigenvalues and there are as many
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Figure 3: This figure shows a visualisation of de-meaned data with the eigenvectors on
top of it. The dots represent the de-meaned data and the diagonal lines represent two
eigenvectors [14].

PCs as there are variable. The first PC should contain the largest possible variance, so
a data set with 5 dimensions will result in 5 PCs from which the first one contains the
largest possible variance, the second the second largest possible variance and so on.

The fourth step is creating a feature vector to decide which PCs should be kept. In
this step, one chooses which PCs are to be discarded and which are significant enough
to keep. The eigenvectors can be ranked in order of their eigenvalues from highest to
lowest, which results in the principal components in order of significance. The PCs of
lowest significance, with the lowest eigenvalues, can be ignored. By leaving out these
components the dimensionality is reduced while losing the information captured by the
these component. As long as the corresponding eigenvalues of these PCs are small, the
information loss is very limited.The PCs with the highest eigenvalues will form a matrix
together, which is called the feature vector [14]. The feature vector will look like this:

F =
(
eig1 eig2 eig3 ... eign

)
with F being the feature vector and n being the number of dimensions.

The fifth step is to recast the date along the axes of the principle components. This can
be done by multiplying the standardized original data set with the feature vector [14].
The corresponding equation is as follows:

D = S × F
with D being the final data set, S being the standardized original data set and F being
the feature vector.

The final step is getting the original data back [14]. The last equation can be rewritten
to the following equation:

S = D × F T .
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To get the original data back, the mean of the original data should be added back:

O = S +M

with O being the original data set and M being the original mean. This concludes all
the steps prior to and involved in PCA.

3.3 Two-Way ANOVA

The Two-Way ANOVA is a statistical test that compares the mean differences between
two independent variables. With this test it can be shown whether these variables have
any interaction with the dependent variable or not [17]. In this research the independent
variables would be the different time points during the day and the POP women and the
healthy volunteers. If there is interaction, the lines of the two groups will intersect or at
least will not be parallel. If there is no interaction, the lines will be parallel [17].
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4 Materials and methods

4.1 Population

MRI scans of women who participated in the EPPA study were used. The EPPA study
was approved by the local ethics committees (NL74061.091.20), and all women gave
written informed consent [18]. 15 patients enrolled from the gynecology department of
Ziekenhuis Groep Twente (ZGT) hospital in Hengelo. The 45 control women included
in this research did not have any POP symptoms and enrolled via flyers. Out of the 45
volunteers there were 15 nulliparous, 15 parous (minimal of one vaginal delivery) and
pre-menopausal and 15 parous and post-menopausal.

All women were 18 years or older. Women were excluded if they were not able to stand
for 20 minutes without assistance, were not suitable to undergo an MR scan based on
the MRI safety checklist, or had a jeans size larger then 52 (EU) or 22 (US), because of
the limited coil circumference [6, 18].

4.2 MRI examination

All women were scanned using a tiltable 0.25T MR scanner (G-Scan; Esaote, Genoa,
Italy) in upright position. The table was angled at 81° to enable a natural standing
position for all women. A multi-slice 2D T2-weighted fast spin echo (FSE) scan was
acquired in midsagittal position (echo time (TE): 2 ms, repetition time (TR): 3480 ms,
reconstructed resolution: 1.3 × 1.3 mm2, FOV: 340 x 340 mm2, matrix size: 192 x 200,
slice thickness: 5 mm, number of slices: 11, total scan time: ±2 min) [18]. Secondly, a 3D
hybrid contrast enhancement (HYCE) MRI scan was obtained in midsagittal position.

All women were scanned three times in one day. The first scan took place between 8AM
and 9AM, the second scan between 12AM and 1PM and the third scan between 4PM
and 5PM.

4.3 Image analysis

ImageJ software (version 1.53q, LOCI, University of Wisconsin) was used for the levator
plate shape analysis on the upright scans. For each scan a total of twelve points were
manually assigned in the midsagittal plane (Figure 4). As defined by Schmidt et al.
[9], the anatomical landmarks that were marked were the inferior pubic point of the
pubic symphysis (1), the perineal body (2), the most superior point of the external anal
sphincter (3), the middle of the pubrectalis bundle (5) that is approximately the shortest
distance from the pubic symphysis to the levator plate, the inferior coccyx (9) and the
sacrococcygeal joint (10). The remaining points were equal sampling points (4, 6, 7,
8), which were marked at approximately half the distance between the above-mentioned
anatomic landmarks. These were placed in numeric order to allow for more accurate
curvature measurements. The LP is defined as a curved line between points (3) to (10).
Point (11) was placed at the anterior fornix of the vagina and point (12) at the posterior
fornix of the vagina. The points were saved in a .tiff file.

For each scan, the coordinates of each point were analysed and measured. Then, the
levator area (LA) in mm2, SCIPP length in mm, urogenital hiatus (UGH) in mm, levator
hiatus (LH) in mm, and perineal body (PB) location were calculated in mm by a macro
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Figure 4: This figure shows a midsagittal view of the MRI with the measurements that
have been performed. The abbreviations are as follows, PS: pubic symphysis, UGH:
urogenital hiatus, PB: perineal body, EAS: external anal sphincter, LP: levator plate,
LH: levator hiatus, SCJ: sacrococcygeal joint, SCIPP line: sacrococcygeal to inferior
pubic point line, Ut: uterus, PICS line: horizontal reference line[9].

plugin tool. The coordinates and the information calculated by the macro plugin tool
were saved in a .csv file [6].

4.4 Levator plate shape analysis

The levator plate is a curved structure which can be analysed by statistical shape analysis
with the use of PCA. The Python software from Schmidt et al. [9] was performed to do
this analysis. Besides that, homemade MATLAB code (MATLAB ver. R2022a) was
used to replicate their shape analysis. First alignment and scaling was carried out to be
confident that all variables (the x,y-coordinates of all points) contributed equally to the
analysis. After that, a reshape took place following the principal component analysis.

4.4.1 Alignment and scaling

The first step in the alignment was translating all variables. For the LP shapes of all scans
to start at the same origin, a starting point had to be chosen. Point 10, the sacrococcygeal
joint, was chosen to be this starting point of the LP shape. For all LP shapes to start at
point 10, the x,y-coordinates of point 10 had been subtracted from all variables:

T (x, y) = (x, y)− (x10, y10)

with T being the translated variables. After this had been done for each scan, all variable
had been translated to the origin (0,0).
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The second step was scaling the data. This step made use of the SCIPP line length, which
is the distance between points 1 (pubic symphysis) and 10. All scans were scaled to a
reference SCIPP length of 100 mm. For each scan a scaling factor was created by dividing
the reference SCIPP length by the actual SCIPP length. The translated variables were
multiplied by this scaling factor which led to translated and scaled variables:

S(x, y) = T (x, y) ∗ SCIPPref
SCIPP

with S being the translated and scaled variables, SCIPPref being the reference SCIPP
length and SCIPP being the actual SCIPP length.

The third and last step of the alignment and scaling was the rotation. The LP shapes of
all scans were rotated to a fixed angle. This was done by creating a rotation matrix with
the angle between the SCIPP line and the x-axis. The translated and scaled variables
were multiplied by this rotation matrix, which made the SCIPP line equal to the x-axis.
Then these rotated variables were again rotated by multiplying with another rotation
matrix. In this rotation matrix the angle was made 34°, which matched the PICS angle
[19].

R = S ∗M1 ∗M2

with R being the translated, scaled and rotated variables, M1 being the rotation matrix( cos(θ) −sin(θ)
sin(θ) cos(θ)

)
with θ being the angle between the SCIPP line and the x-axis and M2 being

the rotation matrix
( cos(φ) −sin(φ)
sin(φ) cos(φ)

)
with φ being an angle of 34°. This led to translated,

scaled and rotated variables. The implementation of these steps in MATLAB can be
viewed in Appendix B section 7.2.1.

4.4.2 Principal Component Analysis (PCA)

After the alignment and scaling and before the PCA a reshape was performed on the data.
This reshape converted the matrix containing data from a 12x2 matrix to a 24x1 matrix.
Next, the reshaped matrix was transposed, so the rows of the matrix contained the scans
and the columns contained the variables. The default MATLAB PCA function was used
to calculate the PCs, eigenvalues, percentages of total variance and the estimated mean
of each variable [20]. At last, the original data was retrieved by multiplying the score
with the transpose of the coeff and adding mu to it. The exact implementation of this
section can be found in Appendix B section 7.2.3.

4.5 Statistical analysis

The statistical analysis was performed using SPSS (ver. 28.0.1.0). A Two-Way ANOVA
(analysis of variance) was performed on the data. This test was able to show whether
there was any interaction between the groups (healthy volunteers and POP) and the time
(morning, midday and afternoon) and the times among themselves.
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5 Results

The following results were obtained with a total of 43 instead of 45 volunteers and 14
instead of 15 POP women. Out of the 43 volunteers, there were 15 nulliparous, 15 parous
and pre-menopausal and 13 parous and post-menopausal women. Two parous and post-
menopausal women were excluded, because they appeared to have a prolapse. One POP
woman was excluded, because the afternoon scan did not take place.

5.1 Results obtained with Python program

The PC shape analysis performed by the Python program that was developed in the
research of Schmidt et al. [9] identified two main PCs with shape variations (PC1 and
PC2). PC1 describes the shape in horizontal direction and PC2 describes the shape in
vertical direction. PC1 accounted for 61% of shape variation and PC2 accounted for 33%
of the shape variation. For PC1 a clear distinction can be made between the healthy
volunteers and the POP women with a significance of p<0.001. The PC scores of the
group of healthy volunteers at all time points were lower than the group of POP women, as
can be seen in Figure 5. The entire LP shape of the POP group seemed to have rotated
more dorsally around the sacrococcygeal joint as compared to the healthy volunteers.
For PC2 the distinction is less obvious, which corresponds with a marginal significance
of p=0.049. as the PC scores show in Figure 5, the group of of healthy volunteers scored
slightly higher at all time points than the group of POP women.

Figure 5: This figure shows the levator plate shape analysis comparing POP women
to healthy volunteers in the morning, midday and afternoon. The bottom error bar
indicates the minimum value to the 25th percentile, and the top error bar indicates the
75th percentile to the maximum value. This figure has been visualized by Python.

Figure 5 shows that there was no significant difference in LP shape or LP score at the
different time points for both the group of healthy volunteers and the group of POP
women. There was however a small difference in PC1 between the morning and afternoon
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scans in both women with POP and the healthy volunteers with p<0.209, however this
was still not significant. In Figure 6 the two lines, which represent the main effect of
the different groups are parallel to each other. This shows that there was no interaction
between the groups and the different time points. All p-values with regard to the results
can be found in Figures 9 and 10 in appendix A.

Figure 6: This figure shows the main effect of PC1 for both the POP women and the
healthy volunteers at the different time points during the day. There is a large difference in
estimated means between the healthy volunteers and the POP women, but the differences
during the day are small.

5.2 Comparison MATLAB and Python program

The results from the figures made in MATLAB were similar to those in Python (Figure
5,7). PC1 and PC2 obtained by MATLAB are shown in Figure 8. The mean and standard
deviations seem to correspond with the PCs in Figure 5. For MATLAB the total variance
of PC1 was 61% and for PC2 was 33%, which corresponded with the total variances for
both PCs of the Python program. The plots of PC1 and PC2 are depicted in Figure 8,
with (a) and (b) respectively showing PC1 and PC2.
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Figure 7: This figure shows the LP shape of all individual scans visualized with MATLAB.
The dashed line is the SCIPP line.

(a) (b)

Figure 8: This figure shows for (a) and (b) respectively PC1 and PC2 visualised by
MATLAB. The dotted lines represent the PC of all individual scans, the dashed line
represents the SCIPP line and the continuous lines represents the mean and standard
deviations.
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6 Discussion

In this study, the PC shape analysis showed that there is a significant difference in
LP shape between the POP women and healthy volunteers (Figure 5), especially with
regards to PC1. For all time points, the LP shape regarding the group of POP women
was oriented more dorsally as compared to the group of healthy volunteers. PC2 showed
a marginal significance in vertical direction. These results could indicate that the POP
women experience less support from the levator plate than the healthy volunteers. The LP
shape could be deformed in this manner, due to the pelvic organs being in prolapse and
pushing the LP shape more dorsally and caudally. Besides that, the PC shape analysis
showed no significant difference in LP shape for the different time points for both the
POP women and the healthy volunteers. There was a slight difference in PC1 between the
morning and afternoon for both groups, but this was not significant. The results of this
research can be implemented in health facilities. Since there is no significant difference
of the LP shape during the day, patients don’t have to be scheduled at a certain time of
the day, which makes it easier for the physician.

Previous research [8, 21] has suggested that the LP angle of POP women is larger than the
LP angle of healthy volunteers. This indicates that the orientation of those LP shapes
would be more dorsally. This corresponds with the result of Figure 5. The research
of Pearce et al. [22] found that there was no difference in POP-Q examination between
morning and afternoon exams for women with POP. According to previous research [1, 23]
POP-Q and MR examination are two techniques that are not in agreement with one an-
other. Besides that, the POP-Q examination was done at strain in supine position, while
the MR measurements were done at rest in upright position. This makes comparing the
research of Pearce et al. to this research difficult. Keeping these comparison limitations
in mind their results do correspond with our findings.

This study has a few strengths. First, all afternoon scans of the healthy volunteers
were compared to the afternoon scans that were used in the research of de Kruif et
al. [6]. In that manner there is consistency in the placement of the points for those
scans. The placement of the points has been checked by an experienced researcher on
all afternoon scans of the POP women. Second, in all 171 scans the placement of the
point has been done and checked by the same person, which ensures consistency. Third,
the results obtained with the Python and MATLAB programs do correspond with one
another. This shows that PCA can be used for different researches regarding the LP
shape regardless of which program is used. Besides that, in both programs the means
and standard deviations were of the entire group, so these can easily be compared to one
another.

Besides that, there are a few limitations in this study. First of all, the small sample
size. Although the group of healthy volunteers was sufficiently large, the group of POP
women was limited to only 14 women. Therefore, larger studies are needed to verify the
results. Second, the interobserver variance could be reduced by having another person
landmarking all the scans again. The intraboserver variance could also be reduced, which
could be done by having the researcher landmarking all the scans again. A limitation
regarding the MATLAB code is that the PCA was not performed with the same groups
as the Python version. This is a small step that can be added to the code, which makes
comparing the LP shapes of the time groups of both programs easier.

Future research that could be interesting is looking more into the three different groups
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among the healthy volunteers. These existed out of nulliparous, parous and pre-menopausal
and parous and post-menopausal. There could be differences in LP shape between these
groups, because differences in age, parousity and whether or not being pre- or post-
menopausal could have an influence on the LP shape of healthy women as well. In this
research the women were told to have a normal day on the day they were scanned with
only the restriction that they should not lay down. Potentially, the LP shape changes
during the day on a high activity day. This could be investigated by having a group
of women do a certain amount of activity with for example some lifting and comparing
them to a group of women behaving as they would on an everyday basis. There was also
data available for the urogenital hiatus, perineal body location, levator hiatus and levator
area. Performing calculations on these might provide more insight on the extend of POP
during the day. At last, placing the point manually is a time consuming task which has
some inter- and intraobserver variations. Placement of some of the landmarks could be
automated with the help of machine learning for example.

In conclusion, the difference in LP shape between POP women and healthy volunteers is
significant. The LP shape of POP women is oriented more dorsally as compared to the
healthy volunteers. However, there is no significant difference of the LP shape for both
POP women and healthy volunteers during the day. The LP shape of POP women does
not have a steeper slope at the end of the day than at the beginning of the day.
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7 Appendices

7.1 Appendix A: Results Two-Way ANOVA

Figure 9: This figure shows the results obtained with the Two-Way Anova. The ’Sig.’
column shows the p-values, which are relevant for this study.

Figure 10: This figure shows the results obtained with the Two-Way Anova. The ’Sig.’
column shows the p-values, which are relevant for this study.
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7.2 Appendix B: MATLAB code

7.2.1 Alignment and Scaling

1 c l e a r a l l , c l o s e a l l , c l c ;
2

3 % Load a l l data
4 % Choose a l l . csv f i l e s in the path + t o t a l number o f f i l e s
5 path data = ’C:\ Users\dobbe\Desktop\M12 BSc Prolaps \ t e s t \ ’ ;
6 A l l F i l e s = d i r ( [ path data ’ \∗ r e s u l t s . csv ’ ] ) ;
7 n um f i l e s = s i z e ( A l l F i l e s , 1 ) ;
8

9 f o r scan = 1 : n um f i l e s
10 f i l e = A l l F i l e s ( scan ) . name ;
11 new name = [ f i l e ( 1 : end−12) , ’ t rans formed ’ ] ; % Assign new

name to the f i l e
12

13 c s v f i l e = readtab l e ( f i l e , ’ PreserveVariableNames ’ , t rue ) ;
% Load data o f s p i c i f i c scan

14 c s v f i l e = renamevars ( c s v f i l e , ’SCIPP length ’ , ’ SCIPP Length ’ )
;

15

16 % Alignment and s c a l i n g
17 % Extract data from tab l e
18 Landmarks = c s v f i l e {1 :12 , [ ”X” , ”Y” ] } ;
19 hold on
20

21 % Trans late po in t s to (0 , 0 )
22 Translated LP = Landmarks − Landmarks ( 1 0 , : ) ;
23

24 % Def ine SCIPPlength Reference and SCIPPlength
25 SCIPP = c s v f i l e {1 ,” SCIPP Length ”} ;
26 SCIPP ref = 100 ; % mm
27

28 % Sca l i ng o f the data
29 Sca l i ng Fac to r = SCIPP ref /SCIPP ;
30 Scaled LP = Translated LP ∗ Sca l i ng Fac to r ;
31

32 % Check the SCIPP length
33 Check SCIPP = s q r t ( ( Scaled LP (1 , 1 )−Scaled LP (10 ,1 ) ) ˆ2 + (

Scaled LP (1 , 2 )−Scaled LP (10 ,2 ) ) ˆ2) ;
34

35 % Rotation
36 Angle SCIPP Xaxis = −acos ( ( Scaled LP (10 ,1 )−Scaled LP (1 , 1 ) ) /

Check SCIPP ) ;
37

38 Rotat ion Matr ix 1 = [ cos ( Angle SCIPP Xaxis ) −s i n (
Angle SCIPP Xaxis ) ; s i n ( Angle SCIPP Xaxis ) cos (
Angle SCIPP Xaxis ) ] ;
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39

40 % Rotation o f 34 degree s o f SCIPP with r e s p e c t to the x−a x i s
41 Angle = deg2rad (34) ;
42 Rotat ion Matr ix 2 = [ cos ( Angle ) −s i n ( Angle ) ; s i n ( Angle ) cos (

Angle ) ] ;
43

44 Rotated LP = Scaled LP∗ Rotat ion Matr ix 1 ∗ Rotat ion Matr ix 2 ;
45

46 % Plot LP shape en SCIPP l i n e
47 p lo t ( Rotated LP 2 ( 3 : 1 0 , 1 ) ,−Rotated LP 2 ( 3 : 1 0 , 2 ) ) ;
48 p lo t ( Rotated LP 2 ( [ 1 1 0 ] , 1 ) ,−Rotated LP 2 ( [ 1 1 0 ] , 2 ) ) ;
49

50 % Save the transformed data in new . csvv f i l e s
51 wri tematr ix ( Rotated LP 2 , [ new name , ’ . csv ’ ] ) ;
52

53 end
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7.2.2 Reshape

1 c l e a r a l l , c l o s e a l l , c l c ;
2

3 % Load transformed data , reshape , save in new matrix
4 % Choose a l l . csv f i l e s in the path + t o t a l number o f f i l e s
5 path data = ’C:\ Users\dobbe\Desktop\M12 BSc Prolaps \ t e s t \ ’ ;
6 A l l F i l e s = d i r ( [ path data ’ \∗ transformed . csv ’ ] ) ;
7 n um f i l e s = s i z e ( A l l F i l e s , 1 ) ;
8

9 % Def ine ’ empty ’ matrix to add a l l scans toge the r
10 Empty Matrix = c e l l ( num f i l e s , 1 ) ;
11 Empty Matrix2 = c e l l ( num f i l e s , 1 ) ;
12

13 f o r scan = 1 : n um f i l e s
14 f i l e = A l l F i l e s ( scan ) . name ;
15

16 c s v f i l e = readtab l e ( f i l e , ’ PreserveVariableNames ’ , t rue ) ;
17 c s v f i l e = renamevars ( c s v f i l e , [ ” Var1 ” ,” Var2 ” ] , [ ”X” ,”Y” ] ) ;
18

19 % Reshape
20 Landmarks = c s v f i l e { : , : } ;
21 Reshape = reshape ( Landmarks , [ ] , 1 ) ;
22 Reshape Transpose = Reshape . ’ ;
23

24 % Add a l l data to the ’ empty ’ matrix
25 Empty Matrix{ scan} = Reshape Transpose ;
26 end
27

28 MatrixforPCA = v er t ca t ( Empty Matrix { :} ) ; % Rows are the scans ;
columns are the x , y va lue s

29 wri tematr ix ( MatrixforPCA , ’ MatrixforPCA . csv ’ )
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7.2.3 PCA

1 c l e a r a l l , c l o s e a l l , c l c ;
2

3 % Apply PCA
4 % Load data
5 MatrixforPCAcsv = readtab l e (” MatrixforPCA . csv ”) ;
6 MatrixforPCAcsv = renamevars ( MatrixforPCAcsv , [ ” Var1 ” ,” Var2 ” , ”

Var3 ” ,” Var4 ” ,” Var5 ” , ”Var6 ” ,” Var7 ” ,” Var8 ” , ”Var9 ” ,” Var10 ” ,”
Var11 ” ,” Var12 ” , ”Var13 ” ,” Var14 ” ,” Var15 ” , ”Var16 ” ,” Var17 ” ,”
Var18 ” , ”Var19 ” ,” Var20 ” ,” Var21 ” , ”Var22 ” , ”Var23 ” , ”Var24 ” ] ,
[ ”X1” ;”X2” ;”X3” ;”X4” ;”X5” ;”X6” ;”X7” ;”X8” ;”X9” ;” X10 ” ;” X11 ” ;”
X12 ” ;”Y1” ;”Y2” ;”Y3” ;”Y4” ;”Y5” ;”Y6” ;”Y7” ;”Y8” ;”Y9” ;” Y10 ” ;” Y11
” ;” Y12 ” ] ) ;

7

8 % Extract LP from tab l e
9 MatrixforPCA = MatrixforPCAcsv { : , : } ;

10

11 PCA input = MatrixforPCA ( : , [ 3 : 1 0 1 5 : 2 2 ] ) ;
12

13 % Check data
14 f i g u r e (1 )
15 hold on
16 f o r i = 1 : s i z e ( PCA input , 1 )
17 p lo t ( PCA input ( i , 1 : 8 ) ,−PCA input ( i , 9 : 1 6 ) )
18 p lo t ( MatrixforPCA ( i , [ 1 1 0 ] ) ,−MatrixforPCA ( i , [ 1 3 2 2 ] ) , ’−− ’ )
19 end
20 t i t l e ( ’LP shape o f a l l scans ’ )
21 a x i s ([ −90 1 −70 0 ] )
22 hold o f f
23

24 % PCA
25 % Performing the PCA
26 [ c o e f f , score , l a t ent , tsquared , expla ined ,mu] = pca ( PCA input ) ;
27

28 % PC1
29 ordata 1 = sco r e ( : , 1 ) ∗ c o e f f ( : , 1 ) ’ ;
30 ordata 1 = ordata 1+mu;
31

32 s t anda rd dev i a t i on 1 = std ( s co r e ( : , 1 ) ) ;
33 s td o rda ta 1 = s tanda rd dev i a t i on 1 ∗ c o e f f ( : , 1 ) ’+mu;
34 s td1 o rda ta 1 = −s t anda rd dev i a t i on 1 ∗ c o e f f ( : , 1 ) ’+mu;
35 mean ordata 1 = c o e f f ( : , 1 ) ’+mu;
36

37 % Plot PC1 f o r a l l scans
38 f i g u r e (2 )
39 hold on
40 f o r i = 1 : s i z e ( PCA input , 1 )
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41 p lo t ( ordata 1 ( i , 1 : 8 ) ,− ordata 1 ( i , 9 : 1 6 ) , ’ : ’ )
42 p lo t ( MatrixforPCA ( i , [ 1 1 0 ] ) ,−MatrixforPCA ( i , [ 1 3 2 2 ] ) , ’−− ’ )
43 p lo t ( s td o rda ta 1 ( 1 : 8 ) ,− s td o rda ta 1 ( 9 : 1 6 ) , ’ LineWidth ’ ,1 , ’

c o l o r ’ , [ 0 . 4 0 . 4 0 . 4 ] )
44 p lo t ( s td1 o rda ta 1 ( 1 : 8 ) ,− s td1 o rda ta 1 ( 9 : 1 6 ) , ’ LineWidth ’ ,1 , ’

c o l o r ’ , [ 0 . 4 0 . 4 0 . 4 ] )
45 p lo t ( mean ordata 1 ( 1 : 8 ) ,−mean ordata 1 ( 9 : 1 6 ) , ’ LineWidth ’ ,1 , ’

c o l o r ’ , [ 0 . 4 0 . 4 0 . 4 ] )
46 end
47 t i t l e ( ’PC1 f o r a l l scans ’ )
48 a x i s ([ −90 1 −70 0 ] )
49 hold o f f
50

51 % PC2
52 ordata 2 = sco r e ( : , 2 ) ∗ c o e f f ( : , 2 ) ’ ;
53 ordata 2 = ordata 2 + mu;
54

55 s t anda rd dev i a t i on 2 = std ( s co r e ( : , 2 ) ) ;
56 s td o rda ta 2 = s tanda rd dev i a t i on 2 ∗ c o e f f ( : , 2 ) ’+mu;
57 s td1 o rda ta 2 = −s t anda rd dev i a t i on 2 ∗ c o e f f ( : , 2 ) ’+mu;
58 mean ordata 2 = c o e f f ( : , 2 ) ’+mu;
59

60 % Plot PC2 f o r a l l scans
61 f i g u r e (3 )
62 hold on
63 f o r i = 1 : s i z e ( PCA input , 1 )
64 p lo t ( ordata 2 ( i , 1 : 8 ) ,− ordata 2 ( i , 9 : 1 6 ) , ’ : ’ )
65 p lo t ( MatrixforPCA ( i , [ 1 1 0 ] ) ,−MatrixforPCA ( i , [ 1 3 2 2 ] ) , ’−− ’ )
66 p lo t ( s td o rda ta 2 ( 1 : 8 ) ,− s td o rda ta 2 ( 9 : 1 6 ) , ’ LineWidth ’ ,1 , ’

c o l o r ’ , [ 0 . 4 0 . 4 0 . 4 ] )
67 p lo t ( s td1 o rda ta 2 ( 1 : 8 ) ,− s td1 o rda ta 2 ( 9 : 1 6 ) , ’ LineWidth ’ ,1 , ’

c o l o r ’ , [ 0 . 4 0 . 4 0 . 4 ] )
68 p lo t ( mean ordata 2 ( 1 : 8 ) ,−mean ordata 2 ( 9 : 1 6 ) , ’ LineWidth ’ ,1 , ’

c o l o r ’ , [ 0 . 4 0 . 4 0 . 4 ] )
69 end
70 t i t l e ( ’PC2 f o r a l l scans ’ )
71 a x i s ([ −90 1 −70 0 ] )
72 hold o f f
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