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1. Introduction	

ProRail is the owner of the Dutch railway infrastructure. It is 
responsible for the construction, maintenance and safety of all assets 
related to the transportation of trains including train stations. Train 
operators, such as NS (Nederlandse Spoorwegen), are using these 
tracks and are responsible for the transits. In order to maintain a 
reliable schedule, the availability of the tracks must be as high as 
possible. This can be challenging as the Dutch railway network is the 
busiest of Europe [1]. This means that all replacement activities that 
result in downtime for the tracks must be optimized 

 

 
Figure	1.	Pantograph in contact with contact wire. 
 

One of the assets which are critical for the functionality of electric 
trains is the contact wire (see Figure 1). Contact wires are a part of the 
overhead power line which transport the electricity parallel to the 
track. A train makes contact with the copper contact wire through a 
pantograph which allows it to draw electricity. To make proper 
contact with the contact wire, the pantograph exerts a force upwards 
pressing against the wire. When the train moves this will induce 
friction and eventually wear down the pantograph and contact wire. 
Over time, the contact wire decreases in size to the point where it must 
be replaced. 

 In 2030, it is expected that the travelled kilometres per train in the 
Netherlands are increased by 23% ~ 34% compared to 2014 [2]. 
Increase in utilization will cause faster degradation of the contact 
wires, which subsequently will lead to more frequent replacements of 
the contact wire.  

The objective of ProRail is to move towards predictive maintenance 
whereby the maintenance activities can be strategically planned ahead 
of time, based on predicted asset conditions. By doing this, the 
predictions are more reliable, mostly automated and can be updated 
every time new measurements are available. Ideally, different 
maintenance activities are combined if they are affecting the same 
section. This will reduce downtime and increase the reliability of 
transportation schedules. Accurately predicted asset conditions allow 
for a more optimal replacement strategy.  

Currently, it is not clear when the contact wire will be at the end of 
its lifetime. The estimated year of replacement within ProRail is  

 
 
mainly based on extrapolation of the historical thickness and expert 
judgement. ProRail has valuable data about the train passages and 
many parameters about their assets which remains unused with this 
method. The prediction for future thickness can become more 
accurate when considering more factors such as the number train 
passages. Also, prediction models from literature about contact wire 
degeneration are insufficient as these either do not include multiple 
features or cannot predict the wear into the future. 

In order to generate data-driven predictions which can utilize 
multiple wear factors, machine learning can be used. This predictive 
modelling method is able to find complex patterns between multiple 
features in historical data [3]. The goal of this study is to develop a 
machine learning model that can predict the thickness of the contact 
wire for 4-5 years into the future based on the historical data. The 
results will be assessed by calculating the error between the actual 
thickness and the predicted thickness for multiple years into the 
future. 

This paper is organized as follows. In section 2, the state of the art 
for contact wire models is described together with the most important 
wear factors. In section 3, the methodology for the model is explained. 
In section 4, the results of the model are presented for the 
performance of the wear rate prediction and the error when using the 
model for long term predictions. Finally, the discussion and conclusion 
close this paper. 

2. Literature	

2.1. Previous	studies	on	contact	wire	wear	predictions	

Multiple studies have been conducted about predicting the wear of 
contact wires. In the studies of Derosa et al. and Bucca & Colina [4][5], 
the same heuristic model is developed and tested on lab data. This 
model contains three types of wear: mechanical friction, electrical 
current and electric arcs. The wear resulting for each wear type has 
given a weight of its contribution. By combining al three components, 
the total wear per million pantograph passes is determined. Each 
component contains variables such as the material hardness of the 
wire but also coefficients that must be tuned. Tuning is performed by 
conducting multiple tests in the lab with a test rig. Different 
parameters have been tested separately to determine the wear 
contribution. The main parameters for this model are the sliding 
speed, contact force and electrical current. With this model, future 
predictions can be made by multiplying the wear rate by the number 
of expected pantographs that will pass. However, lab tests do not 
encounter imperfections occurring in the field and may therefore be 
imprecise for real-world use.  

Wei et al. [6] also used a heuristic model to predict the wear rate of 
contact wires. This model uses electric current, sliding speed, contact 
force and environmental temperature as variables for the model. The 
outcome of the model is compared to real-world data for one metro 
track. The outcome of the model and values from the field are 
consistent. However, all measured wear rates are in a very small 
range which makes predictions inherently more accurate. Predictions  
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Figure	2.	Overview methodology 
 
with this model can be made by assigning the number of expected 
pantograph passages. Besides this, it is not validated if the results are 
also accurate for long-term predictions.  

Usada [7] made a prediction model to determine the current wire 
thickness using a neural network. The input for this model solely relies 
on the signal of the contact force. A window over 27 datapoints of the 
contact force is used to derive features. The predictions are accurate 
but cannot be produced for the future with this method.  
 

2.2. Important	wear	mechanisms	

Numerous factors are influencing the wear rate of the contact wire. 
The number of pantograph passages is most dominant in literature as 
this is linked to most wear mechanisms [7][8]. The electrical current 
is also often mentioned being a significant contributor as this causes 
the wire to heat up and causes mechanical stress [9]. The electrical 
current is the highest during acceleration and deceleration which 
makes these zones more prone to wear [6]. The contact force is 
another factor influencing the wear. If the contact force is too low the 
pantograph will vibrate, bounce and create electrical arcs. If the 
contact force is too high it will result in excessive friction [10].  Another 
wear factor that is often mentioned in literature is the train's speed. 
More heat will be generated at higher speeds which is partly caused by 
the higher electrical current. Shing [8] found that the wear rate 
increases when the relative speed is higher. The mentioned wear 
mechanisms must be considered for model features to predict the 
wear rate.  

3. Proposed	method	

In Figure 2, the procedure of this study is shown. The process can be 
divided in four main stages: collecting data, preparation of the data, 
modelling of the wear rate and testing the long-term performance of 
the model. In this chapter, the methodology is described according to 
these steps. 

3.1. Data	collection	

3.1.1. Identify	important	wear	factors	

The most important wear factors are collected via literature and 
mentioned in the previous chapter. Other available data is also taken 
into account for generating features. Some measurements could 
provide additional information about the wear development or can 
help to derive certain features indirectly if no data is available. The 
features that are used in this study are explained and motivated later 
in section 3.3.1 and can also be found in Appendix II. 

 
 

3.1.2. Collecting	datasets	

For this study, three databases from ProRail are used which hold 
important information about the wear rate. These datasets consist of 
information about the measurement train, train passages and speed 
per segment. The dataset of the measurement train ranges from 2010 
to 2018.  

The measurement train aims to measure the properties of the 
contact wires every year for all tracks in the Netherlands. Besides the 
thickness of the contact wire, the train measures other parameters 
such as pantograph contact force, horizontal wire position, wire 
height, cant and. These measurements are combined in one dataset 
with details about its location. In Table 1, a limited example of the data 
is shown. To see all relevant columns, see Appendix I. 
 
Table	1.	Example data from measurement train (only a few relevant 
columns are shown) 

ID section Km Date Thick 
avg 1 

Thick 
min 1 

078_205BR_64.9 0.00 2015-03-18 9.9 9.9 
078_205BR_64.9 0.25 2015-03-18 9.8 9.8 
078_205BR_64.9 0.50 2015-03-18 9.9 9.9 
 
At 45 locations in the Netherlands, the deflection of the rail is 

measured and collected in a database called Quo Vadis. From the rail 
deflection, the load per axis can be derived. In combination with 
information about the train formation and its scheduled route, the 
number of passed trains and the total amounts of tons can be 
calculated for every rail section. This information is available per 
month for passenger and goods trains. An example of the data with all 
used columns can be found in Table 2. 
 
Table	2.	Example data from passed trains (only relevant columns are 
shown) 

ID section Trains 
travel 

Trains 
goods 

Tons 
travel 

Tons 
goods 

005_97V_115.0 1212 1 4065.3 2.5 
006_1003L_3.6 1923 40 6132.5 446.6 
006_1009AR_4.3 30 2 77.1 18.7 

 
The location and the speed of every train are registered by the 

control centre. This information is collected for a single day whereby 
the average speed is calculated for segments of 100 meters for all train 
passages. It is assumed that the average speed for this particular day 
is representative for the average railroad traffic throughout the year. 
In Table 3, an example of the data structure is shown. 
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Table	3.	Example data from train speeds on one specific date (only 
relevant columns are shown) 

ID section Km 
from 

Km 
till 

Speed 
avg 

Speed 
max 

Speed 
local 

009_131AL_149.4 0 100 103.4 138 140 
009_131AL_149.4 100 200 101.4 136 140 
009_131AL_149.4 200 300 120.1 139 140 

 

3.2. Data	preparation	

3.2.1. Linking	and	filtering	dataset	

To link the three datasets, the section ID and kilometrage of the 
tracks are used to create a unique ID. In case data is missing in one of 
the datasets, the ID is dropped. Also, IDs with less than 8 datapoints 
per ID are removed.    

To make the model more robust, some unique cases are removed. 
Almost all contact wires in the Netherlands have an initial diameter of 
12 mm. Only a few segments are using wires with a diameter of 13 mm 
and are therefore removed. Also tracks which are used for high-speed 
rail (HSR) are excluded as these tracks have different overhead wire 
specifications. 

3.2.2. Selection	wire	pair	

Above a single train track, there are two contact wires which form a 
pair. During the transition between wire sections, there are two 
overlapping pairs of wires. One wire pair slowly increases in height 
while the new wire pair slowly decreases its height. This principle can 
be seen in Figure 3. 
 

 
 

Figure	3. Side view of transition between wire pairs 
 
During this transition, the measurement train measures the two 

pairs simultaneously. However, it does not indicate which wire is in 
contact with the pantograph. Because the lowest wire is most likely to 
be in contact with the pantograph, it is assumed that the two lowest 
wires form a pair are in contact with the pantograph. If the difference 
in height between two wires is more than 3 mm, the datapoint is 
removed as this seems not realistic. Because contact wires are 
replaced in pairs, the measured parameters of the two wires are 
combined into one. The wire pair is now presented by an average and 
minimal value of the wire pair. The average thickness of the two wires 
is used to create the label. The average and minimum can both be used 
as a feature, together with the delta thickness between the two wires. 

3.2.3. Group	measurements		

The measurement train gives a datapoint for every 25 centimetres 
along the contact wire. One problem with this data is that the accuracy 
of the measurements is low due to deviations in the registered location 
and the precision of the thickness measurement itself [11]. To reduce 
the noise of these measurements and limit computing time, multiple 
datapoints are clustered. The number of datapoints within this group 
can be adjusted and is for this research set to 10 meters. This means 
that if all datapoints are valid, 40 datapoints are included per grouped 
datapoint. The way these 40 datapoints are processed varies per 
feature. For most features the average of the values is used. Also other 
transformations are made such as the minimum value and the 
standard deviation. In Appendix II, the applied transformation for 
every feature is given. 

3.2.4. Conversion	from	thickness	to	worn	area	

Due to the round shape of the wire, the decrease in thickness is not 
linear. The contact area for a new wire is smaller which makes it 
decrease faster in thickness when it is new. If the wire wears down, 
the contact area will increase which results in a slower wear rate for 
thickness. An example of this phenomenon can be seen in Figure 4. 
With a wire of 12 mm in diameter, the first worn millimetre is 
equivalent to 4.5 mm². Once the remaining thickness is 8 mm, 11.6 
mm² is removed to decrease the thickness by another millimetre.      

  
Figure	4: Increased surface area for decreasing thickness   
	

Archard’s law states that the removed material due to wear is 
proportional to the work applied by friction forces [12]. This means 
that with the same frictional force, a fixed volume of debris will be 
removed. As can be seen in Equation 1, the contact area is not relevant 
for the worn volume.  
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𝑉 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑤𝑒𝑎𝑟 
𝑘  𝑤𝑒𝑎𝑟 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 
𝐹 𝑝𝑢𝑠ℎ𝑖𝑛𝑔 𝑓𝑜𝑟𝑐𝑒 
𝑠 𝑠𝑙𝑖𝑑𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 
𝐻 ℎ𝑎𝑟𝑑𝑛𝑒𝑠𝑠 𝑜𝑓 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 
 
Equation	1. Archard’s wear equation 
	

In the case of contact wires, the frictional force will be the 
pantograph that slides along the wire. The occurring wear in relation 
to the passed pantographs will be linear in terms of volume according 
to Archard’s law. If possible, linear relations are preferred when 
analysing data. Therefore, the thickness must be translated into a 
volumetric degradation. This can be accomplished by using Equation 
2. This formula gives the worn area based on the radius and thickness 
of the wire. In Figure 5, the variables of the formula are visualised 
whereby the worn area is shown in grey. 

 

𝑎 𝑅  𝑐𝑜𝑠  
𝑟
𝑅

𝑟 𝑅² 𝑟² 
 
Equation	2. Conversion of wire thickness to worn area 
 

  
Figure	5. Visualization of variables for conversion wire thickness to worn 
area 

3.2.5. Wear	rate	label	

To train the model, a wear rate is needed which can be linked to the 
features. This wear rate is the desired output for the model and is 
called the ‘label’. The wear rate is expressed in square millimetres of 
copper that wears down per year (mm²/year).  

Since the measurement data is noisy, it is impossible to know the 
exact yearly wear rate. Therefore, an approximation has been made 
based on historical data. As train schedules and other factors are 
rather constant for each year, no disrupting changes are expected for 
the wear rate. The wear rate label is determined using linear 
regression for all years for which data is available. By doing this, the 
data of all years are utilized to give a reliable wear rate that is constant 
for the whole period. In Figure 6, it can be seen that the data from 
multiple years is transformed into a single yearly wear rate. 

In some cases, the deviations in the data are too large to give a 
reliable wear rate. These cases can be detected by looking at the R² 
score which is given for the fitted regression line. If the R² score is low, 
the line does not fit the data well which is in most cases caused by 
extreme noise. The slope of the fitted regression line is a second 
indicator to detect unreliable results. A line might be fitted with a slope 
that suggests a negative wear rate. This is physically impossible as the 
worn area can only increase. One possible scenario for such cases is a 
replacement of the wire. Wire replacements are not registered in a 
structured way and can thus only be detected properly by analysing 
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the data throughout the years. Another reason for an unreliable wear 
rate is the number of available datapoints. The more datapoints, the 
higher the reliability of the wear rate generated by linear regression. 
For reliable wear rates, the data must thus be filtered on reasonable 
R² scores, positive slopes and the minimum number of available 
datapoints. For this research, R² scores below 0.4 are removed. The 
same applies for negative wear rates and locations with less than 8 
datapoints. 

 
Figure	 6.	 Creation of wear rate label by linear regression over all 
datapoints 

3.2.6. Random	training	horizon	

The training horizon determines how many of the datapoints are 
included for training. The individual datapoints within the training 
horizon are combined to a grouped datapoint per feature. For this, the 
average for each feature is calculated for all included datapoints. The 
period of the training horizon is assigned randomly. In the example of 
Figure 7 this period is ranging from 2013 to 2016. Randomly shifting 
the training horizon avoids biases induced by trends in the data. Also 
measurement offsets for specific years are neutralized by this method. 

By limiting the training horizon, not all datapoints are included. An 
advantage of using only a few datapoints for training can be the 
responsiveness of the model. In this way, changes in features will 
influence the prediction to a greater extent, which is desired if for 
example the state of the asset has changed suddenly. The more 
datapoints are used for the training horizon, the more consistent the 
output will be. Especially if the data contains a lot of noise, smoothing 
is necessary to avoid outliers influencing the output too much. 
However, the downside of including many datapoints for training is 
that a sudden change in the state of the asset will not be immediately 
detected. With noisy signals it is hard to determine if an outlier is a 
change in asset condition or just noise. Therefore, an optimum needs 
to be found between the stability and responsiveness of the model. 
This will be done in an experiment which will be explained in section 
3.4.3. 

 
Figure	7.	Random assigned training horizon 

3.2.7. Split	train/validation/test	

The ratio between training, validation and testing is 70/20/10. This 
means that 70% of the data is used to train the model and 20% is used 
for validation and optimization of the model. After the optimization, 
the test set of 10% is used to see how the model performs without 
performance-boosting optimizations. With this ratio most data can be 
used for training while still remaining a proper validation and testing 
set. 
 

3.3. Model	development	

3.3.1. Feature	engineering	

As mentioned before, the measurements of the measurement train 
are grouped into blocks of 10 meters whereby the measurements are 
converted to one datapoint. This conversion is also a part of feature 
engineering as one measurement value can now be transformed into 
multiple features. This conversion is done for all dates, which means 
that a list of features is created for each date. For the input of the 
model, a single list of features is desired. Therefore, the features from 
multiple dates are combined by taking the average of all dates. Now 
every 10 meter block has one single list of features that can be used as 
input for the model. An overview of these steps is given in Figure 8. 
Besides that the conversion from a timeseries into a single point 
allows for a more straightforward machine learning method, the 
features are also less sensitive to noise. 

The features used in the model can be divided into seven categories. 
The features will be described below per category. For an overview of 
all features and a brief explanation, see Appendix II. 
 
Contact	wire	properties	
The measurement train has two measurements for each wire; the 

average and minimum values are measured over a distance of 25 
centimetres. For both measurements,  a feature is created by taking 
the average and minimum value for all measurements in the 10 meter 
block. Also the standard deviation is derived from these 
measurements. This feature indicates the roughness of the wire within 
the block of 10 meters. 

Another feature based on the contact wire is the delta thickness. This 
is the difference in thickness between the left and the right wire. This 
is delta thickness is calculated for the average and minimum measured 
thickness.  
	
Position	wire	
The measurement train measures the position of the wire in relation 

to the centre of the train. The height is one feature that is created based 
on the vertical position of the wire. The height is measured for both 
wires which allows to create a feature that indicates the delta height 
between the two wires. Also the horizontal position is measured, 
which generates a feature that indicates the distance between the wire 
and the centre of the track. 

 
Cant	
The cant of the track is measured by the measurement train. The tilt 

of the track indicates indirectly if the 10-meter block is located in a 
curved section of the track. This is because cant is applied to 
compensate for the centrifugal forces during a turn. 

 
Speed	
The measurement train logs its speed while measuring. This speed 

is used as a feature to indicate the relative speed of trains. Each section 
of a track has also a maximum allowed speed. This is used as another 
feature as trains often try to approach this maximum speed. A third 
feature to estimate the train speed is based on the average speed of 
trains logged per 100 meters. This logged data is based on recordings 
of only one day but is likely the best estimate for the actual train speed. 
Based on this data, the difference in speed is also calculated. This 
feature indicates the acceleration and deceleration which indirectly is 
an estimate for the electrical current.  

 
Passed	trains	
Between the most important railroad switches, the number of 

passed trains is measured. For this, a distinction is made between 
trains transporting passengers and goods which are both used as a 
feature. Also the total number of passed trains is a feature. The number 
of trains is an indicator for the number of passed pantographs that 
have been in contact with the contact wire. This feature can be 
adjusted if more or fewer trains will pass in the future.  

 
Transported	tons	
The amount of tons is measured in the same way as the number of 

passed trains. The amount of tons is known for trains transporting 
passengers, goods and both combined. For all three measurements, a 
feature is created. The amount of tons transported can be used as an 
estimate for the total electrical load exerted on the contact wire.  
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Figure	8.	Transformation from raw data to features 
	
Historical	trend	
Based on the datapoints used for the input of the model, a wear rate 

trend can be created for this specific period. With linear regression, a 
trend line can be calculated based on the worn area for the selected 
datapoints. The historical trend is used as a feature which is an 
indication of the expected wear rate for an extended time. Increasing 
the number of used datapoints will improve the stability and accuracy 
of the slope. The R² score of the regression line is also used as a feature 
to indicate the reliability of the slope. This feature must not be 
confused with the label of the model. Both apply the same principle, 
however, this feature only uses the datapoints of the input horizon 
instead of all datapoints.  

3.3.2. Importance	of	features	

To identify which features are most important for predicting the 
wear rate, an analysis is made. For the correlation, each feature is 
compared with the wear rate label of the model. A feature with a 
strong correlation is likely a good predictor [13]. However, this is not 
always the case because of confounding variables or lacking causation. 
When performing linear regression, the model assigns a weight to each 
variable. When the features are normalized, an importance score for 
the linear regression model can be determined for each feature. As 
these weights can be different per run due to the optimization process, 
the average of 3 runs is used to determine the importance. These 
weights are then scaled so the maximum score is 1.  

3.3.3. Train	and	test	model	

The machine learning models that are considered are multi-linear 
regression, random forest, gradient-boosted tree and neural network. 
For each model type, the Mean Absolute Error (MAE), Mean Squared 
Error (MSE), Root Mean Squared Error (RMSE) and R-Squared (R²) are 
measured. These metrics represent the accuracy of the predicted wear 
rate compared to the actual wear rate. The MAE gives the average 
absolute difference between the prediction and the actual value. The 
MSE is the average squared difference between the predicted and 
actual values. The RMSE is the square root of the MSE metric which 
converts the squared difference back into the original units. The R² 
score indicates the percentage of variance between the predicted and 
actual values. The R² scores ranges from 0 to 1, whereby an R² of 1 
means that the predictions are identical to the actual values. In this 
study, the focus is on the RMSE score when comparing different 
models.  

3.4. Test	long‐term	performance	

3.4.1. Divide	datapoints		

To determine the long-term performance of the model, the model is 
tested on a subset of datapoints. In the example of Figure 9, it can be 
seen that the first four datapoints are used as input for the model. The 
four datapoints are creating the feature values which are used by the 
model to generate a predicted wear rate. This wear rate will be 
projected into the future. The model has no knowledge about any 
information within the ‘prediction horizon’ and is only meant to 
compare the prediction with the actual values. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure	9.	Division of datapoints for model input and datapoints to test the 
long term performance 

3.4.2. Starting	point	of	prediction	

The model gives a predicted wear rate as output. This predicted 
wear rate is a single value and will appear as a slope when plotting 
over time. In Figure 10, the predicted wear rate is drawn in orange and 
deviates in this example slightly from the actual wear rate. In order to 
produce a good prediction in the future, the starting point of the 
predicted slope is important. Theoretically, the best starting point 
matches the regression line of the actual wear rate at the end of the 
limited horizon. In the figure, this theoretical best starting point is 
shown with a blue diamond. If the prediction is drawn from this 
optimal starting point, the error at the target point would be as small 
as possible. However, this point cannot be known by only having 
information about the input horizon. Therefore, an experiment will be 
conducted in a later stage to find the optimum starting point. 
 

 
Figure	10.	Example of a starting point for the predicted the wear rate 
 

For the experiment to determine the optimal starting point, 6 
different starting points are tested. In Figure 11, these starting points 
are visualized. The simplest starting point is the last known worn area 
within the input horizon and is indicated as ‘last’. Because noise can 
make this last datapoint unreliable, also a starting point is based on a 
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regression line for all datapoints within the input horizon. This 
starting point is called ‘last trend’. The same is done for the first 
datapoint which is labelled as ‘first trend’. The other 3 starting points 
are based on an average of multiple datapoints. In the example 4 
datapoints are included in the input horizon. The starting point ‘avg 4 
of 4’ takes the average value for the X- and Y-values of the datapoints. 
The average for X will then be the average date and for Y the average 
worn area. The starting point ‘avg 3 of 4’ does the same, but instead of 
using all 4 datapoints, only the 3 most recent datapoints are included. 
The same principle applies to ‘avg 2 of 4’, whereby only 2 datapoints 
are used to determine the average of the X- and Y-axis. 

 

 
Figure	11.	Different starting points for the predicted wear rate 

 
As can be seen in the figure, most starting points are not at the end 

of the training horizon. Because of this, bad predictions have a larger 
error as it now has a longer prediction period. However, this starting 
position might be closer to the regression line of the label which 
eventually produces better long-term predictions. The best starting 
point is determined by its long term prediction performance which 
will be explained in the next section. 

3.4.3. Error	for	long	term	predictions	

The model is trained to replicate the real wear rate based on the 
regression line of historical data. To measure the difference between 
the predicted and actual worn area, the two values can be compared. 
This comparison takes place at the latest point in time and is called the 
target. The target is considered to be the actual worn area and is based 
on the regression line which is also used for the label of the model. In 
Figure 12, the target is shown with a blue diamond. The error of the 
prediction must be minimized and is quantified by the MAE, MSE, 
RMSE and R² metrics. 

 
Figure	12.	Calculation of prediction error by comparing predicted value 
with the target  (3/4 datapoints) 

 
The further the predictions are in the future, the greater the errors 

will be. The calculated error depends on the duration of the input 
horizon and prediction horizon. For this reason, an experiment is 
conducted that tests the performance for multiple combinations. For 
the experiment, the start of the prediction horizon will be held the 
same while varying the input horizon. In this way, the distance to the 
target will stay fixed which gives a fair comparison in terms of 
performance. In Figure 13 the setup of the experiment is shown. The 
green squares represent the input horizon and the grey squares the 
prediction horizon. The performance will be measured at the target 
which is the latest datapoint. For all other analysis, 4 datapoints are 
used for the input horizon in this study. 

 
 

 Datapoints    
 1 2 3 4 5 6 7 8  Legend 

2/2               ◆    Input  

            Prediction 

2/3               ◆  ◆ Target 

3/3               ◆    

              

2/4               ◆    

3/4               ◆    

4/4               ◆    

              

2/5               ◆    

3/5               ◆    

4/5               ◆    

5/5               ◆    

	
Figure	13.	Visualisation of experiment with various prediction horizons 
while varying input datapoints 

3.4.4. Compare	different	prediction	methods	

Many methods are possible to make future predictions with the 
available data. The earlier explained method is most suitable for long-
term predictions with noisy data. To prove this, this prediction method 
is compared to 5 other methods which are using a fundamental 
different principle. These 5 alternative methods are compared in long 
term performance with the main model which is called the ‘extended 
wear rate’ method. The alternative methods are explained below. 

 
Limited	wear	rate	
The main model uses an extended wear rate based on a regression 

created from all datapoints, while the trend of the wear rate within the 
training horizon is used as a feature. This feature of the wear rate trend 
can be an important indicator as it reveals how fast the wear rate has 
been over a shorter period of time. A downside of this approach is that 
the wear rate over all years might generalize too much as it includes 
many datapoints. For this reason, a model is created which uses the 
wear rate generated within the random training horizon as the label. 
Therefore, the feature of the wear rate trend will be dropped as this 
has now become the label of the model. In Figure 14, the alternative 
method is visualized.  

  
Figure	14.	Alternative method with the limited wear rate trend as label for 
the model  
 
Direct	prediction	worn	area	
The main model uses two steps to predict the worn area for the 

future. First, the wear rate is trained which then starts from a 
calculated starting point. By having two steps where errors occur, the 
predictions can be less accurate. Therefore, a model is created that 
tests the accuracy if the worn area is predicted directly. The input is 
the datapoints within the training horizon and the label is the target. 
The target is the actual worn area for the last datapoint based on the 
regression line of all years. The training horizon is no longer random 
but is now always made in such a way that the prediction horizon is as 
long as possible. This principle can be seen in Figure 15, whereby the 
input horizon always starts at the first datapoint. An extra feature for 
this model type is created which indicates the length of the prediction 
horizon. 



 
7 

 

 
Figure	15.	Alternative model whereby the target is used as label and the 
worn area is predicted directly 
 
Optimal	wear	rate	
The previously explained model needs to learn two principles by 

itself, namely the wear rate and the optimum starting point. As this can 
be complex to learn, a model is created which helps with the starting 
point. The principle of the model is similar to the previously explained 
model that predicts the worn area directly. However, instead of 
predicting the worn area, the delta between the starting point and the 
target is calculated. Thus, the amount of worn area which occurred 
within the prediction horizon. By doing this, a wear rate can be 
calculated that would be optimal if started from the assigned starting 
point. In Figure 16, it can be seen that the optimal wear rate is 
determined by the position of the starting point and the target.  

 
Figure	16.	Alternative method with the wear rate label based on the slope 
between the optimal starting point and target 
 
Extrapolation	historical	trend	
Another method for predicting the worn volume in the future is by 

simply extrapolating the historical trend. This method does not 
require any features as it only relies on historical data of the worn 
area. In Figure 17, it can be seen that the historical trend is projected 
into the future. This method is currently one of the tools used by 
ProRail. 

 
Figure	17.	Alternative method whereby the historical wear rate trend is 
extrapolated 

3.4.5. Cluster	predictions	per	wire	section	

For every 10 meters, the worn area is predicted for the future. A 
single contact wire can have a length of more than a kilometre and will 
be replaced as a whole. The predictions per 10 meters must thus be 
combined into a single prediction for the whole wire. For this, the 

average is calculated based on all predictions within the section. Also 
percentiles can be useful for the replacement criteria as the places 
containing the worst conditions are the limiting factor for the life span. 
Wire sections with less than 5 predictions are removed as these results 
are unreliable.  

4. 	Results	

4.1. Importance	and	correlation	of	features	

In total, 24 features are generated which can be divided into 7 
categories. Within these categories, it is possible that features have a 
mutual correlation. Each model deals differently with correlated 
features so initially all features are used in the model. As can be seen 
in Table 4, the linear regression and random forest model both 
consider different features important. Both models put the emphasis 
on the properties of the wire. The linear regression model also uses 
the train passages, while this is insignificant for the random forest 
model. In turn, the random forest model values the trend of the wear 
rate more. In some cases the importance for one of the two model 
types is high, but the correlation between the feature and the label is 
low. This can be explained by interaction among multiple features. 
This can also be the other way around, whereby the correlation is low 
but the importance is high. The table shows the importance scores 
when applying 4 datapoints as input. A general description per feature 
can be found in Appendix II. 

When the number of datapoints is increased or decreased, the 
importance values will slightly change. It must be stated that 
especially the importance scores for the linear regression model are 
volatile. The importance can vary significantly depending on the split 
between training and validation. However, features with a really low 
importance score tend to stay low regardless of the split in data. 
 
Table	 4.	 Importance and correlation for average thickness sorted by 
importance linear regression model.  

Feature 
Importance 

linear 
regression 

Importance 
random 
forest 

Correlation 

Thick_avg 1.00 0.27 -0.56 
Trains_total 0.93 0.01 -0.05 
Trains_travel 0.88 0.01 -0.03 
Thick_min 0.58 0.24 -0.58 
Thick_avg_min 0.41 0.24 -0.58 
Wear_rate_trend 0.20 0.56 0.51 
Thick_min_dev 0.20 0.49 0.67 
Thick_min_delta 0.19 1.00 0.70 
Thick_min_min 0.18 0.48 -0.61 
Tons_travel 0.14 0.02 -0.01 
Tons_total 0.13 0.01 -0.08 
Tons_goods 0.13 0.01 -0.13 
Thick_avg_delta 0.06 0.03 0.48 
Trains_goods 0.06 0.01 -0.12 
Horizontal_avg 0.03 0.01 0.03 
Thick_avg_dev 0.02 0.82 0.68 
Cant 0.02 0.04 -0.05 
R2_wear_rate_trend 0.02 0.02 0.01 
Delta_height 0.02 0.00 0.08 
Speed_field 0.01 0.01 0.00 
Speed_local 0.01 0.00 0.01 
Height_avg 0.01 0.00 0.11 
Speed_measure 0.00 0.00 -0.01 

 

4.2. Performance	of	model	types	

Using all 24 features, 4 machine learning models are tested for their 
performance. As can be seen in Table 5, Linear regression has the best 
performance with an RMSE of 0.146 and is for this reason the main 
model in this study. The random forest model and gradient-boosted 
tree are scoring worse but still give reasonable results. The neural 
network model fails to find patterns and cannot give proper 
predictions. This model type normally performs well when dealing 
with non-linear data. However, most relationships are linear and the 
data contains a lot of noise. In those cases more simple models can 
outperform this more complex method [14].  

When only including the most important features or removing 
correlating features, the performance did not increase. Also tuning the 
model did not result in better performance. For this reason all other 
analyses in this paper are based on using all 24 features.   
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Table	5.	Performance metrics of the model using all 24 features 	

Model type MAE MSE RMSE R2 
Linear regression 0.094 0.021 0.146	 0.682 
Random forest 0.097 0.024 0.154 0.644 
Gradient boosted tree 0.097 0.029 0.170 0.568 
Neural network 0.135 0.034 0.185 0.020 

 
In Figure 18, a scatterplot is shown of the predicted wear rate versus 

the actual wear rate for the linear regression model. The predictions 
have a relatively small error for the lower wear rates. When the wear 
rate increases, the predictions become slightly less accurate.  

 
Figure	18.	Scatterplot of the linear regression model showing predicted 
versus actual wear rates 
 

In Figure 19, a histogram of the prediction errors can be found for 
the linear regression model. The distribution reassembles a bell-
shaped curve, which indicates a normal distribution. The distribution 
can be considered centred and symmetric, which means that the 
overall trend is captured well.  
 

 
Figure	19.	Distribution of the wear rate prediction error  

 
The number of datapoints used as input affects the importance of 

the features. Especially the feature about the historical wear rate is 
affected as more datapoints will give a more reliable regression line. 
More datapoints also reduce the noise for all other features. In Table 
6, the RMSE scores are shown per number of input datapoints used for 
the model. Only linear regression and random forest are considered as 
these models are best performing. It can be seen that the more 
datapoints are included, the better the prediction can mimic the wear 
rate label.  
 
Table	6.		RMSE per number of datapoints used for training to predict the 
wear rate 	

Datapoints 
input 

Linear 
regression 

Random 
forest 

2 0.153 0.164 
3 0.148 0.159 
4 0.146	 0.154 
5 0.138 0.149 

4.3. Optimal	starting	point	

To determine the best starting point for the predicted wear rate, an 
experiment is conducted. In Table 7, the RMSE scores per starting 
point are shown for the long term performance with 4 datapoints as 
input. The starting point that gives the best performance is ‘avg 4 of 4’. 
This starting point takes the average of the X- and Y-axis for all 
datapoints included in the input horizon. Other variations of the 
starting point produce significant worse predictions.  

The starting point ‘avg 4 of 4’ is the center of all datapoints that are 
used for input. The features that are used to predict the wear rate are 
also based on the average of all datapoints. The feature values are thus 
centered to the same average date as the starting point. The RMSE 
score suggests that the best starting point is bound to the 
transformation of features where the model is trained on. The best 
starting point which uses the average of all datapoints is used for every 
analyses in this study. 

 
Table	7.	RMSE per starting point 

Starting point RMSE 
Avg 4 of 4  0.863	
Avg 3 of 4  0.957 
Avg 2 of 4  1.039	
Last  1.043 
Last trend 1.041 
First trend 1.193 

 

4.4. General	long	term	prediction	performance	

To test how well the model performs if predictions are made for the 
future, the predicted worn area is compared to the actual worn area. 
In Table 8, the RMSE scores can be found for 4 different prediction 
horizons using the ‘extended wear rate’ model. Because of the limited 
available datapoints, not all prediction horizons can be evaluated with 
5 datapoints as input for the model. In the table, the maximum number 
of datapoints for the input of the model are shown on the y-axis. When 
using fewer datapoints as input, more datapoints are available to test 
the long term performance. By testing for multiple prediction 
horizons, the performance can be compared for different years of 
prediction. As the prediction horizon is different when changing the 
number of maximum datapoints, the comparison between RMSE 
scores should only be row-wise. The column of the prediction horizon 
is based on the average years of prediction which is dependent on the 
dates of the datapoints and are therefore not whole numbers.  

 
Table	8.		RMSE of individual long-term predictions 

Datapoints input  Prediction 
Max 2 3 4 5  horizon (years)  

2 0.94 - - -  6.8 
3 1.14 1.06 - -  5.8 
4 0.93 0.90 0.86	 -  4.6 
5 0.74 0.76 0.75 0.73  3.4 

 
As can be seen in the overview, the performance for each number of 

maximum datapoints does not show a very clear pattern. When 
looking at a maximum of 5 datapoints, using 2 datapoints as input 
gives a similar performance as using 5 datapoints for input, while 3 
and 4 datapoints show lower performance. In general it seems slightly 
better to include more datapoints.  

Table 6 showed that more datapoints can better replicate the actual 
wear rate. However, more datapoints do not necessarily result in 
better long-term performance. This is because more factors are 
important when predicting the worn area over time. The model with 
less datapoints as input has a higher responsiveness to change as it 
considers a shorter time frame. Meanwhile, the model with more 
datapoints is more passive as it considers a longer time frame but is 
more stable due to noise filtering. Also the starting point for both 
models is different. The starting point with more datapoints is further 
back in time, which increases the error over time due to a longer 
prediction length. At the same time, the starting point has a higher 
accuracy as it is based on more datapoints. The results imply that the 
mentioned factors are almost equally important as the models 
produce similar performance scores. 

In Figure 20, a scatterplot is shown for the model which uses 4 
datapoints as input and with a prediction horizon of 4.6 years. The 
prediction errors are symmetric and form a normal distribution. It can 
be seen that the accuracy of the predictions slightly decreases when 
the wire is worn down further. This can be explained by the 
measurement accuracy. Due to the round shape of the wire, a new wire 
decreases faster in thickness compared to an older wire. This principle 
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is explained in Figure 4. The accuracy of the measurements is based on 
the contact area of the wire which is thus more precise to measure for 
newer wires.  
	

	
Figure	20.	Scatterplot of long-term performance using worn area 
 

When the worn area is converted back to thickness, the results are 
easier to interpret. In Figure 21, a scatterplot can be found for the 
thickness. It can be seen that most contact wires have a thickness of 
more than 10 mm. As the predicted thickness is especially important 
for thinner wires, the predictions for these thin wires need to be 
accurate. The model has a very slight bias for the thinnest wires in the 
dataset. The accuracy for this category could be improved if the 
majority of the training data consists of thin wires.  

 
Figure	21.	Scatterplot of long-term performance using thickness 
 

The accuracy of the model is assessed by using different confidence 
levels. In Table 9, the accuracy is shown for the worn area and 
thickness of the wire. It must be noted that the accuracy of the 
thickness is dependent on the diversity of the sample. This is because 
the non linear conversion from worn area to thickness. As can be seen 
in the scatterplot of Figure 21, the majority of the wires are relatively 
new which results in a lower prediction accuracy compared to a 
majority of older wires.  The average error is found to be 0.563 mm² 
for the worn area and 0.078 mm for the thickness when predicting 4.6 
years into the future. 

 
Table	9.	Accuracy of long term predictions for 4.6 years per individual 
prediction  

Confidence Accuracy  
worn area 

Accuracy 
thickness 

90% ±1.23 mm² ±0.16 mm 
95% ±1.61 mm² ±0.20 mm 
99% ±2.67 mm² ±0.30 mm 

4.5. Comparison	of	different	prediction	methods	

The long-term performance metrics allow for a fair comparison 
between multiple prediction methods as the goal for all methods is to 
accurately predict the worn area in the future. In Table 10, all 
considered methods can be found sorted from best to worst 
performance.  

As can be seen in the overview, the best performance score is 
achieved by the ‘optimal wear rate’ method. For this method, two 
variants are tested; one that is trained with a fixed prediction horizon 
and one with a flexible prediction horizon. As can be seen in the table, 
the fixed method is performing significantly better. Despite this being 
the best-performing method, it is questionable if this is also true on 
new data. The model is trained on only the first few years and tested 
on the last year. Therefore, it cannot compensate for unwanted trends 
in the data. Another problem with this model is that it is trained on a 
fixed prediction horizon. It can therefore not reliably predict data for 
a different prediction length. This might be especially problematic for 
predictions further in the future, outside of the training data. For 
predictions with a shorter prediction horizon, a different model can be 
made using the preferred prediction period. The ‘optimal wear rate’ 
method with a flexible prediction horizon does solve these mentioned 
problems but performs worse. When excluding the ‘optimal wear 
rate’-models with the mentioned drawbacks, the method ‘extended 
wear rate’ performs best. This method is considered most suitable as 
this model is more resistant to these issues. Therefore, every analysis 
in this paper is based on the ‘extended wear rate’ method. 
 
Table	10.	Performance of different methods for long-term predictions  

Prediction method MAE MSE RMSE 
Optimal wear rate (fixed) 0.555 0.616 0.785 
Optimal wear rate (flexible) 0.563 0.744 0.862	
Extended wear rate [MAIN] 0.562 0.745 0.863	
Limited wear rate 0.593 0.885 0.966 
Direct prediction worn area 0.736 1.114 1.055 
Extrapolation 1.596 7.663 2.768 

 

4.6. Clustering	to	wire	section	

In Table 11, the RMSE scores can be found when the individual 
predictions are clustered per wire section. The pattern for the wire 
section is similar to that of the predictions per 10 meters. 
 
Table	11.	RMSE-scores for clustered wire sections  

Datapoints input  Prediction 
Max 2 3 4 5  horizon (years) 

2 0.62 - - -  6.8 
3 0.69 0.65 - -  5.8 
4 0.58 0.55 0.54	 -  4.6 
5 0.49 0.47 0.45 0.44  3.4 

 
When converting the worn area back to thickness, an average error 

(MAE) of 0.058 mm is obtained. By clustering values for the whole 
wire, the MAE decreased from 0.078 for individual predictions to 
0.058. This means that to a certain extent the errors cancel each other 
out when clustered. Predictions that are too high are compensated by 
predictions that are too low. This is also the case for the accuracy of 
the predictions shown in Table 12. The accuracy is improved from 
±0.20 mm for the individual predictions to ±0.15 mm for the clustered 
predictions. The average error is found to be 0.38 mm² for the worn 
area and 0.05 mm for the thickness. 
 
Table	12.	Accuracy of predictions for 4.6 years per wire section  

Confidence Accuracy  
worn area 

Accuracy 
thickness 

90% ±0.86 mm² ±0.11 mm 
95% ±1.02 mm² ±0.12 mm 
99% ±1.87 mm² ±0.21 mm 

5. Discussion	

For all tested models, the current thickness appeared to be one of 
the most important feature categories. Takahashi, et al. [11] also state 
that the residual diameter is correlated with the local wear rate. 
Nonetheless, this feature is not mentioned often in other studies. In 
theory, converting the thickness to worn area should create a linear 
wear rate [12]. However, other external factors seem to make this 
statement incorrect forcing the model to use this feature to 
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compensate for non-linearity. According to the data, new wires wear 
down faster even in terms of worn area. This non-linearity does not 
have a significant effect on the model. When using an acceptable 
timeframe for creating features and the label, this effect is barely 
noticeable as the wear of contact wires is relatively slow. 

Another important feature category is the number of passed trains. 
This seems very intuitive as almost all wear mechanisms are based on 
contact between the pantograph and contact wire. Many studies have 
found that the number of train passages is a key factor for wear and 
tear [15][10][8].  

Another feature that many studies found important is the speed of 
the train [4][6]. Remarkable is that in the data no relation is found 
between the speed and the wear rate. All three features which 
approximate the actual train speed fail to find a connection. Also the 
difference in speed does not give any useful information to the model. 
According to Wei et al. [6], significantly higher wear rates are expected 
in the acceleration and deceleration zones due to an increasing 
electrical current. In this study the difference in speed should indicate 
these zones but do not show a relation. For estimating the total 
electrical current, the amount of passed tons is used as a feature. This 
feature is found to be important for the wear rate. However, it is not 
clear if this is caused due to capturing the total electrical current or if 
this feature is related to the number of passed trains. 

The contact force is a feature that is a promising feature according 
to literature. A strong correlation between the contact force and the 
label could not be found in the initial stage. Because a lot of data was 
missing, this feature is not used for the model in this study.  

With an importance score of 0.20 for linear regression and 0.56 for 
the random forest, the wear rate trend feature pushes the predictions 
of the model in the right direction. It must be noted that the input 
horizon must be chosen wisely when including this feature. The more 
datapoints included, the closer the wear rate trend will be to the label 
of the model. On one hand this might be good as this historical wear 
trend is a good indicator for the wear in the future. On the other hand, 
the model might become unreliable if the two are too close. A good way 
to deal with this is to keep the prediction horizon close to the desired 
prediction length. If more data is available, more datapoints can be 
used as input without compromising the desired prediction horizon. 
In this way, the model can still be tested on the preferred prediction 
horizon, while increasing the correlation between the historical wear 
rate trend and the label. 

A standard machine learning approach does not work well due to 
noise and missing data such as the age of the contact wire. Some 
tweaks were necessary to improve the performance. Despite this 
being a new methodology, the validity has been proven by comparing 
the predicted and actual worn area. It must be noted that the actual 
worn area is an approximation as the real value is not known. 
However, by being tested on a large dataset, the results can be 
considered reliable. 

For training, all locations with a messy wear pattern have been 
removed. The wear rate label is created by applying linear regression 
on the worn area for all datapoints. The fit of this line is indicated with 
an R² score. All R² scores below 0.4 are filtered out, as this hinders the 
learning capability of the model. The performance of the model could 
probably be improved by increasing the minimum R² score. On the 
other hand, filtering on R² scores might create a bias for the model. It 
is not known if the average thickness of the section can be estimated 
better by including all cases or by predicting only a part of the cases 
with higher accuracy. By using low R² scores also the target becomes 
unreliable which makes it hard to validate the performance.  

Another factor that must be taken into account is the presence of 
carbon deposits. This debris is caused by friction between the contact 
wire and the pantograph and makes the surface of the contact wire 
appear wider. The measurement train calculates the thickness of the 
wire based on the contact surface and interprets a thicker wire if 
carbon debris is present. This measurement error causes noise and 
induces a slight deviation in terms of thickness. Besides the carbon 
deposit, the location of the measurement train is not always accurate. 
Currently this problem is mainly solved by clustering the 
measurements per 10 meters. More precise data could be created by 
applying a synchronization algorithm which will most likely slightly 
improve the performance of the model.  

The model assumes that the features will stay the same in the future. 
If it is known that certain values will change in the future and a forecast 
is available, the values for the features should be updated. If for 
example the number of trains is expected to increase by 10% in the 
coming years, this percentage can be added to the current value. For a 
prediction for 5 years with for example an expected increase of 10% 
after 2 years, the average value should be calculated. This would be an 
average increase of 6% over 5 years, which means that the current 

feature value should be multiplied by a factor of 1.06 to anticipate for 
this change. 

The primary goal of this study is to accurately predict the end of 
lifetime of a contact wire. This can be done by predicting the average 
thickness of the whole wire and applying a threshold for the minimum 
allowed thickness. As the prediction of the wire section consists of 
many individual predictions, this allows for a more complex 
replacement criteria. Also percentiles can be used, so that for example 
at least x percent of the predicted values must be above a certain 
thickness threshold. More research can be done to determine which 
replacement algorithm is most suitable.  

The measurement train logs the average and minimum thickness 
measured over a section of 25cm. Both thickness values can be 
important to determine the end of the lifetime of the wire. This study 
focussed on the average thickness. However, the same method can be 
applied to the minimum thickness. The model performance for the 
average and minimum thickness as label of the model are almost 
identical.  

This study has shown that even with noisy data useful predictions 
can be generated. This method may be also useful for other assets 
whereby predictions must be made over a longer period of time. 
Especially if a lot of noise is present in the data, this method might 
perform better than most common solutions.  

6. Conclusion	

The goal of this study was to predict the thickness of the contact wire 
for 5 years in the future. In total 24 features are created which can be 
divided into 7 categories. The most important feature categories for 
the model are the thickness of the wire, the number of passed trains, 
the amount of transported tons and the historical wear rate trend. 
Multiple machine learning algorithms are tested whereby linear 
regression is best performing. Besides multiple machine learning 
algorithms, also different prediction methods are tested. Directly 
predicting the thickness based on the features does not produce 
optimal results. The model that performs best tries to predict the wear 
rate instead. For determining the wear rate, the thickness of the 
contact wire is first converted to the worn area to stimulate linearity. 
For each location multiple datapoints are available and are used to fit 
a regression line. This regression line represents the wear rate and is 
the label of the model. Once the machine learning model is trained and 
wear rates can be predicted, a starting point is needed. The best 
starting point lies in the centre of the datapoints used as input for the 
model. This centre can be seen as the centre of mass and is the average 
of the x-axis (date) and y-axis (worn area). To test the long-term 
performance, the predicted worn value is compared to the actual value 
up to 6.8 years in the future. The number of datapoints that are used 
as input for the model does not affect the performance significantly. 
Similar results can be achieved by using datapoints within the range 
of 2 to 5 datapoints as input. Adding more datapoints makes the model 
more robust but less responsive to change. The robustness and 
responsiveness are considered almost equally important as the 
performance is similar. The predictions are made per 10 meters and 
are eventually clustered per wire section. The estimated average 
thickness of a whole wire has an accuracy of ±0.12 mm at a 95% 
confidence level. 
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Appendix	I	–	Example	data	measurement	train	
	
Only	relevant	columns	are	shown.	The	numbers	in	the	headers	refer	to	
the	wire	that	is	measured.	The	measurement	train	can	measure	up	to	4	
wires	at	the	same	time.	
 

ID section Km Wire section Date Thick 
avg 1 

Thick 
min 1 

Thick 
avg 2 

Thick 
min 2 

Thick 
avg 3 

Thick 
min 3 

Thick 
avg 4 

Thick 
min 4 

078_205BR_64.9 0.00 078_65.013_207R_229L 18/03/2015 9.9 9.9 10.1 10.1 11.8 11.8 11.8 11.8 
078_205BR_64.9 0.25 078_65.013_207R_229L 18/03/2015 9.8 9.8 10.6 10.3 11.9 11.9 11.8 11.8 
078_205BR_64.9 0.50 078_65.013_207R_229L 18/03/2015 9.9 9.9 10.1 9.9 11.8 11.8 11.8 11.8 

 
 

Height 1 Height 2 Height 3 Height 4 Position 1 Position 2 Position 3 Position 4 Speed Cant 

-54.5 -56.5 -87.3 -87.3 -47.6 -87.3 288.7 249.0 78.8 -3.1 
-55.5 -57.5 -87.3 -86.3 -49.6 -90.3 286.7 247.0 78.3 -3.2 
-55.5 -58.5 -88.3 -86.3 -48.6 -90.3 284.7 244.1 78.5 -2.8 

 

Appendix	II	–	Features	model		

Category Feature Description Calculation method 

Properties 
wire 

Thick_avg Average thickness of the contact wire Average of group 

Thick_avg_delta Difference in average thickness between the left and right contact wire  Average of group 

Thick_avg_dev Deviation of the average thickness along the wire Deviation of group 

Thick_avg_min Smallest value of the average thickness  Minimum of group 

Thick_min Minimum thickness of the contact wire Average of group 

Thick_min_delta Difference in minimum thickness between left and right contact wire Average of group 

Thick_min_dev Deviation of the minimum thickness along the wire Deviation of group 

Thick_min_min Smallest value of the minimum thickness  Minimum of group 

Position 
wire 

Delta_height Difference in height between the left and right contact wire  Average of group 

Horizontal_avg Horizontal position of the contact wire  Average of group 

Height_avg Height of the contact wire  Average of group 

Cant Cant Cant of the rail  Average of group 

Speed Speed_difference  Difference in speed between current and previous 100-meter section  Average over period 

Speed_field Average speed of trains of one day  Average over period 

Speed_local Maximum allowed speed for trains Average over period 

Speed_measure Speed measured by the measurement train  Average over period 

Passed 
trains 

Trains_goods Number of trains transporting goods Average over period 

Trains_total Total number of goods and passenger trains  Average over period 

Trains_travel Number of trains transporting passengers Average over period 

Transported 
tons 

Tons_goods Total amount of tons transported by goods trains Average over period 

Tons_total Total amount of tons transported by goods and passenger trains  Average over period 

Tons_travel Total amount of tons transported by passenger trains  Average over period 

Historical 
trend 

Wear_rate_trend Slope of the regression line within the datapoints of the training set Regression over period 

R2_wear_rate_trend R2 score of the regression line within the datapoints of the training set Regression over period 

 
 


