Predicting Contact Wire Thickness with Machine Learning
Algorithms Based on Historical Data

Jeroen Mulder, Frank Vermeulen, Faridaddin Vahdatikhaki, Xianfei Yin

University of Twente, Civil Engineering and Management, Enschede, The Netherlands
ProRail, Asset Management, Utrecht, The Netherlands

ARTICLE INFO ABSTRACT

May 2023

For the application of predictive maintenance, a new method is needed which can reliable predict the thickness of contact

wires for multiple years into the future. For this, a machine learning model is created using multiple linear regression. The

Keywords:
Machine learning
Wear rate
Predictions

End of lifetime

most important features for this model are the train passages, historical wear trend and the thickness of the current wire. A
wear rate is predicted for every 10 meters which then is projected into the future to determine the remaining thickness. It
is found that this approach performs better than typical machine learning methods whereby the thickness is predicted
directly. The predicted thickness is compared with the real thickness for individual predictions and that of a whole wire
section. For 95% of the predictions, the average thickness of the whole wire can be predicted with an accuracy +0.12 mm

for a prediction horizon of 4.6 years. The results of this study show that even for noisy data useful predictions can be

produced with a novel strategy.

1. Introduction

ProRail is the owner of the Dutch railway infrastructure. It is
responsible for the construction, maintenance and safety of all assets
related to the transportation of trains including train stations. Train
operators, such as NS (Nederlandse Spoorwegen), are using these
tracks and are responsible for the transits. In order to maintain a
reliable schedule, the availability of the tracks must be as high as
possible. This can be challenging as the Dutch railway network is the
busiest of Europe [1]. This means that all replacement activities that
result in downtime for the tracks must be optimized

Figure 1. Pantograph in contact with contact wire.

One of the assets which are critical for the functionality of electric
trains is the contact wire (see Figure 1). Contact wires are a part of the
overhead power line which transport the electricity parallel to the
track. A train makes contact with the copper contact wire through a
pantograph which allows it to draw electricity. To make proper
contact with the contact wire, the pantograph exerts a force upwards
pressing against the wire. When the train moves this will induce
friction and eventually wear down the pantograph and contact wire.
Over time, the contact wire decreases in size to the point where it must
be replaced.

In 2030, it is expected that the travelled kilometres per train in the
Netherlands are increased by 23% ~ 34% compared to 2014 [2].
Increase in utilization will cause faster degradation of the contact
wires, which subsequently will lead to more frequent replacements of
the contact wire.

The objective of ProRail is to move towards predictive maintenance
whereby the maintenance activities can be strategically planned ahead
of time, based on predicted asset conditions. By doing this, the
predictions are more reliable, mostly automated and can be updated
every time new measurements are available. Ideally, different
maintenance activities are combined if they are affecting the same
section. This will reduce downtime and increase the reliability of
transportation schedules. Accurately predicted asset conditions allow
for a more optimal replacement strategy.

Currently, it is not clear when the contact wire will be at the end of
its lifetime. The estimated year of replacement within ProRail is

mainly based on extrapolation of the historical thickness and expert
judgement. ProRail has valuable data about the train passages and
many parameters about their assets which remains unused with this
method. The prediction for future thickness can become more
accurate when considering more factors such as the number train
passages. Also, prediction models from literature about contact wire
degeneration are insufficient as these either do not include multiple
features or cannot predict the wear into the future.

In order to generate data-driven predictions which can utilize
multiple wear factors, machine learning can be used. This predictive
modelling method is able to find complex patterns between multiple
features in historical data [3]. The goal of this study is to develop a
machine learning model that can predict the thickness of the contact
wire for 4-5 years into the future based on the historical data. The
results will be assessed by calculating the error between the actual
thickness and the predicted thickness for multiple years into the
future.

This paper is organized as follows. In section 2, the state of the art
for contact wire models is described together with the most important
wear factors. In section 3, the methodology for the model is explained.
In section 4, the results of the model are presented for the
performance of the wear rate prediction and the error when using the
model for long term predictions. Finally, the discussion and conclusion
close this paper.

2. Literature

2.1.  Previous studies on contact wire wear predictions

Multiple studies have been conducted about predicting the wear of
contact wires. In the studies of Derosa et al. and Bucca & Colina [4][5],
the same heuristic model is developed and tested on lab data. This
model contains three types of wear: mechanical friction, electrical
current and electric arcs. The wear resulting for each wear type has
given a weight of its contribution. By combining al three components,
the total wear per million pantograph passes is determined. Each
component contains variables such as the material hardness of the
wire but also coefficients that must be tuned. Tuning is performed by
conducting multiple tests in the lab with a test rig. Different
parameters have been tested separately to determine the wear
contribution. The main parameters for this model are the sliding
speed, contact force and electrical current. With this model, future
predictions can be made by multiplying the wear rate by the number
of expected pantographs that will pass. However, lab tests do not
encounter imperfections occurring in the field and may therefore be
imprecise for real-world use.

Wei et al. [6] also used a heuristic model to predict the wear rate of
contact wires. This model uses electric current, sliding speed, contact
force and environmental temperature as variables for the model. The
outcome of the model is compared to real-world data for one metro
track. The outcome of the model and values from the field are
consistent. However, all measured wear rates are in a very small
range which makes predictions inherently more accurate. Predictions
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Figure 2. Overview methodology

with this model can be made by assigning the number of expected
pantograph passages. Besides this, it is not validated if the results are
also accurate for long-term predictions.

Usada [7] made a prediction model to determine the current wire
thickness using a neural network. The input for this model solely relies
on the signal of the contact force. A window over 27 datapoints of the
contact force is used to derive features. The predictions are accurate
but cannot be produced for the future with this method.

2.2.  Important wear mechanisms

Numerous factors are influencing the wear rate of the contact wire.
The number of pantograph passages is most dominant in literature as
this is linked to most wear mechanisms [7][8]. The electrical current
is also often mentioned being a significant contributor as this causes
the wire to heat up and causes mechanical stress [9]. The electrical
current is the highest during acceleration and deceleration which
makes these zones more prone to wear [6]. The contact force is
another factor influencing the wear. If the contact force is too low the
pantograph will vibrate, bounce and create electrical arcs. If the
contact force is too high it will result in excessive friction [10]. Another
wear factor that is often mentioned in literature is the train's speed.
More heat will be generated at higher speeds which is partly caused by
the higher electrical current. Shing [8] found that the wear rate
increases when the relative speed is higher. The mentioned wear
mechanisms must be considered for model features to predict the
wear rate.

3. Proposed method

In Figure 2, the procedure of this study is shown. The process can be
divided in four main stages: collecting data, preparation of the data,
modelling of the wear rate and testing the long-term performance of
the model. In this chapter, the methodology is described according to
these steps.

3.1.  Data collection

3.1.1. Identify important wear factors

The most important wear factors are collected via literature and
mentioned in the previous chapter. Other available data is also taken
into account for generating features. Some measurements could
provide additional information about the wear development or can
help to derive certain features indirectly if no data is available. The
features that are used in this study are explained and motivated later
in section 3.3.1 and can also be found in Appendix II.
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3.1.2. Collecting datasets

For this study, three databases from ProRail are used which hold
important information about the wear rate. These datasets consist of
information about the measurement train, train passages and speed
per segment. The dataset of the measurement train ranges from 2010
to 2018.

The measurement train aims to measure the properties of the
contact wires every year for all tracks in the Netherlands. Besides the
thickness of the contact wire, the train measures other parameters
such as pantograph contact force, horizontal wire position, wire
height, cant and. These measurements are combined in one dataset
with details about its location. In Table 1, a limited example of the data
is shown. To see all relevant columns, see Appendix I.

Table 1. Example data from measurement train (only a few relevant
columns are shown)

ID section Km Date Thick Thick
avgl min 1
078_205BR_64.9 0.00 2015-03-18 9.9 9.9
078_205BR_64.9  0.25  2015-03-18 9.8 9.8
078 205BR 649 0.50 2015-03-18 9.9 9.9

At 45 locations in the Netherlands, the deflection of the rail is
measured and collected in a database called Quo Vadis. From the rail
deflection, the load per axis can be derived. In combination with
information about the train formation and its scheduled route, the
number of passed trains and the total amounts of tons can be
calculated for every rail section. This information is available per
month for passenger and goods trains. An example of the data with all
used columns can be found in Table 2.

Table 2. Example data from passed trains (only relevant columns are

shown)
ID section Trains Trains Tons Tons
travel goods travel goods
005_97V_115.0 1212 1 4065.3 2.5
006_1003L_3.6 1923 40 6132.5 446.6
006_1009AR 4.3 30 2 77.1 18.7

The location and the speed of every train are registered by the
control centre. This information is collected for a single day whereby
the average speed is calculated for segments of 100 meters for all train
passages. It is assumed that the average speed for this particular day
is representative for the average railroad traffic throughout the year.
In Table 3, an example of the data structure is shown.



Table 3. Example data from train speeds on one specific date (only
relevant columns are shown)

ID section Km Km Speed  Speed Speed
from  till avg max local
009_131AL_1494 0 100 1034 138 140
009_131AL_149.4 100 200 101.4 136 140
009_131AL_149.4 200 300 120.1 139 140

3.2.  Data preparation

3.2.1. Linking and filtering dataset

To link the three datasets, the section ID and kilometrage of the
tracks are used to create a unique ID. In case data is missing in one of
the datasets, the ID is dropped. Also, IDs with less than 8 datapoints
per ID are removed.

To make the model more robust, some unique cases are removed.
Almost all contact wires in the Netherlands have an initial diameter of
12 mm. Only a few segments are using wires with a diameter of 13 mm
and are therefore removed. Also tracks which are used for high-speed
rail (HSR) are excluded as these tracks have different overhead wire
specifications.

3.2.2. Selection wire pair

Above a single train track, there are two contact wires which form a
pair. During the transition between wire sections, there are two
overlapping pairs of wires. One wire pair slowly increases in height
while the new wire pair slowly decreases its height. This principle can
be seen in Figure 3.
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Figure 3. Side view of transition between wire pairs

Wire pair 2

During this transition, the measurement train measures the two
pairs simultaneously. However, it does not indicate which wire is in
contact with the pantograph. Because the lowest wire is most likely to
be in contact with the pantograph, it is assumed that the two lowest
wires form a pair are in contact with the pantograph. If the difference
in height between two wires is more than 3 mm, the datapoint is
removed as this seems not realistic. Because contact wires are
replaced in pairs, the measured parameters of the two wires are
combined into one. The wire pair is now presented by an average and
minimal value of the wire pair. The average thickness of the two wires
is used to create the label. The average and minimum can both be used
as a feature, together with the delta thickness between the two wires.

3.2.3. Group measurements

The measurement train gives a datapoint for every 25 centimetres
along the contact wire. One problem with this data is that the accuracy
of the measurements is low due to deviations in the registered location
and the precision of the thickness measurement itself [11]. To reduce
the noise of these measurements and limit computing time, multiple
datapoints are clustered. The number of datapoints within this group
can be adjusted and is for this research set to 10 meters. This means
that if all datapoints are valid, 40 datapoints are included per grouped
datapoint. The way these 40 datapoints are processed varies per
feature. For most features the average of the values is used. Also other
transformations are made such as the minimum value and the
standard deviation. In Appendix II, the applied transformation for
every feature is given.

3.2.4. Conversion from thickness to worn area

Due to the round shape of the wire, the decrease in thickness is not
linear. The contact area for a new wire is smaller which makes it
decrease faster in thickness when it is new. If the wire wears down,
the contact area will increase which results in a slower wear rate for
thickness. An example of this phenomenon can be seen in Figure 4.
With a wire of 12 mm in diameter, the first worn millimetre is
equivalent to 4.5 mm?. Once the remaining thickness is 8 mm, 11.6
mm? is removed to decrease the thickness by another millimetre.
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Figure 4: Increased surface area for decreasing thickness

Archard’s law states that the removed material due to wear is
proportional to the work applied by friction forces [12]. This means
that with the same frictional force, a fixed volume of debris will be
removed. As can be seen in Equation 1, the contact area is not relevant
for the worn volume.

V_sz
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V = volume of wear

k = wear coefficient

F = pushing force

s = sliding distance

H = hardness of material

Equation 1. Archard’s wear equation

In the case of contact wires, the frictional force will be the
pantograph that slides along the wire. The occurring wear in relation
to the passed pantographs will be linear in terms of volume according
to Archard’s law. If possible, linear relations are preferred when
analysing data. Therefore, the thickness must be translated into a
volumetric degradation. This can be accomplished by using Equation
2. This formula gives the worn area based on the radius and thickness
of the wire. In Figure 5, the variables of the formula are visualised
whereby the worn area is shown in grey.
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Equation 2. Conversion of wire thickness to worn area

thickness
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Figure 5. Visualization of variables for conversion wire thickness to worn
area

3.2.5. Wear rate label

To train the model, a wear rate is needed which can be linked to the
features. This wear rate is the desired output for the model and is
called the ‘label’. The wear rate is expressed in square millimetres of
copper that wears down per year (mm?/year).

Since the measurement data is noisy, it is impossible to know the
exact yearly wear rate. Therefore, an approximation has been made
based on historical data. As train schedules and other factors are
rather constant for each year, no disrupting changes are expected for
the wear rate. The wear rate label is determined using linear
regression for all years for which data is available. By doing this, the
data of all years are utilized to give a reliable wear rate that is constant
for the whole period. In Figure 6, it can be seen that the data from
multiple years is transformed into a single yearly wear rate.

In some cases, the deviations in the data are too large to give a
reliable wear rate. These cases can be detected by looking at the R?
score which is given for the fitted regression line. If the R* score is low,
the line does not fit the data well which is in most cases caused by
extreme noise. The slope of the fitted regression line is a second
indicator to detect unreliable results. A line might be fitted with a slope
that suggests a negative wear rate. This is physically impossible as the
worn area can only increase. One possible scenario for such cases is a
replacement of the wire. Wire replacements are not registered in a
structured way and can thus only be detected properly by analysing



the data throughout the years. Another reason for an unreliable wear
rate is the number of available datapoints. The more datapoints, the
higher the reliability of the wear rate generated by linear regression.
For reliable wear rates, the data must thus be filtered on reasonable
R? scores, positive slopes and the minimum number of available
datapoints. For this research, R? scores below 0.4 are removed. The
same applies for negative wear rates and locations with less than 8
datapoints.
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Figure 6. Creation of wear rate label by linear regression over all
datapoints

3.2.6. Random training horizon

The training horizon determines how many of the datapoints are
included for training. The individual datapoints within the training
horizon are combined to a grouped datapoint per feature. For this, the
average for each feature is calculated for all included datapoints. The
period of the training horizon is assigned randomly. In the example of
Figure 7 this period is ranging from 2013 to 2016. Randomly shifting
the training horizon avoids biases induced by trends in the data. Also
measurement offsets for specific years are neutralized by this method.

By limiting the training horizon, not all datapoints are included. An
advantage of using only a few datapoints for training can be the
responsiveness of the model. In this way, changes in features will
influence the prediction to a greater extent, which is desired if for
example the state of the asset has changed suddenly. The more
datapoints are used for the training horizon, the more consistent the
output will be. Especially if the data contains a lot of noise, smoothing
is necessary to avoid outliers influencing the output too much.
However, the downside of including many datapoints for training is
that a sudden change in the state of the asset will not be immediately
detected. With noisy signals it is hard to determine if an outlier is a
change in asset condition or just noise. Therefore, an optimum needs
to be found between the stability and responsiveness of the model.
This will be done in an experiment which will be explained in section
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Figure 7. Random assigned training horizon

3.2.7. Split train/validation/test

The ratio between training, validation and testing is 70/20/10. This
means that 70% of the data is used to train the model and 20% is used
for validation and optimization of the model. After the optimization,
the test set of 10% is used to see how the model performs without
performance-boosting optimizations. With this ratio most data can be
used for training while still remaining a proper validation and testing
set.

3.3, Model development

3.3.1. Feature engineering

As mentioned before, the measurements of the measurement train
are grouped into blocks of 10 meters whereby the measurements are
converted to one datapoint. This conversion is also a part of feature
engineering as one measurement value can now be transformed into
multiple features. This conversion is done for all dates, which means
that a list of features is created for each date. For the input of the
model, a single list of features is desired. Therefore, the features from
multiple dates are combined by taking the average of all dates. Now
every 10 meter block has one single list of features that can be used as
input for the model. An overview of these steps is given in Figure 8.
Besides that the conversion from a timeseries into a single point
allows for a more straightforward machine learning method, the
features are also less sensitive to noise.

The features used in the model can be divided into seven categories.
The features will be described below per category. For an overview of
all features and a brief explanation, see Appendix II.

Contact wire properties
The measurement train has two measurements for each wire; the

average and minimum values are measured over a distance of 25
centimetres. For both measurements, a feature is created by taking
the average and minimum value for all measurements in the 10 meter
block. Also the standard deviation is derived from these
measurements. This feature indicates the roughness of the wire within
the block of 10 meters.

Another feature based on the contact wire is the delta thickness. This
is the difference in thickness between the left and the right wire. This
is delta thickness is calculated for the average and minimum measured
thickness.

Position wire

The measurement train measures the position of the wire in relation
to the centre of the train. The height is one feature that is created based
on the vertical position of the wire. The height is measured for both
wires which allows to create a feature that indicates the delta height
between the two wires. Also the horizontal position is measured,
which generates a feature that indicates the distance between the wire
and the centre of the track.

Cant

The cant of the track is measured by the measurement train. The tilt
of the track indicates indirectly if the 10-meter block is located in a
curved section of the track. This is because cant is applied to
compensate for the centrifugal forces during a turn.

Speed

The measurement train logs its speed while measuring. This speed
is used as a feature to indicate the relative speed of trains. Each section
of a track has also a maximum allowed speed. This is used as another
feature as trains often try to approach this maximum speed. A third
feature to estimate the train speed is based on the average speed of
trains logged per 100 meters. This logged data is based on recordings
of only one day but is likely the best estimate for the actual train speed.
Based on this data, the difference in speed is also calculated. This
feature indicates the acceleration and deceleration which indirectly is
an estimate for the electrical current.

Passed trains

Between the most important railroad switches, the number of
passed trains is measured. For this, a distinction is made between
trains transporting passengers and goods which are both used as a
feature. Also the total number of passed trains is a feature. The number
of trains is an indicator for the number of passed pantographs that
have been in contact with the contact wire. This feature can be
adjusted if more or fewer trains will pass in the future.

Transported tons

The amount of tons is measured in the same way as the number of
passed trains. The amount of tons is known for trains transporting
passengers, goods and both combined. For all three measurements, a
feature is created. The amount of tons transported can be used as an
estimate for the total electrical load exerted on the contact wire.



06-2013 100 TR 111111111

Group the measurements for
blocks of 10 meter

Figure 8. Transformation from raw data to features

Historical trend

Based on the datapoints used for the input of the model, a wear rate
trend can be created for this specific period. With linear regression, a
trend line can be calculated based on the worn area for the selected
datapoints. The historical trend is used as a feature which is an
indication of the expected wear rate for an extended time. Increasing
the number of used datapoints will improve the stability and accuracy
of the slope. The R? score of the regression line is also used as a feature
to indicate the reliability of the slope. This feature must not be
confused with the label of the model. Both apply the same principle,
however, this feature only uses the datapoints of the input horizon
instead of all datapoints.

3.3.2. Importance of features

To identify which features are most important for predicting the
wear rate, an analysis is made. For the correlation, each feature is
compared with the wear rate label of the model. A feature with a
strong correlation is likely a good predictor [13]. However, this is not
always the case because of confounding variables or lacking causation.
When performing linear regression, the model assigns a weight to each
variable. When the features are normalized, an importance score for
the linear regression model can be determined for each feature. As
these weights can be different per run due to the optimization process,
the average of 3 runs is used to determine the importance. These
weights are then scaled so the maximum score is 1.

3.3.3. Train and test model

The machine learning models that are considered are multi-linear
regression, random forest, gradient-boosted tree and neural network.
For each model type, the Mean Absolute Error (MAE), Mean Squared
Error (MSE), Root Mean Squared Error (RMSE) and R-Squared (R?) are
measured. These metrics represent the accuracy of the predicted wear
rate compared to the actual wear rate. The MAE gives the average
absolute difference between the prediction and the actual value. The
MSE is the average squared difference between the predicted and
actual values. The RMSE is the square root of the MSE metric which
converts the squared difference back into the original units. The R?
score indicates the percentage of variance between the predicted and
actual values. The R? scores ranges from 0 to 1, whereby an R? of 1
means that the predictions are identical to the actual values. In this
study, the focus is on the RMSE score when comparing different
models.

3.4.  Test long-term performance

3.4.1. Divide datapoints

To determine the long-term performance of the model, the model is
tested on a subset of datapoints. In the example of Figure 9, it can be
seen that the first four datapoints are used as input for the model. The
four datapoints are creating the feature values which are used by the
model to generate a predicted wear rate. This wear rate will be
projected into the future. The model has no knowledge about any
information within the ‘prediction horizon’ and is only meant to
compare the prediction with the actual values.
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Figure 9. Division of datapoints for model input and datapoints to test the
long term performance

3.4.2. Starting point of prediction

The model gives a predicted wear rate as output. This predicted
wear rate is a single value and will appear as a slope when plotting
over time. In Figure 10, the predicted wear rate is drawn in orange and
deviates in this example slightly from the actual wear rate. In order to
produce a good prediction in the future, the starting point of the
predicted slope is important. Theoretically, the best starting point
matches the regression line of the actual wear rate at the end of the
limited horizon. In the figure, this theoretical best starting point is
shown with a blue diamond. If the prediction is drawn from this
optimal starting point, the error at the target point would be as small
as possible. However, this point cannot be known by only having
information about the input horizon. Therefore, an experiment will be
conducted in a later stage to find the optimum starting point.

Actual
4 wear rate
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w
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wear rate
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Figure 10. Example of a starting point for the predicted the wear rate

For the experiment to determine the optimal starting point, 6
different starting points are tested. In Figure 11, these starting points
are visualized. The simplest starting point is the last known worn area
within the input horizon and is indicated as ‘last’. Because noise can
make this last datapoint unreliable, also a starting point is based on a



regression line for all datapoints within the input horizon. This
starting point is called ‘last trend’. The same is done for the first
datapoint which is labelled as ‘first trend’. The other 3 starting points
are based on an average of multiple datapoints. In the example 4
datapoints are included in the input horizon. The starting point ‘avg 4
of 4’ takes the average value for the X- and Y-values of the datapoints.
The average for X will then be the average date and for Y the average
worn area. The starting point ‘avg 3 of 4’ does the same, but instead of
using all 4 datapoints, only the 3 most recent datapoints are included.
The same principle applies to ‘avg 2 of 4’, whereby only 2 datapoints
are used to determine the average of the X- and Y-axis.
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Figure 11. Different starting points for the predicted wear rate

As can be seen in the figure, most starting points are not at the end
of the training horizon. Because of this, bad predictions have a larger
error as it now has a longer prediction period. However, this starting
position might be closer to the regression line of the label which
eventually produces better long-term predictions. The best starting
point is determined by its long term prediction performance which
will be explained in the next section.

3.4.3. Error for long term predictions

The model is trained to replicate the real wear rate based on the
regression line of historical data. To measure the difference between
the predicted and actual worn area, the two values can be compared.
This comparison takes place at the latest point in time and is called the
target. The target is considered to be the actual worn area and is based
on the regression line which is also used for the label of the model. In
Figure 12, the target is shown with a blue diamond. The error of the
prediction must be minimized and is quantified by the MAE, MSE,

RMSE and R? metrics.
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Figure 12. Calculation of prediction error by comparing predicted value
with the target (3/4 datapoints)

The further the predictions are in the future, the greater the errors
will be. The calculated error depends on the duration of the input
horizon and prediction horizon. For this reason, an experiment is
conducted that tests the performance for multiple combinations. For
the experiment, the start of the prediction horizon will be held the
same while varying the input horizon. In this way, the distance to the
target will stay fixed which gives a fair comparison in terms of
performance. In Figure 13 the setup of the experiment is shown. The
green squares represent the input horizon and the grey squares the
prediction horizon. The performance will be measured at the target
which is the latest datapoint. For all other analysis, 4 datapoints are
used for the input horizon in this study.
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Figure 13. Visualisation of experiment with various prediction horizons
while varying input datapoints

3.4.4. Compare different prediction methods

Many methods are possible to make future predictions with the
available data. The earlier explained method is most suitable for long-
term predictions with noisy data. To prove this, this prediction method
is compared to 5 other methods which are using a fundamental
different principle. These 5 alternative methods are compared in long
term performance with the main model which is called the ‘extended
wear rate’ method. The alternative methods are explained below.

Limited wear rate

The main model uses an extended wear rate based on a regression
created from all datapoints, while the trend of the wear rate within the
training horizon is used as a feature. This feature of the wear rate trend
can be an important indicator as it reveals how fast the wear rate has
been over a shorter period of time. A downside of this approach is that
the wear rate over all years might generalize too much as it includes
many datapoints. For this reason, a model is created which uses the
wear rate generated within the random training horizon as the label.
Therefore, the feature of the wear rate trend will be dropped as this
has now become the label of the model. In Figure 14, the alternative
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Figure 14. Alternative method with the limited wear rate trend as label for
the model

Direct prediction worn area

The main model uses two steps to predict the worn area for the
future. First, the wear rate is trained which then starts from a
calculated starting point. By having two steps where errors occur, the
predictions can be less accurate. Therefore, a model is created that
tests the accuracy if the worn area is predicted directly. The input is
the datapoints within the training horizon and the label is the target.
The target is the actual worn area for the last datapoint based on the
regression line of all years. The training horizon is no longer random
but is now always made in such a way that the prediction horizon is as
long as possible. This principle can be seen in Figure 15, whereby the
input horizon always starts at the first datapoint. An extra feature for
this model type is created which indicates the length of the prediction
horizon.
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Figure 15. Alternative model whereby the target is used as label and the
worn area is predicted directly

Optimal wear rate

The previously explained model needs to learn two principles by
itself, namely the wear rate and the optimum starting point. As this can
be complex to learn, a model is created which helps with the starting
point. The principle of the model is similar to the previously explained
model that predicts the worn area directly. However, instead of
predicting the worn area, the delta between the starting point and the
target is calculated. Thus, the amount of worn area which occurred
within the prediction horizon. By doing this, a wear rate can be
calculated that would be optimal if started from the assigned starting
point. In Figure 16, it can be seen that the optimal wear rate is
determined by the position of the starting point and the target.
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Figure 16. Alternative method with the wear rate label based on the slope
between the optimal starting point and target

Extrapolation historical trend

Another method for predicting the worn volume in the future is by
simply extrapolating the historical trend. This method does not
require any features as it only relies on historical data of the worn
area. In Figure 17, it can be seen that the historical trend is projected
into the future. This method is currently one of the tools used by
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Figure 17. Alternative method whereby the historical wear rate trend is
extrapolated

3.4.5. Cluster predictions per wire section

For every 10 meters, the worn area is predicted for the future. A
single contact wire can have a length of more than a kilometre and will
be replaced as a whole. The predictions per 10 meters must thus be
combined into a single prediction for the whole wire. For this, the

average is calculated based on all predictions within the section. Also
percentiles can be useful for the replacement criteria as the places
containing the worst conditions are the limiting factor for the life span.
Wire sections with less than 5 predictions are removed as these results
are unreliable.

4. Results

4.1.  Importance and correlation of features

In total, 24 features are generated which can be divided into 7
categories. Within these categories, it is possible that features have a
mutual correlation. Each model deals differently with correlated
features so initially all features are used in the model. As can be seen
in Table 4, the linear regression and random forest model both
consider different features important. Both models put the emphasis
on the properties of the wire. The linear regression model also uses
the train passages, while this is insignificant for the random forest
model. In turn, the random forest model values the trend of the wear
rate more. In some cases the importance for one of the two model
types is high, but the correlation between the feature and the label is
low. This can be explained by interaction among multiple features.
This can also be the other way around, whereby the correlation is low
but the importance is high. The table shows the importance scores
when applying 4 datapoints as input. A general description per feature
can be found in Appendix II.

When the number of datapoints is increased or decreased, the
importance values will slightly change. It must be stated that
especially the importance scores for the linear regression model are
volatile. The importance can vary significantly depending on the split
between training and validation. However, features with a really low
importance score tend to stay low regardless of the split in data.

Table 4. Importance and correlation for average thickness sorted by
importance linear regression model.
Importance Importance

Feature linear random Correlation
regression forest
Thick_avg 1.00 0.27 -0.56
Trains_total 0.93 0.01 -0.05
Trains_travel 0.88 0.01 -0.03
Thick_min 0.58 0.24 -0.58
Thick_avg_min 0.41 0.24 -0.58
Wear_rate_trend 0.20 0.56 0.51
Thick_min_dev 0.20 0.49 0.67
Thick_min_delta 0.19 1.00 0.70
Thick_min_min 0.18 0.48 -0.61
Tons_travel 0.14 0.02 -0.01
Tons_total 0.13 0.01 -0.08
Tons_goods 0.13 0.01 -0.13
Thick_avg_delta 0.06 0.03 0.48
Trains_goods 0.06 0.01 -0.12
Horizontal_avg 0.03 0.01 0.03
Thick_avg_dev 0.02 0.82 0.68
Cant 0.02 0.04 -0.05
R2_wear_rate_trend 0.02 0.02 0.01
Delta_height 0.02 0.00 0.08
Speed_field 0.01 0.01 0.00
Speed_local 0.01 0.00 0.01
Height_avg 0.01 0.00 0.11
Speed_measure 0.00 0.00 -0.01

4.2.  Performance of model types

Using all 24 features, 4 machine learning models are tested for their
performance. As can be seen in Table 5, Linear regression has the best
performance with an RMSE of 0.146 and is for this reason the main
model in this study. The random forest model and gradient-boosted
tree are scoring worse but still give reasonable results. The neural
network model fails to find patterns and cannot give proper
predictions. This model type normally performs well when dealing
with non-linear data. However, most relationships are linear and the
data contains a lot of noise. In those cases more simple models can
outperform this more complex method [14].

When only including the most important features or removing
correlating features, the performance did not increase. Also tuning the
model did not result in better performance. For this reason all other
analyses in this paper are based on using all 24 features.



Table 5. Performance metrics of the model using all 24 features

Model type MAE MSE  RMSE R2

Linear regression 0.094 0.021 0.146 0.682
Random forest 0.097 0.024 0.154 0.644
Gradient boosted tree 0.097 0.029 0.170 0.568
Neural network 0.135 0.034 0.185 0.020

In Figure 18, a scatterplot is shown of the predicted wear rate versus
the actual wear rate for the linear regression model. The predictions
have a relatively small error for the lower wear rates. When the wear
rate increases, the predictions become slightly less accurate.
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Figure 18. Scatterplot of the linear regression model showing predicted
versus actual wear rates

In Figure 19, a histogram of the prediction errors can be found for
the linear regression model. The distribution reassembles a bell-
shaped curve, which indicates a normal distribution. The distribution
can be considered centred and symmetric, which means that the
overall trend is captured well.

Frequency

-0.4 -0.2 0.0 0.2 0.4
Error

Figure 19. Distribution of the wear rate prediction error

The number of datapoints used as input affects the importance of
the features. Especially the feature about the historical wear rate is
affected as more datapoints will give a more reliable regression line.
More datapoints also reduce the noise for all other features. In Table
6, the RMSE scores are shown per number of input datapoints used for
the model. Only linear regression and random forest are considered as
these models are best performing. It can be seen that the more
datapoints are included, the better the prediction can mimic the wear
rate label.

Table 6. RMSE per number of datapoints used for training to predict the
wear rate

Datapoints Linear Random
input regression forest
2 0.153 0.164
3 0.148 0.159
4 0.146 0.154
5 0.138 0.149

4.3.  Optimal starting point

To determine the best starting point for the predicted wear rate, an
experiment is conducted. In Table 7, the RMSE scores per starting
point are shown for the long term performance with 4 datapoints as
input. The starting point that gives the best performance is ‘avg 4 of 4",
This starting point takes the average of the X- and Y-axis for all
datapoints included in the input horizon. Other variations of the
starting point produce significant worse predictions.

The starting point ‘avg 4 of 4’ is the center of all datapoints that are
used for input. The features that are used to predict the wear rate are
also based on the average of all datapoints. The feature values are thus
centered to the same average date as the starting point. The RMSE
score suggests that the best starting point is bound to the
transformation of features where the model is trained on. The best
starting point which uses the average of all datapoints is used for every
analyses in this study.

Table 7. RMSE per starting point

Starting point RMSE
Avg 4 of 4 0.863
Avg 3 of 4 0.957
Avg 2 of 4 1.039
Last 1.043
Last trend 1.041
First trend 1.193

4.4.  General long term prediction performance

To test how well the model performs if predictions are made for the
future, the predicted worn area is compared to the actual worn area.
In Table 8, the RMSE scores can be found for 4 different prediction
horizons using the ‘extended wear rate’ model. Because of the limited
available datapoints, not all prediction horizons can be evaluated with
5 datapoints as input for the model. In the table, the maximum number
of datapoints for the input of the model are shown on the y-axis. When
using fewer datapoints as input, more datapoints are available to test
the long term performance. By testing for multiple prediction
horizons, the performance can be compared for different years of
prediction. As the prediction horizon is different when changing the
number of maximum datapoints, the comparison between RMSE
scores should only be row-wise. The column of the prediction horizon
is based on the average years of prediction which is dependent on the
dates of the datapoints and are therefore not whole numbers.

Table 8. RMSE of individual long-term predictions
Datapoints input

Prediction

Max 2 3 4 5 horizon (years)
2 0.94 - - - 6.8
3 1.14 1.06 - - 5.8
4 0.93 0.90 0.86 - 4.6
5 0.74 0.76 0.75 0.73 3.4

As can be seen in the overview, the performance for each number of
maximum datapoints does not show a very clear pattern. When
looking at a maximum of 5 datapoints, using 2 datapoints as input
gives a similar performance as using 5 datapoints for input, while 3
and 4 datapoints show lower performance. In general it seems slightly
better to include more datapoints.

Table 6 showed that more datapoints can better replicate the actual
wear rate. However, more datapoints do not necessarily result in
better long-term performance. This is because more factors are
important when predicting the worn area over time. The model with
less datapoints as input has a higher responsiveness to change as it
considers a shorter time frame. Meanwhile, the model with more
datapoints is more passive as it considers a longer time frame but is
more stable due to noise filtering. Also the starting point for both
models is different. The starting point with more datapoints is further
back in time, which increases the error over time due to a longer
prediction length. At the same time, the starting point has a higher
accuracy as it is based on more datapoints. The results imply that the
mentioned factors are almost equally important as the models
produce similar performance scores.

In Figure 20, a scatterplot is shown for the model which uses 4
datapoints as input and with a prediction horizon of 4.6 years. The
prediction errors are symmetric and form a normal distribution. It can
be seen that the accuracy of the predictions slightly decreases when
the wire is worn down further. This can be explained by the
measurement accuracy. Due to the round shape of the wire, a new wire
decreases faster in thickness compared to an older wire. This principle



is explained in Figure 4. The accuracy of the measurements is based on
the contact area of the wire which is thus more precise to measure for
newer wires.
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Figure 20. Scatterplot of long-term performance using worn area

When the worn area is converted back to thickness, the results are
easier to interpret. In Figure 21, a scatterplot can be found for the
thickness. It can be seen that most contact wires have a thickness of
more than 10 mm. As the predicted thickness is especially important
for thinner wires, the predictions for these thin wires need to be
accurate. The model has a very slight bias for the thinnest wires in the
dataset. The accuracy for this category could be improved if the
majority of the training data consists of thin wires.
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Figure 21. Scatterplot of long-term performance using thickness

The accuracy of the model is assessed by using different confidence
levels. In Table 9, the accuracy is shown for the worn area and
thickness of the wire. It must be noted that the accuracy of the
thickness is dependent on the diversity of the sample. This is because
the non linear conversion from worn area to thickness. As can be seen
in the scatterplot of Figure 21, the majority of the wires are relatively
new which results in a lower prediction accuracy compared to a
majority of older wires. The average error is found to be 0.563 mm?
for the worn area and 0.078 mm for the thickness when predicting 4.6
years into the future.

Table 9. Accuracy of long term predictions for 4.6 years per individual

prediction
Confidence Accuracy Accuracy
worn area thickness
90% +1.23 mm? +0.16 mm
95% +1.61 mm? £0.20 mm
99% £2.67 mm? +£0.30 mm

4.5.  Comparison of different prediction methods

The long-term performance metrics allow for a fair comparison
between multiple prediction methods as the goal for all methods is to
accurately predict the worn area in the future. In Table 10, all
considered methods can be found sorted from best to worst
performance.

As can be seen in the overview, the best performance score is
achieved by the ‘optimal wear rate’ method. For this method, two
variants are tested; one that is trained with a fixed prediction horizon
and one with a flexible prediction horizon. As can be seen in the table,
the fixed method is performing significantly better. Despite this being
the best-performing method, it is questionable if this is also true on
new data. The model is trained on only the first few years and tested
on the last year. Therefore, it cannot compensate for unwanted trends
in the data. Another problem with this model is that it is trained on a
fixed prediction horizon. It can therefore not reliably predict data for
a different prediction length. This might be especially problematic for
predictions further in the future, outside of the training data. For
predictions with a shorter prediction horizon, a different model can be
made using the preferred prediction period. The ‘optimal wear rate’
method with a flexible prediction horizon does solve these mentioned
problems but performs worse. When excluding the ‘optimal wear
rate’-models with the mentioned drawbacks, the method ‘extended
wear rate’ performs best. This method is considered most suitable as
this model is more resistant to these issues. Therefore, every analysis
in this paper is based on the ‘extended wear rate’ method.

Table 10. Performance of different methods for long-term predictions

Prediction method MAE MSE RMSE
Optimal wear rate (fixed) 0.555 0.616 0.785
Optimal wear rate (flexible) 0.563 0.744 0.862
Extended wear rate [MAIN] 0.562 0.745 0.863
Limited wear rate 0.593 0.885 0.966
Direct prediction worn area 0.736 1.114 1.055
Extrapolation 1.596 7.663 2.768

4.6.  Clustering to wire section

In Table 11, the RMSE scores can be found when the individual
predictions are clustered per wire section. The pattern for the wire
section is similar to that of the predictions per 10 meters.

Table 11. RMSE-scores for clustered wire sections
Datapoints input

Prediction

Max 2 3 4 5 horizon (years)
2 0.62 - - - 6.8
3 0.69 0.65 - - 5.8
4 0.58 0.55 0.54 - 4.6
5 0.49 0.47 0.45 0.44 3.4

When converting the worn area back to thickness, an average error
(MAE) of 0.058 mm is obtained. By clustering values for the whole
wire, the MAE decreased from 0.078 for individual predictions to
0.058. This means that to a certain extent the errors cancel each other
out when clustered. Predictions that are too high are compensated by
predictions that are too low. This is also the case for the accuracy of
the predictions shown in Table 12. The accuracy is improved from
+0.20 mm for the individual predictions to £0.15 mm for the clustered
predictions. The average error is found to be 0.38 mm? for the worn
area and 0.05 mm for the thickness.

Table 12. Accuracy of predictions for 4.6 years per wire section

Confidence Accuracy Accuracy
worn area thickness

90% +0.86 mm? +0.11 mm
95% +1.02 mm? £0.12 mm
99% +1.87 mm? £0.21 mm

5. Discussion

For all tested models, the current thickness appeared to be one of
the most important feature categories. Takahashi, et al. [11] also state
that the residual diameter is correlated with the local wear rate.
Nonetheless, this feature is not mentioned often in other studies. In
theory, converting the thickness to worn area should create a linear
wear rate [12]. However, other external factors seem to make this
statement incorrect forcing the model to use this feature to



compensate for non-linearity. According to the data, new wires wear
down faster even in terms of worn area. This non-linearity does not
have a significant effect on the model. When using an acceptable
timeframe for creating features and the label, this effect is barely
noticeable as the wear of contact wires is relatively slow.

Another important feature category is the number of passed trains.
This seems very intuitive as almost all wear mechanisms are based on
contact between the pantograph and contact wire. Many studies have
found that the number of train passages is a key factor for wear and
tear [15][10][8].

Another feature that many studies found important is the speed of
the train [4][6]. Remarkable is that in the data no relation is found
between the speed and the wear rate. All three features which
approximate the actual train speed fail to find a connection. Also the
difference in speed does not give any useful information to the model.
According to Wei etal. [6], significantly higher wear rates are expected
in the acceleration and deceleration zones due to an increasing
electrical current. In this study the difference in speed should indicate
these zones but do not show a relation. For estimating the total
electrical current, the amount of passed tons is used as a feature. This
feature is found to be important for the wear rate. However, it is not
clear if this is caused due to capturing the total electrical current or if
this feature is related to the number of passed trains.

The contact force is a feature that is a promising feature according
to literature. A strong correlation between the contact force and the
label could not be found in the initial stage. Because a lot of data was
missing, this feature is not used for the model in this study.

With an importance score of 0.20 for linear regression and 0.56 for
the random forest, the wear rate trend feature pushes the predictions
of the model in the right direction. It must be noted that the input
horizon must be chosen wisely when including this feature. The more
datapoints included, the closer the wear rate trend will be to the label
of the model. On one hand this might be good as this historical wear
trend is a good indicator for the wear in the future. On the other hand,
the model might become unreliable if the two are too close. A good way
to deal with this is to keep the prediction horizon close to the desired
prediction length. If more data is available, more datapoints can be
used as input without compromising the desired prediction horizon.
In this way, the model can still be tested on the preferred prediction
horizon, while increasing the correlation between the historical wear
rate trend and the label.

A standard machine learning approach does not work well due to
noise and missing data such as the age of the contact wire. Some
tweaks were necessary to improve the performance. Despite this
being a new methodology, the validity has been proven by comparing
the predicted and actual worn area. It must be noted that the actual
worn area is an approximation as the real value is not known.
However, by being tested on a large dataset, the results can be
considered reliable.

For training, all locations with a messy wear pattern have been
removed. The wear rate label is created by applying linear regression
on the worn area for all datapoints. The fit of this line is indicated with
an R? score. All R? scores below 0.4 are filtered out, as this hinders the
learning capability of the model. The performance of the model could
probably be improved by increasing the minimum R? score. On the
other hand, filtering on R? scores might create a bias for the model. It
is not known if the average thickness of the section can be estimated
better by including all cases or by predicting only a part of the cases
with higher accuracy. By using low R? scores also the target becomes
unreliable which makes it hard to validate the performance.

Another factor that must be taken into account is the presence of
carbon deposits. This debris is caused by friction between the contact
wire and the pantograph and makes the surface of the contact wire
appear wider. The measurement train calculates the thickness of the
wire based on the contact surface and interprets a thicker wire if
carbon debris is present. This measurement error causes noise and
induces a slight deviation in terms of thickness. Besides the carbon
deposit, the location of the measurement train is not always accurate.
Currently this problem is mainly solved by clustering the
measurements per 10 meters. More precise data could be created by
applying a synchronization algorithm which will most likely slightly
improve the performance of the model.

The model assumes that the features will stay the same in the future.
If itis known that certain values will change in the future and a forecast
is available, the values for the features should be updated. If for
example the number of trains is expected to increase by 10% in the
coming years, this percentage can be added to the current value. For a
prediction for 5 years with for example an expected increase of 10%
after 2 years, the average value should be calculated. This would be an
average increase of 6% over 5 years, which means that the current
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feature value should be multiplied by a factor of 1.06 to anticipate for
this change.

The primary goal of this study is to accurately predict the end of
lifetime of a contact wire. This can be done by predicting the average
thickness of the whole wire and applying a threshold for the minimum
allowed thickness. As the prediction of the wire section consists of
many individual predictions, this allows for a more complex
replacement criteria. Also percentiles can be used, so that for example
at least x percent of the predicted values must be above a certain
thickness threshold. More research can be done to determine which
replacement algorithm is most suitable.

The measurement train logs the average and minimum thickness
measured over a section of 25cm. Both thickness values can be
important to determine the end of the lifetime of the wire. This study
focussed on the average thickness. However, the same method can be
applied to the minimum thickness. The model performance for the
average and minimum thickness as label of the model are almost
identical.

This study has shown that even with noisy data useful predictions
can be generated. This method may be also useful for other assets
whereby predictions must be made over a longer period of time.
Especially if a lot of noise is present in the data, this method might
perform better than most common solutions.

6. Conclusion

The goal of this study was to predict the thickness of the contact wire
for 5 years in the future. In total 24 features are created which can be
divided into 7 categories. The most important feature categories for
the model are the thickness of the wire, the number of passed trains,
the amount of transported tons and the historical wear rate trend.
Multiple machine learning algorithms are tested whereby linear
regression is best performing. Besides multiple machine learning
algorithms, also different prediction methods are tested. Directly
predicting the thickness based on the features does not produce
optimal results. The model that performs best tries to predict the wear
rate instead. For determining the wear rate, the thickness of the
contact wire is first converted to the worn area to stimulate linearity.
For each location multiple datapoints are available and are used to fit
aregression line. This regression line represents the wear rate and is
the label of the model. Once the machine learning model is trained and
wear rates can be predicted, a starting point is needed. The best
starting point lies in the centre of the datapoints used as input for the
model. This centre can be seen as the centre of mass and is the average
of the x-axis (date) and y-axis (worn area). To test the long-term
performance, the predicted worn value is compared to the actual value
up to 6.8 years in the future. The number of datapoints that are used
as input for the model does not affect the performance significantly.
Similar results can be achieved by using datapoints within the range
of 2 to 5 datapoints as input. Adding more datapoints makes the model
more robust but less responsive to change. The robustness and
responsiveness are considered almost equally important as the
performance is similar. The predictions are made per 10 meters and
are eventually clustered per wire section. The estimated average
thickness of a whole wire has an accuracy of #0.12 mm at a 95%
confidence level.
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Appendix I - Example data measurement train

Only relevant columns are shown. The numbers in the headers refer to
the wire that is measured. The measurement train can measure up to 4

wires at the same time.

ID section Km  Wire section Date Thick Thick Thick Thick Thick Thick Thick Thick
avgl minl avg2 min2 avg3 min3 avg4 min4
078_205BR_64.9 0.00 078_65.013_207R_229L  18/03/2015 9.9 9.9 10.1 10.1 11.8 11.8 11.8 11.8
078_205BR_64.9 0.25 078.65.013_207R_229L  18/03/2015 9.8 9.8 10.6 10.3 11.9 11.9 11.8 11.8
078_205BR_64.9 0.50 078.65.013_207R_229L 18/03/2015 9.9 9.9 10.1 9.9 11.8 11.8 11.8 11.8
Height1 Height2 Height3 Height4 Position1 Position2 Position3 Position4  Speed Cant
-54.5 -56.5 -87.3 -87.3 -47.6 -87.3 288.7 249.0 78.8 -3.1
-55.5 -57.5 -87.3 -86.3 -49.6 -90.3 286.7 247.0 78.3 -3.2
-55.5 -58.5 -88.3 -86.3 -48.6 -90.3 284.7 2441 78.5 -2.8
Appendix II - Features model
Category Feature Description Calculation method
Properties Thick_avg Average thickness of the contact wire Average of group
wire Thick_avg_delta Difference in average thickness between the left and right contact wire  Average of group
Thick_avg_dev Deviation of the average thickness along the wire Deviation of group
Thick_avg_min Smallest value of the average thickness Minimum of group
Thick_min Minimum thickness of the contact wire Average of group
Thick_min_delta Difference in minimum thickness between left and right contact wire Average of group
Thick_min_dev Deviation of the minimum thickness along the wire Deviation of group
Thick_min_min Smallest value of the minimum thickness Minimum of group
Position Delta_height Difference in height between the left and right contact wire Average of group
wire Horizontal_avg Horizontal position of the contact wire Average of group
Height_avg Height of the contact wire Average of group
Cant Cant Cant of the rail Average of group
Speed Speed_difference Difference in speed between current and previous 100-meter section Average over period
Speed_field Average speed of trains of one day Average over period
Speed_local Maximum allowed speed for trains Average over period
Speed_measure Speed measured by the measurement train Average over period
Passed Trains_goods Number of trains transporting goods Average over period
trains Trains_total Total number of goods and passenger trains Average over period
Trains_travel Number of trains transporting passengers Average over period
Transported Tons_goods Total amount of tons transported by goods trains Average over period
tons Tons_total Total amount of tons transported by goods and passenger trains Average over period
Tons_travel Total amount of tons transported by passenger trains Average over period
Historical Wear_rate_trend Slope of the regression line within the datapoints of the training set Regression over period
trend

R2_wear_rate_trend

R2 score of the regression line within the datapoints of the training set

Regression over period
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