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Summary

In this thesis, data on university-industry collaboration networks of nanotechnology R&D
is studied with three heterogeneous hypergraph models. In business, there are not many
suitable methods to study collaboration networks. With the concept of hypergraphs we
provide a good representation method for collaboration networks to business people. In
this thesis, the following research question is central: How could mathematical hypergraph
models be helpful in the field of collaboration networks in business? In order to answer
this question, three hypergraph models are used to configure networks. These networks are
constrained by a degree sequence and a dimension sequence. The models we investigate
are two models by Chodrow (2020) and the Chung-Lu hypergraph model by Kamiński,
Poulin, Prałat, Szufel, and Théberge (2019). Since the data consists of heterogeneous
node types, the three models are changed to heterogeneous hypergraph models based on
the idea of stochastic block models. Measures are used to compare the resulting networks
of the different models. These measures are vertex degree, dimension, hyperedge degree,
eigenvalue centrality, modularity and homophily. Three main tests are done in order to be
able to answer the research question. First, the three models are compared among each
other to test which model mimics the original collaboration network best. Second, cases
are compared that might give conclusions about the advantages and disadvantages of using
the hypergraph models instead of normal graph models. Finally, we tested whether adding
the heterogeneity to the hypergraph models adds value.

The main results of this thesis are the following. First, we found that the NHHCM
model is the best model when comparing the SHHCM, NHHCM and CLHHM, in the
case that there is not a dominant node type available. Otherwise the SHHCM model
performs best. In addition, we found that a normal graph is not a good representation
of a collaboration network. It replicates some measures of the collaboration network,
but a hypergraph does this better. Moreover, it could not be stated whether hypergraph
models are better models than normal graph models. We also found that the heterogeneous
hypergraph models significantly improve the original SHHCM, NHHCM and CLHHM. This
is the case, even though the heterogeneous hypergraph models are based on equations that
are only based on an intuition of heterogeneous graphs and are not mathematically proven.
.
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1 Introduction

The theory of hypergraph models is an emerging field within complex networks. Hy-
pergraphs models are able to capture additional features in comparison to general graph
models (Battiston et al., 2021; Benson, Gleich, & Leskovec, 2016; Ghoshal, Zlatić, Cal-
darelli, & Newman, 2009), and have the potential to fruitfully be applied in many different
fields. Particularly, when these hypergraph models are changed to heterogeneous hyper-
graph models with different node states. Nevertheless, many fields are not familiar with
the concept of hypergraphs. This results mainly from the fact that hypergraph models are
hard to understand due to the difficult mathematics involved and the use of inconsistent
notation. This is especially true in business fields, since these fields are less familiar with
abstract mathematics, even though hypergraphs might be particularly useful in these fields
where networks of collaboration exists. In this thesis we will fill this gap by building a
bridge between mathematics and business. The following research question is answered:
How could mathematical heterogeneous hypergraph models be helpful in the field of col-
laboration networks in business?

In order to address this question, we first show which mathematical hypergraph models
represent collaboration networks best. For this purpose different existing hypergraph mod-
els are compared and changed into heterogeneous hypergraph models with heterogeneous
node types. The models will be evaluated using data on R&D collaboration. Furthermore,
we show how these models could easily be applied in business by providing clear notation,
accessible hypergraph models and results for business. In order to make this thesis acces-
sible for people with little mathematical knowledge, special sections are added that should
clarify mathematical expressions. It is recommended to continue reading at Section 2.6,
when it is preferred to avoid mathematical issues.

2 Theory

2.1 Complex Networks

To begin, we make a distinction between three main concepts: graphs, networks and
complex networks. A graph G is a combination of a vertex set V and an edge set E,
G = (V,E), where vertices are objects and an edge is an unordered or ordered pair of these
objects, dependent on if the graph is undirected or directed, respectively (Van der Hofstad,
2016). The graph could also be represented as an adjacency matrix A, a matrix with zeros
and ones, where Aij = 1 and Aij = 0 indicates that vertex vi and vi are connected or not.
The definition of a network is less clear. In short, a network is “A collection of points joined
together in pairs by lines” (Newman, 2010). A network is often referred to as a graph with
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attributes (names) for the vertices or edges. In networks vertices are often called nodes
and edges are called links. Finally, a complex network is a large-scale network which in its
simplest form could be realized by a random graph (Albert & Barabási, 2002).

For mathematicians the term “graph” is most appropriate, while the term “network”
is most used in applied fields. In essence, definitions of graphs are equivalent: a graph
consists of a vertex set and an edge set. However, definitions differ in length and focus. As
an example, the definitions for graphs of Van der Hofstad (2016) and Chodrow (2020) are
rather extended, where Van der Hofstad (2016) focuses in his definition on whether edges
are directed or undirected and Chodrow (2020) focuses on explaining selfloops, parallel
edges and the underlying set structure of the vertex set and the edge set. On the other
hand, the definition of (Avin, Lotker, Nahum, & Peleg, 2019) is rather short with a focus on
the underlying sets and a small remark on self-loops. After defining a graph, the notion of
vertex degree is often introduced. In short, the vertex degree is the number of connections
to other vertices, where a connection to itself (selfloop) counts twice (Avin et al., 2019;
Chodrow, 2020).

Furthermore, an edge is sometimes valued based on the strength of the connection.
This value is called an edge weight (Kim & Lee, 2015; Kuznetsov, Panov, & Yakovlev,
2020; Pan et al., 2012). Kim and Lee (2015) define a weighted graph as a combination
of a vertex set V and a matrix w of edge weights. Matrices are also used by Battiston
et al. (2020), Kuznetsov et al. (2020) and Pan et al. (2012) for representing edge weights.
Edge weights could also be used to induce graphs (Bhagat, Cormode, & Muthukrishnan,
2011). In Figure 1, a general weighted graph is illustrated with vertices connected in a non-
specific order. In practice, the vertices could, for example, represent authors and the edges
whether authors published a paper together, with the weight as the number of citations of
that particular paper in which the authors collaborated.

In this thesis, the convention is followed that a graph G = (V,E) consists of a set V of
vertices and a set E of edges, where the edges might be weighted. An edge e consists of a
pair of unordered vertices, e = (u, v), u, v ∈ V . An edge (u, u) is called a self-loop. The
degree of edge v is defined as

dv =
∑
e∈E

1(v ∈ e).

The step-function 1(v ∈ e) equals one when a vertex v is in a edge e, and zero otherwise.
A vector with the degree for each vertex is also referred to as the degree distribution of a
network. In order to keep track of all the variables and abbreviations that appear in this
thesis, in Table 20 in Appendix A the variables and abbreviations are listed in alphabetic
order.

2.2 Heterogeneous, Hierarchical and Multi-Layer Graphs

When considering graphs where vertices differ, multiple graph models are appropriate.
First, the heterogeneous graph or network could be used. Ghosh and Lerman (2019) define
the task of a heterogeneous network as linking different types of entities. In addition,
Zhang, Song, Huang, Swami, and Chawla (2019) describe heterogeneous graphs as graphs
that “contain abundant information with structural relations (edges) among multi-typed
nodes as well as unstructured content associated with each node” (p. 793). The term
“heterogeneous networks” also appears in applied fields, for example in the field of mobile
broadband, where a heterogeneous network is "a network built with a variety of different
base station types" (Von Wrycza et al., 2015). So within a heterogeneous graph, the
vertices are of different types.
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Figure 1: Weighted graph

Heterogeneous graphs are defined in several ways. On the one hand, Ghosh and Lerman
(2019) describe a graph as a layered graph, where there are intra- and inter-layers between
different types of entities. An intra-layer connects the same type of vertices and inter-layers
connect vertices of different types. These layers are represented by matrices. On the other
hand, Zhang et al. (2019) use the concept of a content-associated heterogeneous graph,
where a graph G = (V,E,OV , RE) in which besides the vertex set and edge set, there exists
a set of object types, OV , and relation types, RE . The OV defines per vertex its type, and
RE defines per edge which type of edge it is, meaning which types of nodes are connected.
In Figure 2a an example of a heterogeneous graph is illustrated. When considering the
vertices as authors who collaborate (through the links), one could distinguish between
different types of authors. As an example, the blue nodes (v2 and v5) could represent
Dutch authors and the red nodes (v1, v3 and v4) could represent German authors.

In addition to heterogeneous graphs, the concept of hierarchical graphs is used in liter-
ature, also appearing as hierarchical structure or hierarchical graph structure. Kuznetsov
et al. (2020) argue that a hierarchical graph structure contains vertices that consist of a set
of one or more elements. In general, this could be extended to an n-level hierarchical graph
(Mäkinen, 1990). Nevertheless, this is not always taken into account by proper definitions
of a hierarchical graph (Busatto & Hoffmann, 2001; Drewes, Hoffmann, & Plump, 2002).
The definitions as described by Busatto and Hoffmann (2001) and Drewes et al. (2002)
consider a hierarchical graph as a triple, where there is an original graph, an underlying
graph and a connection between these. On the other hand, hierarchical graphs are also de-
scribed in terms of intra- and inter-community layers (Van der Hofstad, Van Leeuwaarden,
& Stegehuis, 2017), as was done for heterogeneous graphs by Ghosh and Lerman (2019).
When one wants to detect whether there are communities in a graph, often a hierarchical
structure or hierarchical graph is used (Van der Hofstad et al., 2017; Blondel, Guillaume,
Lambiotte, & Lefebvre, 2008). A hierarchical structure or hierarchical graph is also known
as a hierarchical decomposition (Newman, 2010). As an example, in Figure 2b a hier-
archical graph is drawn. In the example of collaborating authors, v2 could represent an
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(a) Heterogeneous graph (b) Hierarchical graph

Figure 2: The differences between a heterogeneous and hierarchical graph.

Figure 3: (Pillar) Multi-layer graph

author that consists of a group of people (research group or company), which have their
own interrelationships.

Finally, the term multi-layered graph is closely related to heterogeneous and hierarchical
graphs. In some cases, a multi-layer graph is defined as a set of vertices, where the edges
in different layers differ (Dong, Frossard, Member, Vandergheynst, & Nefedov, 2012, 2014;
Battiston et al., 2020). Kim and Lee (2015) refer to this as a pillar multi-layer graph,
where a multi-layer graph in general is defined as a tuple of graph layers and an identity
mapping. In this definition, it is also possible to split vertices into multiple vertices, which
comes closer to the definition of a hierarchical graph. Furthermore, Kim and Lee (2015)
state that these graphs could also be used to represent heterogeneous graphs. In Figure 3
a pillar multi-layer is illustrated as defined by Kim and Lee (2015). As an example, layer
1 could exist of authors that write articles together and layer 2 could represent friendships
among authors.

In this thesis, a distinction between models for graphs with different types of vertices
is made. Even though in this section a clear distinction is made between heterogeneous,
hierarchical and multi-layer graphs, literature on these types of graphs is ambiguous. In
addition to these three terms, other terms are used interchangeable.
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2.3 Random Graph

Previously, we stated that a complex network is a large-scale network which in its simplest
form could be realized by random graph (Albert & Barabási, 2002). Random graphs take
many forms. In this subsection, three models are introduced (1) the generalized random
graph (GRG), (2) the configuration model and (3) the preferential attachment model (PA-
model). First, the idea of a GRG model is based on edges that exist based on a probability.
For this purpose, within a GRG model the concept of vertex weights is introduced. In
addition to edge weights vertices could also have weights, wi, based on the importance of
a vertex. Within GRG models, the probability that an edge exists between vertices i and
j is denoted by (Van der Hofstad, 2016):

pij =
wiwj

ln + wiwj
, where ln =

∑
i∈V

wi.

Second, Van der Hofstad (2016) describes the configuration model as a model for config-
uring graphs with a fixed degree distribution, where half-edges are uniformly matched. A
half-edge is defined as the half of a normal edge, where each half-edge could be connected
to another half-edge. Each vertex has a number of half-edges, equalling the degree of that
specific vertex. The configuration model matches the half-edges of the vertices with each
other one by one until all half-edges are transformed into complete edge. A half-edge is
also referred to as stub (Chodrow, 2020). The configuration model is very suitable in
replicating existing graphs, when you want to constrain the degree distribution. Third,
the PA-model is described as a graph that starts with two vertices that are connected and
at every time step a new vertex is added and connected or not connected to an existing
vertex, based on the degree of the vertices. A vertex is connected to vertices with a high
degree with higher probability. In this way the graph grows linearly in time.

Besides the standard random graph models, many other models have been developed.
Chung and Lu (2002) present a GRG model in which the probability that an edge exists
depends on an expected degree sequence. The Chung-Lu model is also often extended, for
example by Kamiński et al. (2019). In addition, Chodrow (2020) introduces the configura-
tion model by adding the definition of a stub-labeled graph. Furthermore, Chodrow (2020)
gives an algorithm to remove selfloops from graph. The PA-model is also often elaborated
on. Avin et al. (2019) defines a model which considers in addition to the vertex-step an
edge step. This allows them to add only edges between existing vertices. Giroire, Nisse,
Trolliet, and Sulkowska (2021) and Giroire, Nisse, Ohulchanskyi, Sulkowska, and Trolliet
(2022) extend the model of Avin et al. (2019), further Giroire et al. (2021) add the step of
allowing adding multiple edges at a time, and Giroire et al. (2022) add the possibility that
vertices become inactive.

2.4 Hypergraphs

Some networks contain additional features which cannot be captured by a general graph
models, but could be captured by hypergraphs (Battiston et al., 2021; Benson et al.,
2016; Ghoshal et al., 2009). The notation used for hypergraphs in the literature differs
significantly, but the definition is generally the same. A hypergraph H = (V,E) consists
of a vertex set V and an edge set E consisting of edges with more than two vertices. The
definition of the edge set E depends on if hyperedges can appear multiple times (parallel
edges) and if a vertex can appear multiple times in a hyperedge (selfloops). As an example,
Chodrow (2020) defines the edgeset as a multiset of multisets of V including parallel edges
and selfloops. If a set contains two of the same vertices, it is called a degenerate hyperedge.
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(a) Graph (b) Hypergraph

Figure 4: Graph and Hypergraph

On the other hand, Storm (2006) explicitly mentions that a vertex may not appear twice in
a hyperedge, although “it is easy to generalize to this case”. In business, two vertices also
do not appear twice in a hyperedge, since this would mean that in collaboration networks
a company could work with itself. Therefore, in a hypergraph parallel edges are allowed,
but selfloops are not.

Visualizing hypergraphs is difficult in comparison to normal graphs. Graphs are vi-
sualised by dots (vertices) and lines (edges). Hyperedges in hypergraphs could not be
visualized by lines. However, there are other options to visualize hypergraphs. First a
hypergraph with at most three vertices in a hyperedge, could be visualised as a simplicial
complex (Battiston et al., 2021). A special type of such a graph, a tripartite heterogeneous
graph (hypergraphs with hyperedges of dimension 3), could also be visualized by pro-
jecting the nodes on one of its vertex types (Ghoshal et al., 2009). Simplicial complexes
are presented by Battiston et al. (2020) as a way to represent higher-order interactions.
Moreover, they show that a bipartite graph could be used to represent a hypergraph, by
introducing hyperedges as nodes connected to vertices. The connections could easily be
drawn in a node-edge matrix, as done by Saracco, Petri, Lambiotte, and Squartini (2022),
such a matrix is also called an incidence matrix. Furthermore, Saracco et al. (2022) present
a cartoon where all vertices belonging to one hyperedge are encircled by a specific color.
This way of representation relates most to a “Venn diagram representation”, a subset stan-
dard (Mäkinen, 1990). Mäkinen (1990) also presents the “edge standard”, a drawing form
where hyperedges are represented by curves, which is somewhat related to bipartite graph
drawing, as explained above. All of these representations have their advantages and dis-
advantages, therefore we will use a variety of representations, choosing the most suitable
in each instance. In Figure 4b a possible representation of a hypergraph is given (Venn
Diagram). From the Figure, the extra features of hypergraphs can be seen when compared
to Figure 1. From Figure 4a, the relation between vertices v1, v2 and v4 and an extra rela-
tion between vertices v2 and v4 cannot be seen. In the example, where the nodes represent
authors, this is also a more involved graph, since a collaboration could also exist of more
than two authors. Furthermore, it is possible that a subgroup of authors published their
own article.

Just as in graphs, hypergraphs can also have weighted edges. Battiston et al. (2020)
state that the adjacency matrix of hypergraphs can be represented by A = BWBT −D,
where B is the incidence matrix, W is a diagonal matrix with the weights, and D is the
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diagonal matrix with the vertex degree. Furthermore, they add that it might be tricky
to properly define and compute degrees. Weighted hypergraphs are not considered as a
necessity in this thesis, therefore a specific approach to deal with this will not be chosen.

In Section 2.2, heterogeneous, hierarchical and multi-layer graphs were discussed, which
also played a role in representing tripartite graphs in the example above (Ghoshal et al.,
2009). Another example would be representing heterogeneous contagion models, where
part of the nodes are indicated as infected and the other nodes are indicated as healthy
(Landry & Restrepo, 2020). Often, hypergraphs are introduced to connect different types
of nodes with one hyperedge (Battiston et al., 2020; Bhagat et al., 2011). However, it is
striking that the number of types, in most cases, is often not extended to more than 3-4
types.

Finally, the random graph models as presented in Section 2.3 could be extended to
hypergraphs. First, Chodrow (2020) presents the configuration model for hypergraphs.
The preferential attachment model for graphs is extended to hypergraphs by Avin et al.
(2019) and by Wang, Rong, Deng, and Zhang (2010). Giroire et al. (2021) and Giroire
et al. (2022) extend the PA-model for hypergraphs of Avin et al. (2019) by the option of
adding extra hyperedges and include the option of vertex deactivation. In this thesis, the
models as presented in Chodrow (2020) are generalized and the model presented by Chung
and Lu (2002) is extended to hypergraphs.

So one could combine the different concepts introduced here, in order to create a graph
that captures all the features one is interested in. As an example, in Figure 5a a weighted
heterogeneous hypergraph is illustrated. Applying this graph to the collaborating authors
example, the red nodes represent the authors and the blue nodes represent the publishers
of the papers. It can be seen that there are four papers written in total. Furthermore,
publisher v6 publishes three papers and publisher v7 publishes one paper. The weights
represent the number of citations. We see that two papers have the same number of
citations (88). In order to show that the Venn Diagram is not the only visualization of
a hypergraph. In Figure 5b, another visualization is shown. In this visualization the
hyperedge is projected to a vertex. Each edge weight is transformed into a node weight.

2.5 Graph Analysis

In order to compare different graphs, different measures are used. The measures capture
features of the vertices of the hypergraph, the hyperedges or the complete hypergraph.
The measures we are going to use are centrality, modularity and homophily, which is also
referred to as assortativity mixing. Centrality indicates how central nodes are in a network,
modularity indicates whether there are modules, or clusters in the networks, and homophily
indicates the preferences between the same node types to connect to each other. Centrality
measures appear in many different forms. The most well-known centrality measure is degree
centrality (Newman, 2005; Zhang & Luo, 2017). When considering random graph (GRG)
models and PA-models, the degree distribution is often considered and whether the model
is scale-free, i.e., whether the degree distribution follows a power-law (Albert & Barabási,
2002). In general, centrality stands for the importance of a node in a network (Ghosh &
Lerman, 2019). Besides centrality, modularity is used for analysing networks, which is also
known as clustering, community detection or connectivity (Newman, 2006b; Kamiński et
al., 2019; Giroire et al., 2021; Blondel et al., 2008; Albert & Barabási, 2002). Finally, the
tendency to connect with vertices of the same type (in heterogeneous graphs) is known
as homophily or assortative mixing (Newman, 2010; Bhagat et al., 2011). Centrality,
modularity and assortativity will be discussed in the remaining part of this section.

In Section 2.1, the vertex degree was already defined for standard graphs. This vertex
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(a) Venn Diagram
(b) Projection hyperedge to
vertex.

Figure 5: Two representations of Weighted Heterogeneous Hypergraph

degree coincides with the degree centrality discussed in this section. For hypergraphs, it
is defined as the number of hyperedges a vertex is in (Chodrow, 2020). Giroire et al.
(2021, 2022) and Avin et al. (2019) also define this as the vertex degree, but Wang et al.
(2010) define this as the node hyperdegree. In addition to the vertex degree, the number of
vertices in a hyperedge is sometimes defined as a degree, which is called hyperedge degree
by (Saracco et al., 2022). Moreover, (Chodrow, 2020) defines this term as the dimension.

Finally, a hyperedge degree is defined by Wang et al. (2010), as the number of hyper-
edges incident with the hyperedge. So in general there are three "degrees" that should be
distinguished in hypergraphs. First, (vertex) degree is used for the number of hyperedges
a vertex takes a part in,

dv =
∑
e∈E

1(v ∈ e).

Second, the dimension is the number of vertices in one hyperedge

de =
∑
v∈V

1(v ∈ e),

and finally the hyperedge degree is the number of hyperedges incident with the hyperedge

De =
∑
v∈e

(dv − 1) =
∑
v∈e

(∑
e∈E

1(v ∈ e)− 1

)
.

In addition to the degree centrality, other centrality measures that are used frequently
are betweenness centrality, closeness centrality, eigenvector centrality and Bonacich central-
ity (Newman, 2005). First, betweenness centrality is defined as the amount of flow passing
through a particular vertex considering shortest paths or geodesics (Newman, 2005; Zhang
& Luo, 2017; Ruhnau, 2000). Zhang and Luo (2017) compare it with a mediation role,
Ruhnau (2000) expresses it as a transmitter, and Newman (2005) defines it as measure
for control. Mathematically, for a node vi we define it as the sum over all combination of
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nodes j and k, dividing the geodesics from node j to node k containing node vi by the total
number of geodesics from node j to node k. Second, closeness centrality is defined as the
length of the path from a node to all other nodes (Brandes, 2001; Ruhnau, 2000; Zhang &
Luo, 2017). Mathematically, the closeness centrality measure of a node vi is the reciprocal
of the sum over the length of shortest paths from a specific node vi to all other nodes.
Third, eigenvector centrality builds on the idea that the centrality of a node depends on
the centrality of adjacent nodes (Ruhnau, 2000; Bonacich, 2007). Mathematically, this re-
lates to the eigenvector of the highest eigenvalue of the adjacency matrix. The eigenvalue
centrality of a vertex is defined as a linear equation of eigenvalue centralities of connected
vertices. Whether vertices are connected by an edge is defined in the adjacency matrix.
When writing the eigenvalue centrality as a system of equations, one could rewrite the
system in such a way that the eigenvector is representing the eigenvalue centralities of the
nodes. Lastly, the Bonacich centrality, also called beta-centrality, is defined as the weighted
sum of paths connecting vertices to each other (Bonacich, 2007; Ghosh & Lerman, 2019).
Bonacich (2007) defines beta-centrality as

c(β) =
∞∑
k=1

βk−1Ak,

where k represents the length of a path and A is the adjacency matrix.
The centrality measures as described above are applicable to graphs with dyadic col-

laborations. Centrality measures for hypergraphs are a bit more involved. Comparing the
four types of centrality as described above, the measures could be categorized by central-
ity measures based on shortest path (betweenness and closeness centrality) and centrality
measures based on the adjacency matrix (eigenvector and Bonacich centrality). First, cen-
trality based on shortest path is applied to hypergraphs in the same way as to graphs with
dyadic links. Lee, Lee, Oh, and Kahng (2021) propose to use bipartite graph representa-
tion for this purpose, which could be used to set up trees that easily measures the shortest
paths. Gao et al. (2015) also use trees called relationship trees, a set of trees that order
all the possible paths to other vertices. The relationship trees of Gao et al. (2015) do not
contain the edges, which is the case for the trees presented by Lee et al. (2021). Second,
in order to deal with centrality measures, Benson (2019) presents eigenvector centrality
for uniform hypergraphs with help of hypermatrices or tensors. For hypergraphs where all
hyperedges have size |ki|, an n|ki| symmetric hypergraph adjacency tensor T can be defined
as (Benson, 2019):

Tv1,...,v|ki|
=

{
1 if (v1, ..., v|ki|) ∈ E

0 otherwise.
(1)

On the other hand, Bonacich, Cody Holdren, and Johnston (2004) suggest a method to
translate the adjacency matrix to an incidence matrix, which can be used to compute
eigenvector centrality for two-mode data. Knowing x and y as the centrality scores for
the row and column elements of an incidence matrix B, the following pair of equations is
defined

Btx = λy, By = λx. (2)

In this case, x and y are eigenvectors of different matrices, but they are associated with
the same eigenvalue λ (Bonacich et al., 2004):

BtBy = λ2y, BBtx = λ2x. (3)
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Tudisco and Higham (2021) also use the notion of an incidence matrix, but their method
is much more involved and will not be discussed in detail. The beta-centrality presented
by Bonacich (2007) for hypergraphs is not developed yet.

Besides centrality measures, modularity measures could be used to characterize net-
works, especially networks with heterogeneous vertices. In general, modularity is “the
number of edges falling within groups minus the expected number in an equivalent net-
work with edges placed at random” (Newman, 2006a). Thus, the extent to which networks
could be divided into modules or clusters. Mathematically, “edges in groups” could be
expressed differently, especially in the case of hyperedges. Kamiński et al. (2019) maintain
a strict definition where all vertices in a hyperedge should be of the same type. Giroire
et al. (2021) follows this definition. Newman (2006a) uses the adjacency matrix for the
clique reduction to represent this. In the same trend, Kumar, Vaidyanathan, Ananthapad-
manabhan, Parthasarathy, and Ravindran (2020) presents the modularity for hypergraphs
as:

Q =
1

2m

∑
vi∈V

∑
vj∈V

[Aij − Pij ]δ(Tvi , Tvj ), (4)

where A = HT (De − I)−1H is the clique reduced adjacency matrix, H is the incidence
matrix of the hypergraph, De is the diagonal matrix of the edge dimensions, I is an identity
matrix, Tv is the type of node v, and Pij is expressed as

Pij =
dvidvj∑
v∈V dv

. (5)

This last definition for hypergraph modularity is most suitable for this thesis, since the
hyperedges in R&D collaboration networks can contain several types. The strict definition
of Kamiński et al. (2019) would be less insightful for this thesis.

Finally, the concept of homophily or assortative mixing is considered. Homophily, “a
tendency of various types of individuals to associate with others who are similar to them-
selves” (Currarini, Jackson, & Pin, 2009), and assortative mixing, “the tendency for vertices
in networks to be connected to other vertices that are like (or unlike) them in some way”
(Newman, 2003), are similar concepts, in essence, but looking at the definitions homophily
is applied in the real world, so more often used in practice. Assortative mixing is more often
used for dealing with graphs. The principle of homophily or that similarity breeds connec-
tion is extensively explained by Mcpherson, Smith-lovin, and Cook (2001). Currarini et al.
(2009) define the homphily index as Hi = si/(si + di), where si is the average number of
friendships a type i node has with its own type and di is the average number of friendships
a type i node has with nodes of different types than i. Inbreeding homophily appears when
Hi > wi, where wi is the relative fraction of type i in the population. Assortativity for
hypergraphs is not well-developed and is often focused on a specific hypergraph model.
Papanikolaou, Lambiotte, and Vaccario (2023) study uniform hypergraph models as initial
configuration. They define a homophily measure based on a merge and split technique with
the fraction of nodes of a certain type. This fraction is compared to a threshold parameter
γ. In addition, Alaluusua, Avrachenkov, Kumar, and Leskelä (2023) considers the level
of assortativity for uniform hypergraphs, in the case of multi-layer hypergraph stochastic
block models (HSBMs). Another model is the Location-Based Social Network (LBSNs),
where an attempt is made to preserve homophily by maximizing the co-occurence proba-
bility of all homogeneous edges (Wang, Yuan, Zhang, Peng, & Liu, 2023). Furthermore,
Failla, Citraro, and Rossetti (2023) present an evolving hypergraph model for heteroge-
neous hypergraphs: Attributed Stream Hypergraphs (ASHs). Presented measures for these
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ASHs are consistency, purity, entropy and homogeneity, where homogeneity is most similar
to homophily.

2.6 Concrete Example: WhatsApp Communication

In order to clarify the idea of hypergraphs and related terms, in this section a concrete
example is given. This example consists of illustrating WhatsApp communication as a
hypergraph models. This section can be skipped if the previous sections were clear.

Nowadays almost everyone is familiar with the social media application WhatsApp.
This application provides the possibility to send texts to other people via the internet.
This way of communicating could be represented by a graph model. A graph consists of
actors and relations between these actors. The actors in WhatsApp are the people that
text and a relationship exist between actors when people exchange texts with each other.
Actors are often illustrated by dots and relationships are illustrations by lines between
dots. In graph theory an actor is also referred to as a vertex and a relationship is referred
to as an edge. When a graph represents a real situation the graph is often called a network
in which vertices are called nodes and edges are called links. Perhaps, a person texts to
more than one person. The number of persons a person exchanges texts with is called
their degree. Furthermore, a relationship between two texting people could be assigned a
value based on the frequency or importance of the communication, then this relationship
is weighted. In this last case, one speaks about a weighted graph. Besides relationships
having weights, an actor could also have a weight or a specific characteristic. A texting
person could be male or female, have a certain age, or live at a specific place. When the
characteristics of texting people are taken into account, the graph is called heterogeneous.

A texting person could also have relationships on other social media platforms, for
example on LinkedIn, Facebook or Instagram. The relationships within these other social
media platforms form a graph itself, but these graphs together form a multi-layer graph.
In this type of graph the actors are the same, texting people, but the relationship differ
per layer, via WhatsApp (layer 1), LinkedIn (layer 2), Facebook (layer 3) or Instagram
(layer 4). Furthermore, an actor could be a texting family instead of a texting person. The
texting family consists of texting people that also text each other. A graph with texting
families could be considered, but the extra layer underneath these texting families, with
texting people, could also be considered at the same time. When doing this the graph is
called hierarchical.

It might be interesting to know how the WhatsApp graph or network arose or will
evolve. The company WhatsApp might use this information for example to predict future
revenues or to customize its app and improve profits. For this purpose random graph
models are used. Some random graph models are based on how graphs are configured and
others are based on the evolution of graphs.

One specific feature of WhatsApp is not discussed yet: WhatsApp groups. Within a
WhatsApp group a texting person does not send a text to one person, but to a group
of persons. Therefore, there is a relationship between a group of texting people and not
between two texting people. This relationship could not easily be illustrated by a line.
Therefore, such features cannot adequately be captured by a normal graph. Such a rela-
tionship is called a hyperedge and a graph with hyperedges is called a hypergraph. Thus,
the WhatsApp network is a concrete example of a hypergraph. In Figure 6, a possible
WhatsApp network is presented.

To make predictions or compare interventions, you need to quantify properties of the
network. We call such properties measures. Where a company might use key performance
indicators (KPIs), a graph considers centrality measures, measures that consider the im-
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Figure 6: Small example of communication between pairs (lines) and groups (light
green circles) of texting people.
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portance of an actor in a network. The number of people a person texts with, called degree,
is already discussed and is one of the centrality measures. A group counts only once when
counting up the number of relationships, since there is a relation with a group and not
with individual persons in the group. It might also be that persons text to themselves in
a memo, this is called a selfloop and counts twice within counting for the degree. Another
centrality measure is the number of people that join each other in a WhatsApp group,
called the dimension. Furthermore, one may look at the overlap between a WhatsApp
group and other WhatsApp group, called the hyperedge degree. Next to degree, other
measures that will be considered are dimension, hyperedge degree, closeness, betweenness
and eigenvector centrality. Considering centrality in the WhatsApp network, the texting
persons with the highest centralities are those people who get to know the most infor-
mation. In addition, modularity and homophily measures are often used in analysing a
network. These measures are based on the idea that actors differ in features, so texting
people have different characteristics (heterogeneous graph). Modularity indicates the ex-
tent to which similar actors are put together or clustered. Homophily indicates whether
there is a preference for texting people to text with people with the same characteristics.

In the next section, the data used in this thesis is described, the network is analysed,
and the models are introduced and extended. Furthermore, the parameters are tuned.
For readers wishing to avoid mathematical technicalities, it is recommended to only read
Section 3.1 and Section 4.1.

3 Method

3.1 Data

For this project data is used considering R&D collaboration projects in nanotechnology.
The data is provided by the Dutch Technology Foundation for Engineering Sciences (Sticht-
ing voor Technische Wetenschappen (STW)), now NWO domain Applied and Engineering
Sciences (AES). STW will be used to refer to the data. This data is captured in two data
files. The first file includes features of the projects (project file) and the second file includes
features of the project partners (project partner file). A project refers to a collaboration
within the university-industry R&D collaboration network. A partner is an actor that
takes part in such a collaboration or project. The projects that are involved start between
01-06-2000 and 01-09-2004 and are evaluated after 5 and 10 years.

In total the data consists of 419 projects with 797 project partners. To make the data
useful, we do data cleaning, where certain projects and partners are removed from the
data. Ten projects only have 1 project partner. This is not seen as a collaboration, and
therefore these projects are removed. Furthermore, a main property of a network is that
all nodes are connected. Three projects were not connected to the network, and therefore
removed from the data set. Finally, two project partners were unknown and these are also
removed from the data. We are left with 406 projects and 783 project partners.

The features of the projects captured by the data are project size, technology field,
application field, received budget and external financing, level of commitment of users,
degree of development, and amount of revenues generated. The main features of the
projects are summarized in Table 1. The project size stands for the number of partners in
a project. The technology field is referred to as the field in which the R&D collaboration
project takes place (see Table 1 for the categories). The application field is focused on
nanotechnology fields of application (the exact application fields are stated in Table 1).
The number of projects within a certain technology field or application field are also shown
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in Table 1. STW provides financing for R&D nanotechnology projects, which is referred to
as the received budget. Sometimes an R&D project is also financed by an external party.
The projects are evaluated based on three measures: commitment within the project of
project partners, product development of the product in a project and revenues generated
by the project. More on the four-point scale (0, A, B, C) related to these performance
measures is explained later in this section. The code that is used to do the descriptive
analysis is attached in Appendix C.1.

Feature Categories (Range of) Values
Number of Projects 406
Project sizes 2-22
Technology field Electrical Engineering 123

Life Sciences 49
Medical Technology 68
Chemistry 95
Mechanical Engineering 44
Civil Engineering 27

Application Field Bionanotechnology 57
Nanoelectronics 60
Nanomaterials 45
Nanomanufacturing and Tools 35
Undefined 209

Financing STW ¤ 36,075-2,274,557
External ¤ 0-900,000

Commitment A 83
B 231
C 92

Product development A 92
B 191
C 123

Revenues generated A 289
B 82
C 30
n.a. 5

Table 1: Overview of the project variables

The main features of the project partners are: total number of projects participated in,
number of partners within a project, project role, value chain position, number of patents
in technology classes, operating income, and number of employees. The features of the
project partners are summarized in Table 2. Based on Table 2, it should be noted that
participated projects refers to the number of projects a unique partner participated in.
Furthermore, the project role refers to the role a partner takes within a project. These
roles are the producer, user and R&D role indicating whether it produces a product, uses a
product or researches a product. The numbers behind the project roles in Table 2 sum up
to a number larger than the number of unique partners, since in some cases a partner has
different roles in different projects. The value chain position is relating to the overarching
term for a group offering and representing specific services and interests in society. We
notice that the value chain position is not distributed well over the different categories.
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Especially the value chain position “companies” is over presented. The operating income
refers to the gross income minus the operating expenses. The operating income is divided
in 7 categories ranging from very large to very small. A company falls within the category
of very small, when it has an operating income of less than 2 million euro. A company falls
within the category of very large, when it has an operating income of more than 250 million
euro. The medium category contains companies with operating of around 25 million euro.
The rest of the categories are in between these values. It it remarkable that the operating
income data contains a medium category, while it consists of only one partner.

Feature Categories (Range of) Values
Number of Partners 783
Participated Projects 1-103
Project Role Producer 483

User 919
R&D 833
Undefined 19

Value Chain Position Companies 606
Governmental parties 42
Research Institutes 52
(Academic) Hospitals/Medical
Institutions

17

Universities/Schools 47
Special interest groups 19

Patents in Technology
Classes

Human Necessities 0 - 74,698, n.a.

Performing Operations / Trans-
porting

0 - 9,830, n.a.

Chemistry; Metallurgy 0 - 32,859, n.a.
Textiles/ Paper 0 - 3,411, n.a.
Fixed Constructions 0 - 331, n.a.
Mechanical engineering / Light-
ing/ Heating/ Weapons/ Blast-
ing

0 - 16,477, n.a.

Physics 0 - 13,513, n.a.
Electricity 0 - 41,534, n.a.

Operating Income Very Small 181
Small 69
Medium Small 47
Medium 1
Medium Large 20
Large 78
Very Large 212
Undefined 175

Employees Average over 10 years 0 - 353,120

Table 2: Overview of the partner variables

To understand the data better, the project sizes and the performance of the projects are
plotted and explained. In Figure 7 a histogram of the project sizes is shown. The project
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Figure 7: Frequency of Project Sizes

size varies between 2 and 22. A project size of 4 occurs most frequently and projects of
size 14, 17 and 22 appear only once.

In Figure 8 the performance of the projects is shown. Performance is based on three
concepts: involvement, product development and revenues. Involvement is related to the
extent to which one (or more) users are involved in the project, product development relates
to what extent the objectives of the project have been achieved, and the availability of a
demonstrable "product", and revenues relates to the amount of revenues the project has
lead to. These concepts are also used by Raesfeld, Geurts, Jansen, Boshuizen, and Luttge
(2012), who elaborated on the same data. Each concept is subdivided into a four-point
scale (0,A,B,C) as described in STW (2014), where 0 means failure and C indicates best
performance. The abbreviation n.a. indicates a score of 0, since in some cases the valuation
of the performance is not available.

3.2 Network Analysis

In the previous section we did explanatory analysis on the projects, its partners and their
features. The R&D collaboration network, also referred to as the network, could be anal-
ysed based on graph theory and the concept of hypergraphs. In Section 2.5 different
measures are explained. The analysis starts by plotting the network in Figure 9. The
red dots represent project partners and the blue dots represent projects. In addition, the
vertex degree distribution, dimension distribution and hyperedge degree distribution are
given in Figure 10, Figure 7 and Figure 11, respectively. Furthermore, the network is anal-
ysed based on three centrality measures: betweenness centrality, closeness centrality and
eigenvector centrality (see Section 2.5). Moreover, the modularity by Kumar et al. (2020)
will be computed and the homophily index by Currarini et al. (2009) will be extended to
hypergraphs to compute homophily in collaboration network, which will be presented as a
hypergraph.

Three degree measures are considered, namely, the vertex degree distribution, dimen-
sion and hyperedge degree distribution. In Figures 10 and 11 the vertex degree distribution
and the hyperedge degree distribution are shown. The dimension was already given in Fig-
ure 7 as project size equals the dimension. Figure 10 shows the vertex degree distribution
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Figure 8: Performance of projects based on: (1) involvement, (2) product devel-
opment and (3) revenues.

in linear and logarithmic scale. We see that the degree distribution follows a power law,
meaning that a degree distribution follows the exponential equation f(x) = ax−τ , where
a is a constant and τ is the exponent of the power law. The exponent τ lies around two,
with a ≈ 500. In Figure 7 the project sizes are shown and therefore the dimensions of the
collaborative network are shown. It seems that the dimension follows a Poisson distribu-
tion, but it could also be a negative binomial distribution, for example. In Figure 11 the
hyperedge degree distribution of the collaboration network is shown. It seems that the
hyperedge degree distribution does not follow a specific distribution.

Besides the degree measures, we used three centrality measures to analyse the collab-
oration network: closeness centrality (CC), betweenness centrality (BC) and eigenvector
centrality (EC). The CC and BC are based on the formulation of Brandes (2001). The
EC is based on the product of the incidence matrices as shown by Bonacich et al. (2004).
For computing these centralities, we use the data as explained in Section 3.1. The central-
ities are computed for each vertex. Since the field of hypergraph analysis is an emerging
and developing field, the implementation of measures is often left to own interpretation.
Although the main ideas are based on existing ideas, own creativity is often required to
apply them to the hypergraph setting. The code used to compute these centralities is
shown in Appendix C.2. In Table 3, the ranks are indicated for the degree, CC, BC and
EC, where rank 1 means it has the highest degree, CC, BC or EC and where for example
rank 4 means that it has the fourth highest degree, CC, BC or EC. The ranks for degree
and centrality are almost the same, except for the CC, where Philips (node 684) has the
fourth highest CC instead of the highest CC. So, the centrality measures are not always
directly related to the degree. Shell (node 617) and Technical University Eindhoven (node
671) have the same degree, but still it seems that the CC is higher for Shell and the BC
and EC are higher for the Technical University Eindhoven.

In Figure 12, we have plotted the centralities in decreasing order. For closeness cen-
trality, it seems that it is normally distributed. For betweenness centrality and eigenvector
centrality, a power law was expected, but the plots with logarithmic axes contradict these
expectations.
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Figure 9: Collaboration Network

18



Figure 10: Vertex degree distribution of Collaboration Network in linear and
logarithmic scale

Figure 11: Hyperedge degree distribution of Collaboration Network

Besides the centrality measures, modularity is also computed. The modularity of the
collaboration network is based on the modularity explained by Kumar et al. (2020). The
modularity equation is shown in Equation 4. We take A = HT (De − I)−1H to be the
clique reduced adjacency matrix. The matrix H is the incidence matrix of the collaboration
network, and De is a diagonal matrix with the dimensions of the edges on its diagonal.
The modularity is based on predefined types. The types defined in this thesis are based on
the Project Role and Value Chain Position, see Table 2. These node types are considered
separately.

A project partner could have different project roles in different projects, therefore we
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Figure 12: Sorted centralities linear and logarithmic scale
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Node Company Name Highest
Degree

Highest
CC

Highest
BC

Highest
EC

684 Philips 1 4 1 1
670 TNO 2 1 2 2
721 Technical University

Delft
3 2 3 3

528 University of Maas-
tricht

4 3 4 4

617 Shell 5 5 6 6
671 Technical University

Eindhoven
5 6 5 5

Table 3: Ranks of degree, CC, BC, and EC of the 5 companies with the highest
degree.

choose to define the project role for each partner by the most occurring project role.
When a project role appears an equal amount of times, project role 1 (Producer) has the
preference over project role 2 (User), which has a preference over project role 3 (R&D).
This is chosen for computational convenience. On the other hand, one could also state
that the least appearing project role has the highest relative fraction in the whole network.
In this case the preference order will be role 1, role 3, role 2. Still project role 1 has the
most preference. In order to solve this problem, each node with more than one project role
could have been divided into 2 or more nodes, where each node represents a department of
the company and each node has a different project role (Producer, User, R&D). However,
for computational reasons this is not preferred. In total 68 out of 783 partners have double
project roles of which 25 partners have project roles that appear equally often. This
happened 19 times between role 1 and role 2, 2 times between role 1 and role 3, and 4
times between role 2 and role 3. Since the number of equal project roles between role 2
and role 3 is negligible, in combination with the relative fraction of the project roles, the
current preference order is retained. In addition to the three defined project roles there are
also 19 project roles that are undefined. We deal with this group by stating that this is an
extra project role. The project role is not defined, since the information was not available
on these partners while coding the data.

The results show that modularity based on the project role distribution has a value of
0.1013. The modularity based on value chain position distribution has a value of 0.0905.
The modularity function explained by Kumar et al. (2020) ranges between -1 and 1, where
1 indicates complete modularity and -1 indicates complete integration. Since the values
are both around 0.1, there is a small tendency for modularity. In other words, there is a
small preference for nodes of the same types to connect and therefore to cluster.

Since the modularity measure indicates that there is a small preference to cluster,
probably there is also a preference to collaborate with own type partners. Therefore, it is
expected that the homophily indices indicate this for some node types. In order to compute
the homophily indices, as a guideline the measure by Currarini et al. (2009) is used and
extended in order to be suitable for hypergraphs. The relative fraction of a type i in the
population is represented by wi,

wi =
|Vi|
|V |

, (6)

where V is the set of nodes and Vi is the set of nodes of type i. The homophily index Hi
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for type i, is computed by

Hi =
ai

ai + bi
, (7)

where ai is the average number of partners of a node of type i with a same type i node
and bi is the average number of partners of a node of type i with another type node
j, j ̸= i. This measure is extended to the hypergraph setting by stating that ai = aii, and
bi =

∑
j ̸=i aij . The value aij is defined as

âij =
1

|Vi|
∑
v∈Vi

∑
u∈Vj

∑
e∈E

1(v, u ∈ e). (8)

However, Equation 8 assumes that the relationship between two project partners is the
same for projects with different dimensions. One may argue that the relationship between
project partners in a project with only three partners is higher than the relationship be-
tween project partners in a project with 10 project partners. Therefore, it is plausible to
assume that the relationship between two partners depends on the size of the hyperedge,
i.e., the dimension |e|. We propose to extend Equation 8 in the following way:

ǎij =
1

|Vi|
∑
v∈Vi

∑
u∈Vj

∑
e∈E

2

|e|(|e| − 1)
1(v, u ∈ e). (9)

As could be seen above, we use 2/(|e|(|e|−1)) instead of 1/|e|. This form ensures that con-
nections in a dyadic relationship weigh the same as connections in a multiadic relationship.
Suppose two persons work together, then person 1 has a relationship with person 2 and
person 2 has a relationship with person 1, so in total there are 2 relationships. When three
persons work together in a group then there is a relation between person 1 and person
2, between person 2 and person 3, and between person 1 and person 3, in total 3 dyadic
relationships, so 6 relationships in total. Nevertheless, they work together in a group, so
there is actually one multiadic relationship, so the sum of relationships should equal 2, the
same number of relationships as in a dyadic relationship. Since the total of relationships
should be equal to two, and there are three project members, each member has a total of
2/3 relationships (2/|e|) and these relationship should be divided between the remaining
two members, so the relationship with each member is 1/3 (2/(|e|(|e|-1))).

For computational reasons we are going to simplify Equation 9 with the help of the
frequencies each type appears in a hyperedge. For this purpose we introduce the function:

freqi(e) = |{v|v ∈ e, T (v) = i}|. (10)

The function freqi(e) is also referred to as freqi, when it is clear which edge is considered.
As stated, this newly defined function is used to simplify Equation 9. Instead of summing
over the different types of vertices, this newly defined function could be used as:

ǎij =

{
1

|Vi|
∑

e∈E
2

|e|(|e|−1)freqifreqj i ̸= j
1

|Vi|
∑

e∈E
2

|e|(|e|−1)(freqi − 1)freqj i = j
(11)

Equation 11 is much quicker in computing the values for ǎ than Equation 9, since Equation
9 has a triple sum that needs to be computed for all possible combinations of node types
and Equation 11 only uses one sum and a function that most programming codes have a
build-in function for. Finally, this ǎ is used to compute the homophily index Hi.
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Finally, Hi is compared to wi in order to establish homophily. In total, there are three
cases:

Hi > wi preference for own type
Hi = wi no preference
Hi < wi preference for other types

Computations for both the project role type distribution and the value chain type distri-
bution result in two ǎ-matrices. The matrices are given in Table 4 and Table 5. PR1, PR2
and PR3 in Table 4 stand for project role 1, project role 2 and project role 3, respectively,
which relate to the project roles in order of appearance in Table 2. The VC1, VC2, etc.
stand for value chain type 1, value chain type 2, etc., which relate to the value chain
position in order of appearance in Table 2.

PR1 PR2 PR3 Undef.
PR1 0.1645 0.2331 0.2382 0.0046
PR2 0.1847 0.4524 0.3525 0.0061
PR3 0.4192 0.7827 0.6932 0.0090
Undef. 0.0782 0.1298 0.0867 0

Table 4: Matrix ǎ with preferences between project roles (PR) types

VC1 VC2 VC3 VC4 VC5 VC6
VC1 0.5418 0.0272 0.0927 0.0413 0.1348 0.0076
VC2 0.3926 0.0935 0.1233 0.0189 0.0965 0.0058
VC3 1.0797 0.0996 0.2836 0.0227 0.3291 0.0170
VC4 1.4723 0.0467 0.0694 0.4322 0.3115 0.0118
VC5 1.7384 0.0862 0.3641 0.1127 0.3700 0.0210
VC6 0.2419 0.0129 0.0465 0.0105 0.0520 0.0244

Table 5: Matrix ǎ with preferences between value chain (VC) types

Based on the ǎ-matrices, the homophily indices can be computed. These are compared
with the relative fraction. The homophily indices and the relative fractions are shown
in Table 6. The results show that there is a preference of project role 1, the producer,
and the undefined group to collaborate with other project roles. For project role 2, the
user, the values are almost the same for the homophily index and the relative fraction,
there is a slight preference to work with other project roles. Project role 3, R&D, has a
high preference to collaborate with other project role types. This seems reasonable. The
data we are analysing consists of a University-Industry collaboration network (UICN) for
nanotechnology R&D projects. So projects are put in the data that have at least one uni-
versity or research institute and one company. Since the percentage of universities/research
institutes is relatively low (99 out of 783 partners, see VC position), in comparison to the
percentage of companies, there is not a high chance that universities or research institutes
appear in the same project when there are in total 406 projects. Therefore, there is not a
preference for universities or research institutes to work with each other.

3.3 Basic Models

The underlying dynamics of how networks are formed might be relevant for understanding
these networks. Furthermore, it might be relevant to know which input variables are cru-
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T = PR PR1 PR2 PR3 PR4
Hi 0.2568 0.4544 0.3640 0
wi 0.3461 0.4368 0.1967 0.0204
T = VC VC1 VC2 VC3 VC4 VC5 VC6
Hi 0.6409 0.1280 0.1548 0.1844 0.1374 0.0629
wi 0.7739 0.0536 0.0664 0.0217 0.0600 0.0243

Table 6: Homophily indices versus the relative fractions for project role (PR)
types and value chain (VC) types

cial in replicating collaboration networks. Measures that are crucial to define a network are
the vertex degree distribution and the dimension distribution. Therefore, we wish to have
models that constrain these measures. However, whether models with hard constrains or
models with soft constrains are more useful needs to be tested in the hypergraph setting.
Therefore, we are going to compare two models. The first model is based on hard con-
strains, where the exact vertex degree distribution and the exact dimension distribution are
replicated. The second model replicates the exact dimension distribution, but a expected
vertex degree distribution. The first model is the stub-labeled hypergraph configuration
model (SHCM) presented by Chodrow (2020). Chodrow (2020) also introduces a model
that avoids the presence of selfloops in the resulting hypergraph, the Markov Chain Monte
Carlo for hypergraph configuration model. We will refer to this model as the no-selfloop
hypergraph configuration model (NHCM). As explained in Section 2.4, a collaboration net-
work does not have selfloops. Therefore, the SHCM and the NHCM are both considered.
The second model is the Chung-Lu hypergraph model (CLHM) by Kamiński et al. (2019).
In Algorithm 1 and Algorithm 2, respectively, the SHCM and NHCM by Chodrow (2020)
are given. The CLHM is given in Algorithm 3.

In short, the SHCM given by (Chodrow, Eikmeier, & Haddock, 2023) in Algorithm 1 is
based on randomly assigning stubs to a hyperedge with predefined dimension. In order to
randomly assign the stubs, a degree sequence d ∈ Zn

+ and a dimension sequence k ∈ Zm
+

need to be defined beforehand.The degree of a vertex v, dv, defines the number of stubs
or half-edges per vertex v. The degree sequence is a vector with the previously defined
degree for all n vertices vi ∈ V , and the dimension is the previously defined dimension for
all m hyperedges ki ∈ E. The algorithm builds a hypergraph S. At initialization, S = ∅
and the set Σ is the multiset containing the stubs of all vertices. A specific vertex vi is
indicated by the subscript i and a specific stub vij is indicated by the subscript j of the
subscript i. For simplicity, both subscripts are not always used. When context is clear, vj
represents the stub of vertex v. During the algorithm for each hyperedge j, kj hyperedges
are uniformly picked from the multiset Σ. The randomly picked stubs form a hyperedge R.
The stubs in R are then removed from the multiset of stubs Σ and added as a hyperedge
to the hypergraph S. Eventually S contains m hyperedges with dimensions corresponding
to the dimension sequence k, and each vertex has a degree corresponding to the degree
sequence d.

Algorithm 1 is a simple CM for configuring a hypergraph given the dimension and the
degree sequence. Nevertheless, this algorithm often results in a hypergraph that contains
selfloops, i.e. a hyperedge that contains a specific vertex vi multiple times. This would
mean that within a collaboration, a partner contributes twice in the same group, which
does not make sense in the context of R&D networks. Therefore, the algorithm should
be performed several times before creating a hypergraph without selfloops. In order to
handle this problem, Chodrow (2020) present the Markov Chain Monte Carlo Algorithm
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Algorithm 1 Model Chodrow (2020) I: Hypergraph stub-matching (SHCM)
Input: Configurable d ∈ Zn

+ and k ∈ Zm
+

Output: S
Initialization: S = ∅,Σ =

⊎
v∈V {v1, ..., vdv}

1: for j = 1, ..., m do

2: R← Uniform
(
Σ
kj

)
,

3: Σ← Σ\R
4: S ← S ∪ {R}
5: end for

for hypergraph configuration models, see Algorithm 2.
In general, Algorithm 2 reshuffles the hyperedges, which form a selfloop based on an

acceptance rate. In order to get started, the Algorithm 2 needs several inputs. Again, the
dimension and degree sequence are considered as inputs. Furthermore, we need an initial
hypergraph H0, complying with the dimension and degree sequence, a sample size s and
sample interval h. At initialization t = 0 and the hypergraph H0 needs to be set at some
hypergraph H.

During the implementation of the algorithm, it loops over sh time steps. At every time
step the edge set Et is changed slightly. At every step two hyperedges, ∆ and Γ, are picked
randomly from the current edge set, Et. The randomly picked hyperedges are reshuffled by
a function b and saved in a new hypergraph H ′. After creating this new hypergraph H ′, we
check if this new hypergraph is accepted using the acceptance rate α in a probabilistic way
by comparing α with a uniformly picked number between 0 and 1 (see line 4 in Algorithm
2). The acceptance rate α is defined as:

α(H ′|H) =

{
2|∆∩Γ|

m∆mΓ
, H ∼∆,Γ H ′

0, else
(12)

in which m∆ and mΓ represent the number of parallel hyperedges to hyperedges ∆ and
Γ, respectively. A parallel hyperedge is defined as a hyperedge that has the exact and no
less or more vertices than another hyperedge. The notation |∆ ∩ Γ| refers to the number
of vertices in the intersection of the hyperedges ∆ and Γ. If the reshuffled hyperedges are
accepted, the hypergraph for time t+1 is set as the new graph H ′, otherwise Ht+1 remains
the previous hypergraph Ht.

A different model for generating hypergraphs based on a degree distribution and a di-
mension distribution is the Chung-Lu hypergraph model (CLHM) presented by Kamiński
et al. (2019). This model is not focused on exactly reproducing the dimension and degree
sequence, but it is based on reproducing the exact dimension sequence and the expected
degree sequence. The CLHM is closer to a generalized random graph model than a con-
figuration model. Therefore, the CLHM is based on a probability distribution. First, the
family of multisets, Fki , of size ki (uniform hypergraphs with edges with dimension ki) is
defined as:

Fki :=

{(vi,Mi) 1 ≤ i ≤ n} :
n∑

j=1

Mj = ki

 (13)

In this equation Mi refers to the multiplicity of a node vi in a hyperedge. Based on the
multiset in Equation 13, the original Chung-Lu model (Chung & Lu, 2002) is used by
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Algorithm 2 Model Chodrow (2020) II: Markov Chain Monte Carlo for hypergraph
configuration models (NHCM)
Input: Configurable d ∈ Zn

+, k ∈ Zm
+ , H0 ∈ Hd,k, h ∈ Z+, s ∈ Z+.

Output: {Ht such that t/h ∈ Z+}
Initialization: t = 0, H0 = H

1: for t = 1, 2, ..., sh do
2: sample ∆ and Γ) uniformly at random from Et

3: H ′ = b(∆,Γ|Ht)
4: if Uniform([0, 1]) ≤ α(H ′|Ht) then
5: Ht+1 ← H ′

6: else
7: Ht+1 ← Ht

8: end if
9: end for

Kamiński et al. (2019) to define a multinomial distribution. The probability of generating
a hyperedge e ∈ Fki is given by:

PH(e) =

(
ki

M1, ...,Mn

) n∏
j=1

(
dvj∑
v∈V dv

)Mj

(14)

After defining the probability of generating a hyperedge, we choose how many edges
with dimension k are added to the graph. After the number of edges of a certain dimension
is defined for each dimension, the edges are randomly picked based on the probability
as defined in Equation 14. So the number of edges should be preserved, but it is not
guaranteed that the degree of each vertex is preserved, only the expected degree distribution
is preserved. The CLHM is summarized in Algorithm 3.

Algorithm 3 Chung-Lu hypergraph model (CLHM)
Input: Configurable d ∈ Zn

+, k ∈ Zm
+ ,

Output: S
Initialization: p = d/

∑n
i=1 di, S = ∅

1: for i = 1 : |k| do
2: Define Fki

3: Randomly pick an edge e from Fki ∼ Multinomial(p)
4: S = S ∪ e
5: end for

3.4 Heterogeneous Hypergraph Models

The models as introduced in Section 3.3 should be changed in order to make them suit-
able for modelling collaboration networks with heterogeneous vertices. The heterogeneous
hypergraph models are based on the idea of stochastic block-models (SBMs), where a
block-matrix indicates the preferences of nodes to connect with nodes in the same commu-
nity (or block) or with nodes in other communities (Casiraghi, 2019; Battiston et al., 2020;
Chodrow et al., 2023). The block-matrix given by Ω, where Ωij denotes the probability that
vertex i connects with vertex j. Casiraghi (2019) specifically defines the block-constrained
configuration model, but this is not applied to hypergraphs. Chodrow et al. (2023) intro-
duces a sparse hypergraph SBM (HSBM). Within this HSBM a probability distribution

26



η over hypergraphs is introduced, where events are all possible edges. Considering that a
collaboration could exist of 22 partners and supposing that there are three communities
they could belong to, there are in total(

22 + 3− 1
22

)
= 276

different options. This would mean that 276 parameters need to be found to get the
probability to form a group of 22 partners. Furthermore, this needs to be done for the
other dimensions (1-21). In addition, when one more type is added, 2300 parameters need
to be found for groups with dimension 22. Therefore, this approach is not suitable in
our case. Battiston et al. (2020) give a short overview of SBMs for hypergraphs. Besides
the method Chodrow et al. (2023) suggest, Battiston et al. (2020) points to the adapted
Kronecker Graph Model by Eikmeier, Ramani, and Gleich (2018). Unfortunately, this
approach does not give the certainty to retain exact dimension and degree sequences, so
this would not be usable for the configuration model of Chodrow (2020).

Since the idea of SBM with block-matrix Ω, also known as the propensity matrix, is
easy to understand, this idea is used to deal with heterogeneity in hypergraphs. Since
the propensity matrix Ω consists of dyadic preferences, Ωij , it could not immediately be
applied to a hypergraph where hyperedges should have multiadic preferences. Therefore,
we develop an approach that builds up a hyperedge step by step. For this approach a linear
function of dyadic preferences is introduced. The linear function gives the probability that
a certain vertex type joins an existing collaboration or hyperedge R. The type of a vertex
is stored in vector T , which means that Tvi , indicates the type of vertex vi. The probability
that a vertex joins an existing hyperedge R is expressed as

P (R→ R ∪ vi) =

∑
v∈R ΩTv ,Tvi

|R|
. (15)

This linear function is easy to use in practice. Based on this function, the SHCM, NHCM
and the CLHM are changed into heterogeneous hypergraph models. The heterogeneous
hypergraph models are given in Algorithm 4, Algorithm 5, and Algorithm 6.

In Algorithm 4 the stub-labeled heterogeneous hypergraph configuration model (SHHCM)
is given. As input, it requires a degree sequence, a dimension sequence, a vector of node
types, and the propensity matrix Ω with the probabilities with which each of the vertex
types are connected. At initialization, the vertices are split into sets Vi, which contain the
vertices of type i. The stubs are also ordered by type i in the multiset Σi, which are com-
bined in the multiset Σ. The algorithm runs over the number of hyperedges, j = 1, ...,m.
At the beginning of forming a hyperedge, a random stub is picked from the remaining stubs
Σ. After this vertex is chosen, the other vertices (kj − 1) are added one by one based on
Equation 15. If a stub of a certain type is not available anymore, the probability to pick
this type within the hyperedge is zero. Therefore, Ω is adapted during the implementation
of the algorithm. In Algorithm 4 this is illustrated in lines 4-6, and lines 14-16. The full
length code is attached in Appendix D.1.

In Algorithm 5, the no-selfloop heterogeneous hypergraph configuration model (NHHCM)
is shown. We also choose to show the complete process of reshuffling ∆ and Γ as indicated
by b(∆,Γ) in Algorithm 2. The input for Algorithm 5 is expanded by including a vector T
with vertex types and the propensity matrix Ω with preferences to connect between vertex
types. In addition, we have an initial hypergraph H0, a sample interval h and a sample
size s. The initial hypergraph is obtained by implementing the SHHCM. By performing
Algorithm 5, we intended to obtain a hypergraph in which no selfloops are present after
reshuffling hyperedges.
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Algorithm 4 Stub-labeled heterogeneous hypergraph configuration model
(SHHCM)

Input: Configurable d ∈ Zn
+, k ∈ Zm

+ , T ∈ Zn
+, Ω ∈ Rmax(T )×max(T )

+

Output: S
Initialization: S = ∅,Σ =

⊎max(T )
i=1 Σi,Σi =

⊎
v∈Vi
{v1, ..., vdv}, V =

⋃max(T )
i=1 Vi

1: for j = 1, ..., m do

2: R← Uniform
(
Σ
1

)
,

3: Σ = Σ\R
4: if ΣTR

= ∅ then
5: Ω:,TR

= 0
6: normalize rows Ω
7: end if
8: for i = 1 : kj − 1 do

9: Compute P (R→ R ∪ {t}) =
∑|R|

j=1 ΩTRj
,t

|R| ∀t = 1, 2, ...,max(T )

10: Ps =
1

|ΣTs |
P (R→ R ∪ {Ts}) ∀s = 1, ..., |Σ|

11: K = random(Σ, Ps)
12: R = R ∪ {K}
13: Σ← Σ\{K}
14: if ΣTK

= ∅ then
15: Ω:,TK

= 0
16: normalize rows Ω
17: end if
18: end for
19: S ← S ∪ {R}
20: end for
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When implementing Algorithm 5, a loop over time is performed. In total s times h time
steps are performed. In general, at each time step the algorithm picks two hyperedges,
it applies reshuffling, and it checks whether the reshuffle is accepted. In order to show
the reshuffling process some parameters are introduced. Again, the parameters ∆ and Γ
represent the randomly selected hyperedges. The parameters ∆′ and Γ′ are the reshuffled
hyperedges, which are set empty at every time step. Furthermore, ∆new and Γnew are
auxiliary parameters, that keep track of the stubs that should still be distributed over the
reshuffled hyperedges, which at initialization are set as the randomly selected hyperedges
∆ and Γ. In lines 8-15, all stubs that exist in both randomly selected hyperedges are added
to both reshuffled edges. After assembling the remaining stubs, the reshuffled edge ∆′ is
completed by the required number of remaining stubs. Furthermore, the completion is
based on types. Equation 15 is used for this purpose (see line 19). The complete process
of completion is illustrated in lines 17-26. The stubs that still remain after the completion
process of hyperedge ∆′, are added to Γ′. The reshuffled hyperedges are added to S′ and
this hypergraph is checked for acceptance (see equation 12). This part of the algorithm is
the same as the original algorithm. The full length code is attached in Appendix D.2.

The CLHM by Kamiński et al. (2019), was summarized in Algorithm 3. The Chung-
Lu heterogeneous hypergraph model (CLHHM) is captured in Algorithm 6. The input
consists of a dimension and degree sequence, d and k, a vector with vertex types T and
a propensity matrix Ω with probabilities of connections between heterogeneous vertices.
The algorithm starts with m empty hyperedges, meaning no stubs are attached to the
hyperedges. Furthermore, the parameter p is defined as the vector with the parameters
pi for the multinomial distribution related to vertex vi. It is computed by dividing the
vertex degree by the sum of all vertex degrees. Based on the multinomial distribution with
parameter p, which is also shown in equation 14, one stub is added to every hyperedge as
described in lines 1-3 of the algorithm. The number of stubs that still need to be added to
a hyperedge is referred to as undefined stubs. In total

∑m
i=1 ki−m stubs are undefined. A

stub is randomly sampled based on the multinomial distribution with parameter p. Based
on the propensity matrix Ω, the probabilities, phet, that the stub is attached to a certain
hyperedge are computed. Again, the linear function that deals with Ω is used as given in
Equation 15. The subscript TSjl

in line 8 means that we intend to find the type T of the
l-th stub in the j-th hyperedge of hypergraph S. Eventually, the probability vector phet
is used to randomly assign the stub to a hyperedge. The full length code is attached in
Appendix D.3.

3.5 Parameter Tuning

For the previously mentioned algorithm certain input parameters are needed that need to
be estimated from the data we want to model. These parameters include a degree vector,
with the degrees for each node, a dimension vector, with the dimensions for each project, a
type vector with the type for each node, a preference matrix, in which it is stated what the
preference between nodes is, the sample size and the sample interval. The degree vector
and the dimension could immediately be contained from the data, which is also shown in
Figure 10 and Figure 7. During the network analysis in Section 3.2, two types are defined
the project role and the value chain position. This definition is adopted as the type vector.
The preference matrix Ω will be based on the ǎ-matrix, since this matrix states a preference
between types. The preference matrix is the ǎ-matrix, in which the rows are normalised.

The sample size and the sample interval parameters still need to be tuned. These
parameters are only used in Algorithm 5 and should be sufficiently large such that it is
ensured that there are no selfloops in the generated network. In total there are 2254 stubs
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Algorithm 5 No-selfloop heterogeneous hypergraph configuration model
(NHHCM)

Input: Configurable d ∈ Zn
+, k ∈ Zm

+ , T ∈ Zn
+, Ω ∈ Rmax(T )×max(T )

+

H0 ∈ Hd,k, h ∈ Z+, s ∈ Z+.
Output: {Ht such that t/h ∈ Z+}
Initialization: H0 = S

1: for t = 1, 2, ..., sh do
2: sample (∆,Γ) uniformly at random from Et

3: S′ = S\(∆,Γ)
4: ∆′ = ∅
5: Γ′ = ∅
6: ∆new = ∆
7: Γnew = Γ
8: for i = 1 : |∆| do
9: if ∆i ∈ Γnew then

10: ∆′ = ∆′ ∪∆i

11: ∆new,i = ∅
12: Γ′ = Γ′ ∪∆i

13: Γnew = Γnew\∆i

14: end if
15: end for
16: Rem− Stubs = ∆new ∪ Γnew

17: for i = 1 : |∆new| do
18: for j = 1 : max(T ) do

19: Ptj = P (∆′ → ∆′ ∪ {j}) =
∑|∆′|

l=1 ΩT
∆′
l
,j

|∆′|
20: end for
21: Normalize Pt
22: P = PtTRem−Stubs

23: K = random(Rem− Stubs, P )
24: ∆′ = ∆′ ∪ {K}
25: Rem− Stubs = Rem− Stubs\{K}
26: end for
27: Γ′ = Γ′ ∪ {Rem− Stubs}
28: S′ = S′ ∪ {∆′,Γ′}
29: if Uniform([0, 1]) ≤ α(S′|S) then
30: Ht ← S′

31: else
32: Ht ← Ht−1

33: end if
34: end for
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Algorithm 6 Chung-Lu heterogeneous hypergraph model (CLHHM)

Input: Configurable d ∈ Zn
+, k ∈ Zm

+ , T ∈ Zn
+, Ω ∈ Rmax(T )×max(T )

+

Output: S
Initialization: p = d/

∑n
i=1 di, S = ∅

1: for i = 1 : m do
2: Assign vertex to edge i ∼ Multinomial(p)
3: end for
4: Undef_Stubs = k− 1
5: for i = 1 :

∑m
i=1 ki −m do

6: Pick stub from the Undef_Stubs ∼ Multinomial(p).
7: for j = indices in Undef_Stubs > 0 do
8: phet,j =

∑
l∈Sj

ΩTSjl
,Tstub

/|Sj |
9: end for

10: Normalize phet
11: R = random(Undef_Stubs > 0, phet)
12: SR = SR ∪ stub
13: Undef_StubsR = Undef_StubsR − 1
14: end for

at most there are 1127 selfloops. For 100 runs of the NHHCM, it is tested how many time
steps (t = 1 : s ∗ h) are needed to avoid selfloops. In Figure 13 we plot a histogram of
how many time steps were needed to remove the selfloops from the random graph. This
number does not seem to be normally distributed, but it resembles a Poisson distribution.
However, this is purely speculative. From the Figure we could state that a time span of
5000 probably is enough, and therefore we chose s = 125 and h = 40.

3.6 Comparison of the Models

In the previous sections, the SHCM, the NHCM, and the CLHM models are explained
and changed into the heterogeneous hypergraph models SHHCM, NHHCM, and CLHHM,
respectively. In short, the SHHCM uses a given degree for each node and the dimension of
each collaboration to randomly create a network. However, selfloops are often created with
this model. The NHHCM tries to correct this by reshuffling the partners in collaborations.
The CLHHM is a model based on an expected degree for each node instead of an exact
degree distribution. Therefore, the CLHHM could be used to test the importance of
constraining the exact degree distribution.

In the next section, these models are run based on the parameters as estimated from
the data. In total the models are run 50 times in order to be able to obtain a good
ensemble average of the newly found models. After the models are run the models are
compared to each other using a variety of measures. These measures include the vertex
degree distribution, dimension distribution and hyperedge degree distribution, centrality,
modularity and homophily. The closeness centrality and the betweenness centrality will
not be used, since we cannot easily compute these centrality measures for nodes that are
not part of the giant component of a network. Furthermore, the computation time of these
centralities is large. Therefore, only the eigenvector centrality is computed. This should be
sufficient as from Table 3 it could be concluded that the highest peaks for the eigenvector
centrality were corresponding with the peaks of the closeness and betweenness centrality
measures.
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Figure 13: Number of time steps to avoid selfloops.

When comparing the hyperedge degree distributions the Kullbach-Leibler divergence
(KL-div) is used and when comparing eigenvalue centrality (EC) the mean squared error
(MSE) is used. The KL-div is comparing the hyperedge degree distribution of the orig-
inal network DN with the hyperedge degree distribution of the sampled networks of the
hyperedge models DHM . The KL-div is computed by summing over a sample space X .
The sample space relates to the bins as shown in Figure 11. The size of the bins of DN

and of DHM of each sample x ∈ X , is referred to as D
(x)
N and D

(x)
HM , respectively. The

Kullbach-Leibner divergence is computed as (Kullback & Leibler, 1951):

KL-div(DN |DHM ) =

#bins∑
x=1

D
(x)
HM · log

(
D

(x)
HM

D
(x)
N

)
. (16)

It is important to choose bins such that D
(x)
N and D

(x)
HM are nonzero. The mean squared

error computes the average difference between the EC of all vertices of the original network
(ECN ) and the EC of all vertices of the sampled networks (ECHM ). In total there are n
vertices. The MSE is computed as:

MSE =
1

n

n∑
i=1

(EC
(i)
N − EC

(i)
HM )2. (17)

The values EC
(i)
N and EC

(i)
HM refer to the EC of node vi of the original network and the

sampled networks, respectively.
In addition, the models will also be implemented with parameters that assume that the

collaboration data could be represented by a normal graph. In this case each collaboration
or hyperedge is replaced by a clique where each participant of a collaboration is connected
to all other participants by a pairwise connection. Selfloops are excluded.

4 Results

4.1 Comparison of heterogeneous hypergraph models

In the previous section, we explained the heterogeneous hypergraph models, SHHCM,
NHHCM and CLHHM. In this section each of these models is implemented 50 times with
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the parameters found in Section 3.5, resulting in 50 sampled networks per model. After
sampling from these models, the vertex degree distribution, dimension, hyperedge degree
distribution, eigenvector centrality, modularity and the homophily indices are computed to
establish 95% confidence intervals (CIs) for models. These measures are used to compare
the models with each other and with the original data. We implemented the models for
two different node types: project role and value chain position. The measures for both
node types are compared with the measures for the original graph. The full length code
for implementing these models given in Appendix E.1.

Project role. First, the implemented models with project role node types are compared.
We expect that the NHHCM model is better than SHHCM, since NHHCM removes self-
loops from the model. Furthermore, we expect that NHHCM is better than the CLHHM
model for hypergraphs, since for NHHCM the degree sequence is more constrained. The
degree sequences for SHHCM and NHHCM are equal to the degree sequence of the original
network, as expected, since this was constrained.

The sampled network of the CLHHM model is not exactly reproducing the exact degree
sequence, but it reproduces the expected degree sequence. Therefore, the degree sequence
for every sampled network of the CLHHM model differs. A 95%-CI is computed for all
783 nodes. We expect that in about 95% of the cases the real degree of a vertex is within
the interval. We see that in 736 out of the 783 cases the degree lies in the 95% confidence
interval (CIs), so in approximately 94% of the cases. The CLHHM model thus preserves the
expected degree sequence. The dimension sequences of the sampled networks is equal to
the dimension sequence of the original network, as expected since this was a hard constraint
of the CLHHM model.

Hyperedge degree. The hyperedge (HE) degree distribution is characterized by five
measures: maximum HE degree (max), minimum HE degree (min), mean HE degree,
standard deviation HE degree (std) and the Kullbach-Leibler divergence (KL-div). The
Kullback-Leibner divergence is a measure that indicates how much a first distribution
differs from a second distribution (Kullback & Leibler, 1951). The heights of the HE
degree bins as shown in Figure 11 are compared to the heights of the HE degree bins of
the sampled hypergraphs of the SHHCM, NHHCM, and CLHHM (see equation 16). The
bins have a width of 25 and the last bin also contains the hyperedge degrees that are larger
than 250.

The 95%-CIs of the HE degree distribution measures are shown in Table 7. Considering
the max, min and mean of the hyperedge degree distribution, it seems that the CLHHM
Model is the best model for reproducing the hyperedge degree distribution. It is remarkable
that. SHHCM has better values for the hyperedge degree than the NHHCM, which might
indicate that reshuffling does not lead to a better representation of the network, according
to this measure. However, when looking at the standard deviation this is contradicted,
since the the original value almost lies in the 95%-CI of the sampled network of NHHCM
for the standard deviation, while the standard deviation of the sampled networks of the
SHHCM and CLHHM are significantly lower than the original standard deviation. The
same is concluded when comparing the KL-div. of the three models. The KL-div. for the
NHHCM is considerably lower than the KL-div. of the SHHCM and CLHHM.

Centrality. By comparing the eigenvalue centralities between the original network and
the sampled networks, we consider five measures that characterizes the eigenvector central-
ity. First, the (mean) largest eigenvalue centrality and the corresponding node are shown.
Second, the mean eigenvalue centrality gap, the difference between the mean largest and
the second mean largest eigenvalue centrality, is shown. Then, for the original collaboration
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Model Original SHHCM NHHCM CLHHM
Max 242 (248.05, 257.75) (273.89, 283.19) (254.81, 265.19)
Min 1 (0.040, 0.240) (-0.016, 0.096) (0.762, 1.199)*
Mean 93.931 (86.987, 88.096) (101.08, 101.51) (90.592, 92.959)
Std 61.852 (54.908, 55.779) (61.867, 62.423) (54.420, 55.771)
KL-div 0 12.802 7.577 13.050

Table 7: The 95%-CI intervals for the characteristics of the HE degree distribution
of the SHHCM, NHHCM and the CLHHM.
N = 50, α = 0.05; two-tailed. *Original value is in CI.

network, we check the number of eigenvector centralities that lie within the 95%-CIs of the
sampled networks of SHHCM, NHHCM and CLHHM and we express this by a percentage.
Finally, we compute the mean squared error (MSE) of the means of vertex eigenvector
centralities. The results are shown in Table 8.

The largest eigenvector centrality is almost the same for all models, the CLHHM is
closest to the original graph. The node corresponding to the largest eigenvector is always
the same. The eigenvalue gap differs much between the original network and the sampled
networks. The CLHHM EC gap is closest to the original EC gap, even though the difference
is significant. It appears that for the SHHCM, NHHCM and the CLHHM, in total 147,
140 and 206 of the 783 eigenvalue centralities lie within the 95%-CI intervals, respectively.
When comparing the MSEs, the MSE of the sampled network of the SHHCM is closest
to the original graph. Overall, we conclude that the CLHHM model is the best model to
mimic the eigenvector centrality.

Model Original SHHCM NHHCM CLHHM
Largest EC 0.5166 0.5338 0.5474 0.5237
Node largest EC 528 528 528 528
EC Gap 0.0115 0.0591 0.0630 0.0561
Percentage in CI 100% 18.8% 17.9% 26.3%
MSE 0 6.6457 ∗ 10−5 6.7739 ∗ 10−5 6.7545 ∗ 10−5

Table 8: Comparison of characteristics of the eigenvalue centrality of the SHHCM,
NHHCM and the CLHHM.

Modularity. The original network has a modularity of 0.10125 and the 95%-CIs for
the sampled networks of the SHHCM, NHHCM and the CLHHM are, respectively, (-
0.00966, 0.00224), (0.0442, 0.0548) and (-0.0236, -0.0122), these are plotted in Figure 14.
It is remarkable that the modularity for SHHCM lies around 0, which means that there
are no clusters. Furthermore, the modularity of the sampled network of the CLHHM
model is negative, which indicate the opposite behaviour of the original network regarding
modularity. So, the modularity of the NHHCM imitates the modularity of the original
network best, the other two models fail to capture the slight modularity in the original
graph.

Homophily The homophily indices of the network are also computed for the sampled
networks. The 95%-CI are shown in Table 9. From this table it could be seen that
for H1, NHHCM is the best estimator followed by SHHCM and CLHHM, respectively.
For H2, SHHCM is best followed by CLHHM and NHHCM, respectively. For H3, both
NHHCM and CLHHM have an interval that contains index H3. This is not the case
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Figure 14: Modularity CIs of the SHHCM, NHHCM and the CLHHM.

for SHHCM. Finally, CLHHM is the best estimator for H4, followed by SHHCM and
NHHCM, respectively. The relative fraction of node type 1, 2, 3 and 4 are, 0.3461, 0.4368,
0.1967 and 0.02043, respectively. It should be noted that the conclusions about homophily
change relative to the conclusions of the original graph when comparing H2 of the sampled
networks with the relative fraction. This is also the case for H4, except for the CLHHM
model. Based on the homophily indices, we cannot state which model is best. However,
there is perhaps a slight preference for the CLHHM model. Even though most of the
homophily indices do not fall in the CIs, the values are remarkably close.

Model Original SHHCM NHHCM CLHHM
H1 0.2568 (0.2353, 0.2445) (0.2433, 0.2545) (0.2292, 0.2398)
H2 0.4544 (0.4235,0.4319) (0.4078, 0.4158) (0.4200, 0.4285)
H3 0.3640 (0.3645,0.3737) (0.3581, 0.3657)* (0.3612, 0.3704)*
H4 0 (0.03285,0.08576) (0.1622, 0.2341) (0.001339, 0.006832)

Table 9: The 95%-CI intervals for the homophily indices of the SHHCM, NHHCM
and the CLHHM.
N = 50, α = 0.05; two-tailed. *Original value is in CI.

Value Chain Position. The three models are also implemented and evaluated with
value chain position node types. There are 6 different value chain positions, and there
were 4 project roles, so the number of different types is larger when considering value
chain position node types. The degree sequence of the original network and the degree
sequences of the networks produced by the SHHCM model and the NHHCM model are
again the same, due to being a constraint. The degree sequences of the networks produced
by the sampled networks of the CLHHM model are again variable, just as in the case with
project role nodes. Therefore, for the sampled networks for each node a 95%-CI of the
degree have been computed. We compute the number of times the original degree is in the
95%-CIs of the sampled networks of CLHHM. We see that in 45 of the 783 95%-CIs, the
original degree is not contained in the CI, which is in 45/783 = 5.7% of the cases. This
percentage is slightly less than the percentage for the cases with project role node types,
but still around the expected 5% (due to the 95%-CIs). The dimension sequences of the
sampled networks are the same as the dimension sequence of the original network, which
was also constrained, so expected.
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Hyperedge degree. The characteristics of the HE degree distribution for the networks
with value chain node types is shown in Table 10. Again the CLHHM model seems best
at approximating the hyperedge degree, even though the SHHCM model comes close to
the CLHHM model. When considering the standard deviation and the Kullback-Leibler
divergence, the NHHCM model seems to be the best model. This result is the same as the
result for the models with project role node types.

Model Original SHHCM NHHCM CLHHM
Max 242 (250.28, 259.60) (264.54, 272.38) (254.75, 264.77)
Min 1 (0.0139, 0.1861) (0.0930, 0.3870) (0.866 1.294)*
Mean 93.931 (87.352, 88.552) (100.94, 101.41) (90.884, 93.157)
Std 61.852 (54.604, 55.452) (60.761, 61.441) (54.919, 56.254)
KL-div 0 14.236 7.704 12.824

Table 10: The 95%-CI intervals for the characteristics of the HE degree distribu-
tion of the SHHCM, NHHCM and the CLHHM with VC node types.
N = 50, α = 0.05; two-tailed. *Original value is in CI.

Centrality. The original eigenvector centrality is compared with the eigenvector cen-
trality of the sampled networks of the SHHCM, NHHCM, and CLHHM, based on the five
characteristics of the eigenvalue centrality as introduced for networks with the project role
node types. The characteristics of the eigenvalue centrality are shown in Table 11. The
largest EC are approximately the same as in the original graph. The node with the largest
EC is the same for all the models and matches that of the original graph. The EC gap of
the NHHCM and the CLHHM are significantly decreased in comparison to the SHHCM.
The CIs of the eigenvector centralities of all nodes are most correct for the CLHHM. The
MSE of the NHHCM is now the lowest, which is remarkable, since the MSE of the NHHCM
is the highest for the network with project role node types. Based on the results one might
conclude that the NHHCM model is the best model for modelling the eigenvector centrality
of a network with a dominant node type.

Model Original SHHCM NHHCM CLHHM
Largest EC 0.5166 0.5350 0.5207 0.5031
Node largest EC 528 528 528 528
EC Gap 0.0115 0.0620 0.0245 0.0330
Percentage in CI 100% 17.8% 18.5% 24.8%
MSE 0 6.7546 ∗ 10−5 5.9754 ∗ 10−5 6.7204 ∗ 10−5

Table 11: Comparison of characteristics of the eigenvalue centrality of the
SHHCM, NHHCM and the CLHHM with value chain position node types.

Modularity. The modularity of the original network with VC node types is 0.0905.
The 95%-CIs of the modularity for the sampled networks of the SHHCM, NHHCM and
CLHHM model are (0.0007, 0.0105), (0.2450, 0.2554), and (-0.0200, -0.0116). The CIs are
shown in Figure 15. We see that the CI of SHHCM is around zero. The modularity for
NHHCM is much higher, and the modularity for CLHHM is negative. This is deviating
from the modularity measures found in the network with project role types. For the
network with project role types, the modularity measures found for the NHHCM model
were around 0.05. The modularity measures for value chain position node types, for the
NHHCM model is around 0.25. A possible explanation could be that the NHHCM model
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is inadequate when one node type is dominant.

Figure 15: Modularity CIs of the SHHCM, NHHCM and the CLHHM with value
chain position node types

Homophily. The homophily indices are illustrated in Table 12. We see that the 95%-CIs
of the NHHCM model contain the original homophily H3 and H6. The original homophily
H6 is also in the 95%-CI of the SHHCM model. The other CIs of SHHCM, NHHCM and
CLHHM, and the CIs do not contain the original homophily indices. So in this respect,
it seems that NHHCM is the best model. However, when comparing homophily indices
H1, H2, H3, and H5 with the CIs then we see that the CIs of the NHHCM model are
deviating form the original homophily index. Therefore, the results are ambiguous. This
result can also be observed, but to a lesser degree, in Table 9.

Model Original SHHCM NHHCM CLHHM
H1 0.6409 (0.6286, 0.6348) (0.7220, 0.7270) (0.6198, 0.6267)
H2 0.1280 (0.0983, 0.1273) (0.0910, 0.1101) (0.0770, 0.0930)
H3 0.1548 (0.1339, 0.1456) (0.1478, 0.1591)* (0.1290, 0.1443)
H4 0.1844 (0.1116, 0.1329) (0.0808, 0.0942) (0.1002, 0.1226)
H5 0.1374 (0.1574, 0.1671) (0.1900, 0.2010) (0.1489, 0.1583)
H6 0.0629 (0.0396, 0.0795)* (0.0383, 0.0632)* (0.0307, 0.0577)

Table 12: The 95%-CI intervals for the homophily indices of the SHHCM,
NHHCM and the CLHHM Model for VC node types.
N = 50, α = 0.05; two-tailed. *Original value is in CI.

Summary. When comparing the sampled networks of the three models with the origi-
nal network, we cannot conclude which hypergraph model is modelling the collaboration
network the best. In fact, all three heterogeneous hypergraph models are good models to
configure a heterogeneous hypergraph. When considering the three main valuable mea-
sures, hyperedge degree distribution, modularity and homophily measures, the NHHCM
models the collaboration network for the project role node types best, since it has the
best standard deviation for hyperedge degree, it has the best modularity and half of the
homophily are best modelled by the NHHCM model. However, when looking at the col-
laboration network with value chain position node types, the SHHCM model seems the
best model. The SHHCM model models the max and the mean of the hyperedge degree
most closely. Furthermore, the original modularity is falling within the CI and 4 out of
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Figure 16: Transformation of hyperedge to a clique of nodes.

6 homophily indices are closest to the original homophily indices, of which 1 original ho-
mophily index (H6) lies in the CI. This last result was not expected, but it seems that the
combination of a dominant node type and reshuffling hyperedges lead to a deterioration of
the original hypergraph characteristics. Perhaps, this leads to problems since reshuffling is
based on picking randomly selected hyperedges to reshuffle. A solution could be to reshuf-
fle the hyperedges that are close (in distance) to each other. Since all models appear to
be good models to model heterogeneous hypergraphs, researches might want to choose the
models based on the preference for certain constraints. When it is preferred to configure a
network with an exact degree sequence, the SHHCM and the NHHCM are the best models.
When an expected degree sequence is preferred the Chung-Lu model can be used.

4.2 Comparison of hypergraphs with normal graphs

In addition to the comparison between hypergraph models, as done in the previous sec-
tion, we are also going to test the added value of hypergraphs in comparison to normal
graphs. For clarity, a normal graph is defined as a graph with only dyadic relationships, no
selfloops and no parallel edges. Each hypergraph created by a heterogeneous hypergraph
model is transformed into a normal graph. To create a normal graph, each hyperedge is
transformed into a clique of nodes that were connected by the hyperedge (see Figure 16).
When all hyperedges are transformed, the selfloops and parallel edges are removed from
the graph. The details of this process are given in Appendix E.2. The transformed original
hypergraph consists of 4824 edges and 783 nodes. The network is illustrated in Figure 17.
Figure 17 also includes a zoomed-in picture in which some cliques are visible.

Measures. The measures for the transformed original hypergraph are computed and both
project role and value chain position types are considered. The degree sequence continues
following a power law, except for low degree values (degree 1-5). Since every hyperedge is
replaced by a clique, every vertex is automatically connected to all the other vertices in
the clique, which lead to an increase of the degree, when the dimension of the hyperedge is
greater than 2. Since many hyperedges have a dimension larger than 2, the vertex degree
often increases, and therefore low degrees do not appear often. Besides the degree sequence,
the dimension sequence also changes. Since the transformed graph only has dyadic rela-
tionships, the dimension of each hyperedge is 2. When considering the hyperedge degree
distribution, we see that the HE degree distribution of the normal graph ranges between 2
and 517, where in the original network the hyperedge degree distribution ranges between
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Figure 17: Normal and Zoomed-in Transformed Collaboration Network

1 and 242. Just as in the hypergraph, the hyperedge degree distribution does not follow
a smooth distribution. The eigenvalue centrality for the normal graph is particularly high
for one vertex, 0.9932, and below 0.1 for the rest of the eigenvalue centralities. For the
hypergraph this was more insightful, since the 9 largest eigenvalue centralities were above
0.1. The modularity of the the original hypergraph was 0.1013 for project role types and
0.0905 for value chain position types, and for the transformed hypergraph the modularities
are 0.0263 and 0.0268, respectively. So the modularity is strongly reduced by transforming
the hypergraph into a normal graph. Furthermore, using normal graphs lead to the con-
clusion that there is no modularity. The homophily indices do not change much for project
role types. For project role types, H1, H2 and H3 are changing with percentages of 4.7%, -
2.0% and -8.8%, respectively. Homophily index 4 does not change and remains 0. For value
chain position types, the indices 1 to 6 are changing with percentages of -0.05%, 32.2%,
-19.7%, -19.5%, -3.8%, -13.2%, which are quite large percentages. However, in this particu-
lar case the conclusions about homophily do not change. So when comparing the measures
of the original graph with the measures of the transformed graph, it appears that some
measures are changing significantly. Furthermore, the hypergraph measures make much
more sense when simulating a collaboration network. In a hypergraph the projects are
seen as a separate entity, instead of a set of dyadic relationships between project mem-
bers. Furthermore, project sizes, dimension, is more easily dealt with and one may see the
degree as the number of projects a company is part of. Therefore, it could be concluded
that hypergraphs are better representations for collaboration networks than normal graphs.

Models. We have now concluded that a measure over a hypergraph differs from a measure
over a normal graph. However, we did not conclude whether using hypergraph models for
hypergraphs are better than using normal graph models. If a normal model is really good,
then perhaps there is a need for finding methods to transform a normal graph back to
a hypergraph, instead of finding a good hypergraph model. To test this, three cases are
compared for the three models (SHHCM, NHHCM and CLHHM). Furthermore, we are
going to compare between the two node types (project role and value chain position). The
cases we are going to compare are:
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C1: The transformed original graph.

C2: A transformed graph that results from the heterogeneous hypergraph model with as
input the original graph.

C3: A transformed graph that results from the heterogeneous hypergraph model with as
input the transformed original graph.

The heterogeneous hypergraph models refer to the SHHCM, NHHCM and CLHHM model.
A hypergraph is a result of these hypergraph models and this is transformed into a normal
graph. Case 2 and case 3 are both implemented 50 times. The full length code of this
process is given in Appendix E.3.The measures that are used to compare these cases are
degree, hyperedge degree, eigenvector centrality, modularity and homophily.

Dimension per vertex. Before comparing the results for the three cases, we would like
to introduce an aspect of the normal graph that is available in the degree sequence when
transforming a hypergraph into a normal graph, but that is not directly available in the
degree sequence and the dimension sequence of a hypergraph. The process of transforming
the degree and dimension sequence of a hypergraph into the degree and dimension process
of a normal graph is shown in Figure 18. When transforming a hypergraph into a normal

Figure 18: Transformation of model input from a hypergraph to a normal graph

graph, every hyperedge becomes a clique. Trivially, the degree distribution of a vertex
(d) will affect the degree distribution of a vertex in a transformed hypergraph (dnorm).
However, the dimension sequence also affects dnorm. When a hyperedge is transformed into
a clique, the vertex degree of the normal graph becomes the dimension of the hyperedge
minus 1 (dnorm = k− 1), since in the clique the vertex connects to all other vertices in the
hyperedge and it does not connect to itself. Therefore, the degree sequence of a transformed
hypergraph (dnorm) is affected by both the degree sequence (d) and the dimension sequence
(k) of the hypergraph. When ej defines the j-th hyperedge (j = 1, ...,m), then, for all
vertices i = 1, 2, ...n, the degree of a vertex vi in the transformed graph is computed as

dnorm,i =

m∑
j=1

1(vi ∈ ej) · (ki − 1) (18)

Summarized, this means that the degree sequence of the normal graph contains a part of the
information about which dimension belongs to which vertices. The nodes with high degrees
in the transformed graphs, where part of the hyperedges with high dimensions, since there
is a direct relation between dnorm,i and ki, as shown by Equation 18. The dimension per
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vertex was not available as input for the hypergraph model. In the hypergraph model, the
degree sequence and the dimension were dealt with as separate input variables. Perhaps
the presence of this extra information is also affecting the outcomes of case 2 and case 3.
Case 3 will have the extra information of the dimension per vertex and will therefore have
an advantage in comparison to case 2. The dimension sequence in the transformed graph
(knorm) loses information in the transformation process, since the dimension of every edge
is 2. However the information lost by knorm is lower than the information gained by dnorm.

Vertex degree. The overview of the mean, standard deviation and mean squared error
(MSE) of the vertex degree distribution is illustrated in Table 13. We see that the CIs
overlap with each other comparing project role types and value chain position types. The
mean of the degree of case 2 is higher than the original degree mean, and the mean of the
degree of case 3 is lower than the original degree mean. The same trend could also be seen
within the standard deviation. For the mean and standard deviation we see that case 2 is
closer to the original mean and standard deviation than case 3. This could be explained
by the number of edges in the sampled networks in relation to the the number of edges in
the original transformed network. Case 1 has 4824 edges and the 95% confidence intervals
of the number of edges for case 2 and case 3 are (5008.1, 5386.9) and (4311.3, 4454.4),
respectively. When there are more edges and the same amount of vertices, the mean
degree automatically increases. Within transforming a hypergraph to a normal graphs,
parallel edges and selfloops are removed. Since in case 2 only one transformation takes
place (at the end), less parallel edges and selfloops are removed than for case 3. In case
3, two transformations take place, the hypergraph input is transformed and the resulting
model is transformed. Therefore there are more edges in the sampled networks of C2 than
in the sampled networks of C3.

Type Case Mean Std MSE
n.a. C1 Original 12.322 21.105 0.000
PR C2 SHHCM (13.122, 13.198) (23.603, 23.792) (58.356, 60.896)

C2 NHHCM (13.721, 13.760) (25.504, 25.655) (74.005, 76.577)
C2 CLHHM (12.792, 12.909) (23.616, 23.804) (99.456, 103.020)
C3 SHHCM (11.356, 11.378) (16.195, 16.301) (28.959, 30.329)
C3 NHHCM (11.012, 11.035) (14.623, 14.733) (50.921, 52.820)
C3 CLHHM (11.315, 11.338) (16.343, 16.451) (39.890, 41.813)

VC C2 SHHCM (13.159, 13.232) (23.755, 23.945) (59.850, 62.075)
C2 NHHCM (13.735, 13.776) (24.997, 25.141) (83.031, 86.393)
C2 CLHHM (12.733, 12.841) (23.594, 23.760) (98.327, 102.020)
C3 SHHCM (11.343, 11.367) (16.211, 16.319) (28.698, 30.145)
C3 NHHCM (10.950, 10.974) (14.346, 14.463) (55.706, 57.802)
C3 CLHHM (11.289, 11.317) (16.333, 16.469) (39.486, 41.378)

Table 13: CIs for mean, standard deviation and MSE of degree sequences: C1,
C2 and C3.
N = 50, α = 0.05; two-tailed. *C1 lies in CI

When comparing the MSEs, the MSEs of case 3 are lower than the MSEs of case 2.
Therefore, it seems that case 3 is better than case 2 in reproducing the degree sequences.
This could be a result of the extra information (dimension per vertex) that case 3 possesses.
Since case 3 has an indication of the dimension per vertex the cliques are much more
accurate and this has a positive affect on reproducing the degree sequences.
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Comparing between the different models the mean and the standard deviation of the
models are best estimated by the CLHHM model followed by the SHHCM and NHHCM
model. The MSEs of the SHHCM model are the lowest. It is remarkable that for case 3
the CLHHM model is better than the CLHHM model for case 2, it is even better than the
NHHCM model in case case 3. So the CLHHM model is better when having normal graph
input when preserving degree is preferred.

Hyperedge Degree. The hyperedge degree distribution is again analysed by 5 measures,
maximum HE degree (max), minimum HE degree (min), mean HE degree, standard devi-
ation (std), and the Kullback-Leibner Divergence (KL-div.). Since the Kullback-Leibner
Divergence requires nonempty bins, we use bins of size 50 (for the hypergraphs in Section
4.1 a bin width of 25 is used). The 95%-CIs of these measures are shown in Table 14.

Type Case Max Min Mean
C1 517.0 2.0 94.849

PR C2 SHHCM (524.692, 536.188) (0.358, 0.882) (108.931, 110.212)
C2 NHHCM (586.766, 596.074) (0.140, 0.581) (120.062, 121.153)
C2 CLHHM (492.296, 504.584) (1.557, 2.123)* (110.379, 111.857)
C3 SHHCM (357.756, 362.804) (2.714, 3.126) ( 66.841, 67.415)
C3 NHHCM (309.608, 315.352) (2.648, 3.152) ( 58.809, 59.368)
C3 CLHHM (351.322, 359.958) (1.831, 2.329)* ( 67.758, 68.392)

Std KL-div
C1 89.275 0
C2 SHHCM ( 90.547, 92.138) 655.26
C2 NHHCM (100.816, 102.059) 1335.09
C2 CLHHM ( 83.758, 85.431) 653.88
C3 SHHCM ( 59.548, 60.308) 534.17
C3 NHHCM ( 50.942, 51.678) 426.96
C3 CLHHM ( 58.350, 59.482) 456.99

Max Min Mean
VC C2 SHHCM (529.125, 540.675) (0.268, 0.772) (109.872, 111.148)

C2 NHHCM (576.107, 585.693) (0.408, 0.952) (116.242, 117.315)
C2 CLHHM (483.734, 500.106) (1.721, 2.359)* (110.553, 111.796)
C3 SHHCM (357.628, 363.612) (2.785, 3.175) ( 66.962, 67.540)
C3 NHHCM (296.571, 302.229) (2.610, 2.990) ( 57.441, 58.033)
C3 CLHHM (353.979, 360.221) (1.478, 2.002)* ( 67.752, 68.551)

Std KL-div
C2 SHHCM (91.369, 93.068) 671.53
C2 NHHCM (99.245, 100.556) 1192.98
C2 CLHHM (83.379, 85.384) 630.11
C3 SHHCM (59.759, 60.520) 517.09
C3 NHHCM (49.514, 50.261) 422.17
C3 CLHHM (58.935, 59.979) 456.19

Table 14: CIs for hyperedge degree measures: C1, C2 and C3.
N = 50, α = 0.05; two-tailed. *C1 lies in CI

The differences between project role types and value chain types are minimal. The
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maximum of the HE degree are for case 2 much closer to case 1 than case 3. Perhaps this
is partly explained by the the number of hyperedges (m), but still the differences are quite
large. The minimum HE degree for SHHCM and NHHCM indicate that not all vertices
are part of the giant component. This seems not to be the case for the CLHHM model,
where the minimum HE degree falls within the CI. The minimum HE degree for case 3 are
higher for SHHCM and NHHCM than the minimum HE degree for case 1. The minimum
HE degrees fall within the CIs for the CLHHM model. A reason for this might be that the
density of the network is more equally distributed due to a more general input, a normal
graph. The mean of the HE degree is higher for case 2 than for case 1, since the maximum
HE degree is also a little higher. In the same line of reasoning, the mean of the HE degree
for case 3 are lower. The standard deviation for case 2 is quite close to the standard
deviation for case 1, but it does not fall within the CI. The standard deviation of the HE
degree for case 3 are quite deviating from the standard deviation of the HE degree for case
1. Perhaps this is partly a consequence of a smaller range between the maximum and the
minimum of the HE degree. On the other hand, this might also indicate that hypergraph
models are preferred to normal graph models. The KL-div. indicates the opposite of the
max, min, mean and std. The KL-div. for case 3 are better than the KL-div. for case
2. Since the KL-div. considers the complete hyperedge distribution, it seems that the
hyperedge degree distribution is better imitated by case 3 than case 2.

Centrality. We are comparing five characteristics of the eigenvalue centrality for the
the three cases and two node types. These characteristics are the largest EC, the node
with the largest EC, the EC gap (difference between highest and second highest EC),
the percentage of vertices for which the original eigenvalue centrality is within the CIs of
the sampled networks (PCI), and the mean squared error of the means of the eigenvalue
centrality. The results are shown in Table 15. We see that the vertex with the highest
eigenvalue centralities for case 1 is also the vertex with the highest eigenvalue centrality
for case 3, but this vertex has the third highest eigenvalue centrality for case 2 (not in the
Table). The highest eigenvalue centrality has a value of around 1 for case 1 and the rest of
the eigenvalues are below 0.1. The EC gaps are also close to the highest eigenvalues. The
highest eigenvalue centrality for case 2 for the three models are 0.6402, 0.8494, and 0.6058.
So NHHCM has a centrality around 0.85 and SHHCM and CLHHM have a eigenvalue
centrality around 0.6. The rest of the eigenvalue centralities are below 0.1, which could
also be seen by the EC gap. The eigenvalue centrality for case 3 are 0.7803, 0.8165 and
0.8154. So all the the three models have eigenvalue centralities around 0.8. The second
highest eigenvalue centrality also has a value above 0.1, but the rest of the eigenvalue
centralities are below 0.1. Comparing the PCIs, the results are ambiguous. The PCIs for
the CLHHM are higher for case 2 for both node types. The PCIs for the SHHCM and
NHHCM are higher in case 3, except for the SHHCM with project role node types. Based
on the MSE it is clear that case 3 models the eigenvalue centralities best.

Modularity. The CIs of the modularity of the models for the different node types are
shown in Table 16. We see that the modularities are all very low, for both case 2 and case
3. So, the modularity is modelled well by all cases. For case 2 some sampled networks
also have negative modularity bounds. In general, the modularity values for case 3 are
significantly higher than the modularity values of case 2, except for the NHHCM with
value chain position node types. The modularity values for case 3 are closer to the original
modularity values. However, no CIs contain the original modularities, so the modularity
values of the sampled networks significantly differ from the modularity values of the original
normal graph.

Homophily. Finally, the homophily indices are compared for the three cases, three
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T C Measure Original SHHCM NHHCM CLHHM
PR C2 Largest EC 0.9932 0.6402 0.8494 0.6058

Node largest EC 684 528 528 528
EC Gap 0.9136 0.6264 0.7452 0.3920
Percentage in CI 100% 23.0% 7.4% 17.4%
MSE 0 1.7319∗10−3 1.8766∗10−3 1.2074∗10−3

PR C3 Largest EC 0.9932 0.7803 0.8165 0.8154
Node largest EC 684 684 684 684
EC Gap 0.9136 0.6785 0.5877 0.6578
Percentage in CI 100% 17.9% 11.6% 13.3%
MSE 0 6.2048∗10−5 7.6108∗10−5 5.2513∗10−5

VC C2 Largest EC 0.9932 0.6309 0.9968 0.4652
Node largest EC 684 528 528 528
EC Gap 0.9136 0.5475 0.9643 0.2439
Percentage in CI 100% 19.5% 2.7% 23.5%
MSE 0 1.5282∗10−3 2.3835∗10−3 1.0094∗10−3

VC C3 Largest EC 0.9932 0.6219 0.5147 0.7036
Node largest EC 684 684 684 684
EC Gap 0.9136 0.4972 0.3714 0.4066
Percentage in CI 100% 24.3% 26.7% 10.3%
MSE 0 1.8192∗10−4 3.0985∗10−4 1.7611∗10−4

Table 15: Comparison of characteristics of the eigenvalue centrality of the
SHHCM, NHHCM and the CLHHM, C1, C2 and C3

Case Modularity (Q), T = PR Modularity (Q), T = VC
C1 0.02634 0.02683
C2 SHHCM (0.00530, 0.00910) (-0.00615, -0.00381)
C2 NHHCM (0.00450, 0.00780) (0.05983, 0.06291)
C2 CLHHM (-0.00050, 0.00320) (-0.00027, 0.00169)
C3 SHHCM (0.01650, 0.01930) (0.01517, 0.01820)
C3 NHHCM (0.00950, 0.01290) (0.05734, 0.05984)
C3 CLHHM (0.01450, 0.01670) (0.01450, 0.01672)

Table 16: CIs for modularity: C1, C2 and C3.
N = 50, α = 0.05; two-tailed. *C1 lies in CI

models, and two project types. The homophily indices are illustrated in Table 17. The CIs
of case 2 and case 3 for the homophily indices of the networks with the project role node
types are not far from the the homophily indices of case 1. Still, for case 2 none of the
CIs are containing the values of case 1. For case 3 a few more CIs containing the value of
case 1. Especially the CLHHM model seems to imitate the homophily indices well, three
out of four CIs contain the value for case 1. For the value chain position type, also case 2
has CIs which contain the values for C1. Still it seems that case 3 is better in imitating
the homophily indices of the original network than case 2, as expected by the conclusion
about modularity.
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Case C1 C2 SHHCM C2 NHHCM C2 CLHHM
T = PR
H1 0.2691 (0.2487, 0.2556) (0.2455, 0.2516) (0.2408, 0.2493)
H2 0.4454 (0.4219, 0.4278) (0.4251, 0.4305) (0.4154, 0.4233)
H3 0.3346 (0.3129, 0.3183) (0.3122, 0.3169) (0.3067, 0.3140)
H4 0.0000 (0.0340, 0.0869) (0.1144, 0.1456) (0.0026, 0.0084)

C3 SHHCM C3 NHHCM C3 CLHHM
H1 0.2691 (0.2709, 0.2773) (0.2685, 0.2734)* (0.2653, 0.2729)*
H2 0.4454 (0.4464, 0.4510) (0.4322, 0.4370) (0.4448, 0.4511)*
H3 0.3346 (0.2983, 0.3030) (0.2965, 0.3013) (0.2965, 0.3018)
H4 0.0000 (-0.0003, 0.0010)* (0.0339, 0.0495) (0.0000, 0.0000)*
Case C1 C2 SHHCM C2 NHHCM C2 CLHHM
T = VC
H1 0.6406 (0.6393, 0.6430)* (0.7457, 0.7510) (0.6429, 0.6493)
H2 0.1693 (0.0420, 0.0497) (0.0859, 0.0970) (0.0719, 0.0810)
H3 0.1244 (0.0960, 0.1031) (0.1302, 0.1374) (0.0983, 0.1056)
H4 0.1485 (0.0427, 0.0493) (0.0776, 0.0871) (0.0699, 0.0793)
H5 0.1322 (0.1065, 0.1106) (0.1309, 0.1368)* (0.1036, 0.1087)
H6 0.0546 (0.0091, 0.0162) (0.0383, 0.0572)* (0.0231, 0.0344)

C3 SHHCM C3 NHHCM C3 CLHHM
H1 0.6406 (0.6504, 0.6537) (0.7229, 0.7257) (0.6504, 0.6543)
H2 0.1693 (0.1578, 0.1696)* (0.1158, 0.1259) (0.1587, 0.1683)
H3 0.1244 (0.1076, 0.1152) (0.1225, 0.1304)* (0.1042, 0.1121)
H4 0.1485 (0.1127, 0.1226) (0.0970, 0.1059) (0.1091, 0.1188)
H5 0.1322 (0.1001, 0.1052) (0.1252, 0.1312) (0.0986, 0.1037)
H6 0.0546 (0.0490, 0.0637)* (0.0550, 0.0696) (0.0450, 0.0591)*

Table 17: CIs for homophily indices: C1, C2 and C3.
N = 50, α = 0.05; two-tailed. *C1 lies in CI

Summary. Comparing case 2 and case 3 with case 1, in general it might be concluded
that the sampled networks of case 3 are more equal to the network of case 1 than the
sampled networks of case 2. This would indicate that normal graph models are preferred
over hypergraph models. However, as already mentioned, when comparing the degree
sequences, the input for case 2 contains an aspect which is not present in the input for
case 3 that might be a crucial element of a hypergraph network, the dimension per vertex.
This feature is defined as the average dimension of the hyperedges a specific vertex is part
of. More precisely, for a vertex vi, i = 1, 2, ..., n, the average dimension kavg,i is defined as

kavg,i =
1

di

m∑
j=1

1(vi ∈ ej)kj . (19)

The average dimension sequence kavg has size n, the number of vertices. Since, this measure
is present in the input of case 3, but not in the input of case 3, the cases can actually not
be compared fairly. Therefore, it cannot be concluded whether normal graph models are
preferred over hypergraph models. However, we might advocate to use hypergraph models,
since it is difficult to transform a normal graph into a hypergraph. When transforming a
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normal graph to a hypergraph, one needs to analyse the normal graph for cliques, which is
a complex computational problem (Bomze, Budinich, Pardalos, & Pelillo, 1999). Based on
this section, it can be concluded that the representation of a collaboration network by a
hypergraph is better than a normal graph, since measures of the network can be captured
better in this way. Furthermore, hypergraph models could also better be used than normal
graph models, since once a graph is configured it is hard to transform the normal graph
back to a hypergraph.

4.3 Added value of heterogeneity function

In order to be able to transform the hypergraph models into heterogeneous hypergraph
models in Section 3.4, certain assumptions were made in order to make the hypergraph
models applicable to networks with heterogeneous nodes. The main idea for the hetero-
geneous hypergraph model is based on the idea of stochastic block models (SBMs). In
addition, the formula in Equation 15 is proposed to facilitate the extension. In this sec-
tion, we test whether these ideas are useful to create a heterogeneous hypergraph. In order
to test this, the three hypergraph models are implemented with as input for Ω a matrix
with equal probabilities. This means that the types have no preferences when connecting
with different types of nodes. The sampled graphs are referred to as non-heterogeneous
hypergraphs. The measures that are used to compare the graphs are the vertex degree
distribution, dimension, hyperedge degree distribution, modularity and homophily.

Vertex Degree. The degree and the dimension are constrained by the models, there-
fore the degree and the dimension do not differ between the heterogeneous and non-
heterogeneous hypergraphs, except for the degree sequences of the sampled networks of
the CLHHM models. When comparing the confidence intervals of the degree sequences of
the heterogeneous and non-heterogeneous hypergraphs of the networks with project role
and value chain position node types, we see that for the heterogeneous graphs 736 and
738 out of the 783 cases, the vertex degrees are within the CIs. So 6.0% and 5.7% of
the cases do not contain the original vertex degrees, respectively. For non-heterogeneous
graphs this is 747 and 735 out of the 783 cases. So 4.6% and 6.1% of the cases do not
contain the original vertex degrees, respectively. The percentages are all around 5%, which
is explainable by the 95%-CIs.

Hyperedge Degree. Comparing the hyperedge degrees between the heterogeneous and
non-heterogeneous hypergraph does not show significant differences. Comparing the KL-
div. between the heterogeneous and non-heterogeneous hypergraphs, there is not a clear
preference for one of the two. When a preference needs to be given than the heterogeneous
hypergraph models are preferred, since the KL-div. is in four out of the six models better
for heterogeneous models. The precise measures are given in Appendix B.

Modularity. More interesting are the modularity and homophily indices, since these
measures depend on the different node types. The results for modularity are striking (see
Table 18). For the CLHHM model it seems that indeed the heterogeneous hypergraph
model is adding value. The differences between the CIs of the modularity are significant,
and the modularity of the non-heterogeneous hypergraphs are more negative than the
modularity of the heterogeneous hypergraphs. The confidence intervals for the modularity
of the hypergraphs produced by the SHHCM and NHHCM model are also significantly
different. So it can be concluded that the heterogeneity method is adding something to the
hypergraph model. It seems that for the SHHCM model, the hypergraph is declustered with
the heterogeneous hypergraph model, and for the NHHCM model, the model is clustered
with the hypergraph model. We see that for the SHHCM model, the modularity increases
when there are no preferred types to collaborate with.
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The algorithm of the SHHCM is working such that nodes are picked from a set of
remaining stubs based on the preference nodes have for other nodes types. When there is
no preference for a certain node type, then the chances for picking a specific node are equally
distributed. When there are in total more nodes of a specific type (there is a dominant
type), then these nodes are picked more often in the beginning. Over time this effect will
reduce, since the set with remaining stubs will contain less nodes with the dominant node
type, since these nodes are already picked at the beginning. The nodes that are picked at
the beginning are of the same types, and therefore they form a cluster with the dominant
node types. This could be seen for example in the results of the sampled networks with
value chain position types. in these networks there was also a dominant type. In practice,
this is a strange result, since one would expect that clusters of the same type of project
partners will not arise when there is no preference between different project partners.
Fortunately, we see that the modularity sampled networks of the NHHCM decreases when
there are no preferred node types. This means that the reshuffling method of the NHHCM is
correcting the mistake in the SHHCM for non-heterogeneous graph models. The reshuffling
method is working such that when two hyperedges are selected that belong to the same
clusters, this does not have consequences for the clusters. When there is a preference
between nodes, a network with low modularity will become clustered due to the NHHCM
model by the opposite line of reasoning as for a network without preferences between nodes.
In practice, this is also what we want, since it is logical to assume that project partners
that prefer each other are going to form clusters. The footnote should be made that we
should pick node types, for which we know this behaviour appears. Hopefully, this can be
seen from the homophily indices. Overall the CIs of the modularity for the SHHCM and
NHHCM are strongly indicating that the heterogeneous hypergraph model is working well
with respect to the modularity.

T Meas. H/N Original SHHCM NHHCM CLHHM
PR Q H 0.101 (-0.010, 0.002) (0.044, 0.055) (-0.024, -0.012)

N (0.042 , 0.053) (0.003, 0.014) (-0.046, -0.033)
VC Q H 0.090 (0.001 , 0.010) (0.245, 0.255) (-0.020, -0.012)

N (0.277 , 0.290) (0.002, 0.010) (-0.043, -0.035)

Table 18: CIs for modularity of heterogeneous (H) and non-heterogeneous (N)
hypergraphs.
N = 50, α = 0.05; two-tailed. *Original value is in CI.

Homophily. The results for the CIs of the homophily indices are shown in Table 19.
Most CIs are significantly different from each other, when comparing the heterogeneous
and non-heterogeneous hypergraphs models. In comparison, the heterogeneous hyper-
graphs are better at imitating the original hypergraph, even though the homophily indices
of the original hypergraph are often not lying within the CIs. This is an indication that
the heterogeneous hypergraph models are better than the non-heterogeneous hypergraph
models. For the SHHCM, the CIs for the non-heterogeneous hypergraph models are higher
than the the heterogeneous hypergraph models and the opposite is true for the NHHCM.
Furthermore, we see that all CIs of the non-heterogeneous SHHCM model are higher than
the CIs of the NHHCM, and in many cases the CIs drop to almost zero, especially in
the models with value chain position node types. This confirms the explanation for the
differences in modularity as explained when discussing the modularity results. When we
choose as input that there are preferences between nodes, then the SHHCM model pro-
duces a network with no clusters and it might be that in some cases the homophily indices
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are wrong. The NHHCM model corrects these mistakes with the heterogeneous reshuf-
fling method. In addition, when we choose as input that there are no preferences between
nodes, then the SHHCM model produces a clustered network which might result in wrong
homophily measures. The NHHCM model corrects this by setting the modularitites and
the homophily indices to values closer to zero. This indicates that NHHCM is a much
better model for homophily measures than the SHHCM model. The CLHHM model is
slightly better for heterogeneous graphs than for non-heterogeneous graphs.

T Meas. H/N Orig. SHHCM NHHCM CLHHM
PR H1 H 0.2568 (0.2353, 0.2445) (0.2432, 0.2544) (0.2292, 0.2398)

N (0.2788, 0.2905) (0.2027, 0.2123) (0.2110, 0.2217)
H2 H 0.4544 (0.4235, 0.4319) (0.4078, 0.4158) (0.4200, 0.4285)

N (0.4270, 0.4345) (0.3946, 0.4024) (0.4030, 0.4134)
H3 H 0.3640 (0.3645, 0.3737) (0.3581, 0.3657)* (0.3612, 0.3704)*

N (0.3731, 0.3809) (0.3588, 0.3666)* (0.3608, 0.3694)*
H4 H 0.0000 (0.0328, 0.0858) (0.1622, 0.2341) (0.0013, 0.0068)

N (0.1500, 0.1889) (0.0041, 0.0138) (0.0008, 0.0228)
VC H1 H 0.6409 (0.6286, 0.6347) (0.7220, 0.7270) (0.6198, 0.6267)

N (0.7509, 0.7565) (0.6086, 0.6137) (0.6122, 0.6196)
H2 H 0.1280 (0.0983, 0.1273) (0.0910, 0.1101) (0.0770, 0.0930)

N (0.1351, 0.1498) (0.0331, 0.0427) (0.0353, 0.0502)
H3 H 0.1548 (0.1338, 0.1456) (0.1478, 0.1591)* (0.1289, 0.1443)

N (0.2092, 0.2215) (0.0974, 0.1075) (0.1169, 0.1288)
H4 H 0.1844 (0.1116, 0.1329) (0.0808, 0.0942) (0.1002, 0.1226)

N (0.1386, 0.1523) (0.0375, 0.0467) (0.0425, 0.0537)
H5 H 0.1374 (0.1574, 0.1671) (0.1900, 0.2010) (0.1489, 0.1583)

N (0.2674, 0.2789) (0.1456, 0.1531) (0.1525, 0.1621)
H6 H 0.0629 (0.0396, 0.0795)* (0.0383, 0.0632)* (0.0306, 0.0577)

N (0.1122, 0.1394) (0.0040, 0.0120) (0.0052, 0.0126)

Table 19: CIs for homophily indices of heterogeneous (H) and non-heterogeneous
(N) hypergraphs.
N = 50, α = 0.05; two-tailed. *Original value is in CI.

Summary. When comparing heterogeneous hypergraph models with non-heterogeneous
hypergraph models, the modularity and homophily measures give strong indications that
the NHHCM and the CLHHM are good models for modelling heterogeneous hypergraphs.
We see that the sampled networks of the NHHCM are correcting the sampled networks of
the SHHCM based on the propensity matrix Ω. The vertex degree distribution and the
vertex degree distribution are not significantly different between the non-heterogeneous
and heterogeneous hypergraph models.

5 Discussion

Contributions. This thesis has several contributions. First, it starts by giving insight into
the University-Industry collaboration network (UICN) for nanotechnology R&D research.
We show that the degree sequence follows a power-law, the hyperedge degree does not
follow a specific pattern, the centralities show the most important partners in the network
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and it does not have to be that the nodes with the highest degree have the highest centrality
measures. The modularity shows that the network is slightly clustered for both project
role types and value chain position types. Previous research is often focused on the effect
of these roles on value creation and not on the effect of these roles on the network itself
(Raesfeld et al., 2012; Oukes, 2018). Second, the field of hypergraph models is relatively
undeveloped and in this research a short overview is given of the main contributions in
this field. The overview by Battiston et al. (2020) is more extended, but quite technical,
therefore not as accessible for all fields of science. Third, this thesis gives an insight in
the advantages of hypergraph models, in which degree and dimension are constrained.
Furthermore, the advantages are explained of constraining the hypergraph models with
the exact vertex degree distribution as in the SHHCM and NHHCM and the advantages of
constraining the hypergraph models with the expected degree distribution are explained.
Fourth, some concepts or ideas in this thesis are not mathematically proven, but developed
based on general ideas. Since the field of hypergraphs is quite unexplored, some concepts or
ideas do not exist in literature. So, it requires creativity to find define these concepts and
ideas. Equation 9, Equation 11 and Equation 15 are results of such ideas. Equation 9 and
Equation 11 are representing the equations for the homophily index variables aij , based on
ai for normal graph models. Equation 15 defines the probability an vertex joins an already
existing hyperedge. The heterogeneous hypergraph models are mainly based on this last
equation. Fifth, this thesis makes a contribution to the existing hypergraph models by
presenting models that take into consideration the heterogeneity of nodes by introducing
a method that is based on a simplified form of a stochastic block model. In the literature,
sometimes heterogeneity in graphs is not possible due to combinatorial computational
issues (Veldt, Benson, & Kleinberg, 2023; Casiraghi, 2019). Furthermore, methods are
often really extended and not easily applicable (Eikmeier et al., 2018; Giroire et al., 2021).
We introduce a much simpler method, which is also a good model for clustering known
node types.

Contributions to business. It has three contributions for business. First, this thesis
makes the theory about hypergraphs accessible for application in business, where existent
literature is not laying this bridge. Second, it gives a good explanation of why hypergraphs
are good representations for collaboration networks. In mathematics this argument was
already present (Benson et al., 2016; Ghoshal et al., 2009), but applied to business this
was less clear. Third, it provides a model for business that could be used for initializing an
evolving collaboration network model, like an agent based model. In business it is impor-
tant to initialise properly (Grimm et al., 2020) and the focus is often on value creation for
companies (Raesfeld et al., 2012; Oukes, 2018). In order to have models that could verify
these value creation processes, a hypergraph model would be a good start.

Limitations. This thesis also has certain limitations. First, the data could have been
improved, especially in relation with the project role node types. Project role 4 arose
purely from a lack of information. Furthermore, some companies also had multiple project
roles in different projects. The analysis could be improved by dividing each node into
multiple nodes, representing the different departments of a company. Second, even though
the measures for hypergraphs presented in this thesis were quite extensive, it could be
more extended. General measures were used: vertex degree, dimension, hyperedge degree,
eigenvector, betweenness and closeness centrality, modularity and homophily. Betweenness
and closeness centrality were not used to compare the models with each other. Finally,
the SHHCM and NHHCM model and the effect of these models could have been inves-
tigated better. We found an interesting result of the SHHCM and NHHCM model that
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the NHHCM model corrects the networks resulting from the SHHCM model related to
heterogeneity.

Future Research. In future research, the effect of the the models on the betweeness
and closeness could be tested. Furthermore, it is preferred to find measures that capture
the complete structure of a hypergraph. In this thesis, the hyperedge degree was the only
measure based on hypergraph, specifically. Still, this measure was based on a specific
vertex and not on the complete network. Second, in the contributions we stated that some
concepts or ideas in this thesis are not mathematically proven, but made up based on
general ideas. In future research, the mathematical proofs and or more specific research
about the correctness of the formulations of this thesis could be established. Third, the
effect of a dominant node type or the effect of a barely available node type could be
researched. Furthermore, the exact effect of the reshuffling method could be analysed. It
could also be chosen to find or create other models that removes selfloops in heterogeneous
hypergraphs. In addition, in future research, the models could be adapted such that other
cases could be tested. Based on the results in Section 4.2, it would be interesting to
research the effect of constraining the network by the average dimension per vertex. This
variable would prevent that a project partner that normally only takes part in small group
collaboration, from being assigned to a project with a large dimension. Furthermore,
testing the model when changing the formula as presented in Equation 15 would also
be interesting. Changing this equation into a multiplicative equation might be useful.
Moreover, in future research the connection to the performance of the projects based on
hypergraph models could be made. The performance of the projects of the collaboration
network is also presented in this thesis in Figure 8. This future research makes use of
weighted hypergraphs, where the weight represents the performance of the project. Using
the results of this thesis as a basis for studying evolving collaboration networks may be
especially useful in business. Finally, in this thesis we saw that normal graphs fail to
reproduce the dimension (or project size) distribution of a collaboration network. In normal
graphs, finding cliques is a difficult process. Therefore, hypergraph models are superior
over normal graph models, since, by definition, the dimension distribution is incorporated
in hypergraph models. In future research, the superiority of hypergraphs can be proved
even better.

6 Conclusion

This thesis is set out to answer the question of how mathematical heterogeneous hyper-
graph models could be successfully applied in the field of collaboration networks in busi-
ness. We compared three heterogeneous hypergraph models. Furthermore, the use of
hypergraph models and the correctness of the heterogeneity elements in the hypergraph
model are tested. Our findings are as follows. First, we found that the NHHCM model
is the best model when comparing the SHHCM, NHHCM and CLHHM, in the case that
there is not a dominant type available. Otherwise the SHHCM model performs best. In
addition, we found that a normal graph is not a good representation of a collaboration
network. It replicates some measures of the collaboration network, but a hypergraph does
this better. Moreover, it could not be stated whether hypergraph models are better mod-
els than normal graph models. We also found that the heterogeneous hypergraph models
significantly improve the original SHHCM, NHHCM and CLHHM, even though the het-
erogeneous hypergraph models are based on equations that are only based on an intuition
of heterogeneous graphs and are not mathematically proven.
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A Table with variables and abbreviations

Var./Abbrev. Description
A adjacency matrix
ai average number of friendship of node type i with same node types
aij average number of friendship of node type i with node type j

ãij average number of friendship of node type i with node type j in hyper-
graphs

AES applied and engineering sciences
ASH attributed stream hypergraph
B incidence matrix
b reshuffling function hyperedges
bi average number of friendship of node type i with other node types
BC betweenness centrality
CC closeness centrality
CI confidence interval
CM configuration model
CLHM Chung-Lu hypergraph model
CLHHM Chung-Lu heterogeneous hypergraph model
D diagonal vertex degree matrix
d degree vector/sequence
De hyperedge degree

diagonal matrix with edge dimensions
de dimension of edge e
dv vertex degree of vertex v
dnorm degree vector/sequence of normalized hypergraph
E edge set
e (hyper)edge
Et edge set at time t

hyperedge with dimension t
EC eigenvector centrality
Fk mutiset of edges with dimension k
G graph
GRG generalized random graph
H hypergraph

incidence matrix of a hypergraph
h sample interval
H0 initial hypergraph in algorithm
Hi homophily index of type i node
Ht hypergraph at time t
HE hyperedge
HSBM hypergraph stochastic block model
I identity matrix
k dimension vector/sequence
kavg average dimension sequence
kavg,i average dimension of a vertex vi
ki dimension of edge i
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knorm dimension vector/sequence of normalized hypergraph
KL-div. Kullbach-Leibner divergence
KPI key performance indicator
Mi multiplicity of vertex vi
m number of edges
m∆ number of parallel hyperedges ∆

MSE mean squared error
n number of vertices
NHCM no-selfloop hypergraph configuration model
NHHCM no-selfloop heterogeneous hypergraph configuration model
NWO Nederlandse origanisatie voor wetenschappelijke onderzoek
P probability function
PA model preferential attachment model
PR project role
pij probability of edge between vertex i and j
Q modularity measure
R uniformly picked stubs

existing collaboration
R&D research and development
S hypergraph in algorithm
s sample size
SBM stochastic block model
std standard deviation
STW stichting voor technische wetenschappen
SHCM stub-labeled hypergraph configuration model
SHHCM stub-labeled heterogeneous hypergraph configuration model
T Hypergraph adjacency tensor

vector with node types
t time
Tv type of node v
u vertex
UICN university-industry collaboration network
V vertex set
v vertex
Vi vertex set of type i
vi vertex i
VC value chain
W diagonal weight matrix
w vector with edge-weights
wi relative fraction of node type i
x eigenvector
y eigenvector
α acceptance rate
β parameter beta-centrality
Γ hyperedge
∆ hyperedge
λ eigenvalue
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Σ multiset with stubs
Σ multiset with stubs of type i
τ exponential for power law
Ω block-matrix with preferences between types
Ωij probability vertex type i connects with type j

Table 20: Table with variables (var.) and abbreviations (abbrev.)
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B Hyperedge measures for heterogeneous and non-heterogeneous
hypergraphs

T Meas. H/N Original SHHCM NHHCM CLHHM
PR max H 242 (248.05, 257.75) (273.89, 283.90) (254.81, 265.19)

N (255.79, 265.01) (270.60, 278.56) (254.63, 264.33)
min H 1 ( 0.040, 0.240) (-0.016, 0.096) ( 0.762, 1.198)*

N ( 0.027, 0.213) ( 0.048, 0.352) ( 0.987, 1.573)*
mean H 93.93 ( 86.99, 88.10) (101.08, 101.51) ( 90.59, 92.96)

N ( 86.97, 88.09) (101.78, 102.20) ( 90.82, 93.29)
std H 61.85 ( 54.91, 55.78) ( 61.87, 62.42) ( 54.42, 55.77)

N ( 55.01, 55.85) ( 60.84, 61.44) ( 54.71, 56.03)
KL-div H 0 237.31 200.56 234.75

N 238.10 206.42 228.75
VC max H 242 (250.28, 259.60) (264.54, 272.38) (254.75, 264.77)

N (233.14, 241.18) (273.65, 282.51) (259.03, 269.93)
min H 1 ( 0.014, 0.186) ( 0.093, 0.387) ( 0.866, 1.294)*

N (-0.004, 0.244) ( 0.055, 0.265) ( 0.831, 1.329)*
mean H 93.93 ( 87.35, 88.55) (100.94, 101.41) ( 90.88, 93.16)

N ( 79.87, 80.82) (101.59, 101.97) ( 91.29, 93.97)*
std H 61.85 ( 54.60, 55.45) ( 60.76, 61.44) ( 54.92, 56.25)

N ( 50.44, 51.18) ( 61.03, 61.63) ( 55.13, 56.59)
KL-div H 0 239.85 209.14 228.28

N 262.46 204.12 230.27

Table 21: CIs for hyperedge degree heterogeneous (H) and non-heterogeneous (N)
hypergraphs.
N = 50, α = 0.05; two-tailed. *Original value is in CI.
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C Code for Analysis

C.1 Code for Descriptive Analysis

1 % % Desciptive Analysis of R&D Collaboration Data
2
3 load('project_info_adj.mat') % Info per project
4 load('project_users_adj.mat') % Info per user
5 load('project_user_data_adj.mat') % Combination project

+ users
6
7 % List from file.mat: [file{row ,column }]
8
9 close all

10
11 % number of projects
12
13 project_number1 = length(unique ([ project_info_adj {: ,1}]));
14 project_number2 = length(unique ([ project_user_data_adj {: ,1}]))

;
15
16 % total number of partners
17
18 connections1 = sum([ project_users_adj {: ,78}]);
19 connections2 = length ([ project_user_data_adj {: ,1}]);
20
21 % unique partners
22
23 unique_partners = length ([ project_users_adj {: ,1}]);
24
25 % distribution of project sizes
26
27 [project_size ,project_numbers] = groupcounts ([

project_user_data_adj {: ,1}]);
28
29 [freq_projsize , unique_projsize] = groupcounts(project_size);
30
31 % project roles
32
33 [freq_roles , roles] = groupcounts ([ project_user_data_adj {:,

13}]);
34 projsize_perpartner = repelem(project_size , project_size);
35 projroles = [project_user_data_adj {:, 13}];
36
37 splitroles = zeros (4,22);
38
39 for i = 1: length(projroles)
40 if projroles(i) == 1
41 splitroles (1, projsize_perpartner(i)) = ...
42 splitroles (1, projsize_perpartner(i)) + 1;
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43 elseif projroles(i) == 2
44 splitroles (2, projsize_perpartner(i)) = ...
45 splitroles (2, projsize_perpartner(i)) + 1;
46 elseif projroles(i) == 3
47 splitroles (3, projsize_perpartner(i)) = ...
48 splitroles (3, projsize_perpartner(i)) + 1;
49 else
50 splitroles (4, projsize_perpartner(i)) = ...
51 splitroles (4, projsize_perpartner(i)) + 1;
52 end
53 end
54
55 splitroles1 = splitroles;
56 splitroles = splitroles ./sum(splitroles);
57 splitroles(isnan(splitroles)) = 0;
58
59 bar1 = splitroles (1,:);
60 bar2 = splitroles (2,:);
61 bar3 = splitroles (3,:);
62 bar4 = splitroles (4,:);
63
64 bar23 = bar2 + bar3;
65 bar231 = bar23 + bar1;
66 bar2314 = bar231 + bar4;
67
68 % changing project roles of one company
69
70 company_projrol = zeros(unique_partners , 4);
71 projroles ; % roles companies of all projects
72 projcomp = [project_user_data_adj {: ,2}];
73 [unique_projcomp , ~, num_projcomp] = unique(projcomp);
74 projroles(isnan(projroles)) = 4;
75 projroles(projroles == 0) = 4;
76 for i = 1: length(projroles)
77 company_projrol(num_projcomp(i),projroles(i)) = ...
78 company_projrol(num_projcomp(i),projroles(i)) + 1;
79 end
80
81 doubleroles = 0;
82 for i = 1: unique_partners
83 if sum(length(find(company_projrol(i,:)))) == 2
84 doubleroles = doubleroles + 1;
85 elseif sum(length(find(company_projrol(i,:)))) == 3
86 doubleroles = doubleroles + 1;
87 elseif sum(length(find(company_projrol(i,:)))) == 4
88 doubleroles = doubleroles + 1;
89 end
90 end
91
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92
93 % distribution of technology field number
94
95 techfield = [project_info_adj {: ,32}];
96 [freq_techfield , unique_techfield] = groupcounts(techfield);
97
98 % distribution of application number
99

100 application = [project_info_adj {: ,42}];
101 [freq_application , unique_application] = groupcounts(

application);
102
103 % involvement , product development , revenues generated
104
105 involvement = [project_info_adj {: ,8}];
106 productdev = [project_info_adj {: ,9}];
107 revenues = [project_info_adj {: ,10}];
108
109 [unique_involvement , ~,num_involvement] = unique(involvement);
110 [unique_productdev , ~,num_productdev] = unique(productdev);
111 [unique_revenues , ~,num_revenues] = unique(revenues);
112
113 [freq_involvement , ~] = groupcounts(num_involvement);
114 [freq_productdev , ~] = groupcounts(num_productdev);
115 [freq_revenues , ~] = groupcounts(num_revenues);
116 cat1 = categorical ({'A'});
117 cat2 = categorical ({'B'});
118 cat3 = categorical ({'C'});
119 cat4 = categorical ({'n.a.'});
120
121 % budget and external financing
122
123 budget = [project_info_adj {: ,16}];
124 extfinance = [project_info_adj {: ,17}];
125 extfinance(isnan(extfinance)) = 0;
126
127 [sort_budget , index_budget] = sort(budget , 'descend ');
128 sort_extfinance = extfinance(index_budget);
129 sort_budget = [sort_budget; 0];
130 sort_extfinance = [sort_extfinance; 0];
131
132 % % Descriptives Participants
133 % Operating income
134
135 SZ_OI = [project_users_adj {: ,33}];
136 [unique_OI , ~,num_OI] = unique(SZ_OI);
137 unique_OI = [unique_OI (1:7); 'n.a.'];
138 num_OI(num_OI >7) = 8;
139 perm_num_OI = [7 5 4 2 3 1 6 8];

61



140 permunique_OI = unique_OI(perm_num_OI);
141
142 [freq_OI , ~] = groupcounts(num_OI);
143 permfreq_OI = freq_OI(perm_num_OI);
144
145 x = categorical(permunique_OI);
146 x = reordercats(x,string(x));

C.2 Code for Network Analysis

1 % % Network Analysis of R&D Collaboration Data
2 %
3 % List from file.mat: [file{row ,column }]
4
5 % % Input variables
6 % V = set of vertices per hyperedge.
7 % E = set with the numbers of the hyperedges that correspond

to the
8 % vertices.
9 % G = graph that is build based on V and E.

10 % n = number of vertices
11 % m = number of hyperedges
12 % T = type vector with types for each node
13
14 function [Measures] = network_analysis(E,V,G,n,m,T)
15
16 % % Degree distribution: vertex degree , dimension , hyperedge

degree
17 % % Vertex degree
18
19 Measures = dictionary (1:13 ,{[]});
20
21 D = degree(G,m+1:m+n);
22 [freq_degree , unique_degree] = groupcounts(D');
23
24 Measures {1} = D;
25 Measures {2} = freq_degree;
26 Measures {3} = unique_degree;
27
28 % % Dimension
29
30 [project_size ,project_numbers] = groupcounts(E);
31 [freq_projsize , unique_projsize] = groupcounts(project_size);
32
33 Measures {4} = freq_projsize;
34 Measures {5} = unique_projsize;
35
36 % % Hyperedge degree
37
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38 HE = zeros(max(E) ,1);
39 for i = 1:max(E)
40 N = neighbors(G,i);
41 A = [];
42 for j = N'
43 A = [A; neighbors(G,j)];
44 end
45 HE(i) = length(unique(A)) - 1;
46 end
47
48 [freq_HE , unique_HE] = groupcounts(HE);
49
50 Measures {6} = freq_HE;
51 Measures {7} = unique_HE;
52
53 % Centrality: betweenness , closeness and eigenvector
54
55 d = distances(G,min(num_company_nodes):max(num_company_nodes),

...
56 min(num_company_nodes):max(num_company_nodes));
57
58 Sigma = cell(n, n);
59
60 for i = 1:n
61 Sigma{i,i} = {i + min(num_company_nodes) - 1};
62 for j = 1:i-1
63 if isinf(d(i,j))
64 Sigma{i,j} = {NaN};
65 Sigma{j,i} = {NaN};
66 else
67 Sigma{i,j} = allpaths(G,i + min(num_company_nodes)

- 1, ...
68 j + min(num_company_nodes) - 1,'MaxPathLength '

,d(i,j));
69 Sigma{j,i} = Sigma{i,j};
70 end
71 disp([ num2str(i),' and ', num2str(j)])
72 end
73 end
74
75 d = d/2;
76
77 % % Closeness centrality
78 CC = NaN(max(num_company_nodes) - min(num_company_nodes) + 1,

1);
79 Inf_shortpath = NaN(max(num_company_nodes) - min(

num_company_nodes) + 1, 1);
80 for i = 1: max(num_company_nodes) - min(num_company_nodes) + 1
81 Inf_shortpath(i) = sum(d(i,:) == Inf);
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82 d(i,d(i,:) == Inf) = 0;
83 CC(i) = 1/sum(d(i,:));
84 end
85 CC(CC == Inf) = 0;
86
87 % % Betweenness Centrality
88
89 Sigma_v = zeros(n, n, n);
90 Sigma_st = zeros(n,n);
91
92 for i = 1:n % start point shortest path
93 Sigma_st(i,i) = 1;
94 Sigma_v(i,i,i) = 1;
95 for j = i+1:n % end point shortest path
96 Sigma_st(i,j) = length(Sigma{i,j});
97 Sigma_st(j,i) = length(Sigma{j,i});
98 for k = 1:n % v in shortest path
99 for l = 1: length(Sigma{i,j})

100 if iscell(Sigma{i,j}) && any(Sigma{i,j}{l} ==
k+406)

101 Sigma_v(i,j,k) = Sigma_v(i,j,k) + 1;
102 Sigma_v(j,i,k) = Sigma_v(j,i,k) + 1;
103 end
104 end
105 end
106 end
107 disp([ num2str(i),' and ', num2str(j), ' and ', num2str(k)

])
108 end
109
110 BC = NaN(n, 1);
111
112 for v = 1:n
113 BC(v) = sum(sum(Sigma_v ([1:v-1 v+1:783] , [1:v-1 v+1:783] ,

v)))/...
114 sum(sum(Sigma_st ([1:v-1 v+1:783] , [1:v-1 v+1:783])));
115 end
116
117 % % Vector Centrality
118 H = zeros(m,n);
119
120 for i = 1:m
121 H(i, V(E == i) - m) = 1;
122 end
123
124 [eigenvector1 , lambda1] = eigs(H*H', 1);
125 [eigenvector2 , lambda2] = eigs(H'*H,1);
126
127 Measures {8} = H;
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128 Measures {9} = eigenvector1;
129 Measures {10} = eigenvector2;
130
131 % % Modularity
132
133 De = diag(project_size);
134 I = eye(m);
135 d = D';
136
137 DD = (De-I)^-1;
138 DD2 = H'*DD;
139
140 A = H'*DD*H;
141 P = d*d'/sum(d);
142 P(1:n+1:end)=0;
143 A(1:n+1:end)=0;
144 dkron = zeros(n,n);
145
146 for i = 1:n
147 for j = 1:n
148 if T(i) == T(j)
149 dkron(i,j) = 1;
150 end
151 end
152 end
153
154 Q = 1/(2*m) * sum(sum((A-P).*dkron));
155 Measures {11} = Q;
156
157 % Assortative mixing (homophily)
158
159 xx = groupcounts(E);
160 index1 = 0;
161 a = zeros(max(T),max(T));
162
163 for i = 1: length(xx)
164 types = T(V(index1 + 1: index1 + xx(i))- m);
165 freq = groupcounts(types , 1:max(T)+1, "IncludeEmptyGroups

",true);
166 for ii = 1:max(T)
167 a(ii,ii) = a(ii,ii) + (2/(xx(i)*(xx(i) -1)))*(freq(ii)

-1)*freq(ii);
168 for jj = 1:ii -1
169 a(ii,jj) = a(ii,jj) + (2/(xx(i)*(xx(i) -1)))*freq(

ii)*freq(jj);
170 a(jj,ii) = a(jj,ii) + (2/(xx(i)*(xx(i) -1)))*freq(

ii)*freq(jj);
171 end
172 end

65



173 index1 = index1 + xx(i);
174 end
175 a = 1./ groupcounts(T).*a;
176
177 H_index = diag(a)./sum(a,2);
178 w = groupcounts(T)/sum(groupcounts(T));
179
180 Measures {12} = [H_index w];
181
182
183 % % Omega
184
185 a_norm = a ./ sum(a,2);
186 Measures {13} = a_norm;
187
188 end
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D Code for Models

D.1 Chodrow I Model

1 % % Chodrow I: Heterogeneous hypergraph stub -matching
2 function [S] = Chodrow1(d,k,T,Omega)
3 % Degree and Dimension Check
4 if sum(d) ~= sum(k)
5 error('NOTE: Degrees and dimensions are not congruent '

)
6 end
7
8 TT = max(T);
9

10 % Initialization
11 S = dictionary (1: length(k) ,{[]});
12 Sigma = [repelem (1: length(d),d); zeros(1,sum(d))];
13
14 index1 = 1;
15
16 for i = 1: length(d)
17 Sigma(2,index1:index1+d(i) -1) = 1:d(i);
18 index1 = index1 + d(i);
19 end
20
21 for j = 1: length(k)
22 Rnum = datasample (1: length(Sigma (1,:)) ,1);
23 R = Sigma(:,Rnum);
24 Sigma(:,Rnum) = [];
25 if ~ismember(T(R(1)),T(Sigma (1,:)))
26 Omega(:,T(R(1))) = 0;
27 Omega = Omega./sum(Omega ,2);
28 end
29
30 for i = 1:k(j) -1
31 Pt = zeros(max(T) ,1);
32 for ii = 1:TT
33 Pt(ii) = sum(Omega(T(R(1,:)), ii))/length(R

(1,:));
34 end
35
36 c = histc(T(Sigma (1,:)) ,1:max(T));
37
38 PP = Pt(T(Sigma (1,:)));
39 P = 1./c(T(Sigma (1,:))).*PP ';
40
41 K = randsample (1: length(Sigma (1,:)), 1, true , P);
42 R = [R Sigma(:,K)];
43 Sigma(:,K) = [];
44 if ~ismember(T(R(end)),T(Sigma (1,:)))
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45 Omega(:,T(R(end))) = 0;
46 Omega = Omega./sum(Omega ,2);
47 end
48 end
49
50 S{j} = R;
51 end
52 end

D.2 Chodrow II Model

1 % % Chodrow II: Markov Chain Monte Carlo for hypergraph
configuration models

2 function[Ht] = Chodrow2(d,k,T,Omega ,h,s)
3 S = Chodrow1(d,k,T,Omega);
4 Ht = dictionary (0:s*h ,{[]});
5 Ht{0} = S;
6
7 for t = 1:s*h
8 S = Ht{t-1};
9 R = randsample(numEntries(S), 2);

10 Delta = S{R(1)};
11 Gamma = S{R(2)};
12 Shat = S;
13 [Shat{R}] = deal ([] ,[]);
14 Deltahat = [];
15 Gammahat = [];
16 Gammanew = Gamma;
17 Deltanew = Delta;
18 for i = length(Delta (1,:)):-1:1
19 if ismember(Delta(1,i),Gammanew (1,:))
20 [~, P1] = ismember(Delta(1,i),Gammanew (1,:));
21 Deltahat = [Deltahat Delta(:,i)];
22 Deltanew(:,i) = [];
23 Gammahat = [Gammahat Gammanew(:,P1)];
24 Gammanew(:,P1) = [];
25 end
26 end
27 Rem_Stubs = [Deltanew Gammanew ];
28 for i = 1: length(Deltanew (1,:))
29 Pt = zeros(1,max(T));
30 for j = 1:max(T)
31 Pt(j) = sum(Omega(T(Delta (1,:)),j))/length(

Delta (1,:));
32 end
33 P = Pt(T(Rem_Stubs (1,:)));
34 P = P/sum(P);
35 K = randsample (1: length(Rem_Stubs (1,:)), 1, true ,

P);
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36 Deltahat = [Deltahat Rem_Stubs(:,K)];
37 Rem_Stubs(:,K) = [];
38 end
39 Gammahat = [Gammahat Rem_Stubs ];
40 Shat{R(1)} = Deltahat;
41 Shat{R(2)} = Gammahat;
42 mdelta = 0;
43 mgamma = 0;
44 for i = 1: numEntries(S)
45 if isequal(sort(Delta (1,:)),sort(S{i}(1,:)))
46 mdelta = mdelta + 1;
47 end
48 if isequal(sort(Gamma (1,:)),sort(S{i}(1,:)))
49 mgamma = mgamma + 1;
50 end
51 end
52 alpha = (2^( length(Delta)-length(Deltanew)))/( mdelta*

mgamma);
53
54 if rand (1) <= alpha
55 Ht{t} = Shat;
56 else
57 Ht{t} = Ht{t-1};
58 end
59 end
60 end

D.3 Chung-Lu Model

1 % % Chung -Lu Model
2 function [S] = ChungLu(d,k,T,Omega)
3 p = d / sum(d);
4 S = dictionary (1: length(k) ,{[]});
5
6 for i = 1: length(k)
7 S{i} = [find(mnrnd(1,p)==1)];
8 end
9

10 Undef_Stubs = k - 1;
11 for i = 1:sum(k)-length(k)
12 stub = mnrnd(1,p);
13 p_het = zeros(1,length(k));
14 for j = find(Undef_Stubs > 0)
15 p_het(j) = sum(Omega(T(S{j}),T(stub ==1)))/length(S

{j});
16 end
17 p_het = p_het/sum(p_het);
18 if length(find(Undef_Stubs >0)) > 1
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19 R = randsample(find(Undef_Stubs > 0) ,1,true ,p_het(
p_het >0));

20 else
21 R = find(Undef_Stubs > 0);
22 end
23 S{R} = [S{R} find(stub == 1)];
24 Undef_Stubs(R) = Undef_Stubs(R) -1;
25 end
26 end
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E Code for Execution

E.1 Code Main Execution File

1 % % Visualisation of the network
2 load('project_info_adj.mat') % Info per project
3 load('project_users_adj.mat') % Info per user
4 load('project_user_data_adj.mat') % Info project + users
5
6 project_nodes = [project_user_data_adj {: ,1}];
7 company_nodes = [project_user_data_adj {: ,2}];
8
9 [unique_project_nodes , ~, num_project_nodes] = unique(

project_nodes);
10 [unique_company_nodes , ~, num_company_nodes] = unique(

company_nodes);
11 num_company_nodes = num_company_nodes + max(num_project_nodes)

;
12
13 G0 = graph(num_project_nodes ,num_company_nodes); % Original

graph
14
15 load('T_projrole.mat')
16 load('T_VC.mat')
17
18 % Input variables
19
20 d = degree(G0, min(num_company_nodes):max(num_company_nodes));
21 k = groupcounts(num_project_nodes)';
22 T = T_VC ';
23
24 n = length(d);
25 m = length(k);
26 M0 = network_analysis(num_project_nodes ,num_company_nodes ,G0,n

,m,T');
27
28 Omega = M0{13};
29 Omega (4,4) = 0.000001;
30 Omega (4,3) = Omega (4,3) - 0.000001;
31 h = 125;
32 s = 40;
33 runs = 50;
34
35 M1_VC = dictionary (1:runs ,{[]});
36 M2_VC = dictionary (1:runs ,{[]});
37 M3_VC = dictionary (1:runs ,{[]});
38 Graph1_VC = dictionary (1:runs ,{[]});
39 Graph2_VC = dictionary (1:runs ,{[]});
40 Graph3_VC = dictionary (1:runs ,{[]});
41
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42 % Results
43
44 for r = 1:runs
45 S1 = Chodrow1(d,k,T,Omega);
46 S2 = Chodrow2(d,k,T,Omega ,h,s);
47 S3 = ChungLu(d,k,T,Omega);
48
49 V1 = zeros(1,sum(d));
50 V2 = zeros(1,sum(d));
51 V3 = zeros(1,sum(d));
52 E1 = zeros(1,sum(d));
53 E2 = zeros(1,sum(d));
54 E3 = zeros(1,sum(d));
55 index1 = 1;
56 index2 = 1;
57 index3 = 1;
58
59 for i = 1: length(k)
60 V1(index1:index1+length(S1{i}(1,:)) -1)= S1{i}(1,:);
61 V2(index2:index2+length(S2{h*s}{i}(1,:)) -1)= S2{h*s}{i

}(1,:);
62 V3(index3:index3+length(S3{i}(1,:)) -1)= S3{i}(1,:);
63 E1(index1:index1+length(S1{i}(1,:)) -1) = i;
64 E2(index2:index2+length(S2{h*s}{i}(1,:)) -1) = i;
65 E3(index3:index3+length(S3{i}(1,:)) -1) = i;
66 index1 = index1+length(S1{i}(1,:));
67 index2 = index2+length(S2{h*s}{i}(1,:));
68 index3 = index3+length(S3{i}(1,:));
69 end
70
71 V1 = V1 + max(E1);
72 V2 = V2 + max(E2);
73 V3 = V3 + max(E3);
74
75 G1 = graph(V1, E1);
76 G2 = graph(V2, E2);
77 G3 = graph(V3, E3);
78
79 Graph1_VC{r} = {V1, E1};
80 Graph2_VC{r} = {V2, E2};
81 Graph3_VC{r} = {V3, E3};
82
83 % Network Analysis
84
85 if max(V3) < n+m
86 G3 = addnode(G3, n+m - max(V3));
87 end
88
89 n = length(d); % Number of vertices
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90 m = length(k); % Number of edges
91
92 Measures1 = network_analysis(E1 ',V1 ',G1,n,m,T');
93 Measures2 = network_analysis(E2 ',V2 ',G2,n,m,T');
94 Measures3 = network_analysis(E3 ',V3 ',G3,n,m,T');
95
96 M1_VC{r} = Measures1;
97 M2_VC{r} = Measures2;
98 M3_VC{r} = Measures3;
99

100 disp(['Run ', num2str(r)])
101 end

E.2 Code Function Normal Graphs

1 % FUNCTION TO CREATE A NORMAL GRAPH
2 %
3 % INPUT:
4 % k := dimension sequence
5 % Vertex1 := the vertex vector of the graph
6
7 function [VN1 , EN1 , GN1 , E_normunique , G_norm] = ...
8 clique_normalgraph(k, Vertex1)
9

10 E1_norm = zeros(sum(k.*(k-1)) ,1);
11 E2_norm = zeros(sum(k.*(k-1)) ,1);
12
13 index1 = 1;
14 index2 = 1;
15
16 for i = 1: length(k)
17 E1_norm(index1:index1 + k(i)^2 - 1) = ...
18 repelem(Vertex1(index2:index2+k(i) -1), k(i));
19 E2_norm(index1:index1 + k(i)^2 - 1) = ...
20 repmat(Vertex1(index2:index2+k(i) -1), k(i), 1);
21
22 index1 = index1 + k(i)^2;
23 index2 = index2 + k(i);
24 end
25
26 E_norm = [E1_norm E2_norm ];
27
28 for i = 1: length(E_norm (:,1))
29 if E_norm(i,1) > E_norm(i,2)
30 B = E_norm(i,2);
31 E_norm(i,2) = E_norm(i,1);
32 E_norm(i,1) = B;
33 end
34 end
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35
36 E_normunique = unique(E_norm ,"rows");
37 E_normunique(diff(E_normunique , [], 2) == 0,:) = [];
38 G_norm = graph(E_normunique (:,1) - length(k), ...
39 E_normunique (:,2) - length(k));
40 E_normunique2 = E_normunique ';
41 VN1 = E_normunique2 (:) - length(k) + (1/2)*length(E_normunique

(:));
42 EN1 = repelem (1: length(E_normunique (:,1)) ,2) ';
43
44 GN1 = graph(VN1 ,EN1);
45 end

E.3 Code Execution File for Normal Graphs

1 % % Execution file for normal graphs
2
3 % Loading files
4 load('Graph1.mat')
5 load('Graph2.mat')
6 load('Graph3.mat')
7 load('T_projrole.mat')
8 load('T_VC.mat')
9

10 % Variables
11 runs = length(keys(Graph1));
12 T = T_VC ';
13
14 M1_VChypernorm = dictionary (1:runs ,{[]});
15 M2_VChypernorm = dictionary (1:runs ,{[]});
16 M3_VChypernorm = dictionary (1:runs ,{[]});
17 Graph1_VChypernorm = dictionary (1:runs ,{[]});
18 Graph2_VChypernorm = dictionary (1:runs ,{[]});
19 Graph3_VChypernorm = dictionary (1:runs ,{[]});
20
21 for i = 1:runs
22 % % Algorithm 1
23 k1 = groupcounts(Graph1{i}{2}');
24 V1 = Graph1{i}{1} ';
25 [VN1 , EN1 , GN1 , ~, ~] = clique_normalgraph(k1, V1);
26 Graph1_VChypernorm{i} = {VN1 ', EN1 '};
27
28 n1 = length(T);
29 m1 = max(EN1);
30 Measures_norm1 = network_analysis(EN1 ,VN1 ,GN1 ,n1,m1,T');
31 M1_VChypernorm{i} = Measures_norm1;
32
33 % % Algorithm 2
34 k2 = groupcounts(Graph2{i}{2}');
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35 V2 = Graph2{i}{1} ';
36 [VN2 , EN2 , GN2 , ~, ~] = clique_normalgraph(k2, V2);
37 Graph2_VChypernorm{i} = {VN2 ', EN2 '};
38
39 n2 = length(T);
40 m2 = max(EN2);
41 Measures_norm2 = network_analysis(EN2 ,VN2 ,GN2 ,n2,m2,T');
42 M2_VChypernorm{i} = Measures_norm2;
43
44 % % Algorithm 3
45 k3 = groupcounts(Graph3{i}{2}');
46 V3 = Graph3{i}{1} ';
47 [VN3 , EN3 , GN3 , ~, ~] = clique_normalgraph(k3, V3);
48 Graph3_VChypernorm{i} = {VN3 ', EN3 '};
49
50 n3 = length(T);
51 m3 = max(EN3);
52
53 if max(VN3) < n3+m3
54 GN3 = addnode(GN3 , n3+m3 - max(VN3));
55 end
56
57 Measures_norm3 = network_analysis(EN3 ,VN3 ,GN3 ,n3,m3,T');
58 M3_VChypernorm{i} = Measures_norm3;
59
60 disp(['Run ', num2str(i)])
61 end
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