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Preface

This report is the result of a year-long graduation period at Witteveen+Bos and serves as a thesis for
the Sustainable Energy Techology and Mechanical Engineering masters at the University of Twente.
Even though I’ve had to spend most of the time at home due to the worldwide pandemic, which has
been challenging at times, looking back I can say that I’ve really enjoyed working on my thesis project
in a corporate environment.
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of the integration of higher shares of renewable energy along with various relevant demographic and
technological developments. It was awesome to be able to work on such a meaningful project and
I’m grateful for this learning experience.

The experience from this real-life project was combined with the research goals of the Systems In-
tegration research theme within the Thermal Fluid Engineering department. With the help of my
daily supervisor Sebastian Trip, the direction of the thesis was formed such that it would provide a
sophisticated modelling framework and generate relevant insights into the scope of the Dutch energy
transition. I am thankful for his involvement because, without his guidance, feedback and insights,
this research would not have been the same.

I would like to thank my supervisor and future colleague at Witteveen+Bos Emiel van Druten for his
enthusiasm, knowledge and support. I do not know of any other students that have had the oppor-
tunity to go for a ride on the racing bike on a sunny afternoon with their supervisor. I look forward to
continuing our teamwork during future projects at Witteveen+Bos.

Every Monday, the ”Keek op de Week” would kick-start my week. Because of this moment with col-
leagues from both Deventer and Den Haag, I was sure to start my week with at least a laugh or two.
And, when we could, I’ve enjoyed our real-life encounters at the office and the occasional food and
drinks afterwards. Thank you guys, for your interest, support and insights.

My friends and family have supported me during the writing of this thesis. I am lucky for having such
great parents and awesome brothers, thank you for your love and support at all times. Hanneke,
thank you for your unwavering support and your ability to comfort me whenever I needed you. I look
forward to spending more time together in another way than staring at each of our screens. All my
friends, rowing squad, Magnus — thank you for making my time as a student as unforgettable as it
was! Onto the next chapter.

Seth van Wieringen, Olst, December 2021
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Summary

In light of the need for increased climate action, various countries are in the process of decreasing
greenhouse gas emissions from the energy system. Policymakers and energy planners are tasked
with making high-impact strategic decisions under uncertainty. Energy system modelling and analy-
sis is considered a vital instrument for informing decision-makers of transition pathways. The Dutch
energy transition is informed mainly by descriptive energy models used to evaluate the performance
of predefined systems in distinct scenarios. In contrast to energy system optimisation models, this
approach lacks the ability to provide insight into the optimality of the defined scenario.

Optimisation models entail a high level of complexity and cannot be validated. As a consequence,
model outcomes cannot be considered normative by policymakers, and results remain indicative.
Various methods to decrease structural uncertainty have been introduced. The near-optimal design
space is discovered by applying these methods, allowing policymakers to obtain insight into energy
system design trade-offs. Other than statistical methods, there is no method to deal with parametric
uncertainties. A novel approach to deal with parametric uncertainty is to apply exploratory modelling
analysis.

By applying this method to several case studies within the province of Gelderland using the optimisa-
tion model developed in this thesis, insight is obtained into the effect of exogenous cost uncertainties.
In addition to this systematic method, clustering is used to visualise patterns in optimal system con-
figurations and are consequently analysed to determine synergies and dynamics. It is concluded that
this approach is valuable for increasing policy relevance of energy system optimisation models.
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Chapter 1

Introduction

This chapter is an introduction to this thesis. It does not serve as an introduction to the subject itself.
This thesis forms the conclusion to two masters: Sustainable Energy Technology and Mechanical
Engineering. In section 1.1 a brief description of the two master programmes in relation to this thesis
is given. After this, section 1.2 declares the scope of this research and section 1.3 introduces the
research questions. Finally, section 1.4 contains a readers guide aimed at presenting an overview of
this thesis’ content.

1.1 Two masters, one thesis

After obtaining my bachelor’s degree in Mechanical Engineering, I wanted to focus more on the sub-
ject that sparked my interest the most: the energy transition. As a result, I enrolled in the master’s
programme of Sustainable Energy Technology at the University of Twente. This master covers nearly
all technical aspects associated with the energy transition and even mixes in the required economic
and societal subjects. In my second year, I decided to also take up the master of Mechanical Engi-
neering in conjunction with Sustainable Energy Technology. I choose the Design Engineering track,
as I always felt that understanding the technical design processes was at least as important as the
technical skills themselves.

This thesis was conducted based on knowledge and experience from both masters. The sustainable
energy domain knowledge mostly comes from Sustainable Energy technology. Courses such as
Wind Energy, Solar Energy and Energy Storage were each quite literally qualifying factors to be able
to conduct this research. Without the specific technical ability obtained in those courses, it would not
have been possible to write this thesis. Additionally, other courses from the program such as Energy,
Sustainability and Society have made me realise the societal implications of technology, for instance
through policies.

The courses from the Mechanical Engineering - Design Engineering master have served a more
supportive role. This thesis aims to contribute to a complex part of the energy transition: optimal
system integration of renewable energy. Without the insights from courses like Modelling Technical
Design Processes and Engineering Project Management, it would have been very difficult to form an
actionable approach that incrementally validates and improves the research and model. Moreover,
from courses like Electric Vehicle System Design and, from the Mechanical Engineering bachelor,
Systems Engineering I have learned to adopt a mindset that supports the design and integration of
more complex systems.

1



2 CHAPTER 1. INTRODUCTION

Finally, I would like to conclude by saying that I believe this thesis is a good reflection of the skills I
have developed during my education and that I have enjoyed working hard to contribute a small part
to the Dutch energy transition and academic research.

1.2 Scope

This thesis is the result of a graduation project in collaboration with Witteveen+Bos. This company
of consulting engineers is one of the players in the energy transition that provides key insights for
policymakers and offer engineering services for realising projects. In this sense, Witteveen+Bos is
heavily intertwined with the Dutch energy transition.

The scope of this thesis is in part aligned with a project at Witteveen+Bos and in part with an ongoing
research project at the University of Twente. This research project is conducted within the Ther-
mal and Fluid Engineering department. The chair of Energy Technology has a project called Smart
Energy Grid Regio Nijmegen within the research theme ”Energy Systems Integration”. One of the
research goals of the Smart Energy Grid Regio Nijmegen project is to develop sophisticated models
to identify innovative local energy system configurations. At the same time, Witteveen+Bos has an
ongoing project on system integration of regional energy strategies within the province of Gelderland.
The goal of this project is to generate insights for policymakers and energy planners based on the
planned deployment of renewable energy assets and demand development of the regional energy
strategies.

To align the two aforementioned goals, this thesis develops an energy systems model and subse-
quently applies this model in the context of Gelderland system study to generate insights for policy-
makers. In the Dutch energy transition, similar integration studies are carried now and will be carried
out in the years to come. Therefore, the research has been generalised to fit the Dutch context. Only
in the application of the model in the case studies the scope of Gelderland is applied.

1.3 Research questions

Based on the research scope and research goals of both Witteveen+Bos and the Energy Technology
department at the University of Twente a set of research questions is formulated. Below an overview
of the research questions is given. In the mind of continuous improvement, these have been updated
during the thesis when new insights were obtained. The research questions still reflect the original
intention but are reformulated to better represent the final content of this thesis.

1. How is Dutch energy transition policy formed and how do energy system modelling studies
contribute? (chapter 2)

1.1. In what way can energy system modelling approaches currently underutilized in the Dutch
energy policy be applied to present new information? (chapter 2)

2. What do cost-optimisation studies reveal about the deployment of renewable generation and
storage required for decarbonising energy/electricity systems/sector? (chapter 3)

2.1. What methodology can be applied to optimisation models to explore the robustness of
optimisation results in relation to uncertainties? (chapter 3)
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3. What design considerations are imperative to create an optimisation model that can be used to
explore uncertainties and policy effects? (chapter 4 and discussion)

3.1. How can the optimisation model be coupled to existing models to reflect the effect of
(inter)national energy policies? (chapter 3 and chapter 5)

4. How can exploring energy system optimisation models under uncertainty provide insights into
cost-optimal system configurations to support (robust) energy transition policy? (chapters 7-9
and discussion)

4.1. How can optimization models be utilized such that, in addition to uncertainty, the impact of
various scenarios can be assessed? (discussion)

4.2. Which cost-optimal system configurations can be identified for case studies within the
province of Gelderland? (chapters 7-9 and discussion)

Answers to the research questions are provided in the conclusion section of the chapters. The chap-
ters that contain the answers to the questions can be found next to the respective questions. At the
end of this thesis, an overview of all research questions and respective answers is omitted within the
conclusions to preserve conciseness. However, the research questions and respective answers are
used as a basis to formulate the main conclusions.

1.4 Readers guide

In this section, an overview of the content of this thesis is given. An graphical overview is shown in
figure 1.1. This thesis has two introductory chapters. Chapter 2 is an introduction to the Dutch energy
transition and associated processes and policies oriented towards the regional energy strategies and
system integration studies. In this chapter, it is identified how energy systems modelling can be
implemented to generate new insights for supporting policymakers. Chapter 3 introduces a specific
energy systems modelling approach based on analysis of literature and reveals model design con-
siderations and introduces the gap in the literature on explorative use of energy system optimisation
models under uncertainty.

The developed energy systems optimisation modelling framework and submodels are introduced in
chapters 4 and 5, respectively. Chapter 4 provides an overview of the framework capabilities while
chapter 5 presents a detailed description of each of the component submodels.

Chapter 6 describes the methodology applied to the various case studies within the province of
Gelderland. Consequently, chapter 7 presents the results obtained on the local energy projects: the
cable pooling project and electric mobility hub. Chapters 8 and 9 presents results obtained for re-
gional energy strategies and the province of Gelderland in 2030 and 2050, respectively.

In chapter 10, the case study results are related to the research questions, implications of the applied
modelling methodology and following from that, recommendations for future research are discussed.
Finally, chapter 11 concludes this thesis and concisely presents the main findings and recommenda-
tions of this research.
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Figure 1.1: Graphical overview of the content of this thesis. RQ stands for research question and
can be used to find which chapters answer the research questions in the respective
conclusive section.



Chapter 2

Dutch energy transition

Across academics, politics, and society, little doubt remains on climate change’s adverse effects and
causes. The current system of energy, production and consumption is not sustainable. Transitioning
from the polluting and damaging status quo to a climate-neutral and sustainable future is vital and
imminent.

This chapter provides a comprehensive overview of the energy transition in the Dutch context. Var-
ious parties are involved in the energy transition. Each party has a unique perspective and is dedi-
cated to specific tasks, possibly secured or enforced by legislation. An overview of involved parties
and their respective roles is presented based on a review of relevant legislation, governmental pro-
ceedings and grey literature. Processes and policies that support and govern the transition of the
Dutch energy system are discussed. Therefore, this chapter provides the overview, context, and
knowledge to propose the experimental content included in this thesis. Additionally, by analysing
the energy systems modelling methodology applied, a gap in current policy supporting processes is
identified.

The energy transition is complex and multi-disciplinary. It entails any direct or indirect energy-
consuming sector, from households to industry. The scope of this thesis is limited to the power
system. An overview of parties involved with the transition of the Dutch energy system is given in
section 2.1, with a specific focus on the power system’s transition. Processes, policies, and asso-
ciated publications relevant to the Dutch energy transition are presented in section 2.2. Finally, this
chapter is concluded in section 2.3.

5
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Figure 2.1: An abstract overview of the various parties involved in the Dutch energy transition, based
on their role.

2.1 Involved parties

To obtain insight into the playing field of the Dutch energy transition it is vital to know what parties are
involved and what their respective role or perspective is. It is recognised that providing a comprehen-
sive overview scoped towards this thesis’ content will in some respect negate the complexity of the
organisation, policies and legislation of the transition. Unmistakably, without providing any specific
context the societal relevance of this research cannot be pinpointed. Societal relevance is favoured,
as it allows to align this work with the mission of the University of Twente: ”The University of Twente
is the ultimate people-first university of technology. We empower society through sustainable solu-
tions.” [1] In other words, the UT aims to provide solutions to real-world problems through its research.

Parties that play a significant role in the Dutch energy transition have been established based on
literature review and subsequently curated based on expert opinion with help of the colleagues at
Witteveen+Bos. Four categories of parties are used to provide some taxonomy, i.e. a systematic
classification of the parties. The identified categories are (local) government (i.e. the demanding
party), project developers and contractors (i.e. the executive parties), consultants and knowledge
and innovation parties (i.e. research institutes and universities). The government set goals, decides
on subsidies, provides legislation and warrant compliance with goals and legislation. Project de-
velopers and contractors realise the energy projects that contribute to reaching the targets and are
incentivised by legislation and subsidies. Consultants are parties that are able to provide unbiased
specialist knowledge to support policymakers and decision-makers with information or on complex
challenges in realising goals. Knowledge and innovation parties generate and/or combine new do-
main knowledge through fundamental or applied research. An abstract overview of the identified
groups is shown in figure 2.1.

Depending on the scope, perspective and system level, the exact parties in this process overview
change. From an international perspective, all national governments could be regarded as the de-
manding party through the Paris agreement. An executive party would then be the European Parlia-
ment, which consults the European Commission to support decisions and policies. Innovative parties
would entail academics, industry and consortia alike on an international level.
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Since this thesis is tailored towards the Dutch energy transition specifically, an overview of the par-
ties on a national level is given below. The boundaries chosen are based on the current organisation
of the energy transition within the Netherlands. Per category, publications and documents that ful-
fil a substantial role in the Dutch energy transition are listed. These will be further elaborated and
connected in section 2.2.

1. Government
Dutch national government, provinces, municipalities, regional energy strategies, National Pro-
gram regional energy strategies
Relevant publications: Klimaatakkoord (climate agreement), RES goals, PBL’s climate and
energy outlooks.

2. Executive parties
Grid operators (TSO and DSO), renewable energy project developers, RVO, etc.
Relevant publications: System studies, infrastructure outlooks.

3. Consulting parties
CE Delft, Witteveen+Bos, Kalavasta, DNV, Royal HaskoningDHV, Quintel Intelligence, Over-
Morgen, Berenschot, etc.
Relevant publications: RES offers, system studies, infrastructure outlooks

4. Knowledge and innovation parties
TNO, TU Delft (Engineering Systems and Services), TU Eindhoven (NEON Research) & Uni-
versity of Twente (Energy Systems Integration), etc.

This thesis is the result of a graduation internship at Witteveen+Bos, one of the consulting parties in
the Dutch energy transition. The University of Twente is one of the innovative parties in the energy
transition, that generates knowledge by conducting research. This offers a unique value proposition,
by connecting the knowledge and functions of both domains. It should be possible to adapt energy
system modelling methodologies developed by research institutes effectively by leveraging on the
practical domain knowledge of Witteveen+Bos in an effort to bridge the gap between academics and
society. As a result, consulting parties will be better equipped to inform executive parties while novel
modelling methodologies can be developed and tested on real-life cases. This will in turn hone the
societal relevance of academic energy system modelling. To be able to stipulate where and how such
a contribution can be made, the current process, policies and relevant publications are analysed in
section 2.2.

2.2 Current process, policies and publications
Global warming results from anthropogenic activities that the emit Greenhouse Gases (GHG), such
as carbon dioxide and methane [2]. After recognising the validity of climate change, 195 national
governments committed to severely reducing emissions to address the pressing issue. This interna-
tional assembly of countries named the conference of parties (COP), signed the by now well-known
Paris agreement [3]. While writing this thesis, COP26 in Glasgow is taking place. Leading to this
major event, several countries have raised their Nationally Determined Commitments illustrating the
perceived urgency of rising to the climate change challenge [4]. The European Union has recently
increased its emission reduction ambition from 40% to 55% by 2030, relative to 1990 levels [5]. The
increased emission reduction ambition is received well and is supported throughout the EU [6]. It is
recognised that large scale deployment and integration of renewable energy sources play a major
role in reaching decarbonisation goals because 75% of GHG emissions in the EU come from the
energy sector. The target share of renewables in the European energy mix by 2030 is increased
from 32% to 40% in the new renewable energy directive, while this share was 20% in 2019 [7].
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To organise and realise emission reduction on a national level, the Dutch government passed the cli-
mate law and published the National Climate Agreement (NCA) which outlines the organisation and
sector-specific targets [8] [9]. This law was passed before the European Green deal and set a goal of
49% emission reduction by 2030, although it is expected that the reduction goal will be aligned with
the new European target. Monitoring whether the current policy is sufficiently effective for reaching
the renewability goals across all policies is done by PBL. This is done based on a yearly publication:
Klimaat en Energieverkenning (Climate and energy outlook) [10]–[13]. Moreover, the NCA sets clear
renewable electricity generation goals for 2030. A target of 35 TWh annually generated electricity
is set for large-scale onshore renewables. To achieve this goal while respecting local constraints,
taking into consideration of spatial integration and societal support the Netherlands is divided into
30 regions. These regions are tasked with establishing a Regional Energy Strategy (RES). Each
of these regions is tasked with determining how much renewable electricity can be generated within
that region by 2030, and with what technologies this is achieved. A framework for procedures and
communication between the regions is secured by a higher-level organisational body called the Na-
tional Program RES.

However, it is not trivial that from the combination of a very abstract top-down goal of energy gen-
eration (i.e. climate agreement target) and bottom-up approach of spatial integration and societal
support (i.e. the RES) a robust and optimal transition to the future system integration is achieved.
The regional energy strategies do not consider the effect of spatial dispersion of renewables on the
grid infrastructure nor does it consider consequences or cost impacts on the national system. As the
European Commission [14] states: ”Without robust policy action, the energy system of 2030 will be
more akin to that of 2020 than a reflection of what is needed to achieve climate-neutrality by 2050.”.
It is therefore vital that policymakers are well-informed on the impact of the transformation from the
current centralised, dispatchable energy generators to geographically distributed, time-variant, re-
newable energy sources on a system level.

Therefore, system integration studies are carried out on a provincial level. These system studies
aggregate the RES within a province and analyse the challenges and opportunities on a system level
if all regional plans become reality. A central topic in the system integration studies is the effect of
increased supply of renewable energy sources as well as increased electrification of various sectors
on existing energy infrastructure. In contrast to the RES, this approach forms a more clear overview
and allows the assessment of the system impact of the multiple RES’ and formulate advice that
enables the mitigation of possible negative effects while identifying possible regional opportunities.
A literature study is carried out to obtain more insight into the system integration studies specifically.
The analysis of the system integration studies methodologies is presented in section 2.2.1.

2.2.1 System integration studies

The system integration studies aggregate all RES’ within provinces to obtain an overview of local
decisions in terms of renewable energy generation and establish the balance of supply and demand
by 2030 and 2050. The focus of system integration studies is on the changing and increasing demand
on energy infrastructure, and where ever possible map possibilities of systems integration. Each
of these reports includes a grid study carried out by the Dutch Transport System Operator (TSO)
TenneT, and Distribution System Operator (DSO) within that province. As a whole, these reports
aim to highlight the regional plans within the provincial context, which allows for a more coordinated
system approach between regions without diminishing the intentions of detailed regional studies.
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As of now, eight provinces have already published their system studies. The provinces Groningen
and Drenthe together have published their system study together, so a total of seven reports is avail-
able now. During this thesis work, I co-authored the system study for the province of Gelderland.
By contributing to the system studies, I obtained insight into the process and methodologies applied
in system studies. During this period, the system study for the province of Utrecht was also under
development. The authors of this study (Quintel Intelligence) were contacted to obtain insight into
their process and methodology.

The two remaining provinces needed to cover 12 provinces within the Netherlands are the province
of Flevoland and Friesland. Both these provinces are also their own RES region and have not carried
out system integration studies yet. Friesland states that the methodology followed in the RES publi-
cation lacks an integral approach and focuses only on the realisation of renewable energy and plans
to carry out a system study [15]. The province of Flevoland consulted the TSO and DSO directly in
the RES publication, which results in a set of qualitative descriptions for the mitigation of possible net
congestion [16].

All reviewed provincial system studies follow a generally similar methodology. First, scenarios are
created for 2030 and 2050. The scenarios are detailed using the RES, region-specific information
(e.g. data on industry or mobility within the province) and apply the latest projections (e.g. technol-
ogy adaption rates, demographic changes, etc) to obtain a scenario that aims to provide a realistic
representation of the province in 2030. For the 2050 scenarios, the aim is no longer to provide a rep-
resentation that is as realistic as possible but rather to examine the effects of diverse future system
configurations. To this end, the provincial studies use one of two sets of scenarios that have been
developed by the party of Dutch system operators, NetbeheerNL, covered in more detail in section
2.2.2. To quantitatively interpret the effects of those scenarios, simulation tools and models are em-
ployed to determine the energy balance and flows of various energy carriers on an hourly basis for
the horizon year. Based on the modelled scenarios, the grid operators test the current infrastructure
against the developed scenarios. Finally, the system studies are able to provide key information on a
system-level based on the obtained results. An overview of the utilised scenarios and applied tools
per provincial system study is given in table 2.1.

From table 2.1 it can be concluded that there is some agreement in the scenarios and tools utilised in
the system studies. The studies on the province of Noord-Holland and Zeeland are slightly different
from the rest, applying the older scenarios ”Net voor de Toekomst” scenarios [26], while other studies
apply the newer ”Klimaatneutrale Energiescenario’s” [27]. Both Noord-Holland and Zeeland use the
corresponding 2030 scenarios, instead of scenarios based on the RES (and/or climate agreement).
Moreover, as laid out in section 2.2.2, the two sets of scenarios are very similar. It can therefore be
concluded that these scenarios are widely used to investigate possible future configurations of the
energy system to inform policymakers.

On top of this, nearly all scenarios used in the system studies have been modelled using the Energy
Transition Model (ETM). This scenario-based modelling tool offers an integral, independent and
transparent platform to model energy systems. It is completely open-source, including the underly-
ing data sets. It has been developed by Quintel Intelligence with the support of numerous parties,
including grid operators and the Dutch Ministry of Economic Affairs and Climate Policy. It is used by
(local) government, consulting parties and research institutes. Through a web-based graphical inter-
face, assumptions and predictions about developments between the reference year and the horizon
year can be implemented in the model. The ETM calculates the energy demand, energy production,
electricity prices, import and export, etc on an hourly basis. It is also able to present the impact of the
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Table 2.1: Overview of the scenarios and tools implemented in the provincial system studies.

Provincial Scenarios Tools

system study RES 2030 KNES 2050 NvdT ETM CE tools Other ref.

Gelderland x x x [17]
Groningen & Drenthe x ∼ ∼ x xa [18]
Limburg x x x xb [19]
Noord-Brabant ∼ ∼ xc [20]
Noord-Holland x xd [21]
Overijssel x x x [22]
Utrecht x x x [23]
Zeeland x xe [24]
Zuid-Holland x x x [25]

x marks that this study uses the specified tool or scenario while ∼ represents a processed or inter-
preted version of that tool/scenario. KNES 2050, ”Klimaatneutrale energiescenario’s 2050” (climate-
neutral scenarios 2050). NdvT, ”Net voor de toekomst” (Grid for the future scenarios, both 2030 and
2050).
a CEGOIA
b CE PowerFlex
c ETM scenario demand curves are used in internal undisclosed model.
d CE explorer, CEGOIA
e CEGOIA, CELINE, CE PowerFlex

modelled parameters in terms of system cost, emission reduction and regional energy balances. Due
to the ease of interaction and open-source nature of the ETM, the model is transparent and fulfils a
key role in bridging the gap between policymakers and energy system modellers. It is concluded that
by modelling future energy system configurations in the ETM a wide support base can be established.

2.2.2 Integral infrastructure outlooks

The exact configuration of the Dutch energy system of the future is uncertain and subject to polit-
ical decisions, societal support and technological innovations. To be able to somehow assess the
demands of possible configurations on energy infrastructure, the Dutch party of grid operators have
studied future energy systems based on energy scenarios. These scenarios are diverse in terms
of global developments (e.g. the emergence of a global hydrogen economy), energy demand (e.g.
industrial growth, electrification of heat and mobility) and national energy self-sufficiency. As such,
these uniquely different scenarios aim to provide insight into the required infrastructure for the corre-
sponding energy systems. In reality, the transition from one system to a future state results from the
complex dynamics of politics, society and economics [28]. Therefore, the designed energy system
scenarios are not a reflection of the most realistic future energy configurations. However, by using
this descriptive modelling approach the performance of a given future outcome can be analysed [29].

In 2017 NetbeheerNL released the ”Net voor de Toekomst” (grid for the future) publication [26]. Later,
a consortium named the ”Integrale Infrastructuurverkenning 2030-2050” (integral infrastructure out-
look, II3050) was formed which published a series of reports on future energy system configurations.
Since the provincial system studies use scenarios for 2050 based on both, a brief introduction and
overview is given below.
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Net voor de Toekomst

In this publication, four possible future energy system scenarios are introduced depending on different
societal and political directions. They are defined based on the level of scale the energy transition
is governed and on the level of self-sufficiency on a (sub)national level. From this approach, the
following scenarios are defined.

1. Regional
High level of regional control, e.g. municipalities and provinces take initiative. Electricity and
heat are generated locally as much as possible. A combination of on-shore wind, solar PV,
biomass and geothermal determine the energy mix.

2. National
The government takes a leading position and steers towards energy autarky on the Dutch
national level by taking control in the deployment of more centralised and large-scale energy
sources, mainly off-shore wind.

3. Generic
A natural transformation of the energy system is assumed. No government interference other
than a strong incentive to decarbonise through CO2 prices and other taxes.

4. International
In this scenario, the Dutch energy transition is strongly intertwined and dependent on the global
energy transition. Cross-border trade in renewable electricity and energy carriers such as hy-
drogen is typical for this scenario. The resulting energy mix is a combination of renewables and
fossil with carbon capture.

Integral infrastructure outlook 2030-2050

The Dutch Climate Agreement (DCA) recognises the significance of infrastructural changes required
to facilitate the Dutch energy transition. Industrial demand development and the increase in de-
centralised, variable energy production is assessed to obtain insight into the required infrastructural
investments [8]. As a result the Netbeheer Nederland consortium consisting of TenneT, GasUnie and
the regional grid operators (Liander, Stedin, Enexis, Coteq, Rendo, Westland Infra and Enduris) was
tasked in 2019 with delivering an integral infrastructure outlook.

This outlook was organised in several phases. Firstly, the existing future energy scenarios were
revised based on the latest trends, projections and insights. These scenarios were then used by
the grid operators to determine the effects of those scenarios on the infrastructure. Finally, a report
bringing forth relevant conclusions and insights based on the carried out infrastructural calculations
and analysis was published [30].

Similarly to the Net voor de Toekomst scenarios, four future energy system scenarios were pub-
lished for the integral infrastructure outlook. These are called the ”Klimaatneutrale Energiescenario’s”
(climate-neutral energy scenarios, CNES) [27]. The scenarios follow a similar but slightly different
structure, as detailed below.

1. Regional
This scenario is focused on regional control and energy autarky. Key concepts are high levels
of decentralised power generation, by deploying high shares of on-land wind turbines and solar
PV. The energy demand from industry is assumed to shrink and electrify where possible. This
results in a substantial reduction in energy demand.
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2. National
This scenario assumes strong leadership by the Dutch government. This allows for more cen-
tralised renewable energy sources, mainly an expanded capacity of offshore wind production.
The industry remains roughly the same size. Energy self-sufficiency is achieved on a national
level.

3. European
Significantly less renewable energy is generated within the Netherlands leading to low self-
sufficiency on a national level. Additionally, this scenario assumes a growing industry. The
import of hydrogen, biomass and fossil fuels closes the energy balance. The scenario is centred
around biomass and highly dependent on CO2 capturing technologies to mitigate or reduce
emissions from fossil energy sources.

4. International
This scenario displays the lowest self-sufficiency and renewability. This energy system config-
uration relies very heavily on the availability and import of green hydrogen. Additionally, this
scenario assumes a growing industry and is the only scenario where the final energy demand
increases. In this scenario, hydrogen and bio-gas could be feasible alternative energy sources
for natural gas in gas plants.

The CNES scenarios are used for the integral infrastructure outlook, making them more valuable than
other generic scenarios. Moreover, all scenarios are modelled in the ETM, making them highly ac-
cessible and transparent. As a result, the CNES are used throughout the provincial system studies.
However, this descriptive modelling approach only produces four possible corner piece scenarios for
2050. It is reasoned that these can be used to assess the bandwidth of required energy infrastructure
and to identify no-regret investment decisions. As such, the scenarios were never meant to represent
optimised or desired future energy system configurations that policymakers should choose between.
Instead, a realistic and feasible, well-balanced energy system is expected to be somewhere in so-
lution space between the four corners. There are no insights into solutions existing in the plausible
solution space nor where an optimal system might be found. This insight is vital to support policy-
makers in establishing a desired future system which the transition should lead to. Combinations of
the four scenarios do not exist nor do they contain continuous variables that can be used to determine
tipping points or trade-offs.

2.2.3 On the lack of optimisation studies
Dutch national and regional government is tasked with the transition to a clean, affordable and de-
pendable energy system. The Dutch climate agreement and law, and subsequently the regional
energy strategies, are tasked with realising this transition. This transformation ideally is managed
by policy measures that ensure an orchestrated transition to the desired state of the future energy
system. However, the scale and complexity of national and regional energy systems and the mutual
interaction require robust long-term planning which has introduced increasing reliance on energy
system modelling [31].

Lund et al. [29] defines two distinct categories of energy system models that can be used to analyse
energy systems and generate insight using modelling. Descriptive models that are based on prede-
fined system configuration are referred to as simulation models. Prescriptive models that are used
to find the optimal configuration given a set of decision-variables such as technology deployment are
defined as optimisation models. Based on the review of the Dutch energy transition policy, process
and relevant publications it can be concluded that simulation models are mainly used through pre-
scribing distinct energy system scenarios. However, it is recognised that optimisation models are
more suited to support policy makers and energy planners in achieving robust long-term policy [31].
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The current approach can be summarised by the top-down renewable electricity generation target,
enforced by the climate agreement, which is subsequently realised by bottom-up spatial integration
through the regional energy strategies. Effects of regional policy decisions to realise the imposed
targets are only reactively assessed in the provincial system studies. This distributed approach with
regional renewable energy deployment pledges does not inherently consider system integration. As
such, it is not a strategically orchestrated transition. This lack of insight into the optimality of the
future energy system that emerges from this approach has been recognised by politicians, calling for
”optimisation studies to gain insight in cost-optimal energy configurations, as scenario-based studies
have been carried out but optimisation studies are missing” [32]. Therefore, it can be established
that there is a distinct demand for applying energy system optimisation models to help inform energy
planners and policymakers in the Dutch energy transition.

2.3 Conclusion

This chapter analysed the parties, policies, processes and publications governing the Dutch energy
transition. Based on a review of relevant proceedings and publications in grey literature, involved
parties have been mapped. Using a taxonomy, these parties have been assigned to groups that
each fulfil distinct functions in the Dutch energy transition. This thesis is a product of a graduation
internship at Witteveen+Bos, one of the consulting parties of the transition, and its practical domain
knowledge is utilised to come to a societal value proposition while bridging the gap between aca-
demics and consulting parties.

Moreover, through the review of the grey literature, the first research question can be answered. How
is Dutch energy transition policy formed and how do energy system modelling studies contribute?
Dutch energy transition policies are developed in three phases. First, the national Dutch government
sets a renewable energy target with the aim to reduce emissions to comply with international and
European agreements and laws. This goal is subsequently imposed on local governments by or-
ganising municipalities into regional energy strategies. These regional energy strategies are tasked
with mapping the possible quantities of renewable energy generation deployment within that region,
based on spatial integration, societal support and local integration opportunities. Lastly, the pledged
and/or proposed renewable energy generation deployment resulting from the regional energy strate-
gies is evaluated in the provincial system studies. These studies assess the impact and effect of the
pledges on a provincial level and focus mostly on system effects, such as grid infrastructure conges-
tion.

Moreover, prescriptive energy modelling is applied to generate insight for energy planning and poli-
cymakers into the effect of possible future energy system configurations. To this end, climate-neutral
energy scenarios have been modelled in the Energy Transition Model. Consequently, these sce-
narios have been used to carry out infrastructure studies both on a national and provincial level.
Considering the research question: In what way can energy system modelling approaches currently
underutilised in the Dutch energy policy be applied to present new information? it can be stated that
optimisation studies are underutilised in the current process. Energy system optimisation models
are marked in academic literature as more suited for supporting robust policies for long-term energy
systems planning. In the parliament, this lack of optimisation studies on future Dutch energy systems
has been recognised, and a motion stipulating this concern is passed.
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However, it should be recognised that completely steering away from the current process will neg-
atively impact the support base for energy optimisation model outcomes. Leveraging on the fact
that there is already a consensus in terms of the future scenarios to use and the descriptive model
that is used as a platform, the optimisation studies should align with the current methodology to ex-
pand knowledge and societal relevance. By coupling the energy system optimisation model to the
existing descriptive models, i.e. the climate-neutral energy scenarios modelled in the Energy Transi-
tion Model, optimisation models can be used to generate new insights on the Dutch energy transition.



Chapter 3

Energy systems optimization models

As outlined in chapter 2, there is an opportunity to apply energy system optimisation models to pro-
vide new insight for energy planners and policymakers involved in the Dutch energy transition. Based
on a review of the current process, it was found that descriptive modelling is predominantly used. This
category of models is very suitable for evaluating an energy system based on a predefined configu-
ration but lacks the ability to find optimal configurations.

This chapter provides a comprehensive review of the literature published in the energy systems mod-
elling niche, with a specific focus on energy system optimisation models. Before attempting to apply
optimisation models in the Dutch context, it is vital to obtain insight into key modelling considerations
in terms of formulation of the model, such as the spatial and temporal resolution or geographic scope
of the model. Other than the technical validity of the modelling approach, care should be taken that
the modelling approach and decisions on corresponding assumptions are aligned with the purpose
and intended use of the model.

In section 3.1, a brief introduction to optimisation modelling for energy systems is given. Section 3.2
present a brief overview of the landscape of existing energy systems optimisation models and anal-
yses model outcomes from present studies. Based on the publications surrounding energy system
optimisation modelling methodologies, section 3.3 presents insight into design considerations when
applying optimisation models for long-term planning of energy systems. The validity and uncertainty
associated with model outcomes are addressed in section 3.4. Finally, section 3.5 concludes this
section.

15
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3.1 Optimisation

International action on climate change has initiated the transition of energy systems based on sus-
tainable energy resources. However, the optimal configuration of future energy systems remains
largely unknown [33]. To obtain insight into the possible configurations of future energy systems
based on renewable energy, energy modelling analysis has been adopted to model complex re-
lationships and interdependencies, temporal variability and spatial dispersion [29]. Governments,
policymakers and energy planners tasked with making required strategic planning decisions are in-
creasingly dependent on the development and implementation of energy modelling tools [34]. Energy
System Optimisation Models (ESOMs) specifically, are widely used to generate insights to inform en-
ergy and environmental policymakers [35].

The term optimisation is used to describe methodologies that either maximise or minimise the ob-
jective function (e.g. minimal cost) by varying a set of design variables. In ESOMs, the objective
function often represents system cost and the design variables represent deployment and operation
of technologies. ESOMs outcomes will therefore be able to determine the optimal configuration and
operation of a given energy system [36]. The energy balance is implemented as constraint equa-
tion. As a result, the determined energy system is scaled such that during the operation over the
predefined time horizon the system is capable of delivering the power needed to meet the demand
for energy at every time step.

Optimisation models can be formulated using various mathematical programming methodologies.
Linear Programming (LP) is the most simple and considers (piece-wise) linear relations and (in)equalities.
The addition of binary variables yields Mixed Integer Programming (MILP). When the model purpose
requires the inclusion of more complex and non-linear relations the model will be formulated using
Non-Linear Programming (NLP). If the design variables of the optimisation model are based on
components that exhibit complex dynamics (e.g. ramping speed, partial load efficiencies, minimal
up-time of thermal plants) the model can be best formulated using either MILP or NLP to achieve
sufficient accuracy. For modelling purposes that are less focused on exact dispatch dynamics or that
do not consider design variables based on such complex dynamics LP is favoured for computational
tractability [37].

ESOMs can be further divided into ”snapshot” and ”evolution” categories [34]. Models in the snap-
shot category can be used determine to optimal system configuration and operation for a given time
period somewhere in the future. As a result, this formulation is representative of a long-term equilib-
rium optimal outcome under predefined conditions [38]. Evolutionary models start with the existing
power system at the reference year and incrementally optimise technological deployment over the
modelled time horizon. As a result, models that use this approach can also be used to describe the
pathway to the optimal configuration of the energy system [33] [39].

3.2 Existing models

In literature, plenty of review papers can be found that present a clear overview of existing energy
system models [39]–[48]. This section does not aim to provide a similar overview that categorises,
compares or ranks existing models. Rather, it presents a select number of high-level insights based
on the diversity of models found in the literature.



3.2. EXISTING MODELS 17

In general, it was determined that there is a diverse landscape of developed models. These mod-
els are diverse in various aspects, which can be used to explain the co-existence of many models.
Firstly, there is the origin of the model. Some models are (in part) realised by commercial parties
while others are developed by academics, often impacting the specific application area. Then there
is the purpose of the model, i.e. what is the research question to be answered. Based on the pur-
pose of the model, various model design considerations can be decided. This is further unpacked in
section 3.3.

One challenge that is repeatedly addressed in literature is the availability and reproducibility of en-
ergy system models. This is covered separately in section 3.2.1. This thesis is oriented towards
providing insights into the Dutch regional energy strategies. Therefore, studies that have applied ES-
OMs to determine energy system configurations at the national, sub-national or regional levels with
high shares of renewable energy generation and storage are of special interest. Observations and
conclusions of those studies are analysed in section 3.2.2.

3.2.1 Transparency and traceability

The development of increasingly complex energy modelling tools has been accompanied by criti-
cism regarding the transparency, responsibility and accessibility of models [40]. Historically, energy
systems have been dominated by only a few players. There was no obligation for large commercial
parties or government agencies to reveal data, assumptions or methodologies utilized in energy sys-
tems planning. The rapid deployment of decentralised energy generating or storing technologies in
the advent of liberalised markets and increasing pressure on decarbonisation has introduced a large
number of new market players, making centralised orchestration historically controlled by a few par-
ties no longer feasible. Additionally, more transparency is advantageous by facilitating collaboration
across the policy-science boundary [49]. This opens up decision processes and offers insight into
the reasoning behind policies, improving the social acceptance of new legislation and energy infras-
tructure [50].

In an attempt to open the black box of energy systems modelling various initiatives exist. In 2003,
the first open-source energy model was released [51]. Researchers and analysts have since rec-
ognized and underlined the importance of open access, open data and open source in the field
of energy modelling. Freely accessible code repositories and specific snapshots provide the pos-
sibility for third parties to inspect and verify model outcomes [52]. The conditions encountered in
modern energy planning display a disruptive character in a fast-changing environment. Moreover,
public acceptance becomes increasingly important in an era of expanding information technology.
Additionally, the energy transition can have major implications for the overall economy that results in
an increasing demand for energy system analysis to provide guidance [53]. Open and collaborative
development of the Open Energy Modelling Framework (oemof) was aimed at achieving maximum
levels of transparency and participation [54]. Furthermore, in a response to the rising challenges of
energy modelling in terms of transparency, participation and accessibility the Open Energy Modelling
Initiative (openmod) was initiated. This is a community of modellers and energy system experts alike,
devoted to promoting an open approach in energy systems modelling and analysis [51].

Not only the accessibility (e.g. open source, open access) of energy system models and tools is
important for transparency. Modellers are tasked with addressing the growing complexity of energy
systems by balancing various model design considerations, such as resolving spatial and temporal
dimensions or the trade-off between incorporating uncertainty and clarity of model outcomes [48].
Supporting the decisions of the modeller should be the recognition of the fact that more complex
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models do not necessarily guarantee more accurate results [55], while they pose the risk of further
obfuscating model internal workings [34]. This can possibly negatively impact the perceived policy
relevance of the model [41].

3.2.2 Renewable energy and storage deployment

More than 500 peer-reviewed articles have used energy modelling and analysis to provide insight
into the possibilities of fully renewable energy systems [56]. Although these studies are generally
well-received and show a steady increase of publications on the topic [57] [56], studies on 100%
renewable energy systems have received criticism [58]. It was reported that publications did not
sufficiently meet novel feasibility criteria, such as compliance with mainstream energy-demand fore-
casts and the use of adequately modelled time resolution. However, this criticism was consequently
debunked [59]. It should be stressed that even when more strenuous feasibility and viability criteria
are imposed it is indeed possible to meet 100% of future energy demand based on energy systems
with high shares of renewable energy.

Based on the technical potential of renewable generation it was determined that it is possible to meet
local demand in most sub-national regions in Europe, based on energy generation of photovoltaics
and wind turbines alone [60]. The trade-offs between various geographic scales of balancing and
autarky were investigated based on a fully renewable energy system at a European scale. It was
concluded that the continental scale of supply of balancing is most cost-effective but requires large
coordinated efforts to expand grid capacity. Regional self-sufficiency is feasible for most regions but
introduces a higher total system cost [61]. By varying the deployment of on-shore and offshore wind,
rooftop and open-field photovoltaics, it was shown that land use of renewable energy generation can
be halved at a minimal cost penalty [62].

Overall, several studies have found economically viable energy systems that are largely based on
solar and wind-based energy generation [63]. Moreover, at least 16 studies have revealed that
100% renewable energy systems are possible on a global level although the relative contribution
of solar and wind-powered generation was very dependent on technology cost assumptions. The
conservative attitude towards technological adaptation has led to a failure to anticipate steep cost
declines [56]. The resilience of 100% renewable energy systems to extended periods of the scarce
supply of wind and solar revealed that single year approaches underestimate storage requirements
although renewable dispatchable sources (e.g. hydro or bio-based thermal plants) can greatly reduce
this impact [64].

However, there is no real consensus on the role of storage versus flexible assets. Some studies found
that incremental deployment of dispatchable generation can greatly displace the need for storage,
reducing overall system cost [65]. Other studies imply lesser importance for dispatchable technolo-
gies, either based on the cost reduction potential of modern storage technologies such as lithium-
ion [38] [66] or based on the potential of demand response and senatorial coupling (e.g. power-to-gas
or power-to-heat) [67] [68].

Overall, it is concluded that energy systems that are based on renewable energy are technologically
feasible and economically viable. What the exact optimal system configuration is, remains incon-
clusive. As such, normative policy advice cannot be condensed from the literature. The obtained
system configuration is greatly impacted by the used model. Therefore, section 3.3 covers model
design considerations as well as uncertainty which is both integral for achieving policy relevance with
energy systems modelling and analysis.
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3.3 Model design considerations

During the development of a model, it is inevitable to make decisions on what sectors, technolo-
gies and representations to include or exclude. It is important to highlight the most important parts
of reality to be represented in the model that is fundamental to reach the specific modelling pur-
pose [29]. This section describes four of such model design considerations: time resolution, geo-
graphical scope, data sources and finally, components and functionalities.

3.3.1 Time resolution

The time resolution used in the model should align with the geographic scope, the weather conditions
within the area of interest and the research questions at hand. When optimising to find reliable en-
ergy system configurations, the time resolution should be sufficiently high to account for the variability
of energy demand and renewable energy generation. Models used to generate long-term planning
insights can in general safely be based on hourly simulations [59]. Correspondingly, the majority of
models used presented in section 3.2 are based on hourly resolution.

Several studies have shown that sub-hourly optimisation does not lead to substantially different re-
sults. Decreasing the temporal resolution from 1 hour to as little as 5 minutes only increased system
cost by 1% for Ireland, an isolated power system that can be expected to be more susceptible to
small fluctuations [69]. Also for smaller energy systems hourly simulation is valid. Only small differ-
ences in models outcome are reported by comparing results based on 60 and 15-minute intervals
for a district heating network based on high shares of wind, subsequently concluding that there is ’no
need for higher resolution modelling’ [70]. It should be noted that modelling on an hourly basis can
underestimate the starting and ramping of dispatchable assets required to maintain intra-hour supply
and demand balance, although energy storage dispatch and other forms of flexibility can counter this
underestimation [71].

Increasing the time interval, however, should be treated carefully because downsampling to longer
periods can lead to vastly different results [72]. On the other hand, time series aggregation methods
can be used to reduce the size of the model input data while remaining representative of the original
signal. Methods such as k-medoids and hierarchical clustering can be implemented to select a
small set of typical time periods (e.g. days or weeks), each consisting of multiple hours. When
used in optimisation models, these lead to similar model outcomes at a substantial decrease in
computation time [73]. When the systems under study are dependent on storage, this method is
no longer applicable because the typical days are independent and cannot exchange energy. It is
possible to ”couple” typical periods. In this method, the power balance is solved based on the typical
periods while energy is solved based on the original hourly simulation [74]. Applying this method
in the optimisation of multi-sector energy systems reduced computational time from 19 hours to five
minutes, while model outputs were within a reasonable error range compared to the outputs of the
original hourly optimisation [75].

3.3.2 Spatial resolution

Applying high temporal and spatial resolution in ESOMs results in model complexity that becomes
nearly insolvable. Therefore, it is important to reduce the level of spatial detail while still remaining
representative of the spatial dispersion within the geographical scope of the model [76]. One ap-
proach to reducing spatial resolution through spatial aggregation is the single-node approximation.
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The single-node approximation assumes that within the system boundary, all components are con-
nected to each other through a copperplate; thus, assuming infinite conductivity. This means that
all system components within the geographic scope are spatially aggregated to a single virtual point
called a node, even though in reality they are spatially dispersed. Several studies and models exist
that implement the single-node or copper plate representation [64] [45].

By linking several energy systems represented as a single node, a multi-node representation is ob-
tained. These models allow to include a representation of grid infrastructure by dividing the system
into nodes based on political boundaries, which are subsequently integrated into a network and
allowed to exchange energy through power flow between nodes [61] [77] [52]. Some models are ca-
pable of simulating the flow of power within the grid in great detail but still represent whole countries
as a single node [78]. The political regions that these models consider are often at the national level
or regional (provincial) level. Within any of those regions, all supply and demand are approximated
as a single point system. Based on the required grid capacities and backup as a function of spatial
aggregation, it can be concluded that single node approximations up to the national level are suffi-
ciently detailed to represent the spatial variation of energy demand and variable renewable energy
generation [79].

Although multi-node models are more representative of the energy system as a whole, it lacks the
ability to provide insights into the preferred actions of a single region. Optimisation for an inter-
connected system as a whole implicitly assumes that central coordination of all individual regions
is possible. In other words, the global or continental optimum can often only be achieved if all re-
gions act on fulfilling their contribution in the system-wide optimal configuration. Since this study is
aimed at generating insights for the regional energy strategies, a single-node approximation of those
regions should suffice as these are of a sub-national size. However, care should be taken in repre-
senting the system boundary to correctly represent the energy market and interconnectivity of that
region [42] [29].

3.3.3 Components and functionalities

Given that the renewable energy strategies are mainly concerned with planning the deployment of
wind and solar PV it seems intuitive to only implement wind and solar PV generation as design
variables. On the other hand, the Climate-neutral Energy Scenarios (CNES) scenarios for 2050
consider the plausibility that the global economy converges towards green hydrogen or biomass-
based energy systems. This would allow dispatchable thermal power plants to be fully renew-
able [22]. The exclusion of such dispatchable power plants could lead to slightly higher Levelised
Cost Of Electricity (LCOE) because the incremental deployment of dispatchable generation has the
potential to substantially decrease the required amount of storage capacity [65]. However, more re-
cent publications have found that future energy systems might be even cheaper with storage than
with dispatchable peaking plants if current cost projections for storage technologies become a real-
ity [38] [66]. Moreover, including these technologies would give the false impression that regional gov-
ernments can act on those opportunities while whether those hydrogen or biomass-based economies
will emerge is outside the influence of regional or even national politics [80].

How predicted or assumed future energy demand is implemented into the model is another important
functionality consideration. Two distinct approaches exist. The first and most direct implementation
of demand profiles is to model it as a must-meet load. This means that the given demand should
be met for any time step over the modelled time horizon. Demand loads should always be met by
generation, import/export or storage. This can be achieved by deploying more renewable energy
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generation, utilising storage components, or importing or exporting energy. In this sense, this ap-
proach does not allow any demand-side driven optimisation; only the deployment and operation of
generation and storage components is considered a controllable design variable [81].

On the other hand, there is the implementation of slack variables, shiftable loads, demand-side man-
agement or demand curtailment. Demand-side management has been found significant in terms of
reducing overall system cost, as rescheduling peak loads reduces the overall need for system re-
dundancy [67] [68] [82] [83]. It is possible to implement demand-side management but it introduces
a higher degree of time-coupling, negatively impacting computational demands [84]. Even though
demand response shows potential, challenges regarding the exact implementation of demand-side
management algorithms in terms of technology, ownership and integration level are not yet overcome.
New technology such as block-chain could allow for an innovative and decentralised implementation
if common legislation and standardisation can be achieved [85].

3.3.4 Data sources

For effective use of ESOMs, the models should not be designed exclusively based on the desired
outcome and model purpose. Other key phases of energy system modelling and analysis should be
considered, such as data gathering and result interpretation [35]. Based on a survey under model
developers and users, it was found that the data-gathering phase consumed a large portion of the
time needed to come to results. Moreover, the acquisition of consistent and high-quality data sources
is considered a complex and time-consuming part of the modelling work [86].

Considering that energy planners and policymakers face the responsibility of making robust decisions
under increasing pressure to act in rapidly changing environments [53], it is concluded that energy
system models should be designed integral with open data acquisition. This allows modellers to more
rapidly respond while upholding data quality and accessibility, increasing policy relevance.

3.4 Validation and uncertainty

The use of ESOMs can generate crucial insight for the energy planning and policymaking process.
However, the long-term development of energy systems is subject to a large number of uncertainties.
As a result, long-term policy or system planning based analysis requires decision making under deep
uncertainty [87]. Energy modelling and analysis can lead to potentially misleading conclusions as a
result of a combination of errors in predicting future energy demand, relevant technology prices, ef-
fects of policies and socio-economic dynamics. Therefore, model outcomes should not be treated as
normative, where single model outcomes are presented as the only desirable system configuration.
Instead, energy modellers should focus on generating insights that are robust to underlying uncer-
tainty instead of providing single-point estimates [52]. Addressing this uncertainty associated when
applying ESOMs for decision support is considered one of the main challenges [48].

To better address the issue of uncertainty in energy modelling, a distinction between parametric and
structural uncertainty should be made. Parametric uncertainty relates to the uncertainty of the validity
of certain empiric values assumed in the model. These can be further subdivided into epistemic and
aleatory, where the former assumes resolvable uncertainty e.g. through the gathering of more or
better quality data. If uncertainties cannot be reduced through extended research or data gathering,
these uncertainties should be classified as the latter [88].
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Structural uncertainty is associated with the functioning of a model as a result of the formulation [89].
Since ESOMs are often applied to optimise energy systems several decades from now, it is nearly
impossible to compare model outcomes to observations. As a result, it is nearly impossible to create
a feedback loop to increase model accuracy [90] [91]. Still, uncertainty assessment and character-
ization are rarely addressed integrally in the published literature or it is treated in comparatively low
urgency [88]. Moreover, most studies only introduce the effects of uncertainty by prescribing distinct
scenarios. This is considered an adequate method to deal with deep uncertainty associated with
energy systems modelling in general by some [92]. On the other hand, scenarios are known to be
cognitively biased i.e. scenarios form compelling but misleading storylines [93].

To overcome the barrier of creating policy relevance without removing structural uncertainty in ES-
OMs – considered impossible due to the complexity associated with public planning problems –
formal methods have been introduced to obtain insight into the near-optimal solution space. By ap-
plying these methods the effects of unmodeled objectives and structural uncertainties can in part
be alleviated [93]. Modelling to Generate Alternatives (MGA) stems from operations research and
is used to explore the sub-optimal feasible solution region [89]. The optimal solution is used as an
initial anchor point. By relaxing the optimal solution by implementing a slack variable (e.g. up to 5%
higher system cost) and reformulating the problem to yield maximally different solutions, feasible and
acceptably cost-effective alternatives to the optimal solution can be found [94].

An extension to MGA (SPORES) can be used to generate spatially explicit, practically optimal re-
sults which can support policymakers in deciding on transition paths that are socially and politically
acceptable [95]. MGA has been applied in various papers on energy systems and is improved by
introducing more rigorous routines. Additionally, iterative applying MGA to identify the sub-optimal
solutions with maximum and minimum deployment considered technologies can be used to identify
the extremities of the near-optimal solution space [96]. However, it lacks the ability to provide in-
sight into the near-optimal solution space itself. Modelling All Alternatives (MAA) is able to overcome
through its capability to determine the continuum of the near-optimal solution space [97].

It can be concluded that efforts to address structural uncertainty have resulted in complete methods
and are still improving. To obtain insight into the effects of parametric uncertainty, several possible
approaches exist that are sparsely applied in energy systems modelling [93]. Monte Carlo sampling
can be used to reveal model sensitives, providing insight into what parameters have the highest im-
pact on model outcomes. Stochastic programming can be used to obtain insight into how to hedge
against risks propagating from uncertainties but is computationally expensive (exponential with the
number of uncertainties) and hedging strategies are fully based on underlying distributions - which
themselves in turn are uncertain [88]. Robust optimisation overcomes the computational burden en-
countered with stochastic programming but is less informative about correlations between inputs and
outputs, and it does not provide a unified hedging strategy [98].

Conclusively, it can be stated that all aforementioned methods serve the purpose of quantifying how
robust a given optimisation result is, often by varying input parameters over arbitrary positions. This
can be interpreted as an approach to validate the role of optimisation models in a prescriptive manner.
The tension between exploratory and prescriptive use of ESOMs was identified and subsequently
validated through ex-post analysis, concluding that cost optimisation poorly reflects the real-world
transition. Although models are not able to perfectly predict the transition of energy systems, near-
optimal scenarios – driven both by structural and parametric uncertainty – are useful for determining
an envelope of predictability [99].
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Moreover, although several methods exist that are able to determine that a model is indeed sensitive
to a given uncertainty there is currently no method that can be used to obtain insight into how mod-
els behave under parametric uncertainty. In other words, there is a proposition to research methods
that are able to combine uncertainty and sensitivity analysis to provide insight into the behaviour of
ESOMs when exposed to parametric uncertainty. By generating a range of model outcomes, the
misleading effect of providing a singular model outcome is mitigated [100].

This exploratory use of energy system models aligns with the philosophy of decision making under
uncertainty. This can be defined as situations where policymakers and planners are incapable of
agreeing on a model, associated uncertainties or how to value the model outcomes [28]. Instead
of generating a very complex model that produces a singular result, which is typical for optimisation
models, many variations on parameters and model formulations are generated, yielding a series of
experiments. Based on analysis of the large set of model outcomes, modellers and analysts can
draw conclusions useful for decision making without implying that they are able to predict that which
is unpredictable [101]. This approach is called Exploratory Modelling Analysis (EMA). Recently, EMA
was applied on a multi-year, investment optimisation model. It was concluded that the use of EMA
on ESOMs was promising to produce policy insights [100].

3.5 Conclusion

This chapter analysed the literature on energy systems modelling with a specific focus on optimisation
models to provide insights for policymakers and energy planners in the transition to renewable en-
ergy systems. There is agreement that energy modelling and analysis is a valuable tool for providing
insights for policy. Energy system optimisation models are favoured for investigating the transition to
future energy systems, as they work prescriptively in contrast to scenario models that are descriptive.
Based on the obtained insights in the literature, the following are the answers to relevant research
questions.

What do cost-optimisation studies reveal about the deployment of renewable generation and storage
required for decarbonising energy/electricity systems/sector? The main takeaway from the literature
is that, although contested, it is indeed possible to determine technologically feasible and economi-
cally viable energy systems based completely on renewable energy sources. Although many models
and corresponding studies exist, the conclusions are highly dependent on the design considerations
of the model. Based on analysis of various cost-optimal configurations of (highly) renewable energy
systems presented in the literature, it was found that even though such systems are viable and fea-
sible no real consensus on the exact optimal system configuration. As a result, the model outcomes
of existing studies cannot be used to generate normative policy advice.

This is a result of the fact that the energy transition is intrinsically complex, making it infeasible to
formulate models that perfectly represent reality. As such, modellers are tasked with considering
various assumptions and approximations that align with the goal of the research while addressing
trade-offs such as complexity and computational demand or completeness and transparency of re-
sults. An important effort that aims to overcome this barrier is the open-source, open access and
open data initiative, that increases accessibility, transparency and traceability.

Still, energy systems optimisation models assume perfect foresight, e.g. the optimal solution is only
valid when all assumptions are fully resolved ex-ante. While on the other hand, strategic decisions
that have to be made now will potentially impact the energy systems for decades to come. Policy-
makers and planners cannot assume that uncertainty is resolved nor can they wait for it to resolve.
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Modellers should focus on aligning model design considerations with the purpose of the research to
generate relevant policy advice. Moreover, uncertainty should be addressed as an integral part of
energy system optimisation models.

What methodology can be applied to optimisation models to provide insight into the robustness of
optimisation results in relation to uncertainties? Two types of uncertainty exist. Structural uncertainty
is related to the formulation and mathematical representation of the model. Various research efforts
have addressed this topic, resulting in methodologies that can be used to generate insight into the
structural uncertainties of energy systems optimisation models. Methods such as modelling to gen-
erate alternatives, spatially explicit and practically optimal solutions and modelling all alternatives can
be used to inform policymakers about the alternative, sub-optimal system configurations that exist in
the near-optimal solution space.

The other type of uncertainty is parametric uncertainty, which is the uncertainty surrounding the valid-
ity of assumed values in the model e.g. fuel prices, cost of technologies, etc. Various methodologies
exist that aim to overcome this uncertainty, such as robust optimisation, stochastic programming and
sensitivity analysis. However, these methodologies are often used to support the normative nature of
optimisation model outcomes. As already developed for structural uncertainty, a method to explore
cost-optimal configurations as a result of parametric uncertainties should be applied. This aims to
provide decision making under deep uncertainty with more insight by applying energy system opti-
misation models in an explorative manner instead of the typical normative manner.

A structured manner of approaching this explorative use of energy systems optimisation is by apply-
ing explorative modelling and analysis, a methodology more often applied to obtain insight or gen-
erate advice for decision making under deep uncertainty. Explorative modelling and analysis were
applied to an energy system using a multi-year, investment optimisation model on a yearly time reso-
lution [100]. However, as laid out in section 3.3.1, the time resolution used has great implications for
the obtained results. It has been shown that a lower temporal resolution leads to an underestimation
of investments needed in renewable energy generation technologies by overestimating renewable
energy penetration [102]. This can be related to the variability inherent to renewable energy sources,
which if excluded only poorly reflect the system integration dynamics and thus do not fairly represent
the required effort for the energy transition [103].

The identified gap in literature can be described as the lack of rigorous methods that support the
explorative use of energy system optimisation models with regard to parametric uncertainty. This
can be aligned with the opportunity of applying optimisation models for generating policy advice for
the Dutch energy transition, identified in chapter 2.

Moreover, energy optimisation models could further be utilized by overcoming barriers that remain in
the accessibility, tool coupling and policy relevance [41]. This can be related to the research question:
How can the optimisation model be coupled to existing models to reflect the effect of (inter)national
energy policies? Chapter 2 revealed that a specific part of the Dutch energy transition, the regional
energy strategies and corresponding system studies, are well-aligned in terms of what simulation
model and subsequently what scenario is used. This is the Energy Transition Model and is used
to determine the impact on the energy system as a whole, including various other sectors such as
housing, heating and transport. Scenarios for 2030 are modelled based on the respective regional
energy strategies while scenarios for 2050 are based on a well-defined set of scenarios called the
climate-neutral energy scenarios. By coupling an energy system optimisation model to the Energy
Transition Model, accessibility and perceived policy relevance can both be expected to increase.



Chapter 4

Model description

This chapter will introduce the optimisation framework developed during this thesis work. Chapter 3
introduced the current landscape of modelling tools, model design considerations and the remaining
gap in addressing parametric uncertainty. This chapter explains how this thesis contributes to filling
this gap. A framework with a low-code interface to support multi-modal analysis of cost-optimal re-
newable energy systems is introduced. The presented modelling framework contributes by making
explorative uncertainty assessment accessible to consulting engineers and policymakers in the en-
ergy transition to make informed decisions about future energy systems under uncertainty.

The developed framework is released as open-source software under the MIT license of use [104].
It was named Local Energy Systems Optimiser (LESO) due to its single node representation of lo-
cal or regional (subnational-level) energy systems and its core competence: optimisation. It can be
installed through the Python standard package handler pip, and the source code is openly available
through Github [105].

Section 4.1 sets out by stating the design goals that were used during the development of the frame-
work. In section 4.2 an overview of the model scope is presented, along with deliberation of the
implications embedded in the applied scope. The main features of LESO - simulation, optimisa-
tion, parametric uncertainty exploration - are introduced in section 4.3. Section 4.4 presents a brief
overview of the components currently included in the LESO component library. Finally, section 4.5
concludes this chapter.

Figure 4.1: Logo of the Local Energy Systems Optimiser (LESO) framework.
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4.1 Model design goals
Based on the literature research in chapters 2 and 3 the design goals have been formulated to
support the development of this framework.

• Minimal complexity for computational tractability
Optimisation problems can become quite exhaustive to solve when complexity is not consid-
ered a design constraint, while increased complexity does not necessarily lead to higher ac-
curacy [55]. In keeping with the philosophy of increasing the accessibility and transparency of
optimisation models to reach better support, they should not require a high-performance cluster
to be used [50]. Low complexity is increasingly important when parametric research using un-
certainty sampling is applied, as the computational time required for a single model is multiplied
by the number of experiments.

• Flexibility and extensibility
LESO is built around an objected orient approach, which forms a comprehensible modelling
structure. In addition, LESO is designed with extensibility in mind. This is achieved by defining
a universal interface to extend the component library with new components. As a result, LESO
can be used to describe nearly any arbitrary energy system configuration in a straightforward
object-based approach.

• Low-code interface
A result of defining LESO components using an objected-oriented approach is that it results
in an intuitive workflow. Within LESO, each component defined in the energy system has
its own distinct object. Using this notation relieves engineers or modellers of learning and
understanding Python’s syntax and programming specifics completely. Instead, they need only
to know how to interact with the LESO components to generate optimisation studies.

• Automation of exogenous data integration
If input data used for modelling is wrong or inaccurate, this will lead to unexpected and unreli-
able behaviour. Therefore, it is essential to integrate validated sources of such data. Automatic
data integration removes the burden of both time-consuming and error-prone work, customarily
done manually by the researcher. LESO aims to overcome this burden by automating this input
data acquisition by integrating interfaces to various databases.

• Multi-modal approach
LESO is implemented with more than one approach to finding the optimal solution. Modellers
can implement exploratory synthesis and optimisation based on linear programming in the
same model following a nearly identical process.

• Integration with existing tools
Integrating existing models and tools makes it possible to leverage the functionality and support
base of validated and broadly applied models. The ETM is integrated to generate scenarios for
future energy systems using a bottom-up in a highly interactive environment. To implement the
before mentioned uncertainty sampling and exploratory modelling LESO is integrated with the
EMA workbench [106].

4.2 Model scope
This section introduces the scope of the introduced model, which is based on the analysis presented
in chapter 3. LESO is designed with certain flexibility towards multiple energy carriers. However, for
the case studies within this thesis only power systems are considered, e.g. electric generation and
demand. As a result, all components that have currently been implemented in the LESO component
library are electric, such as wind turbines, solar photovoltaic and domestic electric demands.
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Systems modelled within LESO are represented as a single node e.g. all components are connected
with infinite transport capacity. In reality, grid constraints may apply, limiting the energy exchange
between various elements in the energy system. Such constraints can be a result of the spatial
dispersion of components and respective connectivity between several members. Grid conditions
(capacity and prices) can be still considered within LESO models but only as a boundary condition
based on the geographic scope. As discussed in section 3.3.2, multi-node systems include nodes
on the scale from municipality to country connected by a stylized representation of grid infrastructure
that only considers inter-connectivity between regions. This further substantiates the single-node
approach implemented in LESO, as long as it remains at or below the national level. Also, the goal
of LESO is to provide a snapshot of cost-optimal deployment of renewable energy technologies in fu-
ture energy systems, not to investigate technical specifics of grid congestion in existing infrastructure.

However, this means that LESO is currently not able to represent a network of multiple nodes using
a single model. Instead, LESO can be used to optimise every sub-region separately by defining
separate models for every region. The interface between the sub-region and the larger region is
reflected by including specific boundary conditions such as import/export capacity or electricity price
levels at that node. Future research could be conducted to implement multi-node energy systems by
implementing power flow optimisation using semidefinite programming [107].

For now, LESO only includes wind and solar as electricity-generating components. As discussed in
section 3.2, multiple studies exist that demonstrate that a fully renewable energy system based on
wind and solar power is possible. Moreover, the purpose of this model is to generate insights for
policymakers in the regional energy strategies that are tasked with the orchestrated deployment of
wind and solar asses ts within their regions.

Finally, LESO considers electrical demand as a must-meet load. This means that demand should be
met for any hour of the year. Demand loads should always be met by generation, import/export or
storage.

4.3 Features
In this section, a high-level overview of the features available within LESO is presented. For pro-
gramming specifics, please refer to the associated repository that is released in conjunction with this
thesis [105]. Although more functionalities are captured within the LESO framework, three distinct
features are discussed here:

• Configuration and simulation

• Optimisation

• Parametric uncertainty exploration

4.3.1 Configuration and simulation

The core feature that enables LESO to represent a wide range of energy systems is the object-
oriented programming approach. Every component in the LESO component library is reflective of a
real component in an energy system, such as PV modules, wind turbines and battery systems. Each
of these components should be able to correctly reflect the unique dynamic behaviour of a compo-
nent in a specific configuration. What components exist and how they can be configured is discussed
in section 4.4. How the behaviour of those components is modelled is detailed in chapter 5. In gen-
eral, components are configured with certain relevant parameters (e.g. tilt, hub height, turbine type,
storage duration, etcetera) and simulated based on their respective models.
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In Python, such a component approach can be programmed using a class. Relevant parameters
and data is connected to the class object using attributes. Models that simulate that components
behaviour is contained by the class object in the form of object-specific functions called methods.
This programming paradigm allows for a convenient and explicit manner of formulating component
objects in Python.

Figure 4.2: A code snippet depicting the low-code interface used to configure and simulate a south-
oriented PV system in the LESO framework.

For illustrative purposes, a code snippet configuring a PV-system is shown in figure 4.2 . First, the
location of the project site is configured by defining the latitude and longitude. Then an instance is
created of the System class, that will contain these parameters as attributes which will be used
for any of the subsequent methods. Then an instance of the PhotoVoltaic class is initialized. This
object will contain the component-specific parameters (tilt, azimuth and installed capacity in this case)
as attributes. Using the methods which are part of system object, the PV component is placed
within the system context, relevant data is retrieved and finally, the time-series for all components
within the system are calculated. This will result in LESO fetching historical meteorological data from
the PVGIS server through an API, which is subsequently parsed and used in the PhotoVoltaic sim-
ulation model to deliver a time-series containing the power output of the configured PV system for
every hour of the year.

This is the only explicitly shown code in this thesis report. This is done to maintain readability in this
thesis and to focus on the possibilities of using the framework and not the pragmatics of programming
the developed framework. Documentation, programming specifics and examples can be found in the
repository on Github [105]. In addition, appendix E can be used to find specific versions and files
used to generate the results shown in this thesis.
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4.3.2 Optimisation

Finding the optimal system configuration through synthesis processes is a complicated task due to
the multiple large time series that need to be considered. Components that are not only dynamic
in time, but flexible in operation such as batteries further complicate this matter. When components
require to be time-coupled as with storage, it becomes even more complex [108]. Traditionally, similar
design challenges would be tackled through iterative synthesis. However, as introduced in section
3.1, energy system design problems can be best approached through optimisation.

To determine optimal technology deployment i.e. installed capacities of solar, wind and storage a
mathematical representation of the system can be made that approximates real-life system dynam-
ics. The optimal solution is either the most or the least of a certain unit of measure. These goals
are defined in the objective function, with a declaration to either maximise or minimise the objective
function. In essence, the algorithm also considers all possible solutions, but the algorithms in them-
selves are able to determine the best configuration based on the objective value and satisfaction of
constraint functions.

The context of the problem is taken into account by optimisation by the introduction of boundary con-
ditions in the form of constraint functions. These boundary conditions must be met by the optimum for
the solution to be valid. Conditions are used to introduce real-life limitations to quantities or dynamics
to the mathematical formulation.

General formulation of optimisation problems — Starting at an abstract formulation of the
optimisation problem, we obtain the formulation as shown in equation 4.1. Generally speaking, the
objective function is a sum of over the considered components given the product of some cost or
benefit associated to a certain quantity of the design variable. The objective function is given by
f(x), this function is used to relate the design variable x, to a variable that should be optimised. In
this case; to minimise by changing x. In this notation, x represents a vector of parameters. Equation
4.2 and equation 4.3 represent equality and inequality constraints, respectively. Constraint functions
gi(x) and hi(x) are in place to ensure the obtained results are valid within the restrictions of the
problem its context. The function gi(x) forms the relation between parameter x and equality value
bi for the set of all equality constraints m. This equality denotes the equality to a value but equality
constraint equations can also relate two dynamic quantities to each other, e.g. to include charging
dynamics. gi(x) on the other hand, defines the inequality constraints of parameters x for all inequality
constraints n. An inequality function can for example be used to guarantee no negative deployment
of assets is applied by the optimisation algorithm.

min
x

f(x) (4.1)

subject to: gi(x)= bi ∀i = 1,m (4.2)

hj(x) ≥ 0 ∀j = 1, n (4.3)

A less generic depiction of the objective function and its constraints is shown in equation 4.4. In this,
some variable x must be optimised over components j such that the resultant of all components and
respective costs cj is maximal. Solutions are only valid in the domain where the constraint equations
are met (eq. 4.5 and eq. 4.6).

It can easily be imagined that the term cjxj represents the total investment cost and thus the objective
function is to minimise investment cost. The associated constraint functions could represent the
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systems energy balance and prevent the algorithm from implementing deploying negative quantities
of a certain component.

min
x

n∑
j=1

cjxj (4.4)

subject to:
n∑
j=1

aijxj≤ bi ∀i = 1,m (4.5)

xj ≥ 0 ∀j = 1, n (4.6)

The mathematics associated with formulating the optimisation can become lengthy. To maintain
readability, the specific mathematics applied to define the optimisation problem is excluded from this
chapter but is included in the appendix. Readers interested in the specific mathematical formulation
applied in LESO are encouraged to read appendix A.

Linear programming — A specific form of optimisation can be classified as linear programming.
In this form of optimisation, the objective function is a linear equation. In most cases, this is a sum
of cost times quantity overall design variables, which should include all fixed and variable component
costs. All constraint functions should either pose linear equality or inequality. As such, the resulting
solution space will be an n-dimensional polygon encapsulated by a finite amount of linear constraint
functions.

The optimal solution is found at the point where either the minimal or maximal value of the objective
function is calculated. Various methods exist to find this optimum and include (meta) heuristics or
stochastic approximations. Solving LP problems, and optimisation in general is a specialist area
within mathematics. Therefore, further detailed analysis of solving algorithms is out of scope during
this thesis work. It is however important to note that implementing the optimisation problem as LP
will greatly improve solvability and decrease computation time.

Objective function — Perhaps this function has the single most impact on the outcome of the
optimisation problem. This thesis concerns only cost-optimal configurations and therefore only has
a monetary unit. Models exist that allow for linear combinations of multiple objective functions (i.e.
carbon dioxide emissions, land use, etcetera) [109]. The optimality solution is used to provide a
snapshot of a future energy system in a cost-optimal configuration, an objective function fitting to
this goal should be implemented. The objective function is shown in equation 4.7. Derivation and
detailed explanation can be found in appendix A. In short, this objective function sums the annualised
investment cost and variable operating costs based on the optimisation variables component capacity
deployment Dj and dispatched energy Ej,t, for every component j in component set m, for every
moment in time t.

min
Dj ,Ej,t

f(Dj , Ej,t) =

m∑
j=1

c′jDj +

m∑
j=1

∑
t

Vj,t∆t (4.7)

This objective function reflects an ’instantaneous’ yearly cost often referred to as Overnight System
Cost (OSC). As such, this objective function is analogue to the annualised investment cost plus the
total variable cost for the optimised year, if the found optimal configuration would be created in that
year. Investment costs are annualised using the Capital Recovery Factor (CRF), which depends on
the weighted cost of capital, expected inflation and component lifetime. It implicitly includes a linear
replacement and decommissioning assumption which is applied on components that have a shorter
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lifetime than the system. Variable costs (with negative cost resembling income) are considered for all
energy dispatched or absorbed by components on an hourly basis. As a result, the total equation is
the objective function that is used to find the cost-optimal system with the lowest yearly total costs.

4.3.3 Parametric uncertainty exploration

J. Decarolis et. al. stated: ”Insights generated with ESOM should — to the degree possible — be
robust to large future uncertainties. If not, they are of questionable value to policy planners and
decision-makers.” [52]

Robustness to uncertainty can be assessed in various approaches. In the spirit of generating more
insight through exploration, LESO is set up to integrate well with Explanatory Modelling Analysis
(EMA). To this end, an already existing Python module called EMA workbench is selected [106]. This
toolbox has already been applied to the Dutch energy transition before, albeit not based on optimi-
sation [28]. More recently, this toolbox has first been applied to a multi-year, investment optimisation
framework in the context of the energy transition [100].
Moreover, the few papers published on cost-optimal future energy systems using ESOM that in-
clude uncertainty or sensitivity analysis have found that the cost of components has a substantial
effect on the optimal system configuration, which further motivates the necessity of exploratory anal-
ysis [110] [82] [111].

By incorporating the EMA workbench, it is possible to use LESO to explore parametric uncertainty,
i.e. how do investment decisions respond to various technology cost assumptions. This is highly
relevant since there is a significant amount of uncertainty to be considered when dealing with future
energy systems. Another advantage of using the EMA workbench is the support for testing discrete
policies. In this way, the EMA workbench can be used to construct alternative model configurations
in which LESO should be executed. This allows modellers to access the effect of certain boundary
conditions effectively.

In a nutshell, EMA is connected to LESO using a standard approach for Python models as described
in EMA. In this approach, the LESO model is wrapped in a function called a ”handshake”. This func-
tion has the responsibility of translating the values EMA delivers to inputs for the LESO model and
that the model results are returned in the prescribed EMA format.

To run experiments, the modeller defines the uncertainties to be assessed based on the range of
uncertainty and their respective names (e.g. cost of solar PV). In addition, EMA supports the use of
policy levers. These are different from uncertainties because levers from an alternate configuration
of boundary conditions. As a result, these form a unique system problem configuration which can
best be interpreted as an alternate reality over which uncertainties are sampled. This is shown in
equation 4.8

number of experiments = number of uncertainty samples× number of policies (4.8)

From a programming perspective, it is important to note that the handshake function is in turn
wrapped in a decorator that casts the types to native Python types (e.g. floats). Otherwise, LESO
will not even start solving due to a type based compatibility error between EMA and the Pyomo mod-
ule. This is the package LESO uses to formulate the optimisation problem, by defining objective and
constraint functions.
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Figure 4.3: Overview of the components included in the LESO component library based on the cat-
egories of the components.

4.4 Components

As briefly introduced in section 4.3.1, LESO treats energy components based on an object oriented
approach. E.g. solar PV components are defined based on their respective parameters and generate
electricity based on the parameters, the component object itself contains the associated model and
relevant data.

LESO components are defined based on generic objects as proposed in the modelling approach
[112], with some small deviations. The collector object is replaced by the system object, as all com-
ponents are part of a system. The single-node approximation implemented in LESO also makes it
so that all components are collected to the same single system, superseding the need for a collector
object. Lindberg distinguishes between sources and sinks, but in LESO these are implemented as
the same generic object. The differentiation between sources and sinks is maintained using sign
convention, negative power is a sink and positive power is a source. A generic transformer object is
included as converter object. This object is unused in the current electricity-only implementation of
LESO but could be used to include other energy carriers.

The following subsections introduce the components that are currently included in the LESO frame-
work. An overview of the components is given in figure 4.3. Relevant parameters of specific com-
ponents can be found in sections 4.4.1-4.4.4. A detailed description of the modelling approach for
each of the components is covered in chapter 5. Component specific parameters are included in the
following sections. However, the following generic parameters apply to any object:

1. Component installed capacity
This variable denotes the capacity of a certain technology that is deployed, e.g. peak-power
or storage volume. During model definition, it can be used to assign a predetermined value to
components in the energy system and can for example be used to define legacy components.

2. Option to set installed capacity as optimisation parameter
This is a boolean variable used to mark this component’s installed capacity as an optimisation
parameter. If set to true, this option allows the optimisation algorithm to override the compo-
nent’s installed capacity to determine the cost-optimal solution.
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3. The data source that is used to retrieve historical meteorological data
This variable can be used to declare the data source to be used for retrieving meteorological
data. The possible sources are PVGIS, DOWA and renewables.ninja which is covered in depth
in section 5.1.

4. Component technical lifetime
This variable declares the component technical lifetime, which is used to determine the compo-
nent’s annuity in financial calculations which in turn is used to construct the objective function.

5. Investment cost per installed capacity
This parameter denotes the investment cost related to installing a certain capacity of a compo-
nent, i.e. euros per megawatt.

6. Fixed operational cost per installed capacity
This variable reflects the yearly operational cost that scale with installed capacity but do not
scale with the usage of a component. These costs are fixed and include posts such as mainte-
nance and service but exclude posts such as fuel cost.

7. Variable operational cost per unit of dispatched energy
This variable is used to determine the marginal cost associated with dispatching a certain asset.
This includes battery degradation costs due to discharging and the cost of imported electricity.

8. Variable operational cost absorbed energy
This variable is used to determine the marginal cost associated with energy absorbed by a
certain asset. This includes battery degradation cost due to charging and income (negative
cost) due to exported electricity.

4.4.1 System

The system object acts as the centre piece. All components within the scope of a certain optimisation
model configuration are added to a system. The system connects them to the power balance, forms
relevant constraints and defines the optimisation problem matrices. This system contains parameters
relevant to all components, i.e. it provides the context to the components. For example, the location
is determined by the latitude and longitude contained in the system object. It is also more convenient
to only call a single method on the system (e.g. system.calculate_timeseries()) instead of having
to call these methods on every component individually.

4.4.2 Sources

Currently, there are three source objects defined in the component library of LESO. Below a brief
overview of the most relevant parameters of each object is given. For details on the submodels in
these components, refer to sections 5.2 and 5.3 for photovoltaics and wind, respectively.

1. Wind
Determines the feed-in curve for wind turbines using a height correction method and manufac-
turers power curves.
Parameters:
(a) Turbine type

The turbine type is used to specify the manufacturer and make of the turbine. It is used by
the component submodel to determine the power curve of the turbine.

(b) Hub height
Is used to determine the height of the hub of the turbine and to determine the wind speed
at that height to determine the power output.

(c) Surface roughness
This is a unitless parameter that reflects the effect of surface obstacles on the wind speed.
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2. Photovoltaics
Determines the feed-in curve for solar PV for various configurations using irradiance transposi-
tion.
Parameters:
(a) Tilt

This represents the angle between the horizontal plane and the plane of array. This affects
the irradiance on the plane and therefore the power output.

(b) Azimuth
This is the angle in the horizontal plane and is thus is the orientation of the plane of array
against the compass (e.g. North-oriented or South-oriented). This affects the irradiance
on the plane and therefore the power output.

(c) Efficiency
A dimensionless factor is used to denote the efficiency at which the PV array converts
incident light to energy and includes all efficiency losses in the PV system. It is applied
proportionately to the irradiance in the plane of array.

3. Grid
Can be both a source and a sink through export and import
Has no unique parameters outside the general parameters already covered.

4.4.3 Sinks

Currently, there are three sink objects defined in the component library of LESO. Below a brief
overview of the most relevant parameters of each object is given. For details on the submodels in
these components, refer to sections 5.5 and 5.6 for fast charging demand and ETM regional demand,
respectively.

1. Fast charging demand
Converts typical weekday and weekend day traffic data into an electrical charging demand.
Parameters:
(a) Average charged volume

This is the amount of energy that is charged by an EV when stopping at the fast charger.
It is used in combination with the charging duration and charging efficiency to determine
the maximum hourly energy demand coming from a single charger.

(b) Charging duration
This variable denotes the time it takes an EV to stop, connect, charge and disconnect to a
fast charger. It includes the time that is lost due to queuing inefficiencies.

(c) Traffic data files
For this object to generate a time series, two CSV files containing traffic volume intensities
on an hourly basis should be supplied. One file contains a typical weekday and the other
a typical weekend day.

(d) Charging efficiency
This parameter is used to determine the actual electric load on the energy system. This
factor is included to reflect electrical losses during charging, such as generated heat.

2. ETMdemand
API integration to the ETM allows feeding load curves from any ETM scenario to LESO.
Parameters:
(a) Scenario ID

Every scenario created in the ETM can be traced using a unique scenario ID. Typically,
these are session IDs that are not guaranteed to be persistent. By saving the scenario to
an account it can be stored safely.
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(b) Generation whitelist
This is a list of all generation keys that should be included when determining the residual
load curve that is used in LESO. This is used to allow other sources of renewable energy
that are not in the scope of LESO to contribute to the energy balance.

3. Grid
Can be both a source and a sink through export and import
Has no unique parameters outside the general parameters already covered.

4.4.4 Storages

Currently, there are two storage objects defined in the component library of LESO. Below a brief
overview of the most relevant parameters of each object is given. For details on the submodels in
these components, refer to section 5.4 for both objects.

1. Lithium
This is the short-term storage and is typically modelled in 2, 4, 8 and 10-hour storage duration
configurations.
Parameters:
(a) Round-trip efficiency

This efficiency factor is used to determine the charging and discharging energy losses. In
the current implementation, these are assumed to be symmetrical and irrespective of the
charging rate.

(b) Self-discharge rate
Using this parameter the discharge of stored energy over time is scaled proportionally to
the amount of stored energy. For lithium batteries, self-discharge is caused by unwanted
chemical reactions without an established connection between the electrodes.

(c) Energy-to-power ratio
Storage components can be defined based on their charge/discharge power and energy
capacity. In LESO, storage components can be configured in arbitrary ratios between
power and energy capacity using the energy-to-power ratio. This can be interpreted as
the duration a battery can deliver energy at maximum discharge power.

2. Hydrogen
This is the long-term storage and is typically modelled in 350 or 700-hour storage duration
configurations.
Parameters:
(a) Round-trip efficiency

This efficiency factor is used to determine the charging and discharging energy losses. In
the current implementation, these are assumed to be symmetrical and irrespective of the
charging rate.

(b) Self-discharge rates
Using this parameter the discharge of stored energy over time is scaled proportionally to
the amount of stored energy. For hydrogen storage, self-discharge is caused by leaking
hydrogen.

(c) Energy to power ratio
Hydrogen storage components are typically configured for higher storage duration due to
the relatively low cost associated with increased energy capacity. Seasonal storage is a
typical application area that requires around 700 hours of storage duration.
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4.5 Conclusion

In this chapter, the optimisation framework developed based on the information about modelling de-
cision considerations learned from chapter 3 was introduced. From now on out, it will be referred
to under the acronym LESO, which stands for Local Energy Systems Optimizer. The design of the
framework constitutes the first contribution to the research question: What design considerations are
imperative to create an optimisation modelling framework that can be used to explore uncertainties
and policy effects? After applying the developed framework on the case studies, it will be evaluated
whether the framework is able to deliver the purpose or whether further improvements should be
made.

The framework is tailored to solving multi-dimensional synthesis problems, e.g. determining the opti-
mal deployment of various competing and synergistic energy technologies in a local energy system.
It is built keeping flexibility, extensibility and minimal complexity in mind. LESO offers optimisation
and parametric uncertainty exploration through a low-code interface. Exogenous data such as me-
teorological data is automatically retrieved from various data sources. By integrating LESO with the
ETM, it is possible to find cost-optimal configurations of renewable energy assets and storage for
validated scenarios that are currently used by policymakers.

Components are modelled and connected using a single-node, copper-plate representation. Only
electric energy is currently considered. Variable Renewable Energy (VRE) sources, e.g. solar PV
arrays and wind turbines, are currently included. Dispatchable renewable energy sources such as
thermal bio-mass plants are not included. Demand-side management is also not included. Both
dispatchable renewable energy sources and demand-side management have been reported to po-
tentially decrease the total system redundancy. It is therefore recommended these features are
included in later research.

LESO offers a library of components that can be used to define and later optimise energy sys-
tems. Components that are currently included are solar PV arrays, wind turbine, grid connection,
fast charger, regional energy demand, lithium-ion storage and hydrogen storage. All components are
collected and controlled by the system object.



Chapter 5

Component submodels

This chapter describes key steps, mathematical formulation, and data sources used for modelling
the components within the scope of the optimisation model. The optimisation model operates on an
hourly basis, typically 8760 hours within a year. Thus, every component has to express its hourly
contribution to the energy system. It is important to properly incorporate variable energy resource
dynamics as it substantially impacts the performance of future energy systems with high penetration
of such energy sources [113]. As a result, components have various specific methods and models to
generate such time series that describe their behaviour over time.

Since LESO determines cost-optimal configurations of energy systems, another important aspect to
consider is the cost of technologies. For all technologies covered in section 4.4, this chapter touches
on cost projections in every respective section. An exception is the price curve that is applied in the
grid component, which is covered separately in section 5.6.2.

Variable renewable energy sources such as wind and solar are represented by applying physical
models and approximations on historical meteorological data. Photovoltaics are covered in section
5.2. Section 5.3 describes the equations governing power generation based on wind speed.

Storage components exhibit dynamic behaviour which is captured by introducing specific constraint
equations in the optimisation problem, as already briefly discussed in section 4.3.2. Charging, dis-
charging and efficiency losses are included in such constraint equations. This is covered in section
5.4.

Within this research, two sorts of demand are considered. The load generated by fast-charging
infrastructure used by EV’s is approximated by stochastically sampling traffic data. The details of
this approach are described in section 5.5. Section 5.6 covers the regional energy demand that is
included through coupling the optimisation framework to the Energy Transition Model. Finally, section
5.7 concludes this chapter.

37
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5.1 Meteorological data sources
Intermittent renewable energy sources such as wind and photovoltaics are intermittent due to the fact
that they depend on certain meteorological conditions to generate energy. Since weather is dynamic,
so is the power output of wind and photovoltaics.

Before the feed-in models are covered, it should be noted that these models are only able to transform
a certain time series of historical or synthetic meteorological information to power output (e.g. wind
speed to wind power). Without a source of such time series, it is not possible to predict the associated
power output for a given PV or wind system. For this purpose, three data sources have been selected
and integrated into the component submodels and therewith the optimisation framework. These data
sources can be selected at the respective component submodel and the framework will consequently
automatically integrate that data source through an Application Programming Interface (API). In this
thesis, two sources have been found that allow use through an API integration and are well-known in
the field of renewable energy.

PVGIS — This source is very well known within the solar community and stands out due to its
user-friendly interactive mode, as well as its participation in various studies that have contributed
to better PV system performance estimations. Performance metrics and meteorological data avail-
able through this interface are either mathematical estimations based on satellite images from ME-
TEOSAT through SARAH or CMSAF or based on Climate Reanalysis Data (CRD) such as ERA-5 or
COSMO-REA [114] [115]. It has been validated extensively and is frequently updated to include the
latest improvements in relevant modelling techniques [116] [117] [118]. This data source is able to
deliver time series with an hourly resolution for any location within Europe and Africa that include the
following parameters:

• Temperature at 2 metres

• Relative humidity

• Total/global horizontal irradiance

• Beam/direct normal irradiance

• Diffuse horizontal irradiance

• Wind speed at 10 metres

• Wind direction at 10 metres

• Surface air pressure

This data source can be used as a source of time series for both the PV power model and the wind
power model. PVGIS has the merit of being able to provide location-specific meteorological data in
Typical Meteorological Year (TMY) format. This is a synthetic method to determine representative
composite years based on long term historic data, that better reflects historic observations than a
single consecutive year would [119] [120].

Renewables.ninja — This data source also includes an interactive tool interface as well as an
API. Its authors have introduced this data source to help modellers with the challenge of credibly
integrating the variable nature of solar PV and wind [72]. It uses both CRD based on MERRA-2 and
satellite-based data set CM-SAF SARAH. Validation of the PV modelling approach is done by correct-
ing for a systematic bias by matching the simulated output against over 1000 PV systems [121]. Wind
power output is based only on the MERRA-2 reanalysis model data and is spatially bias-corrected on
a national level for 23 European countries [122]. Wind power simulations based on reanalyses with
bias-correction have been widely studied and validated [123]–[127].
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Renewables.ninja can be used to predict PV and wind output on an hourly resolution at a specified
location depending on the configuration of the system given. E.g. tilt, azimuth and system losses of
a PV system and turbine type and hub height for a wind generator. In addition, it can also provide
the raw meteorological input data which is processed by its power models. In summary, the following
parameters can be accessed through renewables.ninja:

• PV power output

• Temperature at 2 metre

• Beam/direct horizontal irradiance

• Diffuse horizontal irradiance

• Cloud cover fraction

• Wind power output

• Wind speed

• Air density

• Precipitation

Dutch Offshore Wind Atlas — The DOWA-project was initiated specifically for Dutch off-shore
power production estimations and is the successor of the KNMI North Sea Wind Atlas, which are
both downscaled from global scale reanalyses using the mesoscale weather model HARMONIE. It
can be accessed through the KNMI Data Centre [128] and offers wind-related parameters for a 2.5km
spaced grid spanning the North Sea at 17 height levels from 10 to 600 metres [129]. This source
was originally introduced because PVGIS only includes wind speeds at 10 metres height, and thus
introduces unwanted error when wind speed is extrapolated to the hub height of a turbine. In addition,
PVGIS excludes sea bodies from its data set. To be able to reflect energy production from offshore
wind parks, DOWA was coupled to the optimisation framework. It offers the following parameters on
an hourly resolution at 17 height levels for periods between 2008-2018:

• Wind speed

• Wind direction

• Air pressure

• Air density

• Relative humidity

5.2 Photovoltaics

Photovoltaics or solar energy technology converts irradiance into power through photoactive material.
It is variable in nature due to natural variability of solar irradiance, as shown in figure 5.1. To be able
to simulate this dynamic behaviour as a function of the variability of solar irradiance over time for any
system configuration (e.g. tilt and orientation), several mathematical transformations and physical
models can be applied. This section formulates a comparatively simple model which is used to
approximate power production from solar PV based on irradiance time series. This is later validated
against more detailed and bias-adjusted models. Lastly, cost developments of photovoltaics are
analysed as cost-based optimisation of future greatly depends on future technology cost assumptions
used in the optimisation model.
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Figure 5.1: Monthly averaged daily PV power curves for a south-oriented, 40 ◦ tilted array.

5.2.1 Submodel description

It is possible to describe the total (or global) irradiance on an arbitrary plane by dissecting the total
irradiance into various components as shown in figure 5.2 and corresponding equation 5.1. Beam
radiation constitutes of all direct light emitted by the sun reaching the surface of the plane without
having been scattered by the atmosphere. As a result, all irradiance contributing to this radiation
component originates from the solar position relative to the plane at that moment of time. Diffuse
radiation reaches the surface from nearly any direction, as it is the component that reflects light
that has been scattered by the atmosphere. Lastly, there is the ground radiation component. This
irradiance is a result of the direct beam radiation component which reaches the plane after reflecting
on the nearby ground.

Itotal = Ibeam + Idiffuse + Iground (5.1)

Figure 5.2: Irradiance components and their effect on a tilted plane

Itotal, poa = Ibeam, n cosβ + f(Idiffuse, h, β) + g(Iglobal, h, ρ, β) (5.2)

Since historical meteorological data is typically only captured for a horizontal plane, it is key to be able
to transpose the irradiance to any arbitrary orientation to reflect the various configurations of solar
PV arrays. For statically mounted PV arrays, two parameters define the orientation to the radiation
components. These are the tilt of the module (β), and the azimuth (γ) angle of the array which is the
orientation of the array with respect to the compass (e.g. South oriented). These two components
define the plane-of-array (poa). The effect of various tilts on the energy yield of a PV power system is
shown in figure 5.3. Since the beam component is defined as a function of the solar position, it can be
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Figure 5.3: Year average daily PV power curves for a south-oriented PV array over various tilts.

transposed to the poa using geometry. The diffuse and ground radiation components require specific
transposition functions, as shown in equation 5.2. In this equation, the diffuse irradiance on the poa
is a function of the horizontal diffuse irradiance and the tilt of the module. The reflected irradiance
is a function of the global irradiance, the tilt of the module and the ground-reflectance, called albedo
and denoted by ρ.

Various models exist that transpose the various radiation components for a given tilt to an arbitrarily
angled plane [130]. A typical approach is the isotropic transposition [131]. This model approximates
the actual irradiance in the poa of diffuse and ground radiation using equation 5.3 and equation
5.4, respectively. Ground radiation includes an empirical factor representing the reflectivity of nearby
surfaces called albedo (ρground), where various surface types have distinguished albedo values. From
both isotropic transposition equations, a similar component can be distilled, which is called the view
factor. In the case of ground reflectance, this represents the fraction of diffuse radiation emitted from
the ground surface projected on the poa surface. For the diffuse radiation component, the view factor
represents the projection of the horizontal surface to the poa surface.

f(Idiffuse, h, β) = Idiffuse, h
1 + cosβ

2
(5.3)

g(Iglobal, h, ρ, β) = Iglobal, h · ρground
1− cosβ

2
(5.4)

By substituting equation 5.3 and equation 5.4 back into equation 5.2 the formula is shown in equation
5.5 is achieved. This formula enables the approximation of irradiance on arbitrarily oriented PV arrays
based on historical meteorological data.

Itotal, poa = Ibeam, n cosβ + Idiffuse, h
1 + cosβ

2
+ Iglobal, h · ρground

1 + cosβ

2
(5.5)

To determine the power output of an arbitrarily oriented PV array, a formula relating the irradiance on
the array to the power output of the given array. A linear relationship between the power output of a
given PV array based on the module specification (PSTC) under Standard Testing Conditions (STC)
(ISTC) and module area (Amodule). In addition, an system efficiency factor (ηsystem) is introduced to
allow for approximation of various system losses - including anything from DC cable losses to soiling
losses. All module specific factors can be included in a single term ηconversion that denotes the total
conversion efficiency of the PV system from irradiance to power. Finally, equation 5.6 is reached.

P = Itotal ·Amodule ·
PSTC
ISTC

· ηsystem = Itotal · ηconversion (5.6)
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Table 5.1: PV model statistics of deviation
Yearly specific yield Yearly deviation Largest deviation
[kWh/kWp] [-] Month kWh Relative

Simple PV model 975 - - - -
Advanced PV model 997 2% January -5 -17%
Renewables.ninja 961 -1% June -19 -29%

5.2.2 Submodel validation

As described in the previous section, the model used to determine the power output of PV systems
based on historical irradiance data entails various approximations and simplifications. It is however
of vital importance that the resulting power output curves are sufficiently accurate in representing the
actual power output of PV systems. To this end, the PV submodel is validated against two models.
The first model is based on a similar method as introduced in the previous section but entails a
bias correction based on a statistical comparison between the modelled result and actual production
data from various PV power plants in Europe over decades of data [72]. The second model is an
advanced PV modelling approach, which introduces a much higher level of detail in capturing PV
system-specific dynamics and a more complex transposition model [132]. This advanced modelling
approach is introduced in more detail in appendix B.1.

Figure 5.4 shows the results of the comparison of these various approaches against the simple PV
model. Table 5.1 contains statistical information on the deviation on a yearly basis and the largest
monthly deviation. From figure 5.4a it can be seen that there is a generally good agreement between
the various models.

When comparing the simple PV model against the advanced PV model, two things stand out. Firstly,
the simple PV model slightly overestimates the energy production during the summer months while
underestimating the energy production during the winter months. This can be mainly contributed to
the lack of temperature modelling in the simple model approach. As a result of higher air tempera-
tures during summer days, the power output of the modules is comparatively lower than during winter
months when the air temperatures are lower.

Secondly, the effect of clipping due to a DC to AC power ratio above 1 (i.e. inverter maximum rated
power is lower than the output of all PV modules) can be seen in figure 5.4c. While the simple model
approach reaches a smooth maximum, the advanced model reaches a certain value at which the
smooth rise of the power output is capped. This reflects the clipping effect which is included in the
advanced model. The total yearly output shows only an error of 2% between the two models. Con-
sidering the fact that the advanced model requires about 7-10 times the computational time for only
a limited accuracy gain, the simple PV model is a valid approach.

When comparing the simple model to the renewables.ninja again two things should be noted. Firstly,
the bias correction approach is driven by error minimisation against data of existing PV power plants.
Due to the spatial sparsity of those PV power plants, some local specificity of the irradiance time
series is lost such as the passing of cloud cover. Therefore, the curves from renewables.ninja are
very smooth when compared to the two other models, as can be seen from figure 5.4b and figure
5.4c.
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(a) Monthly specific energy yield of the three models

(b) Four winter days winter generated by each model (c) Four spring days winter generated by each model

Figure 5.4: PV model validation against advanced PV model and renewables.ninja model
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Secondly, while the deviation on a yearly basis is as little as 1%, there is a large deviation of 29%
over the month of June. Both the simple and the advanced models show a substantially lower pro-
duction in June. This could be a result of the difference between the large scale meteorological data
reanalysis behind the approaches. Where the renewables.ninja model bases its calculation on the
global MERRA-2 reanalysis, the two other models are based on European scale PVGIS-SARAH data
which is based on satellite images.

In conclusion both the simple and the renewables.ninja PV models are found to be acceptably accu-
rate approaches to produce PV production profiles needed to fairly represent PV technology in the
optimisation problem. The simple model approach is based on PVGIS data which has the merit of
being able to provide a TMY compliant year, which is a synthetically generated year that is represen-
tative of a longer time period [115] [119].

On the other hand, the renewables.ninja approach has been bias-corrected to enhance its hindcast-
ing performance. If a specific year of interest is to be investigated, this approach is favourable. An
exemplary case would be the integration of time series from another model which itself is based on
a specific historic year.

5.2.3 PV cost development

Due to the cost-based optimisation nature of the framework in this thesis, it is of vital importance that
substantiated assumptions about future costs are in place. For this reason, literature was studied to
find sources of such projections which are often referred to in optimisation studies. Figure 5.5 shows
three of those projections, both in absolute and in normalised values. Energy Technology Reference
Indicator (ETRI) 2014 and 2017 are publications as part of the European Strategic Energy Technol-
ogy Plan [133] [134]. Fraunhofer ISE is considered one of the leading parties in terms of information
on the European solar market [135].

There are similar reports offering such reference or baseline values, but these contain a very com-
plete range of information sources - from academic literature to consulting publications - and are
specifically tailored to the European Union. The three projections have roughly the same reference
value in the same reference year (2015). As a result, the normalised projections show nearly the
same behaviour.

All three reference (or mean/baseline) scenarios show good agreement. Fraunhofers projection
shows the tightest range, while ETRI 2017 shows the largest range of possible future prices. This
is in part due to the different methodologies. ETRI 2017 is based on scenario-based cost projec-
tions, each reflecting a different future energy system with varying shares of renewable technology.
As ETRI 2017 is the most recent study and distinguishes between various PV set-ups and scales
it was used to determine realistic values for optimisation of future energy systems. In addition, the
given range is also used to determine the PV cost development uncertainty ranges for parametric
experiments.
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(a) Absolute capacity cost development

(b) Normalized capacity cost development

Figure 5.5: Utility-scale PV capacity cost development [133] [134] [135]

5.3 Wind

Another important source of intermittent renewable energy is wind power. Through the use of turbine
blades placed in moving wind, the kinetic energy of the moving air is first converted to mechanical
shaft power after which a generator converts the shaft energy to electrical energy. As with solar PV
systems, the output of a wind turbine depends on the local meteorological conditions.

5.3.1 Submodel description

To correctly incorporate the intermittent and dynamic behaviour of wind power production, a wind
power model is formulated. Wind power systems can be modelled with fewer meteorological condi-
tions to consider compared to solar PV. Equation 5.7 shows the fundamental relation between wind
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(a) Vestas V90 2 MW turbine power curve (b) Enercon e126 4.2 MW turbine power curve

Figure 5.6: Wind power curves for two example turbines

speed and output power. In this equation, ρ denotes the specific gravity of the air, A represents the
effective rotor area, v is the wind speed at the hub height, cp is the power coefficient, and η is the con-
version efficiency factor. This equation relates the kinetic energy contained in the wind Eki = 1

2mv
2

to power output. This is achieved by back-substitution of mass flux dm
dt = ρAv traveling through the

effective rotor area.

Pwind =
1

2
ρAv3ηcp (5.7)

Aerodynamic losses are included by applying the power coefficient cp and the system conversion
losses are reflected in the efficiency η. The power coefficient is dynamic in function of the wind
speed and determined by the design of the turbine blades. This coefficient cannot exceed the Betz
limit of cp = 16/27 [136]. Typically, wind turbine manufacturers supply a power curve and/or the power
coefficient as a function of wind speed under standard conditions. This has been collected for various
manufacturers and makes in an open database accessible under the Open Energy Platform [137].
Two of such power curves are shown in figure 5.6.

The parameter with the largest effect on the power output is the wind speed, which has a cubic
relationship to the power output. The other parameters are proportional. Rotor area is a turbine
specific parameter and a constant. The density is a function of temperature and relative humidity
and is dynamic, albeit at a reasonably tight range. The efficiency is also turbine specific and can be
considered dynamically as a function of the load relative to nominal capacity.

Due to shear between the nearly stationary air at the surface and higher layers of moving air, the wind
speed gradually increases with the height. As a result, wind speeds at a certain height should be
transformed to the hub height of the turbine. The increase in wind speed depends on various factors,
including surface roughness and the temperature gradient [138]. Equation 5.8 shows the logarithmic
relation used to determine the vertical wind profile [136]. It is assumed that the surface roughness
length z0 equals 0.03, which is analogue to an open field.

v(H) = vref
ln (H/z0)

ln (Href/z0)
(5.8)
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5.3.2 Submodel validation

Within the framework, three approaches to modelling wind power are possible: 1) described model
based on meteorological data from PVGIS 2) described model based on meteorological data from
DOWA and 3) requesting a calculated power curve from renewables.ninja. Both DOWA and renew-
ables.ninja have the merit of containing multiple height levels due to the fact that both are submodels
of the MERRA-2 reanalysis. These two approaches will therefore better capture location-specific ver-
tical wind profiles. Throughout this thesis, the DOWA data is not used, as no of the studies require
off-shore wind production curves.

Therefore, approach 1) and approach 3) are compared against each other for a Vestas V90 2 MW
wind turbine on a specified location. The result is shown in figure 5.7. Generally, there is good agree-
ment in the monthly energy yields with an exception for October. In this month, the wind modelling
approach based on PVGIS underestimates the expected yield by 52% when compared to renew-
ables.ninja. Due to the fact that these models are each based on different data sources, it is likely
that this is a result of the difference between satellite driven models against reanalysis models. On
a yearly basis, there is a good agreement (<2% error) between the two modelling approaches, as
shown in table 5.2.

When looking at the winter and summer days generated by both models, shown in figure 5.7b and
fig 5.7c, respectively, the behaviour is in general quite similar. However, it becomes apparent that
the model based on the PVGIS data behaves more erratically, showing a more irregular pattern with
large spikes. The profile of renewables.ninja on the contrary shows a more smooth pattern. In addi-
tion, the number of values in extremities seem substantially lower.

This is concluded to be indeed the case, by analysing the histogram shown in figure 5.8. In this
figure, the x-axis denotes the hourly capacity factor (e.g. output power for that hour relative to the
nominal capacity). The y-axis shows the corresponding frequency (in hours per year) of that hourly
capacity factor. From this figure, it is concluded that the PVGIS based model seems to switch in a
quite binary manner between no production and peak production. This is assumed to be an artefact
of the logarithmic height extrapolation applied.

In conclusion, both models show reasonable results and have each been validated in existing litera-
ture [138] [122]. Renewables.ninja shows more realistic and smooth behaviour, while PVGIS is more
erratic. This can be attributed to the availability of various height levels in the renewables.ninja, which
is a more realistic reflection of the vertical wind profile at and around the turbine hub height.

PVGIS only produces wind speeds at a height of 10 meters, where near-surface effects and surround-
ing objects can substantially affect the wind speed. Moreover, this margin of error is further increased
due to the extrapolation errors from applying the height correction. PVGIS has the merit of being able
to produce output in a TMY format, which better reflects historical meteorological conditions than a
single year would [115] [119] [120].
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(a) Monthly specific energy yield of the two models

(b) Four winter days winter generated by each model (c) Four spring days winter generated by each model

Figure 5.7: Wind model based on PVGIS wind data validation against renewables.ninja wind model

Table 5.2: Wind model statistics of deviation
Yearly specific yield Yearly deviation largest deviation
[kWh/kWp] [-] Month kWh relative

PVGIS 2737 - - - -
renewables.ninja 2793 2% October -50 -52%
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Figure 5.8: Histogram nbins = 30 depicting the frequency of wind capacity factors through the year
based on two models

5.3.3 Wind cost development

Figure 5.9 shows two projections - of which the specifics have been described in 5.2.3 - both in
absolute and in normalised values. These projections show great discrepancies in terms of the un-
certainty range. This is mainly due to the fact that ETRI 2014 does not distinguish between different
configurations of on-land wind systems, whereas ETRI 2017 does include this distinction. As a re-
sult, ETRI 2014 generalises all current cost and projections to a singular value; regardless of the
hub height or rated power of the wind turbine. ETRI 2017 includes an update, which classifies wind
turbines into three bins both in terms of the power rating and the hub height of that turbine. For this
thesis, medium-medium turbines were selected. This roughly reflects the current landscape, where
wind turbines have around 100m hub height and are rated around 2-3 MW. For this reason and the
fact that ETRI 2017 is more recent, this cost projection will be used for the determination of the future
cost of wind as well as provide the uncertainty range for the parametric experiments.
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(a) Absolute capacity cost development

(b) Normalized capacity cost development

Figure 5.9: onshore wind capacity cost development [133] [134]

5.4 Storage components

Throughout literature, it is concluded that storage of energy will be crucial in supporting energy sys-
tems highly dependent on intermittent renewable sources of energy [83] [139]–[143]. With increas-
ing shares of non-dispatchable sources of renewable energy, storage offers operation flexibility and
greatly reduces the required installed capacity of wind and solar [144]. Requirements for success-
ful implementation of energy storage solutions in future energy systems have been studied inten-
sively [145] [146]. Use cases such as reserve capacity, operational flexibility and balancing services
are out of scope in this thesis, in part due to the hourly time-step used.
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Based on the definitions of use-cases for storage in future energy systems [145] and corresponding
outcomes from cost projection, it can be concluded that at least two distinct storage technologies
should be considered to correctly reflect cost optimisation of future energy systems. These two tech-
nology are lithium-ion battery storage and hydrogen storage.

Currently, lithium storage technology is considered cost-effective most cost-effective for storage ap-
plications around 1 hour storage duration and less than 500 discharges per year. Towards 2050
the application range is expected to increase to nearly 16 hours storage duration [145]. These ap-
plications include gas peaker plant replacement and black start capacity but are also related to the
management of grid congestion and investment deferral due to mitigating peak flow load on existing
infrastructure. Lithium battery storage should be considered in various power-to-energy ratios con-
figurations, allow to most cost-effectively meet the demand of a specific task in closing the intra-day
energy balance [38].

Hydrogen storage is expected to be the most cost-effective technology for seasonal storage, as
early as 2025 [145]. Seasonal storage is described as a crucial component for buffering and storing
seasonal excesses and shortages related to high shares of renewable energy [147]. This segment
requires the storage component to store energy for extended periods, from weeks to months.

5.4.1 Submodel description

Both hydrogen and lithium, or any arbitrary storage component, can be described using the same
general storage dynamics. These are used to correctly reflect charging, discharging, self-discharge
losses and conversion efficiency losses. The maximum amount of energy contained in a storage
component can never exceed its maximum energy (Emax) content as shown in equation 5.9. This is
defined by component-specific installed capacity (Pinstalled) and EP (energy-to-power) ratio (EPratio),
as shown in equation5.11.

E(t) ≤ Emax (5.9)

with: t, time ∀t ∈ [tmin, tmax] (5.10)

Emax = Pinstalled · EPratio (5.11)

To define the charging and discharging dynamics, equation 5.12. In this equation, the η denotes
single direction efficiency which is determined based on the round-trip efficiency. The round-trip
efficiency is assumed at 85% and 40%, for lithium battery storage [148] and hydrogen storage [145],
respectively. Due to the recursive behaviour of this formula, an initial value (Etmin

) and final value
(Etmax ) should be set. This is implemented through equation 5.14 and equation 5.15, respectively.
In these equations, Emax denotes the maximum storage capacity and SOCinit is the initial state-of-
charge of the storage component.

Et = Et−1 + ηPt (5.12)

with: t, time ∀t ∈ [tmin + 1, tmax − 1] (5.13)

Etmin = Emax · SOCinit (5.14)

Etmax
= Etmin

(5.15)
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Charging losses require a more sophisticated implementation to correctly reflect the charging and
discharging dynamics. To be able to do this, charging power should be split to a positive and a
negative component, as shown in equation 5.16. Substituting this back into equation 5.12 yields
equation 5.17. Through this implementation, conversion losses are rightfully reflected. For instance,
the storage component state of charge will increase to a higher energy level than it will be able to
contribute again to the system energy balance, due to discharge conversion losses.

P = Ppos + Pneg (5.16)

Et = Et−1 + ηPneg,t + ηPpos,t (5.17)

with: Ppos, Positive charge component ∀Ppos ∈ [0,∞) (5.18)

Pneg, Negative charge component ∀Pneg ∈ (−∞, 0] (5.19)

t, time ∀t ∈ [tmin + 1, tmax − 1] (5.20)

Finally, self-discharge losses should be implemented to represent the loss of charge over time. This
is determined by using equation 5.21. Here ηself-discharge should be always implemented as the hourly
rate of discharge. For lithium battery storage and hydrogen storage these hourly discharge rates are
assumed at 0.9995 and 1 [145], respectively.

Et = ηself-discharge · Et−1 (5.21)

with: t, time ∀t ∈ [tmin + 1, tmax − 1] (5.22)

All derived equations can be implemented into the optimisation problem as linear (in-)equalities and
thus will contribute to the system of equations as linear constraint functions. By substituting the
storage technology and component-specific parameters, these equations can be used to reflect any
arbitrary storage component added to the energy system under analysis.

5.4.2 Lithium battery storage data and cost development

The cost projections for lithium-ion storage technology is based on the Annual Technology Baseline
published by NREL [148]. This study is relevant specifically due to the fact that it includes separate
price projections for both the power and energy component of lithium storage, as can be seen from
figure 5.10.

Even though the normalised projections show a similar lower range (figure 5.10b), the moderate sce-
nario and upper range are substantially higher for the power component of cost. This is augmented
by the researchers based on the fact that the energy component (lithium cells) is still in the early
stages of development, allowing for larger gains in cost-effectiveness. The power component on the
other hand is mainly dependent on Balance Of System (BOS), which are power electronics such as
wires, switches and inverters. Since this market is readily mature, large cost improvements are less
likely.

Due to the fact that the storage cost component and power cost component are supplied separately, it
is possible to accurately determine the cost of arbitrary configured battery storage system. Driven by
the EP ratio of the lithium battery, investment cost can be determined, as shown in equation 5.23. In
this equation, C ′ denotes the specific investment cost for a cost component. Cpower denotes the total
investment cost per installed power capacity for a given battery configuration. Identically, equation
5.24 can be used to determine the total investment cost per kWh, denoted by Cenergy. For example,
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lithium battery storage configured at 2 hours storage duration would result in a cost per kWh of 245
euros ((197 + 147 · 2)/2) when the centre values of the 2030 cost range are assumed.

Cpower = C ′power + C ′energy · EPratio (5.23)

Cenergy =
C ′power + C ′energy · EPratio

EPratio
(5.24)

For lithium storage future cost projections applied in this thesis, it is assumed that storage and power
cost scenarios are related and occur together. The storage component cost range is sampled and
the cost component for power is linearly mapped to match that cost scenario. In reality, these events
are disjoint and not do not strictly correlate. However, applying this simplification greatly reduces the
variability of possible future cost outcomes resulting in a more clear overview and enhanced compu-
tation tractability.

5.4.3 Hydrogen data and cost development

Cost development of hydrogen is more difficult to predict, as it is still in an early stage of adoption
and therefore still in the early stages of the experience curve. This is determined based on the global
cumulative installed capacity of technologies. When comparing hydrogen storage to pumped hydro-
gen storage, the installed capacity is almost three orders of magnitude lower [145].

The projected costs for hydrogen can be seen in figure 5.11. The absolute costs are depicted for two
different configurations. Seasonal storage and sub-seasonal storage with a storage duration of 700
and 350 hours, respectively. The cost of such a configuration is based using a combination of the
power cost component and storage cost component, as shown in equation 5.24.
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(a) Absolute capacity cost development

(b) Normalized capacity cost development

Figure 5.10: Utility-scale lithium-ion based storage cost development [148]



5.5. ELECTRIC MOBILITY HUB CHARGING DEMAND 55

(a) Absolute capacity cost development

(b) Normalized capacity cost development

Figure 5.11: Utility-scale hydrogen-based storage cost development [145]

5.5 Electric mobility hub charging demand

One of the case studies in this thesis explores the possibilities for the deployment of energy systems
based on renewable energy generation to facilitate charging infrastructure for a rapidly increasing
share of Electric Vehicles (EVs). Funke [149] identifies two distinct use cases for fast charging in-
frastructure. The first is fast charging within urban areas as an alternative to overnight charging at
home. The second is intermittent charging during travel, mostly on highway stops. The latter poses
a greater demand on existing grid infrastructure as EVs will only stop for a relatively short period of
time to charge using high power DC fast charging infrastructure. This use case is dynamic within the
hour due to the fact that fast charging on highways is very time-constrained [149].
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(a) Typical weekday (b) Typical weekend day

Figure 5.12: Traffic and proportion of EV at Deventer highway segment A1 westbound

All time series used in LESO are on an hourly basis therefore, it is reasonable to include the charging
behaviour on an hourly basis. Even though shorter peak loads will not be reflected correctly, the
hourly energy balance will still reflect such a demand profile sufficiently to include in energy system
optimisation [150].

Since no suitable data sources are publicly available on EV charging demand specifically for highway
charging infrastructure, it was decided to stochastically approximate the time series. This is based
on real traffic data, supplied by the Dutch National data portal for traffic data [151]. Unfortunately,
it is not possible to extract a whole year of hourly traffic data. Instead, a typical weekday is created
based on an average of all weekdays in the year - excluding holidays. In addition, a typical weekend
day is created based on an average of all weekend days in the year - including holidays.

Combining the two to form every week of the year yields an hourly traffic profile of light traffic passing
a certain highway segment for every hour of the year. Based on projections for EV uptake in the
Netherlands [152], a certain (constant) share of this traffic is assumed to be electric. This is shown
in figure 5.12 for the A1 highway segment near Deventer.

It is out of scope to model the origin and destination of the passing EVs as a basis to determine
the State of Charge (SOC) when passing the charging opportunity. Instead, a stochastic approxima-
tion is implemented. To this end, a truncated exponential normal distribution is randomly sampled.
This is applicable due to the higher likelihood of a lower state of charge than a nearly fully charged EV.

Due to the random sampling, the time series becomes more diverse, because the rigidity of using
only two representative days is relaxed. It should be noted that for parametric studies conducted,
for instance, to investigate cost development uncertainties, this random sampling is connected to a
specific random seed to maintain reproducibility over many experiments.

After this, it can be decided which EVs are eligible for charging at this location. This is decided based
on the energy content and fast-charging power of the batteries found in the EVs. This is assumed
to be around 70 kWh and 150 kW , respectively. If a user would stop for about 10 minutes on aver-
age, this would mean that EVs should be able to charge at least 25 kWh. The upper region for fast
charging is typically up to a SOC of 80% [153]. As a result, only EVs with a SOC below 40% are
considered candidates for using the fast charger. Of those EVs that could charge, a certain share
will use this charging opportunity while others might find alternatives, as shown in figure 5.13.

Due to starting, stopping and connecting activities taking place before and after charging the maxi-
mum amount of EVs per charger per hour is capped to four EV’s per charger per hour. Combining the
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(a) Truncated exponential pdf and histogram (b) Fraction of EVs charging on a typical weekday

Figure 5.13: Stochastic approximation of charging behaviour of EVs

maximum capacity of the charging infrastructure at a location with the stochastically sampled traffic
data, an energy demand profile is generated. This profile is translated into an electric load profile by
using the charging efficiency, which is set at 85% [153]. As a result, the load acting on the energy
system is higher than the energy transferred into the EV batteries due to electrical and heat losses.
The resulting load is shown in figure 5.14.

Figure 5.14: Load on the system as a result of EV charging demand

5.6 Regional electric demand from ETM

Since Local Energy Systems Optimizer (LESO) aims to optimise local energy systems, it is relevant
to have a dependable source for regional energy demand curves. As stated in section2.2.1, the ETM
is used numerously throughout RES and system integration studies on a provincial level. Impacts
assessments of future energy systems carried out by DSOs and TSOs are also (in part) based on
the ETM and resulting demand curves [154] [30] [17]. The reasoning of the scenarios and the imple-
mentation in the Dutch energy transition is covered in more detail in chapter 2. The advantages of
using ETM as a source for regional demand curves:

1. Transparency
Online graphic interface, customisable through sliders (e.g. share of heat pumps, growth of
industry, etc), direct results, browsable

2. Regionallity
ability to switch between scales from neighbourhoods to national level
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3. Diverse energy carriers, sectors and components are modelled
i.e. heat, mobility, gas, industry, electricity, etc.

This section focuses on how ETM scenario models and their respective hourly curves are integrated
in LESO.

5.6.1 Scenario-based demand curves

It is possible to query the yearly demand curves on a hourly resolution for any existing ETM scenario
using the public API. This return a file containing each individual curve contributing to the energy bal-
ance in the model. In total there are 1 171 categories modelled. Of which 68 are production curves
and 103 are demand curves. Depending on the inputs given by the user, these curves contribute a
larger or smaller share to the total. For some specific curves, user settings affect the curve produced
by the ETM (e.g. merit order).

An example of such curves is shown in fig 5.15. These curves belong to the 49% emission reduction
scenario for the province of Gelderland by 2030. This scenario includes the most recent projections
on 2030 in the context of Gelderland [17].

Figure 5.15: An example of demand and supply curves that can be queried from the ETM using the
API from the 2030 49% reduction Gelderland scenario. Any scenario in the ETM can
be queried using this approach. Only the top 5 contributing categories are shown for
both the loads and sources, the rest is summed to the ”other” category.

The ETM models more technologies than included in the scope of LESO. To determine the residual
load to use for the optimisation, certain technologies are allowed to contribute to the future energy
system without being simulated within LESO. These are technologies such as waste incinerators or
biogas fueled combined heat and power plants (CHPs). Wind and solar PV production curves are
excluded from the residual because these technologies fall within the scope of LESO and should
therefore be simulated and optimised within the framework. The original residual load curve (nor-
mally resolved with import/export, which was excluded for illustration purposes) and the demand
curve after applying the aforementioned technology group filters are shown in figure 5.16.

1at moment of writing, release ”production-2021-09-07” [https://github.com/quintel/etengine/releases/tag/production-2021-
09-07]
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Figure 5.16: Residual and scenario demand curve for the 2030 49% reduction Gelderland scenario.

The shape of the determined residual does not necessarily match the residual curve one could
imagine from looking at figure 5.15. This is because export is on of the largest demand categories,
which is not included as a must-meet load. In addition, this scenario includes an already high share
of renewable energy. On the other hand, the region of Gelderland does not contain any centralised
dispatchable power plants in this scenario (e.g. hydrogen CCGT or CCGT with CC(U)S) other than
a comparatively small waste incinerator and some decentral CHPs used for agriculture heat. By
combining figure 5.15 and figure 5.16 it is possible to also observe the merit order on which the
ETM solves the energy balance and unit dispatch. During hours where renewable energy production
significantly outsizes the demand, observable from the high share of export in figure 5.15, it can be
seen that the residual curve (red line) nearly equals the scenario demand curve (blue dashed line).
This is due to the fact that the renewable dispatchable energy sources in this scenario are below the
variable renewable energy sources in the merit order based on variable costs of operation and are
therefore switched off.

5.6.2 Scenario-based price curves

Another capability of the ETM is to generate synthetic price curves. It does so based on resolving
a merit order, which determines which generation technologies are dispatched during hours of the
year. This merit order leads to dispatch based on marginal costs of technology groups. This is shown
in figure 5.17. The displayed merit order is from the Climate Agreement 2030 National scenario.

This approach oversimplifies the actual electricity market due to a few reasons. First of all, all power
plants based on the same generation technology are assumed to offer their capacity at the same
marginal price level. In reality, such a marginal cost of operation is dependent on factors such as the
location and configuration of the plant. As a result, the price level switches between the various cost
of technology groups discontinuously. A real market would reach equilibrium on a significantly larger
amount of marginal costs. In addition, it is based on the assumption that wind and PV power plants
bid at zero marginal cost. Although this is approximately true for subsidised projects, it will no longer
hold for subsidy-free projects [155].

An example of a price curve generated with the ETM is shown in figure 5.18a. The discrete switching
as a result of the merit order dispatch approach can be recognised in the squareness of the original
signal. As stated, this does not correctly reflect a real market, where more continuous equilibria
would be reached. Therefore, it is proposed to smooth the original curve from the ETM by applying
a Savitzky-Golay (savgol) filter. This is in essence a least-square error fit of a low-order polynomial
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within a moving window [156]. When the points within the window are equally spaced it is possible to
find an analytical solution, making this a fast algorithm even when applied to a year of hourly values.
The applied window size is equivalent to a day (actually 25 hours, due to the odd number require-
ment) and a quintic polynomial function is fitted.

As can be seen from the detail in figure 5.18b, this smooth curve still reflects the original signal
tendency very adequately while reducing the discontinuous switching contained in the original signal.
The result is a continuous signal, which is illustrated by the histogram in figure 5.18c. From this figure
it can be seen that the original signal has two very distinct equilibria points. Both occur for about 3000
hours per year, determining the price of electricity for a large share of the time. The first equilibrium
can be explained based on the overproduction of wind and solar compared to the demand within the
Netherlands, leading to a zero marginal cost for electricity. The second equilibrium is the situation
in which the national renewable energy production is insufficient to meet national demand and the
electricity price is determined by the marginal cost of conventional fossil plants (mostly gas CCGT)
and import. The price of interconnected imports is assumed constant. It was investigated what effect
a dynamic price of impact has on the national electricity price, but this was found to be neglectable.
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Figure 5.17: Merit order capacities and marginal costs. This figure is taken from the ETM front-end
web application. This merit order determines unit dispatch based on the marginal cost
and installed capacities of technology groups.
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(a) 60 day snippet of the (filtered) ETM price curve

(b) Detail of the (filtered) ETM price curve (c) Histogram of the (filtered) ETM price curve

Figure 5.18: Wind model based on PVGIS wind data validation against renewables.ninja wind model
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5.7 Conclusion

In this chapter, the key steps, mathematical formulation and data sources used for modelling the
components within the scope of the LESO were introduced.

Three sources have been integrated within the framework that allow for automatic retrieval of location
specific historical meteorological time series, namely PVGIS, DOWA and renewables.ninja. Relevant
information from the meteorological time series is fed to the feed-in power models.

The photovoltaic component uses global, normal beam, and horizontal diffuse irradiance to determine
the irradiance on the plane-of-array. This is subsequently converted to power output by applying a
conversion efficiency factor. Assessment of the cost development of photovoltaics reveals that in-
vestment cost could drop to as low as 260 AC/kWp by 2050, a reduction of 75% compared to the
reference year 2015. Studies do reveal a large range of uncertainty.

The wind component is based on the wind speed, the pressure, temperature and relative humidity.
Wind speed is extrapolated to the hub height using the logarithmic law. Using the power curve of
the specified turbine type the wind speed is converted into electrical power. Cost projections show a
smaller range of improvement when compared to photovoltaics. Still, costs are projected to drop to
900 AC/kW by 2050, a reduction of 33% compared to the reference year 2015.

Storage components are modelled using recursive equations that account for (dis)-charging and self-
discharge losses. Lithium will very likely become the most cost-effective storage solution for intraday
balancing, while hydrogen is most the cost-effective solution for seasonal storage, according to pro-
jections. Both components can be configured in various storage duration by setting the energy-to-
power ratio. Lithium storage cost are expected to reduce by about 75%, while hydrogen storage cost
might reduce by as much as 87%. Both lithium and hydrogen cost display a wide range of uncertainty.

The electrical demand curve resulting from fast charger infrastructure was introduced, which is for-
mulated based on stochastically sampled traffic data.

Finally, the ETM component in LESO was covered in detail. This relates to research question 3.1:
How can the optimisation model be coupled to existing models to reflect the effect of (inter)national
energy policies? In chapter 3, it was concluded that coupling to the ETM and to the available energy
scenarios was desirable. In this chapter, the method for coupling was introduced. Scenarios that
reflect possible future energy systems that result from diverse energy policies are constructed in the
ETM. These can subsequently be used in LESO to generate regional load curves that reflect the
regional demand under certain assumptions on (inter)national energy policy such as the CNES. In
addition, this component can be used to construct a synthetic price profile based on national models
of the Dutch energy system.
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Chapter 6

Methodology

This chapter covers the methodology that is applied in the case studies to discover cost-optimal en-
ergy systems configuration under uncertainty. In the case studies, LESO is implemented to explore
the effect of cost uncertainty on optimal configurations for various energy systems. Because the case
studies have distinctly different energy systems configuration of the model is relevant and covered in
section 6.1.

Parametric uncertainty exploration is applied based on the projected respective technology cost
ranges. Each uniquely configured model is referred to as an experiment. Many experiments are
obtained by sampling the uncertain parameters and policy levers (e.g. renewability targets, maxi-
mum allowed grid connectivity or subsidy schemes). The terms used to describe parameters and
methods in parametric uncertainty exploration are consistent with the nomenclature used in EMA.
As such, section 6.2 describes how uncertainty sampling is applied in the case studies. Section 6.3
covers how policy levers are implemented in the parametric experiments.

Section 6.4 reveals the implementation of policy levers and uncertainties to produce an attributable
set of experiments per case study. To close this chapter, section 6.5 presents a clear overview of the
case studies and their corresponding chapters.

65
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Figure 6.1: Diagram of a configured energy system model

6.1 Initial model configuration

The LESO energy systems model is set up in a similar manner throughout the various case studies.
That is to say, the components that the optimisation algorithm has to determine the optimal amount of
deployment for, are defined as a set of standard configured components. This allows for comparison
between the various optimisation results, due to the uniform model set-up. A graphical representa-
tion of the initial model configuration is shown in figure 6.1 and is discussed in more detail in the
remainder of this section.

6.1.1 Components

Source components — Three distinct solar PV configurations are considered. All of these con-
figurations are set at a tilt of 37 degrees. The azimuth is set to varying angles to produce East,
South and West oriented arrays (see section 5.2). These configurations are based on the mounting
strategies used by the industry for open-field projects and large scale rooftop projects. They are thus
assumed to sufficiently reflect the possible production curves to consider.

The wind component is included in only one specific configuration. The wind turbine type used in this
configuration is the Vestas V-90. This turbine type has been deployed throughout the Netherlands
and falls within the medium-medium category as discussed in section 5.3.3. This turbine has a hub
height of 80 metres. Although the power capacities of modern turbines are trending towards greater
capacities, this trend is mostly relevant for offshore wind farms. Onshore wind turbines are more
constrained, due to the landscape disruption and, resulting from that, civil resistance, which is a topic
in itself [157]. To refrain from such political and social concerns, the Vestas V-90 is applied, arguably
the best reflection of the current industry standard in the Netherlands.

Both the wind and solar components are configured to use renewables.ninja as data source since this
allows for the selection of a single historical year. The selected year is 2015. This is in line with the
default meteorological data used by the ETM. As a result, the relationship between e.g. temperature
and heat demand, irradiance or wind speed and power production are kept aligned.
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Storage components — Lithium-based storage is included in three distinct storage duration con-
figurations. This yields a set of 2, 6 and 10-hour storage duration lithium batteries.

Hydrogen-based storage is configured in two variants in terms of storage duration. A 700-hour stor-
age duration hydrogen component reflects seasonal storage, while sub-seasonal storage is based
on a 350-hour storage duration. Whether hydrogen is included in the model depends on the scope
of the study.

Sink components — The grid component is always included as a part of the energy system
model, as all case studies are connected to the electricity grid. The installed capacity of the grid
components depends on the context of the case study. In the Gelderland studies, the grid capacity is
based on the current transformer capacity between the regional distribution net and the high-voltage
(150 kV) transportation infrastructure. The ETM is used to determine this value by querying this value
from its corresponding data-model; the etsource [158]. This procedure is carried for every region un-
der analysis.

The regional demand component is included in all studies on Gelderland, as well as its RES regions.
It is configured such that the API connection to the corresponding scenario is triggered whenever the
load curve or other relevant parameters are queried from the ETM. The specific scenarios used are
listed in their respective chapters and sections. All regional ETM scenarios used in these sections
are a result of the very recent system study on Gelderland [17].

Finally, the fast-charging demand component is included in only one study and is discussed in the
respective section.

6.1.2 Electricity price curves

National scale ETM scenarios are used to determine the energy market price curves used in the grid
component. The method applied to obtain and process these curves is discussed in detail in sec-
tion 5.6.2. Using an ETM model on a national scale, the corresponding price curve results from the
marginal costs of energy generation corresponding to the conditions of a future Dutch energy system
if current policies remain in place. This is thus a suitable method to represent a synthetic price curve
that acts as an exogenous factor on the energy systems under study in these case studies.

For studies in 2030, this is based on the ETM scenario constructed by Kalavasta [159], which in turn
is based on the National Energy Report and Climate and Energy Report [9] [10]. In this scenario, the
electricity mix is 74% renewable, based on projections of current policies. Three model settings have
been changed, however. This is the fuel cost of natural gas, the carbon price and the free allocation
setting for carbon emission rights. Natural gas is set to 40AC/MWh in line with the most recent EU
reference scenario projection for 2030 [160]. It should be noted that the current gas market is highly
volatile as the price for natural gas contracts is 90AC/MWh at the moment of writing. The Emissions
Trading System (ETS) carbon price is assumed at 85AC/tonne, which is based on more recent and
opinionated projections [161]. Free allocation of carbon rights is set at 0%, in line with current Euro-
pean policy for the electricity sector.

For studies in 2050, this is based on the ETM scenario constructed by Kalavasta [159], which in
turn is based on the National Energy Report and National Climate Agreement [10] [9]. For the
case studies in 2050, the national model used is one of the four II3050 scenarios as composed
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by Kalavasta and Berenschot [27], depending on the specific case study. These scenarios have
subsequently been extended and detailed by NetbeheerNL as part of the integral infrastructure study
phases 2&3 [30] [162]. See section 2.2.2 for more details on the integration studies.

6.2 Uncertainty sampling: technology cost development

In this thesis, the uncertainty that has been addressed is the cost development of various technolo-
gies. For case studies on which the static approach is applied, component cost settings are based
on the centre values (or mean, moderate or reference depending on the nomenclature of the source
used) of the cost development projections. The cost development is discussed in detail in chapter 5,
in each respective subsection. The static method is used in this thesis to validate and compare the
aggregation of the RES regions in Gelderland to the province of Gelderland as a whole.

As discussed in section 4.3.2 and 4.3.3, the optimisation algorithms implemented in LESO are de-
signed to solve various tipping points and trade-offs between the considered technologies. Insight
into those tipping points and trade-offs is achieved by sampling the uncertainty range of all involved
technologies. As a result, many uniquely configured optimisation variants of the same energy system
are acquired. LESO is integrated into EMA to apply Latin hypercube sampling on uncertainties. This
statistical method generates a set of random samples of the multi-dimensional uncertainty space that
ensures a good representation of the original space, unlike typical random sampling. This sampling
approach is more efficient than generating a full factorial which is exponential with the dimensions of
the sampling space.

6.3 Policy sampling: model exogenous factors and boundary
conditions

Policy levers are parameters that could possibly impact the outcome of the experiment but are not
inherently uncertain but rather deterministic of nature. That is to say, these parameters reveal the
outcome of a specifically determined configuration if actions were taken to reach that configuration.
This implies that only parameters which can in totality be controlled through policies, actions or pro-
cesses qualify as a policy lever. Examples of policy levers include features such as the application of
an energy subsidy, extended grid capacity at a certain location or maximum/minimum allowed ratio
of wind-to-solar. Design parameters or exogenous factors can also be sampled in a discrete manner
to investigate the sensitivity of outcomes to a prescribed change in those parameters.

6.4 Experiments

To produce a set of parametric experiments both the uncertainties and policies are sampled. The
total number of experiments is the product of the number of samples over the uncertainties and the
number of policies to be investigated. The set of samples that defines the uncertainties are exactly
the same for all policy variants. Otherwise, it would not be possible to assess the effect of the policies
separately over the same set of uncertainties.

In practice, if 100 samples are taken from the uncertainty space in combination with a set of six poli-
cies, a total of 600 experiments need to be solved. This means 600 model configurations that each
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produce an optimisation problem accordingly and each yielding a possible energy system configura-
tion that is cost-optimal under those assumptions.

By applying (statistical) analysis on the results of the experiments, insight is obtained into how the
configuration of cost-optimal future energy systems depend on the cost development of solar, wind,
lithium and hydrogen storage. In addition, the effect of policies levers and exogenous model factors
can be addressed separately.

6.5 Case studies overview

To conclude this chapter, an overview of all case studies is given. The case studies are split up into
three main chapters to better distinguish between the studies. In each chapter, the specific model
configuration and uncertainties are discussed before results are introduced and subsequently anal-
ysed. The case studies are ordered in increasing complexity.

• Local energy projects (chapter 7)

– Cable pooling Nijmegen
The first case study covers a cable pooling project. In this study, the cost-optimal config-
uration of solar PV and battery storage is determined based on wind turbines’ installed
capacity and grid capacity. Therefore, this study considers two design variables and two
technology cost uncertainties. Moreover, there is no load component in this situation so
that no additional complexity is introduced through a demand profile.

– Electric mobility hub Deventer
In the second case study, a fast-charging location near a highway close to Deventer is
investigated. Based on traffic data, a demand profile is introduced. Under varying grid
capacities, the optimal deployment of wind turbines, solar PV and battery storage is deter-
mined. Therefore, this case considers three design variables and respective technology
capacity costs.

• Gelderland 2030 (chapter 8)

– Renewable energy strategy regions
In first part of this chapter, the renewable energy regions within the province of Gelder-
land are optimised in terms of deployment of wind turbines, solar PV, battery storage and
hydrogen storage. In the first part of this chapter, the optimal configuration is determined
based on the centre values of the projected cost ranges for each region. The same proce-
dure is followed for the whole province of Gelderland. The result of the individual regions
is aggregated and compared to the result of Gelderland as a whole. The following regions
are located within Gelderland.

* Achterhoek

* Arnhem-Nijmegen

* Cleantech

* Foodvalley

* Noordveluwe

* Rivierenland

– Province Gelderland
In the second part of this chapter, the optimal system configuration for Gelderland in 2030
is determined based on the same four technologies. In addition to the first part, uncertainty



70 CHAPTER 6. METHODOLOGY

is introduced. Moreover, the optimisation model is further constrained by introducing re-
newability targets. Therefore, this section considers four technologies both in uncertainty
and deployment.

• Gelderland 2050 (chapter 9) To obtain insight into the future demand development within the
region of Gelderland, the optimal configuration of the same four technologies as in the previous
chapter is determined. Again, parametric uncertainty exploration is applied, but, this time the
cost ranges are based on projections for 2050. Moreover, the optimisation model is constrained
to generate only fully renewable energy systems. Four distinct scenarios are introduced that
impact the demand for electricity. These are the same scenarios as used throughout the Dutch
energy transition policies. By determining cost-optimal configurations for Gelderland in 2050,
a view into the future is preserved. This can be used to validate whether the current policies
are part of the no-regret investments needed to achieve a cost-optimal fully renewable power
system in 2050.

– II3050 - Regional

– II3050 - National

– II3050 - European

– II3050 - International



Chapter 7

Local energy projects optimisation

In this chapter, LESO is applied to study two local energy projects. Both studies are relevant to the
bigger picture of the energy transition.

As stated in the chapter 4, LESO is not designed to calculate grid loads or optimise renewables’
integration into existing infrastructure. Instead, this is reflected in energy system models as bound-
ary conditions and thus an exogenous factor to the model. However, various parts of the Dutch grid
infrastructure are becoming congested, thus preventing the development renewable energy projects.

In section 7.1, a possible solution direction is studied. This is the concept of cable pooling, where
both solar PV and wind generation utilise the same grid connection. The concept is technically vali-
dated and recent amendments to the Dutch energy law introduce supporting legislation. In the case
study on cable pooling, the concept is tested by applying cost-optimisation under uncertainty and
varying context.

The scope of LESO is currently limited to the electricity sector. Other sectors are not modelled in
LESO but in the ETM, to which LESO is coupled. However, considering that the transport sector is
expected to electrify in the near future, it is relevant to address the possible forthcoming challenges.
LESO can be used to generate insights for this topic by determining an expected demand profile as
discussed in section 5.5.

In section 7.2, the possibility of meeting electricity demand emanating from fast-charger infrastruc-
ture through local energy generation in grid-constrained locations is assessed by investigation of an
electric mobility hub. The cost-optimal configuration of a dependable energy system is evaluated
under varying levels of grid connectivity and uncertainties regarding the cost level of technologies.

71
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Figure 7.1: Visualisation of the current grid congestion challenges faced by grid operators and, sub-
sequently, energy project developers. This map shows the congestion for delivery to the
grid. Red means structural congestion and new permits for connecting energy projects
are handed out. Orange and yellow indicated congestion to a lesser degree but still
indicate the possibility of permit constraints due to grid congestion. [164]

7.1 Cable pooling

Grid operators are required by law to guarantee transport capacity when offering a grid connection
point to a client [163]. This guarantee should also be upheld during the peak production of such
an asset. If this guarantee can no longer be kept, grid operators have to imply a regime on the
issue of new grid connection points for energy projects. When fossil dispatchable plants were the
main energy source, this legislation did not necessarily lead to pressing issues. However, energy
generation based on intermittent sources of renewable energy is highly volatile. I.e. the capacity
factor is substantially lower, leading to short and high loads at peak power output. Replacing the
current centralised fossil dispatchable generation assets with renewable energy plants has therefore
led to an increasing demand on the grid transport capacity. As a result, project developers working
on renewable projects already experience difficulty securing a grid connection. Between the various
grid operators, there is a consensus that this situation is expected to become increasingly restrictive
for new projects. The current situation with regards to the scarcity of possible locations for energy
projects is illustrated in figure 7.1.

Now, because the Dutch National Climate Agreement specifies a certain share of the Dutch electricity
mix to be completely renewable [8], grid operators are experiencing a very rapid influx of renewable
energy projects on their infrastructure. On the long term, this project pipe-line is expected to be
sustained by the enactment on the Regional Energy Stategies [30]. As a result, grid operators have
alarmed national politics and regional policymakers that they cannot serve the needs of this sus-
tained influx of renewable energy projects in terms of grid connection [165]. They state that they are
able to serve only 35 TWh of renewable energy generation of the 55 TWh of renewable energy that
is proposed across all RES regions [166].
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There is an inherent conflict between the renewable energy goals captured in the RES and the trans-
port capacity guarantee that grid operators have to offer. One is based solely on volume, while the
latter is primarily concerned with peak power loads. It is crucial to overcome this barrier to reach the
climate goals and renewable energy goals. This study investigates a concept known as cable pool-
ing. From interviews with experts at grid operators (TenneT, Liander and Enexis) it can be concluded
that they regard this concept as vital to cost-effectively reach high shares of renewable energy within
a reasonable time span. Cable pooling is based on the combination of two energy generating assets
that utilise the same grid connection point and thus pool their grid connection resource. Typically,
this was done by combining wind and solar power plants, due to the fact that these technologies are
anti-correlated in terms of the temporal relation in peak production [167]. A graphical representation
of this concept is shown in figure 7.2.

Figure 7.2: Abstract representation of cable pooling. The energy assets can be owned by the same
developer, but recently passed legislation also allows multiple parties to pool on the same
client station.

The branch organisation of the Dutch grid operators has already investigated the technical potential
of cable pooling. They found cable pooling of renewable energy projects could increase the capacity
factor of existing grid connections from 10% to as high as 42%, depending on the exact configura-
tion of wind and solar components [168]. The first steps in putting in place the necessary enabling
legislation have been taken by passing an amendment on the Dutch electricity law, allowing multiple
parties to cooperate to increase the utilisation of a shared grid connection [169].

This section investigates the cost-optimal configurations of cable pooled centralised energy genera-
tion projects. This should reveal under what conditions - in terms of technology cost and applicable
policies and context - cable pooling is sensible. In this optimisation study, a variety of solar PV and
lithium battery energy storage configurations are considered. Results should reveal the effect of
various cost developments on the viability of cable pooling.
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7.1.1 Case description

This local energy project is loosely based on an existing centralised energy project in the RES region
of Arnhem Nijmegen. It is a wind park called Nijmegen-Betuwe, which is a citizens’ initiative and is
owned by the local community. Currently, 4 Lagerwey L100 wind turbines of each 2.5 MW are readily
feeding renewable energy to the grid but recently the initiative has announced that an additional 5
MW of solar PV will be connected on the same grid connection. The initiative states that an essential
step was securing the SDE++ subsidy because it would otherwise not be possible to generate profit.
Although cable pooling is known to lead to curtailment, the project initiative reports that using battery
storage is not an economically viable option [170]. These two statements are evaluated in this case
study, as well as the optimal amount of solar power to deploy, through optimisation under cost uncer-
tainty.

In this study, a stylised representation of the wind park Nijmegen-Betuwe is considered. To this end,
both a wind and grid component with a fixed installed capacity of 10 MW were included in the energy
system model. The wind component bases its feed-in profile on the power curve of the Nordex N100
2.5 MW, which was the best matching turbine available. It has the same hub height and power rating
as the original Lagerwey L100 and similar cut-in and cut-out speeds. Solar PV with a fixed tilt of
37 degrees is included in the model in three configurations based on varying orientations, namely
South, East and West. Energy storage is included in the energy system by introducing three battery
storage systems with a 4, 6 and 10-hour storage duration. The installed capacities of PV and lithium
components are a parameter optimised by the optimisation algorithm. As such, it will determine the
cost-optimal deployment of those technologies in the context of the existing wind capacity and grid
capacity. An overview of the energy system and associated variables is given in table 7.1.

Table 7.1: Optimization set-up for the cable pooling case study.

Component Configurations Installed capacity

PV South optimisation variable
East optimisation variable
West optimisation variable

Battery storage 2 hours storage duration optimisation variable
6 hours storage duration optimisation variable
10 hours storage duration optimisation variable

Grid capacity 10 MW
Wind Nordex N100/2500 10 MW

7.1.2 Parametric uncertainty exploration

In order to investigate whether cable pooling will be a viable solution, cost projections of the included
technologies are sampled. Since cable pooling is recognised as a solution that should offer relief
on grid constraints within a reasonable time frame, cost projections up until 2030 are implemented
in this study. Accordingly, the electricity price curve that was included in all models is based on a
National ETM model for 2030. The method for deriving the curve is covered in depth in section 5.6.2.
Assumptions specifically corresponding to the price profile in 2030 are introduced in section 6.1.2
The cost ranges for solar PV and lithium storage are presented in table 7.2. For lithium storage, only
the energy capacity cost projection is sampled. The power capacity cost is linearly mapped to this
sampling, based on the projection range corresponding to this variable.
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Table 7.2: Uncertainties sampled in the cable pooling parametric uncertainty exploration

Component Sampled parameters Method Cost range Unit

PV Capacity cost LHS 388 - 867 AC/kW
Lithium storage Energy cost LHS 114 - 194 AC/kWh

Power cost linear map 108 - 208 AC/kW

Other than the uncertainties, a set of policies was introduced in this study. These are listed below.

• Policy 1 - Fixed-support subsidy
For current renewable energy generation plants, the Dutch government gives out fixed-fee sub-
sidies through the Rijksoverheid voor Ondernemend Nederland (RVO) subsidy scheme ”Stim-
ulering Duurzame Energie” (SDE). This subsidy acts as a guarantee for investors and aims to
attract capital investment for renewable energy projects. The subsidy is fixed-fee, which means
that RVO makes up for the difference between the energy price on the market and the granted
feed-in tariff. This form of subsidy has proven to be cost-effective, as it is only spent on actual
renewable energy generated and not on installed capacity [155].

In this policy, a stylised representation of a fixed-support subsidy on renewable energy is ap-
plied. This is done by setting a minimum value in the electricity price curve. The minimum
value used on the price curve is therefore the height of the fixed-support subsidy. This is set
at 28 AC/MWh, which is roughly based on the 2022 SDE++ base fee and the corresponding
correction factor projected on 2030 [171] [172]. It should be noted that this is not necessarily a
realistic projection or probable value for the SDE++ in 2030 and should not be treated as such.
Rather, it forms a stylised representation of the effect of such a fixed-support subsidy.

• Policy 2 - No subsidy
This policy uses the same electricity curve but without the artificial minimum value that is in-
duced by the fixed-support. This policy can be used to determine the effect of a fixed-support
subsidy by comparing to the fixed-support subsidy policy. In addition, it can be used to de-
termine the component cost level needed to support a subsidy-free business case for placing
additional solar generation capacity on existing wind farms.

• Policy 3 - Marked-down battery cost
This third policy was added later, after finding that the optimisation algorithm would not deploy
battery storage under any of the sampled conditions. Policy is based on the first policy and has
the same fixed-support subsidy in place. In the current case setup, the added value of storage
is only to time-shift the production of the assets. As such, it can be used to store otherwise
curtailed renewable energy to release at a later moment in time when there is either a better
electricity price or when there is available grid capacity. This battery storage use case is called
portfolio optimisation, as the only mode of operation is optimal dispatch of the projects genera-
tion portfolio.

There are other substantial sources of income that can be generated by battery storage through
ancillary services. These include day-ahead and intra-day energy arbitrage, i.e. trading on the
energy market, frequency containment and restoration reserves, and congestion management
on the new market platform GOPACS [173]. These sources of income are not included in this
case setup. This gap between the realistic cost projection and the artificially marked-down
cost should be interpreted as the necessary income generated by those income-generating
activities other than the considered portfolio optimisation. The range of battery capacity cost
that is sampled in this policy is shown in table 7.3. The remaining parameters are implemented
as described in section 7.1.1.
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Table 7.3: Marked down cost uncertainties sampled in policy 3

Component Sampled parameters Method Cost range Unit

Lithium storage Energy cost LHS 28 - 114 AC/kWh
Power cost linear map 26 - 105 AC/kW

Per policy, 200 samples were taken from the space spanned by the two cost uncertainties. This
results in a total of 600 optimisation problems to be solved. In order to maintain the digestibility of
these results, each set of results are first presented in a section according to each of the policies.
Conclusions on the effect of policies and the sensitivity of the optimal solutions to cost uncertainties
are formulated in section 7.1.6

7.1.3 Results policy 1 - Fixed-support subsidy

This section discusses the results that are generated by using a fixed-support subsidy on the cable
pooling model. Due to the dimensionality of the results obtained through solving many iterations of
the optimisation model over various dimensions of uncertainty, various plots were made and anal-
ysed to obtain insight. Key results are presented in this section.

Figure 7.3 displays all sampled uncertainties in the plane. This is the capacity cost for PV on the
x-axis and the capacity cost for battery storage on the y-axis. Note that the cost of batteries is shown
as power cost, although the optimisation variable is energy capacity. This is because the various
battery configurations have a different cost of energy capacity in function of the storage duration -
batteries configured to have a longer storage duration have a relatively lower cost per MWh. To re-
duce dimensionality, only the power cost component is used in plotting. The size and colour of the
points in this scatter plot show the deployed capacity of PV. From the figure, it can be concluded
that the deployment of PV is only related to the cost of PV. This is explained by the fact that over all
sampled cost uncertainties in this policy, no deployment of battery storage occurred.

Figure 7.4 is used to display the relationship between the capacity cost of PV and the amount of PV
capacity deployed by the optimisation algorithm. From this figure, it can be noted that when capacity
costs of PV are below 720 AC/kWp, it becomes viable to deploy PV capacity concurrent to the existing
10 MW wind capacity. When moving from right to left in the figure, thus from high to low cost, it can
be noted that the angle of deployment is first very steep until roughly 10 MW of PV is deployed. After
this point, the rate of deployment as a function of a further decreasing capacity cost progressively
decreases. From this, two conclusions can be put forth. Firstly, at a fixed-fee subsidy of 28 AC/MWh

capacity cost of PV should reach below 720 AC/kWp to become cost-competitive. Secondly, the ratio
of solar to wind matters. Up until equal ratios of solar PV and wind, the deployment as function of
solar PV capacity cost is very rapid. After reaching this equal ratio, deployment relative to PV cost
reduction shows a notable reduction in PV deployment. From this same figure, it can also be noted
that curtailment rapidly increases when the ratio of solar to wind reaches above 100%.

In order to further investigate the importance of the ratio between wind and solar when cable pooling,
figure 7.5 was created. In both plots, a smooth line can be seen. This is not based on a theoretical
relation, but is the result of the curtailment determined by the algorithm on various deployed capac-
ities. Each of those capacities is in turn a result of optimisation for the sampled uncertainties. The
relation between curtailment and total deployed capacity shows a shallow increase until a total deploy
capacity of about 20 MW and a very steep increase for all capacities above that. The relation seems
quadratic in the first region and additionally becomes exponential in the second region.
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Figure 7.3: Deployment of PV plotted against the sampled uncertainties.

Figure 7.4: Cost-optimal PV deployment found by the optimisation algorithm and curtailment as a
function of the sampled uncertain PV capacity cost.
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(a) Absolute curtailment (b) Relative curtailment

Figure 7.5: Curtailment as function of to the total deployed generation capacity.

Figure 7.6: Histogram nbins = 30 of the capacity factor of solar PV. Note that the sum of frequencies
does not equal a year. For readability, the bin with the capacity factors closest to zero is
cropped by imposing a y-limit. This lowest bin actually contains more than 4000 hours.

Two mechanisms are expected to drive the identified regions of curtailment. Below 100% solar-to-
wind ratio, curtailment is driven completely by coinciding production by wind and solar. Whenever the
feed-in power of wind and solar together is above the grid capacity, curtailment will occur. In the sec-
ond region, where the solar-to-wind ratio is above 100%, curtailment is driven by the aforementioned
effect and, additionally, clipping losses will occur. Clipping losses occur whenever the power output of
the energy project is larger than the rated capacity of the grid connection point. The effect of clipping
losses on total curtailment as a function of the total deployed capacity shows an exponential relation.
This is a result of the frequency distribution of the capacity factor typical for PV. The highest capacity
factors occur substantially less frequent when compared to lower capacity factors, as shown in figure
7.6 As a result, the total energy lost to curtailment increases rapidly.

7.1.4 Results policy 2 - No subsidy

In this section, the results from the second policy are presented. This policy has a different electricity
price curve when compared to the first policy since the fixed-support subsidy is no longer in place.
As a result, the electricity price curve contains many hours where the price is at or below 0 AC/MWh.
This decreases the profitability of generation assets substantially. As in the first policy, the sampled
uncertainty space for battery cost did not include low enough values to allow for battery placement.
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Figure 7.7: Deployment of PV and corresponding curtailment as a function of PV capacity cost with-
out fixed-support subsidy

Figure 7.8: Comparison of PV deployment, with and without fixed-support subsidy

Therefore, the deployment of PV is only related to the PV capacity cost, which is shown in figure 7.7.
From this figure, it can be concluded that viable implementation of PV in a cable pooling configuration
starts when the capacity cost is lower than 585 AC/kWp. This is substantially lower when compared
to the first policy. In figure 7.8, this difference is depicted. The rate of deployment without subsidy
is substantially steeper initially. Both policies seem to converge to the same rate of deployment as
a function of the capacity cost and reach nearly the same maximum deployment of PV at the lowest
capacity cost.

Electricity prices with values at or below zero has another effect. The levels of curtailment have in-
creased substantially, even before additional PV capacity is placed. This is a result of the optimisation
algorithm choosing rather to curtail the energy than to feed it to the grid at negative or zero return.
The absolute curtailment follows a different pattern than the curtailment found in the first policy, as
shown in figure 7.9a. This time, an additional mechanism drives curtailment, namely the occurrence
of zero or negative energy prices concurrent with PV production. As a result, the initial range of
curtailment below 20 MW shows a nearly linear relation between deployed capacity and absolute
curtailment.

Interestingly, the relative curtailment (fig. 7.9b) first decreases when the solar-to-wind ratio is below
one. Minimal relative curtailment is calculated to occur at 110% solar installed capacity relative to
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(a) Absolute curtailment (b) Relative curtailment

Figure 7.9: Curtailment as a function of total deployed generation capacity.

wind capacity. The initial reduction of relative curtailment can be explained through the PV production
curve which shows a lower correlation to hours with negative or zero prices for electricity in the price
curve used. This is because the price curve is based on a national ETM model that reflects the Dutch
national energy system in 2030 if current policies proceed. In this scenario, PV produces a total of
83 PJ in the energy mix while wind produces 265 PJ. As a result, prices are more often near or below
zero when wind produces energy then when PV produces energy.

7.1.5 Results policy 3 - Marked-down battery cost

In this section the results of the third policy are discussed. In this final policy, the lower limit of the
battery costs has been decreased far beyond what can realistically be expected by 2030. The up-
per limit of the battery cost range coincides with the lower limit of the realistic range for 2030. This
decrease in battery cost was included to be able to find the tipping point for battery deployment and
to assess the corresponding deployment dynamics. In all results, it was found that the optimisation
algorithm only deploys battery storage configured to have a duration of 6 hours. Results are therefore
plotted against the cost per MWh for a 6-hour battery.

Figure 7.10 shows the deployment of both PV and battery over all the sampled points in the un-
certainty space. Contrary to the same visualisation for the first policy (fig. 7.3), in this policy both
the deployment of PV and of battery is correlated to both axes spanning the uncertainty space. By
observing this correlation to both axes, it can be concluded that some synergy exists between the
battery storage deployment and PV deployment. It is fair to assume that this is a result of the tem-
poral shifting that is possible using battery storage. As a result, peak production moments can be
stored and later released when production no longer exceeds grid capacity. This allows for a higher
deployed capacity of PV.

When looking at figure 7.10b, it can be noted that battery deployment is dependent on the capacity
cost of PV. The highest deployed capacities of battery storage can be found in the lower-left corner of
the figure, where both PV and battery storage are in the lowest range of the cost uncertainties. From
this, it can be concluded that the low cost of PV is a qualifying factor for the substantial deployment
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(a) Deployment of PV

(b) Deployment of battery storage

Figure 7.10: Deployment of PV and battery storage plotted against the sampled uncertainties in the
uncertainty space.

of battery storage. Only if oversizing PV relative to the grid capacity is sufficiently economical, large
scale battery deployment is sensible. Interestingly, however, when battery capacity cost is sufficiently
low there are some cases where battery storage is deployed without any additional solar capacity.
From this, it can be concluded that it is possible to deploy batteries to allow for time-shifting of the
wind production curve to increase the profitability of the existing wind assets.

The concurrent deployment dynamics are further detailed in figure 7.11. From this figure, it can
be seen that battery deployment is indeed correlated with the deployment of PV and vice versa. It
should be noted that the capacity cost for battery storage still is a significant factor as the deployment
of battery storage only occurs when the price of the 6-hour battery drops below 95 AC/MWh. This
can be seen from the curve that can be traced to the lower deployed PV capacities in figure 7.11a.
From this curve, all outliers show at least some deployment of battery capacity. The more substantial
the deviation from the lower region of PV deployment, the higher the level of battery deployment.
That a low cost for PV is a qualifying factor for high deployments of battery storage can be further
substantiated using figure 7.11b. In the lowest-cost region, multiple samples of nearly the minimum
capacity cost for battery storage exist. Only when high levels of PV deployment exist, higher levels
of deployment for battery storage are found.



82 CHAPTER 7. LOCAL ENERGY PROJECTS OPTIMISATION

(a) Deployment of technologies against PV capacity cost

(b) Deployment of technologies against battery capacity cost

Figure 7.11: Deployment of PV and battery storage against a single technology capacity cost.

The curtailment found in this policy shows a new dynamic when compared to the two previous poli-
cies. This can be seen in figure 7.12. For most samples, curtailment shows the same relation as
found in the first policy (fig. 7.5). In this policy, curtailment can be kept significantly lower at higher
total deployed capacities based on the deployment of battery storage. It can be concluded that
batteries are indeed deployed to temporally shift production from peak production moments to later
moments to prevent curtailment. Under certain cost conditions, a total capacity of 500% of the grid
capacity can economically be deployed in a cable pooling configuration. The optimisation algorithm
cannot increase the deployed capacity of wind, as it is set to a fixed value. However, it is very likely
that the total deployed capacity could even increase further relative to the grid capacity if the solar-
to-wind ratio could be kept close to one, as found in 7.1.4.
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(a) Absolute curtailment (b) Relative curtailment

Figure 7.12: Curtailment as a function of total deployed generation capacity.

7.1.6 Conclusion

This section presented the results of the optimisation study under uncertainty of the cable pooling
concept. Grid operators recognize the importance of cable pooling to increase the share of renewable
energy while minimising the impact on the grid. Cable pooling is a solution to increasing renewable
energy generation in regions within the Netherlands that are marked as improbable for new renew-
able energy projects to obtain a grid connection within a reasonable time.

How can exploring energy system optimisation models under uncertainty provide insights into cost-
optimal system configurations to support (robust) energy transition policy? This study contributes by
generating key insights into the economical feasibility of cable pooling while considering the effect of
a fixed-support subsidy and the development of technology costs. In addition, this chapter revealed
the dynamics and modes of deployment of battery and PV technology in addition to existing wind
capacity.

Development of solar PV in conjunction with existing wind power assets is economically viable with
and without subsidy within the projected range of investment cost for PV. The effect of the fixed-
support subsidy is significant in determining the point at which PV first becomes viable to deploy in
cable pooling. With a fixed-support subsidy of 28 AC/MWh, the cost tipping point for PV capacity
cost is below 720 AC/kWp. Without subsidies, the cost tipping point for PV capacity cost is below
585 AC/kWp. Based on the projections, the fixed-support subsidy means that cable pooling becomes
viable almost 10 years sooner if cost decline continues at the projected rates. In general, it can be
concluded that by combining the two generating assets, more high-value production hours can be
covered while utilising an undersized grid connection.

Battery deployment for portfolio optimisation, through energy re-dispatch, will only occur when battery
prices are much significantly lower than the lower bound of the projected cost range. This indicates
that even with subsidy the income of auxiliary grid services is vital to deploying battery storage at re-
newable energy projects within the projected cost ranges. From this, it can be concluded that policies
that allow energy projects to participate more easily in frequency containment and capacity markets
would support the business case for the deployment of battery storage. Once deployed, the battery
storage can be utilised for multiple goals including portfolio optimisation through energy re-dispatch.
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The policy with marked-down battery capacity cost revealed the deployment dynamics of PV and bat-
tery storage in cable pooling. The difference between realistic battery capacity cost and the marked
down values depict the effective investment cost that needs to be achieved by revenue streams gen-
erated by ancillary services. It was found that battery and PV deployment is synergistic, high levels
of PV deployment create a use case for temporal shifting which is realised by the battery storage.

Which cost-optimal system configurations can be identified for case studies within the province of
Gelderland? With or without subsidy, solar PV is viable to deploy in conjunction with existing wind
power assets. When a certain tipping point is reached in terms of PV capacity cost, the deployed
capacity quickly reaches 10 MW and stabilises to reach a maximum of 15 MW of solar PV in both
cases. When battery storage is deployed it leads to higher deployment of solar PV. Up to 40 MW
of solar PV is deployed in the most extreme cases while curtailment is kept below 4%. In all, it can
be concluded that cost-optimal system configurations exist that utilise cable pooling in substantial
amounts.
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7.2 Electric mobility hub

As climate goals aim to reduce overall greenhouse gas emissions it is becoming increasingly im-
portant to decarbonise sectors other than the electricity sector. In general, two routes can be taken
to decarbonise a sector. One is to electrify, i.e. replace the energy source used by electricity. The
other is to switch over to alternatives of fossil fuel sources, e.g. replacing fossil fuel with synthetically
produced fuels either based on biomass or green or blue hydrogen. The Dutch government sets out
to decarbonise the transport sector in considerable time, with an intensive focus on electric mobility.
The aim is that 100% of all newly registered personal transport vehicles will be (hydrogen) electric
by 2030 [8]. Already, the sales of electric vehicles have surpassed many of previous projections by
as much as 400%. This exponential increase in the share of electric vehicles in the Dutch personal
transport vehicles is expected to sustain and indeed reach 100% slightly before 2030 [152].

There is however a possible constraint that would prevent the massive adoption of this new technol-
ogy. This constraint is the speed at which new fast-charging infrastructure can be rolled out. The
roll-out of new fast-charging infrastructure to support the absorption of electric mobility because the
availability of such infrastructure is regarded as a key factor for the market success of electric vehi-
cles [149]. However, fast-charging infrastructure is very demanding on grid connection and requires
investment in expanding or reinforcing existing grid capacities [150]. Even when the investment costs
are covered by project initiatives, such as charging infrastructure operators, expanding grid capaci-
ties can take between 5 and 8 years. In some areas where grid capacity is severely constrained, grid
connectivity will not improve before 2030 [174].

Since the electricity sector is already massively employing decentralised technologies such as wind
and solar, it might be possible to still realise new fast-charging infrastructure, even on locations
where the grid is severely congested. This study aims to research the possibility of providing an
electric mobility hub, consisting of 20 fast chargers, local PV and wind generation, battery storage
and no or a limited grid connection. In this way, LESO can be used to discover possibilities in a sector
other than the electricity sector even though that the mobility sector is not endogenously considered
in the framework. This is done by reflecting the mobility sector as a load generated through the
fast-charging infrastructure, as described in section 5.5. LESO is then able to discover cost-optimal
configurations of various local assets to meet this charging load curve.

In section 7.2.1, the details of this case study are covered in depth. Section 7.2.2 details the cost un-
certainties and policies implemented in the various configurations of the optimisation model. Results
are first presented per policy, in sections 7.2.3-7.2.6, after which the overall results are discussed in
section 7.2.7. Additional analysis is done on the results in section 7.2.8 by applying cosine-distance
clustering to identify patterns between similar design outcomes. This method is introduced following
an in-depth analysis of the results and is presented as a tool to reduce the dimensionality of results
and slink down the expansive analysis needed without it. Finally, section 7.2.9 concludes this chapter.

7.2.1 Case description

This local energy project has a location set close to the border of the province of Gelderland, on the
other side of the river IJssel near Deventer. This location specifically is interesting since there are
multiple local energy projects that struggle to secure a grid connection for feeding in the produced
energy, i.e. grid congestion is a pressing issue near this city. Currently, the GROHW consortium
actively researches suitable solutions to integrate more renewable energy by coupling the mobility
and industrial sector through the use of hydrogen [175]. Deventer is located near the Dutch traffic
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Figure 7.13: Abstract representation of the electric mobility hub. Local energy generation, battery
storage and a (limited) grid capacity are used to meet fast-charging demand.

artery highway A1, which makes it a strategic location for fast chargers. In addition, there is currently
no fast-charging infrastructure on the A1 Eastbound between Hoevelaken and Hengelo, a stretch of
nearly 100 kilometres without fast chargers. Deventer lies almost perfectly centred between existing
locations. Lastly, the A1 is a highway that travels from East to West, making it possible to place
integrated PV in the sound barriers, which would face South, greatly reducing barriers for the spatial
integration of PV.

The model under consideration is comprised of various generating components in varying configu-
rations as shown in table 7.4. The components considered are nearly the same as in the previous
study, only this time installed capacity of the wind component is an optimisation variable. In addition,
the PV component is configured in a supplementary manner by introducing a South oriented sound
wall integrated design. This component is assumed to have the same costs as the conventional
set-up but is tilted at a steep angle of 70 degrees. Even though LESO does not consider spatial di-
mensions in finding cost-optimal configurations, it is possible that this configuration is better equipped
for meeting the year-round charging demand as steep-angle PV setups have considerably less sea-
sonal variance.

The charging load curve is determined based on traffic data measured over the same year as the his-
torical meteorological data (2015). The procedure used for determining this fast-charging load curve
is covered in detail in section 5.5. It reflects the charging demand for an electric mobility hub that
facilitates the concurrent use of 20 high power chargers. This demand must be met completely for
every hour of the year. The peak demand of these chargers on an hourly resolution is 2.2 MWh/h,
while the maximum considered grid capacity is 1.5 MW . This means that the algorithm is tasked
with meeting at least a part of the demand by installing a cost-optimal combination of solar, wind and
storage.

The electricity price curve that is applied to the grid component is based on the Dutch national ETM
scenario for 2030 based on current policy, as detailed in section 6.1.2. The price that is used for
energy supplied to electric vehicles through the fast chargers is based on the lowest rate that is used
by the biggest fast-charging infrastructure operator in the Netherlands (Fastned) and is set at 35 euro
cents per kWh or 350 AC/MWh. This rate is only applied to the energy that is actually absorbed by
the vehicle and thus after applying the charging efficiency of 85% [153].
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Table 7.4: Model set-up for the electric mobility hub study.

Component Configurations Installed capacity

PV Sound wall integrated optimisation variable
South optimisation variable
East optimisation variable
West optimisation variable

Battery storage 2 hours storage duration optimisation variable
6 hours storage duration optimisation variable
10 hours storage duration optimisation variable

Grid capacity 0-1.5 MW (defined in policies)
Wind Nordex N100/2500 optimisation variable
Fast chargers 150 kW 20 pcs

Table 7.5: Uncertainties sampled in the electric mobility hub parametric uncertainty exploration
Component Sampled parameters Method Cost range Unit
PV Capacity cost LHS 388 - 867 C/kW
Lithium storage Energy cost component LHS 105 - 180 C/kW

Power cost component linear map 116 - 224 C/kW
Wind Capacity cost LHS 900 - 1280 C/kW

7.2.2 Parametric uncertainty exploration

The parametric uncertainty exploration performed in this study is based on cost uncertainties and
categorical sampling of the grid capacity. The grid capacity is categorically sampled in steps of 0.5
MW from 0 to 1.5 MW . This forms the basis for the four policies investigated in this study.

The cost uncertainties are based on the upper and lower range of the projected cost for 2030 of each
technology, respectively. The cost projections are covered in detail in each component section as
part of chapter 5. An overview of the sampled uncertainties is shown in table 7.5. All uncertainties
are sampled using Latin hyper-cube sampling. The power cost component of the batteries is linearly
mapped based on the sampled energy cost component.

Per policy, 200 samples were taken from the space spanned by the two cost uncertainties. This
results in a total of 800 optimisation problems to be solved. In order to maintain the digestibility of
these results, each set of results are first presented in a section according to each of the policies.

The first section covers the visualisations in-depth and aims to present a comprehensive introduction
to support the reader in understanding the high dimensional result data, which can be quite over-
whelming at first. The following sections stay closer to the core, to prevent repetition and to guard
the compactness of this report. Whenever possible, additional results are moved to the appendix
which can be consulted by the reader as supplementary figures (appendix C). A high-level overview
of all results over the various policies is presented in sections 7.2.7. Lastly, extra analysis is done to
cluster the system configurations in each policy is presented in section 7.2.8.
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7.2.3 Results policy 1 - 0 MW grid capacity

The first variation of the electric mobility hub is denotative of a project where the grid is constrained
to such a degree that connection to the grid is infeasible within a sensible budget or time frame. This
set of experiments is also a situation where the level of autarky is highest, the hub will be completely
self-sufficient. All consumed energy is locally generated by renewable energy assets.

Because of the vastly different cost conditions that the algorithm is exposed to, it is expected that at
least a certain degree in variations of the optimal design is found. To give a quick overview of the
playing field of design possibilities, the cost-optimal energy system configuration of various outcomes
is given in figure 7.14. The reference system is the centre outcome, the resulting system configura-
tion when all sampled costs are at or around the centre value of their respective ranges. This is also
the system that, within some margin of variation occurs the most.

It can be seen that the total deployment is primarily dependent on vastly oversizing the total gener-
ation capacity with respect to the peak demand. This can be explained based on two observations.
Firstly, the capacity factor of variable renewable energy sources is low when compared to conven-
tional thermal generation plants. Moreover, the capacity of renewable energy sources varies uncon-
trollably over time. To be able to meet the demand at all moments in time, the system should be sized
such that even in case of low capacity it is capable of meeting demand. Secondly, it is nearly always
more cost-effective to oversize generation, than to expand the storage capacity. In the reference
configuration, the total generation capacity is nearly exactly ten times the peak demand. The storage
is sized such that the duration of storage is about 1.5 hours peak generation or about 15 hours peak
demand.

The two other configurations are system design configurations where either maximum deployment of
PV or wind is found. These configurations are found in the extremities of the cost ranges, as can be
seen from figures 7.15 and 7.16. The configuration of maximum battery deployment coincides with
the maximum deployment of PV, suggesting a synergy between these two technologies. By com-
paring the configuration with maximum PV deployment with maximum wind deployment, a trade-off
between the deployment of these two technologies can be recognised. It seems that somewhere
in the year, solar production is insufficient while wind production is better suited for meeting the de-
mand. In order to reduce the wind capacity by 3 MW , an additional 9 MW of solar PV and 11 MWh

of battery storage is required to meet demand. Similarly, by placing a marginally higher amount of
wind capacity - not visible in the figure due to significance - the required amount of battery storage
can be reduced by 3 MWh. It is important to note that each of these configurations are a result
of optimisation. Therefore, each of these configurations from the cost-optimal configuration under
certain costs combinations that lie within the range of projected costs for 2030.

With regards to the uncertainty space and the resulting configurations, a selection of visualisations is
discussed in this section. Since there are three dimensions of cost uncertainty and three dimensions
of optimisation variables a total of nine plots would be needed to show all relations. This section in-
cludes only the bivariate plots spanning the uncertainty plane between battery and PV capacity cost.
The complete set of figures can be found in appendix C.1.1. When consulting the whole set of figures
two conclusions can be formed. Firstly, it is seen that in most cases the final system configuration is
very similar, switching between the reference and maximum wind configuration and a combination in
between.
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Figure 7.14: Various energy system configurations are found in the charging hub without grid con-
nection (policy 1).

Secondly, it can be concluded that for wind and PV there exists a clear inverse relationship between
the capacity cost and the deployed cost. This can be seen from the fact that deployment always
increases with a decrease in cost over that axis, irrespective of the other cost axes. Wind does not
show this same relation, it is very rigid in deployment along nearly all sampled sets of uncertainties
with one exception. A diagonal can be recognised in all figures spanning a different combination of
uncertainties. This is the situation where PV and battery are both economical while wind is close to
the upper range of its cost projection. When considering the total occurrence of those configurations,
they should be considered outliers. It is, however, still an interesting trade-off and should be analysed
further.

From the set of results shown in figures 7.15-7.17, the trade-off between wind and solar PV plus
storage can be identified. In both figure 7.15 and 7.16 the left bottom corner shows cases where the
cost of PV and battery are sufficiently low that it leads to an increased deployment of both technolo-
gies. The fact that it happens only in this corner suggests co-dependence, the increased deployment
of these technologies only poses competition when both are economically attractive options. From
the same two figures, it should also be noted that it is not only the cost uncertainty of battery and
PV that determines this trade-off. This can be seen from the fact that configurations with high and
low deployment of PV and battery are very close to each other. This suggests that the third cost
uncertainty dimension, which cannot be shown in the same figure, affects the deployment. This third
cost uncertainty is that of wind. It makes complete sense that this sampled value would also affect
the trade-off. When wind is sufficiently economical, there is not a configuration of PV and battery that
is competitive, even when both the cost of PV and battery is near the lower limit of their respective
cost ranges.
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Figure 7.15: PV deployment on the uncertainty plane spanned by PV and battery capacity cost
(policy 1)

Figure 7.16: Battery deployment on the uncertainty plane spanned by PV and battery capacity cost
(policy 1)

Figure 7.17: Wind deployment on the uncertainty plane spanned by PV and battery capacity cost
(policy 1)
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7.2.4 Results policy 2 - 0.5 MW grid capacity

This set of results are generated with consideration that the maximum grid capacity is 0.5 MW . This
can be a result of lacking infrastructure or an imposed congestion mitigation measure. As introduced
in the previous section, the configurations resulting from this set of experiments is shown in figure
7.18. Again, the same relation can be noted, albeit in different quantities. Most notably different
is the range of deployed PV capacity, which in the most radical case only increases by 25% when
compared to the reference system. Again, a marginal increase in wind decreases deployed capacity
of PV and battery. It should be noted that in this case, the effect is more pronounced for battery
deployment than for PV when compared to policy 1. Moreover, the addition of a 0.5 MW dispatch-
able energy source greatly impacts the installed generation to peak demand ratio. For this policy,
the reference system deploys roughly seven times the peak demand in terms of generation capacity.
Noteworthy is also the storage duration capacity, which decreases absolutely but increases relative
to the deployed generation capacity. The storage duration is nearly two hours when related to the
renewable generation capacity and about 10 hours of peak load. When compared to the first policy,
the storage duration for on-site generation increases roughly by 50% while the storage duration for
peak demand decreases by 50%.

Again, a total of nine bivariate plots cover the complete uncertainty space. Only two uncertainty
spans are included in this section which show the most important relations in this policy. The com-
plete set of figures can be found in appendix C.1.2 From figure 7.19 it can be concluded that the
deployment of PV is indeed non-sensitive to the corresponding capacity cost in nearly all cases.
Only in the extremity where both PV and battery are near their respective lower limits, a marginal
increase in the deployed PV capacity can be noted.

When considering figure 7.19, it can be concluded that battery deployment is nearly solely dependent
on the capacity cost of batteries themselves. This can be seen from the apparent gradient moving
from the upper half to the lower half of the figure. When battery capacity cost approaches the upper
limit, the optimal configuration switches to a system design with slightly less batteries. The majority of
optimal configurations includes a higher level of battery deployment, however, which is mostly when
the capacity costs for batteries stay below a certain threshold of around 160 AC/MWh. The before
mentioned synergistic configuration between PV and battery can be seen in the lower-left corner of
this figure, where the battery deployment increases when PV capacity cost is sufficiently low.
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Figure 7.18: Various energy system configurations are found in the charging hub with a 0.5 MW grid
connection (policy 2).

Figure 7.19: PV deployment on the uncertainty plane spanned by PV and battery capacity cost
(policy 2)

Figure 7.20: Battery deployment on the uncertainty plane spanned by PV and battery capacity cost
(policy 2)
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7.2.5 Results policy 3 - 1 MW grid capacity

This section covers the results of policy 3, where the grid capacity is 1 MW and therefore represents
a situation with more relaxed constraints on the grid connectivity. As noted in the previous section,
an increase in grid capacity yields cost-optimal configurations with a lower total generation capacity.
When compared to the previous set of results, the difference between the reference and maximum
PV configuration again shows a larger variance in the deployed capacity of PV. In policy 1, cost-
optimal configuration with maximum PV deployment affected the deployment of battery storage more
significantly than it affected the deployment of PV. Moreover, this set of results shows significantly
less variance in the deployment of battery, where the range of battery deployment in all cost-optimal
system designs varies by 30%.

The total deployed capacity in the reference system configuration is 3.5 times the peak demand. The
storage duration of this policy’s reference configuration is 2 hours when related to on-site generation
capacity and about 5 hours of peak demand. Compared to the previous policy, this configuration
has the same storage duration when related to the on-site generation capacity and half the storage
duration when related to the peak demand. This implies that the cost-optimal ratio between storage
and on-site generation is nearly identical between these policies, while the absolute required quantity
of both on-site generation and storage decreases by half.

Since the total variation in deployed wind capacity is insignificant in terms of the share of total system
costs, only the deployment of PV and battery are shown in this section’s results. The complete set
of figures can be found in appendix C.1.3. From figures 7.22 and 7.23, a relation can be seen that
has not been identified in the policies before. In this policy, PV and battery deployed capacities form
a trade-off against each other. In the two policies before, PV and battery deployment only showed
a synergistic relation. In this policy, the deployment of PV is inversely related to its corresponding
capacity cost, while battery deployment is positively related to the capacity cost of PV. This relation is
nearly irrespective of the capacity cost of the battery. Still, a very select set of conditions shows the
synergistic relation between PV and battery, when both technologies’ capacity costs are sufficiently
low to compete with deployed wind capacity.
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Figure 7.21: Various energy system configurations are found in the charging hub 1 MW grid connec-
tion (policy 3).

Figure 7.22: PV deployment on the uncertainty plane spanned by PV and battery capacity cost
(policy 3)

Figure 7.23: Battery deployment on the uncertainty plane spanned by PV and battery capacity cost
(policy 3)



7.2. ELECTRIC MOBILITY HUB 95

7.2.6 Results policy 4 - 1.5 MW grid capacity

This final set of results covers the situation where the grid capacity is rated at nearly 75% of the peak
demand. The deployed capacity of on-site generation is similar to policy 3, but shows a clear favour
for PV over wind deployment. The total deployed capacity in the reference system configuration is
3.5 times the peak demand. The total storage capacity decreases again with an increase in grid
capacity. The storage duration is 1 hour when related to the on-site renewable generation capacity
and just shy of 3 hours of peak load. When compared to policy 3, both these metrics show a drastic
decrease, most notably for the storage duration of on-site generation. Again, the variation in deployed
PV between the three configurations capacity increases while the deployed battery capacity shows
less variation.

Similar to policy 3, this set of results shows that deployment of PV is completely independent of the
other technologies capacity costs. This is not a new insight and thus the corresponding figures can be
found in appendix C.1.4. Instead, figure 7.25 shows the deployment of battery capacity as a function
of battery and wind capacity cost. It can be noted that there is an apparent diagonal gradient from
the left upper corner to the right lower corner. In this gradient, wind and battery deployment are com-
petitive and deployments of these two technologies are exchanged in the cost-optimal configurations.

It can be concluded that the span of battery and wind uncertainty does not include all factors driving
the deployment of battery as there also exist very closely grouped points with varying levels of battery
deployment. This can be attributed to the aforementioned relation of PV deployment proportional
with the capacity cost of PV. Figure 7.26 shows the same but inverse gradient, where the maximum
deployment of wind is found in the left upper corner.
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Figure 7.24: Various energy system configurations are found in the charging hub with a 1.5 MW grid
connection (policy 4).

Figure 7.25: Battery deployment on the uncertainty plane spanned by wind and battery capacity cost
(policy 4)

Figure 7.26: Wind deployment on the uncertainty plane spanned by wind and battery capacity cost
(policy 4)
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7.2.7 Results overview

This section presents an overview of all results and thus focuses less on the details of dynamics
found in each policy result set. Instead, it relates the various policies to each other and distinguishes
agreements and notable deviations. The cost-optimal reference configurations resulting from each of
the four policies are depicted in figure 7.27. Two correlations can be deduced from this figure.

Firstly, the total installed capacity of all technologies decreases with an increase in grid capacity. The
effect is most notable when the electric mobility hub would otherwise be (highly) self-sufficient, with
less effect on the configurations that already include a more substantial grid capacity.

Secondly, the share of wind energy in the on-site energy generation assets decreases with an in-
crease in grid capacity. From this, it is concluded that in many cases PV forms a more cost-effective
way of generating electricity. However, it has a notably lower capacity factor and is more variable
over time. Considering that the optimisation is constrained to meet the charging demand in all hours
of the year, it seems that the generation curve of wind is better equipped to meet some hours of the
years cost-effectively. Without the dispatchable power provided by the grid, at least some capacity of
wind is found in the cost-optimal configuration as a result.

Figure 7.27: Reference energy system configurations for all policies compared

To depict all resulting cost-optimal technology deployment while maintaining the relationship to the
sampled cost uncertainty requires a lot of bivariate plots to be generated and analysed, as a mini-
mum of nine figures is needed to span all uncertainty planes and resulting technology deployment.
The number of figures required to cover the results increases in function of the number combinations
that can be made in sets of two (due to the two-dimensional plane) of the number of sampled uncer-
tainties, which has a combinatorial relationship as shown in equation 7.1. I.e. a set of results that
is based on four uncertainties can be combined to

(
4
2

)
which yields six planes of uncertainty. If the

number of distinct degrees of deployment included in optimisations is equal to the degrees of uncer-
tainties this would require a total of 6 · 4 = 24 figures. To steer clear of this combinatorial relationship,
an alternative visualisation technique is introduced.

C(n, r) =

(
n

r

)
=

n!

(r!(n− r)!)
(7.1)
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This visualisation is called a strip plot and is shown in figure 7.28. A strip plot allows for plotting many
data points on a single axis, which is the category of the data which in this case is the policy. As
a result, the strip plot visualisation has a proportional relationship to the number of uncertainties. It
does compromise on the relation to cost uncertainties due to the limited amount of dimensions that
one can possibly fit into a single graph.

However, a strip plot visualisation is very suited to provide insight into the distribution of the cost-
optimal configurations, both within a set of results corresponding to a single policy and between the
various policies. Conventional visualisation techniques used for a similar purpose such as violin or
box plots are not suited for optimisation results because the outcomes are not normally distributed,
but rather forms distinct configurations that are able to meet the posed constraints.

From this figure, the deployment dynamics as discussed in the previous section can be still be dis-
tinguished to some extent. For instance, the continuous deployment relation between PV and its
capacity cost described in policy 4 can also be seen in the top subplot of figure 7.28. The points are
scattered nearly uniformly between the upper and lower bound of the PV deployment.

Another interesting observation that can be made using this diagram is how locked-in a certain model
configuration is in relation to the sampled cost uncertainties. This can be seen from a high density
of points at a single point at one of the axes. When a certain energy system configuration occurs
often, it forms a pattern that nearly reassembles a vertical line in the strip plot. A suited example is
the optimal deployed wind capacity in the policy where the grid capacity is 1 MW , as shown in the
middle subplot of figure 7.28. Nearly all configurations have about 1.5 MW of wind deployed, only a
few cases can be found where the capacity is lower.

Thus, by using the strip plot it is possible to visualise the cost-optimal configurations in such a way
that it is possible to distinguish the configurations, their occurrence and distribution. This technique
can be used to quickly visualise and analyse multi-dimensional data that describes energy system
configurations resulting from optimisation. In this chapter, the relationships between costs uncertain-
ties and energy system configurations have been investigated in great detail. This approach requires
a lot of plots to be generated, analysed and discussed to generate insights, which is time-consuming.
The strip plot contains similar information on deployment dynamics, only in less detail. It is advised to
use strip plots in combination with other visualisation and dimension reduction techniques to achieve
the key insights into optimisation results more effectively.

If only the strip plot visualisation is considered, the relationship between configurations and the cost
uncertainties is lost. This is unfortunate since the cost uncertainties are the inputs that form the basis
of the experiments. Reintroducing the correlation to the costs uncertainties and the relationships be-
tween other resulting variables while maintaining the overview can be achieved by applying statistics
on the result set. A correlation matrix can be calculated and displayed using a heat map. Using this
approach, the heat map shows the correlation between variables such as technology deployment
and cost uncertainties. This visualisation strategy is valuable as it provides key relational insight in a
single figure. The Pearson correlation was calculated for every policy independently, between various
relevant variables. The resulting heat map figures are shown in figure 7.29.

This figure is very information-dense, and various interesting relations can be extracted from this
single visualisation of which a select amount will be discussed. Firstly, there is a set of conclusions
that are valid for all policies. Total generation capacity is always strongly negatively correlated with
deployed storage capacity, i.e. oversizing generation capacity relative to the load decreases depend-
ability on storage. Total generation capacity is the main driver for curtailment, while increased storage
capacity decreases curtailment.
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Figure 7.28: Deployment of PV, battery storage and wind for the four different grid capacities which
is the y-category of the plot. The colour of the points is used to better separate the four
categories.
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Figure 7.29: Correlation matrices for all grid configurations

More interestingly, the correlations between various variables can be vastly different from policy to
policy. Take the relation between curtailment and deployed PV capacity. For the 0 MW results,
curtailment is slightly negatively correlated with deployed PV capacity while there is a strong positive
correlation between PV power and curtailment in the 1 MW case. Moreover, the deployment of PV
is more strongly correlated to the price level for the higher grid capacity cases than for the lower grid
capacity cases. The 1 MW case shows a positive relationship between the deployed wind capacity
and the cost of PV capacity, implying that a lower cost of PV leads to a lower deployment of wind
capacity. This while the 0 MW shows nearly no correlation between these variables.

By combining the strip plot visualisation with the correlation matrix, nearly all key information can be
deduced from a much smaller set of figures. However, one key piece of information is not considered
by using this method. This is the possibility to quantitatively relate the various cost-optimal energy
system configurations to the underlying cost uncertainties and to compare various configurations
against one another. For this purpose, section 7.2.8 present an approach to cluster the data set such
that this relation can be observed in a reduced set of figures.
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7.2.8 Clustering

This section covers another analysis to reduce the dimensionality of the set of results. The method
applied in this section is inspired by a specific form of common unsupervised learning called agglom-
erative hierarchical clustering. This method is able to cluster similar energy system design configura-
tions of any dimensionality based on the similarity between designs. This is achieved by minimising
the cosine distance between the vectors that span the design, in each cluster. Agglomerative clus-
tering starts by taking as many clusters as there are data points which subsequently move up in the
hierarchy by finding the best pairs of existing clusters until either the number of desired clusters is
achieved or when the distance threshold is reached.

The method applied in this thesis follows the approach of Fraiture, who suggests using hierarchical
agglomerative clustering with complete linkage based on cosine distance after applying standardisa-
tion on each of the system design features independently [100]. In their work, this approach is applied
to an optimisation model that optimises investment decisions over a time horizon spanning multiple
years but only on account of yearly demand and supply. By implementing this approach, features can
be used for clustering independently of their unit or values ranges and clusters are formed based on
the similarity between the final designs. A comprehensive introduction to the clustering method can
be found in appendix D.

In this chapter, clustering has been applied per policy such that the distinct configurations are main-
tained since the varying grid capacity has such a substantial effect on the cost-optimal configurations.
The result of clustering was found to be best visualised using a pair plot when interest is mainly in the
distribution of the clusters in relation to the cost uncertainties. When the interest is mainly towards
the configurations of the various optimal designs the strip plot was found to be the best option to vi-
sualise clusters. Due to the fact that this chapter covers the dynamics of deployment as a function of
uncertainties extensively already, the pair plots are kept outside of the main body of the text but can
be found in appendix C.1. Figure 7.30 shows the strip plot of all resulting system configurations on
which the described clustering method is applied to obtain the colour coding of every point in the plot.

By consulting the deployment graph of each of the technology the differences between the clusters
can be recognised. For instance, the 0 MW grid results contain a cluster, marked by fluorescent
green, with low deployment of PV, moderate deployment of battery and moderate deployment of
wind on which it can be clearly distinguished from other clusters. This cluster contains 78 system
configurations that are optimisation outcomes of unique sampled combinations of capacity costs.

The strip plot contains more specific information about the system configurations, now that various
clusters can be identified from the same visualisation. The quantitative relationship between cost-
optimal technology deployment and the cost uncertainties is visualised using pair plots. It can be
concluded that this method of clustering is indeed very effective in identifying typical system con-
figurations and that it can be applied to analyse optimisation results more efficiently. It is not only
suitable for investment optimisation models but also applicable to optimisation models that provide a
snapshot of cost-optimal energy systems configurations while considering a yearly energy balance
on hourly resolution.

Altogether, it can be concluded that this method is suitable to improve the efficiency of analysis
and forms a process robust to multidimensional results. The method processes data resulting from
optimisation under cost uncertainty by applying cosine-distance based agglomerative clustering and
calculating correlation matrices. This is visualised using strip plots, heat maps and pair plots. To
this end, the proposed approach is able to provide key insights into deployment dynamics, while
conserving the relation to the sampled cost uncertainties and providing a clear overview.
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Figure 7.30: Deployment of PV, battery storage and wind for the four different grid capacities. The
colour of the points is used to distinguish the various clusters found. The clusters can
be used to identify certain patterns, which are most distinct for the 0 MW grid capacity
policy.
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7.2.9 Conclusion

In this section, it is found that it is technically possible to meet the demand of a large scale electric
mobility hub in grid constrained areas by implementing various cost-optimal configurations of local
renewable energy generation and storage. Moreover, it is also possible to find a cost-optimal config-
uration that supports a positive business case under all uncertainties.

How can exploring energy system optimisation models under uncertainty provide insights into cost-
optimal system configurations to support (robust) energy transition policy? The cost-optimal config-
uration of the mobility hub depends primarily on the grid congestion since every policy investigated
provided new relationships between the sampled cost uncertainties and the results. This is shown
in the correlation matrices, calculated based on Pearson correlation between variables. Each of
the grid configurations shows a unique sensitivity and response to the cost uncertainties. Specific
deployment dynamics and sensitivity to cost uncertainties should therefore always be consulted in
regards to the level of grid connectivity or desired level of energy autarky.

Moreover, it can be concluded that, although not visible in a single optimisation result, trade-offs
between alternative system configurations are considered by the optimisation algorithm when ex-
changing competing technologies in their respective deployed capacities. These only become visible
when exposing the model under consideration to a range of cost uncertainties. In some uncertainty
sets, it is cost-optimal to reduce wind capacity in favour of increasing the deployment of both PV
and battery storage which display a certain synergy. This phenomenon is observed in the 0 and 0.5
MW grid capacity cases. In the other cases, the deployed wind and battery capacities become more
locked-in. Only the deployed PV capacity remains sensitive to the cost of capacity.

Which cost-optimal system configurations can be identified for case studies within the province of
Gelderland? Depending on the available grid capacity and the underlying technology costs, different
combinations of wind, solar PV and battery are implemented in the optimal system configuration to
meet the charging demand. For the grid-isolated charging hubs, about 18 MW of solar PV is de-
ployed with 32 MWh of battery storage and 5 MW of wind capacity. In the case with the highest grid
connection capacity, only 6 MW of solar PV and 6 MWh of battery storage are required. By increasing
the grid capacity by 1.5 MW, 12 MW of solar PV and 24 MWh of battery storage is no longer required
to meet the charging demand. Although all configurations are in essence economically viable, it is
likely that other combinations of local demand and generation are interesting. Future research into
the possibilities of combined demand and generation grid connections is therefore recommended.

Finally, clustering was applied in an effort to reduce the time intensity of visualizing and analysing
the results from optimisation under uncertainty. The approach implemented is based on the work of
Fraiture and utilises cosine-distance based hierarchical agglomerative clustering after standardisa-
tion of relevant energy system design parameters [100]. The proposed approach can be applied to
an arbitrary number of design and uncertainty dimensions.

Novel in this research is the combination of clustering, Pearson correlation matrices and visualisation
through strip plots, heat maps and pair plots which is proposed as an effective alternative for analysis
of optimisation results under uncertainty. Considering that visualisation and analysis of the complete
uncertainty space and resulting deployment is achieved by spanning two uncertainties and one op-
timisation variable at a time, this approach is more dense and applicable to optimisation results of
higher dimensions. It is therefore applied in the following chapters.
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Chapter 8

Gelderland 2030

In this chapter, LESO is used to optimise the energy configuration for the province of Gelderland in
2030. This is done based on scenarios modelled in the ETM which are used by policymakers of the
province to investigate future energy systems depending on large shares of renewable energy [17].

The ETM scenarios are implemented in optimisation problems by calculating the residual load for all
categories modelled in the ETM as described in section 5.6. By using this approach, the regional
specific demand curve depends on regional specifics such as the intensity and type of industry, the
amount and composition of urban areas and the transport sector.

2030 is selected as the moment in time to provide an optimisation snapshot, as this year is an im-
portant milestone in Dutch climate policies. Gelderland consists of six RES regions. Each of these
regions considers the spatial integration of renewable energy using a bottom-up approach. The RES
are formed by a collective of municipalities, that in essence investigates the support for and possibili-
ties of rolling-out renewable energy generation in their regions. System integration is only considered
qualitatively.

For this reason, this chapter aims to provide key quantitative insights for policymakers with regards to
optimal renewable energy configurations for each of these regions as well as for the whole province
of Gelderland under various policies while considering cost uncertainty. To this end, two main sec-
tions are presented in this chapter.

Section 8.1 considers the RES regions individually. Demand curves, grid connectivity and current
projections are based on each of their respective policies and regional specifics. For each of the six
regions, the optimal deployment of PV, wind, battery and hydrogen storage is investigated for various
renewability targets. This is compared against current policies. Aggregation of the regional results is
measured against the optimisation of the whole of Gelderland, which forms the basis for the second
section.

Section 8.2 introduced optimisation studies under uncertainty on the province of Gelderland as a
whole. In this section, cost uncertainty can be taken into account since the spatial variation is re-
duced from six to one region. Cost-optimal systems are investigated under uncertainty and under
various policies that impose renewability targets for the electricity sector. Finally, this chapter is con-
cluded in section 8.3.

105
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Figure 8.1: Overview of the six RES regions within the province of Gelderland.

8.1 RES regions

This section includes optimization based on each of the six RES regions that are part of Gelderland.
Each of these regions has a specific scenario in ETM, which is tailored to that region. This means
that it accounts for regional specifics such as housing stock, industry, mobility, agriculture and ex-
isting energy generation. Each of these scenarios has nearly 500 parameters, which have all been
dialled in based on the most recent projections and region-specific data. The scenarios can be ac-
cessed through the ETM which provides a graphic interface. Links to these scenarios can be found in
appendix E.2. The six RES regions that are part of the province of Gelderland are shown in figure 8.1.

In order to reflect the grid connectivity of each of the regions, the grid capacity is determined based
on the capacity of the transformers from medium (10-20 kV) to high voltage (150 kV). This capacity is
not necessarily fully representative of the actual inter-connectivity of the region since some regions
are additionally connected to the bulk transportation infrastructure, which is at an even higher voltage
level (380 kV). However, nearly all loads and sources of electricity are connected through the high
voltage distribution network. It is therefore assumed that this approximation is valid enough if depen-
dence on load flow calculations is to be prevented. The medium to high voltage transformer capacity
for each of the regions is determined by querying ET local, the data management application con-
nected to the ETM. The current transformer capacities are used for 2030. An overview is presented
in table 8.1.

Each of these regions has a unique demand and generation profile based on the settings in the
scenario, which include the RES policies for each scenario respectively. Using the ETM, the total en-
ergy generated using PV and wind is determined based on historical meteorological data from 2015.
Based on the scenario-specific demand profile, a certain share of this electricity can be consumed
in the region. Hours in the year where excess renewable energy exists, curtailment or export occurs.
By subtracting curtailment and export from the regionally generated renewable electricity, the actual
regional electric renewability target is determined. This is shown in table 8.1.
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Table 8.1: Determined grid capacity and calculated renewable electricity target for the RES regions.

Region Grid capacity (MW) Current projection target

Achterhoek 219 68%
Arnhem Nijmegen 609 38%
Cleantech 299 40%
FoodValley 322 43%
Noord-Veluwe 147 49%
Rivierenland 590 53%

8.1.1 Model setup

An overview of the components in the model under consideration and their respective configuration
can be found in table 8.3. Parametric uncertainty is not included in this set of experiments. Instead,
costs are assumed at the centre values of projected ranges as shown in table 8.2. This reduces
the dimensionality of the set of experiments by reducing the amount of possible variation therewith
guarding the comprehensibility of the results.

Table 8.2: Cost centre values for the considered technologies

Component Parameters Value Unit

PV Capacity cost 632 C/kW
Wind Capacity cost 1175 C/kW
Lithium storage Energy cost component 155 C/kWh

Power cost component 159 C/kW
Hydrogen storage Power cost component 2871 C/kW

Energy cost component 16 C/kWh

In the end, the six RES regions are optimised for three increasing renewable electricity targets,
as shown in table 8.4. This results in a set of 18 experiments. This is modelled pragmatically by
considering both the region and the targets as policies. This exposes all experiments to the EMA
workbench, which is then used to sample all the experiments through a single interface. Since all
considered policies are categorical, full factorial sampling is applied to obtain each desired configu-
ration of the model as an experiment.

Table 8.3: Model set-up for the Regional Energy Strategy model runs.

Component Configurations Installed capacity

PV South optimisation variable
East optimisation variable
West optimisation variable

Battery storage 2 hours storage duration optimisation variable
6 hours storage duration optimisation variable
10 hours storage duration optimisation variable

Hydrogen storage 350 hours storage duration optimisation variable
700 hours storage duration optimisation variable

Wind Vestas V90-2000 optimisation variable
Regional demand RES regions sampled regions in Gelderland
Grid capacity see table 8.1
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Table 8.4: Target renewability electricity share.

Target renewability electricity share Value Unit

Current projection region specific: table 8.1 %
60% target 60 %
80% target 80 %

Results are presented divided per renewability target, which is numbered 1 through 3, from current
policy to 80% renewable electricity. The results of the 18 experiments are discussed in section 8.1.2.
In this section, differences between regions are addressed. Moreover, the energy system configura-
tions resulting from the optimisation constrained by current projection renewable electricity targets is
compared to the deployment of technologies proposed in the RES policies for each of the regions.

The same interface to the configured model is used to generate a single experiment for the whole
province of Gelderland, implementing a target of 60% renewable electricity. Since the cost-optimal
energy system configurations for the same target is known, this can now be compared to the cost-
optimal system configuration of the whole province of Gelderland at once by taking the aggregate of
all regions. The result is discussed in section 8.1.3.

8.1.2 Results Regional Energy Strategies

In this section, the results from optimising energy systems on a regional level are presented. Each
energy system is configured to cost-optimality by deploying various quantities of renewable energy
generation and storage technologies. This depends on the grid connectivity of the region under in-
vestigation, as well as the specific demand profile of that region.

An overview of the results with relation to the location of the various RES regions within the province
of Gelderland is given in figure 8.2. In addition, figure 8.3 provides a comprehensive overview by
grouping the various targets per region.

Based on the figures, it can be seen that throughout all renewability targets, the deployed PV capacity
is very stable. Current policy targets (which vary per region, as based on the RES - see table 8.7) can
be reached most cost-effectively by deploying nearly no wind capacity. In any case, the PV capacity
is significantly oversized in relation to the grid capacity. During any hour of the year where demand
is lower than the generated power from PV, export followed by curtailment occurs. From this, it can
be concluded that under the cost assumptions used, oversizing PV generation is most cost-effective
in reaching the lower percentages of renewable energy in electricity.

Another observation is that the optimally deployed wind capacity increases with an increase in the
renewable electricity target. This occurs in all regions, although to varying degrees. When comparing
Rivierenland and Arnhem Nijmegen for example, it is clear that the relative increase in wind capacity
is more substantial for Arnhem Nijmegen. This can be attributed to the difference in the demand
profiles of the two regions, which in part determine the most optimal configuration. When comparing
Arnhem Nijmegen to Achterhoek, a similar but distinct observation can be made. The RES region of
Achterhoek employs a combination of wind and battery storage to reach the 80% renewable electric-
ity target while Arnhem Nijmegen reduces the small number of batteries deployed and switches to
wind deployment.
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(a) Current policy renewability target

(b) 60% target

(c) 80% target

Figure 8.2: The resulting energy configurations are shown in a geographic plot for each of the re-
newable electricity policy targets.
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Figure 8.3: Overview of cost-optimal energy system configurations for various renewable electricity
targets grouped per RES region.

Interestingly, only two RES regions deploy battery storage for reaching the 80% target. None of the
regions employs hydrogen storage to any degree. From this, it can be concluded that on regional
level storage does not fulfil a significant role in optimal configurations with up to 80% renewable elec-
tricity. This can be attributed to the backup capacity that is present in the national grid, which is more
cost-effective at providing balancing power for intermittency and seasonality than regionally deployed
storage. The target is implemented such that 80% renewable electricity for self-consumption means
a maximum of 20% of consumed electricity from import on a yearly basis. It is more cost-effective
to depend on the grid for closing the energy balance for 20% of the energy than to deploy more
generation capacity or incorporate energy storage within the region.

Lastly, when imposing renewable electricity targets per region the deployment of renewable energy
generation assets is correlated to regions of high electricity demand. This can be seen from figure
8.2, where the three most densely populated regions also have to deploy the largest amount of wind
and PV to reach regional targets. Considering the land use of, and public aversion to large scale
wind and solar PV projects, it could be noted that imposing regional self-consumption targets is not
ideal. If more rural regions are able to supply more urbanized regions with their electricity, this bar-
rier can in part be averted. This does pose a possible cost trade-off that cannot be evaluated in this
model, which is the cost of increasing grid capacity between the regions to improve inter-connectivity.

In figure 8.4 the cost-optimal configuration of regional energy systems that reach the projected share
of renewable electricity is compared to system configuration as proposed in the RES of each region.
In this figure, the optimal deployed capacity has been translated to yearly energy yield based on the
capacity factors of wind and PV in the considered configuration. As a result, the cost-optimal deploy-
ment of technologies can be compared to the expected energy yield from renewables as proposed
in each of the RES regions.

From the figure, it can be observed that most regions are in fairly good agreement, both in terms
of total yearly energy yield from renewable (depicted by the size of the pie) and the ratio of wind to
solar PV. It can be seen that all regions but Cleantech deploy a larger share of wind energy in their
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Figure 8.4: Current policy renewable electricity targets per region, comparison between the system
configurations found by using optimisation and the configurations determined in the Re-
gional Energy Strategies.

configurations. This is most notably in the RES region of Rivierenland. When observing this region,
it can also be noted that the total yearly energy yield can also be substantially lower when the ratio
of wind to solar PV is higher.

This can be coupled to observations on the results presented in section 7.1, where a ratio of 1:1 be-
tween solar and wind does not substantially increase curtailment. In that case, the constrained grid
capacity can be interpreted as a baseload that does not need to be met at all times. In the regions,
however, the load profiles exhibit seasonal variations and should be met by renewables for 60% of the
yearly energy volume. Increasing the deployed wind capacity in the region of Rivierenland improves
the correlation between demand and generation, reducing overall generated renewable electricity
because less is curtailed or exported but instead consumed locally.

When considering the results presented in figure 8.3, it should also be noted that an increase in the
share of wind in the energy mix is desirable for cost-optimally reaching higher shares of renewable
energy in the locally consumed electricity. From this, it can be concluded that under the assumed
static cost conditions in this set of experiments it is not sufficiently economical to deploy battery
storage for intra-day power matching of otherwise curtailed energy and local demand. Neither does
employing hydrogen-based storage for seasonal storage fulfil any role in reaching renewable elec-
tricity goals up to 80%.

8.1.3 Aggregation to Gelderland level

This section compares the aggregate energy system configuration of individually optimised RES re-
gions to the energy system configuration determined by optimising Gelderland on a provincial level.
This is done for a renewable electricity target of 60%, which is imposed both on the individual RES
region models and the provincial model.
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Figure 8.5: Energy system configurations are determined by optimisation of the individual RES re-
gions versus optimisation of Gelderland on provincial level by imposing a 60% renewable
electricity target.

The cost-optimal configurations for both approaches are shown in figure 8.5. From this figure it
directly becomes clear that both configurations are in very good agreement in terms of deployed ca-
pacities of all technologies under consideration. There is a slight variation in deployment of storage,
of which a relatively small quantity is deployed when optimising the RES regions which is not found in
the provincial level optimisation. The lack of battery storage in the provincial level model is countered
by a slight increase in the deployed capacity of wind. This can be explained by the fact that locally
specific behaviour is slightly dampened by considering a larger region in a similar model. Peaks
and variations of specific demand sectors are more subtle and balanced by other components in the
system.

Optimising the energy system on a provincial level instead of for every region represents the ag-
gregate outcome of optimising individual RES regions within the province accurately. Moreover, by
reducing the regional models under consideration from six to one region, the dimensionality of ex-
periments and subsequently results is reduced. This improves the transparency of the results and
reduces computational demands significantly.

8.2 Gelderland

In this section the model under consideration is Gelderland in 2030 on a provincial level. In section
8.1.3, it was found that optimising on a provincial level leads to very similar outcomes when com-
pared to cost-optimal system configurations found using models on RES regional scale. In addition,
this approach greatly reduces computational requirements. This is important if the model under con-
sideration is exposed to uncertainty, which requires solving the same model under slightly different
conditions. Section 8.2.1 outlines the model configuration, cost uncertainties and their ranges, and
defines the policies. In sections 8.2.2-8.2.5, the results of exposing the model under consideration to
cost uncertainties and varying renewable electricity targets are presented. Section 8.2.6 present an
overview of all experiments in this study. Finally, section 8.3 concludes this chapter.
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8.2.1 Parametric uncertainty exploration

This section introduces the model under consideration and cost uncertainties applied to obtain the
set of experiments that are optimised in this section. Because the approach is nearly identical to the
method applied in 8.1, this description is brief to refrain from unnecessary repetition.

An overview of the components considered in this model and their respective configuration can be
found in table 8.5. The regional demand is based on the ETM scenario that reflects the aggregate of
all RES scenarios within the province. The link to the scenario can be found in appendix E.2, which
can be browsed through a graphical interface to discover the parameters used in this scenario.

The grid capacity is determined based on the transformer capacity between the regional distributional
medium voltage network and the higher voltage transport network (150 kV). This reflects the inter-
connectivity of the province under the assumption that the transformer capacity is the bottleneck for
transporting electricity from outside the province to and from electricity sources and sinks.

Table 8.5: Model set-up for the Gelderland 2030 under uncertainty.

Component Configurations Installed capacity

PV South optimisation variable
East optimisation variable
West optimisation variable

Battery storage 2 hours storage duration optimisation variable
6 hours storage duration optimisation variable
10 hours storage duration optimisation variable

Hydrogen storage 350 hours storage duration optimisation variable
700 hours storage duration optimisation variable

Wind Vestas V90-2000 optimisation variable
Regional demand Provincial level Gelderland 2030
Grid capacity 2150 MW

This set of experiments exposes the model under consideration to cost uncertainties regarding the
technology capacity cost. An overview of the range and method of sampling of those uncertainties is
given in table 8.6.

Table 8.6: Uncertainties sampled in the Gelderland 2030 parametric uncertainty exploration

Component Sampled parameters Method Cost range Unit

PV Capacity cost LHS 388 - 867 C/kW
Wind Capacity cost LHS 900 - 1280 C/kW
Lithium storage Energy cost component LHS 114 - 194 C/kWh

Power cost component linear map 108 - 208 C/kW
Hydrogen storage Power cost component LHS 2022 - 3720 C/kW

Energy cost component linear map 12 - 21 C/kWh

The policies that are implemented in this set of experiments impose a minimal share of renewable
electricity on the optimisation problem. These are numbered 1 to 4, in increasing shares of renew-
able electricity. Per policy, a total of 250 experiments are created by sampling the uncertainty space
spanned by the parameters shown in table 8.6. This yields a total of 1000 experiments.
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Table 8.7: The renewable electricity targets applied to the model that forms the policies of this set of
experiments.

Target renewability electricity share Value Unit

No target - %
60% target 60 %
80% target 80 %
100% target 100 %

To maintain readability and transparency, these results are presented separately per policy in sections
8.2.2-8.2.5. The clustering and visualisation pipeline proposed in this thesis (see section 7.2.8) is
also applied to this set of results, as it greatly reduces the obscurity of results and enhances the
transparency of results. An overview and comparison of the results per policy are presented in
section 8.2.6.

8.2.2 Results policy 1 - No renewable electricity target

In this policy, no target is imposed on the minimal share of renewable electricity. As a result, the
optimisation algorithm will only deploy technologies when the current grid capacity is insufficient for
future peak demands or when it is more economical to locally generate electricity than it is to import
it from the national grid.

In short, it can be stated that for a large region within the cost uncertainty range of PV it is economical
to deploy a substantial amount of PV. When the capacity cost of PV drop below a certain threshold,
at least 5 GW of PV is cost-optimal for the province of Gelderland. For the 250 experiments in this
policy, 189 deploy anywhere between 5 and 8.5 GW of PV capacity. The other technologies are
under no circumstance deployed without a renewability constraint in place.

Within this set of results, the proposed clustering approach was applied to identify similar energy sys-
tem design configurations. In this set of results, two clusters were found which are shown in terms
of technology deployment in figure 8.6 and in figure 8.7 the clusters are related to the sampled cost
uncertainties.

• Cluster 1 — PV deployment, 189 outcomes
PV deployment between 5 and 8.5 GW.
PV cost factor below 0.75, corresponding to a capacity cost of 765 AC/kWp.

• Cluster 2 — no PV deployment, 62 outcomes
No PV deployment
PV cost factor above 0.75, corresponding to a capacity cost of 765 AC/kWp.

It is interesting to note that the cost-optimal system configuration for Gelderland in 2030 without re-
newable energy enforcing policies is in good agreement with the aggregate of the RES policies within
the region, as shown in section 8.1.3. This conformity is in essence substantiation that deploying sub-
stantial quantities of PV is a no-regret decision.
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Figure 8.6: Strip plot of the various cost-optimal system configurations found under cost uncertainty,
colour-marked by the determined clusters in the case where no renewable electricity
target is imposed (policy 1).
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Figure 8.7: Pair plot depicting the identified system configuration clusters in relation to the sampled
cost uncertainties in the case where no renewable electricity target is imposed (policy 1).
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Figure 8.8: Correlation matrix with no renewable electricity target (policy 1)

As part of the proposed data handling procedure, figure 8.8 depicts the correlations between the cost
uncertainties, deployed capacities and total system cost. However, since there is only one axis of
variation, namely PV deployment, all variables are correlated to either PV capacity cost or deployed
PV capacity.

Although not very dynamic, this outcome forms an approachable introduction to analysing and con-
sulting results based on clustering and the applied visualisation strategy. Remember, all sampled
uncertainty planes and corresponding technology deployments require 26 plots to fully unpack the
dimensionality of the resulting data. Although some specific information is lost through the imple-
mentation of this approach, the transparency gain is substantial. If policymakers, project developers
or consulting engineers are interested in these specifics, it is still possible to dive into those results
since the underlying data remains unchanged.
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8.2.3 Results policy 2 - 60% renewable electricity target

In this policy, a target of 60% is imposed as the minimal share of renewable electricity. Within this
set of results, the proposed clustering approach was applied to identify similar energy system design
configurations resulting in three clusters that each describe a distinct system configuration. These
clusters are shown in terms of technology deployment in figure 8.9. Figure 8.10 relates the clusters
to the sampled cost uncertainties.

• Cluster 1 — maximum PV deployment, 75 outcomes
Maximum PV deployment, minimum wind deployment and the only cluster with battery deploy-
ment

• Cluster 2 — moderate, 47 outcomes
Moderate PV and wind deployment without battery deployment

• Cluster 3 — maximum wind deployment, 128 outcomes
Maximum wind, minimum PV, no battery deployment

Consulting the pair plot shown in figure 8.9 reveals that the various clusters are determined mostly
by the PV cost factor because the clusters can be very clearly distinguished on all axes with the PV
capacity cost factor. Cluster 1 contains configurations that nearly all result from the upper half of the
uncertainty range of PV. This cluster shows clear uni-modality for the PV cost factor distribution and
no evident mode for the other uncertainties. The inter-cluster variation of PV and wind is explained
based on the various cost ratios that are found in this cluster since it contains samples in the com-
plete range of wind capacity costs.

Cluster 0 and 2 can be distinguished from one another based on the tight grouping that is displayed
by cluster 2 on one hand, and the range of inter-cluster cost-optimal configurations found in cluster
0. Moreover, cluster zero has the highest deployed capacities of PV and battery storage capacity.
Finally, cluster 2 only occurs when wind capacity costs are relatively low and battery costs are rela-
tively high.

In any case, the PV capacity deployed to reach this target is nearly the same as in the previous
policy. However, to achieve a higher share of renewable electricity, additional wind capacity is de-
ployed. Only when PV capacity is sufficiently economical, cost-optimal configurations can be found
that reduce wind capacity while increasing PV capacity, when possible with battery storage.

Figure 8.11 depicts the correlation matrix of this policy. In contrast to the correlations calculated for
the previous policy, this matrix reveals some interesting relations of which three are highlighted in the
text. Firstly, the strongest correlations are found for wind and PV cost and deployed capacity. De-
ployed wind and PV capacity display a very strong negative correlation - implying a trade-off between
the two technologies in any of the sampled combinations of cost uncertainties.

Another remarkable result is that the deployed wind capacity displays a stronger correlation to the
price level of PV than to itself. This implies that wind deployment is more dependent on the cost
of PV than on the cost of wind itself. Lastly, although battery storage only shows in a select set of
system configurations, the system costs are still negatively correlated to battery deployment. This
implies that any future system that is equipped with affordable battery storage is more cost-effective
than similar systems without.
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Figure 8.9: Strip plot of the various cost-optimal system configurations found under cost uncertainty,
colour-marked by the determined clusters in the case where a 60% renewable electricity
target is imposed (policy 2).
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Figure 8.10: Pair plot depicting the identified system configuration clusters in relation to the sampled
cost uncertainties in the case where a 60% renewable electricity target is imposed
(policy 2).
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Figure 8.11: Correlation matrix with a 60% renewable electricity target (policy 2)

8.2.4 Results policy 3 - 80% renewable electricity target

This policy covers the cost-optimal system configurations found when a target of 80% is imposed
as the minimal share of renewable electricity. Within this set of results, the proposed clustering ap-
proach was applied to identify similar energy system design configurations resulting in three clusters
that each describe a distinct system configuration. The clusters are shown in terms of technology
deployment in figure 8.12. Figure 8.13 relates the clusters to the sampled cost uncertainties.

A general observation that can be made is that a similar pattern starts to form as the renewability
constraint increases. An increasingly higher share of renewable electricity leads to an incremental
increase in deployed wind capacity, similar to cost-optimal configurations in the RES regions (section
8.1.2). However, exposing the model under consideration to cost uncertainty reveals an alternative
route, where a substantial decrease in wind capacity is realised by deploying battery storage capacity
under certain cost conditions.

• Cluster 1 — maximum PV deployment, 75 outcomes
Maximum PV deployment, minimum wind deployment and the cluster with the highest battery
deployment

• Cluster 2 — moderate, 80 outcomes
Moderate PV and wind deployment, some battery deployment

• Cluster 3 — maximum wind deployment, 95 outcomes
Maximum wind, minimum PV, minimum battery deployment
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Figure 8.12: Strip plot of the various cost-optimal system configurations found under cost uncer-
tainty, colour marked by the determined clusters in the case where an 80% renewable
electricity target is imposed (policy 3).



8.2. GELDERLAND 123

Utilizing figure 8.12 it is determined that a clear separation is found in the PV cost factor, where clus-
ter 2 shows a clear mode in the upper-cost range. The other two clusters are found in the lower half
of the cost range of PV. Not only in terms of cost of PV but also in terms of PV deployment clusters
0 and 1 display overlap in inter-cluster variations. The clear difference between clusters 0 and 1 is
found in the deployment of wind and battery, where both cost and deployment of the technologies
show clear modality.

In terms of inter-cluster configurations, the three clusters found in this policy set are well balanced.
From this policy set, it can be concluded that high PV prices cast a dependency on deployed wind
capacity or battery storage. Moreover, when battery capacity costs are sufficiently low, battery de-
ployment is an option to reduce the deployed capacity of wind. In urban areas, this could remove
spatial integration barriers while retaining high levels of self-sufficiency.

Figure 8.13: Pair plot depicting the identified system configuration clusters in relation to the sampled
cost uncertainties in the case where a 80% renewable electricity target is imposed
(policy 3).

Figure 8.14 displays the correlation matrix calculated for this set of outcomes. This correlation matrix
shows a number of specific relations of which a few are addressed in text. Firstly, there is a strong
positive correlation between deployed PV capacity and battery storage capacity, indicating synergy
between PV and battery deployment. The same strong negative correlation between wind deploy-
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Figure 8.14: Correlation matrix with a 80% renewable electricity target (policy 3)

ment and PV deployment exists. Combining this observation with the synergistic appearance of PV
and battery indicates that a trade-off exists between wind versus PV in some cases deployed with
battery storage. Lastly, system costs are very strongly correlated to the cost of PV indicating that
a cost reduction in PV has the biggest impact on reducing costs of all found cost-optimal system
configurations.

8.2.5 Results policy 4 - 100% renewable electricity target

This section covers the result set that is based on optimisation of energy system configurations for
Gelderland that comply with a target of 100% renewable electricity. The resulting energy system
configurations have been clustered which yielded four clusters that each describe a distinct group of
possible cost-optimal system configurations. The clusters are shown in terms of technology deploy-
ment in figure 8.12. Figure 8.13 relates the clusters to the sampled cost uncertainties. This set of
results are the first that contain hydrogen storage deployment and substantial deployment of battery
storage.

• Cluster 1 — maximum PV deployment, 49 outcomes
Maximum PV deployment together with maximum deployment of battery storage. Hydrogen
deployment is minimal, wind deployment is lower.

• Cluster 2 — PV&hydrogen deployment, 35 outcomes
High deployment of PV and moderate wind deployment, lower battery and higher hydrogen
deployment.
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• Cluster 3 — wind&hydrogen deployment, 103 outcomes
High deployment of wind and moderate PV deployment, minimal battery and maximal hydrogen
deployment.

• Cluster 4 — maximum wind deployment, 63 outcomes
Maximum wind deployment together with minimal deployment of PV. Both battery and PV de-
ployment are moderate.

Comparing the deployment of PV in figure 8.15 between the various clusters, a separation can be
made between clusters 0 and 3 against clusters 1 and 2. Clusters 0 and 3 span the high ranges
of PV deployment and display significant overlap. However, the system configurations in cluster 0
mostly deploy a moderate amount of hydrogen and battery storage while cluster 3 deploys substan-
tially more battery storage than hydrogen. Combining this insight with the pair plot (fig. 8.16), it can
be noted that cluster 0 shows a clear unimodal distribution based on PV capacity cost, while cluster 3
spans a wider range. Moreover, cluster 0 displays no clear modalities on the other axes while cluster
3 shows a very clear modality in the lower range of the battery cost factor.

Cluster 2 shows high densities in the upper range of PV capacity costs and lower range of wind
capacity in combination with high density in the upper range of hydrogen cost factors. This explains
the observed higher deployment of wind in this cluster, which is unique when compared to the other
clusters. As a result, configurations in this cluster display a lower hydrogen storage duration relative
to the total installed capacity of generation. This implies that configurations in this cluster are depen-
dent on the synergies in terms of seasonality between PV and wind.

Finally, cost-optimal configurations found in cluster 1 are uniquely defined based on their dependence
on hydrogen as storage components. Inter-cluster configurations display the lowest deployment of
battery storage deploying the highest quantity of hydrogen storage capacity.

Correlations between the various components in the found cost-optimal configurations and under-
lying cost uncertainties are computed and shown in figure 8.17. Remarkably, the strong negative
correlation between PV and wind capacity found in all previous policies has weakened significantly.
The strongest negative correlations are found between PV capacity cost and deployment, and be-
tween hydrogen and battery storage. Interestingly, hydrogen storage deployment shows a very strong
negative correlation with total generation capacity while battery storage deployment displays a very
strong positive correlation with total generation capacity. Since the system configurations display a
substantial positive correlation with PV deployment, it is expected that hydrogen can be effectively
employed to dampen seasonal dependence inherent to PV deployment and therewith reduce gener-
ation over-sizing effectively for PV.
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Figure 8.15: Strip plot of the various cost-optimal system configurations found under cost uncer-
tainty, colour-marked by the determined clusters in the case where a 100% renewable
electricity target is imposed (policy 4).
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Figure 8.16: Pair plot depicting the identified system configuration clusters in relation to the sampled
cost uncertainties in the case where a 100% renewable electricity target is imposed
(policy 4).
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Figure 8.17: Correlation matrix with a 100% renewable electricity target (policy 4)

8.2.6 Overview

This section combines the insights of the previous sections to a higher level of abstraction as to
provide an overview of all results generated in this section. As a graphically supporting reference,
figure 9.1 displays the cost-optimal system configurations resulting from all four policies and all cost
uncertainties.

Firstly, it should be noted that the no-regret capacity of PV to deploy is substantial. A minimum
of 5 GW PV is found among nearly all outcomes, even without imposing a renewability constraint.
Moreover, transitioning to a fully renewable and self-sufficient electricity system on a provincial level
requires even more PV capacity to be deployed. This is a positive evaluation in terms of the proposed
capacity of PV that RES policies aim to deploy in Gelderland.

Secondly, a clear trend in the amount of wind deployed in cost-optimal energy systems in relation to
the renewability targets is observed throughout all sampled uncertainties. When the renewability tar-
gets increase, the minimal deployed capacity of wind also increases. However, the range of deployed
capacity of wind in alternative cost-optimal also increases with higher renewability targets implying
that the optimal deployment of wind is subject to change when storage options become competitive.

Considering the storage, substantial deployment is only required when the target is 100% renewable
electricity. Battery storage is deployed to some degree when it is sufficiently low in capacity cost
while hydrogen is only deployed in the 100% renewable electricity policy. On the other hand, there
are no cost-optimal configurations within the sampled cost uncertainties that deploy no storage as
soon as the 100% target is imposed.
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Figure 8.18: Strip plot of the various cost-optimal system configurations found under cost uncer-
tainty, colour-marked by the determined clusters for all policies. Clusters are uniquely
defined per policy, thus the combination of a policy and cluster colour denotes the iden-
tified clusters.
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With regards to the clustering and visualisation pipeline as proposed in section 7.2.8, it should be
noted that this approach is very effective at creating transparency and supplying insights in the re-
sponse of cost-optimal deployment and correlations for higher-dimensional results. It is an effective
method to dissect the complex deployment dynamics, correlations and the relationship to the cost
uncertainties under various policies and large amounts of data.

Finally, by consulting 9.1 it is concluded that the traceability of clusters is obfuscated when the varia-
tion in the system configuration increases and the clusters display at least some overlap over some
of the categories. This can be noted when comparing the 80% and 100% renewability targets and
their respective clusters. While it is possible to locate clear segregation in the clusters found in the
80% target, it is very difficult to do so in the same figure for the 100% target. Characterizing the
clusters using the strip plots per policy was still possible, as demonstrated in section 8.2.5.

8.3 Conclusion

In this chapter, two distinct optimisation studies were carried out on the province of Gelderland in
2030. In the first study, the regions of the Regional Energy Strategies were investigated. These re-
gions each stipulate the deployment of renewable energy sources based on spatial integration. The
achieved renewable electricity share was optimised under constant cost, without addressing uncer-
tainty. To this end, the centre values of the ranges were applied.

How can exploring energy system optimisation models under uncertainty provide insights into cost-
optimal system configurations to support (robust) energy transition policy? The results of optimisation
were found in good agreement with the proposed deployment in the RES. In some regions, a notably
larger share of wind energy was proposed by the RES when compared to the found cost-optimal
configurations. As a result, the RES configuration has a lower total amount of renewable electricity
generated that has a higher rate of self-consumption. The configurations found in optimisation imply
a higher share of PV in cost-optimal configurations. This information can be used to provide an alter-
native pathway for more urbanized areas, where resistance to wind capacity is typically higher.

When the RES regions were exposed to more strenuous renewable electricity targets, the cost-
optimal configuration increased in the ratio of deployed wind in relation to the deployed PV. For higher
self-consumption, energy generation based on wind is more cost-effective than alternative configura-
tions using PV and battery under centre cost values. Considering this increasing importance of wind
for higher targets, deployment of a higher than optimal amount of wind for current targets will lead to
a good basis for attaining higher shares of renewable electricity.

When comparing the resulting configurations of the six regions within Gelderland combined with the
cost-optimal outcome of the province as a whole for the same target, good agreement was found
between the configurations. The aggregate of the RES regions deployed only a slight amount of
battery and slightly less wind. It is concluded that specifics on the RES regional level in terms of
demand and grid capacity do not lead to substantially different results when compared to Gelderland
on a provincial level.

Based on the observation that cost-optimal configurations on the provincial level are a suitable rep-
resentation of the aggregate of configurations on the regional RES level, it is possible to expose only
the provincial level model to cost uncertainty. In this way, key insights on the robustness of cost-
optimal configurations are found. This was studied considering the cost uncertainties for PV, wind,
battery and hydrogen under four increasing renewable electricity targets.
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Even when no renewability constraint is in place, most cost-optimal configurations deploy substantial
PV capacity in 2030. When the model is constrained to obtain higher shares of renewable electric-
ity, the deployed capacity of wind increases for the whole range of possible cost-optimal outcomes.
On the other hand, in all policies, a strong anti-correlation between deployed wind capacity and PV
capacity is observed. In addition, the deployment of PV capacity shows a clear synergy of battery
storage.

Enforcing a 100% renewable electricity target leads to the substantial deployment of storage in all
cost-optimal outcomes. When the target is lower than 100%, the (seasonal) variability of renewable
energy sources is resolved through import and export. Counter-intuitively, battery storage shows a
positive relation to the total generation installed capacity while hydrogen displays a negative correla-
tion. Additionally, it was found that the cost of PV capacity has the most substantial effect on system
costs when considering all policies and all uncertainties.

The clustering and visualisation method as proposed in 7.2.8 was very effective in transparently pre-
senting the resulting multidimensional data. The alternative approach of visualising every uncertainty
plane and deployment of technologies would require a total of 26 plots for the result of this study, per
policy. The clusters, based on the cost-optimal system configurations found, can be clearly distin-
guished in the strip plots. Through consultation of the respective pair plots, the relationship of those
clusters to the cost uncertainties can be determined. Lastly, the correlation matrices give insight into
deployment dynamics and inter-dependence at a glance.

Which cost-optimal system configurations can be identified for case studies within the province of
Gelderland? By applying the clustering method, various patterns have been identified in terms of the
deployment of renewable energy generation and corresponding storage. It was found that deploying
6 GW of solar PV that is proposed in the RES is a no-regret investment. Moreover, the slightly higher
share of wind that is proposed in the RES forms the first step towards a fully renewable energy sys-
tem of Gelderland. When the renewability target increases, wind increases per target. When the
electricity system has to be fully renewable, solar PV deployment increases by at least another 4
GW. Depending on the costs, battery and hydrogen trade each other off. This is in part driven by the
cost ratio between solar PV and wind. Wind is synergistic with hydrogen in most cases and ranges
between 150 GWh and 300 GWh for most optimal configurations, while high deployment of solar PV
leads to high deployment of battery storage (20 GWh).

It should therefore be concluded that in any case, a fully renewable energy system within Gelder-
land is dependent on higher amounts of wind than planned by the RES. Moreover, although not
considered by the RES, storage technologies will play a substantial role in attaining higher shares of
renewable electricity. Additionally, the optimal deployment of storage depends not only on the cost of
the storage technologies but also on the cost of the generation assets. This means that the deploy-
ment of certain technologies now might determine the optimal constitution of storage technologies in
the future.
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Chapter 9

Gelderland 2050

This chapter exposes a model of Gelderland in 2050 under various scenarios to cost uncertainties.
There are four scenarios that are considered, based on the fact that these four scenarios are cur-
rently widely adopted by both Dutch policymakers as grid operators (as described in section 2.2).

The model under consideration is configured in a nearly identical manner as done in section 8.2.
The only substantial differences are that this chapter bases cost projections and the regional energy
demand on the year 2050. Since there is such similarity in approach, this chapter is formulated aptly.

Section 9.1 presents an overview of the model under consideration, the cost uncertainties and the
scenario’s that have been implemented as policies. An overview of the results is presented in section
9.2. Finally, section 9.3 concludes this chapter.

133
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9.1 Parametric uncertainty exploration

In this section, the configuration of the model under consideration is presented as well as the cor-
responding cost uncertainties. The approach of this study is very similar to the approach in section
8.5, but applied to 2050. The configuration of the model under consideration is shown in table 8.3.
The grid capacity is determined based on the provincial transformer capacity between the regional
distribution medium voltage (10-20 kV) and high voltage (150 kV) grid infrastructure. The regional de-
mand is determined based on the corresponding II3050 tailored to Gelderland [17]. The correspond-
ing ETM scenarios can be consulted through the graphical interface which is accessible through the
links provided in appendix E.2.

Table 9.1: Model configuration for the Gelderland 2050 study.

Component Configurations Installed capacity

PV South optimisation variable
East optimisation variable
West optimisation variable

Battery storage 2 hours storage duration optimisation variable
6 hours storage duration optimisation variable
10 hours storage duration optimisation variable

Hydrogen storage 350 hours storage duration optimisation variable
700 hours storage duration optimisation variable

Wind Vestas V90-2000 optimisation variable
Regional demand Provincial level Gelderland II3050
Grid capacity 2150 MW

Table 9.2 shows the range of capacity costs of all technologies considered in this study. These are
all based on the upper and lower range of the projections as discussed in the respective component
section in chapter 5.

The policies in these experiments are based on the four II3050 scenarios, specifically adopted for
the province of Gelderland. Below a short overview of each of the scenario’s is given. For a more
extended overview of the scenario’s either consult section 2.2.2 or the respective publications [17]
[27] [30] [162].

Table 9.2: Uncertainties sampled in the Gelderland 2050 parametric uncertainty exploration

Component Sampled parameters Method Cost range Unit

PV Capacity cost LHS 255 - 734 C/kW
Wind Capacity cost LHS 905 - 1283 C/kW
Lithium storage Energy cost component LHS 69 - 194 C/kWh

Power cost component linear map 64 - 208 C/kW
Hydrogen storage Power cost component LHS 704 - 2871 C/kW

Energy cost component linear map 4 - 16 C/kWh
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1. Policy 1 - II3050 Regional
This scenario is focused on regional control and energy autarky. Key concepts are high levels
of decentralised power generation, by deploying high shares of on-land wind turbines and solar
PV. The final energy demand from industry is assumed to shrink and electrify where possible.
This results in a substantial reduction in energy demand.

2. Policy 2 - II3050 National
This scenario assumes strong leadership by the Dutch government. This allows for more cen-
tralized renewable energy sources, mainly an expanded capacity of offshore wind production.
The industry remains roughly the same size. Energy self-sufficiency is achieved on a national
level.

3. Policy 3 - II3050 European
Significantly less renewable energy is generated within the Netherlands leading to low self-
sufficiency on a national level. Additionally, this scenario assumes a growing industry. The
import of hydrogen, biomass and fossil fuels closes the energy balance. The scenario is cen-
tred around biomass and highly dependent on CO2 capturing technologies to mitigate or reduce
emissions from fossil energy sources.

4. Policy 4 - II3050 International
This scenario displays the lowest self-sufficiency and renewability. This energy system config-
uration relies very heavily on the availability and import of green hydrogen. Additionally, this
scenario assumes a growing industry and is the only scenario where the final energy demand
increases. In this scenario, hydrogen and bio-gas could be feasible alternative energy sources
for natural gas in gas plants.

Although the scenarios consider thermal plants based on alternative renewable energy sources a
part of future energy systems, this is not considered in the model under consideration. This study
is intended to provide insight into cost-optimal system configurations that are based on renewable
energy sources, even when the considered scenarios are not strictly concerned with self-sufficiency.

A total of four policies is evaluated at 250 samples of the cost uncertainty space. This results in 1000
experiments that each produce a cost-optimal system configuration under the sampled conditions.

9.2 Results

This section presents and discusses the outcomes of the optimisation of Gelderland in 2050, based
on four future scenarios for the province. When analysing the results it became clear that the effect
that the different scenarios had on the model outcomes are substantially smaller than expected. This
can be noted from the correlation matrices and the strip plots with clusters. The correlations are
nearly similar and the strip plots display very similar patterns. However, some minor differences still
exist between the regional and national scenario outcomes when compared to the outcomes of the
European and international scenario, which to some extend can be seen from figure 9.1. Therefore,
this only covers the results of policies 1 and 4, corresponding to the regional and international sce-
nario. The results of all policies have been clustered and processed based on the approach proposed
in section 7.2.8.
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Based on analysis of the pair plots and strip plots in figures 9.3 and 9.2, respectively, the clusters
resulting from the cosine hierarchical clustering are characterised for the regional scenario. The
clustering on the Gelderland in the regional II3050 displays a very distinct mode in the density of
the clusters over the various axes of cost uncertainty. In the corresponding pair plots, the density
approximation shows a clear distinction between clusters 0 and 1 on the PV, battery and hydrogen
axis. When one cluster is mostly found in the upper range, the other cluster shows a clear peak in
the lower range. Most outcomes are found in these two clusters. The other two clusters show the
same separability but on each of the axes.

Based on the densities that are shown in the pair plots, it can be concluded that the resulting clusters
are indeed a unique result of the sampled cost uncertainties. Given the fairly well-distributed data, it
is very positive that the clustering approach is still able to recognise patterns in design parameters.
A quantitative description of the clusters found in the regional II3050 Gelderland scenario is given
below.

• Cluster 1 — maximum PV deployment, 90 outcomes
Maximum PV deployment together with maximum deployment of battery storage. Both hydro-
gen and wind deployment are minimal.

• Cluster 2 — PV&hydrogen deployment, 34 outcomes
Moderate PV, low wind, low battery and high hydrogen deployment.

• Cluster 3 — wind&battery deployment, 27 outcomes
Low PV, high wind, high battery and low hydrogen deployment.

• Cluster 4 — maximum wind deployment, 99 outcomes
Maximum wind deployment together with maximum deployment of hydrogen storage. Both bat-
tery and PV deployment are minimal.

From this overview, it can be concluded that there are two sets of distinct opposite clusters. Clusters
0 and 1 inversely span the maximum and minimum range of PV and wind deployment. The same
contrast is seen for the storage categories. Where cluster 0 deploys maximum battery and minimum
hydrogen, cluster 1 opposes this deployment exactly. This is in good agreement with the observed
relationship between the cluster and the cost uncertainty.

The second set of clusters is identified between clusters 2 and 3. Both clusters are more moderate
in deployment ranges when compared to clusters 1 and 0. Cluster 2 combines high deployment of
PV, with the high deployment of hydrogen, while the other capacities are deployed less. The opposite
relation is noticed in the case of cluster 3, which deploys high quantities of wind and battery storage
and less of the other two components. Remarkable is how well the clusters are separated, both in
terms of the deployment modes and the relationship between the clusters and the cost uncertainties.
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Figure 9.1: Strip plot of the various cost-optimal system configurations found in Gelderland 2050
study under cost uncertainty, colour-marked by the determined clusters for each of the
policies. Clusters are uniquely defined per policy, thus the combination of a policy and
cluster colour denote the identified clusters.



138 CHAPTER 9. GELDERLAND 2050

Figure 9.2: Strip plot of the various cost-optimal system configurations found under cost uncertainty,
colour-marked by the determined clusters for the regional II3050 scenario (policy 1).
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Figure 9.3: Pair plot depicting the identified system configuration clusters in relation to the sampled
cost uncertainties for the regional II3050 scenario (policy 1).
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Policy 4 is based on the international II3050 scenario of Gelderland. On the results within this policy,
the same approach in identifying and characterizing the clusters is applied. A quantitative overview
of the clusters is given below.

• Cluster 1 — maximum PV deployment, 61 outcomes
Maximum PV deployment together with maximum deployment of battery storage. Both hydro-
gen and wind deployment are minimal.

• Cluster 2 — PV&hydrogen deployment, 42 outcomes
Moderate PV, low wind, low battery and high hydrogen deployment.

• Cluster 3 — wind&battery deployment, 43 outcomes
Low PV, high wind, high battery and low hydrogen deployment.

• Cluster 4 — maximum wind deployment, 104 outcomes
Maximum wind deployment together with maximum deployment of hydrogen storage. Both bat-
tery and PV deployment are minimal.

Now, by comparing the quantitative description given for the clusters found in the regional scenario it
is concluded that the same characteristic clusters occur in both scenarios. The number of inter-cluster
configurations is different, implying that this scenario has a different impact on the most favourable
system configuration, even when exposed to cost uncertainty.

Other than the quantitative description and the similarity in the found clusters in both scenarios, the
absolute values are slightly different. PV deployment ranges from 5 to 25 GW in the regional scenario
but ranges from 10 to 30 GW in the international case. Wind deployment shows agreement between
the two scenarios, both ranges are centred tightly around 8 GW of wind. Battery storage shows a
nearly similar range of deployment. Hydrogen storage is deployed in slightly higher amounts in the
international scenario.

For each of the policies, a separate correlation matrix was created. However, they are nearly identical
on all variables. Therefore, one single correlation matrix for all policies was calculated. This is shown
in figure 9.4. A very strong negative correlation exists between wind and PV deployed capacity.
Moreover, battery storage deployment is positively correlated with PV deployment and is negatively
correlated with wind deployment.

From the quantitative description and analysis on clusters, it was determined that clusters exist that
exhibit a contradiction to this correlation. These clusters are clusters 0 and 2 in the international
scenario, and 2 and 3 in the national scenario. In both scenarios, these clusters are both less often
present, and their deployment ranges are more constrained compared to the larger clusters.

Another interesting observation is that the deployment of wind still depends more on the cost of PV
capacity than on the cost of wind capacity itself. This implies that wind is deployed because it is more
effective at meeting the imposed constraints, but is less cost-effective. As soon as PV is sufficiently
economical, a tipping point is reached where PV is over-sized to meet the constraint and is still more
cost-effective than deploying wind capacity.

Finally, a big contrast when comparing this correlation matrix to the correlation matrix calculated
for Gelderland 2030 with a 100% renewable target is that, in this study, the total system cost most
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strongly correlates with the cost of hydrogen. This is most likely a result of the fact that the 2050 sce-
nario’s included various electrifying measures on heating, transport and industry. As a consequence,
the seasonality of the demand profile increases and seasonal storage becomes more prominent in
the energy configuration.

It should be noted that this set of experiments is the first of results that are quite uniformly distributed.
As a result, the strip plot that is used to compare all scenarios (shown in fig. 9.1) no longer improves
transparency, nor is an effective measure to support substantial analysis. In an attempt to improve on
the visualisation, figure 9.7 was created. In this figure, every scenario still has a distinct axis. How-
ever, the resulting deployment values are not plotted directly but instead approximated using a kernel
density approximation. This yields a distribution curve, that is better suited for visualising the more
continuous data found in this data set. This is still a challenging graph to read, but it is way better
equipped to visualise this sort of data. When investigated closely, the same cluster characteristics as
described based on figure 9.2 and 9.5 can be recognized. It is recommended to use this chart over
the strip plot when it is desirable to compare multiple policy results outcomes in one figure. However,
whenever possible it is preferred to plot the strip plots per policy which are still very functional in
visualising the data.

Figure 9.4: Correlation matrix for all Gelderland II3050 scenario’s
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Figure 9.5: Strip plot of the various cost-optimal system configurations found under cost uncertainty,
colour-marked by the determined clusters for the international II3050 scenario (policy 4).
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Figure 9.6: Pair plot depicting the identified system configuration clusters in relation to the sampled
cost uncertainties for the international II3050 scenario (policy 4).



144 CHAPTER 9. GELDERLAND 2050

Figure 9.7: Deployment of PV, battery storage, wind and hydrogen storage for the four different
II3050 scenarios plotted using a kernel density approximation. The height of the dis-
tribution at any point is directly related to the number of points fount at that point. The
colour of the points is used to distinguish the various clusters found.
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9.3 Conclusion

In this chapter, optimisation was applied to the province Gelderland in 2050 for four scenarios based
on II3050. The model was configured identically to the model under consideration in section 8.2,
where the energy system configuration of Gelderland was optimised for 2030.

How can exploring energy system optimisation models under uncertainty provide insights into cost-
optimal system configurations to support (robust) energy transition policy? It was found that the
cost-optimal configurations are very similar for the four scenarios. This indicates that the energy sce-
narios do not have the same influence on the optimal system configuration as the technology cost
uncertainties. This indicates that policymakers should focus more on the deployment pathways to
the clusters found and less on the uncertainty of future demand.

In general, the resulting cost-optimal configurations in both scenarios display shows very similar pat-
terns. In both scenarios, the proposed clustering approach yielded similar clusters in terms of relative
deployment of technologies and in terms of their relationship to the cost uncertainties. Both these
properties were assessed effectively using the pair plot and strip plot.

The dominant clusters, with the highest in-cluster counts, exhibit similar relations as found in chapter
8, where PV and battery storage are synergistic and form an alternative to the other dominant cluster
that consists of wind and hydrogen. However, in both scenarios, the same minority clusters were
found that oppose this behaviour. These clusters exhibit more moderate ranges of deployment, but
inverse deployment strategies to the majority clusters. Inter-cluster configurations of these minority
clusters deploy a combination of PV and hydrogen storage versus a combination of wind and battery
storage.

Which cost-optimal system configurations can be identified for case studies within the province of
Gelderland? It can be concluded that the resulting system configurations as a whole display nearly
the same pattern to the price uncertainties for Gelderland 2030 and Gelderland 2050. Even though
both the demand profile and the cost ranges vary substantially between the two studies. Further
extending on the observation made in chapter 8 that the current RES policy within the province of
Gelderland forms a suitable stepping stone towards systems that are based on higher shares of re-
newable electricity, it can be concluded that this statement also applies to Gelderland in 2050.

It is interesting to note that the optimal deployment of PV found remains quite similar in 2050 when
compared to 2030. However, the deployed capacity of wind increases substantially to about 8 GW in
2050. This is an increase of more than 2 GW to what was predicted using the 2030 demand profile
and 2030 technology cost ranges to determine cost fully renewable optimal system configurations.
This indicates, that even though costs of storage will decrease substantially towards 2050, wind re-
mains important to overcome the seasonality of solar PV. For most system configurations found, the
deployment of hydrogen nearly doubled compared to 2030. This slightly decreased the need for
deploying battery capacity. This can be attributed to the fact that hydrogen is expected to see more
substantial cost reductions towards 2050 when compared to 2030. In addition, the abundance of
cheap renewable energy due to technology cost reductions help overcome the lower round-trip effi-
ciency of hydrogen storage.

Finally, this study tested the proposed clustering and analysis procedure. The strip plots are still
very useful, even when the data becomes more uniform and is less distinctly locked-in to specific
configurations, but only when applied per policy. When using the strip plot to visualise clusters and
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at the same time compare the various deployments found in clusters and policies, the visualisation
becomes too obscure to be of any use. An alternative visualisation is presented that is based on
kernel density approximations of the clusters, which is better suited to more uniform and overlapping
data. However, it is recommended to use single policy strip plots primarily and only apply that plotting
method restrictively as the level of abstraction can be quite challenging.



Chapter 10

Discussion

In this chapter, a discussion on the obtained results and insights is presented. This chapters is
divided into three sections. Section 10.1 assesses all case study results to provide answers to
research questions 4, 4.1 and 4.2. In section 10.2, based on experience gained from the application
of the model on the case studies the implications of the obtained results and possible improvements
to the model are addressed. Finally, section 10.3 presents directions of interest for future research
into the explorative use of energy system optimisation models for policy relevance.

10.1 An overview of the case study results

The modelling framework developed during this thesis was applied to power systems of various
scales and functionalities, each presenting a different possible use case for applying energy system
optimisation models in an explorative manner. The experience, results and insights gained from the
application of LESO in the case studies are used to formulate answers to relevant research questions.

With regards to research question 4.1 ”How can optimization models be utilized such that, in addition
to uncertainty, the impact of various scenarios can be assessed?”, it can be stated that explorative
use of energy systems models can be integrally applied with scenario-based assessment. For the
local energy system projects presented in chapter 7, various scenarios in terms of grid capacity and
subsidy schemes were investigated in addition to the explorative assessment of parametric uncer-
tainties.

Moreover, LESO is coupled to the ETM using grid boundary conditions, electricity prices and residual
power demand curves. The ETM is is an online interactive energy system modelling tool capable of
simulation at various scale levels. In chapters 8 and 9, the ETM was used to reflect future energy
scenarios for all sectors in the energy system as formulated in the provincial energy system inte-
gration study [17]. These scenarios were used to form an extra layer in the parametric uncertainty
exploration in the form of policies. Policy is the terminology used in exploratory modelling and anal-
ysis for events that can be determined or controlled by the policymaker. The realisation of any of
the Climate Neutral Energy Scenarios is in part dependent on Dutch national or European policy.
The implementation of scenarios in this manner allows for scenarios-driven assessment in addition
to the independent analysis of the deployment dynamics of optimal system configurations driven by
technology cost uncertainties.

147
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Which cost-optimal system configurations can be identified for case studies within the province of
Gelderland? It can be stated within the cost uncertainty range for each of the case studies there are
a lot of co-existing optimal energy system configurations. For the local energy projects, the configu-
rations are more discontinuous and show more distinct behaviour. The case studies on Gelderland in
2030 and 2050 revealed that system configurations span whole ranges on each deployable technol-
ogy axis. Some energy system configurations depend on the cost reduction of multiple technologies,
such as battery storage and solar PV. Other configurations are more moderate in terms of deployed
technology capacities and are more closely related to the centre values of the cost uncertainties.

Finally, main research question 4 ”How can exploring energy system optimisation models under un-
certainty provide insights into cost-optimal system configurations to support (robust) energy transition
policy?” can be answered. As stated in the previous paragraph, a set of diverse energy system con-
figurations exist within the projected cost ranges. Based on this, it can be stated that exploring those
configurations under uncertainty is vital to obtain insight in the range of possible configurations in
regards to the underlying cost uncertainties.

Moreover, by applying the clustering method a more general and high-level overview of the numerous
results is obtained. The clusters are observed to exist to some degree in all scenarios for Gelderland
in 2050 and are in generally good agreement with the clusters found in Gelderland 2030. From this,
two conclusions can be drawn. Firstly, the clustering method can be applied to determine whether
similar energy system configurations exist based on cost projections that are further in the future.
Based on this, decisions that need to be made now can be aligned such that they either steer to-
wards the desired or attainable system configuration or steer clear from locking in to a certain cluster
until uncertainty resolves.

Secondly, it can be concluded that the used cost projections do not lead to substantially different
clusters in 2030 compared to 2050. This is not necessarily intuitive as the cost projections of the
considered technologies display large differences, which would suggest that the tipping points and
trade-offs between technologies could substantially change over time. However, only applying energy
system optimisation models for exploration of parametric uncertainty is insufficient since it does not
reveal insight into the near-optimal solution space. This is a point for future research and is addressed
in the following sections.

10.2 Application of the model

10.2.1 Implication of renewable electricity targets

As a result of the current model setup, imposing renewable energy targets was only possible by in-
creasing the self-sufficiency in the region of scope. In the implementation used in this thesis, the
targets are achieved by constraining the model with decreasingly lower allowed amounts of imported
energy from the grid. The algorithm would then be forced to place more local generation assets,
which were contained to only renewable energy.

However, it is known that regional autarky is not cost-optimal when compared to larger scales of
demand balancing [60] [61]. Depending on the scale of balancing and tolerance on the level of
self-sufficiency, total system costs can increase substantially when smaller geographic areas are
tasked with achieving regional autarky. This could be overcome by applying a multi-nodal modelling
approach that considers multiple connected regions within the Netherlands. Alternatively, a more rep-
resentative implementation can be achieved by setting a CO2 target for the yearly average emissions
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of electricity instead dictating of a minimal share of renewable electricity. In this implementation, it
is possible to still use a single node representation of only the region of interest. This would require
additional information on the grid boundary, namely the CO2 intensity of the electricity mix per hour.

10.2.2 Representation of cost uncertainties

In the case studies of this thesis, multiple data sources from various publication years were used
to represent the range of parametric uncertainty of future technology capacity cost. Using a single
publication or data source could be more favourable in terms of consistency in approaches. The
cost uncertainties used in this thesis were based on various deployment scenarios, with exception of
hydrogen storage [145] which is based on probabilistic sampling. Moreover, projections have histor-
ically underestimated the deployment rate of renewable technologies such as solar PV and wind [56].

Although the use of probability distributions as an input for energy systems modelling has been criti-
cised for the lack of an empirical basis [88], probability distributions can be used to give an indication
of the relative probability of the system configurations outcomes obtained through uncertainty ex-
ploration. In the current implementation of uncertainties, all model outcomes should be considered
equally probable which means that it is not possible to quantitatively determine the best strategy to
hedge against potential risks based on cost developments. It should rather be used as an indica-
tion of whether short-term deployment decisions will still align with potentially optimal future system
configurations. Over time, uncertainty is expected to resolve. As such, period exploration of optimal
energy system configurations based on parametric uncertainty should be used to reevaluate whether
the current development trajectory can still be adapted towards optimal energy system configurations.

Recently, a pre-print was announced that addresses the historical underestimation of technology
cost reductions and provides probability distributions based on empirical data. Moreover, this pub-
lication contains projections on all four technologies considered in this research (wind, PV, battery
and hydrogen storage), meaning that a single data source with a coherent methodology could be
used [176]. Still, perhaps an even more radical approach in determining the cost ranges is required,
where an even lower range can potentially reveal interesting or unexpected optimal configurations.
Finally, bounded use of predefined parametric uncertainties does not account for unforeseen techni-
cal innovation that disrupts the technological landscape completely. Perhaps an implementation-free
approach to discover possible disruptive technologies as done for storage technology [66] should be
considered.

10.2.3 Financial markets

Economic optimisation is in part driven by financial markets. Currently, only the energy market is
included in a simplified manner that does not correspond to actual energy markets such as the day-
ahead or spot market. In the current implementation, the ETM is used to determine the cost of
electricity at every hour of the year, which is used as a grid-related boundary condition for the region
under analysis. Moreover, the ETM models the electricity prices based only on marginal costs of
electricity which are assumed to be homogeneous per technology group, which in itself is not a de-
tailed representation of the actual market. Additionally, the price curve used was based on a single
scenario that was deemed representative per respective case study. Strictly speaking, this scenario
itself can be interpreted as a structural uncertainty, Or, by addressing the parameters assumed in
the scenario (e.g. CO2 or fuel prices), as multiple parametric uncertainties. In following the logic of
the last proposition, exploration of those parametric uncertainties could also be used to obtain insight
into the effect of policies such as taxes or subsidies on fuels or electricity.
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Moreover, each of the scenarios is based on either the currently planned or a predefined transfor-
mation of the energy system on a national level. As a result, it is potentially possible for the region
under consideration to take the dominant route in the prisoners’ dilemma in the energy transition: let
the rest of the system bear the cost for deployment of renewable energy technologies and bear the
fruit in terms of low energy prices for the hours where renewable energy is abundant. Addressing
the scenarios themselves as parametric uncertainty might reveal more insight into the effect of this
implementation.

Lastly, as noted in chapter 7, other energy markets such as the frequency restoration reserve, fre-
quency containment services or balancing reserves have not been included in the optimisation model.
This is in part due to the fact that these markets operate on a timescale much smaller than the hourly
time resolution used. However, this leads to an underestimation of the potential modes of income
and functionality of storage technologies. It is expected that modelling of those markets or by approx-
imation of incomes from those markets will lead to increased deployment of storage.

10.2.4 Complete energy system

Arguably one of the shortcomings in the current approach is that only the power system is modelled
endogenously. In the implementation used in this thesis, energy-consuming sectors such as housing,
agriculture, transport and industry are not included in the optimisation model. Instead, the optimisa-
tion model is coupled to the ETM which models each of those sectors. As a result, the transition of
those sectors is reflected in the optimisation model only as an electric demand curve. Therefore, the
optimisation algorithm itself is not capable of assessing possible configurations where other sectors
electrify in specific ways.

Although not applied in this thesis, it is possible to reflect possible transition pathways in the ETM,
without introducing additional computational complexity in the optimisation model. Feedback be-
tween decarbonisation strategies of other sectors (e.g. heat pumps, electric boilers, electric vehicles,
etc) can be explored in relation to optimal power system configurations by changing parameters used
in the ETM. Since LESO is already coupled to the ETM, it is possible to use the parametric uncer-
tainty exploration on parameters that model other sectors, in addition to cost uncertainty. This would
for instance allow for a more continuous representation of the climate-neutral energy scenarios used
throughout Dutch energy modelling and analysis. This would allow for a more integral assessment
of policies throughout all sectors and would reveal the sensitivity of optimal power system configura-
tions in relation to decarbonisation strategies applied in the energy system.

Optionally, only components that are relevant for optimisation (i.e. that can substantially impact
the outcome and can, in reality, be addressed through policy or planning) can be included in the
optimisation model. This potential is recognised for smart charging, sector coupling to heat and
industry and demand-side management.
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10.2.5 Energy system optimisation models for exploratory use

One of the research questions of this thesis is: What design considerations are imperative to create
an optimisation model that can be used to explore uncertainties and policy effects?

An important consideration for using energy system optimisation models in an exploratory manner is
the computational time of the model. On a rig with 2 dual-socket mounted octa-core Xeon proces-
sors and 32 GB of RAM, the computational time required for the results obtained in this thesis was
between 10 and 150 hours per case study. Per perturbation i.e. model optimisation run, this took
between 20-45 seconds per result or 250-500 seconds when parallel computing with 10 instances.
When resources and knowledge for cloud computing are available this can be greatly reduced as
single high-performance clusters with more than tenfold the computational power are available at
reasonable prices.

Moreover, the framework used in this thesis is developed using Python. The optimisation is imple-
mented in roughly two stages. First, the framework formulates the optimisation problem based on
constraints, inequalities and the objective function using Pyomo. Consequently, the explicit formu-
lation of the problem (a large system of equations, consisting mostly of sparse matrices) is written
to a file and passed to the solver of choice. The reported computational times were obtained using
Gurobi, an expensive commercial solver. Open-source solvers are available but are inferior in terms
of performance [40]. In the current implementation, all constraints and inequalities that are formu-
lated in the first stage are generated by iterating the time window used in the optimisation. Iteration or
recursion in programming is inherently limited in terms of computational speed. Additionally, Python
is a single-threaded language. This means that more computational power will not significantly im-
prove this stage. However, it is possible to use set-based definitions for all constraints that are not
time-coupled such as storage dynamics [82]. This will greatly reduce the time needed for the first
stage.

10.3 Future research

10.3.1 Leverage on existing interface

An additional benefit that can potentially be explored is the use of the ETM to obtain insight into
factors not addressed in the optimisation model. Factors that are also relevant for policymaking such
as CO2 reduction, land use or grid expansion requirements [39] can be indicated by ETM. These
results can be linked to the optimisation results obtained with parametric uncertainty exploration and
included when evaluating model outcomes.

Moreover, ETM can be used with a general description of energy systems configurations and results.
This can act as an interface between multiple specialized models and is called the Energy System
Description Language (ESDL). As part of an ongoing project called the ”Multi-Model for integral
decision making”, grid operators and commercial parties are currently implementing a model chain
with ESDL as an interface. Implementation of this interface in optimisation models would leverage on
this development, allowing grid operators to perform detailed studies on the effect of energy system
configurations without the need for sharing sensitive information on grid infrastructure.
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10.3.2 Meteorological conditions

The optimisation models used in this thesis have only been based on a single meteorological year.
This is partly due to the computational demands and limited available resources and in part due to the
coupling to the ETM, which only contains a limited set of meteorological data. However, as noted in
the literature optimisation based on one year underestimates the total system cost due to the fact that
the system is exposed to less interannual fluctuations and extreme weather events [72]. As a result,
the resilience of the optimal energy systems is unknown but expected to be low. It is recommended
to either implement multiple years at the cost of increased computational demand or by performing
scenario-based sensitivity analysis using a predefined set of meteorological years. Moreover, studies
indicated that climate change can potentially negatively impact the generation potential of renewable
energy such as wind and solar [177]. This is a fairly new topic in energy systems optimisation and
further research is needed to obtain insight into the robustness of energy systems with respect to
climate change.

10.3.3 Multi-objective optimisation

Policymakers and energy planners have to consider multiple factors when deciding between alter-
native energy system configurations such as land use, emission reduction, water use, impact on
biodiversity, spatial integration and societal acceptance. Optimal system configurations presented in
this thesis are obtained by optimising only based on cost. It is possible to integrate multiple objective
functions. However, this introduces another uncertainty as the implementation of multiple objective
functions requires weighing between the objectives. Still, models developed to generate insight for
policy based on multiple objectives exist. For example, a model has been developed especially to
address the energy-water-food nexus [178].

On the other hand, routines such as modelling all alternatives and modelling to generate alternatives
have been implemented in energy optimisation models. It is argued that these approaches provide a
rigorous method of generating alternative system configurations in the feasible near-optimal solution
space that can be used by policymakers to decide between competing system configurations based
on objectives not included in the optimisation model [29], [35], [52], [97], [111]. In addition, methods
exist that use modelling to generate spatially explicit, practically optimal solutions. This method can
be used when policymakers need to decide on the spatial configuration of energy systems such that
the systems align with political or societal acceptance [95].

10.3.4 Integral approach to structural and parametric uncertainty

Optimisation model outcomes should not be considered normative due to the lack of validation.
Rather, energy system optimisation models should be applied in an exploratory manner to obtain
robust insights for policymakers. All optimisation models inherently contain structural uncertainty due
to the complexity of the energy system. Methods such as modelling to generate alternatives, already
offer a suitable method to deal with structural uncertainty. This thesis applied a novel method to ex-
plore outcomes of energy system optimisation models based on parametric uncertainty. Optimisation
models of energy systems inherently possess structural uncertainty. However, it is recommended that
further research be carried out on combining methods for both structural and parametric uncertainty.
Moreover, addressing uncertainty in energy system optimisation models should be integral to their
application.
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10.3.5 A new policy-model interface

Although energy modelling has acquired a crucial supporting role for policymaking, the current in-
terface between modelling and policy has its limitations [41]. An interface that is better equipped to
overcome existing barriers for perceived policy relevance should be investigated. Interventions such
as aligning model development with policy cycles, forming expert groups for model outcomes and
higher levels of stakeholder involvement can help overcome existing barriers [179].

As proposed in this thesis, energy system optimisation models should be used in an explorative rather
than normative manner. Both structural and parametric uncertainty should be addressed integrally to
the application of optimisation models. However, this introduces a challenge in terms of the dimen-
sionality of results. Therefore, the new policy-model interface should facilitate interaction between
policymakers, energy planners, analysts and modellers. To achieve dynamic interaction, models
should be developed such that they can generate results that support such interaction. It should be
possible to pre-compute various perturbations of system configurations with methods such as mod-
elling to generate alternatives or exploratory modelling and analysis. However, due to the high di-
mensionality of energy systems, it might be more desirable that models are computationally tractable
and suitable for deployment on high-performance clusters such that results can be generated on the
fly, based on input from policymakers, stakeholders and other involved parties. Additionally, global
sensitivity analysis should be applied beforehand such that model sensitivities are known.

10.3.6 Exploration and visualisation of results

The interpretation of results obtained with exploration remains a challenge. Even for the relatively
low number of uncertainty dimensions, it is time-consuming to organise, visualise and analyse all
obtained results to obtain comprehensive results. With a booming interest in machine learning and
its applications, various new visualisation methods that deal with high dimensional data are intro-
duced. Novel methods such as uniform manifold approximation or more conventional methods such
as principal component analysis are promising methods for dimension reduction and can conse-
quently provide more rigorous methods [180].

10.3.7 Clustering methods

Clustering was applied to reduce the dimensionality of results and determine patterns in model out-
comes. However, the hierarchical clustering based on cosine distance with complete linkage pro-
duces diverse results based on parameters determined on the go by the analyst. The analysis either
determines the desired number of clusters a priori or sets a distance threshold. Both parameters are
thus dependent on the competence and interpretation of the analyst. Therefore, further investigation
of other unsupervised clustering methods is recommended.
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Chapter 11

Conclusion

This thesis presents an energy system optimisation modelling framework, results and data process-
ing approach for explorative use of optimisation models in the context of presenting insights for pol-
icymakers in the energy transition. This contributes to filling the gap in current literature and sub-
stantiates the added value of using energy system optimisation models in an explorative manner for
generating insights for the Dutch energy transition. Cost uncertainties are found to have a substan-
tial impact on the outcome of optimisation studies which are typically not addressed when presenting
results. Indispensable insight in deployment dynamics and correlation in optimised energy systems
can be identified by exposing energy systems optimisation models to cost uncertainties. The pre-
sented modelling framework was proven to be capable of generating vital insights for policymakers
through the application of the model on case studies at various geographic scales within the province
of Gelderland.

Typically, optimisation models are complex and entail many details that do not guarantee the accuracy
of the model or increase the relevance of its results. This thesis presents a comprehensive, extensi-
ble and representative framework developed conscious of computational tractability with which new
possibilities arise. By configuring many iterations of the same model with slightly modified parame-
ters the obtained configurations are optimised to reveal the response of the optimum to parametric
uncertainties, such as technology cost. This is of great value to academics, policymakers and con-
sultants in the energy transitions because, unlike with structural uncertainty, no formal methods exist
that systematically address the parametric uncertainty of energy system optimisation models.

This thesis presents novel research on exploring optimisation model outcomes as a result of cost
uncertainty for various types of power systems on various scale levels. From a local energy project
to a whole provincial region, the model can be configured and subsequently exposed to uncertainties
from within the same modelling framework. Additionally, the most time-consuming tasks encoun-
tered in energy systems modelling and analysis have been automatised within the framework and
are available to the modeller through a low-code interface. This forms a unique proposition because
in this way the optimisation model can be quickly repurposed and configured to generate insight
for policymakers. Moreover, it provides insight into the robustness and dynamics of the determined
optima through exploration of underlying uncertainties and scenarios, whereas conventional optimi-
sation studies would typically deliver a single output.

In addition, this thesis incorporated, extended and validated a clustering approach recently intro-
duced by Fraiture [100]. Validation of the approach is achieved by applying the procedure to the
model introduced in this thesis, which is distinctly different from the model the clustering was origi-
nally proposed with. Moreover, the optimisation results generated in this thesis also included policies
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besides cost uncertainties which adds extra value for policymakers. This thesis improves on the
proposed clustering approach by standardizing the analysis pipeline and introducing visualisation
methods that are capable of visualising complex relationships over multiple axes and categories
comprehensively.

The framework and method were applied to various cases to obtain insight into the robustness of
future energy system plans under uncertainty and to compose a set of valuable results on topics rel-
evant to accelerating the energy transition. Through investigation of cable pooling, insight is obtained
in the sensitivity of optimal cable pooled configurations based on the uncertainty of technology ca-
pacity cost. It was found that this concept has great potential to further extend renewable electricity
shares while maximizing the utilisation of current grid capacities. The conditions for economically
viable projects based on cable pooling have been quantified based on technology cost and subsidy
policies.

Sectors that rely on fossil fuels will have to electrify to meet emission reduction goals. Electrification
of the mobility sector is a development relevant to the transition. Considering the increasing number
of grid constrained areas, barriers to exploiting fast-charging infrastructure arise. It is found that grid
congestion can be overcome by incorporating optimal system configurations based partly on local
energy generation. For self-sufficient variations, oversizing production is more cost-effective than
deploying large quantities of storage.

By optimisation of RES regions within Gelderland for 2030, the direction of the path of current poli-
cies is evaluated in terms of robustness to cost uncertainties and suitability for supporting higher
shares of renewable electricity. By applying the clustering method, a distinct set of optimal energy
system configurations is found, of which the relation to the uncertainty of costs is known. Current
policy is found suitable to support future power systems with higher shares of renewable electricity if
the possibility for more wind deployment is guarded. Moreover, current deployment goals within the
province of Gelderland are aligned with the ranges of possible cost-optimal configurations found in
cost uncertainty.

In addition, Gelderland is optimised in four various stylized scenario-based representations of the
energy system in 2050. The clustering method is successfully applied and reveals similar but dis-
tinct results, identifying similar cluster configurations in the two most different scenarios. Optimal
system configurations are found to be significantly less reactive to the scenario than to uncertainties
regarding component costs. An additional visualisation method is proposed based on this data set
to visualise more sparse and uniform optimisation results.

Overall, it is advised that cost uncertainty evaluation should be regarded as integral of optimisation
based policy evaluation as system configurations show a wide range of possible outcomes when ex-
posed to uncertainties. As these uncertainties are outside of the control of policymakers and project
developers, it entails key strategic information. Insight into the robustness of energy systems can be
obtained using the developed framework and the improved method which is standardised to effec-
tively generate insight in various energy systems.
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Recommendations for future research
In the discussion presented in chapter 10, various methodological limitations of this research have
been addressed. Based on this discussion, a set of recommendations for future research is formu-
lated.

I Apply an alternative formulation for the targeted renewable electricity share that does not result
in complete regional self-sufficiency. For example, based on a CO2 target and using hourly
CO2 intensities for the external electricity market or by using a larger scale, multi-nodal model.

II Investigate the possibilities of better representing parametric uncertainties such as technology
capacity cost based on uncertainty ranges with probability distributions with an empirical basis.

III Formulate optimisation models with implementation-free component groups to investigate pos-
sible effects of unforeseen technological breakthroughs.

IV Include more financial energy markets in the optimisation model or approximate the expected
effects based on observations from existing literature or case studies. This includes markets
such as frequency containment and capacity reserves.

V To be able to investigate the effects of transitioning sectors other than the electricity sector,
more of the energy system should be endogenously included in the model because the trans-
formation of for example mobility and transport, industry and housing can greatly affect the
optimal energy system configuration.

VI Implement the Energy Systems Descriptive Language as an interface between energy system
optimisation models, infrastructure models and descriptive models to move towards integrated
assessment models or achieve greater coupling of existing energy modelling tools.

VII Structural and parametric uncertainty of energy system optimisation models should be ad-
dressed methodologically and seen as an integral part of the application of those models.
Moreover, an explorative rather than normative use is recommended for energy system op-
timisation models.

VIII Temporal down sampling based on hierarchical clustering with time-coupling for storage com-
ponents should be used to decrease computational demands of parametric uncertainty explo-
ration.

IX More efficient mathematical formulations (e.g. set-based matrix construction) and programming
approaches (e.g. resolving with slightly different parameters) should be investigated to reduce
the computational burden of parametric uncertainty exploration.

X Research the application of knowledge from the data science and machine learning domain to
improve the analysis and visualisation of the large quantities of results obtained with parametric
and structural uncertainty exploration to increase accessibility and transparency of conclusions.
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Recommendations on the application of energy systems optimisation models for policy rele-
vance
Based on both the discussion in chapter 10 and the results obtained by applying the explorative use
of the optimisation model on Gelderland in chapters 7-9, a set of recommendations for achieving
policy relevance with energy systems optimisation models is formulated.

I Increase the use of energy system optimisation models in addition to the currently used sce-
narios and simulation energy models to obtain insight into the transition pathways to a desired
future energy system. Based on that insight, policies can be put in place that leads to an
orchestrated energy transition that is currently missing.

II Policymakers should aim to periodically apply energy system modelling and analysis in an
explorative manner to reevaluate current policies and to adjust policies where needed or to
hedge against potential risks.

III Invest in researching a new policy-model interface, where policy cycles and model development
are better aligned such that it supports the interaction between modellers, analysts, energy
planners and various other stakeholders.

IV Investigate the implications of using longer meteorological data i.e. evaluate the effects of
different historical meteorological years to address the resilience of optimal energy systems to
extreme events and interannual variations. Moreover, investigate the possible effects of climate
change on the performance of the energy system.
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L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. Matthews, T. K. Maycock,
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Appendix A

Optimisation

This appendix contains a more elaborate mathematical introduction to the optimisation specifically as
included in the modelling framework developed in this thesis. In section A.1, the objective function is
introduced. First, a more comprehensive version of the objective function only based on capital cost
is used. Later, an optimisation objective is introduced that includes discounted investment costs and
variable costs. As such, this objective function represents overnight system cost and is used in this
thesis. In section A.2, the energy balance that is a constraint for each of the system configurations is
introduced and illustrated using an example case.

A.1 Objective function

For the objective function of the optimization problem at hand, various implementations exist, tailored
to the scope and intended result of the research. Both a minimizing objective function and a maximi-
sation objective function is possible, most typically implemented to reflect either cost or profit.

A.1.1 Capacity scaling factor

Within this research, optimal proportions of components within an energy system is of particular inter-
est. These can be implemented in the optimization statement by introducing an optimization variable
that scales the component capacity, which will be referred to as the Capacity Scaling Factor (CSF)
and denoted by Dj for all components j in component set m. Component capacities include power
supply, power demand and energy content for instance. The CSF is used to scale component ca-
pacities such that the applied constraints functions are met. The optimality of the CSF is assessed
through the objective function, by computing the product of the CSF and the unit cost or profit scalar.
Therefore, the CSF denotes the installed capacity of a specific technology feature.

This unit cost or profit factor can result from computing any arbitrary cost or profit function associated
with that component, as long as all components return a scalar with the same dimension (e.g. Euros
or kg CO2). It is important that this cost or profit function is formulated in unit size, i.e. provides a
linear cost scaling factor. The product of this unit cost/profit factor and the component scaling factor
then represents the total cost/profit associated with a certain scaling decision. It is denoted by c′j .
The optimisation algorithm will then consider implicitly consider the possible configurations, assess
their ability to meet the constraints and the objective function value. The best scoring configuration
that is able to meet the constraint functions is selected as the optimal solution.
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A.1.2 Capital cost

This simple objective function is based solely on the capital expenditure of an energy system. It is
achieved by computing the sum of all component capital costs as can be seen from eq. A.1. The
optimization sense will then be minimization. The solution resulting from this objective represents the
lowest capital cost energy system that meets all constraint functions.

min
x

f(x) =

m∑
j=1

c′jDj (A.1)

with: c′j , unit capital cost factor ∀j ∈ m (A.2)

Dj , installed capacity (CSF) (A.3)

Applying this objective function is rather straightforward. An advantage of this simple objective func-
tion is that it results in a solution that represents a comprehensive quantity; without any ponderous
financial abstraction.

However, it strongly lacks the ability to incorporate variable costs or profits which are assumed and
predicted to occur during the system lifetime (e.g. operation and maintenance cost or import and
export costs). Moreover, money does not have a fixed value over time for instance due to inflation.
One time expenses such as investment costs should be discounted to a yearly payment representing
the capital cost in the same quantity as variable costs on a yearly basis.

A.1.3 Variable scaling factor

Energy sources can be either dispatchable or non-dispatchable. Solar PV and wind-based energy
generation are considered non-dispatchable since their maximum power output is fully determined by
meteorological conditions. Although production of these sources can be curtailed, such a renewable
energy asset cannot be controlled in terms of output.

However, components such as the grid connection or storage elements can be controlled. This
operation of assets should be included in the optimisation statement because without representation
of the operation of these assets it is not possible to decide whether those components should be
placed in the energy system. To the end, the variable scaling factor is introduced. This factor is used
to represent the operation of dispatchable components and is an optimisation variable for every time
step in the considered time horizon.

A.1.4 Overnight system costs

This objective function is an improvement over the capital cost function, due to two adjustments.
Firstly, it includes both variable and fixed costs. Secondly, it does this by discounting and annual-
izing all costs to a common ground using the Capital Recovery Factor (CRF), shown in eq. A.4.
By annualizing investment costs, the need to specify salvage values and modelling of end effects is
avoided [52]. In this equation, the component values for (technical/financial) lifetime and the com-
ponent real discount rate is used. The real discount rate is component-specific because different
technologies can have a different required rate of return on the equity share. This is in part based on
the risk aversion of investors and project developers.
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CRF =
ic · (1 + ic)

τs

(1 + ic)τs − 1
(A.4)

with: τs, component lifetime (A.5)

ic, component real discount rate (A.6)

The CRF is the inverse of annuity, thus multiplied by the CRF is equal to dividing by the annuity. The
discounting is done by using the real discount rate, which is computed based on the nominal discount
rate as shown in eq. A.7. In this formula, the nominal discount rate is set to equal to the Weighted
Average Cost of Capital (WACC) which is shown in eq. A.10.

i =
i′ − f
1 + f

(A.7)

with: i′, nominal discount rate (WACC) (A.8)

f, expteced inflation rate (A.9)

WACC = E ·Re +D · i(1− Tc) (A.10)

with: E, Equity share (A.11)

D, Debt share (A.12)

Re, Required rate of return of equity (A.13)

i, Debt rate e.g. loan cost (A.14)

Tc, Corporate tax rate (A.15)

The objective function is then formed by including the investment cost in a similar manner as with
the capital cost objective function. Only this time, the cost scaling factor includes the component
operational and variable cost. Both are assumed to be able to scale linearly. New in this formula are
the variable cost function and the CRF, which is included in the unit cost factor c′j as shown in eq.
A.21. The overnight system cost objective function is shown in eq. A.16. The objective function now
contains two parts which are both annual expenses. The left-hand component reflects the discounted
and annualized cost of capital investments and the right-hand component contains all variable costs
of operation for every time step in the considered time horizon.

min
Dj ,Ej,t

f(Dj , Ej,t) =
m∑
j=1

c′jDj +

m∑
j=1

∑
t

Vj,t∆t (A.16)

with: c′j , unit cost factor ∀j ∈ m (A.17)

Dj , installed capacity (CSF) (A.18)

Vj,t, variable cost function ∀t ∈ [tmin, tmax] (A.19)

(A.20)

New variables are introduced in formula A.16, which should be unpacked further to fully describe this
objective function. Firstly, the annualized discounted unit cost factor is shown in eq. A.21. This is
now the sum of the discounted and annualized lifetime unit investment cost (CAPEX) and yearly fixed
unit operation cost (OPEX) factor. The lifetime unit CAPEX has to account for the component lifetime
which is included in the CRF as shown in A.4. This implicitly assumes linear replacement costs for
any year after the component lifetime, which is an assumption that includes the scrapping value of



176 APPENDIX A. OPTIMISATION

the component. If component lifetime exceeds the system lifetime, scrapping value is represented as
a negative fraction of the replacement cost. As a result, investment cost can be reflected as a single
figure for various components that each have a respective technological lifetime.

c′j = c′CAPEX,j · CRF + c′OPEX,j (A.21)

The variable cost function is component-specific, but can further be decomposed in a general sense
as seen in eq. A.22. This variable cost function includes all profits or costs that are associated
with the variable operation of assets such as the grid or storage components. For components that
have a variable income component but that are not controlled by the optimisation algorithm, such
as demand components, this same formula can be used to account for generated income. The
integral that surrounds the variable cost function sums over all time instances within the time scope
— typically the 8760 hours of a year.

Vj,t = cvj,t · Ej,t (A.22)

Further decomposition of the variable cost function is used to make a component-specific distinction.
To demonstrate the implementation of such a variable cost function, two examples are shown. This is
that of the grid component and of a storage component, shown in eq.A.24 and eq. A.23, respectively.

Vj,t =

{
cvcost · Ej,t Ej,t ≥ 0

−cvcost · Ej,t Ej,t < 0
(A.23)

From the storage variable cost function, it can be noted that it scales linearly with the energy flow
in the component. Because of the convention used for energy flows, a condition has to be implied
such that the product of cost and flow is always positive. This means that when the power output is
positive i.e. the storage is discharging. When the energy flow is negative the cost is multiplied by -1
such that the result of the product is positive, meaning that also charging has costs associated. This
represents some abstract generalization of increased battery wear-out associated with charging and
discharging which is necessary to incentivise the algorithm against overusing storage components.

Vj,t = cvj,t · Ej,t (A.24)

For the grid component, it can be deduced that it is simply the cost of import multiplied by its import
energy flow and vice versa for income due to the export of energy. Due to the convention of the
energy flows, the same cost factor can be used both for profit and cost. These cost variables can
be assumed constant over the system lifetime (if a Power Purchase Agreement (PPA) is installed,
for instance). Alternatively, a time series of energy markets can be fed to this function; allowing it
to represent energy scarcity and abundance through the price signal. It is possible to split the cost
factors for import and export by applying a condition on the value of the energy flow as done for the
storage components in eq. A.23

Finally, the energy flow of the component can be either predefined or an optimisation variable based
on the fact whether the component is dispatchable or not. This is shown in eq. A.25. If the operation
of the asset is an optimisation variable, the variable scaling factor is used. This is modelled in the
framework with an indexed optimisation variable using Pyomo (Pyo.V ar). Otherwise, it is assumed
that a predefined time series exists for that component. This can be used for demand components
that generate income, such as the fast-charger component for instance.

Ej , t =

{
predefined if not dispatchable

V SF (pyo.V ar()j , t) if dispatchable
(A.25)
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A.2 Energy balance

Since all energy systems in this modelling framework are modelled using predefined constant tem-
poral resolution, it is possible to discretely formulate the power balance. In the developed framework,
a convention is used that states that all loads (i.e. electricity demands) should be expressed as neg-
ative values while all generators are expressed as positive values. As a result of this convention, the
sum of loads and generators determines the energy balance. For all time instances t in τ the sum
of all loads and generators should be exactly equal to zero. I.e., all components should be exactly
balanced. This is shown in eq. A.26.

0 =

n∑
j=1

pj(t) · xj + Ej,t (A.26)

with: cj , capital cost ∀i = 1,m (A.27)

xj , installed capacity ∀j = 1, n (A.28)

A sample optimisation problem is used to supply context to the formulation of an energy balance in
LESO. To this end, let us consider an energy system consisting of 5 components, as shown below.

Source components

1. Solar PV

2. Wind turbine

3. Grid import

Collector components

1. Local network

Sink components

1. DC fast chargers

2. Single industrial consumer

3. Grid export

Storage components

1. Lithium battery storage

The problem at hand is to find the most cost-effective configuration of wind, solar and battery storage
system given a limited grid connection and 2 must-meet loads. This makes the sizing of those com-
ponents the design variable Dj and the operation of the dispatchable assets the operation variable
Ej,t. The must-meet loads are sufficiently large (2.2 MW) for the grid connection alone (1.5 MW)
to be inadequate, forcing at least some implementation of local renewable energy generation and
storage.

Looking at the energy balance equation shown in A.26, it can be concluded export of energy, charg-
ing of the storage component and curtailment should be used to balance the power system whenever
the generating assets are producing more energy than is consumed. Similarly, When the generating
assets are not generating enough energy to meet the local demand import and storage discharge
should be operated such that the energy balance is met. Whenever the operation of the dispatchable
assets is not sufficient, the design variables of a set of components should be increased such that
the energy balance is met.

A visual representation of the energy balance obtained based on the implemented constraint is shown
in figures A.1-A.4 for four week-long periods on hourly resolution. These energy balances were ob-
tained based on optimisation of the described system for a whole year. From these visualisations,
it can be seen that the components below zero (loads) are perfectly reflected by the components
above zero (generators). Whenever necessary, curtailment, charging or discharging of the storage
component and export or import through the grid component is used by the optimisation algorithm to
close the energy balance. It should be noted that the algorithm has found a way to import electricity
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Figure A.1: Visual representation of the energy balance for the calculated system configuration for
one week that starts at the 300th hour of the year

Figure A.2: Visual representation of the energy balance for the calculated system configuration for
one week that starts at the 2100th hour of the year

at negative rates and curtail the local generation because that is more profitable. In reality, this will
not be possible in most situations.
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Figure A.3: Visual representation of the energy balance for the calculated system configuration for
one week that starts at the 4500th hour of the year

Figure A.4: Visual representation of the energy balance for the calculated system configuration for
one week that starts at the 6400th hour of the year.
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Appendix B

Submodels

B.1 Advanced PV modelling approach

Advanced diffuse transposition model — The isotropic transposition is a simple approach,
which does not truly represent the physical phenomena of diffuse radiation. Even though no ex-
act formula exist for transposition of diffuse radiation, various models have been formulated to better
approximate diffuse radiation on arbitrary planes. [181] One well-known and often applied model is
the Perez-transposition, shown in eq. B.1.

Idiffuse, poa = Idiffuse, h ·
[
(1− F1)

(
1 + cos (β)

2

)
+ F1

(a
b

)
+ F2 sin (β)

]
(B.1)

With a = max(0, cos (aoi)) and b = max(cos(85◦, cos θz). Without considering too much of the
specifics of this transportation, F1 and F2 represent complex functions that were empirically fitted
to describe both circumsolar and horizon brightness. [182] This transposition circumstantially out-
performs the isotropic diffuse transposition, when compared to measured data on various sites and
system configurations. [181]

In the simplified PV power output model introduced in section 5.2.1 all system losses are simplified
to a single efficiency factor. In reality, various effects contribute to this efficiency loss and display
dynamic behaviour over time. Various of these components which are included in the detailed model
approach are introduced below.

Effective irradiance — In reality not all irradiance reaching the surface of the array will be effec-
tively absorbed by the photoactive layer in part due to reflectance. Eq. B.2 introduces a factor to be
used to account for this reflectance, called the incident angle modifier (IAM), which is a function of
the angle of angle of incidence (aoi). [183]

IAM = 1− b0(
1

cos(aoi)
− 1) (B.2)

Temperature model — Power output of a module is temperature dependent. In order to account
for this effect, the module temperature should be calculated using eq. B.3. In this equation the ef-
fective radiation (Ieffective) is correlated to the wind speed (sw) and the temperature of the ambient air
(Ta) using two empirical model parameters (a&b) which are determined for various system configu-
rations. In addition to the macroscopic module temperature, the temperature on cell level is also of
relevance to determining the dynamic power output. This is captured using eq. B.4, which also in-
cludes an empirical model parameter ∆T . For an open-field PV power plant this is best represented
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using the model parameters of an open rack configuration and glass-glass module. This results in
a = 3.47, b = −0.0594 and ∆T = 3. [184]

Tm = Ieffective × exp(a+ b× sw) + Ta (B.3)

TC = Tm +
Ieffective
ISTC

∆T (B.4)

Temperature DC losses — Electric losses due to temperature effects are a substantial contrib-
utor to the total system losses. Eq. B.5 relates the DC output of the module to the temperature
of the cells. The temperature of the cells is determined based on eq. B.3 and eq. B.4. This is a
linear approximation of the effect of temperature on power output based on the modules parameters
under STC. This relation is captured by γpdc, which is the temperature coefficient of power. This is a
module specific parameter and reflects the sensitivity of the module to increasing temperature and as
a result is a negative number. E.g. a higher temperature typically leads to a lower power output. [185]

Pdc =
Ieffective

1000
PSTC (1 + γpdc (Tcell − TSTC )) (B.5)

Inverter electrical losses — Losses at the inverter are another contributor to the total system
efficiency losses. The relation used to model the inverter efficiency dynamically as function of the
actual load in relation to the load under reference conditions is shown in eq. B.6. In this equation Pdc0
is defined as the maximum input DC power of the inverter and is thus a inverter specific parameter.
Pac0 is defined as the nominal AC output power of the inverter, which can be calculated by multiplying
Pdc0 by the DC power input limit. This variable therefore represents the maximum AC power output of
an inverter under maximum DC load. Finally, power output of the inverter is defined as shown in eq.
B.7. Other than purely efficiency losses, this correctly reflects possible clipping losses at an inverter
level i.e. when DC power input cannot be fully converted to AC power. [186]

η =
ηnom

ηref

(
−0.0162ζ − 0.0059

ζ
+ 0.9858

)
(B.6)

With ζ = Pdc/Pdc0 and Pdc0 = Pac0/ηnom .

Pac = min (ηPdc, Pac0) (B.7)

Selected modules, inverter and configuration — As noted in the above equations, some mod-
ule specific parameters are needed to use the extensive modelling approach. It should however be
stated, that also the configuration specifics of the PV systems should be considered such as the
string configuration. To come to a sensible design that reflect current industry standards, a design of
a recent solar park in the Netherlands was used. The respective parameters for both the module and
inverter used in this configuration were taken from the CEC module and inverter databases. [187]
These supply all needed parameters to use the described models in the correct format. The final PV
system design uses a Huawei SUN2000-100KTL-USH0 smart string inverter [188] wired up to 12
strings each with 32 Jinko Eagle 72M-V 350 mono crystalline modules [189].

B.2 Detailed wind modelling approach

Density model — Since the power output of the wind turbine is in part proportional to the density
of the passing air, it is relevant to use the density as found in the meteorological data. However, for
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this it is required that this density is valid at the hub-height. As it is very unlikely that the measured or
reanalyzed data height is exactly equal to the height of the turbine, the ideal gas law can be applied to
transform the data point to the correct height. This is shown in eq. B.8. In this equation, the density is
determined using the ideal gas law based on the pressure and temperature at the hub. The pressure
at the hub level is approximated using B.9. [190] The temperature at the hub-height is a result of the
temperature model. Alternatives to the ideal gas law approximation are barometric approximation or
using interpolation/extrapolation if multiple height levels are available.

ρhub = phub / (RsThub) (B.8)

phub =

(
p/100− (hhub − h data ) · 1

8

)
· 100 (B.9)

Temperature model — Since the ideal gas law is applied to determine the density at the hub
height, it is necessary to determine the temperature at the height of the turbine hub. This is imple-
mented in the form of a linear gradient assumption based on the ICAO-Standardatmosphäre (ISA),
as shown in eq. B.10. In this implementation, a linear temperature gradient of -6.5 K/km is ap-
plied. [191] An alternative approach is to use interpolation/extrapolation if more height levels are
available in the data used.

Thub = Tair − 0.0065 · (hhub − h data ) (B.10)
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Supplementary figures

C.1 Electric mobility hub
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C.1.1 Policy 1 cost uncertainty and technology deployment

Figure C.1: Battery deployment on the uncertainty plane spanned by PV and battery capacity cost
for 0.0 MW grid capacity (policy 1)

Figure C.2: Battery deployment on the uncertainty plane spanned by wind and PV capacity cost for
0.0 MW grid capacity (policy 1)

Figure C.3: Battery deployment on the uncertainty plane spanned by wind and battery capacity cost
for 0.0 MW grid capacity (policy 1)
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Figure C.4: PV deployment on the uncertainty plane spanned by PV and battery capacity cost for
0.0 MW grid capacity (policy 1)

Figure C.5: PV deployment on the uncertainty plane spanned by wind and PV capacity cost for 0.0
MW grid capacity (policy 1)

Figure C.6: PV deployment on the uncertainty plane spanned by wind and battery capacity cost for
0.0 MW grid capacity (policy 1)
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Figure C.7: Wind deployment on the uncertainty plane spanned by PV and battery capacity cost for
0.0 MW grid capacity (policy 1)

Figure C.8: Wind deployment on the uncertainty plane spanned by wind and PV capacity cost for
0.0 MW grid capacity (policy 1)

Figure C.9: Wind deployment on the uncertainty plane spanned by wind and battery capacity cost
for 0.0 MW grid capacity (policy 1)
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C.1.2 Policy 2 cost uncertainty and technology deployment

Figure C.10: Battery deployment on the uncertainty plane spanned by PV and battery capacity cost
for 0.5 MW grid capacity (policy 2)

Figure C.11: Battery deployment on the uncertainty plane spanned by wind and PV capacity cost for
0.5 MW grid capacity (policy 2)

Figure C.12: Battery deployment on the uncertainty plane spanned by wind and battery capacity
cost for 0.5 MW grid capacity (policy 2)
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Figure C.13: PV deployment on the uncertainty plane spanned by PV and battery capacity cost for
0.5 MW grid capacity (policy 2)

Figure C.14: PV deployment on the uncertainty plane spanned by wind and PV capacity cost for 0.5
MW grid capacity (policy 2)

Figure C.15: PV deployment on the uncertainty plane spanned by wind and battery capacity cost for
0.5 MW grid capacity (policy 2)
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Figure C.16: Wind deployment on the uncertainty plane spanned by PV and battery capacity cost
for 0.5 MW grid capacity (policy 2)

Figure C.17: Wind deployment on the uncertainty plane spanned by wind and PV capacity cost for
0.5 MW grid capacity (policy 2)

Figure C.18: Wind deployment on the uncertainty plane spanned by wind and battery capacity cost
for 0.5 MW grid capacity (policy 2)



192 APPENDIX C. SUPPLEMENTARY FIGURES

C.1.3 Policy 3 cost uncertainty and technology deployment

Figure C.19: Battery deployment on the uncertainty plane spanned by PV and battery capacity cost
for 1.0 MW grid capacity (policy 3)

Figure C.20: Battery deployment on the uncertainty plane spanned by wind and PV capacity cost for
1.0 MW grid capacity (policy 3)

Figure C.21: Battery deployment on the uncertainty plane spanned by wind and battery capacity
cost for 1.0 MW grid capacity (policy 3)
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Figure C.22: PV deployment on the uncertainty plane spanned by PV and battery capacity cost for
1.0 MW grid capacity (policy 3)

Figure C.23: PV deployment on the uncertainty plane spanned by wind and PV capacity cost for 1.0
MW grid capacity (policy 3)

Figure C.24: PV deployment on the uncertainty plane spanned by wind and battery capacity cost for
1.0 MW grid capacity (policy 3)
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Figure C.25: Wind deployment on the uncertainty plane spanned by PV and battery capacity cost
for 1.0 MW grid capacity (policy 3)

Figure C.26: Wind deployment on the uncertainty plane spanned by wind and PV capacity cost for
1.0 MW grid capacity (policy 3)

Figure C.27: Wind deployment on the uncertainty plane spanned by wind and battery capacity cost
for 1.0 MW grid capacity (policy 3)
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C.1.4 Policy 4 cost uncertainty and technology deployment

Figure C.28: Battery deployment on the uncertainty plane spanned by PV and battery capacity cost
for 1.5 MW grid capacity (policy 4)

Figure C.29: Battery deployment on the uncertainty plane spanned by wind and PV capacity cost for
1.5 MW grid capacity (policy 4)

Figure C.30: Battery deployment on the uncertainty plane spanned by wind and battery capacity
cost for 1.5 MW grid capacity (policy 4)
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Figure C.31: PV deployment on the uncertainty plane spanned by PV and battery capacity cost for
1.5 MW grid capacity (policy 4)

Figure C.32: PV deployment on the uncertainty plane spanned by wind and PV capacity cost for 1.5
MW grid capacity (policy 4)

Figure C.33: PV deployment on the uncertainty plane spanned by wind and battery capacity cost for
1.5 MW grid capacity (policy 4)
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Figure C.34: Wind deployment on the uncertainty plane spanned by PV and battery capacity cost
for 1.5 MW grid capacity (policy 4)

Figure C.35: Wind deployment on the uncertainty plane spanned by wind and PV capacity cost for
1.5 MW grid capacity (policy 4)

Figure C.36: Wind deployment on the uncertainty plane spanned by wind and battery capacity cost
for 1.5 MW grid capacity (policy 4)
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C.1.5 Cluster pair plots

Figure C.37: Pair plots of the cost uncertainties related to the clusters obtained through cosine-
distance based agglomerative clustering for the charging hub with 0 MW grid connec-
tion (policy 1)
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Figure C.38: Pair plots of the cost uncertainties related to the clusters obtained through cosine-
distance based agglomerative clustering for the charging hub with 0.5 MW grid con-
nection (policy 2)
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Figure C.39: Pair plots of the cost uncertainties related to the clusters obtained through cosine-
distance based agglomerative clustering for the charging hub with 1 MW grid connec-
tion (policy 3)
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Figure C.40: Pair plots of the cost uncertainties related to the clusters obtained through cosine-
distance based agglomerative clustering for the charging hub with 1.5 MW grid con-
nection (policy 4)
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C.2 Gelderland 2050

C.2.1 Results policy 2 - II3050 National

Figure C.41: Correlation matrix for the Gelderland in the national II3050 scenario (policy 2).
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Figure C.42: Strip plot of the various cost-optimal system configurations found under cost uncer-
tainty, colour-marked by the determined clusters for the national II3050 scenario (policy
4).
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Figure C.43: Pair plot depicting the identified system configuration clusters in relation to the sampled
cost uncertainties for the national II3050 scenario (policy 2).
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C.2.2 Results policy 3 - II3050 European

Figure C.44: Correlation matrix for the Gelderland in the European II3050 scenario (policy 3).
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Figure C.45: Strip plot of the various cost-optimal system configurations found under cost uncer-
tainty, colour-marked by the determined clusters for the European II3050 scenario (pol-
icy 3).
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Figure C.46: Pair plot depicting the identified system configuration clusters in relation to the sampled
cost uncertainties for the European II3050 scenario (policy 3).
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Appendix D

Clustering

In this thesis, clustering is applied to the model outcomes to obtain insights into the patterns that
occur in terms of the resulting system configurations. The method that is implied is inspired by the
work of Fraiture [100], who applied this manner of clustering on an energy system optimisation model
that optimises the investment in an energy system over multiple years based on a yearly resolution.
The most important difference between this thesis’ model and the multi-year model that was used
by Fraiture is the fact that system configurations obtained in this thesis are not bound to a specific
investment year or to a specific node in the system since the model in this thesis is of the snapshot
category. This means that the clustering can be applied more direct, without the need for various
processing steps to aggregate results.

Clustering is a form of unsupervised learning, where an algorithm is utilized to identify similarities
in data. Based on the grouping that is obtained, specific attributes of the groups can be identified.
When dealing with high dimensional data and large numbers of results, this method can be applied
to reduce the number of data points to consider. As a result, the analyst can focus on the patterns
that are found within the groups or how the groups compare against each other.

In this thesis, we are mostly interested in the cost-optimal system configurations that are obtained
based on a wide range of technology costs. Based on the number of optimisation design variables,
the results will span a solution space of N -dimensions. To cluster the outcomes in the solution space
effectively, a standard procedure is used. This procedure is shown in figure D.1

Figure D.1: Abstract overview of the clustering method applied in the case studies.
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Figure D.2: Abstract illustration of standardisation for one feature for a set of 2-dimensional features.

D.1 Step 1 - Standardisation

The goal of the clustering is to identify similar system configurations. Therefore, the clustering method
used is based on the connectivity of outcomes, i.e. the distance between outcomes. Any distance
function can be implemented (e.g. Euclidean, Manhattan, higher-order P-norms, etc.) but because
the ratio of implemented technologies is more relevant than the absolute numbers, this thesis imple-
ments a distance function that calculates the cosine distance. which is the inverse of the similarity
criteria. The cosine distance is calculated after standardising results. Standardisation is a procedure
that is applied per feature of the solution space. First, the feature mean of all outcomes is subtracted
from each of the outcomes. Second, all outcome features are divided by the standard deviation of all
outcome results. As a result, all standardised outcomes will be dimensionless and the resulting points
in vector space are no longer skewed towards one of the design features. A visual representation of
this procedure is shown in figure D.2.

D.2 Step 2 - Threshold clustering

The clustering algorithm implemented is a hierarchical agglomerative procedure. This means that it
starts with all outcomes each in a single cluster and hierarchically merges clusters based on their
distance until the termination condition is met. In this step the termination condition is the distance
threshold. For most cases it was found that a threshold of 0.1 was sufficient to obtain distinct clusters,
but to exclude the possibility for excessive amounts of clusters.

Hierarchical agglomerative clustering can be visualised using a dendrogram, which displays the hi-
erarchical order in which clusters are formed based on their distance criteria. An abstract visual
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Figure D.3: An abstract representation of a possible solution space and the corresponding dendro-
gram for full-linkage clustering.

representation of such a dendrogram is shown in figure D.3. From the figure it can be seen that
points E and D are most similar in the solution space. When consulting the dendrogram, it can be
seen that these two outcomes are indeed merged to form the first cluster of more than 1 point. At
a slightly higher point in the dendrogram, points A and B are merged to form the second cluster.
Following this dendrogram up the ladder represents the agglomerative method applied. If we follow
the dendrogram from the top to the bottom, it is a divisive clustering method.

D.3 Step 3 - Clustering with predefined number of clusters

Based on the clusters found in step 2, this step considers the resulting clusters and compares them
based on the range that is covered in the cost uncertainties and system design outcomes. Most
importantly, the amount of clusters is reduced until the total number of clusters contain a sufficient
number of configurations in each cluster.

D.4 Step 4 - Visualize clusters with t-SNE

Fraiture recommends future research to implement t-SNE to visualise the resulting clusters in re-
duced dimensions as a shortcut to more extended analysis using various visualisations. This method
is very well suited to data sets of high dimension and that contain a lot of results. However, the op-
eration can be quite tedious and outcomes are unique due to the stochastic nature. Moreover, the
clusters that can be visualised using t-SNE are strongly influenced by the parameters chosen. Tweak-
ing the parameters is time-consuming and requires good understanding of the impact of the various
parameters. If used incorrectly, the method can reveal non-existing clusters.

Sometimes this visualisation was useful, but most of the time it did not contain any new information
and the strip plots and pair plots revealed more insights. Moreover, t-SNE is based on distribution
of data and not on the distance between points and thus, it is not necessarily well-suited to use with
cosine distance based clustering. As a result, during this thesis the proposed visualisation pipe-line
with pair plots and strip plots was favoured over t-SNE. An example of a t-SNE visualisation is shown
in figure D.4.
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Figure D.4: An example visualisation of clusters using the t-SNE dimension reduction method.
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Supplementary material references

E.1 EMA experiments code references

Cable pooling
Version: https://github.com/thesethtruth/LESO/tree/b3239d6bd5

Folder: LESO/thesis scripts/experiments/cablepool

E-mobility hub
Version: https://github.com/thesethtruth/LESO/tree/eab19194f1

Folder: LESO/thesis scripts/experiments/evhub

Regional Energy Strategies 2030
Version: https://github.com/thesethtruth/LESO/tree/9e439cf395

Folder: LESO/thesis scripts/experiments/2030

Gelderland 2030
Version: https://github.com/thesethtruth/LESO/tree/d3a1b28218

Folder: LESO/thesis scripts/experiments/2030

Gelderland 2050
Version: https://github.com/thesethtruth/LESO/tree/8e12081ca8

Folder: LESO/thesis scripts/experiments/2050

E.2 ETM scenarios references

RES Achterhoek 2030
URL: https://pro.energytransitionmodel.com/scenarios/815753

Scenario number: 815753

RES Arnhem/Nijmegen 2030
URL: https://pro.energytransitionmodel.com/scenarios/815754

Scenario number: 815754

RES Cleantech 2030
URL: https://pro.energytransitionmodel.com/scenarios/815755

Scenario number: 815755
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RES FoodValley 2030
URL: https://pro.energytransitionmodel.com/scenarios/815756

Scenario number: 815756

RES Noord-Veluwe 2030
URL: https://pro.energytransitionmodel.com/scenarios/815757

Scenario number: 815757

RES Rivierenland 2030
URL: https://pro.energytransitionmodel.com/scenarios/815758

Scenario number: 815758

Gelderland 2030
URL: https://pro.energytransitionmodel.com/scenarios/815716

Scenario number: 815716

Gelderland 2050 - Regional
URL: https://pro.energytransitionmodel.com/scenarios/815695

Scenario number: 815695

Gelderland 2050 - National
URL: https://pro.energytransitionmodel.com/scenarios/815696

Scenario number: 815696

Gelderland 2050 - European
URL: https://pro.energytransitionmodel.com/scenarios/815697

Scenario number: 815697

Gelderland 2050 - International
URL: https://pro.energytransitionmodel.com/scenarios/815698

Scenario number: 815698
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