
BSc Thesis Applied Mathematics

Local Optimization Algorithm
for minimizing the Least
Squares Criterion over
Lipschitz Functions

Nadine Waninge

Supervisor:
Johannes Schmidt-Hieber
Petr Zamolodtchikov

September 6, 2023

Department of Applied Mathematics
Faculty of Electrical Engineering,
Mathematics and Computer Science

Local Optimization Algorithm
on Lipschitz Least Squares

Nadine Waninge∗

September 6, 2023

Abstract

In this article, we consider the basic regression model and the least squares estima-
tor over the Lipschitz-1 functions. Two algorithms that approximate a function based
on an i.i.d. sample are compared. The first algorithm utilizes a quadratic program-
ming (QP) approach, where the objective function corresponds to the least squares
estimator (LSE), and the constraints are determined by the Lipschitz condition. Be-
liakov’s algorithm, which reduces the time complexity of the QP, is implemented and
used as a benchmark. The second algorithm is based on a local optimality charac-
terization for Lipschitz least squares estimators. We call this the Local Optimization
algorithm. Both algorithms are tested for different data distributions, sample sizes,
and test functions. The analysis presented in this article focuses on two fundamental
metrics: the running time and the maximum error (supremum norm).

We can conclude that the local optimization algorithm is able to output compa-
rable results as the Beliakov algorithm in a fraction of the time (especially for large
sample sizes). However, it is important to note that when dealing with non-uniform
distributed data, especially where a small number of data points cover a larger portion
of the entire interval, the algorithm needs to be carefully tuned to ensure comparable
and reliable output.

Keywords: Least squares, LSE, Lipschitz, Scattered data approximation

Contents

1 Introduction 3

2 Model 4

3 Preliminaries 4

4 Solving the constrained Least Squares problem via quadratic program-
ming 6
4.1 The brute force approach . 6
4.2 Pruning the constraints (Beliakov) . 6
4.3 Testing procedure . 7
4.4 Performance of the Beliakov Algorithm . 9
∗Email: l.n.waninge@student.utwente.nl

1

5 Local Optimization algorithm 10
5.1 Breakdown of the algorithm . 11

5.1.1 Picking a random interval . 11
5.1.2 Optimizing the interval . 12
5.1.3 Minimal change condition . 13

5.2 Performance of the Local Optimization algorithm 14

6 Comparison of the Beliakov and Local Optimization algorithm 17
6.1 Running time . 17
6.2 Approximation quality . 17

7 Discussion 19

References 20

A Appendix 21
A.1 Data sets of the running time and error per category 21
A.2 Pseudocode . 23

2

1 Introduction

Regression models are one of the main topics of research in statistics. In a regression
model, it is assumed that data can be interpreted as a function with noise,

Y = f(X) + ϵ, (1)

where the error ϵ is normally distributed (ϵ ∼ N (0, σ)) and X is a random variable with
values in [0, 1]. The goal is to estimate the function f based on an independent and iden-
tically distributed (i.i.d.) sample (X1, Y1), . . . , (Xn, Yn), which can be done in multiple
ways. The simplest method is to fit a linear function to the data. Although linear least
squares is a well-studied regression estimator, in some applications the regression function
might behave in a highly non-linear manner and therefore relaxations of the linear least
squares are studied. This can be achieved by interpreting regression as an optimization
problem. It is necessary to set up constraints for the class of non-parametric regression
functions because we do not want to fit the noise. The latter is called overfitting, it is an
error that occurs in a regression model that results from aligning a particular function too
closely to the set of data points. When a model is overfitted the results are misleading and
the model performs poorly as a predictive tool.

The approach that is considered in this article is to select a minimizer of the mean squared
error among the class of Lipschitz functions. These are functions where the distance of
the inputs of the function is closely related to the distance of the output of the function [5].

For a given sample size n, minimizing the least squares criterion over Lipschitz functions
can be seen as a quadratic programming problem with n×(n−1) constraints. Beliakov pro-
poses an algorithm to prune redundant constraints to reduce the time complexity of this fit
[2]. The number of non-redundant inequalities produced by this algorithm is significantly
smaller than the original number of constraints, but its effectivity depends greatly on the
dimension of the input data. A larger dimension equals fewer redundant inequalities. For
small dimensions, the algorithm is very efficient in eliminating redundant constraints.

Recently, the Lipschitz least square estimator was proven to be minimax optimal with
regard to a weighted supremum norm [4]. This behaviour is taken here as an optimality
constraint and gives rise to an algorithm to approximate the Lipschitz Least Square Esti-
mator. This local optimization property is analyzed and the Local Optimization Algorithm
is implemented for the one-dimensional case. Both the Beliakov algorithm and the Local
Optimization algorithm will be tested and their performance will be evaluated.

How do Beliakov’s algorithm and the Local Optimization algorithm compare in terms of
time complexity and their approximation quality?

3

2 Model

In this article, the basic regression model is used, which is described in Equation 1. We
consider the Least Squares Estimator (LSE) over the Lipschitz-1 functions, which is the
function f̂ defined as

f̂ ∈ argmin
f∈Lip(1)

1

n

n∑
i=1

(Yi − f(Xi))
2, (2)

where Lip(1) is the set of Lipschitz-1 functions. Lipschitz functions are functions where
the distance of the output of the two function values is related to the distance of the input
of the function [5]. The set of Lipschitz-1 functions considered in this work is

Lip(1) :=
{
f : R→ R : |f(Xi)− f(Xj)| ≤ |Xi −Xj |

}
. (3)

In order to measure the quality or correctness of the LSE, we introduce the L∞ norm or
also called the supremum norm;

∥f∥∞ = sup
x∈R
|f(x)|. (4)

First, the infinite-dimensional optimization problem will be reduced to a finite-dimensional
optimization problem, then, the quadratic programming (QP) approach will be explained,
implemented, and tested. Finally, a local optimality characterization of the Lipschitz LSE
will be derived, which will help derive an algorithm to evaluate the LSE.

3 Preliminaries

In this section, it is shown how the infinite-dimensional optimization problem in Equation 2
can be reduced to a finite-dimensional optimization problem. To do so we leverage the Lip-
schitz property of our hypothesis space. Everything will be proven for the one-dimensional
case.

The first lemma shows that the optimization can be conducted within a n-dimensional
vector space.

Lemma 3.1. Let Fn
l be the set of (n − 1)-piecewise linear and Lipschitz-1 functions on

[0, 1]. For any X1 < ... < Xn ∈ [0, 1] and any Y1, . . . , Yn ∈ R

Fn
l ∩ argmin

g∈Lip(1)

[
1

n

n∑
i=1

(g(Xi)− Yi)
2

]
̸= ∅.

Proof. Let ϵi(Xi) = g(Xi)− Yi be the residuals at point Xi. Then

argmin
g∈Lip(1)

[
1

n

n∑
i=1

(g(Xi)− Yi)
2

]
= argmin

g∈Lip(1)

[
1

n

n∑
i=1

ϵ(Xi)
2

]

is the set of Lipschitz-1 functions that minimizes the residuals of all data points, regardless
of what happens in between these points. Therefore in between these points, it could be
linear, which results in a (n − 1)-piecewise linear Lipschitz-1 function. Hence the inter-
section is non-empty and as a consequence, the infinite-dimensional optimization problem
can be reduced to an optimization over a n-dimensional vector space.

4

Having established the proof that the Lipschitz function can be represented as a piecewise
linear function, our objective now is to define an optimal piecewise linear function for the
Lipschitz interpolation. Therefore the data set needs to be compatible.

Definition 3.2. A set {(Xi, Yi)}ni=1 is called compatible if there exists a Lipschitz-1 inter-
polation. That is if

min
f∈Lip(1)

1

n

n∑
i=1

(f(Xi)− Yi)
2 = 0.

In between two data points a cone shape is formed by the constraints of the Lipschitz-1
function, where the upper bound is defined as fmax(x) := mini(Yi + |x − Xi|) and the
lower bound as fmin(x) := maxi(Yi − |x −Xi|). These are the bounds of the Lipschitz-1
interpolation. It has already been shown that f̂(x) = 1

2(fmin(x) + fmax(x)) gives the best
approximation in the worst case [6]. Now we proceed to prove that this function indeed is
an optimal approximation for the Lipschitz-1 interpolation.

Lemma 3.3. Let fmax and fmin be defined as above. If the set D := {(X1, Y1), . . . , (Xn, Yn)}
is compatible, then

f̂ =
1

2
(fmax + fmin) ∈ argmin

f∈Lip(1)

1

n

n∑
i=1

(f(Xi)− Yi)
2.

Proof. Since the set is compatible, by Definition 3.2 it must be shown that 1
n

∑n
i=1(f(Xi)−

Yi)
2 = 0 holds for f̂(x) = 1

2(fmax(x) + fmin(x)). Substituting this equation into the
compatibility equation, yields

1

n

n∑
i=1

(f(Xi)− Yi)
2 =

1

n

n∑
i=1

[
1

2
(fmax(Xi) + fmin(Xi))− Yi

]2
(5)

=
1

n

n∑
i=1

[
1

2

(
min
j

(Yj + |Xj −Xi|) + max
j

(Yj − |Xj −Xi|)
)
− Yi

]2
.

(6)

Now we prove by contradiction that for all i ∈ {1, . . . , n}, minj(Yj + |Xj − Xi|) = Yi +
|Xi −Xi|. First, assume the minimum is at some j̃ ̸= i. Then

Yj̃ + |Xj̃ −Xi| <Yi + |Xi −Xi|.

The distance between Xi and Xi is zero and rewriting the equation results in

Yi − Yj̃ > |Xj̃ −Xi|.

This contradicts the fact that the function f is in Lip(1), see Equation 3. Therefore the
minimum must be obtained at i. The same argument holds for the maximum. Substituting
these points of the minimum and maximum into Equation 5 yields

1

n

n∑
i=1

(f(Xi)− Yi)
2 =

1

n

n∑
i=1

(
1

2
(Yi + Yi)− Yi

)2

= 0.

Hence it is proven that f̂ is a minimizer of the squared error.

Lemma 3.3 establishes that if a set is compatible, then f̂ is the minimizer of the least
squared error. Not every data set is compatible, therefore it is necessary to employ alter-
native methodologies to find this minimizer. Such an alternative is described in the next
section.

5

4 Solving the constrained Least Squares problem via quadratic
programming

In this section, the quadratic programming approach for solving the constrained least
squares problem is discussed.

4.1 The brute force approach

The brute force approach simply defines the Lipschitz Least Squares problem as a quadratic
program, further referred to as the QP. First, the set’s compatibility with the Lipschitz
condition is ensured by smoothening the data. The residuals are the differences between
the approximation and the original data: ri = f̂(Xi) − Yi. Here ri is the residual and
f̂(Xi) is the approximation. Substituting the residual into the compatibility definition in
Definition 3.2 gives the objective function for the QP. The constraints are determined by
the Lipschitz condition in Equation 3. This results in the following QP

min
n∑

i=1

|ri|2

s.t. ri − rj ≤ Yj − Yi + |Xi −Xj | (7)
for all i, j ∈ 1, . . . , n.

The QP has a total of n(n− 1) constraints.

Once the data is smoothened, the optimal approximation is computed as described in
Lemma 3.3. There are various ways to reduce the time complexity of this QP. Beliakov
proposes such an algorithm.

4.2 Pruning the constraints (Beliakov)

Beliakov proposes an algorithm to reduce the number of constraints of the quadratic pro-
gram in Equation 7 [2]. It is based on describing the Lipschitz compatibility in Definition
3.2 with the simplicial distance instead of a norm. The use of a different distance function
only affects the Lipschitz constant of f . The distance function that is of interest is one
based on the Minkowski gauge.

Let P be a simplex defined as the intersection of d+1 halfspaces (where d is the dimension
of x)

P =
d+1⋂
i=1

{
x : x · hi ≤ 1

}
,

for the directional vectors

h1 = (−v1, 0, · · · , 0),
h2 = (0,−v2, · · · , 0),

...
hd = (0, · · · , 0,−vd),

hd+1 = (vd+1, · · · , vd+1)

with vi > 0. Let us introduce the slack variable xd+1, then the simplicial distance is defined
in the following way.

6

Definition 4.1. The simplicial distance between the points x, y ∈ Rd is

dP (x, y) = max
i=1,...,d+1

vi(yi − xi),

where xd+1 = 1−
d∑

i=1

xi.

With the use of the slack variable xd+1, the space Rd becomes a hyperplane HP ⊂ Rd+1.
Once the distance between the points is described in a simplicial distance, the hyperplane
HP can be divided into sets based on their distance. For i ∈ {1, . . . , d+1} and k = 1, . . . , n
we the define the following sets

Sk
i = {x ∈ HP : vi(xi − xki) ≥ vj(xj − xkj), for all j ̸= i}

for all data xk. By definition, it is given that if xk ∈ Sj
i , and xp ∈ Sk

i , then xp ∈ Sj
i

and dP (xp, xj) = dP (xp, xk) + dP (xk, xj). As a consequence, the inequality from (p, j)
is redundant. Adopting this approach, the redundant constraints can be eliminated from
the QP in Equation 7. This QP with a significantly smaller number of constraints can be
solved and the approximation can be computed as described in Section 4.1.

A more thorough explanation of the algorithm and the pseudocode can be found in Beli-
akov’s article [2]. Next, the algorithm will be implemented in Python and its performance
will be tested. But first, the formal testing procedure will be discussed.

4.3 Testing procedure

This section outlines the formal testing procedure for the Beliakov algorithm.

The algorithm will be evaluated by conducting tests under various scenarios, including
different data distributions, diverse test functions and varying sample sizes. The following
data distributions are considered:

• X0 is uniformly distributed,

• X1 has probability density function p1(x) = 2x,

• X2 has probability density function p3(x) = −6(x− 0.5)2 + 3
2 ,

• X3 has probability density function p2(x) = 12(x− 0.5)2.

Figure 1: Plots of the Probability Density Functions of the different distributions

In Figure 1, the distributions of X1, X2, and X3 are displayed. The method that is used
to generate samples from these distributions is Inverse Transform Sampling. This method

7

allows one to generate random samples from any probability distribution function with an
invertible cumulative distribution function (CDF). Let U be uniform on [0, 1] and let p(x)
be the probability distribution function of random variable X with

∫
[0,1] p(t)dt = 1. Let

F (X) be the CDF of p(x), i.e. F (x) =
∫ x
0 p(z)dz. Then U = F (X) and F−1(U) = X,

where F−1 is the inverse of the CDF [3]. Hence applying the inverse CDF to an uniform
sample results in a sample that follows the distribution of the random variable X.

Additionally, the algorithm will be tested on four different Lipschitz-1 functions, where the
first test function is the zero function, which means that the response variables are pure
noise. The second test function is continuous, the third test function is a piece-wise linear
function and the fourth is a combination of the second and third. The functions are

• f0(x) = 0,

• f1(x) = 0.5x2 + 0.25,

• f2(x) = |x− 0.5|,

•

f3(x) =


0.5 + x if 0 ≤ x < 0.2

0.9− x if 0.2 ≤ x ≤ 0.3

1.25(x− 0.7)2 + 0.4 if 0.3 < x ≤ 1,

and are displayed in Figure 2. We sample the noise from the normal distribution with
mean µ = 0 and standard deviation σ = 0.1. A combination of an X-distribution and
a test function is referred to as a category. Each category is tested for increasing sample
sizes, which are 50, 100, 250, 500, 1 000, 5 000, and 10 000. Every category is run 50 times
for each sample size.

Figure 2: Plots of the test functions

The performance of each run is determined by the total running time of the algorithm
and the error. The error that is considered is the supremum norm in Equation 4. This
is the maximum difference between the approximation and the original test function. Per
category and sample size the mean of these errors will be calculated. Throughout this
article, this mean will be referred to as the mean max(imum) error. Given the independence
and identical distribution of the mean maximum error and running time originating from
two distinct runs within a category, the application of the central limit theorem allows
us to assume that they are normally distributed. Leveraging this property allows us to

8

calculate 95%-confidence intervals for said errors and times. This is done in the following
way

P

(
x̄− z

s√
n
≤ X ≤ x̄+ z

s√
n

)
= 0.95, (8)

where x̄ is the sample mean, s is the standard deviation, n is the sample size and z = 1.96.

4.4 Performance of the Beliakov Algorithm

First, the error is considered. As anticipated, a larger number of data points corresponds
to a more accurate approximation, thereby resulting in a smaller maximum error. Table
1 presents the mean maximum error across all categories per number of data points along
with the corresponding standard deviation (sd) and the 95%-confidence interval (95%-CI).
The confidence interval is calculated using Equation 8. From the table, it is clear that
when the number of data points increases, the mean maximum error and the standard
deviation both decrease. In Appendix A.1 there is a more extensive table, Table 10, which
shows the mean maximum error per category.

Table 1: Summary of the mean maximum error of the Beliakov algorithm per
sample size

n Mean maximum error sd 95%-CI
50 0.0859 0.0301 [0.0838, 0.0880]
100 0.0754 0.0272 [0.0735, 0.0773]
250 0.0607 0.0242 [0.0590, 0.0624]
500 0.0533 0.0209 [0.0519, 0.0548]
1 000 0.0451 0.0190 [0.0438, 0.0464]
5 000 0.0315 0.0157 [0.0305, 0.0326]

Another important aspect of the algorithm is the total running time of the algorithm. The
running time of the algorithm increases as the number of data points increases. This is
supported by Table 2, which displays the mean running time for each sample size. Next
to that, it can be seen that the standard deviation (sd) increases as well and that the
majority of the running time is accounted for by the QP-solver. On average 97.6% of
the total running time is occupied by the QP-solver. The QP-solver that was used in the
implementation is cvxopt [1]. In Appendix A.1 in Table 12 the running time per category
is shown. Due to the long running time of the algorithm for a larger number of data points,
on average 82.8 seconds for 5 000 points, testing the algorithm on larger sample sizes was
not conducted.

Table 2: Summary of the running time of the Beliakov algorithm per sample size

n Mean running time [s] sd [s] 95%-CI [s] % QP- solver
50 0.0143 0.00845 [0.0137, 0.0149] 95,2
100 0.0297 0.00883 [0.0291, 0.0303] 98.9
250 0.0616 0.0141 [0.0606, 0.626] 98.3
500 0.195 0.0302 [0.193, 0.197] 96.8
1 000 1.05 0.133 [1.04, 1.06] 97.2
5 000 82.8 16.4 [81.6, 83.9] 99.2

9

This algorithm is considered to be the true LSE and is used as a benchmark for the Local
Optimization algorithm. The latter will be introduced in the next section.

5 Local Optimization algorithm

The following local behaviour for Lipschitz least squares estimators is observed.

Lemma 5.1. Let ŷ = (ŷ1, . . . , ŷn) with ŷi = f̂(Xi) be a Lipschitz least square estimator.
For any partition of [n] into P non-empty sets I1, . . . , IP such that

∀(i, j) ∈ Il × Im, l < m⇒ Xi < Xj .

Let (im, iM) = (min Ii,max Ii), then for any p ∈ [P], either one or both of the following
statements holds

1)
∑
i∈Ip

ŷi =
∑
i∈Ip

Yi,

2)
ŷpm − ŷ(p−1)M

(xpm − x(p−1)M)
= −σ or

ŷ(p+1)m − ŷpM
(x(p+1)m − xpM)

= σ,

where

σ = sign(
∑
i∈Ip

ŷi −
∑
i∈Ip

Yi).

If p ∈ {1, n} then 2) consists of only the well-defined equality and admits no ’or’ expression.

Proof. Let I1, . . . IP be such a partition and suppose that there is a p ∈ [P] such that both
1) and 2) do not hold. Suppose w.l.o.g that σ = 1. Since ŷ is Lipschitz, we have

ŷpm − ŷ(p−1)M > −σ(xpm − x(p−1)M),

ŷ(p+1)m − ŷpM < σ(x(p+1)m − xpM).

By continuity, there exists η0 > 0 such that for any η ∈ [0, η0]

ŷpm − ŷ(p−1)M − η ≥ −σ(xpm − x(p−1)M),

ŷ(p+1)m − ŷpM + η ≤ σ(x(p+1)m − xpM).

Then ỹ = (ŷ1, . . . , ŷ(p−1)M , ŷpm − η, ŷpm+1 − η, . . . , ŷpM − η, ŷ(p+1)m , . . . , yn) is a Lipschitz
vector. Expanding the LSE problem with ỹ yield

K∑
i=1

(Yi − ỹi)
2 =

(p−1)M∑
i=1

(Yi − ŷi)
2 +

n∑
(p+1)m

(Yi − ŷi)
2 +

pM∑
pm

(Yi − ŷi + η)2.

Expanding that last part gives
∑pM

pm
(Yi−ŷi+η)2 =

∑pM
pm

(Y 2
i +ŷ2i +η2−2Yiŷi+2ηYi−2ηŷi).

Substituting this into the previous equation and rewriting this yields

K∑
i=1

(Yi − ỹi)
2 =

K∑
i=1

(Yi − ŷi)
2 +

∑
i∈Ip

(η2 + 2ηYi − 2ηŷi)

10

=
K∑
i=1

(Yi − ŷi)
2 + |Ip|η2 + 2η

∑
i∈Ip

(
Yi − ỹi

)
︸ ︷︷ ︸

P (η)

.

So the LSE with ỹ can be written as the LSE with ŷ and a second-degree polynomial P (η)
where |Ip| denotes the cardinal of Ip. One root of the polynomial is 0. Since ω =

∑
i∈Ip

(
Yi−

ỹi
)
< 0 by assumption (σ = 1), the second root of P is η1 = −2ω/|Ip| > 0. Finally, since

P has a positive dominating coefficient |Ip|, it is deduced that for η ∈ (0, η1), P (η) < 0
and that

K∑
i=1

(
Yi − ỹi

)2
<

K∑
i=1

(
Yi − ŷi

)2
.

This is a contradiction with the fact that ŷ is an LSE. So either one or both of 1) and 2)
must hold. If 1) is true, then

∑K
i=1(Yi − ỹi)

2 =
∑K

i=1(Yi − ŷi)
2 + η2(pM − pm). And if 2)

is true, then ỹ = ŷ.

This behaviour can be taken as a local optimization condition and gives rise to an algorithm.

5.1 Breakdown of the algorithm

The goal of the algorithm is to construct a Lipschitz vector ŷ =
[
ŷ1, . . . , ŷn

]
which sat-

isfies the conclusion of Lemma 5.1 as closely as possible. The input of the algorithm is
data

[
X1, . . . , Xn

]
and their corresponding response variables of the Lipschitz regression

estimate
[
Y1, . . . , Yn

]
.

We initialize ŷ as a constant vector, where each entry is the average of Y , so ŷ =[
1
n

∑n
i=1 Yi

]n
i=1

. The base of the algorithm is a loop. At each iteration, we uniformly
pick an element J from the set of all boundaries S, where

S = {(a, a+ 1, . . . , b− 1, b) | a, b ∈ [0, . . . , n], a ̸= b, a < b}

Then the first element of J is the lower bound of the interval and the second element is the
upper bound of the interval. Let I be the set of all indices in the interval based on J . If
this interval adheres to the first condition of Lemma 5.1, so ȲI = ȳI where ȲI = 1

m

∑
i∈I Yi

and ȳI = 1
m

∑
i∈I yi and m is the cardinal of I, then this interval is optimal. If it does

not, ŷ can be updated by shifting its entries with indexes in I in the direction of the local
average YI while preserving the Lipschitz property of ŷ.

5.1.1 Picking a random interval

To ensure that every point is optimized evenly, during every iteration, the entire range
of points is optimized. The indices in the set I split the interval [0, 1] into one, two, or
three intervals as displayed in Figure 3 . All these intervals will be optimized consecutively
in the same iteration. An interval that contains the zeroth data point is referred to as a
left-interval, an interval ending at point data point n is referred to as a right-interval and
an interval including neither zero nor n, is referred to as a middle-interval.

11

Figure 3: Options for the four types of intervals

5.1.2 Optimizing the interval

If the mean of the approximation over the interval ȳI is not equal to the mean of the data
over the interval ȲI , then the approximation can be improved.

The optimal shift of the interval δopt is the difference between these two means, so δopt =
ȲI − ȳI .Let indices ℓb and ub be the lower and upper bound of an interval I respectively,
so ℓb = mini∈I Xi and ub = maxi∈I Xi.
In case of left-intervals, the optimization starts from the upper boundary, whereas for
right-intervals, it initiates from the lower boundary. This is because the movement of the
first and last data point is not restricted by the Lipschitz condition. Middle intervals are
on both sides constrained by the Lipschitz condition. Hence it is crucial to carefully select
the starting boundary of the optimization. It starts from the side where the boundary
point possesses the least freedom to move. Let uℓb and uub be the maximum movement
due to the Lipschitz condition of the lower and upper bound respectively, so

uℓb = ŷℓb−1 + σ|Xℓb−1 −Xℓb| uub = ŷub+1 + σ|Xub+1 −Xub|.

The most restricted point is min{|ŷℓb − uℓb|, |ŷub − uub|} and the optimization start from
that boundary. An example of this decision-making can be seen in Figure 4.

Figure 4: Example of the decision making on where to start the optimization of
a middle interval.

Figure 5 illustrates an interval scenario where the optimization starts from the upper
boundary. This serves as an example to further illustrate the optimization. For the opti-
mization, there are two suitable options, v1 and v2, where v1 is the optimal shift and v2

12

Figure 5: Example of the upper boundary of the left interval with the two opti-
mization options

is the maximum shift in the direction of the actual mean without exceeding the Lipschitz
condition:

v1 = ŷub + δopt v2 = ŷub + σ|Xub −Xub+1|.

The point with minimal distance to ŷub is chosen as the new value for ŷub, so

ŷub = argmin
i=1,2

|ŷub − vi|.

All data points in the interval are shifted equally to the data mean.

5.1.3 Minimal change condition

The base of the algorithm is a loop, which optimizes the entire interval during every iter-
ation. We break the loop once the approximation is close enough to satisfy the conditions
in Lemma 5.1. Let eT−i be the magnitude of the shift operated at iteration T − i, where T
is the total number of iterations. Let k be a positive integer, and let ϵ > 0 be a threshold,
then the algorithm stops once the minimal change condition is exceeded:

1

k

k∑
i=1

eT−i ≤ ε (9)

During every iteration, the entire interval is subdivided into one, two or three sub-intervals,
with the latter being the most probable outcome. Furthermore, if there are no modifica-
tions observed during the last 20 iterations, we consider the approximation to be optimal.
Hence, approximately 3× 20 = 60 optimization steps must go by with only slight updates.
On the interval [0, 1], there are n data points. Under a uniform distribution, the average
distance between these points is 1

n . By the Lipschitz condition in Equation 3 the maxi-
mum average shift per optimization is 1

n . If we permit at most one update in the last 20
iterations (so 60 optimization steps), then the algorithm should stop if the mean over the
last 60 optimizations is smaller than 1

60n . So in this case the minimal change condition in
Equation 9 has values k = 60 and ε = 1

60n . This boundary condition is later referred to as
the original boundary or the original Local Optimization algorithm.

A relaxation of this minimal change condition could greatly improve the running time of the
algorithm. However, it can also have an impact on the approximation quality. Conversely,
if the minimal change condition is stricter, it can lead to improved approximation accuracy
but it may increase its running time. In addition to the original boundary, the algorithm
is tested using four stricter minimal change conditions. The values of all minimal change
conditions are displayed in Table 3.
The pseudocode of the Local Optimization algorithm can be found in Appendix A.2. In
the next section, the performance of the Local Optimization is considered.

13

Table 3: Values of k and ε for different minimal change conditions

Name of minimal change condition k ε

Original 60 1
60n

Boundary 2 2× 60 1
2×60n

Boundary 4 4× 60 1
4×60n

Boundary 6 6× 60 1
6×60n

Boundary 50 6× 60 1
50×60n

5.2 Performance of the Local Optimization algorithm

The algorithm is tested using the same test procedure as the Beliakov algorithm, as outlined
in Section 4.3.

Table 4: Summary of maximum error data for the Local Optimization algorithm
per sample size

n Mean maximum error sd 95%-CI
50 0.0841 0.0289 [0.0821, 0.0861]
100 0.0744 0.0254 [0.0727, 0.0762]
250 0.0608 0.0253 [0.0591, 0.0626]
500 0.0537 0.0236 [0.0520, 0.0553]
1 000 0.0484 0.0259 [0.0466, 0.0501]
5 000 0.0402 0.0293 [0.0382, 0.0422]
10 000 0.0377 0.0313 [0.0356, 0.0399]

In Table 4, the mean maximum error, the standard deviation, and the 95%-confidence
interval per sample size are displayed. It is evident that the (mean) maximum error
decreases as the number of data points increases. On the other hand, the standard deviation
remains relatively constant and does not exhibit a clear trend of increase or decrease with
respect to the number of data points. Upon closer examination of the data, by looking at
the extended version of this table, Table 11 in Appendix A.1, it becomes apparent that
one category exhibits poor performance compared to the others. For the combination of
X3-distributed data and the test function f2, the mean maximum error increases as the
number of data points increases. The mean maximum error for 50 and 10 000 points is
0.0954 and 0.1329 respectively. In Figure 6 a plot of the approximation of the function for
one of the test runs is shown for sample sizes 100, 1 000, and 10 000.

(a) n = 100 (b) n = 1 000 (c) n = 10 000

Figure 6: Approximation of f2 with X3-distributed data for different sample sizes

14

The diminished approximation quality in this category can be attributed to two factors.
First, the minimal change condition is based on the assumption that the data is uniformly
distributed where the data points have a mean distance of 1

n . When the data is X3-
distributed, that distance is significantly smaller for the majority of the points. Therefore
the maximum shift per iteration is smaller and the loop is stopped too early. Secondly,
the data points laying between 0.4 and 0.6 are chosen too little as a boundary point.
Consequently, this part is not optimized often enough and the quality of the approximation
is lacking. This one particularly bad-performing category significantly increases the overall
mean of the maximum error. Removing this category from the data, the mean maximum
error is considerably smaller, especially for larger sample sizes. The plot of the mean
maximum errors is displayed in Figure 7.

Figure 7: Plot of the mean maximum error of the Local Optimization algorithm
with and without X3-distributed data for test function f2

While removing the poor-performing category from the data shows that all other categories
perform decently, improving the performance of this specific category must be investigated.
To address the issue, stricter minimal change conditions are implemented. By doing so,
the number of optimization steps of the algorithm increase, leading to a more accurate
approximation. The stricter boundaries that are tested are presented in Table 3 and they
will be applied to data depicted in Figure 6. In Figure 8 the approximations with these
stricter boundaries are displayed as well as the approximation of the Beliakov algorithm.

(a) n = 100 (b) n = 1 000 (c) n = 10 000

Figure 8: Plots of approximations with different minimal change boundaries for
the Local Optimization algorithm for different sample sizes

From the plots, it is evident that the approximation improves when the minimal change
condition is stricter. In Table 5 and 6, the improved maximum error and the increased
running times are displayed respectively. For all sample sizes, the approximation from
the Local Optimization algorithm with boundary 6 and boundary 50 closely resemble the

15

’true’ approximation from the Beliakov algorithm. Although it does not perfectly align,
the maximum error of the Local Optimization algorithm with boundary 6 and boundary
50 is smaller for each sample size than the maximum error of the Beliakov approximation.
While the running time of the algorithm is significantly increased by the stricter boundary,
it is still considerably faster than the Beliakov algorithm for large sample sizes. Upon
closer examination of Figure 8, it becomes apparent that there is no significant difference
between the approximation with boundary 6 and boundary 50. Therefore, taking into
account both running time and improvement of the algorithm, we consider boundary 6 to
be the optimal minimal change condition for this poor-performing category.

Table 5: Maximum error for the Local Optimization algorithm with different
minimal change conditions and the true approximation

Maximum error n = 100 n = 1 000 n = 10 000
Original 0.165 0.121 0.150
Boundary 2 0.0924 0.100 0.102
Boundary 4 0.104 0.0827 0.815
Boundary 6 0.0758 0.0677 0.0735
Boundary 50 0.0904 0.0729 0.0759
Beliakov 0.0920 0.0981 0.0775

Table 6: Running time in seconds for the Local Optimization algorithm with
different minimal change conditions and the true approximation

Running time n = 100 n = 1 000 n = 10 000

Original 0.0312 0.298 11.5
Boundary 2 0.185 0.708 21.9
Boundary 4 0.277 1.13 19.8
Boundary 6 0.850 1.63 23.0
Boundary 50 1.72 2.02 26.6
Beliakov 0.0667 1.93 1039

Next, we consider the running time of the algorithm with the original boundary. The
algorithm’s running time increases as the number of data points increases. The same applies
to the standard deviation (sd). The foregoing, as well as the 95%-confidence interval, are
displayed in Table 7.

Table 7: Summary of the running time of the Local Optimization algorithm

n Mean running time [s] sd [s] 95%-CI [s]
50 0.0381 0.0139 [0.0371, 0.0390]
100 0.0686 0.0263 [0.0668, 0.704]
250 0.135 0.0389 [0.132, 0.137]
500 0.253 0.0825 [0.248, 0.259]
1 000 0.502 0.113 [0.494, 0.510]
5 000 4.19 0.562 [4.15, 4.23]
10 000 13.9 1.81 [13.8, 14.0]

With the completion of testing of the Local Optimization algorithm, a comparative analysis
can be done for both algorithms. This is presented in the next section.

16

6 Comparison of the Beliakov and Local Optimization algo-
rithm

In this section, the Beliakov algorithm and the Local Optimization algorithm will be com-
pared.

6.1 Running time

First, the running times of both algorithms are considered. Figure 9 displays the respective
running times of both algorithms. Figure 9b demonstrates a slight advantage in terms of
speed for the Beliakov Algorithm over the Local Optimization algorithm for small sample
sizes (n ≤ 500). For larger sample sizes, the magnitude of the running time of the Beliakov
algorithm increases enormously, whereas the Local Optimization algorithm demonstrates
superior speed. Since the running time of the Beliakov algorithm is greatly dependent on
the running time of the QP-solver (on average the QP-solver accounts for 97.6% of the
running time), the difference between the two algorithms can be significantly influenced by
the presence of a faster QP-solver. To ensure a notable impact of the difference between
the running times of the two algorithms, the QP-solvers must be at least 20 times faster
than the current implementation, as evidenced by the Beliakov algorithm being 20 times
slower than the Local Optimization algorithm for 5 000 data points.

(a) Entire range of points
(b) Zoomed in version on zero to
1000

Figure 9: Plots of the running times of both algorithms

6.2 Approximation quality

In evaluating the approximation quality of both algorithms, an important question arises:
can the Optimality algorithm replicate the true approximation of the Beliakov algorithm?
Therefore the maximum errors for both algorithms are compared. The mean maximum
errors of the Beliakov and Local Optimization algorithm are illustrated in Figure 10a. It is
apparent that, when dealing with small sample sizes (n ≤ 500), the differences between the
mean maximum errors of the two algorithms are not significant. However, for sample sizes
larger than 500, the Beliakov algorithm has a noticeably accelerated decline in maximum
error compared to the Local Optimization algorithm. If the decreasing trend persists, it
is anticipated that the maximum error will diminish further as the number of data points
increases.

17

(a) Mean maximum errors as a func-
tion of the sample size of the two al-
gorithms

(b) A zoomed-in version without the
worst category for Local Optimiza-
tion

Figure 10: Plots of the mean maximum error for both algorithms

In Section 5.2 it was determined that the Local Optimization algorithm performs inad-
equately when approximating the function f2 when the data points are X3-distributed.
The presence of this ’poor’ category significantly influences the maximum error, as the
mean maximum error of this category increases with an increasing number of data points.
In Figure 10b, the mean maximum error of the Local optimization algorithm excluding
the worst category, is plotted alongside the original plot of the mean maximum data in
Figure 10a. The results indicate that the Local Optimization algorithm exhibits superior
performance for 1000 or fewer data points, while the Beliakov algorithm still demonstrates
a smaller mean maximum error beyond this range.

Previously, the analysis solely focused on noise samples from a normal distribution with a
mean µ = 0 and a standard deviation σ = 0.1. However, we will now broaden our research
to include larger noise with the same mean but a larger standard deviation σ = 0.3.
To evaluate the algorithms’ performance under the influence of larger noise, we will generate
sample data from a uniform distribution (X0) and assess their ability to approximate
function f3 (see Figure 2). The experiments will be conducted using sample sizes of 100,
1 000, and 10 000, with each configuration run 20 times. For the Local Optimization
algorithm, the performance will be evaluated for both the original minimal change condition
as well as the stricter condition: boundary 6.

Table 8: Mean maximum error for N (0, 0.32)-distributed noise for the Beliakov
and Local Optimization algorithm

Maximum error n = 100 n = 1 000 n = 10 000
Original 0.138 0.0683 0.0341
Boundary 6 0.139 0.0687 0.0352
Beliakov 0.139 0.691 0.0353

Table 8 presents the mean maximum error per sample size for both algorithms. It is
evident that the mean maximum error is nearly identical for the different algorithms,
which is further supported by the corresponding plots in Figure 11.

18

(a) n = 100 (b) n = 1 000 (c) n = 10 000

Figure 11: Plots of the approximation of f3 by the Beliakov algorithm and the
Local Optimization algorithm with the original boundary and boundary 6

This plot also demonstrates that the implementation of a stricter boundary condition
(boundary 6) for the Local Optimization algorithm does not lead to an improvement in
the maximum error when considering uniformly distributed data. The stricter boundary
does increase the running time, which is shown in Table 9. This Table also reveals a
clear distinction between the running times of the algorithms. For large sample sizes,
the Beliakov algorithm exhibits a significantly longer running time compared to the Local
Optimization algorithm regardless of which minimal change condition is implemented.

Table 9: Running time in seconds for N (0, 0.32)distributed noise for the Beliakov
and Local Optimization algorithm

Running time n = 100 n = 1 000 n = 10 000
Original 0.0737 0.471 17.0
Boundary 6 0.211 1.33 25.3
Beliakov 0.0245 1.03 1010

It can be concluded that the Local Optimization algorithm can output similar approxima-
tions to the Beliakov algorithm. While for very small sample sizes the Beliakov algorithm
demonstrates superior speed, for larger sample sizes the Local Optimization algorithm is
significantly faster.

7 Discussion

In this section, we delve into the evaluation of the testing and the results of the Beliakov
and the Local Optimization algorithm.

For sample sizes less or equal to 1000, the Local Optimization algorithm exhibits a smaller
maximum error compared to Beliakov’s algorithm. Given that the approximation of Beli-
akov’s algorithm is considered to be the "true" approximation, this observation raises the
question of whether the supremum norm is the most appropriate measure to quantify its
performance. Perhaps the mean error over the data points provides a better assessment
of its accuracy. Another plausible explanation for this observation is that the algorithms
were tested with different data sets. For the testing of the Beliakov algorithm data was
generated and for the testing of the Local Optimization algorithm new data was generated.
Especially for small sample sizes, this can influence the outcome. It would have been better
to generate data and use that to test both algorithms. However, since every category was
run 50 times this difference is small. For the testing with larger noise, the two algorithms

19

were tested with the same data sets.

In the case of non-uniform distributions where a small number of data points cover a
significant portion of the entire interval of [0, 1], the Local Optimization algorithm demon-
strates poor performance with the original boundary condition. However, by implementing
a stricter minimal change condition, this issue is addressed effectively. On the other hand,
for uniform distributed data, the approximation does not show any notable improvement
with the stricter boundary, suggesting that the original boundary condition suffices. This
prompts the question of whether an alternative method of selecting the random interval
should be considered. One idea could be to weigh the data points based on the space they
cover or the number of data points that are in their vicinity. This approach aims to ensure
both accuracy and efficiency in terms of computational time.

Right now the Local Optimization algorithm looks quite promising, as it can output a sim-
ilar result as the Beliakov algorithm in a fraction of the time. Exploring the performance of
the Local Optimization algorithm in multiple dimensions would be extremely interesting.

References

[1] Cvxopt: Python software for convex optimization.

[2] Gleb Beliakov. Smoothing lipschitz functions. Optimization Methods and Software,
22(6):901 – 916, 2007.

[3] Luc Devroye. Non-Uniform Random Variate Generation, chapter 2. Springer-Verlag,
1986.

[4] Johannes Schmidt-Hieber and Petr Zamolodtchikov. Local convergence rates of the
least squares estimator with applications to transfer learning, 2022.

[5] Mícheál Ó Searcóid. Metric Spaces, chapter 9. Springer, 2007.

[6] A.G. Sukharev. Optimal method of constructing best uniform approximations for func-
tions of a certain class. USSR Computational Mathematics and Mathematical Physics,
18(2):21–31, 1978.

20

A Appendix

A.1 Data sets of the running time and error per category

Table 10: Mean maximum error of the Beliakov algorithm per category and sample
size

X-distribution Function n = 50 n = 100 n = 250 n = 500 n = 1 000 n = 5 000

X0 f0 0.0860 0.0714 0.0547 0.0422 0.0369 0.0222
X0 f1 0.0816 0.0667 0.0477 0.0428 0.0332 0.0199
X0 f2 0.0762 0.0665 0.0527 0.0413 0.0332 0.0180
X0 f3 0.0890 0.0741 0.0530 0.0423 0.0340 0.0214
X1 f0 0.0957 0.0827 0.0634 0.0535 0.0497 0.0302
X1 f1 0.0872 0.0723 0.0639 0.0562 0.0481 0.0325
X1 f2 0.0794 0.0698 0.0521 0.0542 0.0429 0.0292
X1 f3 0.0859 0.0724 0.0605 0.0552 0.0435 0.0327
X2 f0 0.0909 0.0786 0.0607 0.0554 0.0471 0.0299
X2 f1 0.0818 0.0757 0.0622 0.0547 0.0435 0.0337
X2 f2 0.0938 0.0704 0.0623 0.0575 0.0492 0.0395
X2 f3 0.0878 0.0758 0.0671 0.0555 0.0465 0.0327
X3 f0 0.0847 0.0811 0.0679 0.0649 0.0547 0.0406
X3 f1 0.0806 0.0814 0.0637 0.0556 0.0498 0.0351
X3 f2 0.0871 0.0889 0.0765 0.0623 0.0593 0.0470
X3 f3 0.0864 0.0788 0.0627 0.0597 0.0499 0.0393

Table 11: Mean maximum error of the Local Optimization algorithm per category
and sample size

X-distribution Function n = 50 n = 100 n = 250 n = 500 n = 1 000 n = 5 000 n = 10 000

X0 f0 0.0829 0.0680 0.0498 0.0428 0.0341 0.0205 0.0166
X0 f1 0.0775 0.0627 0.0507 0.0408 0.0327 0.0193 0.0152
X0 f2 0.0819 0.0701 0.0509 0.0446 0.0409 0.0493 0.0516
X0 f3 0.0883 0.0705 0.0511 0.0425 0.0354 0.0202 0.0156
X1 f0 0.0788 0.0693 0.0617 0.0493 0.0391 0.0309 0.0253
X1 f1 0.0809 0.0693 0.0557 0.0494 0.0450 0.0302 0.0263
X1 f2 0.0974 0.0832 0.0693 0.0601 0.0598 0.0663 0.0722
X1 f3 0.0829 0.0842 0.0686 0.0546 0.0569 0.0365 0.0353
X2 f0 0.0825 0.0726 0.0538 0.0490 0.0405 0.0278 0.0244
X2 f1 0.0848 0.0739 0.0578 0.0497 0.0414 0.0279 0.0254
X2 f2 0.0913 0.0785 0.0709 0.0621 0.0524 0.0643 0.0686
X2 f3 0.0871 0.0753 0.0626 0.0533 0.0493 0.0330 0.0261
X3 f0 0.0761 0.0614 0.0460 0.0385 0.0325 0.0203 0.0165
X3 f1 0.0714 0.0704 0.0504 0.0471 0.0394 0.0283 0.0218
X3 f2 0.0954 0.1022 0.1114 0.1151 0.1242 0.1316 0.1329
X3 f3 0.0861 0.0793 0.0627 0.0601 0.0503 0.0370 0.0298

21

Table 12: Mean running time in seconds of the Beliakov algorithm per category
and sample size

X-distribution Function n = 50 n = 100 n = 250 n = 500 n = 1 000 n = 5 000

X0 f0 0.0108 0.0247 0.0536 0.162 0.91 62.5
X0 f1 0.0121 0.0269 0.0566 0.195 1.20 77.5
X0 f2 0.0138 0.0315 0.0729 0.246 1.21 101.2
X0 f3 0.0128 0.0288 0.0614 0.191 1.03 81.2
X1 f0 0.0125 0.0287 0.0576 0.176 0.91 62.8
X1 f1 0.0141 0.0323 0.0686 0.197 1.14 83.6
X1 f2 0.0141 0.0319 0.0667 0.205 1.12 105.9
X1 f3 0.0119 0.0238 0.0562 0.201 1.00 76.8
X2 f0 0.0126 0.0282 0.0519 0.202 0.95 64.0
X2 f1 0.0166 0.0298 0.0596 0.182 0.99 75.7
X2 f2 0.0166 0.0328 0.0724 0.197 1.09 104.4
X2 f3 0.0143 0.0316 0.0623 0.185 1.01 81.7
X3 f0 0.0219 0.0333 0.0632 0.177 0.90 64.3
X3 f1 0.0169 0.0309 0.0629 0.186 1.01 84.0
X3 f2 0.0157 0.0323 0.0641 0.190 1.10 104.9
X3 f3 0.0121 0.0281 0.0558 0.224 1.20 93.7

Table 13: Mean running time in seconds of the Local Optimization algorithm per
category and sample size

X-distribution Function n = 50 n = 100 n = 250 n = 500 n = 1 000 n = 5 000 n = 10 000

X0 f0 0.0432 0.0772 0.1563 0.2962 0.6160 4.704 15.43
X0 f1 0.0457 0.0837 0.1647 0.2875 0.6165 4.721 15.36
X0 f2 0.0299 0.0600 0.1156 0.1856 0.3871 3.547 12.86
X0 f3 0.0504 0.0883 0.1654 0.3480 0.5816 4.523 15.38
X1 f0 0.0394 0.0836 0.1454 0.2667 0.5355 4.463 15.97
X1 f1 0.0348 0.0711 0.1360 0.2658 0.5294 4.361 14.25
X1 f2 0.0304 0.0503 0.0956 0.1876 0.3941 3.868 12.45
X1 f3 0.0446 0.0777 0.1516 0.3085 0.5495 4.445 14.08
X2 f0 0.0352 0.0667 0.1469 0.2663 0.5431 4.461 14.71
X2 f1 0.0411 0.0669 0.1398 0.2643 0.5308 4.338 14.02
X2 f2 0.0296 0.0477 0.0964 0.1714 0.3407 3.402 11.73
X2 f3 0.0375 0.0660 0.1323 0.2509 0.5281 4.341 13.74
X3 f0 0.0341 0.0726 0.1415 0.2666 0.5370 4.339 13.73
X3 f1 0.0395 0.0668 0.1289 0.2916 0.5355 4.283 13.70
X3 f2 0.0348 0.0492 0.0947 0.1625 0.3427 3.321 11.71
X3 f3 0.0393 0.0700 0.1430 0.2340 0.4683 3.910 13.03

22

A.2 Pseudocode

Input:
[
X1, . . . , Xn

]
and

[
Y1, . . . , Yn

]
Initialize y ←

[
1
n

∑n
i=1 Yi

]n
i=1

, ϵ← []

Let S = {(a, b)| a, b ∈ [0, . . . , n], a ̸= b, a < b}

while length(ϵ < 20) or 1
60

∑
ϵi > 1/(60n) do

Pick J uniformly from S
ℓb← min J , ub← max J
i− ← ℓb− 1, i+ ← ub+ 1
I ← [ℓb, ℓb+ 1, . . . , ub− 1, ub]
m← card(I)
yI ← 1

m

∑
i∈I yi, Y I ← 1

m

∑
i∈I Yi

if yI = Y I then (it can’t be optimized)
ϵ← [ϵ−59, . . . , ϵ1, 0]
pass

else(can be optimized)
if ℓb > 0 and ub < n then

u− ← yi− + σ|Xlb −Xi− |
u+ ← yi+ + σ|Xub −Xi+ |
if |ylb − u−| < |yub − u+| then (start left)

v1 ← ylb + Y I − yI
vopt ← argminv∈{v1,u−} |yℓb − v|
δ ← yℓb − vopt
[yi]i∈I ← [yi + δ]i∈I
ϵ← [ϵ−59, . . . , ϵ1, |δ|]

else (start right)
v1 ← yub + Y I − yI
vopt ← argminv∈{v1,u+} |yub − v|
δ ← yub − vopt
[yi]i∈I ← [yi + δ]i∈I
ϵ← [ϵ−59, . . . , ϵ1, |δ|]

end if
ub, ℓb← ℓb, ub
I ← [0, . . . , ub] (left interval)
i+ ← ub+ 1
m← card(I), yI ← 1

m

∑
i∈I yi, Y I ← 1

m

∑
i∈I Yi

vopt ← argminv∈{yub+Y I−yI ,yi+−σ|Xub−Xi+ |} |yub − v|
δ ← yℓb − vopt
[yi]i∈I ← [yi + δ]i∈I
ϵ← [ϵ−59, . . . , ϵ1, |δ|]
I ← [ℓb, . . . , n] (right interval)
i− ← lb− 1
m← card(I), yI ← 1

m

∑
i∈I yi, Y I ← 1

m

∑
i∈I Yi

vopt ← argminv∈{yℓb+Y I−yI ,yi−−σ|Xℓb−Xi− |} |yℓb − v|
δ ← yℓb − vopt
[yi]i∈I ← [yi + δ]i∈I
ϵ← [ϵ−59, . . . , ϵ1, |δ|]

end if

23

if ℓb = 0 and ub < n then (left interval)
vopt ← argminv∈{yub+Y I−yI ,yi+−σ|Xub−Xi+ |} |yub − v|
δ ← yub − vopt
[yi]i∈I ← [yi + δ]i∈I
ϵ← [ϵ−59, . . . , ϵ1, |δ|]
I ← [ub, . . . , n], i− ← ub− 1 (right interval)
m← card(I), yI ← 1

m

∑
i∈I yi, Y I ← 1

m

∑
i∈I Yi

vopt ← argminv∈{yub+Y I−yI ,yi−−σ|Xub−Xi− |} |yub − v|
δ ← yub − vopt
[yi]i∈I ← [yi + δ]i∈I
ϵ← [ϵ−59, . . . , ϵ1, |δ|]

end if
if ℓb > 0 and ub = n then (right interval)

vopt ← argminv∈{yℓb+Y I−yI ,yi−−σ|Xℓb−Xi− |} |yℓb − v|
δ ← yℓb − vopt
[yi]i∈I ← [yi + δ]i∈I
ϵ← [ϵ−59, . . . , ϵ1, |δ|]
I ← [0, . . . , ℓb], i+ ← ℓb+ 1 (left interval)
m← card(I), yI ← 1

m

∑
i∈I yi, Y I ← 1

m

∑
i∈I Yi

vopt ← argminv∈{yℓb+Y I−yI ,yi+−σ|Xℓb−Xi+ |} |yℓb − v

δ ← ylb − vopt
[yi]i∈I ← [yi + δ]i∈I
ϵ← [ϵ−59, . . . , ϵ1, |δ|]

end if
if ℓb = 0 and ub = n then (entire interval)

δ ← Y I − yI
[yi]i∈I ← [yi + δ]i∈I
ϵ← [ϵ−59, . . . , ϵ1, |δ|]

end if
end if

end while

24

	Introduction
	Model
	Preliminaries
	Solving the constrained Least Squares problem via quadratic programming
	The brute force approach
	Pruning the constraints (Beliakov)
	Testing procedure
	Performance of the Beliakov Algorithm

	Local Optimization algorithm
	Breakdown of the algorithm
	Picking a random interval
	Optimizing the interval
	Minimal change condition

	Performance of the Local Optimization algorithm

	Comparison of the Beliakov and Local Optimization algorithm
	Running time
	Approximation quality

	Discussion
	References
	Appendix
	Data sets of the running time and error per category
	Pseudocode

