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Abstract

This research addresses the current problems surrounding interpretability of machine learn-
ing techniques in the field of prediction of disease progression. The use of machine learn-
ing in the diagnosis of diseases and the prediction of disease progression is a recent and
promising development. Such predictions have potential to help physicians to make better
informed decisions based on patient data, ultimately improving the patient’s quality of
life or altering the outcome of treatment. However, the interpretability and transparency
of machine learning models aimed at this is lagging behind. This lack of interpretabil-
ity and transparency is especially problematic in the application of machine learning in
prediction of disease progression, as (perceived) trustworthiness is essential for predictive
models in the medical domain. To achieve improved interpretability and transparency,
we first perform a systematic literature review to identify the state-of-the-art in machine
learning for disease progression modelling and challenges related to this context. Based
on the review, we design and develop a pipeline consisting of data preparation, prediction
and explanation. Predictions are made using a deep recurrent neural network based model
which is followed by an integration of the LIME framework to provide explanations for each
prediction. We demonstrate our pipeline by applying it to two diverse case studies using
datasets on diabetes and Parkinson’s disease. Besides this, we perform an experiment to
compare the influence of three data imputation methods on predictive model performance
in the context of prediction of disease progression. The results of this research show that
there is no statistically significant difference in performance as a result of different data
imputation methods. Furthermore, we provide a number of concrete recommendations
and directions for future research, such as improving input flexibility of the prediction
model and improving the visualisation of generated explanations. Based on the results
of this research, we conclude that the proposed pipeline achieves the goal of integrating
a state-of-the-art prediction model and the LIME framework to make the model more
transparent and interpretable.

Keywords: Machine learning, prediction of disease progression, XAI, explainability, inter-
pretability, Parkinson’s disease, diabetes
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Chapter 1

Introduction

As machine learning and artificial intelligence (AI) have become widespread in their use [1]
and are reaching ever more sensitive domains such as healthcare, a need for responsible AI
has arisen [2]. Normal AI systems function essentially as a "black box": the system takes
input data, performs some processing, then provides a prediction. These models rely on
extreme internal complexity to achieve high performance. However, this non-transparent
approach has major drawbacks, such as a lack of understanding of the reasoning behind
predictions, leading to decreased trust and doubts about morality [3]. Due to the need for
responsible AI, previously waned interest in the field of XAI (eXplainable AI) increased
again. In addition to providing predictions based on input data, XAI is designed to provide
a way of explaining how and why a certain prediction was made based on the given input [4].

Disease progression modelling is a concept that has proven useful in the treatment of
diseases, particularly in chronic disease [5]. Various literature exists on applying disease
progression modelling for specific diseases, such as Alzheimer’s disease [6] and diabetes [7].
Modelling the progression of a disease allows physicians to more accurately determine
whether a patient’s condition will worsen, and if so, at what rate this will occur. This is
important because inability to accurately determine if and when to start treatment can have
dire consequences. For example, medication for multiple sclerosis can have strong adverse
effects [8, 9]. In such cases, the advantages and disadvantages of starting treatment must
be weighed carefully. Research has shown that machine learning performs well in the field
of disease modelling [10]. However, there remain problems with the interpretability of such
models, so further research on this subject is important for the field.

For machine learning based prediction of disease progression and subsequent decision
making to be a trustworthy, ethical practice, it is essential to improve the transparency
and interpretability of models used for this prediction task. In this paper, we first explore
the state-of-the-art in the domain of disease detection and prediction of disease progression
using machine learning by performing a systematic literature review. Based on this review
and further background a prediction model is chosen, which is extended with a degree
of explainability using the popular LIME framework and a minor proposed extension of
the LIME Python implementation. Consequently, we apply this explainable pipeline on
two case studies. The first case study uses a dataset from the Parkinson’s Progression
Markers Initiative (PPMI). The second case study is performed with a dataset on diabetes
patients provided by Medlon, a medical laboratory in Enschede, the Netherlands. For each
of these case studies, we start with an experiment using the pipeline up to and including
the prediction phase. This experiment consists of comparing various data imputation
techniques by evaluating model performance. The best performing variant is then used for
testing the full pipeline including the explanation phase.
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The research questions formulated for this research are the following:

RQ1 How can we improve the interpretability and transparency of machine
learning models aimed at prediction of disease progression?

SRQ1 What are the current trends and state-of-the-art in machine learning for
disease detection and prediction of disease progression?

SRQ2 What are common data quality challenges in machine learning for pre-
diction of disease progression?

SRQ3 What are common techniques for explaining machine learning models in
the context of disease progression modelling?

1.1 Research contribution

In this research, we design and develop a deep recurrent neural network based pipeline,
capable of predicting the progression of a disease based on time-series data and providing
explanations for its predictions using an integration of the LIME framework. Furthermore,
we provide a script to reverse data normalisation in LIME explanations. We demonstrate
the functionality of this pipeline by applying it to two case studies: one case study with
a small dataset, the other with a large dataset. This contribution advances the field of
machine learning for prediction of disease progression by showcasing the importance of and
possibilities for integrating interpretability in state-of-the-art prediction pipelines.

1.2 Thesis structure

In Chapter 2, we explore background on progressive diseases, neural networks, and ex-
plainability in machine learning and disease progression modelling. Subsequently, Chapter
3 shows how we applied the design science research methodology in this research, as well
as how we design and validate our proposed pipeline using two case studies. Chapter 4
contains the results for the performed experiments per case study. This is followed by
Chapter 5 where we discuss limitations of this research and provide recommendations for
future research. Finally, in Chapter 6, we summarize our findings and draw conclusions
on the research questions.
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Chapter 2

Background

In this chapter, we discuss progressive diseases and the characteristics of two such condi-
tions: Parkinson’s disease and diabetes. Subsequently, neural networks and various relevant
sub-types of neural networks are discussed. Following that, we briefly explore explainabil-
ity in machine learning (ML), and highlight two explainability frameworks for ML. Finally,
we discuss challenges in the field of disease progression modelling using (explainable) ML.

2.1 Progressive diseases

Progressive diseases are medical conditions that worsen over time, often leading to dis-
ability, impairment, or death. They can affect various organs and systems in the body.
Examples of such diseases include Alzheimer’s disease, Parkinson’s disease, multiple scle-
rosis, and diabetes. The causes and mechanisms of progressive diseases are complex and
diverse, depending on the type and stage of the disease. Several factors may contribute to
disease progression, ranging from genetic predisposition to aging and lifestyle habits.

The diagnosis and treatment of progressive diseases are challenging and often require a
multidisciplinary approach. The goals of therapy are to slow down or halt the progression
of the disease, to alleviate the symptoms and complications, and to improve the quality
of life of the patients. However, there is no cure for most progressive diseases, and they
remain a major social and economical burden for individuals and society [11, 12].

2.1.1 Parkinson’s disease

Parkinson’s disease (PD) is a complex neurological disorder, mainly caused by loss of
dopamine producing cells in the brain. Since dopamine is a neurotransmitter that helps
control movement, PD can cause a variety of motor symptoms, such as the characteristic
tremor, muscle rigidity, slowness of movement, and impaired balance and coordination.
However, PD can manifest itself in a wide range of symptoms, including a variety of non-
motor impairments that may precede the motor symptoms by more than a decade [13].
These non-motor symptoms range from depression to loss of smell and overall cognitive
decline. Because of its complexity, the progression of PD is heterogeneous, which means
that treatment goals differ per patient.

Since no cure for PD exists, early recognition of prodromal PD does not have impli-
cations for the onset of the disease, but can aid in timely mitigation of some of its symp-
toms [14]. Management of the disease consists primarily of regulating dopamine, either by
increasing dopamine concentrations or directly stimulating dopamine receptors [13].
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To monitor the progression and condition of PD patients, various assessments have been
developed. The most widely used assessment for PD is the Movement Disorders Society
Unified Parkinson Disease Rating Scale (MDS-UPDRS) [15]. The MDS-UPDRS consists
of four partitions, assessing both motor and non-motor aspects of the disease. The first
part is focused on non-motor experiences in daily life, whereas the second part focusses on
the motor experiences in daily life. Part three is a motor examination, and part four is
aimed at any motor complications. The cumulative score across all parts of the assessment,
can be seen as a proxy for overall disease severity in a patient.

2.1.2 Diabetes

Diabetes is a chronic disease that occurs if the body does not produce sufficient levels of
insulin, or is not capable of properly using the insulin it produces. Insulin is a hormone
that regulates the blood sugar level. A common effect of uncontrolled diabetes is hypergly-
caemia, also known as elevated blood glucose. Hyperglycaemia may lead to severe damage
to the body over time, in particular to blood vessels and nerves. According to the World
Health Organisation (WHO) [16], the prevalence of diabetes has skyrocketed over the past
decades, increasing from 108 million patients in 1980 to 422 million in 2014. Additionally,
between 2000 and 2019, a 3% increase in mortality rates by age was observed. Thus, it is
clear that diabetes is a world-wide health problem of increasing proportions.

The American Diabetes Association offers a description of diabetes, its causes, and
its consequences [17]. Diabetes mainly exists in two types: diabetes type 1 and type 2.
Diabetes type 1 is caused by an auto-immune reaction, which leads to the body no longer
producing (sufficient) insulin due to the destruction of beta-cells in the pancreas. Type
1 is generally diagnosed at a young age. Around 5% of diabetes patients suffer from this
variant. Diabetes type 2 is often developed at a later age, and is caused by the body
being unable to use the insulin it produces to regulate blood glucose levels to an adequate
degree. This variant has been found to be related to an inactive lifestyle, obesity, and
unhealthy food intake. Long term consequences of uncontrolled diabetes include heart
disease, vision loss, and kidney disease.

As diabetic kidney disease (DKD) develops in 30% of patients with diabetes type 1 and
40% of patients with diabetes type 2, the overall prevalence of DKD is high [18]. On top of
this high prevalence, DKD is linked to an increased mortality risk [19]. Currently, diagnosis
is often reached only after severe complications of DKD have already manifested [20]. As
stated by Hussain et al. [21], early diagnosis is a cost-effective to reduce the economic and
humanistic burden of DKD. Thus, if the development of DKD can be identified earlier,
physicians can decide on a more effective treatment plan.

There are a number of biomarkers that are related to diabetes, such as blood glucose,
and hemoglobin A1c (HbA1c) [22]. One specific biomarker is related to the development
of diabetic kidney disease (DKD): the estimated Glomerular Filtration Rate (eGFR) of
the kidneys, measured in mL/min/1.73m2. This biomarker is used to monitor the devel-
opment of DKD in diabetes patients. A formula to classify chronic kidney failure based
on the eGFR was developed in 1999 and refined in 2009, in the form of the Glomerular
Filtration Rate estimation equation by the Modification of Diet in Renal Disease study
group (GFR-MDRD) [23] and Chronic Kidney Disease Epidemiology Collaboration (CKD-
EPI) [24] respectively.
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2.2 Neural networks

Neural networks (NNs) are a machine learning technique where a network of neurons
attempts to solve a problem. As stated by Krogh [25], the structure of NNs is similar
to early models of the human brain, with multiple layers of neurons together forming the
network. In a simple NN, the first layer (or input layer) receives input, which it attempts
to interpret by having each neuron in the layer weigh the input and calculate whether the
weighted input exceeds a certain threshold. If it does exceed this threshold, the neuron
will output 1. If not, it will output 0. The exact threshold is determined by what is
known as the "activation function" of the neuron. This output is then propagated to the
next layer of neurons (known as the hidden layer), that attempt to further interpret this
intermediate output the same way. The output from this hidden layer is then fed into the
final layer, which is the output layer. This output layer gives the final prediction, such as
the classification of a potential patient as having a disease.
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Figure 2.1: An example of a simple neural network topology.

For an example, refer to Figure 2.1. In this figure, we see a simple, fully connected
NN topology, consisting of an input layer with two neurons, a hidden layer with three
neurons, and an output layer with a single neuron. As neurons i1 and i2 are the input
neurons, their outputs are x1 and x2 respectively. These outputs are then propagated
to the hidden layer (depicted in purple) via the weighted edges between the two layers.
Assuming we have an activation function f(x), the output zn of a hidden layer neuron hn
can then be calculated using Equation 2.1.

zn = f(x1W1,n + x2W2,n) (2.1)

For each hidden layer neuron hn, the output zn will be propagated to the final output
layer. Here, the network output y is calculated using Equation 2.2.

y = f(z1V1,1 + z2V2,1 + z3V3,1) (2.2)

To be able to predict accurately, an NN must be trained. This is generally done by
feeding the network a large amount of input data, along with the ground truth of the
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prediction target for that data. By "reading" the input and letting this travel through
the network, an output is reached and compared to the ground truth. By evaluating how
close to the correct answer the network was, the NN can change some of the weights in
the network to improve the network’s performance for the next prediction attempt [25].
Various variations and subclasses of NNs exist, some of which we will discuss below as
they are of relevance to this research.

2.2.1 Deep learning

Deep learning is an extension of NNs, aimed at solving more complex problems than a
simple NN. The main difference between deep learning and a regular NN, is that a basic
NN generally consists of three layers (an input layer, a hidden layer, and an output layer),
while a deep learning model consists of at least two hidden layers [26]. The addition of
these hidden layers allows a deep learning model to handle more complex problems, as
there are more "paths" through the network, which in turn allow for more sophisticated
interpretation of data. There are downsides to this increased complexity however: an
increase in the amount of data and time required to train the model [27], as well as a lower
degree of transparency in how the model comes to its predictions [28]. Most (deep) NNs
are feed-forward networks, meaning that each layer in the network feeds its output forward
to the next layer. These types of networks are highly capable for prediction tasks such
as classification of images. There is another class of network, however, which cannot only
feed layer outputs forward, but also back to the same layer. These networks are known
as Recurrent Neural Networks, or RNNs.

2.2.2 Recurrent Neural Networks

Although RNNs were introduced some 35 years ago in the late 1980s [29], they have recently
gained traction in a wide variety of prediction tasks. One of these is time-series forecasting
[30]. Since RNNs have the ability to back-propagate the output of a cell (sometimes known
as a unit) into the system, they are inherently well suited to handling sequential data. This
back-propagation mechanism allows RNNs to effectively memorize parts of the input using
their hidden state. By combining the hidden state from a previous step with new data
from the current step, RNNs can learn relations between datapoints over time. Basic
RNNs suffer from a problem known as the vanishing gradient problem [31], caused by the
way RNNs use the same weights for each forward and backward propagation steps. In
essence, the vanishing gradient problem means that the "further away" a datapoint is, the
less it is represented in the model.
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Figure 2.2: A schematic overview the internal cell structure of various RNN types.
Adapted from [32].
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2.2.3 LSTM and GRU

Since the introduction of RNNs, two popular architectures that mitigate the vanishing
gradient problem have been developed: LSTM [33] and GRU [34]. Figure 2.2 shows the
difference in internal structure between regular RNN, LSTM, and GRU. Both of the lat-
ter architectures make use of internal gates to more strictly control what information is
retained in the recurrent units that make up the network layer. In an LSTM unit, for
example, keeping the input gate activation near 0 prevents the activation of the cell being
overwritten by new inputs in the network. Subsequently, by opening the output gate, the
activation of the unit can be made available to the network at a later point in time [35].

The main difference between LSTM and GRU based models is the number of gates per
unit. LSTM units have three gates (input, output and forget), while GRU have two (reset
and update). The more gates a unit contains, the more precisely it can control the repre-
sentation of data in the network. LSTM and GRU are highly similar in functionality and
performance in most cases. However, due to the less complex internal structure of GRU
compared to LSTM, GRU is more computationally efficient and learns quicker for predic-
tion tasks where the amount of sequential data is small or sequences are short. If sequences
are long, for example a five-year record of daily stock prices, or a large amount of data
and computational resources is available, LSTM’s more sophisticated structure generally
outperforms GRU, as it can make more complex internal representations of the input [36].

2.3 Explainability in machine learning

To explain complex machine learning models, various frameworks exist. Two of the most
well-known frameworks are SHAP and LIME, which are both applicable to a wide range
of model types.

2.3.1 SHAP

SHAP (SHapley Additive exPlanations) is a framework for interpreting the predictions of
machine learning models based on the concept of Shapley values from cooperative game
theory. It was introduced in 2017 by Lundberg and Lee [37]. A Shapley value is the
average marginal contribution of a player to all possible coalitions of other players. In
other words, it is the fair share of the reward that a player deserves for participating
in a game [38]. SHAP applies this idea to machine learning models, where the features
are the players and the prediction is the reward. SHAP computes the Shapley values for
each feature and each prediction in such a way that the sum of the feature contributions
equals the prediction value.

However, some features may not have a fixed contribution based only on the value of the
feature itself, but may depend on the values of other features. These interactions between
features complicate the interpretation of the model. SHAP handles interactions by using a
generalization of Shapley values, called SHAP interaction values. These values measure not
only the individual contribution of each feature, but also the pairwise contribution of each
pair of features. SHAP interaction values can be visualized as a matrix, where the diagonal
elements are the main effects and the off-diagonal elements are the interaction effects.
SHAP interaction values can help identify which features are synergistic or redundant in
the model, as well as how they affect the prediction.

Furthermore, while SHAP supports a range of complex model types including deep
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learning models, and there is an example using an LSTM model in the Python library
GitHub repository1, the Python implementation does not offer functionality for time-series
forecasting using RNNs at the time of writing.

2.3.2 LIME

The LIME framework is a method for explaining the predictions of any machine learning
model, regardless of its complexity or architecture. The framework was introduced in 2016
by Ribeiro et al. [39]. The acronym LIME stands for Local Interpretable Model-agnostic
Explanations, which we can explain as follows:

• Local refers to local fidelity, meaning that the explanation should reflect the behavior
of the model around the instance being predicted, not necessarily globally for all
possible instances.

• Interpretable refers to the goal of LIME, which is making complex models under-
standable using simple and intuitive features or representations.

• Model-agnostic implies that the framework can be applied to any type of model,
from linear regression to deep neural networks, as long as the model can provide
predictions for any input. This also means it will be capable of explaining not yet
developed models.

• Explanations are the output of the framework, which consist of a set of features and
values, as well as their corresponding weights that indicate how much each feature
contributes to the prediction.

The main concept behind LIME is to create a surrogate model that approximates
the original model locally, using a simple, inherently explainable model such as a linear
regression or a decision tree. Global interpretation can only be achieved by taking several
local explanations, and analysing them manually [40]. The surrogate model is trained on
a set of perturbed instances that are generated by randomly tweaking some features of the
original instance, and obtaining the predictions of the original model for these instances.
These perturbed instances are then weighted by their similarity to the original instance, so
that instances that are more similar to the original have more influence on the surrogate
model. The features and weights of the surrogate model are then used as the explanation
for the prediction of the original model. As such, the explanation offered by LIME is merely
an approximation of the true inner process of the model to be explained. However, due to
the similarity check between perturbances and the original instance, this approximation
holds for the local domain that LIME attempts to explain.

As is the case for SHAP, Ribeiro, the primary author of the LIME paper, offers a Python
implementation of their framework on GitHub2. In contrast to the SHAP implementation,
the LIME Python implementation includes support for time-series forecasting with RNNs,
using the Recurrent Explainer classes. This makes the framework suitable for time-series
forecasting interpretation. Each data sequence is split in both features and timepoints, so
the influence of each feature at each timepoint is calculated and visualised separately.

1https://shap.github.io/shap/notebooks/deep_explainer/Keras%20LSTM%20for%20IMDB%
20Sentiment%20Classification.html

2https://github.com/marcotcr/lime
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2.3.3 Comparing SHAP and LIME

While both the SHAP and LIME frameworks aim to provide explanations for complex
model predictions, they differ in the way they generate and weight the features, as well as
in their properties and guarantees. As discussed above, LIME constructs its explanations
by approximating the model to be explained at a local point, whereas SHAP constructs
explanations by considering all possible feature combinations during the calculation of the
Shapley values at a local point. As a result, LIME is not capable of offering a global
interpretation. The SHAP framework is capable of this, by aggregating information on
various local instances. Due to this, SHAP is preferred for global interpretation. For local
interpretation, the preferred framework depends on the characteristics of the case that one
is trying to implement interpretability for.

2.4 Challenges in (explainable) disease progression modelling

In the literature review included in Appendix C, we explore the state-of-the-art and re-
search gaps in the field of machine learning for disease detection and prediction of disease
progression. From this, we are able to precisely determine the prediction task that we set
for this research: predicting a continuous value representing disease severity, based on time-
series data, in such a way that the prediction can be explained. Along with this, we identify
several challenges for the set prediction task. These will be discussed in this subsection.

2.4.1 Time-series data

The first challenge we identify is the use of time-series data. Time-series prediction is a
complex task, because the model not only needs to interpret features and their relations at
one data point, but also for multiple data points over time. To overcome this challenge, we
use the aforementioned RNN type of model for its capability of interpreting this complex
type of data. As we have discussed RNNs at length earlier in this chapter, we will not
do so again in this section.

2.4.2 Healthcare data

Another challenge that is commonly reported in the literature, is the quality and contents
of healthcare data. Various authors mention the high degree of missing data in their
datasets, but also the inherent heterogeneity that exists in patient data. The sophisticated
nature and associated ability of (deep) NNs to interpret complex data can be seen as a
mitigation for the latter challenge. However, for solving missing data issues, a separate
approach based on pre-processing is preferred according to Whang and Lee [41].

One of the methods to handle missing data is imputation. This practice consists of
using some, often statistical, method to fill missing values based on surrounding values.
Examples of such methods are mean imputation, where the missing value is filled with the
mean value across other records, and forward/backward filling, where missing values are
filled with the previous or following record’s value [42].

In the case of time series data, mean imputation can be done in two ways: either the
entire population mean is used across all time points, or we can use the "visit mean". When
using the latter variant, for each time point in the sequence (say visit number three), a mean
is calculated across the values recorded at the third visit of each patient. It is possible that
in the case of predicting progression of diseases, the event mean is more representative
for missing values than the population mean. The hypothesis is that the event mean
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accommodates the change of a value over time as a result of the progressive nature of
the disease influencing the value, in turn leading to a more representative imputed value.
We note that the event mean imputation method assumes that progression of patients is
homogeneous across the population, even though that may not be the case.

Forward/backward filling is interesting in the sense that it works completely different
from the aforementioned mean-based imputation methods. Forward/backward filling pos-
sibly represents progression over time less strongly than event mean imputation because it
simply copies the last or next value in a sequence, and thus does not capture intermediate
values. However, by doing so forward/backward filling does accommodate the highly het-
erogeneous nature of patient data: other patients’ data does not have any influence on the
value that will be filled. As a result, a patient that always had very high values for a certain
biomarker, will have a missing value imputed with a similarly high value that is represen-
tative of the patient, rather than a lower value that is representative of the population.

2.4.3 Explainability for disease progression modelling

As mentioned earlier in this section, one of the drawbacks of deep learning is the lack
of transparency that the models offer. While this is a known issue, there is not a lot of
literature that is aimed at mitigating this issue in the context of predicting progression of
diseases. Of all the 64 pieces of literature included in the review performed in Appendix
C, only a single paper mentions explainability or transparency of the models they propose
or review. Kendrick et al. [43] explicitly state that neural network based models offer
low, if any, explainability. Their conclusion is that if a degree of explainability is desired,
one should apply Support Vector Machine based models because these offer comparable
performance. However, the prediction task that the models reviewed by Kendrick et al.
are applied to is significantly less complex than the prediction task we have set for this
research: there is no longitudinal data or trajectory prediction involved. Because of that,
their advice cannot be taken for this research. The pipeline proposed in this research
addresses that, while using existing techniques for both prediction and explanation.
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Chapter 3

Methodology

This section is split in four sections. The first section discusses the use of the design science
research methodology to perform this research. In the second section we discuss the general
approach, model architecture, and a number of settings that are used to predict disease
progression. As we have two case studies, each further section will describe the approach for
that specific case study. We opted for this structure, because while the model architecture
remains the same, the dataset, the data pre-processing steps and model hyperparameters
are adapted to each case study.

Each case study section is divided in three parts. In the first part of each section,
we will give a general overview of the dataset that is used and subsequently discuss the
contents of the dataset. The second part will discuss the data preparation process, followed
by a description of the model setup as the third and final part.

As mentioned in Chapter 1, before including the explanation phase in our pipeline, we
first perform an experiment where we compare the influence of various imputation tech-
niques on the performance of the predictive model. The imputation techniques that will be
compared are population mean imputation, event mean imputation, and forward/backward
filling. In this comparison, population mean imputation serves as the baseline due to its
simplicity and lack of accommodation for any specific characteristics of patient data. The
way each technique works is discussed in Chapter 2. The best performing imputation
technique is used with the full pipeline, including explanation of predictions.

3.1 Design Science Research Methodology

This section will briefly describe the design science research (DSR) paradigm and the
design science research methodology (DSRM). Subsequently, we show how the DSRM is
applied in this research.

3.1.1 Design science research

According to Wieringa [44], DSR is the practice of designing and investigating an artefact
within its context. The artefact in context is the object of study. This explicit combination
of artefact and context is deliberate, as the interaction between the artefact and the prob-
lem context is what allows the artefact to solve the problem. There are two types of research
problems in DSR: knowledge questions and design problems. The first is focused on gain-
ing theoretical knowledge about the artefact in the problem context, the latter is focused
on designing an artefact in such a way that it improves or evolves in the problem context.
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In this research, the main research question RQ1 formulated in Chapter 1 serves as our
design problem. There are some artefacts (machine learning models) and a context (the
field of predicting progression of diseases) that we are trying to improve (by making the
models more transparent and interpretable). This design problem raises several knowledge
questions about the artefact and context: our subquestions. These questions are answered
in the systematic literature review in Appendix C and Chapter 2. Using the knowledge
and precisely defined design problem that we gain from answering the knowledge questions,
we design and develop the artefact in context with the aim of improving the artefact
in context. The artefact that we design and develop in this research is the proposed
machine learning pipeline.

3.1.2 The design science research methodology

To provide guidance for design science researchers, the DSRM was published in 2007 by
Peffers et al. [45]. According to their methodology, a DSR should consist of the fol-
lowing six activities:

1. Problem identification and motivation. Define the exact research problem that must
be solved.

2. Defining the objectives for a solution. Define what the objectives for the solution are,
while respecting (technical) feasibility.

3. Design and development. Determine the required functionality and architecture of
the artefact and create it.

4. Demonstration. Demonstrate the artefact by solving an instance of the problem.

5. Evaluation. Observe to what degree the artefact is a solution to the problem. This
can be done by comparing the results with the objectives defined in step 2.

6. Communication. Communicate all elements of the research: the problem, the impor-
tance of solving it, the artefact, why the artefact is designed the way it is, and how
useful the artefact is.

Note that there is no strict ordering required when one applies the DSRM. The above
steps can be ordered according to the specific needs of the problem at hand. For example,
researchers may observe a problem which triggers DSR, leading to a problem-centered
approach that starts at step 1. Similarly, it is possible that an artefact exists, but is not
yet tried as a solution for the problem context. This could be the case if an artefact is
created for another domain where it solves another problem. If research starts at this
point, this leads to a design- and development-centered approach.

3.1.3 Applying the DSRM

In this research we adopt a problem-centered approach, as shown in Figure 3.1. There is a
lack of transparency and interpretability that is observed in the field of machine learning
(ML) for prediction of disease progression. The observation is made for ML in general as
well, but as mentioned in Chapter 1, applications of such systems in the healthcare domain
require a relatively high level of trustworthiness. This trustworthiness can be increased by
providing more interpretability and transparency with regards to how ML models work
when applied to predict the progression of a disease.
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The objective of the research is to develop a ML solution that is capable of predicting
a continuous value representing progression of a disease based on time-series data using a
state-of-the-art ML model, while also offering an explanation why the model comes to
this prediction.

The artefact we create in this research is the proposed ML pipeline. The pipeline
includes three main stages: data preparation, prediction of progression, and explanation
of the prediction. For each of these stages, a separate knowledge question was answered
to find the best possible design of the artefact in context.

For the demonstration of the artefact, we perform two case studies in which we apply
our artefact to a healthcare dataset. One of these case studies concerns a small dataset,
the other a large dataset, to ensure we demonstrate the use of our artefact in the range
of context in which it is applicable.

The evaluation step as it is described in the DSRM is not yet applicable to research. The
DSRM makes a clear distinction between demonstration and evaluation, where demonstra-
tion can be done using application of the artefact to some sample instance, while evaluation
requires the artefact to see real use in the intended context. Thus, until the pipeline is
applied in a real-world situation, we cannot claim to have performed the evaluation step.

The final step, communication of the research, is done via this manuscript as part of a
graduation thesis. The research is publicly available via the University of Twente website.

Figure 3.1: The DSRM taken from Peffers et al. [45] adapted to show the process
for this research.

3.2 Pipeline architecture

The architecture that we propose for our machine learning pipeline consists of three phases.
The first phase of the pipeline is data pre-processing. This phase is followed by a prediction
phase. Finally, the third phase is the explanation generation. For the prediction and
explanation phases, we use existing techniques and frameworks, such as GRU and LIME.
Figure 3.2 shows a high level overview of the pipeline. For an in depth explanation of
the datasets and pre-processing of said datasets, refer to the case study-specific Section
3.3 and Section 3.4 below.
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Figure 3.2: A high level overview of the proposed explainable pipeline.

3.2.1 Prediction model

The prediction model consists of seven layers in total. The first layer serves a dual purpose,
as both input layer and first processing layer. This is the first of two GRU layers. Following
the input layer, there is a second GRU layer to further interpret and capture temporal
information in the data. We choose GRU over LSTM because the data sequences in our
case studies are relatively short. After these two GRU layers, the shape of the data is still
three-dimensional: the first dimension being the number of samples in the batch of data,
the second being the length of the sequence, and the third being the number of features in
each data point. Because this is a very high amount of "effective" features (sequence length
∗ number of features), it may be difficult for the following layers to properly determine what
features and what timepoints are important. To aid in this, we add an attention layer. In
a nutshell, an attention layer is used to generate an attention vector that emphasises what
the most important parts of a piece of data are. After the attention layer, we place the first
dense layer. A dense layer is a simple layer of neurons, each of which works as explained in
Chapter 2. These are generally used towards the end of a network, to "convert" and connect
the intermediate representations of the input to a final output. Because we want to prevent
overfitting (disproportionately high performance on training data) of the predictive model,
we follow the first dense layer with a dropout layer. This layer randomly drops neurons
from the previous layer at a customisable rate, hence removing "fitment" from the network
to seen data and generally improving performance on unseen data. Following the dropout
layer, there are two more dense layers. The final dense layer functions as our output layer.

3.2.2 Implementation and setup

The implementation of the pipeline is done in Python. For the first part of the pipeline,
data preparation, we use the Pandas library, which is a data analysis tool. For creating
and training a predictive model, we use the Keras ML library, as it offers ready to use im-
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plementations of advanced techniques such as GRU layers. For the attention layer, we use
a Keras-based implementation that is available on GitHub1. To convert the pre-processed
data to a format that is compatible with the implementation of the predictive model, two
actions are performed. The first is adding a column with "target" values by taking the value
of the target variable at the next visit. The second is normalising the training features.

Finally, for the explainability phase of the pipeline, we use the Python implementation
of the LIME framework as provided by Ribeiro, the primary author of the LIME paper.
Because this LIME implementation is not capable of reverting normalised values to human-
readable values, we created an extension script for the Python LIME implementation to
perform this inversion before plotting the explanations.

A common issue we find in the systematic literature review in Appendix C is that
literature is published without code or details on implementation, hindering reproducibility.
For the sake of transparency, we provide access to the code used to perform this research.
Because the data we use is not freely available, it is not possible to share this along with the
code. All notebooks and scripts used or written for this research can be found on Github2.

The optimiser used during the training of the predictive model is Keras’ Adam opti-
miser. This highly popular optimiser is based on the paper by Kingma and Ba [46]. The
choice of optimiser influences how the adjustment of internal attributes such as weights in
the NN is done during training. We choose Adam because of its relatively low computation
time and low amount of required hyperparameter tuning.

The only setup required for using the Python LIME implementation consists of choosing
whether continuous feature values should be discretised, and how many features should be
included in the explanation. We choose to enable discretisation, because this leads to
better explanations according to Dieber and Kirrane [40]. For the number of features, we
choose to include the top 20 features.

3.2.3 Model evaluation

The metric used to evaluate the model was the mean squared error, or MSE. The reason
why we chose for the MSE rather than mean absolute error (MAE), is that MSE is harsher
on larger errors. In the healthcare domain, the more wrong a prediction is, the greater
the (adverse) effects can be. As such, we decided to use a metric that would penalise such
mistakes harder than smaller mistakes.

To be able to properly evaluate the predictive model, we use a train-test split, combined
with K-fold cross validation in the training phase. The test partition consists of 15% of
the pre-processed data and is used to estimate the performance of the model on new or
unseen data. In the training phase, 5-fold cross validation is used to mitigate overfitting,
and to increase visibility of any data imbalance. Each fold combination that is used results
in a trained model that is applied to the test set. Hence, for each experiment, five loss
values will be reported: one per trained model. Along with these five loss values per
experiment, we report the average loss across the five models as well as the standard
deviation. Furthermore, because the splitting of the data and fold creation is random,
seeds are used to ensure the research is reproducible. To account for possible imbalance in
the data beyond the K-fold cross validation, we also perform our comparative experiment
with the predictive model on four different seeds. These seeds are 787, 1998, 25 and
959143, in no particular order.

1https://github.com/philipperemy/keras-attention
2https://github.com/StijnBerendse/MSc_thesis
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3.3 Case study 1: PPMI

3.3.1 Dataset description

The first case study is performed using the PPMI dataset. This dataset is part of an obser-
vational clinical study that aims to identify biomarkers of Parkinson’s disease progression.
The dataset is accessible to accredited researchers via a web-portal, and contains clinical,
imaging and biological data on Parkinson’s disease patients and various other participant
groups. Participation in the PPMI is restricted to people in the United States, Europe, Is-
rael, and Australia. The study covers participant visits from July 2010 and is still ongoing.
The dataset we use in this research includes visits up to July 7th 2023.

The PPMI is a structured study project, as a study of this size requires extensive
planning of when the participants visit and what assessments and measurements are taken
during the appointments. This structured nature is beneficial for this research, as visit
intervals are fairly constant, and visit record contents are pre-determined. As such, we
do not account for time irregularity in this dataset. Visits may be a few weeks off from
perfectly yearly, but we explicitly assume that this irregularity is not significant for the
time scale at which the PPMI operates.

The assessments that we choose to include are all parts of the MDS-UPDRS, as well as
the Epworth Sleepiness Scale. The latter of these is a questionnaire on sleepiness during
daily situations. The large majority of the MDS-UPDRS assessment values may range
between 0 and 4, where 0 indicates a fully normal or asymptomatic performance and 4
indicates very severe disability. For the Epworth Sleepiness Scale, all eight assessments are
rated between 0 and 3, where 0 indicates no sleepiness and 3 indicates a high chance
of falling asleep.

At the time of downloading the PPMI dataset for this research, the raw dataset contains
3199 participants, of whom 1558 (48.7%) are diagnosed with Parkinson’s disease. In this
population, there is basic demographic information for 3076 participants, of whom 1474
(47.9%) are PD patients. Out of the 3076 participants we have information on, 57.2% is
male and 42.7% is female. For 0.16% of the participants, the sex is unknown. Figures 3.3
and 3.4 show the distribution of age for the full participant population and PD patient
population in the raw dataset. Between these plots, we see little difference for the male
population. When looking at the female population, we see a more uniform spread of ages
for the PD patients compared to the plot containing all female PPMI participants. We note
that the change in distribution appears to be caused by a change in the 55 to 70 year old
age group. This may be caused by a relatively high number of control participants in this
age range. Because the target variable (UPDRS total score) is an aggregation of various
columns that is created during the data preparation process, we do not have information
on this before dataset preparation is completed.

The dataset used in the PPMI case study is constructed by taking information from a
collection of CSV files that each contain a different partition of the required information.
Five of these CSVs contain records of MDS-UPDRS assessments performed during patient
visits, one CSV contains Epworth Sleepiness Scale assessments, and another three CSVs
contain patient information such as patient sex and age.
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Figure 3.3: The age distribution for all participants in the raw dataset.

Figure 3.4: The age distribution for PD patients in the raw dataset.
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Figure 3.5: A flowchart of the pipeline’s data pre-processing phase for the PPMI
dataset. Icons taken from [47].

3.3.2 Data preparation

A high level overview of the data preparation phase of our pipeline is shown in figure 3.5.
Due to the structured nature of the PPMI project, we can start by merging horizontally

on a combination of patient ID and event ID for the six assessment CSVs. After merging,
five columns containing the exact visit dates are removed. This results in a dataframe
containing 22749 rows and 82 columns, covering 2774 participants. Once this is done, we
remove any incorrectly registered values that fall outside the possible scale for the included
assessments. Furthermore, any statistical outliers in the MDS-UPDRS partition total score
columns are removed by applying the three sigma rule (see [48]). This reduces the number
of rows to 21810 and the number of participants to 2725.

The next step is merging the participant data with the clinical scores, which is fol-
lowed by the removal of any participants that do not have a PD diagnosis or that do not
have a status "enrolled", "withdrawn", or "complete". The two columns containing this
information are then discarded. Once more, the structured nature of PPMI is used, this
time to select visits: only the first six yearly visits including the baseline visit are retained
as these should register the same assessments for each patient. These steps significantly
reduce the size of the data, but add two columns. At this point 5812 rows and 84 columns
remain, representing 1143 patients. Depending on the state of the patient during the as-
sessment, which may be responding or non-responding to treatment, motor assessment
scores especially may differ strongly. Because more patients have records where they are
responding, and because some patients have two assessments linked to a single visit, one
responding, one not responding, we choose to remove non-responding assessment records
if a responding assessment record exists for the same visit. This leaves 4112 rows of data.

Following this, we move towards handling any missing data, starting with some cleanup
based on missingness. First, any records that are missing over 60% of values are removed
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as these records contain only a single, if any, full MDS-UPDRS partition. Next, we remove
any patients from the dataset that have a fully empty column across all visit records,
because these patients cannot have this column imputed using forward/backward filling.
Doing so removes another 880 rows, bringing the total down to 3232 rows and 716 patients.
After this, we impute the column signifying whether a patient was undergoing treatment,
and set their responsiveness according to this column. If a patient is not in treatment
during a visit, their state is set to 2 instead of an empty value. Once this is done, the
remaining missing values are imputed using the chosen imputation method. Finally, the
MDS-UPDRS partition total scores are summed in a new column to give the prediction
target MDS-UPDRS total score and patients that do not have all six visits are removed
to form the final pre-processed dataset.

The full raw dataset (if we were to start by merging all CSVs) contains 26571 rows and
91 columns of data, covering 2774 participants. Once data preparation is completed, we
are left with 1746 rows and 85 columns of data, covering 290 patients.

In Figure 3.6, the distribution of age and sex in the prepared dataset is shown. We see
that in the male patient population, there is a fairly strong skewness towards higher age,
whereas female patients have a fairly symmetrical age spread. Furthermore, we observe
that the age range for the female patients is greater than for male patients, although this
appears to be caused by a very small number of young female patients. When we compare
this distribution to the non-processed age distribution for PD patients shown in Figure 3.4,
it appears that a relatively large number of patients just below the age of 70 is removed
during the data preparation process, especially in the female population. The cause for this
phenomenon could be that the raw dataset includes patients that have only had a screening
for PPMI eligibility, but no baseline visit yet, whereas the prepared dataset does not. It
would be logical for a relatively large amount of screenings to be performed on patients
around the age of 65 to 70, as this is the most common age at which PD is diagnosed
[49]. Furthermore, we see that the age range for male patients shrinks quite strongly, with
the maximum age reducing from nearly 100 years to just over 85 years. This decrease
appears to be caused primarily by an extremely high age outlier in the raw dataset that
is removed in the preparation process.

A number of examples of patient MDS-UPDRS total score values over time are shown
in Figure 3.7. We can see here that the progression is very heterogeneous: some patients do
not seem to worsen over these first five years, whereas others display a very clear upward
trajectory in disease severity, such as patients 193 and 270. Aside from this, Figure 3.7
clearly visualises that progression may be highly erratic, as is the case with patients 40
and 274, for example.

3.3.3 Machine learning model

For the PPMI case study, three hyperparameters must be set: the batch size, the learning
rate and the dropout rate. Because the prepared dataset in this case study is small, we
choose for a relatively low batch size of 32, while leaving the model learning rate at the
default 0.001. The dropout rate we choose for this case study is 0.2. As we have a small
dataset in this case, it is likely that the model will overfit to the limited data it is trained
on. By including the dropout at 0.2, we can reduce the degree to which the model (over)fits
to the training data and increase the performance on unseen data.
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Figure 3.6: The distribution of patient sex and age at the baseline visit in the
prepared dataset.

Figure 3.7: Several examples of patient MDS-UPDRS total score assessments
over time.
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3.4 Case study 2: diabetes

3.4.1 Dataset description

For the second case study, we use a dataset containing biomarkers from diabetes patients.
This dataset is provided by Medlon, a medical laboratory based in Enschede, the Nether-
lands. To acquire this dataset, a data transfer agreement was signed. Furthermore, all
personal information of patients is encrypted using a key to prevent any traceability and
ensure anonimity of the patients before we received the data. The time period covered by
the dataset is from the start of 2015 to the first half of 2023. To gather the data for this
dataset, records in which a HbA1c measurement was ordered in the laboratory request
were selected from primary care providers such as general practitioners. Since HbA1c is
used in routine monitoring of diabetes patients, assessed every three to six months, the
time interval between the records is generally homogeneous. As such, we assume once
again that temporal irregularity for this dataset is limited, and we do not account for such
irregularity between data points. The dataset consists of the biomarkers that are included
in these laboratory request, such as the eGFR and blood glucose.

Due to the anonimisation of this dataset, less demographic information is available
than in our other case study. The sex of patients, for example, is not included in the
data. Another piece of information that is not included in the dataset, is whether patients
underwent medical interventions between visits that may strongly influence the eGFR
either positively or negatively. Hence, it may be the case that the dataset contains large
differences between visits that cannot directly be linked to patient biomarker data. The
dataset is constructed by taking information from a collection of CSV files that contain a
certain timespan, rather than a part of the information. Each CSV contains a year of data
for the CSVs covering the years 2015 to 2018. The data from the start of 2019 onward
is stored in CSVs per six months.

The raw dataset on diabetes patients contains 128793 patients. Figure 3.8 shows the
distribution of age for the full population in the dataset. We see a strong peak in the
number of patients around the age of 70. The prevalence of high age patients suggests that
our dataset contains predominantly diabetes type 2 patients. Type 2 diabetes is usually
developed at a later age, as we mention in Chapter 2. In the same chapter, we note that
around 95% of diabetes patients suffer from type 2, which supports our hypothesis on the
distribution of diabetes types and the distribution of age in the dataset. In Figure 3.9,
several random patient sequences are shown. It is clearly visible that the raw dataset is
extremely sparse, with nearly half of the patients having no GFR-MDRD records at all,
and only a single patient having more than two records. For this patient, with identifier
86663, we see an irregular trend in eGFR, with one larger jump between visits 3 and 4.
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Figure 3.8: The distribution of patient age at the first visit in the raw dataset.

Figure 3.9: Several examples of patient eGFR assessments over time.
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3.4.2 Data preparation

Similar to the previous case study, a high level overview of the data preparation pipeline
we use is shown in figure 3.10. As the dataset for this case study is not fragmented
over various files with different assessments, we do not have to merge CSVs horizontally.
Since the dataset is split across files containing a year or half a year of data we start by
stacking the CSVs so they form one chronologically ordered dataframe. By doing so, we
create a dataframe consisting of 737010 rows and 861 columns. A total of 128793 patients
are included in this dataframe. Next, we remove any columns that are not relevant for
progression of diabetes or specifically the prediction of DKD. Examples of such columns
include whether the patient is allergic to a specific fruit, and the patient’s desipramine
blood content. As some clinical assessments have been scattered across different across
columns due to column name differences between CSV files, we merge these back into a
single column per assessment. We also need to generate a unique patient ID by using
two encrypted PIN columns and the encrypted date of birth of patients to identify them
throughout the pipeline. These steps reduce the number of columns to 26.

Next, we remove any records where the target variable is missing and any patients that
do not have at least 10 visits recorded in the data. Also, if multiple records were created on
a single day, we discard all records on that day except the last one. Because this may have
put some patients under the 10 visit threshold, we once again remove any patients that
do not have at least 10 visits recorded in the data. This is done twice because of the high
computational cost for discarding same-day records. This reduces the dataframe length
from 737010 rows to 86185 rows, covering 6793 patients. Because we have no information
on the age at each visit of patients, we calculate this using the date of birth and visit
time. This age is stored in a new column and the date of birth column is dropped. Next,
we remove any visits past the tenth visit for each patient, so we have equal length data
sequences. This brings the number of rows down to 67930.

Next, we start handling missing data. First, we remove any columns that are missing
over 60% of their values. This removes 12 highly sparse columns, bringing the total down to
14. Next, we remove patients that have a fully empty column across all visits, as we cannot
perform forward/backward filling on such columns, and reset the patient IDs. Doing so
reduces the number of rows and patients to 66440 and 6644 respectively. After this, we
change the visit dates to visit numbers and finalise the preparation of the data by imputing
any remaining missing values using the chosen imputation method.

The full raw dataset (created by stacking the CSVs) contains 737010 rows and 861
columns of data, covering 128793 patients. After completing the data preparation phase,
we are left with 66440 rows and 14 columns of data, covering 6644 patients.

In Figure 3.11, we show the distribution of patient age after data preparation. Similar
to the raw dataset, it is clearly visible that the distribution is skewed heavily towards
elderly patients, with little observable change in the age group of 50 years and older.
However, when looking at the lower age group, we see that the number of patients decreases
drastically during data preparation. Under the age of 30, barely any patients are included.
We could not find a clear cause for this change.

A number of examples of what the patient eGFR values look like over time are shown in
Figure 3.12. Similar to the PPMI case study data, we see heterogeneity between patients
and erratic trajectories. At the same time, we also see that the overall trend of most
patients is fairly stable. Patient 4099 stands out in that regard, displaying a very strong
decrease in eGFR. When comparing these sequences to the raw dataset example sequences,
we see a large difference. Many patients in the raw dataset have either very few or no GFR-
MDRD records, whereas the prepared data contains only patients with a full sequence of 10
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Figure 3.10: A flowchart of the pipeline’s data pre-processing phase for the dia-
betes dataset. Icons taken from [47].

visits. We also see a larger range for the eGFR in the prepared dataset, but this is caused
by the lack of representative patient sequences in the raw dataset sequence example as
a result of data sparsity.

As the features for this case study are laboratory measurements rather than assessments
that follow a set scale, as is the case for the PPMI dataset, we plot the distribution of each
of the biomarkers included in the dataset. These are shown in Figure 3.13. We see that
most patients have an eGFR around 90, which is the maximum possible value, and another
large amount of patients around 60 to 70 mL/min/1.73m2. Furthermore, we see that some
biomarkers related to creatinine (Kreat, AlbKr and Alb_U_kw), have an extremely large
range that appears to be caused by a small number of outliers.

3.4.3 Machine learning model

For the diabetes case study, we have the same three hyperparameters to optimise: batch
size, learning rate and dropout rate. However, in this case study we have a much larger
dataset. Due to this, we choose to increase the batch size 128, while decreasing the learning
rate from the default 0.001 to 0.0005. In contrast to the PPMI case study, there is no issue
with small datasets for this case study, so we do not account as strongly for overfitting
to training data that might not be representative of unseen data. Hence, we choose to
decrease the dropout rate by 50% to 0.1.
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Figure 3.11: The distribution of patient age at the first visit.

Figure 3.12: Several examples of patient eGFR assessments over time.
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Figure 3.13: The distribution of the biomarkers included in the diabetes dataset.
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Chapter 4

Results

This chapter is divided in two sections, each covering the results for one case study. Within
these sections, we first present the results of the comparison between our three imputation
methods without the explanation phase. These results are shown for four data splitting
seeds and five cross-validated model versions. We do not discuss the predictive performance
itself in depth, as development of a best-in-class predictive model is not the aim of this
research. After the results of the imputation comparison, we show the output of the
pipeline using the best performing imputation method for a number of example patients,
including both the prediction and explanation phases.

4.1 Case study 1: PPMI

4.1.1 Imputation comparison

As mentioned in Chapter 3, we start by comparing three imputation methods. This ex-
periment is performed on four different data split seeds. In the appendix, Table A.1
shows the full results of the experiment. Each seed represents a different data split, and
as such, a different distribution of sequences across test and train partitions, as well as
cross validation folds.

Figure 4.1: The predictive performance results for the PPMI dataset, taken across
all cross-validations and data split seeds.
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Figure 4.1 shows a direct comparison between the MSE scores across for each imputa-
tion method. Across all cross-validations and data split seeds, we show the best performing
model, the worst performing model, and the average performance. We show the best and
worst model performance to provide an indication of the variability in loss values. From the
figure, it is clearly visible that the average loss of the two mean-based imputation meth-
ods is almost identical, with event mean imputation performing less than 0.01% better
than population mean imputation. Forward/backward filling performs best on average,
outperforming both other methods by 6.3%.

To better interpret the meaning of the results, the statistical significance of the differ-
ence in performance is verified. By performing a statistical significance test, we can validate
whether the results provide conclusive evidence on which, if any, imputation technique leads
to the best predictive performance. The significance test used is the Paired t-test, as the
samples cannot be considered independent: the majority of the data in the dataset is the
same for each trained model, regardless of the data split seed, the cross-validation folds,
and the imputation method. For more information about the Paired t-test and how the
test is performed, refer to Wilkerson [50]. The significance level for which we test in all
comparisons is 0.05, the null hypothesis is that there is no difference in mean performance.

We first apply the Paired t-test to determine whether there is a significant difference
using population mean imputation and event mean imputation. From the two samples
containing 20 loss values per method, as shown in Table A.1, the two-tailed p-value is
calculated to be 0.988. As this value is considerably larger than the significance level of
0.05, we cannot reject the hypothesis. Similarly, the comparison between the population
mean technique versus foward/backward filling yields a two-tailed p-value of 0.293. While
this p-value is substantially closer than the p-value for the previous comparison, it is still far
from our significance level of 0.05, meaning rejection of the null hypothesis fails once more.

From these Paired t-tests, we conclude that neither event mean imputation or for-
ward/backward filling offers a statistically significant performance increase over using pop-
ulation mean imputation. It should be noted that the lack of statistical significance of our
observed difference does not mean that the choice of imputation method has no influence
on the performance, but that from the results we obtained there is no conclusive evidence
that the observed difference in performance is not caused by chance. For the remainder of
this case study, we consider forward/backward filling to be the best performing imputation
method and use this method for the generation of our further results.

4.1.2 Pipeline output

For the generation of the pipeline outputs in this subsection, we use the fold 1 model
trained using seed 1998 because this model’s loss approximates the average loss for the
imputation method we use within 1%. As such, we assume the chosen model is represen-
tative of the pipeline’s general performance. In Figure 4.2, we showcase three example
predictions, along with the preceding sequence of the target variable and the ground truth
for the predicted value. The first example, patient 10, is an instance of a relatively good
prediction, the second (patient 21) an average prediction, and the third (patient 1) a
relatively poor prediction.

When looking for an explanation for the predictions shown, the last phase of the pipeline
is of interest. For the same patients we discussed above, the explanations offered by LIME
are visible in Figures 4.3, 4.4, and 4.5. In each instance, the explanation consists of three
elements. The leftmost element of the explanation, the "Predicted value" bar, shows the
range of predictions, as well as the prediction for the instance that is being explained. The
middle element contains a discretised view of the top 20 features, in descending order of
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(a) Patient 10, above average predictive performance.

(b) Patient 21, average predictive performance.

(c) Patient 1, below average predictive performance.

Figure 4.2: Three plots containing the MDS-UPDRS total score sequence of
various patients in the PPMI dataset.
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importance or influence. Negative influence (depicted in blue) means that the predicted
value is decreased by the feature, positive influence (depicted in orange) means an increase
in predicted value. Each feature name consists of an assessment and the timepoint at which
the assessment was done. On the right, a table showing the top 20 features is included. This
table contains the feature name, as well as the exact value of that feature at that timepoint,
ranked by descending feature importance. In the environment in which the explanations
are generated and presented, this table can be scrolled through to show all 20 features.

During analysis of the explanations provided by the pipeline for the PPMI case, we
observe something peculiar. The explanations shown in Figures 4.3, 4.4, and 4.5 show
rather small feature influences. Furthermore, looking at Figure 4.3 specifically, we see
in the leftmost element that the predicted value is roughly the maximum possible pre-
diction, but the five most important features in the middle element are shown to have
a negative effect on the prediction. As such, the explanation points towards a relatively
low prediction value, while the prediction value in reality is very high. It is possible that
this is a consequence of the low differences in influence between the various features and
timepoints. As the influence of each feature is small, it could be that outside the top
20 features shown, there are relatively many features that have a positive influence that
bring the total prediction value up.

Another highly interesting observation is that for all examples, the earlier values of
the target variable are not in any of the top 15 feature lists. Instead, we see a variety of
highly specific (motor) scores that are assigned the highest influence. In the explanations
for the prediction of both patients 10 and 21, depicted in Figures 4.3 and 4.4 respectively,
the UPDRS total score is ranked nineteenth among the most important features. In the
explanation for patient 1, shown in Figure 4.5, the UPDRS total score is not included
in the top 20 features at all. This is striking, because we would expect the progressive
nature of Parkinson’s disease to lead to a strong influence of previous UPDRS total scores
on the predictions. Looking at the correlation between various features in the prepared
data and the UPDRS total score shown in Appendix B, we see that by far the strongest
correlations exist between the UPDRS total score and the partition total scores NP2PTOT
and NP3TOT. This is logical, as the UPDRS total score is a summation of all partition
total scores. However, similar to the UPDRS total score, the partition total scores are
barely, if at all, included in the explanations. Only Figure 4.5, shows the NP2PTOT score
in the top 20 most important features, at rank eightteen.

Another remarkable finding from the explanations, is that the maximum MDS-UPDRS
total score that can be predicted is reported to be just under 70. However, when looking
at the sequence for patient 1 in Figure 4.2 plot (C), we see that this is not an adequate
range. Patient 1 has only a single visit during which the score was below that boundary.
Similarly, in Figure 4.2 plot (A), we see that patient 10 has a score above 70 for their
baseline visit as well. As such, it appears that the predictive model is not able to account
for the full range in which the target variable exists.
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4.2 Case study 2: diabetes

4.2.1 Imputation comparison

Again, we start by comparing our three imputation methods. Table A.2 in the appendix
contains the full results of this comparison. Figure 4.6 shows a direct comparison between
the best, worst and average performance across all cross-validations and data split seeds to
provide an indication of the variability in loss values. Once more, it is clearly visible that
the average loss of the two mean-based imputation methods is almost identical, with event
mean imputation performing less than 0.01% better than population mean imputation.
Forward/backward filling performs best on average, but the difference in performance for
this method is less than 0.01% compared to the other two methods as well.

Similar to Subsection 4.1.1, we apply the Paired t-test to determine whether any of
the observed performance differences are statistically significant. For the first comparison,
population mean imputation versus event mean imputation, we obtain a two-tailed p-value
of 0.924. Hence, the null hypothesis cannot be rejected at a significance level of 0.05. The
second comparison, population mean imputation and forward/backward filling, gives a
two-tailed p-value of 0.539. This exceeds the significance level of 0.05 and therefore fails
to reject the hypothesis.

From these test results, we conclude that no tested imputation technique offers a sta-
tistically significant performance increase over population mean imputation. However,
because forward/backward filling offers the lowest MSE in the comparison, we consider
that technique to be the best performing imputation method and use this method for the
generation of our further results in this section, as we did for the other case study.

Figure 4.6: The predictive performance results for the diabetes dataset, taken
across all cross-validations and data split seeds.

4.2.2 Pipeline output

For the generation of the pipeline outputs in this subsection, we use the fold 5 model
trained using seed 25 because this model’s loss approximates the average loss for the impu-
tation method we use within 1%. As such, we assume the chosen model is representative
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of the pipeline’s general performance. In Figure 4.7, we showcase three example pre-
dictions, along with the preceding sequence of the target variable and the ground truth
for the predicted value. The first example, patient 6, is an instance of a relatively good
prediction, the second (patient 11) an average prediction, and the third (patient 24) a rel-
atively poor prediction. In plot (A) of the figure, it is visible that while the GFR-MDRD
values have an erratic trend, there are no excessively large changes between visits. The
biggest jump is around 10 mL/min/1.73m2, between visits 1 and 2 (counting from 0). The
predictive model predicts a slightly too high GFR-MDRD, but the error is less than 2
mL/min/1.73m2, which indicates a prediction that is easily within the 15% (in this case
roughly 6.9 mL/min/1.73m2) biological margin that is used in clinical settings.

We again use the final phase of our pipeline to explain how our predictive model came
to these predictions. The explanations for patients 6, 11, and 24 are shown in Figures 4.8,
4.9, and 4.10 respectively. Once more, the leftmost element of the explanation shows the
range in which predictions can fall and the prediction value. The middle element contains
a discretised view of the top 20 features and their influence on the prediction value, the
rightmost element contains the exact value for each of the included features.

When looking at the explanations for the diabetes case study, we immediately notice
that the previous values of the target variable are strongly represented in the explanations.
For each explanation shown, many of the most recent eGFR values are highly influential
on the final prediction. Mixed between these, however, we also observe values such as the
Kreat (creatinine) biomarker and blood glucose exercising influence on the final prediction.
Furthermore, we see that for some specific assessments, a feature that is multiple visits ago
is included in the top 20 features. This suggests that the specific feature stands out amongst
other assessments taken in the same visit, and that the predictive model recognises such
data points as characteristic for the patient.

To validate the explanation results for the diabetes case study, the data owner was asked
for their expert opinion on the performance of the proposed pipeline. Their first comment
was that the degree to which the model can predict kidney function seems adequate, with
84.1% of all predictions being within the commonly used 15% biological margin around
the ground truth eGFR. According to them, that level of performance could give the
laboratory the possibility to start classifying patients in a low and high risk category for
decline in kidney function. Based on such classification, low-risk patients could have a
lowered monitoring frequency for kidney function in the future.

When asked specifically about the explanations for the three example patients, shown in
Figures 4.8, 4.9, and 4.10, the domain expert mentioned that the explanations make sense
in general. According to them, this is as expected because the available assessments are
directly or indirectly related to the eGFR. Interestingly, the domain expert also mentioned
that they expected the blood glucose to be represented among the most influential features,
which they only observed for the above average performing prediction. As such, it is
possible that this relation is not captured very well by the prediction model.

Another comment from the domain expert regarding the explanations, was that they
would not have known how to interpret the explanations without the guidance provided
during our meetings. We took this comment into consideration while identifying further
research opportunities and found that this issue has also been raised by Dieber and Kir-
rane [40], albeit in a different problem context. This is discussed further in Chapter 5.
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(a) Patient 6, above average predictive performance.

(b) Patient 11, average predictive performance.

(c) Patient 24, below average predictive performance.

Figure 4.7: Three plots containing the GFR-MDRD (in mL/min/1.73m2) se-
quence of various patients in the diabetes dataset.
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Chapter 5

Discussion

In this chapter, first various limitations of the research are discussed. Subsequently, a
number of recommendations for future research are provided.

5.1 Limitations

This section mentions various limitations of this research. The causes of these limitations
range from assumptions and design choices that we make to technical feasibility. Further-
more, some limitations are identified based on the results discussed in Chapter 4.

5.1.1 Data imputation

In the literature review in Appendix C, we explore data quality issues in the field of pre-
diction of disease progression. One of the issues encountered in the reviewed literature,
which we also encounter in this research, is data sparsity. For both case study datasets,
there are missing values across various rows and columns. The conclusion we draw in the
literature review is that data imputation should preferably be avoided, as one of the draw-
backs of imputation is that possibly non-representative values are injected in the dataset,
leading to reduced predictive performance of models trained on the dataset. Alternatives
for imputation that we identify in the review are removal of records containing missing
values, and using a ML model that is robust to missing values. In this research, we do
not use either of these alternatives, instead opting to use data imputation regardless of
the known drawbacks associated with it.

The reason why we do not use record removal as an alternative is because we aim to
create a pipeline that is applicable for a wide range of cases. To achieve this, we need to
account for varying sizes in available training data. The first case study, using the PPMI
dataset, reflects a case where a very small amount of data is available. This small dataset,
combined with the fact that each patient was missing at least one value across all their
visits and that we require patients included in the processed data to have a registration
for each visit, means that removing records containing missing values leads to an empty
dataset. As such, this is no applicable alternative for this research.

The second alternative, using a ML model that is robust to missing values, was at-
tempted initially. However, only a single ML model presented in the reviewed literature
fits the criteria we have set (time-series input data, continuous prediction value, RNN-based
model) whilst also being robust to sparse input data: a GRU-based model proposed by
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De Brouwer et al. [51]. Furthermore, the highly complex nature of their model means that
integration between the predictive model and the Python implementation of the LIME
framework is unfeasible.

For these reasons, there are no alternatives for imputing the missing data in this re-
search. Hence, we were forced to use imputation as a solution to the missing data problem
in our ML pipeline. Comparing various imputation methods, performing cross-validation,
and repeating the experiments for multiple seeds is done because we want to mitigate the
drawbacks of the imputation approach as much as possible.

5.1.2 Data imputation effects on explanations

A limitation that we must note, which is directly related to the limitation discussed above,
is the influence of data imputation on the pipeline phase after predicting the disease pro-
gression. It is likely that negative effects of imputation extend into the generated expla-
nation fidelity when assessed against the ground truth explanation. Since LIME generates
explanations based on fitting a locally representative model, this locally fitted model will
suffer from the same negative influence of data imputation as the pipeline’s main predictive
model. As such, features containing imputed values may stand out significantly from their
non-imputed counterparts and be flagged as important or interesting because they are not
representative of the missing value, rather than because the feature truly is important.

At the same time, we note that this does not necessarily mean such an explanation
is incorrect. In fact, if LIME emphasises a feature as a result of an imputed value, the
real-world feature importance is not reflected, but the explanation does reflect the feature
importance within the model. This distinction is noteworthy, because it highlights the
ability of the explanation phase to aid in finding shortcomings of the predictive phase.

5.1.3 Imputation comparison

A very different limitation caused by data imputation in this research is a result of the
choice of imputation methods. As mentioned in Chapter 3, we use three imputation meth-
ods. Two of these methods rely on "horizontal" data for calculating the value used to
impute a missing value with: the population mean and event mean techniques. Both of
these can fill a missing value as long as there is at least one other patient record for the
column that must be filled, either across the entire dataset population or across the popu-
lation for a specific event respectively. This is very likely to be the case, as both datasets
contain a population in the hundreds or even thousands. However, the third technique,
forward and backward filling, relies on "vertical" data. Instead of having hundreds or even
thousands of records that can be used as reference for imputation, only a number of records
equal to the length of the sequence that we are performing imputation on can be used. This
number is orders of magnitude smaller, for the PPMI and diabetes case studies it is 6 and
10 respectively. As such, the likelihood of a sequence having a column for which imputation
cannot be performed due to there being no reference values increases drastically.

In such cases, removing the column is not the desired solution. This is because it is
likely that a large majority of other sequences do not have this issue, and removing the
column would have us actively remove a lot more information than simply removing the
problematic sequence. Hence, we remove such sequences to retain as much information
as possible while still solving the imputation problem. Even though this methodology
solves the problems with the imputation step itself, it can be considered undesirable for
our comparison of imputation methods. After all, removing any sequences with empty
columns to accommodate forward and backward filling effectively "hobbles" the other
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imputation techniques. These techniques could include the removed sequences without
issue and possibly use this additional information to improve predictive performance. As
such, we considered doing an additional comparison between using all sequences and using
the sequences suited to forward and backward filling, for each mean-based imputation
method. However, we decided against performing this additional comparison.

We justify this decision by pointing out the way data splits and cross-validation folds
are constructed. While we can fix the distribution of data across the splits and folds using
seeds to compare various techniques if the input data is the exact same, even adding only
a single sample results in the distribution being completely different regardless of the seed
due to the input data being different. As such, there is no way of fairly comparing only the
effect of having additional sequences, because there is also an effect on the performance
caused by the different distribution of data across the various splits and folds.

5.1.4 Data dimensionality

As mentioned in Chapter 4, in the context of the PPMI case study the explanation results
do not correlate with our expectations, whereas the explanation results for the diabetes
case study do. We hypothesise that the observed phenomena in the PPMI case have the
same underlying cause. We note the following: Rad et al. [52] state that as the dimen-
sionality of data increases, the likelihood of feature values incidentally being correlated
with events or anomalies increases as well. They explicitly add that for time-series data,
high dimensionality is even more problematic. As time-series data does not only contain
x amount of features, but also y timepoints at which each feature exists, the "effective"
dimensionality of the data increases to x ∗ y. As such, the likelihood of incidental corre-
lation is high. If this knowledge is applied to the PPMI dataset, we find that the dataset
effectively contains 483 features over all timepoints (83 feature columns * 6 visits). That
number is almost twice the number of sequences available for training the pipeline, which
is 247 after removing the test set.

Considering the extremely high effective dimensionality of the PPMI dataset, it is
then logical that the predictive performance in this case study is relatively lower than the
predictive performance for the diabetes case study. In turn, we expect the explanations
to reflect a poor prediction model. However, explanations reflecting a subpar prediction
model may not be the only issue resulting from the dimensionality problem. Because the
LIME framework is based on local approximation, as discussed in Chapter 2, the high
dimensionality of the data also leads to poor fitment of the local approximation in the
LIME framework. Molnar [53] mentions that this dimensionality problem is exacerbated
by the calculation of the kernel width in the Python implementation of LIME. The kernel
width is what determines how close perturbed instances must be to influence the model.
The larger the kernel, the farther away an instance can be while still exercising influence
on the approximation model. Molnar explicitly mentions that the Python implementation
of LIME calculates the kernel width using Equation 5.1.

kernel_width = 0.75 ∗ sqrt(ncolumns) (5.1)

If we calculate the kernel width for the diabetes dataset and the PPMI dataset using
the same equation, we see that the diabetes dataset has a kernel size of 8, as shown
in Equation 5.2.

kernel_width = 0.75 ∗ sqrt(120) ≈ 8 (5.2)

whereas the PPMI dataset has a kernel size of 16, as shown in Equation 5.3.

kernel_width = 0.75 ∗ sqrt(483) ≈ 16 (5.3)
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Thus, even though the PPMI dataset contains 23 times less data sequences, the kernel
size for this dataset is twice the kernel size for the diabetes dataset. This oversized kernel
likely causes too many perturbed instances to have an impact on the local approximation,
leading to the poor explanations observed in the results for the PPMI case study.

5.1.5 Generalisability of the pipeline

A high degree of generalisability is a desirable feature for most systems, and this is no
different for our pipeline. A generalisable pipeline means the pipeline is applicable to a
wide range of diseases. To assess the degree to which our proposed pipeline is generalis-
able, we use a train-test split as well as cross-validation. By assessing how variable the
predictive performance is across these splits and cross-validations, we can get an indica-
tion of whether the pipeline performs well on unseen data. There are two primary reasons
why out-of-sample performance may be subpar. The first is that the pipeline is simply
not generalisable, and only suits a specific case due to the architecture of the pipeline.
The second is that a data distribution problem is present, leading to the model not being
trained on data that is representative of the population.

In the PPMI case study, we see extreme variability in the predictive performance of
the pipeline as shown in Table A.1. Across different seeds for splitting the data as well
as cross-validation model variants, there is a very high standard deviation in the MSE.
In the worst case for example, seed 1998, we see a standard deviation of 37.4% of the
average MSE when using population mean imputation. For seed 787 on the other hand,
the same imputation method results in a much lower standard deviation of 9.0% of the
average MSE. This suggests that the data distribution over the splits and folds has a very
strong effect on the predictive performance.

One of the most logical explanations for the high variability in this context would be
the size of the PPMI dataset. If we look at the difference in size between the diabetes
and PPMI datasets, we see that once processed, the diabetes dataset contains nearly 6700
patients, whereas PPMI only contains 290. As the train-test split is 85-15%, this only gives
us a test set of 43 patients. If this very small sample contains a disproportionate amount of
patients that are more difficult to predict for than average, for example due to them having
a lot of imputed (and thus possibly not representative) values or biologically uncommon
jumps in disease severity or some biomarker, the performance on this test set will be very
poor. The same principle applies to the distribution of patients across cross-validation folds.
To further solidify this explanation, the standard deviation across cross-validation within
the diabetes dataset is significantly lower than the PPMI dataset, between 3.2% (seed
959143, population mean imputation) and 1.2% of the MSE (seed 1998, population mean
imputation). The larger dataset size appears to correlate with a lower degree of variability.

5.1.6 Temporal irregularity assumptions

A limitation that is caused by an assumption we make, is that we do not actively account for
temporal irregularity in this research. In this research, we note that the problem of tempo-
ral irregularity exists in (healthcare) time-series data, but we do not actively align the time
of data points. As briefly discussed in Chapter 3, our assumption is not without reason.

For our first case study, PPMI, we justify the assumption that any temporal irregular-
ity does not require intervention because of the structured planning that is the backbone
of the PPMI study. The visits we use in our research are yearly, and each visit is regis-
tered with the appropriate event identifier. As such, even if patient A has their second
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visit exactly a year after their first visit, and patient B has their second visit 13 months
after their first visit, the influence of this different interval on the captured trend of the
progression should be minimal.

For our second case study, diabetes, there is no such strict planning. However, ac-
cording to the domain expert for this case, we can base our assumption on the Nederlands
Huisartsen Genootschap (NHG) (English: Dutch General Practitioners Association) guide-
lines for monitoring diabetes patients [54]. Because the data in the dataset is generated
by primary care providers such as general practitioners, this guideline is followed. Hence,
the data does not include (parts of) sequences which are recorded within only a few days
as a result of constant monitoring in the hospital. The reason for the request of the as-
sessments is important for justifying our temporal irregularity assumption too, because
the dataset mostly contains visits where the primary goal of the visit was monitoring the
HbA1c biomarker, as per the NHG guideline mentioned above. As the HbA1c biomarker
is an indication of blood glucose levels over the past three months, this is the interval
that the guideline suggests between visits. Thus, it is likely that all measurements are
taken at such intervals, along with the HbA1c measurement. As a result, the likelihood
of semi-consistent intervals is high enough to assume minimal impact of any irregularity
across the entire dataset population.

5.1.7 Validating explanations

The final limitation we need to mention is that we do not validate our explanations using
a domain expert for our first case study. As the data for our second case study is provided
to us directly by Medlon, we have a line of communication with a domain expert on the
diabetes dataset. This domain expert could share their expertise on the dataset and their
opinion on the predictions and explanations over the course of a number of meetings. We
used these meetings as our validation for the explanations for this case study.

For the PPMI case study, we acquired our dataset using a web portal. Thus, there was
no contact with a domain expert during this process or after. Due to time constraints,
we did not manage to get in contact with a domain expert on the PPMI study. As such,
the only validation that we can perform for this case study is for predictive performance.
As mentioned earlier in this chapter, however, it is unlikely that the explanations for the
PPMI case study are representative due to the dimensionality issue with the dataset.

5.2 Recommendations for future research

Our recommendations for future research focus on improving two parts of the pipeline: the
predictive model and the explanations. These are discussed separately.

5.2.1 Predictive model

The predictive model we use in this research is constructed using existing, state-of-the-art
components. Because some of these components are - as of yet - not widely used in the
context relevant for this research, the flexibility of some implementations is not very high.
All of the recommendations below are related to a lack of presence of data, so it is possible
that all of them need to be addressed simultaneously from an implementation perspective.

An example of flexibility that would be beneficial for the performance of the pipeline
as a whole, is the ability for the predictive model to handle ragged tensors. A set of ragged
tensors is essentially a set of data sequences of varying length. For example, three patients
that have six, five and six visits respectively. As currently implemented, the model in the
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pipeline cannot handle this and would require the patients with six visits be pruned back
to five visits, or for the patient with five visits to be removed, leaving only two patients.
In either case, information is lost as a result of inflexibility of the model. Hence, we
recommend that the flexibility of the model’s input is to be improved.

While the form of flexibility described above can be seen as revolving around missing
visits at the end of a sequence, the next flexibility improvement concerns missing visits
within a sequence. Such flexibility works differently for the two case studies in this research:
in the PPMI dataset, visit records are explicitly connected to a planning. As such, a
patient’s second visit may be labeled "visit 3" rather than "visit 2", because the visit takes
place at the intended time for "visit 3". The record "visit 2" remains non-existent for
that patient. In the diabetes dataset, there is no such planning. Each visit simply follows
up on the last registered visit and will be numbered as the direct followup. However,
if the model is capable of handling a missing visit, flexibility regarding such instances
is increased dramatically for both case studies. In the PPMI case, a patient visit could
simply be considered missing if a later visit is present for the patient. In the diabetes
case, it could be possible to use the time interval between visits to determine whether
a visit inbetween two visits is "logically" missing. For either case, such flexibility would
improve the amount and correctness of information captured in the dataset, subsequently
improving predictive performance.

Finally, we note the lack of flexibility regarding missing values within a single record.
The current implementation of the pipeline requires the input data to be complete, with-
out a single missing value. As discussed earlier as a limitation in Chapter 5, due to
technical feasibility, we were forced to use imputation regardless of the known associated
drawbacks. As such, we recommend researching whether the predictive model could be
made robust to missing values without imputation, and comparing whether this leads to
improved predictive performance.

5.2.2 Explanations

There are two aspects to the improvement of the explanations given by our pipeline. The
first is the fidelity or correctness of the explanations when compared to the ground truth,
the second is in the presentation of the explanations.

As mentioned in an earlier part of this chapter, we find that for the PPMI dataset,
there is most likely a dimensionality problem leading to very poor explanations. While this
problem is not explicitly caused by the explanation phase, one of the possible solutions
may lie there. In the explanation of the problem, we mentioned the calculation of kernel
width for the Python LIME implementation. This calculation might be a solution to the
high dimensionality problem for LIME. If the calculation for the kernel width is changed so
that it remains lower for high dimensional data, the explanations for this data may better
reflect the true inner workings of a prediction model. We recommend that the influence of
changing the kernel width calculation is tested in further research.

In our pipeline, we use the LIME framework to explain our predictions. LIME is an
established framework, and is used as a benchmark for other explainability frameworks
on a number of occasions as mentioned by Dieber and Kirrane [40]. However, they also
mention that LIME is not properly benchmarked itself. Dieber and Kirrane perform an
evaluation of LIME from a usability perspective, but they do not test the fidelity of the
framework. We define fidelity as the degree to which the explanation for a prediction
generated by LIME matches the ground truth of why the prediction should be what it is.
Because there is very little, if any testing done to confirm the fidelity of LIME, the fidelity
of the framework is to some extent uncertain. In this research we do not perform formal
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validation either, instead only using anecdotal evidence from a domain expert for one of
our two case studies. As a suggestion for future research, it would be valuable to assess
the performance of LIME including fidelity. A possible method for this would be to use
the Co-12 properties and associated evaluation methods introduced by Nauta et al. [55].

As a final recommendation, we would suggest improving the presentation of the ex-
planations provided by LIME. The paper by Dieber and Kirrane [40] mentioned earlier,
concludes that the visualisation of explanations offered by LIME are not very intuitive to
interpret without background knowledge of what each presented element of the explanation
represents. Furthermore, some parts of the explanations are cut off when the explanation
is presented. These cut-offs lead to, for example, discretisation boundaries being unread-
able. The raw information of the explanation, such as feature influence on the prediction
value, is accessible in the Python LIME implementation. As such, it is possible to use
this information to create a custom, improved presentation of the explanation. Examples
of such an improvement are a clearer guide of what each element of the explanation rep-
resents, as well as a different display of the feature influence plot, so that feature names
and values are not cut off as they are now.
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Chapter 6

Conclusion

In this chapter, we will answer each of our subquestions based on the performed systematic
literature review and subsequently answer our main research question "How can we improve
the interpretability and transparency of machine learning models aimed at prediction of
disease progression?". Furthermore, we present our recommendations for future research.

6.1 Subquestions

We start by answering each subquestion as defined in Chapter 1 separately.

6.1.1 Subquestion 1

Our first subquestion is as follows: "What are current trends and state-of-the-art in ma-
chine learning for disease detection and prediction of disease progression?". From our
systematic literature review included in Appendix C, we conclude that predicting a con-
tinuous value is preferred over a classification or discretised value, as a continuous value is
the most precise definition of what the disease severity level will be. A drawback of a con-
tinuous prediction compared to a classification, for example, is that a good proxy variable
for disease severity must be identified for the disease of which one is predicting the progres-
sion. Furthermore, we find that time-series patient data leads to the highest performance,
due to the complete overview of the progression mechanism that can be captured by look-
ing at feature interactions both at a certain time as well as over time. Finally, we conclude
that to accommodate the above requirements for state-of-the-art performance consists of
deep, recurrent neural network based models. These models are capable of handling the
high complexity of the input data due to their sophisticated deep structure, as well as the
time-series interpretation aspect as a result of the recurrent nature of the model.

6.1.2 Subquestion 2

The second subquestion we formulated, concerns data quality challenges: "What are com-
mon data quality challenges in machine learning for prediction of disease progression?". We
identify various challenges in our systematic literature review, of which we highlight three.

The first challenge identified is a high degree of heterogeneity in patient data. Patients
with the same disease may progress at very different rates, and even have biomarker values
that are highly uncommon for the condition that they are in. This is something inher-
ent to healthcare data which cannot be avoided by, for example, performing additional
data pre-processing.
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The second challenge is irregular temporal alignment of patient records. This challenge
is caused by patients having different time intervals between visits or assessments, but also
by patients missing a visit. Depending on the time scale of the time-series data, interval
discrepancies may or may not be significant for modelling purposes.

The final challenge we find in the literature is a high frequency of missing values in
medical datasets. This challenge may be the result of physicians not requesting the same
assessment for each patient visit, or an assessment failing to be taken or registered prop-
erly. Missing data issues can be tackled in various ways, such as imputation or removal
of incomplete records.

6.1.3 Subquestion 3

Our third and final subquestion is "What are common techniques for explaining machine
learning models in the context of disease progression modelling?". From our literature re-
view, we only learn that for state-of-the-art model types, there is very little, if any, focus on
transparency or interpretability. After the systematic literature review, we use knowledge
from other domains to identify explainability frameworks that are possibly applicable in
the context of ML models for predicting the progression of diseases.

6.2 Main research question

By combining the knowledge gained from answering our three subquestions, we can answer
our main research question: "How can we improve the interpretability and transparency
of machine learning models aimed at prediction of disease progression?". As this is a DSR,
explained in Chapter 3, our main research question is essentially a design problem. Thus,
we aim not only to gain knowledge on what needs to be done to achieve the solution to
the design problem, but also to create an artefact that solves the design problem.

If we start by answering our main research question as if it were a knowledge question,
the answer would be as follows: the interpretability and transparency of machine learning
models aimed at prediction of disease progression can be improved by integrating explain-
ability frameworks in the prediction process, such that the result of the entire process is
not only a prediction of disease progression, but also an explanation of why the model gen-
erates that prediction. However, because we treat our main research question as a design
problem, we also create the artefact that does this.

The resulting artefact we design and develop is our pipeline. The pipeline solves the
research problem that we identify at the start of this research: state-of-the-art machine
learning models for prediction of disease progression are not adequately transparent or
interpretable. Our pipeline does offer transparency and interpretability, whilst using a
state-of-the-art prediction model architecture. The demonstration of the functionality of
the pipeline, through applying it to two separate case studies with very different datasets,
shows that the pipeline is applicable to a range of diseases, even if particular compo-
nents do not perform well in their current form. Furthermore, a domain expert and data
owner for one of the case studies mentions that the predictions and explanations pro-
vided by our pipeline align with his expectations, and that the majority of explanations
offered by the pipeline seem to be logical. For the other case study, we observe poor
explanatory performance and hypothesise that this is due to the extremely high dimen-
sionality of the dataset. We also provide possible solutions for the poor performance in
case our hypothesis is correct.
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6.3 Future research

This research identifies a number of opportunities for future work. These opportunities are
primarily focused on two aspects of the pipeline: the predictive model and the explanations.

For the first aspect, the predictive phase, we recommend improving the flexibility of the
predictive model with regards to input data. Valuable improvements include the ability
to handle data sequences of unequal length within a dataset and robustness to missing
records or missing values within a record. These improvements may increase the number
of disease contexts that the pipeline can be applied in.

We provide two recommendations related to the explanation aspect of the pipeline.
We suggest investigating whether changing the kernel width calculation for LIME leads
to improvements in the fidelity of generated explanations. Such changes could prevent
fitment problems with the local approximation model that LIME trains as a result of an
oversized kernel width. Furthermore, we recommend improving the visualisation of the
explanations offered by LIME, as both literature and a domain expert in this research
consider the visualisations difficult to interpret.
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Appendix A

Imputation method comparison
results

Seed Imputation type Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average Std. dev.
787 Population mean 187.13 188.88 212.74 221.23 235.60 209.12 18.73
787 Event mean 199.37 216.98 217.98 290.36 235.04 231.95 31.31
787 Forward/backward filling 180.94 213.84 232.54 308.84 290.86 245.40 47.77
1998 Population mean 173.82 263.44 209.38 448.41 212.91 261.59 97.68
1998 Event mean 179.43 347.52 215.52 165.40 172.64 216.10 67.93
1998 Forward/backward filling 222.31 253.87 250.84 237.19 194.40 231.72 21.76
959143 Population mean 185.23 197.35 139.20 163.05 212.67 179.50 25.87
959143 Event mean 169.94 164.26 137.44 170.36 252.94 178.99 38.91
959143 Forward/backward filling 174.85 157.14 143.11 130.08 181.54 157.34 19.17
25 Population mean 274.09 265.23 304.78 372.65 301.4 303.63 37.73
25 Event mean 312.20 289.64 330.55 325.54 370.75 325.74 26.59
25 Forward/backward filling 255.71 249.09 237.76 287.00 265.50 259.01 16.65

Table A.1: The predictive performance results for the PPMI dataset, reported
in MSE. Bold indicates the best score for the imputation type across all folds and
seeds, italic indicates the worst score.

Seed Imputation type Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average Std. dev.
787 Population mean 42.71 41.34 44.12 42.55 41.98 42.54 0.93
787 Event mean 42.81 41.15 44.35 42.07 42.48 42.57 1.05
787 Forward/backward filling 42.52 41.83 44.41 41.63 42.19 42.52 0.99
1998 Population mean 46.56 45.74 46.35 45.02 45.41 45.82 0.57
1998 Event mean 46.57 45.13 45.97 45.10 44.83 45.52 0.65
1998 Forward/backward filling 45.98 44.60 44.80 43.70 44.65 44.75 0.73
959143 Population mean 41.89 42.24 42.17 42.00 45.48 42.76 1.37
959143 Event mean 41.59 42.40 41.49 42.02 44.96 42.49 1.28
959143 Forward/backward filling 42.39 43.23 42.38 42.64 41.77 42.48 0.47
25 Population mean 45.07 45.14 45.42 47.08 43.94 45.33 1.01
25 Event mean 46.12 45.28 45.56 47.55 44.58 45.82 1.00
25 Forward/backward filling 47.09 45.05 46.74 47.08 44.11 46.01 1.21

Table A.2: The predictive performance results for the diabetes dataset, reported
in MSE. Bold indicates the best score for the imputation type across all folds and
seeds, italic indicates the worst score.
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Appendix B

PPMI case study feature correlations
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Figure B.1: A plot of the correlation between the PPMI features and the target
UPDRS total score.
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Appendix C

Literature review

This review is aimed at identifying the state-of-the-art in machine learning for disease
detection and prediction of disease progression, thus answering SRQ1 as defined in Chapter
1. It identifies various types of predictions and models, as well as various challenges related
to them. The review is performed following the Kitchenham methodology [56]. Following
this methodology, a review must specify a review protocol. This contains the research
questions and review methods. On top of this, a defined search strategy must be used and
documented, to allow readers to reproduce and assess the search. To select studies to be
reviewed, inclusion and exclusion criteria must be formulated. Finally, what information
is to be extracted from each paper must be defined.

The software used to perform this review is Covidence1, a web-based collaboration soft-
ware platform that streamlines the production of systematic and other literature reviews.

C.1 Research questions and search strategy

The research questions formulated for this literature review are the following:

RQ1 What are current trends and state-of-the-art in machine learning for disease
detection and prediction of disease progression?

SRQ1 What machine learning techniques are used in the field of disease detection?
SRQ2 What machine learning techniques are used in the field of prediction of disease

progression over time?
SRQ3 What techniques are used to mitigate common issues in healthcare data qual-

ity?

We choose to use Scopus, PubMed, and WebOfScience as source libraries for this lit-
erature review. Scopus is the largest indexer of global research content that is mostly
focused on technical fields, PubMed is a large knowledge base for medical articles, and
Web of Science is a middle ground between the two aforementioned libraries. We perform
the searches on the University of Twente network, meaning that institutional access can be
used to access all sources available to the university. The search term combinations that
we formulate for this are the following:
("Machine learning" OR "deep learning" OR "data science") AND ("disease prediction"
OR "disease detection") AND ("biomarker" OR "clinical data")
("Machine learning" OR "deep learning" OR "data science") AND ("disease progression")

1Covidence systematic review software, Veritas Health Innovation, Melbourne, Australia. Available at
www.covidence.org
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AND "prediction" AND ("biomarker" OR "clinical data")
By using this combination, both literature focusing on the detection of diseases, as well
as literature concerning the prediction of disease progression over time is included in the
results. These queries return a total of 802 results across all three libraries.

C.2 Study selection and data extraction

To be able to filter for literature that is relevant to the aim of this review, we define
a number of inclusion and exclusion criteria. Inclusion criteria serve to ensure that pa-
pers with high relevance to the research questions are included in the resulting set of
literature. Exclusion criteria serve to remove papers that do not add value to answering
the research questions.

C.2.1 Inclusion criteria

IC1: The paper directly addresses one or more research questions for this review
IC2: The paper concerns the use of machine learning to analyse biomarker or clinical
information to detect diseases or predict the progression of diseases in patients

C.2.2 Exclusion criteria

EC1: The paper cannot be accessed via the internet
EC2: The paper is only published in a language other than English or Dutch
EC3: The paper length (excluding appendices) is 5 pages or less
EC4: The paper is not a peer reviewed paper
EC5: The paper does not directly address the concepts of machine learning and disease
(progression) prediction, instead only referring to them as side topics or knowledge domains
EC6: The paper addresses SRQ1, but is not a secondary study

C.2.3 Study selection

Figure C.1: An overview of the literature selection process.

A visualisation of the selection process is shown in Figure C.1. The first step in selecting
the studies to be included in the review is removal of duplicates that result from multiple
searches across various source libraries. This leads to the removal of 264 studies, leaving
538 to be screened. This means approximately 33% of the results are duplicates.

The next step is removing results that were not peer reviewed papers. This brings the
number of results down from 538 by 130, to a total of 408. As such, of the initial 538
non-duplicate results, circa 24% is not a peer reviewed paper.
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Following removal of non-peer reviewed paper results, we screen the remaining studies
based on title and abstract, using the inclusion and exclusion criteria mentioned above.
This leads to the removal of 308 irrelevant studies, leaving exactly 100 studies to be assessed
for eligibility based on the full text of the study. At this stage, we have excluded over 87% of
the original 802 search results. Examples of irrelevant studies include prediction of patient
response to medication [57] and proposals for Internet-of-Things based architectures to
improve healthcare [58].

In the final selection step, we apply the inclusion and exclusion criteria to the full
text of the 100 papers that remain. This process removes another 36 papers, meaning we
used 64 papers for data extraction. This equates to approximately 8% of the original
size of the results.

An overview of all papers involved in the last three steps of the selection process can
be found on Github2.

C.2.4 Data extraction

During the data extraction stage, we extract the following information from each paper:
title, author, year of publication, and what topic it is relevant to. Aside from this infor-
mation, we extract various fields regarding the dataset used, data quality and preparation,
machine learning techniques used, performance metrics and achieved scores if applicable.

C.3 Results

A full overview of the results of the search and selection process can be found in Appendix
D. This includes the basic information for all papers for which data was extracted to
complete this review. Insights in distribution of metadata of the papers, as well as findings
from the contents will be discussed in this subsection. For an overview of the answers each
paper provides to the various research questions, we refer to Appendix E.

C.3.1 Literature details

As can be seen in Figure C.2, by far the largest number of papers used in this review were
published in 2021, with 28 papers out of the 64 papers included being published in that
year. Aside from a single publication in 2009, all publications are from 2015 or newer.
This is in line with the trend of increasing interest in the topic of using machine learning
in disease detection and prediction of disease progression in recent years.

Figure C.2: The number of pa-
pers published per year.

Figure C.3: The number of pa-
pers per topic.

2https://github.com/StijnBerendse/Literature-review
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As our research regarding machine learning techniques is split between two research
questions, papers were classified as being relevant to one of these. Papers relevant for
SRQ1 were classified as "detection technique review". For SRQ2, a subdivision was made
between papers on milestone/event prediction (time to conversion from current disease
stage to a higher severity class), and papers on trajectory prediction. As visible in Figure
C.3, most papers focus on milestone/event prediction. Three papers relevant to SRQ2 are
classified as both milestone/event prediction and trajectory prediction, as multiple models
were built, covering both topics.

C.3.2 Disease detection

We reviewed various secondary studies to find the most common and best performing
machine learning techniques for disease detection. The area of application includes a wide
variety of diseases, with the majority being aimed at detection of AD [59, 60, 61, 62, 63].

Interestingly, there seems to be a large overlap between techniques used, regardless of
the disease that the model is being applied to. For example, every single study except the
one by Su et al. [64] uses Support Vector Machine (SVM) or an extension of SVM capable
of handling image data. The SVM (based) models are reported as the best-performing
model by many studies [65, 66, 67, 63], while Marti-Juan et al. [59] and Kendrick et al. [43]
mention SVM as the best alternative to deep learning methods in case some degree of
interpretability is desired.

Another highly popular technique for disease detection is the use of random forest-
based models. Out of the 14 total studies on disease detection, 9 mentioned the use of
random forest models [65, 43, 66, 68, 67, 69, 61, 70, 71]. This makes the technique slightly
less popular than SVM. Aside from the lower popularity, the performance of random forest
based models is reported to be lower by all studies comparing SVM and random forest
[65, 66, 67, 63, 43].

C.3.3 Prediction of disease progression

In this literature review, we identified two main types of progression prediction: trajectory
prediction and milestone prediction. Trajectory prediction is based on predicting biomark-
ers, disease severity or other disease-related features over time. Milestone prediction is
focused on predicting the occurrence of a single event, such as conversion from a lower
disease severity level to a higher severity level, or the death of a patient. We first discuss
milestone prediction, followed by trajectory prediction.

For milestone prediction, we found that there are two main types of predictions: binary
predictions (for example whether a patient will or will not progress to a more severe disease
state) and predictions of event probabilities.

We found that the latter type of prediction is often performed with a Cox Proportional
Hazards model, often combined with Kaplan-Meier curves for visualisation. The Cox
Proportional Hazards model is based on a regression that takes into account the effect
of covariates on the survival chance of a subject, first introduced by Cox [72]. Nazha et
al. [73] and Chen et al. [74] used the model for its most basic purpose: to predict survival of
patients in multiple sclerosis and COVID-19 respectively. As mentioned however, milestone
prediction may also substitute survival for some disease event. In most of these cases, this
means predicting probability of conversion from a healthy state to a disease state [75, 76],
but interestingly we also found a single case in which this was the other way around. Eng
et al. [77] used a Cox Proportional Hazards model to predict the probability over time
of disease becoming dormant.
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Binary predictions are often made using techniques more closely related to disease
detection. Out of 27 papers, we found that random forest based techniques are used in 10
papers and SVM based techniques in 8. In three papers, SVM and random forest models
are compared [78, 79, 80], with SVM outperforming random forests in both papers that
mention performance scores.

Another interesting finding is that most of the aforementioned papers use single data
timepoints. Papers using longitudinal data are quite rare for this type of prediction, and
tend to use more complicated models, more specifically models with some form of internal
recurrence. Examples of such models include Recurrent Neural Network (RNN) based
models and its various subtypes. A popular RNN subtype is Long Short Term Memory,
or LSTM for short. We found that four papers used LSTM to perform their prediction
task [81, 79, 82, 80]. Two papers used LSTM in conjunction with another model. Chen et
al. [83] used LSTM in conjunction with an autoencoder model to handle the longitudinal
nature of their dataset. An et al. [84] combine LSTM with a convolutional neural network
(CNN) to create an LSTM-CNN model. This model first includes an LSTM layer to handle
longitudinal data, followed by a convolutional layer for further classification based on the
LSTM output. A different subtype of RNN, is a Gated Recurrent Unit (GRU) based
model. De Brouwer et al. [51] use this architecture to propose a time-aware model for
predicting whether multiple sclerosis patients will progress.

The second type of prediction that we identified is trajectory prediction. This prediction
type is based upon predicting the exact condition of patients at a certain timepoint or over
time. In the trajectory prediction domain, we find that simpler models such as SVM and
random forests are much less popular. Out of all 20 papers in which trajectory prediction
is performed, only 3 used SVM or SVM based models [85, 86, 10], the same number
as random forest based models [87, 88, 10]. However, a new type of architecture does
surface: two-step systems. Dadu et al. [87], Bhagwat et al. [89] and Sadiq et al. [90]
propose systems that are based upon the concept of using an initial step to explicitly
create patient subgroups that form trajectory clusters or phenotypes, followed by a second
step that assigns patients to one of these subgroups. Bhagwat et al. [89] explicitly mention
a limitation of these systems, stating that computational complexity is the main reason for
the decision to limit the number of phenotypes to only two. Another interesting approach
to this is taken by Schulam and Saria [91], who use population baselines to generate a
very general trajectory and then manipulate it using patient specific data to create a
personalised trajectory prediction.

Similar to the milestone prediction domain, papers using longitudinal data generally
move towards more complex models such as the aforementioned RNNs and its subtypes
[92, 93, 94, 80].

C.3.4 Data quality issues

In this review, we also identified several problems concerning the data quality in the
healthcare domain.

Many papers mention data sparsity, or missing data, as a problem that must be solved:
(biomarker) measurements taken are not necessarily consistent throughout various visits,
even for the same patient. A large number of these papers mention the use of a form of
imputation to mitigate the problem [59, 95, 96, 86, 10, 81, 97, 74, 98, 94, 82, 80]. Imputation
techniques vary from longitudinal imputation [87, 95, 94] to cluster-based techniques [80].

However, there are also papers that explicitly avoid imputation to prevent a large draw-
back: bias resulting from filled values that are non-representative of the truth [83]. Instead,
the authors of these papers opt for signaling missing values in a separate vector [99], or
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performing their experiments both with and without imputation to compare results [88].
A completely different approach to the sparsity problem is taken by Larie et al. [92] and
Schmidt-Erfurth et al. [75]. They opted to avoid the issue, using a synthetic dataset and
a dataset recorded for their research respectively. Another unique approach was used by
Schulam and Saria [91], who used the population average-based nature of their model to
mitigate data sparsity to some extent.

Finally, we found various papers that used exclusion of features or data points as an
approach to mitigate data sparsity. For example, Dadu et al. [87] excluded patients that
did not have complete followup data (not reaching the required number of recorded visits),
as well as features that had > 5% missingness across the dataset population. A similar
approach was taken by El-Sappagh et al. [80] and Sun et al. [95]. While this approach
has no risk of incorrectly imputed data skewing results, exclusion based mitigation does
potentially remove relevant data from a dataset, which may reduce predictive performance.

Another challenge encountered in papers included in this review is temporal irregularity.
By this, we mean irregularity in when samples are taken from patients. For example,
patient A may have bimonthly samples between t0 and t8, and a final sample from t11,
while patient B has samples taken at regular three month intervals between t0 and t12,
where tm denotes the time into the trial in months (see figure C.4). This challenge is
exclusive to papers that use longitudinal data rather than single time-points to predict
disease progression, but papers comparing these two approaches show an advantage in
using longitudinal data over using a single time-point in prediction performance [89]. As
such, it is important that this challenge can be solved to achieve optimal performance.

Figure C.4: An example of temporal irregularity in biomarker sampling.

Various handling methods are proposed, but they can be divided in two main cate-
gories. The first is handling by creating a robust model and the second is handling by
pre-processing. This is supported by Marti-Juan et al. [59], who state that "temporal
alignment" can be approached in two ways: pre-processing for a specific progression model
and approaching this as a standalone problem. The first of these generally uses temporal
characteristics to aid in integrating some form of decay function [84, 82, 81, 51, 94] in the
proposed model. In these cases, the pre-processing is done for the specific model that is
being developed. The latter often concerns some form of weighting time-points based on
temporal characteristics [95, 100] or including temporal characteristics as a (normalized)
feature to be interpreted by the model [85, 97]. These approaches are more model-agnostic,
which fits the standalone problem concept.

A different approach for solving a problem related to temporal irregularity was taken
by Chen et al. [83], who discarded "extra" visits between the first ("baseline") and last
visit. This ensured each patient had the same number of visits to train with, but comes at
the cost of losing the additional information that including all visits may offer.
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Similar to data sparsity issues, Larie et al. [92] and Schmidt-Erfurth et al. [75] circum-
vent temporal irregularity issues altogether due to their choice of dataset.

The last data quality problem we identified is class imbalance. Various papers mention
this issue, with the large majority choosing to under- or oversample data to synthetically
balance the data, such as Velazques and Lee [101] and Papaiz et al. [10]. Both Dinov et
al. [86] and El-Sappagh et al. [80] use SMOTE for this same purpose. A related, but not
pre-processing based technique is used by Shafiee et al. [102], who use a balanced random
forest technique. This technique performs undersampling internally to balance input data.

A different approach to this problem is taken by Singh et al. [103], who include a
precision-recall area under curve metric in their evaluation, to highlight possible resulting
bias from the data imbalance on the predictions.

C.4 Discussion

C.4.1 Disease detection

From the literature, we can see that the disease detection field is quite mature: there is
a wide variety of techniques that perform well, at a relatively low complexity and thus
with a decent level of transparency in how the model comes to its prediction. SVMs
are the main model type for this field, offering near deep-learning level performance at a
fraction of the required input data and computational cost. However, we note that studies
which review (deep learning) techniques for longitudinal data such as the ones by [64]
and [62] do not include SVM or do not report on the performance of SVM respectively.
Thus, a direct comparison between SVM and deep learning techniques cannot be made
for longitudinal data interpretation.

C.4.2 Prediction of disease progression

For progression prediction, we see two data categories, and two prediction categories.
The data categories are single timepoints and longitudinal data. Longitudinal data offers
higher performance over longer timespans due to the possibility of using temporal relations
between data points, but requires more input data. This is because a single patient creates
a single longitudinal training datapoint. Single timepoint based systems on the other hand,
can use each patient visit as a separate training datapoint. To achieve the best possible
performance, models inherently capable of handling such longitudinal data series should be
developed further. This is because chronic disease progression often spans a period up to
several years, which is better suited to longitudinal data based systems. Well-performing
examples of such models are Recurrent Neural Network based models, which inherently
perform well on sequential data due to the ability to feed outputs from a layer back into
its input. This allows the model to discover patterns in sequential data.

The two prediction categories are milestone predictions versus trajectory predictions.
While milestone predictions largely share their pool of techniques with disease detection
techniques, they may offer less value for supporting clinical decision making. The predic-
tions are mostly binary, only stating whether a certain event will take place, but not when
or to what extent. Trajectory predictions may offer this additional information, especially
being more specific regarding the severity over time. One of the drawbacks of trajectory
prediction, is that a good proxy for disease severity must be found. For some diseases
this can be a measurable datapoint, such as the forced expiratory volume functioning as a
proxy for pulmonary exacerbation in cystic fibrosis patients [104]. In other cases, such as
AD, a disease severity is assigned based on tests that result in a cognitive score [105].
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C.4.3 Data quality

Data quality issues found in this review are similar to the common problems identified
in Chapter 1. From the literature included in this review, we find that data quality is a
significant issue that ranges from class imbalance to temporal alignment. Furthermore, it
is approached very differently across proposed systems, even if the same dataset is used.
This is partially problematic because not all methods are equally performant, but also
because it makes comparison between proposed models more difficult. Two models trained
using the same dataset may have a performance difference in part due to the variation in
pre-processing performed on the data, rather than the performance of the models them-
selves. The development of models that are robust to some of these data quality issues is
promising, but further research in the direction of this would be advantageous to aid in
the development of and comparison between prediction models.

C.5 Conclusion

From this review we have learned what techniques are used for disease detection and pre-
diction of disease progression, as well as mitigation of data quality issues in the healthcare
domain. We find that SVMs are the main model type for disease detection as well as
milestone/event prediction. For prediction of disease trajectory, we find that more com-
plex models such as RNNs are popular. This type of prediction and the associated models
would be most useful for supporting clinical decision making at an early stage in (chronic)
diseases, due to the added value of using longitudinal data and more fine-grained predic-
tions. The development of models robust to common data quality issues in healthcare is
promising, but further research in the direction of this would be advantageous to aid in the
development of and comparison between prediction models. To conclude, opportunities
for further research aimed at predictive performance lie in predicting disease trajectories
using longitudinal data, and improving mitigation of data quality issues.
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Appendix D

Literature overview

Table A.1: An overview of all papers used for data extraction.

ID Title Author(s) Ref Year Relevance
1 Integrative Analysis using Coupled

Latent Variable Models for Individu-
alizing Prognoses

Schulam and
Saria

[91] 2016 Trajectory predic-
tion

2 Early detection and risk assessment
for chronic disease with irregular lon-
gitudinal data analysis

He et al. [85] 2019 Trajectory predic-
tion

3 A survey on machine and statistical
learning for longitudinal analysis of
neuroimaging data in Alzheimer’s dis-
ease

Marti-Juan
et al.

[59] 2020 Detection tech-
nique review

4 The role of machine learning in devel-
oping non-magnetic resonance imag-
ing based biomarkers for multiple scle-
rosis: a systematic review

Hossain et al. [65] 2022 Detection tech-
nique review

5 Flexible link functions in a joint hier-
archical Gaussian process model

Su et al. [104] 2020 Trajectory predic-
tion

6 Identification and prediction of
Parkinson’s disease subtypes and
progression using machine learning in
two cohorts

Dadu et al. [87] 2022 Trajectory predic-
tion

7 Modelling prognostic trajectories of
cognitive decline due to Alzheimer’s
disease

Giorgio et al. [106] 2020 Milestone/event
prediction

8 Patterns of joint involvement in juve-
nile idiopathic arthritis and prediction
of disease course: A prospective study
with multilayer non-negative matrix
factorization

Eng et al. [77] 2019 Milestone/event
prediction
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Table A.1 – continued from previous page
ID Title Author(s) Ref Year Relevance
9 Automatic Prediction of Cognitive

and Functional Decline Can Signifi-
cantly Decrease the Number of Sub-
jects Required for Clinical Trials in
Early Alzheimer’s Disease

Shafiee et al [102] 2021 Milestone/event
prediction

10 NfL predicts relapse-free progression
in a longitudinal multiple sclerosis co-
hort study

Uphaus et al. [107] 2021 Milestone/event
prediction

11 Personalized Prediction Model to Risk
Stratify Patients With Myelodysplas-
tic Syndromes

Nazha et al. [73] 2021 Milestone/event
prediction

12 Prognostic model for multiple
myeloma progression integrating gene
expression and clinical features

Sun et al. [95] 2019 Milestone/event
prediction

13 The use of Artificial Neural Networks
to Forecast the Behavior of Agent-
Based Models of Pathophysiology: An
Example Utilizing an Agent-Based
Model of Sepsis

Larie et al. [92] 2021 Trajectory predic-
tion

14 Prediction of Individual Disease Con-
version in Early AMD Using Artificial
Intelligence

Schmidt-
Erfurth et
al.

[75] 2018 Milestone/event
prediction

15 Correlation-Aware Sparse and Low-
Rank onstrained Multi-Task Learn-
ing for Longitudinal Analysis of
Alzheimer’s Disease

Jiang et al. [105] 2019 Trajectory predic-
tion

16 Derivation and validation of a
machine learning risk score using
biomarker and electronic patient data
to predict progression of diabetic
kidney disease

Chan et al. [96] 2021 Milestone/event
prediction

17 Predictive Big Data Analytics: A
Study of Parkinson’s Disease Using
Large, Complex, Heterogeneous, In-
congruent, Multi-Source and Incom-
plete Observations

Dinov et al. [86] 2016 Trajectory predic-
tion

18 Modelling Patient Trajectories Using
Multimodal Information

Silva and
Matos

[108] 2022 Milestone/event
prediction

19 Modeling longitudinal imaging
biomarkers with parametric Bayesian
multi-task learning

Aksman et
al.

[109] 2019 Trajectory predic-
tion

20 Motor Progression in Early-Stage
Parkinson’s Disease: A Clinical Pre-
diction Model and the Role of Cere-
brospinal Fluid Biomarkers

Ma et al. [88] 2021 Trajectory predic-
tion
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Table A.1 – continued from previous page
ID Title Author(s) Ref Year Relevance
21 CT-Based Radiomics Analysis Be-

fore Thermal Ablation to Predict Lo-
cal Tumor Progression for Colorectal
Liver Metastases

Taghavi et al. [76] 2021 Milestone/event
prediction

22 Radiomic for Identification and Pre-
diction in Metastatic Prostate Cancer:
A Review of Studies

Kendrick et
al.

[43] 2021 Detection tech-
nique review

23 Modeling and prediction of clinical
symptom trajectories in Alzheimer’s
disease using longitudinal data

Bhagwat et
al.

[89] 2018 Trajectory predic-
tion

24 Multi-task exclusive relationship
learning for alzheimer’s disease pro-
gression prediction with longitudinal
data

Wang et al. [110] 2019 Milestone/event
prediction; Tra-
jectory prediction

25 Predicting the progression of Parkin-
son’s disease using conventional MRI
and machine learning: An application
of radiomic biomarkers in whole-brain
white matter

Shu et al. [111] 2021 Milestone/event
prediction

26 Group Guided Fused Laplacian Sparse
Group Lasso for Modeling Alzheimer’s
Disease Progression

Liu et al [99] 2020 Milestone/event
prediction

27 Machine learning models to predict
the progression from early to late
stages of papillary renal cell carcinoma

Singh et al [103] 2018 Milestone/event
prediction

28 Risk Prediction of Cardiovascular
Events by Exploration of Molecular
Data with Explainable Artificial Intel-
ligence

Westerlund
et al.

[66] 2021 Detection tech-
nique review

29 Model-based stratification of progres-
sion along the Alzheimer disease con-
tinuum highlights the centrality of
biomarker synergies

Sadiq et al. [90] 2022 Trajectory predic-
tion

30 Biomedical signals and machine learn-
ing in amyotrophic lateral sclerosis: a
systematic review

Fernandes et
al.

[68] 2021 Detection tech-
nique review

31 Longitudinal metabolomics of human
plasma reveals prognostic markers of
COVID-19 disease severity

Sindelar et
al.

[112] 2021 Milestone/event
prediction

32 Random forest model for feature-
based Alzheimer’s disease conversion
prediction from early mild cognitive
impairment subjects

Velazquez
and Lee

[101] 2021 Milestone/event
prediction

33 Machine Learning Solutions Applied
to Amyotrophic Lateral Sclerosis
Prognosis: A Review

Papaiz et al. [10] 2022 Milestone/event
prediction; Tra-
jectory prediction
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Table A.1 – continued from previous page
ID Title Author(s) Ref Year Relevance
34 Personalized Prediction of Tumor Re-

sponse and Cancer Progression on
Prostate Needle Biopsy

Donovan et
al.

[113] 2009 Milestone/event
prediction

35 Multi-task deep autoencoder to pre-
dict Alzheimer’s disease progression
using temporal DNA methylation
data in peripheral blood

Chen et al. [83] 2022 Milestone/event
prediction

36 Future activity prediction of multiple
sclerosis with 3D MRI using 3D dis-
crete wavelet transform

Acar et al. [78] 2022 Milestone/event
prediction

37 Predicting COVID-19 disease progres-
sion and patient outcomes based on
temporal deep learning

Sun et al. [81] 2021 Milestone/event
prediction

38 Predicting disease progression from
short biomarker series using expert
advice algorithm

Morino et al. [114] 2015 Trajectory predic-
tion

39 Longitudinal machine learning mod-
eling of MS patient trajectories im-
proves predictions of disability pro-
gression

De Brouwer
et al.

[51] 2021 Milestone/event
prediction

40 Time-to-event prediction using sur-
vival analysis methods for Alzheimer’s
disease progression

Sharma et al. [97] 2021 Milestone/event
prediction

41 Exploring Longitudinal Cough,
Breath, and Voice Data for COVID-19
Progression Prediction via Sequential
Deep Learning: Model Development
and Validation

Dang et al. [93] 2022 Trajectory predic-
tion

42 Machine learning of brain structural
biomarkers for Alzheimer’s disease
(AD) diagnosis, prediction of disease
progression, and amyloid beta deposi-
tion in the Japanese population

Shiino et al. [115] 2021 Milestone/event
prediction

43 Predicting Alzheimer’s disease pro-
gression using multi-modal deep learn-
ing approach

Lee et al. [116] 2019 Milestone/event
prediction

44 A predictive paradigm for COVID-19
prognosis based on the longitudinal
measure of biomarkers

Chen et al. [74] 2021 Milestone/event
prediction

45 Predicting sporadic Alzheimer’s
disease progression via inher-
ited Alzheimer’s disease-informed
machine-learning

Franzmeier
et al.

[117] 2020 Trajectory predic-
tion

46 Machine Learning Use for Prognostic
Purposes in Multiple Sclerosis

Seccia et al. [79] 2021 Milestone/event
prediction
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Table A.1 – continued from previous page
ID Title Author(s) Ref Year Relevance
47 Prediction of Alzheimer’s Disease Pro-

gression Based on Magnetic Reso-
nance Imaging

Zhou et al. [118] 2021 Milestone/event
prediction

48 Healthcare predictive analytics for
disease progression: a longitudinal
data fusion approach

Zheng and
Hu

[100] 2020 Trajectory predic-
tion

49 Applied machine learning in
Alzheimer’s disease research: omics,
imaging, and clinical data

Li et al. [60] 2021 Detection tech-
nique review

50 Time-Aware Multi-Type Data Fusion
Representation Learning Framework
for Risk Prediction of Cardiovascular
Diseases

An et al. [84] 2022 Milestone/event
prediction

51 Deep learning imaging features de-
rived from kidney ultrasounds predict
chronic kidney disease progression in
children with posterior urethral valves

Weaver et al. [119] 2022 Milestone/event
prediction

52 On the time-varying predictive per-
formance of longitudinal biomarkers:
Measure and estimation

Zhang et al. [98] 2021 Trajectory predic-
tion

53 Deep recurrent model for individual-
ized prediction of Alzheimer’s disease
progression

Jung et al. [94] 2021 Trajectory predic-
tion

54 Predicting progression of Alzheimer’s
disease using forward-to-backward bi-
directional network with integrative
imputation

Ho et al. [82] 2022 Milestone/event
prediction

55 Machine Learning and Data Mining
Methods in Diabetes Research

Kavakiotis et
al.

[67] 2017 Detection tech-
nique review

56 VGG-TSwinformer: Transformer-
based deep learning model for early
Alzheimer’s disease prediction

Hu et al. [120] 2023 Milestone/event
prediction

57 Applications of Machine Learning in
Human Microbiome Studies: A Re-
view on Feature Selection, Biomarker
Identification, Disease Prediction and
Treatment

Marcos-
Zambrano et
al.

[69] 2021 Detection tech-
nique review

58 Single and Combined Neuroimaging
Techniques for Alzheimer’s Disease
Detection

Amini et al. [61] 2021 Detection tech-
nique review

59 Environmental exposures in machine
learning and data mining approaches
to diabetes etiology: A scoping review

Mistry et al. [70] 2023 Detection tech-
nique review

60 Two-stage deep learning model for
Alzheimer’s disease detection and pre-
diction of the mild cognitive impair-
ment time

El-Sappagh
et al.

[80] 2022 Milestone/event
prediction; Tra-
jectory prediction
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Table A.1 – continued from previous page
ID Title Author(s) Ref Year Relevance
61 Computational Techniques and Tools

for Omics Data Analysis: State-of-
the-Art, Challenges, and Future Di-
rections

Kaur et al. [71] 2021 Detection tech-
nique review

62 Deep learning in mental health out-
come research: a scoping review

Su et al. [64] 2020 Detection tech-
nique review

63 Deep learning for Alzheimer predic-
tion using brain biomarkers

Goenka and
Tiwari

[62] 2021 Detection tech-
nique review

64 Transfer Learning for Alzheimer’s Dis-
ease through Neuroimaging Biomark-
ers: A Systematic Review

Agarwal et
al.

[63] 2021 Detection tech-
nique review
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Appendix E

Answers to literature review research
questions

Table A.1: An overview of the answers to research questions provided per paper

ID SRQ1 answer SRQ2 answer SRQ3 answer
1 Various models proposed

and tested, such as the
latent trajectory model
and various B-spline
variations. The final
proposed method is a
coupled latent trajec-
tory model, which is an
extension of the latent
trajectory model and
is based on statistical
analysis of multiple
biomarkers and cor-
relations between the
individual biomarker tra-
jectories. This predicts
a continuous trajectory,
rather than values at set
points in time.

Time irregularity and
data sparsity is tackled
by developing a model
that updates posterior
probabilities based on
new data. The "base-
line" trajectory is based
on various averages (such
as a population com-
ponent), which is then
fitted to the individual
based on the available
individual data.
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Table A.1 – continued from previous page
ID SRQ1 answer SRQ2 answer SRQ3 answer
2 This paper proposes

EDRA, a flexible mixed-
kernel method, to predict
onset of type 1 diabetes.
This is based on Struc-
tured Output SVM,
which it extends to be
usable with longitu-
dinal data. EDRA is
compared to regular
Structured Output SVM
and Max-Margin Early
Event Detectors. EDRA
performed best.

To handle time irregular-
ity, normalisation is per-
formed so temporal fea-
tures can be included in
a feature matrix.

3 Techniques mentioned
include SVM, least
squares regression, LR,
deep learning, multi-
task learning, multiple
kernel learning, and
LDA. Best performing
techniques are SVM
and deep learning, with
deep learning being more
scalable and SVM being
more light-weight and
interpretable.

The term "temporal
alignment" between
subjects is mentioned,
and split in two vari-
ations for approaching
this problem: perform-
ing preprocessing for
a specific progression
model, and approach-
ing it as a standalone
problem. Data spar-
sity/missing data is also
mentioned, along with
various handling options.
These include imputing
missing data, removing
incomplete records, ig-
noring the issue (strongly
advised against), and
using a machine learning
method robust to the
problem.
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Table A.1 – continued from previous page
ID SRQ1 answer SRQ2 answer SRQ3 answer
4 Techniques mentioned:

Online Sequential Ex-
treme Learning Machine,
LR, RF, KNN, SVM,
DT, NN, Naive Bayes,
Natural Language Pro-
cessing, Lasso, General-
ized Linear Model, Ad-
aBoost, Self-Organizing
Map. SVM performed
best across various
mentioned papers.

5 This paper proposes the
Joint Hierarchical Gaus-
sian Process Model with
Flexible Link Functions.
The model is aimed at
predicting the Forced Ex-
piratory Volume as a di-
rect proxy for future pul-
monary exacerbation.

6 The proposed system
consists of two steps:
clustering to obtain
progression subtypes,
followed by prediction
what subtype a patient
belongs to. Step one is
done using non-negative
matrix factorization
and gaussian mixture
models, step two using
a stacking ensemble of
RF, LightGBM and
XGBoost.

To handle data spar-
sity/missing data: pa-
tients without complete
followup data (missing
timepoints) were ex-
cluded. Features with
high missingnes were
excluded. Longitudinal
imputation was per-
formed to tackle missing
data points (provided
<5% missingness).
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Table A.1 – continued from previous page
ID SRQ1 answer SRQ2 answer SRQ3 answer
7 The paper is focused on

predicting whether a pa-
tient with mild cognitive
impairment will progress
to a more severe dis-
ease stage by determining
whether their condition is
stable (sMCI) or progres-
sive (pMCI). The pro-
posed technique is Gen-
eralised Metric Learn-
ing Vector Quantization,
which extends the Learn-
ing Vector Quantization
concept by including a
full metric tensor to im-
prove the distance mea-
sure.

8 Only a small section of
the paper on progression
of the disease. This
section mentions the use
of Cox Proportional Haz-
ards to model survival
time. The survival time
is a "reverse" approach:
the time to zero is not
time to disease stage pro-
gression, but rather time
to disease inactivity.

9 Balanced RF method is
used to predict whether
patients belong to a sta-
ble or progressive pa-
tient group. Image
data is used indirectly by
first extracting to nom-
inal data to be usable
with the chosen tech-
nique.

To combat class imbal-
ance between ground
truth stable and progres-
sive patients, a balanced
random forest method
is used, rather than a
regular random forest.

10 This study is aimed at
predicting whether a pa-
tient progresses to next
stage MS based on dis-
ability severity score. Bi-
nary predictions on this
are made using SVM.
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Table A.1 – continued from previous page
ID SRQ1 answer SRQ2 answer SRQ3 answer
11 A Cox Proportional

Hazards model is fitted
to predict survival time.
Probability over time is
provided as well.

12 This study compares the
performance of Guan-
Rank Gaussian Process
Regression Model, Cox
Proportional Hazards,
Survival RF, and Gaus-
sian Process Regression
for predicting survival
in multiple myeloma
patients. The proposed
technique is the Guan-
Rank Gaussian Process
Regression Model. The
proposed system out-
performed the other
techniques.

Various problems were
mentioned: time irregu-
larity, data sparsity, and
data heterogeneity. To
combat sparsity, missing
values were imputed us-
ing the patient mean.
Data heterogeneity was
mitigated by normalizing
the data as part of pre-
processing. Finally, the
proposed GuanRank con-
cept was used to mit-
igate time irregularity
by weighting datapoints
based on their temporal
characteristics.

13 Predicting trajectory
of cytokine values over
time. This research
used a Long Short Term
Memory based Recurrent
Neural Network to be
able to use longitudinal
data for predicting the
trajectory of biomarkers.
LSTM based systems are
well suited for capturing
information from time
series data.

The challenge of het-
erogeneity in healthcare
data was mentioned in
this research, but rather
than solving this issue for
a real world dataset, the
challenge was avoided al-
together by using syn-
thetic data for training
and testing.

14 Prediction whether con-
version to disease will
take place, as well as the
probability of the event
over time. Predictions
performed using a sparse
Cox Proportional Haz-
ards model with LASSO
regularisation.

No challenges were en-
countered, because the
dataset used in this paper
was specifically for this
purpose. Time intervals
between check-ups were
set regularly, as were the
biomarkers measured at
each visit.
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Table A.1 – continued from previous page
ID SRQ1 answer SRQ2 answer SRQ3 answer
15 Predicting cognitive

scores over time using
ordinal features ex-
tracted from imaging
features. Various tech-
niques tested: LASSO,
Group LASSO, Low
Rank, Temporal Group
LASSO, Convex Fused
Sparse Group LASSO,
Matrix Similarity, and
the proposed model:
Correlation-aware sparse
and Low rank Con-
strained multi-task
learning (CSL). CSL
outperformed all other
models in this paper.

16 Use of an RF model
to predict progression of
diabetic kidney disease
based on an internally de-
veloped risk score. Prob-
ability of progression at
t+5 years was provided.

Data sparsity problems
were handled using sta-
tistical imputation.

17 Forecasting whether
patients will develop
Parkinson’s disease,
comparing the perfor-
mances of SVM and
AdaBoost. Best per-
formance was achieved
using an AdaBoost
model.

Imputation (MICE) done
to mitigate sparsity, but
also heterogeneity by
replacing outliers. R
SMOTE was used to
mitigate imbalance of
classes.
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Table A.1 – continued from previous page
ID SRQ1 answer SRQ2 answer SRQ3 answer
18 This paper is not truly

focused on progression of
a patient, but instead on
predicting whether a pa-
tient will be readmitted
and what their diagno-
sis will be. This is done
using a Neural Network
adaptation of the exist-
ing SAPBert and Clini-
calBERT systems. One
of the only papers that
use natural text as a data
modality.

19 Modeling and visualis-
ing longitudinal trajec-
tories (using annualized
rate of change) of vari-
ous AD-related biomark-
ers in various regions of
the brain. Model based
on Parametric Bayesian
multi-task learning.

20 Prediction of motor func-
tion in t+1 year, compar-
ing performance of var-
ious techniques. These
include Linear Regres-
sion, Ridge Regression,
Bayesian Regression, RF,
and Gradient Boosting
DT. No model outper-
formed the others with
statistical significance.

Samples where disease
severity score decreased
over time were discarded
due to assumption
of increasing severity.
Biomarker sparsity influ-
ence was investigated by
splitting the research in
two versions, one with
only motor scores (which
were complete), and
one with both biomark-
ers and motor scores
(containing the sparse
features).

21 Predicting probability of
the return of cancer tu-
mors over time using a
Cox Proportional Haz-
ards model.

83



Table A.1 – continued from previous page
ID SRQ1 answer SRQ2 answer SRQ3 answer
22 This paper is on ra-

diomics, so the data is
mostly image based. De-
tection techniques men-
tioned are SVM, LR,
kNN, DT, RF, and CNN.
CNNs have the best per-
formance of these, but of-
fer very low interpretabil-
ity and require a large
amount of data to train.
Alternatively if this is
not desirable, SVM of-
fers slightly worse perfor-
mance, but without these
drawbacks.

23 The aim of this paper is
to address issues regard-
ing longitudinal data use
for trajectory prediction
in AD. The added value
of using longitudinal data
as input is tested as
well. The methodology
is essentially modeling a
set of trajectory patterns
based on ground truths
and classifying new pa-
tients as part of one of
these patterns. This ini-
tial work includes only
2 and 3 trajectory pat-
terns for two different
cognitive scores respec-
tively, due to computa-
tional complexity. The
proposed technique for
this is LSN (Longitudinal
Siamese Network).
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24 This paper covers both

prediction by classifying
as one of two progres-
sion categories, but also
trajectory prediction
of separate biomarkers
for Alzheimer’s Dis-
ease. Various techniques
were tested against
the proposed system:
LASSO, Multi-Task
Feature Learning, Multi-
Task Exclusive LASSO,
Multi-Task Relationship
Learning, Multi-Task
Exclusive Relationship
Learning. The last
of these was the pro-
posed system, which
outperformed all other
systems.

25 This paper is aimed at
detection whether a pa-
tient is at high risk
of progression of Parkin-
son’s disease. SVM, NB,
kNN, and DT were used
to determine predictors
from MRI data.

26 Various methods are
used to predict cognitive
scores (MMSE, ADAS)
in 6 to 12 month time
steps. Methods used
are Ridge Regression,
LASSO, Temporal Group
LASSO, Convex Fused
Sparse Group LASSO,
and the proposed sys-
tem: Group Guided
Fused Laplacian Sparse
Group LASSO. The best
performing model was
the proposed system.

To combat sparsity bias,
a separate signal is in-
cluded to indicate incom-
plete target vectors.
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27 The proposed system

consists of varSelRF
feature selection com-
bined with a Shrunken
Centroid classifier to
predict the progression
of papillary renal cell
carcinoma.

To mitigate the influ-
ence of class imbalance,
the precision-recall AUC
metric is included for
evaluation of the model.

28 Paper aimed at detect-
ing cardiovascular dis-
ease in patients based
on clinical and demo-
graphical data. The
techniques mentioned for
this are CNN, LR, SVM,
RF, AdaBoost, and MLP.
SVM narrowly outper-
forms CNN for detection
of cardiovascular disease.

29 Predicting whether AD
patients will have fast or
moderate decline in the
future. A two step ap-
proach is proposed, with
the first step being clus-
tering to define progres-
sion phenotypes based
on existing data using
Dynamic Time Warping.
The second step is pre-
diction what phenotype a
patient belongs to using
Parameter-Efficient Net-
work model (PENet).

30 Detecting amyotrophic
lateral sclerosis. Men-
tioned techniques are
SVM, LDA, Quadratic
Classifier, ANN, KNN,
RF, MLP, and Factorial
Hidden Markov Model.
The best performance
was achieved using
Quadratric Classifier.
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31 Using Linear ElasticNet

to predict what disease
severity COVID patients
will experience based on
longitudinal biomarker
data.

32 An RF based system
was proposed to pre-
dict whether conversion
of Mild Cognitive Impair-
ment to Alzheimer’s Dis-
ease will occur.

Oversampling was used
to balance the target
classes.

33 This concerns a sec-
ondary study, which
is split in prediction
categories: disease pro-
gression (predicting
changes in ALS func-
tional scale rating),
survival time (classifying
in survival time group),
and need for support
(estimating need for
ventilation support at
various time points). For
each category, various
techniques were men-
tioned. For progression:
Ordinal DTs, RF, boost-
ing models, Bayesian
Regression Tree, SVM,
XGBoost, and SPADE.
For survival: DNN,
Gaussian Regression,
and Uniform Manifold
Approximation and Pro-
jection. For support:
RF.

Imputation was men-
tioned to handle data
sparsity. Aside from this,
under/oversampling was
mentioned to mitigate
class imbalance.

34 A Censored Data Sup-
port Vector Regression
model was proposed to
predict "probability of
clinical freedom" over
time in patients following
prostatectomy.
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35 This papers proposes two

methods: a multi-task
LSTM auto-encoder,
and a multi-task convo-
lutional auto-encoder.
Both were used to pre-
dict conversion of disease
stage in a binary way,
without skipping disease
stage steps (so stage 1 to
2, 2 to 3, not 1 to 3).

Issues with varying num-
bers of visits are han-
dled by only using two:
a "first" and "last" visit.
Imputation of data was
consciously avoided to
prevent resulting bias.

36 Predicting whether new
lesions will develop in
Multiple Sclerosis pa-
tients based on MRI
data. Methods used for
this binary prediction
are kNN, DT, SVM,
RF, NB, and LR. The
best performance was
achieved using SVM.

37 Predicting COVID-19
patient outcome based
on longitudinal data.
Longitudinal data is
short term (circa 7 days).
Various models were
compared: Cox Propor-
tional Hazards, kNN,
SVM, DT, Back Propa-
gation NN, Probabilistic
NN, RNN, LSTM, and
Time-aware LSTM. The
last model outperformed
all others at predicting
patient outcome.

Data sparsity is han-
dled by cherry picking
features without missing
data. Time irregularity is
handled by adapting the
LSTM model to be time
aware. This is done by
implementing a memory
discount based on time
gaps between measure-
ments.
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38 This paper is focused on

predicting the trajectory
inclusion of a biomarker.
It is not exactly a predic-
tion of the trajectory, but
of a curve that the algo-
rithm is X% certain (con-
fidence interval) that the
trajectory will fall under.
Predictions are made us-
ing a proposed Temporal
Expert Advice algorithm

39 Several techniques are
compared to a pro-
posed system to predict
whether disability score
in Multiple Sclerosis
patients increases to the
point that a new disease
severity stage is reached.
The techniques used
are: static RF, dynamic
RF, Bayesian Probabilis-
tic Tensor Factorisation
(BPTF), BPTF with RF,
Time-aware NN (GRU
variant of RNNcell), and
GRU-ODE-Bayes NN.
The proposed system
performed best.

The proposed system
(GRU-ODE-Bayes) is
time-aware to handle
time irregularity.

40 A Cox Proportional Haz-
ards model and a pro-
posed Neural Multi-Task
LR model were compared
for their performance in
predicting time-to-event
for disease stage progres-
sion.

Imputation was used to
handle data sparsity. To
handle time irregularity,
a duration defined as the
time between two visits
in which disease stage
progressed was added as
a feature.

41 This paper attempts to
predict the trajectory of
COVID-19 infections us-
ing longitudinal audio
data. The proposed
model is GRU based.

To handle data hetero-
geneity, longitudinal fea-
tures are used to look
at relative changes within
patients rather than ab-
solute values across pa-
tients.
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42 Predicting probabil-

ity of conversion to
Alzheimer’s Disease over
a 3 year timespan using
SVM with Voxel-Based
Morphometry kernel.

43 Use of GRU and LR to
predict conversion from
Mild Cognitive Impair-
ment to Alzheimer’s Dis-
ease. GRU is used to in-
terpret longitudinal data
from various modalities,
the output of which is
used for classification us-
ing LR.

44 Two-step system for
predicting COVID-19
survival chance. HTREE
used for feature selection,
followed by Cox Propor-
tional Hazards model
to determine survival
chance over time.

Missing data imputed us-
ing MICE.

45 Use of Support Vector
Regression to predict rate
of cognitive decline in pa-
tients that are geneti-
cally at risk of developing
Alzheimer’s Disease.

Data normalized to com-
bat heterogeneity.
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46 A secondary study on

predicting progression in
Multiple Sclerosis. Vari-
ous techniques are men-
tioned to be used for
this use case: SVM,
kNN, LR, DT, RF, and
CNN. A conclusion on
best performing models is
not drawn. Advantages
of LSTM based models
in performance are men-
tioned, but a drawback
in available data by con-
catenating data points
into time series rather
than using the separate
data points is also high-
lighted.

47 A secondary study that
mostly includes papers
that propose systems
for predicting Mild
Cognitive Impairment
to Alzheimer’s Disease
conversion using MRI
data. Various SVM
based methods, as well
as various CNN based
methods are included in
the review.

48 Predicting cognitive
scores to forecast
Alzheimer’s Disease pro-
gression. Two techniques
used: the proposed
system named Disease
Progression via Longitu-
dinal Data Fusion with
Accelerated Gradient
Descent (DPLDF) and
LR-Lasso. DPLDF
performed best.

Time decay mitigation is
performed by doing tem-
poral regularization to
weight older vs more re-
cent data points, but this
is done using order of
points rather than the ac-
tual time difference.
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49 Various techniques men-

tioned: SVM, MLP,
Auto-Encoder, CNN,
Bayesian Gaussian Pro-
cess LR, Elastic Net
Regularized LR, deep
learning methods (In-
ception, others). The
performance of deep
learning methods per-
formed best at detecting
Alzheimer’s Disease in
patients.

50 This paper proposes
Time-Aware Multi-Type
Data Fusion Repre-
sentation (TAMDUR),
which is based on com-
bining bidirectional
LSTM, CNN, and a self-
attention mechanism, to
predict development of
cardiovascular disease in
patients.

Time irregularity is miti-
gated using a time decay
function, which weights
visit data based on pa-
tient age and time inter-
vals between visits.

51 In this study, ResNet-50
is used to extract image
features from kidney
ultrasounds. These
features are then used in
random survival forests
to predict chronic kid-
ney disease progression.
Three model versions
were tested: a random
survival forest using
only clinical data, one
using only the image
feature data, and an
ensemble model. The
latter outperformed the
other two.

52 Predicting the degree of
gene expression using a
proposed pseudo partial-
likelihood model.

Imputation was used to
fill missing time points
and handle time irregu-
larity to some degree. As
such, a lot of data con-
sisted of imputed values.
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53 This paper proposes var-

ious LSTM variants to
predict personalised tra-
jectories of Alzheimer’s
Disease patients. The
used techniques were the
proposed LSTM with
integrated time decay,
LSTM-M (mean value
imputation), LSTM-F
(forward value imputa-
tion), Multi-directional
RNN, Peephole LSTM-Z
(zero imputation), Mini-
malRNN. The proposed
system performed best.

Missing values were im-
puted based on surround-
ing longitudinal data and
other features. Data
heterogeneity was mit-
igated using normalisa-
tion. Temporal data is
encoded using an inte-
grated time decay factor
in the proposed LSTM
system.

54 In this paper, a multifea-
ture aggregated LSTM
model with progressive
score is proposed to pre-
dict whether a patient is
progressive or not by pre-
dicting future biomarker
values.

Imputation of missing
values is performed,
along with a tempo-
ral decay weighting to
handle time irregularity.

55 Review on detecting
diabetes. Mention of
SVM, RF, LR, LDA,
NB, ANN, kNN, Mul-
tifactor Dimensionality
Reduction, Classification
and Regression Trees,
and fuzzy c-mean. Only
the first two had their
performance reported,
of these SVM performed
best.

56 This paper proses
VGG-TSwinformer, a
transformer-based deep
learning model that uses
a temporal attention
mechanism to handle
longitudinal data.
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57 This review is very high

level. Some generally
relevant remarks about
machine learning prac-
tices are made. Various
ML methods are men-
tioned to be usable for
disease detection, but no
performance metrics are
mentioned. Mentioned
techniques are LR, LDA,
kNN, NB, SVM, ANN,
CNN, RF, DT, and gra-
dient boosting.

58 A review on Alzheimer’s
Disease detection us-
ing neuroimaging data.
Mentioned techniques:
3D-CNN, CNN, (semi-
supervised) Generative
Adversarial Networks,
RNN, ANN, RF, SVM,
Extreme Learning
Machine, and kNN com-
bined with Principal
Component Analysis.

59 Detection technique
review for diabetes.
Mentions DT, ensem-
ble methods such as
RF, LR, SVM, NN,
Bayesian methods, kNN,
dimensionality reduc-
tion, clustering, and
regularized regression
as techniques to detect
diabetes.
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60 This paper used a two-

prong approach to pre-
dict Alzheimer’s Disease
progression. For stage
one, predicting whether
a patient will progress
or not, DT, RF, SVM,
linear regression, kNN,
and LSTM are used.
For stage two, predict-
ing the conversion time,
DT, Ridge, LASSO, RF,
SVM, feed-forward NN,
and LSTM are used. For
both stages, LSTM per-
forms best due to its abil-
ity to use longitudinal
data effectively.

Various pre-processing
techniques are used. Any
features with >30% miss-
ing data are removed.
kNN-based imputation
is performed for other
missing values. Forward
filling is used for time
series data imputation.
SMOTE is used to mit-
igate imbalanced data
issues.

61 This paper mentions a
wide variety of tech-
niques that can be used
for detection of various
different diseases. The
techniques mentioned
are Sequential Minimal
Optimization Multiple
Kernel Learning, SVM,
KNN, RF, Bayesian
Hidden Markov Model,
Cox Regression, LASSO,
Gradient Boosting, Ad-
aboost, ANN, DNN,
Auto-encoder, Principal
Component Analysis,
XGBoost. Performance
scores are not reported.
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62 A detection review for

mental health disease
such as schizophrenia and
ADHD based on various
biomarkers, imaging,
and behaviour data.
Techniques mentioned
are RNN, CNN, GRU,
LSTM, Auto-encoder,
Deep Feed-forward NN.
No performance scores
reported.

63 Detection review for
Alzheimer’s Disease
using biomarkers.
Techniques used: 3D
CNN combined with
LSTM, Convolutional
Auto-encoder, CNN,
Stacked Auto-encoder
Multi Kernel SVM
(SAE-MKSVM), Sparse
Auto-encoder, SVM.
No performance metrics
mentioned.

64 Detection review on
classifying Alzheimer’s
Disease. Techniques
mentioned are SVM
(Radial Basis Function),
SVM (Linear), Group
LASSO SVM, 3D CNN,
Deep Belief Network,
DNN, 3DCNN, Stacked
Auto-encoder combined
with SVM, Deep Boltz-
mann Machine combined
with SVM, and Re-
stricted Boltzmann
Machine combined with
SVM. Best performance
reported was achieved
with a Deep Boltzmann
Machine combined with
SVM.

LSTM= Long Short Term Memory, LR = Logistic Regression, SVM = Support Vector
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Machine, RF = Random Forest, DT = Decision Tree, MLP = Multi-Layer Perceptron,
kNN = k-Nearest Neighbours, CNN = Convolutional Neural Network, ANN = Artificial
Neural Network, NB = Naive Bayes, NN = Neural Network, RNN = Recurrent Neural
Network, GRU = Gated Recurrent Unit, LDA = Linear Discriminant Analysis
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