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ABSTRACT
Small high-dimensional datasets pose challenges for achieving ac-

curate predictive models, due to issues like overfitting and the

curse of dimensionality. While complex models, like deep learning

models, have been used to address these challenges, they often lack

interpretability and transparency. Explainable Artificial Intelligence

(XAI) is a popular field that aims to bridge this gap by developing

techniques that provide insights into the decision-making process

of machine learning models, therefore increasing the explainability

and trustworthiness of models. However, when applying feature

selection before model training, less-complex models can be used,

such that interpretability and explainability are preserved, such

that Explainable AI methods are not even needed. This research

presents an iterative feature selection method named IterSHAP,
which utilizes a popular XAI technique named SHAP, to increase

model performance on small high-dimensional datasets. The perfor-

mance of IterSHAP was evaluated via both a simulation-based ap-

proach and an application-based approach. The results demonstrate

the effectiveness of IterSHAP in selecting informative features and

improving classification performance on small high-dimensional

datasets. The limitations of IterSHAP are its convergence to a local

optimum when working on large datasets and its lack of computa-

tional optimization.

1 INTRODUCTION
Small high-dimensional datasets present unique challenges for

achieving high accuracy in predictive models, such as over- and

underfitting and the curse of dimensionality [2]. Overcoming these

issues while preserving the interpretability and transparency of the

underlying models remains a challenge for researchers.

To tackle these challenges, a growing trend has emerged in us-

ing complex models, such as deep learning models. However, as a

consequence, the explainability and interpretability of these models

are minimised, resulting in ‘black-box decision making‘. The rise

of Explainable Artificial Intelligence (XAI) aims to bridge this gap

by developing techniques to increase insights in how a machine

learning model came to its prediction [17]. Research into XAI ap-

plications on small high-dimensional datasets, however, leaves a

gap in research.

Among the many, one often utilised XAI technique is SHAP

[15], short for SHapley Additive exPlanations. SHAP uses Shapley

values [21] [7], a popular game theory concept, to quantify the

contribution of an individual feature to the outcome of the model.

This technique has proven to significantly increase the insights

into the relation between the input data and the output prediction

of a model. An interesting research field would be to investigate

whether we can use SHAP to reduce the dimensionality of a small

dataset, after which we can use a traditional, intrinsic-explainable,

machine learning model for classification while maintaining model

accuracy.

Previous studies have explored the usage of SHAP for feature

selection, although their focus has primarily been on larger synthe-

sized or benchmark datasets.

The remainder of this paper is structured as follows. In section 2,

we will describe the research methodology used and introduce the

goals and research questions of this research. In section 3, we iterate

over the state-of-the-art feature selection methods and Explainable

AI methods. In sections 4 and 5, we present our artifact, including

its validation and evaluation. In sections 7 and 8, we will conclude

our work and highlight limitations and pointers for future.

2 RESEARCH METHODOLOGY
This research was conducted using the Design Science Research

Methodology proposed by Wieringa [29]. Figure 2 shows the En-

gineering Cycle from Wieringa, from which three steps are used

in this research: Problem investigation/Implementation evaluation,

Treatment design, and Treatment validation. By leaving out the

Treatment implementation step, this research can be seen as a de-

sign cycle research [29].

First, a list of stakeholders and their goals was created, as can

be seen in table 1. These goals are combined in one research goal,

formulated using the design template of Wieringa [29]: Improve
model performance on small high-dimensional datasets by treating it
with a SHAP-based feature selection method that satisfies increased
model performance and model explainability in order to reduce the
need for complex models.

This research goal can be translated into the following research

questions:

(1) RQ 1: How can we develop a feature selection method that

uses SHAP to improve classification on small high-dimensional

datasets?

(2) RQ 2: How can we improve model performance on a real-

world problem to show the utility of SHAP feature selection

on small high-dimensional datasets?

Figure 1 shows how sections 1 to 5 are connected to the principles

fromWieringa’s design cycle. Before this research, a tertiary review

was conducted on Explainable AI methods, which only serves as

an introduction to this research, but is not part of this research.

The treatment design and treatment evaluation of this research are



Stakeholder Stakeholder Taxonomy [1] Goals
Data Scientist and practitioners Normal operators Benefit from the developed feature selec-

tion method to achieve higher accuracies

on smaller datasets

University of Twente Knowledge Supplier Contribute to the scientific field of the re-

search

Slimstock Sponsor Support and advise the author with their

research

Author Researcher, Developer Design and develop a feature selection

method that satisfies the requirements

Table 1: List of Stakeholders, based on Alexander’s Stakeholder Taxonomy [1]

Figure 1: The research process used during this research

Figure 2: The Engineering cycle, presented by Wieringa [29].

intertwined, as IterSHAP was iteratively developed, which is indi-

cated by the circular arrows in figure 1. Finally, the implementation

evaluation in section 5 evaluated IterSHAP after development.

3 RELATEDWORK
In this section, we will describe the relevant state-of-the-art on

Explainable Artificial Intelligence and Feature Selection, as these

are the two core components of our research.

3.1 Explainable Artificial Intelligence (XAI)
The number of published articles on Explainable AI (XAI) has been

skyrocketing for five years, see figure 3. Vast amounts of these arti-

cles introduce new XAI methods, whereas others apply or bench-

mark said methods. One of the often-utilised XAI techniques is

SHAP [15], short for SHapley Additive exPlanations.

Figure 3: Number of published articles has exploded over the
past five years. Source: zoom of figure 1 of [8].

3.1.1 SHapley Additive exPlanations (SHAP). SHapley Additive

exPlanations (SHAP) was introduced in 2017 by Lundberg and Lee

[15]. The SHAP method is based on the Shapley values, originating

from the game theory introduced by L.S. Shapley [21]. SHAP aims

to explain individual predictions of black-box models. However, it

is also possible to retrieve global explanations by aggregating these

individual predictions.



Shapley values. SHAP uses the formula described in equation 1,

which calculates the Shapley value of feature 𝑖 in black-box model

𝑓 and input vector 𝑥 . For instance, when predicting the mortality

rate of a Covid-19 intensive-care patient[3], 𝑖 could be the age of

the patient. The input vector 𝑥 is all input features combined, such

as age, body mass index, physical condition, diabetes, and more.

𝜙𝑖 (𝑓 , 𝑥) =
∑︁
𝑧′⊆𝑥 ′

|𝑧′ |!(𝑀 − |𝑧′ | − 1)!
𝑀!

(
𝑓𝑥 (𝑧′) − 𝑓 (𝑥 (𝑧′ \ 𝑖)

)
(1)

Equation 1 iterates over all subsets of the simplified data input 𝑥 ′.
Simplified data input is mostly used for complex models, where the

input data would otherwise become too large, for instance when

analysing images. Then, the outcome of model 𝑓 using only that

subset is calculated with our feature 𝑖 (𝑓𝑥 (𝑧′)) and without our

feature 𝑖 (𝑓 (𝑥 (𝑧′ \ 𝑖)]). By subtracting those outcomes, we calculate

the influence that feature 𝑖 has on the model’s outcome.

Finally, this score is weighted according to how many features

(of the total number of features 𝑀) were included in that subset.

The intuition is that adding the feature 𝑖 should be weighted more

if there are already many features included in the subset.

The benefit of using Shapley-based feature selection methods,

is that feature dependencies, such as feature redundancy, interac-

tion, complementarity, and substitution, are intrinsically taken into

account.

Model behaviour. When implementing the above-mentionedmath-

ematical equation on a machine learning model, one cannot simply

leave out features, as that would change the dimensions of the

model. SHAP tackles this issue by not excluding features, but by

using random inputs from the training data set. The idea behind

this is that by using random inputs for all subsets, the relevance of

these features is sampled out by random variation, nullifying the

predictive power of these features.

3.2 Feature Selection methods
Feature selection methods are used to select a subset of the input

features as input for a model. These methods solve several chal-

lenges regarding the curse of dimensionality [2], interpretability of

the model, and training computation time. Most model-agnostic

feature selection methods can be divided into the categories: filter

and wrapper methods. The third category, embedded methods, in-

cludes methods that are built into an algorithm, which we will leave

out for this research, as we aim for a model-agnostic approach.

Figure 4 shows an overview of three categories.

3.2.1 Filter methods. Filter methods select a feature subset inde-

pendent of the model used. They do this by e.g. calculating the

relevance between input features and the target feature, after which

the most-relevant features are selected. The main advantages of fil-

ter methods are the low computation time and robustness towards

overfitting [20]. On the contrary, the main disadvantage is that

usually feature dependencies, including redundancy and repetition,

are not filtered out.

Chi-square. This feature selection filter method uses the test chi-

squared statistic, see formula 2, to select 𝑘 features from the input

Figure 4: The three feature selection categories [30]

vector x [9]. This method only works with non-negative data and

is typically used for categorical features.

𝜒2 =
∑︁ (𝑂𝑖 − 𝐸𝑖 )2

𝐸𝑖
(2)

where 𝑂𝑖 is the observed value and 𝐸𝑖 is the expected value.

Pearson’s correlation. The Pearson’s correlation feature selection

filter method selects features based on their correlation coefficient

with the target feature, using formula 3 [4], where 𝑥𝑖 and 𝑦𝑖 are

individual samples and 𝑥 and 𝑦 are the (sample) means of 𝑋 and 𝑌

respectively. It selects the features with the highest correlation to

the target feature.

𝑟 =

∑(𝑥𝑖 − 𝑥) (𝑦𝑖 − 𝑦)√︁∑(𝑥𝑖 − 𝑥)2∑(𝑦𝑖 − 𝑦)2 (3)

3.2.2 Wrapper methods. Wrappermethods use somemeasurement,

mostly statistical, to select the most relevant features. Examples

of these are information gain, similarities, and distance measures.

As these calculations are not performed within the training or

evaluation of a model, these measures are mostly model-agnostic,

meaning that they can be applied to any underlying model. Some

examples of wrapper methods are Recursive Feature elimination

[6], Backward Elimination [23], and Sequential Forward Selection

[16].

3.2.3 Feature selection using SHAP. Furthermore, to the best of

our knowledge, three wrapper methods using SHAP have been

introduced.

Shapicant. The Shapicant algorithm1
uses a permutation-based

approach to select important features. It does this by training two

models, one on the original training dataset and one on a shuffled

dataset. The training on the shuffled dataset is executed multiple

times, after which the Shapley value of the features is calculated.

When a feature has significantly higher importance for the non-

shuffledmodel than for the shuffledmodel, that feature is considered

important.

Borutashap. Borutashap2 uses Shapley values and the Boruta

algorithm to determine which features are important. It does this

by adding so-called shadow features, which are randomly shuffled

1
https://github.com/manuel-calzolari/shapicant

2
https://github.com/Ekeany/Boruta-Shap

https://github.com/manuel-calzolari/shapicant
https://github.com/Ekeany/Boruta-Shap


features. It then hypothesised that an informative feature should

be more important than the most-important shadow feature, hence

only these features are selected. This method is statistically sub-

stantiated by running multiple iterations, resulting in a binomial

distribution and a p-value cutt-off point [13].

Powershap. In 2022, Verhaeghe et al. [25] introduced Powershap:

a ‘power-full Shapley features selection method‘. In the first com-

ponent of the Powershap algorithms, the ’Explain’ component, a

single known random uniform feature 𝑟 is added to the feature set

for training. The hypothesis is that all informative features (the

feature that one wants to select) should on average have a higher

Shapley value than the random feature 𝑟 . Using a one-sample one-

tailed student-t statistic test, it is tested for each feature whether it

has a p-value lower than threshold 𝛼 , which is 0.01 by default. The

features that pass this test are selected.

As Powershap outperforms both Borutashap and Shapicant [25]

and has the same underlying statistical approach, Powershap will

be the SHAP feature selection method we compare our research to.

4 ITERSHAP
IterSHAP is, as the name suggests, an iterative feature selection

algorithm based on Shapley values. IterSHAP trains and evaluates

a model at each step in the process, after which it selects the most-

important features based on their Shapley value. This process is

repeated until it has reached its lower limit, which concludes one

iteration. In total, this is repeated a predefined maximum number

of iterations.

In section 4.1, we will describe the architecture of the algorithm,

including the considerations taken into account during the develop-

ment. This can be seen as the ‘treatment design‘ of Wieringa [29]

(figure 1). In section 4.2, we will describe the intermediate valida-

tion of IterSHAP during the development, which is the ‘treatment

validation‘ of Wieringa [29].

4.1 Algorithm description
The IterSHAP method has three main configurable parameters,

model, max_iter and step_size. The first parameter determines the

model that is used for training, computing SHAP values, and evalu-

ation. The default model is a RandomForestClassifier, as this is an

often used classifier with decent default parameters [cite] RFC is

good to use. The second parameter determines the maximum num-

ber of iterations that are executed. The final parameter defines the

portion of features to keep at each sub-iteration of the algorithm.

Algorithm 1 describes the working of IterSHAP. Figure 5 gives a
visual overview of the working of IterSHAP.

We keep track of the model performances via the 𝑙𝑜𝑔 dictionary.

Afterwards, we iteratively train and evaluate a model on data 𝑋 .

After each training iteration, we retrieve the Shapley values of

the features on an unseen data split, 𝑋𝑠ℎ𝑎𝑝 , and only keep the

top 𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒 (default 0.50) of the important features. We end the

iteration when the lower limit is reached.

After this iteration, we have a set of features that performed

the best so far, which we call 𝑆𝑝𝑟𝑖𝑚𝑒 . We retrieve the smallest

superset of 𝑆𝑝𝑟𝑖𝑚𝑒 from the 𝑙𝑜𝑔 (in figure 5a, this would be the

subset with 50 features). We ‘restore‘ 𝑋 to have only these features

and define the search space for the next iteration. The upper limit of

Algorithm 1 IterSHAP algorithm

function IterSHAP(𝑚𝑜𝑑𝑒𝑙,𝑚𝑎𝑥_𝑖𝑡𝑒𝑟, 𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒)

𝑋,𝑦 ← 𝑔𝑒𝑡_𝑑𝑎𝑡𝑎()
𝑙𝑜𝑔← {} ⊲ Tracks feature subsets and its performances

𝑢𝑝𝑝𝑒𝑟_𝑙𝑖𝑚𝑖𝑡 ← 𝑋 .𝑠ℎ𝑎𝑝𝑒 [1]
𝑙𝑜𝑤𝑒𝑟_𝑙𝑖𝑚𝑖𝑡 ← 0

for𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 do
while |𝑋 .𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 | > 𝑙𝑜𝑤𝑒𝑟_𝑙𝑖𝑚𝑖𝑡 do

𝑚𝑜𝑑𝑒𝑙 .𝑓 𝑖𝑡 (𝑋𝑡𝑟𝑎𝑖𝑛, 𝑦𝑡𝑟𝑎𝑖𝑛)
𝑎𝑐𝑐 ← 𝑒𝑣𝑎𝑙 (𝑚𝑜𝑑𝑒𝑙, 𝑋𝑣𝑎𝑙 , 𝑦𝑣𝑎𝑙 )
𝑙𝑜𝑔.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑋 .𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠, 𝑎𝑐𝑐)
𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ← 𝑔𝑒𝑡𝑆𝐻𝐴𝑃 (𝑚𝑜𝑑𝑒𝑙, 𝑋𝑠ℎ𝑎𝑝 )
𝑋 ← 𝑆𝑒𝑙𝑒𝑐𝑡𝐵𝑒𝑠𝑡𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 (𝑋 ) ⊲ Select features based

⊲ on step size

end while
𝑆𝑝𝑟𝑖𝑚𝑒 ← 𝑙𝑜𝑔(𝑀𝑎𝑥 (𝑎𝑐𝑐)) ⊲ Get the set with the highest

model accuracy

𝑋 ← 𝑋 [𝑆𝑝𝑟𝑖𝑚𝑒 + 1] ⊲ Restore 𝑋 to the first superset

𝑢𝑝𝑝𝑒𝑟_𝑙𝑖𝑚𝑖𝑡, 𝑙𝑜𝑤𝑒𝑟_𝑙𝑖𝑚𝑖𝑡 ← 𝑔𝑒𝑡_𝑙𝑖𝑚𝑖𝑡𝑠 ()
end for
return 𝑙𝑜𝑔(𝑚𝑎𝑥 (𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦)) ⊲ Return the feature subset

with the highest accuracy

end function

the search space is set to the size of the above-mentioned superset.

The lower limit is set to the size of the largest subset of 𝑆𝑝𝑟𝑖𝑚𝑒 in

the 𝑙𝑜𝑔 (12 features in the example). After the maximum allowed

iterations have been executed or the search space is exhausted,

the best-performing feature subset is returned. The search space is

considered exhausted when the search space is smaller than three,

as all possible configurations in the search space have already been

executed. In the example figure 5c, the search space would become

17 − 15 = 2, hence the search space is exhausted.

The three SHAP feature selection methods mentioned in section

3.2.3 are all based on shuffling/randomising features, after which

the differences between training on the real features and the shuf-
fled features are compared to select the most important features.

IterSHAP does not shuffle or randomise the dataset at all, as it tries

to iteratively select a subset of features until it finds the optimal

subset. At each iteration, it selects the subset as a whole, not on

an individual feature basis, which reduces the statistical need for a

large dataset. Using this iterative approach always returns a subset

of features that it considers most important, even on small datasets.

4.1.1 Considerations. In this section, we will describe the consid-

erations made during the development of IterSHAP.

Feature selection and elimination. As numerous techniques for

feature selection exist in literature [10], several options were con-

sidered. First, a division in forward and backwards feature selection

was made. Forward feature selection is an iterative process of start-

ing with an empty set of features and adding new features based on

their impact on the model [26]. This is repeated until the predefined

requirements are met. This process of selecting features, however,

contradicts the core of SHAP, which evaluates the impact of in-

dividual features in a large set of features. Therefore, backwards

feature elimination was chosen as the feature selection technique.
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Figure 5: Example of IterSHAP executing three iterations to find the optimal subset of 16 features

Total features: 100 Total features: 250

Inf. feat.: 3 Inf. feat.: 8 Inf. feat.: 3 Inf. feat.: 8

RFE 25% 0.76 (1.37 s) 0.78 (1.64 s) 0.80 (1.43 s) 0.66 (1.54 s)

RFE 35% 0.74 (1.19 s) 0.78 (2.18 s) 0.80 (1.23 s) 0.67 (1.25 s)

RFE 50% 0.74 (0.99 s) 0.78 (1.03 s) 0.80 (1.02 s) 0.68 (1.04 s)

RFE 60% 0.73 (0.87 s) 0.78 (0.90 s) 0.80 (0.90 s) 0.67 (0.91 s)

RFE 2 0.72 (1.23 s) 0.78 (1.21 s) 0.78 (1.26 s) 0.66 (1.24 s)

RFE 5 0.72 (1.32 s) 0.78 (1.22 s) 0.80 (1.29 s) 0.67 (1.20 s)

RFE 10 0.72 (1.38 s) 0.78 (1.22 s) 0.78 (1.25 s) 0.68 (1.25 s)

RFE 15 0.73 (1.38 s) 0.77 (1.19 s) 0.81 (1.22 s) 0.66 (1.18 s)

Table 2: Comparing Recursive Feature Elimination config-
urations on model accuracy and computation time, while
varying the total number of (informative) features.

Future work could be conducted on embedding SHAP in a forward

feature selection method.

4.1.2 Grouped feature elimination. In traditional feature elimina-

tion, like Recursive Feature Elimination (RFE) [6], the least relevant

feature is removed in each iteration. However, when dealing with

high-dimensional datasets, retraining a model after each removed

feature is computationally expensive. Furthermore, the complexity

of SHAP scales factorial, as it calculates the contribution of a feature

in each possible subset of features. Therefore, we investigated how

grouped feature elimination would work in terms of accuracy and

computation time.

Multiple grouped feature elimination configurations of RFE were

tested and compared. These configurations are removing 25%, 35%,

50% or 60% of all features in each iteration. Furthermore, removing

2, 5, 10, or 15 features at each iteration were tested configurations.

The results of these configurations can be found in table 2.

From these intermediate results, we concluded that there is no

significant difference in accuracy between the configurations. How-

ever, a decrease in computation time of at least 30% was achieved

with the 50% and 60% elimination configurations. As the 50% elimi-

nation configuration balances the accuracy and computation time

the best, we used this configuration for the second part of the

validation, as described in section 4.2.2.

4.2 Validation
While developing IterSHAP, we validated our work by comparing

the results of IterSHAP with other feature selection methods in

several taxonomies. In this section, we will chronologically describe

these validations.

4.2.1 Filter comparison. As an initial validation of the working

of IterSHAP, we compared the implementation with several state-

of-the-art filter methods, as these are popular feature selection

methods. These filter methods are Chi2 [9], Pearson’s correlation

[4], and two variations of the maximum relevance minimum redun-

dancy (mRMR) algorithm [19] [27]. As these filter methods require

a target number of features to retrieve, we set this number 𝐾 to

equal the number of informative features in the dataset. Using this

setting, the filter methods have an advantage, as they ‘know‘ how

many informative features there are. The methods were compared

on two different sample sizes (100 and 1000 samples), two different

feature sizes (100 and 250), and two different numbers of informa-

tive features (3 and 8). Each experiment was run five times, after

which the results were averaged.

The results can be found in table 3. The first number in each cell

represents the number of informative features retrieved, whereas

the number between parentheses represents the number of noisy

features retrieved. For all filter methods, adding these two numbers

equals the total number of informative features, as explained earlier.

For IterSHAP, however, this is not the case, as IterSHAP has no prior

‘knowledge‘ on how many features to extract.

In each row, the method that extracted the highest number of

informative features is highlighted. As can be seen, IterSHAP per-

forms the best in all configurations. However, IterSHAP often tends

to overselect, as indicated by the high number of noisy features

returned. This is a direct consequence of the lack of ‘knowledge‘ of

IterSHAP in terms of the number of features to select.

As can be seen in table 3, all filter methods perform significantly

better on the large sample set compared to the small sample set.

Even though IterSHAP also performs better on the large sample

set, this is less significant. This is an initial confirmation of our

hypothesis that IterSHAP works better on small high-dimensional

datasets.



Configuration Feature selection method
Nr. samples Nr F. Nr. inf. F IterSHAP Chi2 Pearsson mRMR once mRMR iterative

100

100

3 2.0 (3.4) 1.4 (1.6) 2.0 (1.0) 1.2 (1.8) 1.0 (2.0)

8 5.4 (8.8) 3.8 (4.2) 2.8 (5.2) 1.6 (6.4) 1.4 (6.6)

250

3 1.6 (2.4) 1.2 (1.8) 1.6 (1,4) 1.2 (1.8) 1.2 (1.8)

8 5.2 (2.4) 2.0 (6.0) 3.4 (4.6) 1.8 (6.2) 1.8 (6.2)

1000

100

3 3.0 (2.0) 2.2 (0.8) 1.8 (1.2) 1.2 (1.8) 2.0 (1.0)

8 7.2 (1.6) 5.4 (2.6) 6.2 (1.8) 5.0 (3.0) 4.6 (3.4)

250

3 3.0 (6.6) 2.2 (0.8) 1.6 (1.4) 1.2 (1.8) 2.2 (0.8)

8 8.0 (0.6) 5.4 (2.6) 5.8 (2.2) 4.4 (3.6) 4.4 (3.6)

Table 3: Comparison of retrieved informative and noisy features of IterSHAP with several filter feature selection methods.

Nr. informative features
3 5 8 12 15 20 28

RFE 0.743 0.665 0.783 0.660 0.590 0.665 0.618

IterSHAP 0.825 0.829 0.803 0.733 0.644 0.723 0.658

Student’s T-test 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 4: Mean model accuracy with Student’s t-test on IterSHAP and RFE series, varying total number of informative features.
Total number of features = 100

4.2.2 Taxonomy comparison. As a second validation of IterSHAP,
we compared it with a feature selection method in the same tax-

onomy, that is, a wrapper feature selection method with grouped

elimination. This method is RFE 0.50, the Recursive Feature Elimi-

nation configuration that eliminates the bottom 50% of all features

each iteration, as discussed in section 4.1.2. We compared the two

methods in seven experiments. Each dataset included 100 samples

with 100 features but varied the number of important features.

These options are 3, 5, 8, 12, 15, 20, and 28 important features.

All experiments were executed 10 times, after which their accura-

cies were compared using the Student’s T-test with a p-value of

0.05 [24]. As can be seen in table 4, all configurations achieved a

p-value significantly smaller than 0.05, indicating that we reject

the null hypothesis that these sets originate from the same object.

Therefore, we can conclude that IterSHAP works significantly better

than Random Feature Elimination on this small high-dimensional

dataset.

5 EVALUATION
This section serves as the ‘implementation evaluation‘, as described

by Wieringa [29]. We will present the frameworks used to evaluate

the performance of IterSHAP. These frameworks are split into a

simulation-based evaluation and an application-based evaluation.

5.1 Simulation-based evaluation
To compare the performance of IterSHAP with other SHAP feature

selection methods, we use a similar simulation-based evaluation

setup as Verhaeghe et al. [25]. At the start of each experiment, we

generate a dataset, using sklearn’s ’make_classification()’ method
3
,

with 5000 samples and a variable percentage of informative features

3
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_

classification.html, accessed June 1st, 2023.

(10%, 33%, 50%, and 90%). All other features are noisy features.

Furthermore, we vary the total number of features between 20, 100,

250, and 500. This creates 16 unique experiments.

The datasets are split into four subsets: ‘train‘ (50%), ‘val‘ (15%),

‘shap‘ (15%), and ‘test‘ (20%). The ‘train‘ set is used to train the

models used in the feature selection methods. The ‘val‘ set is used

to evaluate the trained model and calculate its performance. After-

wards, the ‘shap‘ is used to compute the Shapley values for each

feature. Finally, after the feature selection, we use the ‘test‘ dataset

to see what influence the feature selection methods have on the

performance of the model.

As we are not only interested in comparing the SHAP FSmethods

on a large dataset (5000 samples) but especially on a small dataset,

we also select 160 random samples (train: 100, val: 30, shap: 30)

from the total dataset which are used as a separate experimental

setup. The remaining samples are used for post-feature selection

evaluation. This gives us a total of 32 experiments on which we

perform both IterSHAP and PowerSHAP.
Finally, we run these experiments with three underlying models.

These models are ‘CatBoostClassifier‘, ‘RandomForestClassifier‘,

and ‘RidgeClassifier‘. The first two are tree-based models, which do

have embedded feature importance. ‘RidgeClassifier‘ is a linear clas-

sification model that does not have feature importance inherently.

The ‘CatBoostClassifier‘ has similar hyperparameters as used by

Verhaeghe et al. providing the ideal model to compare the twometh-

ods. For the other two models, no hyperparameter optimization

has been applied. Each experimental setup is run in five iterations,

after which the results per setup are aggregated over these runs to

minimise randomness.

5.1.1 Evaluation and testing. There are four main evaluation met-

rics that we are interested in. The first one is the quality of the

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html


feature selection, see figure 7. This is measured by the total per-

centage of informative features that the method extracted from

the dataset (the true positives). Secondly, we measure the number

of noisy features extracted from the dataset, see figure 8. These

are features that are not informative and are thus considered false

positives.

The third evaluation metric, figure 9, is the performance of the

underlying model, after only including the selected features. This

metric is valuable as our main goal is to increase underlying model

performance, via feature selection. A separate split is used for mea-

suring this performance, which was not used in any of the previous

steps. We plot the average model performance for each configu-

ration. Lastly, we measure the total execution time of the feature

selection process for each configuration, as SHAP-based values are

computationally expensive. These results are displayed in figure

10.

5.2 Application-based evaluation
Next to simulation-based evaluation, we will implement IterSHAP
in a real-world scenario to test its ability to replace complex neural

networks with simple traditional models. Furthermore, to test the

working of IterSHAP on small high-dimensional datasets, we will

insert several data segments and evaluate its performance.

5.2.1 Scenario description. The dataset used is called DEAP [12]

and concerns an EEG 32-channel signal of participants watching

and rating different kinds of videos. After watching these videos,

participants rated the video on four levels: valence, arousal, dom-

inance, and liking. With this dataset, both regression as well as

classification analyses can be performed. For this research, two

binary classes for the valence rating are created: ’high’ if valence

5̄, ’low’ otherwise. This results in a simple classification problem,

allowing us to focus on the feature selection process.

The data consists of 32 participants each rating 40 videos, which

totals to 1280 experiments. Each experiment consists of 32 channel

signals of 63 seconds each at a rate of 128 Hz. The first three seconds

of each signal is discarded, as these are considered to be transient.

This leaves 1280 recordings of 7680 values times 32 channels.

The dataset is available via the QueenMary University of London

4
after signing an End User License Agreement. As the dataset

was released over ten years ago, numerous feature extraction and

selection methods have been developed and validated using the

DEAP dataset [22] [5] [14] [18].

5.2.2 Feature selection comparison. Li et al. have used ‘Continuous
Wavelet Transformation‘ (CWT) for feature extraction on the DEAP

dataset [14]. Afterwards, they designed ‘a hybrid deep learning

model that combines the ‘Convolutional Neural Network (CNN)’

and ‘Recurrent Neural Network (RNN)’.‘ In our research, we will

use a simple feature extraction method, after which we will apply

IterSHAP as feature selection method. Finally, we will use a default

RandomForestClassifier model for classification.

5.2.3 Feature extraction. For each of the 1280 experiment, we di-

vided the 32 channel signals into chunks of 128 frames without

overlap, as this matches the approach of Li et al.. Then, we extracted

4
https://www.eecs.qmul.ac.uk/mmv/datasets/deap/download.html

12 features per chunk. These are the mean, median, standard de-

viation, interquartile range, maximum value, and minimum value,

in both the time domain as well as the frequency domain. The

frequency domain data was acquired by apply a Fast Fourier Trans-

formation on the original chunk. This results in a tabular dataset

of 384 (12x32) features and 76800 (1280x60) samples. This is used

as input for the experiments.

5.2.4 Experimental setup. Using the preprocessed dataset, Iter-
SHAP as feature selection method, and a default RandomForestClas-

sifier as model, we aim to compare the performance of IterSHAP in

combination with a traditional, intrinsic explainable, model with

the CNN used by Li et al. In order to highlight the applicability of

IterSHAP on small high-dimensional datasets, we apply the two

methods on different segments of the original dataset, as we did in

section 5.1 as well.

These segments are 1.00, 0.50, 0.25, 0.10, 0.05, 0.025, 0.01, 0.005,

0.0025, and 0.001 of the total dataset. The remainder of the data is

used to test the model performance afterwards. Each experiment

setup is run five times, after which the performances are averaged.

5.2.5 Evaluation metrics. The performances of the IterSHAP/RFC
combination and the CNN are compared on two metrics: accuracy

and execution time. The accuracy depicts the classification accuracy

on an unseen segment of the dataset. The IterSHAP execution time

is the time from the start of IterSHAP until the processing of the

test accuracy. The CNN execution time is the time from the first

epoch until the processing of the test accuracy. These run times

are counterparts, as both include the process from the end of the

feature extraction until the final classification of the test dataset.

Therefore, it is fair to compare these two run times.

6 RESULTS
In this section, we present the results of the validation frameworks

described in sections 5.1 and 5.2

6.1 Simulation performance
The comprehensive results of the simulations on synthesized data

can be found in appendix A. The simulation results of the Pow-

ershap algorithm on the large dataset correspond to the results

presented by Verhaeghe et al., indicating that the algorithm was

implemented correctly.

6.1.1 Small dataset configurations. For most configurations on the

small dataset using a CatBoostClassifier, IterSHAP significantly out-

performs Powershap in terms of informative features found (figure

7), model accuracy (figure 9), and run time (figure 10). However, Iter-
SHAP tends to return more noisy features than Powershap (figure

8. This can be explained by the underlying technique used to select

features, as IterSHAP selects a group of features at once, whereas

Powershap selects features individually based on statistics.

When using a RidgeClassifier (figure 17 15, 16, and 18, Iter-
SHAP outperforms Powershap on selecting informative features and

model accuracy on relative low-dimensional datasets, whereas Pow-

ershap performs better on higher dimensional dataset (#𝐹 > 100).

In terms of run time, IterSHAP is significantly faster in most config-

urations. Only on some small dataset configurations, the run time

is similar.

https://www.eecs.qmul.ac.uk/mmv/datasets/deap/download.html
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Figure 6: Average model accuracy and run time of IterSHAP and an CNN on the DEAP dataset, including standard deviation.

6.1.2 Large dataset configurations. When using the large dataset,

IterSHAP tends to select all important features on the low-dimensional

datasets. On the high-dimensional datasets, IterSHAP selects more

than 90% of the important features, whereas Powershap tends to

drop below 40% on the highest-dimensional dataset simulated. How-

ever, IterSHAP selects more noisy features than Powershap. Model

accuracy after feature selection is similar for most configurations.

In terms of run time on large dataset configurations, IterSHAP
and Powershap have similar run times, with IterSHAP outperform-

ing Powershap more frequently than the other way around.

6.2 Application performance
The results of the application-based evaluation can be found in fig-

ure 6 and in table 5 (appendix section D). As can be seen in figure 6a,

the performance of the CNN from Li et al. [14] slightly outperforms

our IterSHAP with RFC when using the entire dataset. However,

the CNN performance heavily decreases when using smaller data

segments. On the contrary, IterSHAP remains at a decent accuracy

until the moment the data segment drops below 2.5% of the origi-

nal dataset, which approximately equals the observations of one

participants of the DEAP study [12].

In terms of run time (figure 6b), we see that IterSHAP is between

20 to 100 times faster than the CNN. This can partly be explained

as the CNN is trained for 50 epochs, which takes a lot of time.

Furthermore, it can be observed that both IterSHAP and CNN scale

linearly with the number of samples.

7 CONCLUSION
With this paper, we introduce IterSHAP : a novel feature selection
method based on SHapley Additive exPlanations (SHAP), optimised

for small high-dimensional datasets. To validate and test IterSHAP,
we created a simulation-based experiment setup by varying the

size and dimensionality of the input data. Furthermore, we varied

the number of informative features. We tested IterSHAP against the

current best-performing SHAP feature selection method Powershap.

We found that on large datasets, IterSHAP has at least similar or bet-

ter results than Powershap. On small datasets, IterSHAP consistently

outperforms Powershap, which answers RQ 1.

Next to the simulation-based validation, we applied IterSHAP
on the DEAP dataset [12]. By comparing IterSHAP to the CNN

introduced by Li et al. [14], we showed that utilising IterSHAP
allows for intrinsic explainable models to be used for classification.

Furthermore, by varying the data portions used by the models, we

showed the effectiveness of IterSHAP on smaller high-dimensional

datasets, which answers RQ 2.

7.1 Contributions
Our main academic contribution is that, to our knowledge, we

introduced the first feature selection method specialised for small

high-dimensional datasets. Furthermore, our method guarantees

to return a subset of features, without predefined cutoff point 𝐾

or underlying statistical needs for a large sample set. Additionally,

the IterSHAP algorithm is model-agnostic, making sure it can be

applied on any types of models.

Finally, IterSHAP is available as a plug-and-play Python package,

compatible with a wide range of scikit-learn and other models. It

can be installed via ‘pip install itershap‘
5
.

8 DISCUSSION
In this section, we will describe the limitation of our research in

combination with pointers for future work.

8.1 Descent path
The current descent path is not tested for optimization. Therefore,

we do not know whether the current default step size, 𝛼 , is optimal

or could be further optimised to lower run time or increase perfor-

mance. We assume that the optimal 𝛼 differs per dataset, so testing

which value of 𝛼 would generally work best can be tested using e.g.

5
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the Armijo rule or any other learning rate optimisation rule. We

leave this to future work.

8.2 Convergence to local optimum
When using a model with some intrinsic feature importance, Iter-
SHAP is more likely to end up in a local optimum when a large

dataset is used. This can be explained by the fact that these types

of models can already determine for themselves which features

contribute the most towards the target and hence will already have

some form of internal feature selection. Therefore, it might hap-

pen that the model’s accuracy does not change that much during

the iterations of IterSHAP and hence the ’optimal’ subset might

have many noisy features. A possible solution would be a bottoms-

up approach of IterSHAP, to mitigate the noisy features, however,

due to the intrinsic design op IterSHAP this might be complex and

computationally heavy.

8.3 Future work
Next to the possible improvementsmentioned in sections 8.1 and 8.2,

we address additional pointers for future research in this section.

8.3.1 IterSHAP with Active learning. As IterSHAP is specialised

for smaller high-dimensional datasets, it could be applied to active

learning, where the labelled part of the partially-labelled dataset

could be considered the small high-dimensional dataset mentioned

in this research. Using IterSHAP, highly-deviating samples, in terms

of Shapley values, could be proposed to the human-in-the-loop to

more efficiently label the entire dataset.

Using SHAP for active learning has been researched by Kara et

al. [11], however, this was not focussed on smaller datasets.

8.3.2 IterSHAP for regression problems. Within this research, only

classification problems were considered, to keep the research con-

cise. Future research can be conducted into extending IterSHAP to

cover regression problems as well.

8.3.3 Step size optimization. One of the parameters of IterSHAP
is the step size, which indicates the portion of features to keep

at each iteration of the algorithm. In the current implementation,

the default value is 0.50, which has not been tested on whether it

is optimized. Therefore, future research could be conducted into

optimizing this step size.

8.3.4 IterSHAPwith filtering method for preprocessing. As IterSHAP
takes exponentially longer when increasing the number of features,

it might be interesting to look at a preprocessing step before using

IterSHAP. This preprocessing could be a filtering feature selection

method, like Chi-square or Pearson’s correlation, that is signifi-

cantly faster to compute. This could also solve the potential issue

of linear models when #𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 > #𝑠𝑎𝑚𝑝𝑙𝑒𝑠 [28].

8.3.5 Applications of IterSHAP. In this research, IterSHAP was ap-

plied on one specific application domain. To achieve a comprehen-

sive assessment of IterSHAP’s capabilities, further investigations
into diverse domains could be conducted.

8.3.6 Software verification. Future work includes the exploration

of formal verification techniques to rigorously establish the correct-

ness and consistency of IterSHAP. By subjecting IterSHAP to formal

methods, its alignment with intended behavior can be formally

proven, supporting its reliability in real-world applications.

8.3.7 Performance optimization. Currently, the algorithm is only

implemented in Python, which makes it accessible and easy to

read for users. However, Python is considered slow and thus future

work could look into implementing IterSHAP in other program-

ming languages, for instance, C, that makes use of GPU parallel

computing.
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A Performance plots CatBoostClassifier

(a) Total 20 features (b) Total 100 features

(c) Total 250 features (d) Total 500 features

Figure 7: The percentage of informative features found with varying total nr. of features and percentage of important features



(a) Total 20 features (b) Total 100 features

(c) Total 250 features (d) Total 500 features

Figure 8: The number of noisy features found with varying total nr. of features and percentage of important features



(a) Total 20 features (b) Total 100 features

(c) Total 250 features (d) Total 500 features

Figure 9: The accuracy of a trained model after feature selection with varying total nr. of features and percentage of important
features



(a) Total 20 features (b) Total 100 features

(c) Total 250 features (d) Total 500 features

Figure 10: The run time of the feature selection process with varying total nr. of features and percentage of important features



B Performance plots RandomForestClassifier

(a) Total 20 features (b) Total 100 features

(c) Total 250 features (d) Total 500 features

Figure 11: The percentage of informative features found with varying total nr. of features and percentage of important features



(a) Total 20 features (b) Total 100 features

(c) Total 250 features (d) Total 500 features

Figure 12: The number of noisy features found with varying total nr. of features and percentage of important features



(a) Total 20 features (b) Total 100 features

(c) Total 250 features (d) Total 500 features

Figure 13: The accuracy of a trained model after feature selection with varying total nr. of features and percentage of important
features



(a) Total 20 features (b) Total 100 features

(c) Total 250 features (d) Total 500 features

Figure 14: The run time of the feature selection process with varying total nr. of features and percentage of important features



C Performance plots RidgeClassifier

(a) Total 20 features (b) Total 100 features

(c) Total 250 features (d) Total 500 features

Figure 15: The percentage of informative features found with varying total nr. of features and percentage of important features



(a) Total 20 features (b) Total 100 features

(c) Total 250 features (d) Total 500 features

Figure 16: The number of noisy features found with varying total nr. of features and percentage of important features



(a) Total 20 features (b) Total 100 features

(c) Total 250 features (d) Total 500 features

Figure 17: The accuracy of a trained model after feature selection with varying total nr. of features and percentage of important
features



(a) Total 20 features (b) Total 100 features

(c) Total 250 features (d) Total 500 features

Figure 18: The run time of the feature selection process with varying total nr. of features and percentage of important features



D Tabular results of IterSHAP vs. CNN

IterSHAP + RFC CNN

Data segment Mean acc Std. dev. acc Mean run time Std. dev. run time Mean acc Std. dev. acc Mean run time Std. dev. run time

100% 0.789 0.012 247.104 106.211 0.861 0.009 11591.883 786.753

50% 0.797 0.002 153.815 17.063 0.801 0.004 5760.694 550.764

25% 0.791 0.002 69.059 6.265 0.745 0.011 2899.711 264.014

10% 0.782 0.001 21.836 3.845 0.686 0.008 1150.883 95.874

5% 0.774 0.001 10.373 1.383 0.644 0.007 576.600 51.438

2.5% 0.768 0.001 5.130 0.366 0.590 0.005 293.062 25.328

1% 0.740 0.016 2.141 0.281 0.546 0.008 121.530 13.573

0.5% 0.644 0.077 1.489 0.087 0.540 0.007 67.489 4.604

0.25% 0.624 0.026 1.207 0.140 0.564 0.004 38.113 3.255

0.1% 0.567 0.014 1.213 0.499 0.542 0.003 20.397 2.454

Table 5: Model accuracy and run time of IterSHAP and a CNN on the DEAP dataset.
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