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Management summary 
Euroma, a company in spice-based product development and manufacturing, contains a 
mixing department that blends ingredients to create spice blends. As Euroma aims to increase 
production, a challenge emerged: the limited intermediate bulk container (IBC) availability in 
the mixing department. The current scheduling method for jobs in the packaging step causes 
delays in new job releases throughout the mixing department due to a backlog of filled IBCs. 
 
The core goal of this study is to reduce the packaging process’s lead time, improving IBC 
availability. The corresponding research question is:  
 
How can the lead time at the packaging process be decreased to improve the availability of 
IBCs at Euroma?  
 
The packaging process uses two machines, Votech and Dinnissen. Constraints related to 
colour changes, allergen-free product sanitation, and adhering to kosher and halal 
certifications restrict the sequencing on the machines. Additionally, the longevity of products 
within IBCs adds complexity. 
 
An analysis of the literature and the situation at Euroma leads to formatting the problem as 
two single-machine scheduling problems. In addition, the literature study delves into solution 
methodologies, focusing on constructive and improvement heuristics. Next to adapting 
existing heuristics, we developed a heuristic that minimizes the number of dummy jobs 
needed to process certified jobs (MD).  
 
We conducted experiments with the different heuristics. Adjusting the old schedule (AOS) and 
the NEH constructive heuristic, coupled with the SA improvement heuristic, yielded the lowest 
objective function values within a reasonable CPU time.  
 
The results show an improvement in scheduling by the algorithms compared to the current 
situation. The reduction of the number of dummy jobs and cleanings needed caused a 
reduction from 17.0 hours of cleaning time on average per day to 11.5 (NEH) and 11.6 hours 
(AOS). However, the total amount of tardy jobs increased, but the number of extremely late 
jobs decreased.  
 
An analysis of the number of IBCs necessary showcased using the model can decrease the 
average number of IBCs waiting for packaging from 23.5 in the current situation to 13.4. In 
addition, when experimenting with increased demand, the results showed a possible 20% 
demand increase before IBC use is at the current level.  
 
NEH and AOS with SA both give a low use of dummy jobs. However, they do not limit the use, 
as MD does. Although MD may not be the best option for this problem, our algorithm can 
offer significant value when reducing dummy jobs is paramount. In addition, a potential 
improvement to the model includes incorporating a restriction for using the minimal number 
of dummy jobs, where the principles of MD can calculate this minimum. 
 
The recommendations to Euroma include implementing the model, using NEH or AOS and SA. 
In addition, to addressing the challenge of tardy jobs, we advise exploring adjusting the 
weights used in the objective and introducing article-specific due dates. Furthermore, 
synchronizing mixer planning with machine operations can enhance efficiency. 
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To implement the solution in practise, the developed model needs to integrate into a practical 
tool, which extracts data from various systems and uses this to feed the model. Additionally, 
the tool translates the schedules generated by the model for use within the systems. The tool 
responds to specific events, such as machine vacancies and new job arrivals in queues. After 
creating a new schedule, the tool initiates a series of events, including schedule updates and 
activation of AGVs to move IBCs. 
 
Technical adjustments to the current systems need to accommodate the tool. After the 
technical implementation of the tool, we propose testing in the factory and gathering 
feedback from operators and planners. Weekly evaluations guide ongoing adjustments. If 
needed, this phase extends to ensure a seamless integration. The last step is complete 
integration, where operators strictly follow the schedule, and the tool triggers AGVs to 
transport IBCs. 
 
In conclusion, this thesis explores enhancing IBC availability by decreasing lead time in 
Euroma's packaging process. The findings, recommendations, and strategies offer the 
potential to boost operational efficiency in line with Euroma's production goals. However, 
refinement, practical trials, and integration are needed to realize these benefits. 
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1 Introduction 
This thesis forms part of the graduation assignment for the master's program in Industrial 
Engineering and Management at the University of Twente. The research occurs at Royal 
Euroma B.V, which we refer to as Euroma. 
 
Section 1.1 introduces Euroma, addressing the company and the department where the 
research takes place. Next, Section 1.2 shows the problem context and causes. Finally, Section 
1.3 addresses the research objective, scope, research questions, deliverables, and the outline 
of the report.  
 

1.1 Introduction to Euroma 
Euroma is a company that develops and produces a range of spice-based products. The 
company originated in 1899 as a store selling herbs, spices, and pharmaceutical items 
(Euroma, 2019).  
 
Euroma reached a top position in the European spice market after acquiring Intertaste in 2018. 
Production processes of various production sites were united when a new factory in Zwolle 
opened in 2019 (Euroma, 2022). The factory contains the production and packaging of all dry 
products, such as herbs and spices, seasonings, and coatings. Euroma also has locations in 
Nijkerk and Schijndel, which produce and package abient and fresh liquids, respectively 
(Euroma, 2019). This research focuses on the mixing department at the Zwolle production 
site. 
 

Introduction to the mixing department in Zwolle 
The mixing department in Zwolle holds one of the main processes at this location. This 
department mixes ingredients to make spice blends. It runs twenty-four-seven to satisfy 
demand. In the department, ingredients are collected (replenishment), mixed (mixing) and 
packaged to be sent to the customer or processed further (packaging). Figure 1.1 shows a 
simplified overview of the mixing process, which we explain in the remainder of this section. 
We give a more extensive description of the mixing process in Section 2.1. 

 
Figure 1.1: Simplified overview of the mixing process, with the steps of replenishment, mixing, and packaging. 
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Replenishment  
The warehouse, internal (inside), or external 
(outdoor) silos store the ingredients used to fill the 
mixer. The silos hold the most used ingredients, such 
as starch and salt. External silos deposit via hoppers 
into the two largest mixers. Intermediate bulk 
containers (IBCs) collect the other ingredients. Via 
hoppers, an internal silo deposits ingredients into an 
IBC, see Figure 1.2. Ingredients from the warehouse 
are deposited into IBCs using a filling station.  

 

Mixing  
The mixing department receives the full IBCs. There 
are eight mixers, with a capacity ranging from 200L 
to 10,000L. Per mixer, characteristics can differ, such 
as possible ways to fill them and the kind of product 
suited for the mixer.  
 

Packaging 
When mixed, the product is stored in the same IBCs 
or directly put in (big) bags, depending on the mixer 
type. The packaging process packages full IBCs in 
bags or big bags. Bags weigh around 20kg, and big bags refer to bags of around 400 kg. The 
warehouse stores the packaged products. 
 

1.2 Problem description 
In this section, we briefly describe the problem context in Section 1.2.1 and the causes of the 
problem and problem statement in Section 1.2.2. 
 

1.2.1 Problem context  
Euroma wants to increase the output of the factory. One of the bottlenecks in production is 
the IBC availability in the mixing department. The IBCs filled with finished products accumulate 
in the packaging process, stagnating the release of new jobs. 
 
The IBC filling rate for replenishment is 73%, and for packaging, 81%. On average, each mixture 
(measured over 1,467 jobs) requires 2.0 IBCs. 
 
From filling an IBC until packaging the product in the IBC (if used for packaging), it takes an 
average of 17.8 hours and 4.3 hours when not using the IBC for packaging (measured over 
1,467 jobs). 
 
When used for packaging, the filling rate and the throughput time of an IBC suggest that IBC 
use can be more efficient. Euroma wants to know how they can increase the availability of 
IBCs by increasing the filling rate or decreasing the time a job uses an IBC.  
 

Filling rate 
In the mixing department, each product follows a standard route. A route consists of the 
mixer, order quantity, and mixing steps. The process engineer calculates the optimal order 
quantity by considering limitations such as the minimum order quantity (MOQ) and the 
incremental order quantity (IOQ), which are contingent on customer agreements. The IOQ 

Figure 1.2: An IBC being filled by a hopper of an 
internal silo. 
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often relies on the size of bags or pallets used to package the finished product, as detailed in 
Appendix I. 
 

Lead time IBC 
The IBC functions as follows: during a specific job, it receives ingredients from the internal 
silos, bags, and totes. Once it becomes full, it waits until the mixer can receive the ingredients. 
In the case of specific mixers, the IBC also acts as a temporary storage vessel for the finished 
product until it is ready for packaging. Cleaning of the IBCs occurs between jobs. Table 1.1 
details the average time and quantity of IBCs used for various subprocesses. 
 
Table 1.1: Average throughput times of an IBC per production order (n=806; data week 47 to 49 2022; source: 
Weekplanning). 

Subprocess Average time (hours) Average number IBCs used per week 

Filling IBC and waiting on mixer 4.25 550 

IBC waits for the mixer to finish 1.70 550 

IBC waits on packaging 11.37 278 

IBC at packaging 0.51 278 

 
The table shows that the IBC spends most of the time waiting on packaging. It is logical to 
research improvements made in this aspect. 
 

1.2.2 Problem causes and problem statement 
The low availability of the IBCs has multiple causes, as identified in the previous sections. 
Figure 1.3 shows an Ishikawa diagram with the causes (the arrows) and the effect of the 
problem (the circle) (Graham et al., 1979). 

Figure 1.3: Ishikawa diagram with the cause and effect of the problem. 

The company works actively towards increasing customer demand, a situation they value 
greatly. Section 1.2.1 explains that the long lead time of IBCs is primarily caused by the long 
waiting time at packaging, resulting in being a significant factor in the throughput time of IBCs. 
Evaluating the filling rate of the IBCs involves analysing the replenishment and packaging 
processes, both of which remain unoptimized in the current situation. However, the customer 
agreements regarding the IOQ and MOQ currently limit the possible solutions to make 
significant changes concerning the filling rate. 
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With this analysis, we conclude decreasing the long waiting time at the packaging process and 
increasing the throughput time of the IBCs generate the most impact to improve IBC 
availability. We define the main objective of the research as finding a solution that contributes 
to decreasing the lead time at packaging to enhance the availability of the IBCs.  
 

1.3 Research approach 
This section gives the scope of the project in Section 1.3.1. Next, Section 1.3.2 and Section 
1.3.3 explain the research questions and the methods used to answer them. We set the 
deliverables of the research in Section 1.3.4. Finally, Section 1.3.5 gives the outline of the 
report. 
 

1.3.1 Research scope 
The focus of this research is the factory of Euroma in Zwolle. The research within this factory 
is specifically about the mixing department and the use of IBCs. The mixing department 
contains the processes replenishment, mixing and packaging. We limit the research to the 
packaging process. Other processes of the mixing department, including cleaning of IBCs, are 
out of scope.  
 
In addition, we take the following aspects as a given: 

• Customer demand 

• Mixing schedule  

• Ingredients and recipe of a product  
 

1.3.2 Research questions 
This section gives the main research question and the sub-research questions, in addition to 
the research method. 
 
The main research question of this research is:  
 
How can the lead time at the packaging process be decreased to improve the availability of 
IBCs at Euroma?  
 
We first answer five sub-research questions to find a solution for the main research question. 
 

1. What is the current situation concerning IBC use at the packaging process of Euroma?  
 

To answer sub-research question 1, we analyse the context of the core problem. First, we give 
an overview of the production process. Next, we map the organizational factors concerning 
the present stakeholders, systems, and data. Finally, we create insight into the performance 
of the current situation. We collect information by visiting the factory, monitoring the 
processes, interviewing employees, and deriving information from available data. 
 

2. What available theory applies to improving the scheduling of the packaging process 
of the IBCs at Euroma? 

 
We conduct a literature review to answer the second sub-research question. The literature is 
relevant to decreasing lead times in comparable processes and general methods used for 
optimization.  
 

3. What solutions can potentially contribute to enhancing the availability of IBCs at 
Euroma? 
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We propose multiple potential solutions by combining the knowledge obtained about the 
current situation regarding IBCs and the existing literature.  
 

4. Which of the proposed solutions gives the best results for the situation at Euroma?  
 
This sub-research examines the proposed solutions through simulation testing and evaluation. 
In this process, we establish performance indicators, create various scenarios to test different 
solutions and map out the positive and negative implications to ascertain the impact of these 
solutions. 
 

5. How can the solution be implemented at Euroma? 
 
With a formulated solution, we set up an implementation plan to transition ownership of the 
research to the company.  
 

1.3.3 Deliverables 
This research presents the following deliverables to Euroma: 

● A solution to contributing to improving the availability of IBCs at Euroma.  
● An implementation plan for implementing the proposed solution at Euroma. 

 

1.3.4 Outline of the report  
The report follows the following structure. Chapter 2 gives the current situation concerning 
IBC use at Euroma. Next, Chapter 3 provides the literature review. Chapter 4 describes the 
modelling and solution approaches. Chapter 5 gives the experiments and their results of the 
potential solution approaches. Chapter 6 provides advice on how to implement the solution. 
Lastly, Chapter 7 gives the conclusion and recommendations. 
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2 Current situation 
This chapter answers the sub-research question:  
 
What is the current situation concerning IBC use at the packaging process of Euroma? 
 
We first explain the processes in the mixing department in Section 2.1. Next, we describe the 
production plan process and the mixing steps in Section 2.2. Section 2.3 and Section 2.4 
explain the stakeholders, IT systems, and available data. Finally, Section 2.4 summarizes this 
chapter. 
 

2.1 Mixing department  
The following sections explain the processes within the mixing department. Section 2.1.1 
details the replenishment process. Next, Sections 2.1.3 and 2.1.4 provide the mixing and 
packaging process. Lastly, Section 2.1.5 explains the routing of IBCs.  
 
Figure 2.1 gives an overview of the relationships between steps within and between the 
different processes of the mixing department. Appendix II shows the enlarged figure. 

 
Figure 2.1: Process within the mixing department. 

2.1.1 Replenishment of mixer 
Outside silos, internal silos, pallets, totes, and barrels if it is liquid store the ingredients needed 
for the mixtures. See Figure 2.2 for illustration.   
 

 

Figure 2.2: From left to right: External silos, internal silos, and totes. 
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For each job, replenishment is necessary. The mixer type and the storage methods of the 
ingredient determine from which storage to collect from. In this section, we refer to the 
relevant floor levels in the factory. Figure 2.3 (see 0 for an enlarged version) illustrates the 
levels.  
 
Ingredients for a mixer consistently come from the largest available carrier. For example, for 
an ingredient needed in the largest mixer and an ingredient resides in both an internal and 
external silo, the ingredient always comes from the external silo. The outside silos fill the two 
largest mixers via a hopper. 
 
IBCs collect ingredients at the internal silos. An Automated Guided (AGV) transports an IBC 
towards the internal silo depositing point (level 0). If there is still room in the IBC, the IBC 
travels to the next internal silo or to the IBC filling station (level 0). If it is full, it travels towards 
a buffer place at the mixer (level 3 for 10K, level 4 for remaining mixers).  
 
At the IBC filling station (level 1), operators fill an IBC using bags or totes. An IBC positions 
directly under a filling station (level 0), filling one IBC at a time. An AGV collects a full IBC and 
brings it to the buffer point at the mixer.  
 

 
 

2.1.2 Mixing 
The processing steps of a product indicate when to add which ingredients. Often, there are 1 
to 3 processing steps. The first step involves adding most of the dry ingredients, the second 
includes adding liquid ingredients, and the third covers adding the remaining dry ingredients.  

Figure 2.3: Simplified map of the mixing department. Adapted from “Planning & Scheduling for Euroma Zwolle”, 
by M. Bergman & T. Van Benthem, 03-02-2023. 
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Table 2.1 shows the characteristics of each mixer. The biggest mixer type, the 10K mixer, can 
hold 10,000L. As a logical consequence, these mixers mix the largest production orders. 
Outside silos and IBCs fill these mixers. An automated process packages the finished product 
directly from the mixer into big bags.  
 

Table 2.1: The mixers at Euroma Zwolle and their characteristics. 

Type # Name Capacity Packaging possibilities  

10K 2 407 & 408 10,000L Directly in big bags 

4.5K 1 404 4,500L Via IBC in bag or big bag 

3K 2 403 & 405 3,000L Via IBC in bag or big bag 

1.5K 1 402 1,500L Directly in bags 

0.2K 1 401 200L Directly in bags 

1.5K Tumbler 1 409 1,500L Via IBC in bag or big bag 

 
Only IBCs fill the 4.5K, 3K, and 1.5K mixers. The 4.5K and 3K mixers deposit the product after 
mixing directly into the same IBCs used for filling. Operators deposit the finished products 
from the 1.5K mixer into bags. Operators fill the 0.2K mixer by manually depositing totes into 
it. Packaging takes place directly below the mixer, in the same manner as for the 1.5K mixer.  
 
The 1.5K Tumbler is a unique mixer. One filled IBC contains all the ingredients of the job. The 
IBC tumbles instead of unloaded into a mixer. Packaging occurs similarly to the 4.5K and 3K 
mixers. Not all products suit this mixer because it tumbles an IBC and does not use a mixing 
arm or cutting rotor. For example, powder with liquid does not create a homogeneous product 
using this mixer. In addition, there is only one mixing step. Hence, all ingredients combine at 
once.  
 

  
Figure 2.4: On the left, the Tumbler rotates an IBC. Right, a 10K mixer with pipes above the mixer for ingredient 
disposal and below for disposal of the finished product. 

2.1.3 Packaging 
Figure 2.1 and Table 2.1 show that the packaging process depends on the mixer used. The 10K 
mixers each have their own packaging station with two automatic disposal points for big bags. 
After mixing, operators deposit the products from the 1.5K and 0.2K into bags and stacked on 
a pallet. 
 
The IBCs used for replenishment temporarily store the mixed product from the 4.5K and 3K 
mixers. An AGV transports these, and the IBCs from the 1.5K tumbler, towards a buffer point 
for one of the two depositing points for the packaging stations. Figure 2.4 displays this area 
on the left. The machines located below the depositing points. One station is for the Dinnissen, 
and the other is for the Votech machine. These machines pack the product in respectively big 
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bags and bags. The packaged bags at the Votech automatically stack on a pallet. Operators 
operate the machines; this process does not require any other manual labour next to cleaning. 
Figure 2.5 presents the Dinnissen and Votech machines. 
 
Customer requirements determine the size of the big bag or bag. The warehouse stores the 
finished product until further processing or shipping to the customer.  
 

2.1.4 IBC routing 
AGVs transport the IBCs. Figure 2.6 shows the flow of IBCs throughout the mixing department. 
Because of the small size of the 0.2K mixer, this mixer does not use IBCs. The figure represents 
all other mixers. 
  

 
Figure 2.6: Flow of the IBCs through the mixing department 

 
When a new job starts and an IBC is available, these link to each other. During an ongoing 
replenishment process for a mixer, the first goal is to gather all products from internal silos. 
As a result, the IBC initially fills up at the internal silo depositing point. If it still has capacity 

Figure 2.5: On the left, the Dinnissen packaging big bags. On the right, the Votech packaging bags 
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after completing this task, it collects ingredients from IBC filling stations. Once the IBC reaches 
its total capacity or collects all the ingredients, it travels to a buffer area next to the relevant 
mixer. 
 
After mixing, the 4.5K and 3K mixers deposit the finished products into IBCs for packaging. 
These are the same IBCs used for replenishment since this saves cleaning time. AGVs bring the 
refilled IBCs to buffer places next to the packaging machines. If all these buffer places are full, 
the IBC travels to a different level. It is better to steer clear of this scenario to prevent 
additional handling and strain on shared resources, 
 
Sometimes, replenishment demands more IBCs than packaging, either because the product 
volume reduces during mixing or due to multiple processing steps with half-full IBCs. When 
packaging requires fewer IBCs than replenishment, the excess IBCs enter the cleaning station. 
 
The IBCs used for the 1.5K and 10K mixers go to the cleaning station after depositing the 
ingredients in the mixer. The IBC used for the 1.5K Tumbler mixer goes directly to the 
packaging station, as disposal is unnecessary. 
 

2.2 Restrictions 
The Votech or Dinnissen machines package all products from the 3K, 4.5K, and 1.5K Tumbler 
mixers. Creating a weekly schedule for the mixers provides knowledge of their anticipated 
output. However, this is not exact and can be off by hours or days. To address the uncertain 
mixer output, the order in which the mixed products enter the Votech or Dinnissen machine 
remains undetermined in advance, with an operator responsible for establishing an optimal 
sequence. 
 
For both the Votech and Dinnissen, salt rinses the machine after every product change. 
However, if sequential products differ in specific characteristics, rinsing with salt is insufficient 
and more extensive cleaning is necessary. To minimize the cleaning time, the operator looks 
for a series of similar products that require only minimal cleaning. The following 
characteristics of sequential products determine the degree of cleaning necessary:  

• Colour: for example, white to grey requires less cleaning than red to white.  

• Allergens: if a product contains one or multiple allergens, such as gluten, mustard, and 
soja, an extensive cleaning occurs to assure that the next product does not contain 
these allergens. 

 
The cleaning type for a significant colour change is ‘dry cleaning’ and ‘wet cleaning’ for 
allergens change. With a dry cleaning, the operator brushes residue away from the machine. 
With a wet cleaning, the cleaning is more extensive, and the operator uses water and a 
cleaning product to ensure no allergens are left behind. The dry cleaning takes less time than 
the wet cleaning. The exact time depends on the machine and ranges from 30 to 120 minutes. 
 
In addition, the sequence is dependent on the halal and kosher claims. The halal and kosher 
certified products must adhere to Islamic (Eardley, 2014) and Jewish law (Kosher Certifications 
& Supervisions, 2022), respectively. When a product has one of these certifications, the two 
products processed before this product must be suitable. A suitable product is a product that 
does not have the certification but does not contain ingredients forbidden by Islamic or Jewish 
law. 
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Finally, specific product characteristics necessitate packaging shortly after mixing. Otherwise, 
there is a risk of clumping. The time before this happens can differ per product, but it is, on 
average, 24 hours. This makes the time waiting at the packaging process an important factor.  
 
The understanding of the company is that currently, these rules are not always abided by; in 
Chapter 5, we confirm this suspicion. 
 

2.3 Stakeholders  
This section discusses the most relevant stakeholders to the mixing department and to 
consider when framing a solution to our research question. 
 
The first stakeholders identified are the Customer Service and Sales departments. Their role 
in Euroma's agreements with her customers makes them stakeholders. The agreements made 
with the customers impact the orders' characteristics and profitability. 

 
Next, we identify the operators working with the packaging machines. They work with the 
machines daily and are a valuable source of information and, therefore, stakeholders. 
Moreover, the proposed solution in this research may impact their work. 
 
Last, we identify Euroma as a company. The company has a long-term vision to increase sales 
and production output. This research contributes to realizing a higher potential output for the 
future.  
 

2.4 IT systems and available data 
Multiple systems collaborate to enable the production process. The schedule of the mixers 
serves as input for the machines in the production area and draws data from multiple systems. 
Figure 2.7 depicts the relationships between these systems. 
 
Slimstock generates the production forecast and 
communicates this with LN, the ERP system Euroma uses. In 
LN, the planners plan the production order for a specific 
week. An algorithm in Delphi uses the weekly plan in LN and 
allergen information from PLS PRO to form an optimized 
schedule for mixing. Delphi communicates this plan with LN. 
A planner releases the jobs in LN, triggering the job in ESA.  
 
ESA is the most used program in the production area. The 
interface for the operators and the control in releasing jobs 
in the replenishment and mixing steps is in ESA. MES is the 
system that controls the packaging process in the mixing 
department. ESA and MES interact with DS Automation, the 
program that controls the AGVs.  
 
Multiple systems collect data. Table 2.2 lists the most relevant data to this research.  
 
 
 
 
 
 

Figure 2.7: Different systems and their 
relationships. 
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Table 2.2: Available data and corresponding programs. 

Name Program Description  

Weekly production 
plan  

LN A weekly plan with the sequence of all jobs planned on each mixer, 
including the IBCs needed per job 

AGV movement ESA Data of movements of the AGV and, therefore, the movements of IBCs 

Production events ESA Data of all transpired events within the mixing department, e.g., times 
of collecting ingredients, releasing jobs, and mixing 

Packaging MES Data of packaging at the Votech and Dinnissen 

Allergens  PLS Pro Allergens per product 

Product information LN  Certifications and colour per product 

 

2.5 Summary 
This chapter provides answers to the following sub-research question: 
 
What is the current situation concerning IBC use at the packaging process of Euroma? 
 
IBCs collect ingredients to fill the mixers. In addition, IBCs transport finished products to 
packaging. The fill rate of the IBCs depends on the quantity made and the division of 
ingredients over the IBCs. The planners determine the quantity made, restricted by the MOQ 
and IOQ.  
 
When using the IBCs for packaging finished products, it is necessary to consider the following 
restrictions for the processed product sequence: 

• Cleaning (dry) is necessary between products if the colour changes. 

• Extensive (wet) cleaning is necessary after a product without allergens follows a 
product with these allergens.  

• A kosher certified product can only be processed if the two previous products are 
either kosher certified or kosher suitable.  

• A halal certified product can only be processed if the two previous products are either 
halal certified or halal suitable.  

• The finished product cannot stay in an IBC for an extended period. The time differs 
per product but is, on average, 24 hours. 
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3 Literature review 
In this chapter, we provide an overview of the literature related to the problem described in 
the first two chapters. First, Section 3.1 covers the theory related to planning and scheduling, 
with as goal reducing the lead time of IBCs in the packaging process. In Section 3.2, we 
describe multiple solution approaches. This section first provides methods for reducing the 
lead time, such as constructive and improvement heuristics. In addition, it gives multiple 
operators and neighbourhood structures used in the solution approaches. Finally, Section 3.3 
provides a conclusion of the sub-research question: 
 
What available theory applies to improving the scheduling of the packaging process of the IBCs 
at Euroma? 
 

3.1 Planning and scheduling 
In this section, we zoom in on the packaging process, where there is always a queue of IBCs 
for the Votech and Dinnissen machines. The goal is to find a method to reduce this queue and 
the lead time of IBCs.  
 
First, we look at the broader production planning process in Section 3.1.1. Section 3.1.2 gives 
information about the machine scheduling problem. Section 3.1.3 explains the difference 
between online, offline, and real-time scheduling. Lastly, Section 3.1.4 provides methods to 
incorporate sequencing restrictions. 
 

3.1.1 Production planning 
The approach of hierarchical production planning 
incorporates a series of models on different hierarchical 
levels throughout an organization. Figure 3.1 shows a 
hierarchical planning scheme. The highest organizational 
level decides what item is produced in which factory. 
Next, aggregated planning determines production and 
inventory levels per plant. The sales forecast in the mid-
term leads to a production plan. Next, the approach 
suggests scheduling product families (items with similar 
characteristics) before individual items. At the lowest 
level, the scheduling of parts and components occurs, 
with each lower level constrained by decisions made at 
higher levels (Vollmann et al., 1992). 
 

3.1.2 Machine scheduling  
Scheduling involves assigning resources to tasks within 
specified timeframes, with the aim of optimizing one or 
more objectives. In machine scheduling, the resources 
are machines, denoted by 𝑖. 𝑗 denotes the tasks, or jobs, 
on the machines. Each job relates to information about 
its processing time (𝑝𝑖𝑗), release date (𝑟𝑗), due date (𝑑𝑗), 

and weight (𝑤𝑗). The latter is a priority factor, denoting 

the importance of the job (Pinedo, 2016).   
 
Assumptions often used in scheduling models are the following (Haupt, 1989):  

• One machine only processes one job at a time. 

• Each machine only processes one job at a time. 

Figure 3.1: Hierarchical production planning 
scheme (Vollmann et al., 1992). 
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• Each job must finish without interruption. 

• Each machine is continuously available. 

• The limiting resource is the machine, not other shared resources. 
 

A frequently used notation for machine scheduling is the three-field notation: 𝛼|𝛽|𝛾. This 
notation holds the machine environment (𝛼) processing characteristics and constraints (𝛽), 
and the objective function (𝛾) (Graham et al., 1979).  
 

Machine environment  
Machine scheduling problems typically classify as single-stage or multi-stage scheduling 
problems. A single-stage machine scheduling problem involves only one operation for each 
job. Multi-stage scheduling problems involve jobs requiring operations on different machines 
(Anderson et al., 2003). 
 
This research only looks at the packaging step, with only one activity. Hence, we classify the 
problem as a single-stage machine scheduling problem. Within this category, Pinedo (2016) 
distinguishes the following categories: 

• Single machine: 1 machine and 𝑛 jobs.  

• Identical machines in parallel: 𝑚 identical machines and 𝑛 jobs.  

• Machines in parallel with different speeds: 𝑚 machines and 𝑛 jobs, where the 
processing time of a machine differs with a constant factor. 

• Unrelated machines in parallel: 𝑚 machines and 𝑛 jobs, where the time to complete 
a job is different per combination of job and machine.  

 

Processing characteristics and constraints  
Pinedo (2016) distinguishes multiple processing characteristics and constraints. A problem 
may involve more than one restriction or constraint. A list of processing characteristics and 
constraints suitable for a single-stage machine schedule problem is the following: 

• Release dates: the job cannot start before the release date 𝑟𝑗. 

• Preemptions: the job can be interrupted to appoint another job to the machine. 

• Precedence constraints: completion of one or more jobs before another job starts 
processing.  

• Sequence dependent setup times: in between jobs 𝑗 and 𝑘, there is 𝑠𝑗𝑘 set-up time. 

• Job families: a machine can process jobs from the same family sequentially on a 
machine without requiring setup between jobs.  

• Batch processing: a machine can process several jobs simultaneously.  

• Break downs: machines are not continuously available, also known as machine 
availability constraints. 

• Machine eligibility restrictions: not all machines can process all jobs. The set 𝑀𝑗 

denotes the set of machines that can process job 𝑗. 
 

Objective functions 
The main groups of objective functions distinguished by De Souza et al. (2022) are: 

• classic due date related criteria, 

• makespan and completion time related criteria,  

• and multi-criteria and additional objective functions. 
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Classic due date related criteria depend on the due date 𝑑𝑗. 𝐶𝑗 denotes the completion time 

of job 𝑗, which is the latest time the job is in the system. This determines the lateness of a job, 
𝐿𝑗: 

𝐿𝑗 = 𝐶𝑗 − 𝑑𝑗        (1) 

 
Alternatively, the tardiness of a job, 𝑇𝑗, indicates lateness, which cannot be negative. 

𝑇𝑗 = max (𝐶𝑗 − 𝑑𝑗, 0)     (2) 

 
Lastly, a unit penalty, 𝑈𝑗  associated with a tardy job (Pinedo, 2016): 

𝑈𝑗 = {
1 𝑖𝑓 𝐶𝑗 > 𝑑𝑗

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
     (3) 

 
The makespan, 𝐶𝑚𝑎𝑥, is the time that it takes to complete all jobs. The processing times of the 
jobs, and the times the machine is not working (e.g., waiting for a job and set-up time) 
determine 𝐶𝑚𝑎𝑥 (Lee et al., 2010). Other time related criteria include weighted shortest 
processing time and minimization of the set-up time (De Souza et al., 2022). 
 
Multi-criteria optimization problems involve optimizing more than one criterion or objective. 
If these criteria conflict with each other, a trade-off is necessary (Červeňanská, et al., 2021). 
Barnes & Vanston (1981) provide an example where they minimize the sum of delay penalties 
and setup costs. Methods for dealing with multi-criteria optimization include (Lalla, 2022):  

• Weighted scoring method: The individual objectives can receive a fixed or dynamic 
weight for prioritizing specific objectives above others (Červeňanská, et al., 2021). 

• 𝜖-constraint method: One objective is optimized, and the remaining objectives 
change into constraints (Miettinen, 2004).  

• Lexicographic method: The objectives are sorted on importance, after which the 
optimization problems are solved one by one, where the most important objective 
is solved first. After each problem is solved, we add the restriction that the 
previously optimized objectives cannot be worse than the value found in its 
optimization (Arora, 2017).  

• Goal programming: Goal programming assigns specific goals to individual 
objectives and establishes a mathematical model aimed at minimizing deviations 
from these set goals. (Arora, 2017). 

 
Additional objective functions can include the minimization of total earliness and total late 
work (De Souza et al., 2022). 
 

3.1.3 Online, offline, and real-time scheduling 
In offline scheduling, advance knowledge of all scheduling data, including processing times, 
release dates, and due dates, allows for creating the entire job schedule at time zero. In online 
scheduling, this data is unknown beforehand. A specific online scheduling problem is the 
online-over-time scheduling problem, where jobs release at different times, and the future 
quantity of jobs to be released and their respective release dates remain unknown (Pinedo, 
2016). 
 
Real-time scheduling involves creating a schedule during run-time that meets strict timing 
constraints. It differs from online scheduling in that it often involves periodic data releases, 
where a recurring task uses input from this data to create a new schedule. This process of 
dynamically adjusting the schedule based on incoming data is crucial in real-time scheduling, 
where timely response to events is essential. For example, in real-time systems such as air 
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traffic control or autonomous vehicles, delays in scheduling decisions could have serious 
consequences (Goossens & Richard, 2004). 
 

3.1.4 Sequencing restrictions 
Recall that Section 2.3, explains that a halal certified product precedes at least two halal 
suitable or certified products, and the same applies to kosher products. A proposed solution 
needs to account for these restrictions to be considered feasible.  
 
Sun et al. (2010) name three methods for reaching a feasible option when there are 
sequencing constraints.  

• Reject the proposed solution when it is infeasible.  

• Repair infeasible solutions to make them feasible. 

• Improve operators to guarantee a feasible solution.  
Modification of the solution does come with its disadvantages. These include being 
computationally intensive and limiting the solution space. Therefore, Sun et al. (1998) propose 
an alternative method by penalizing infeasible solutions, making selecting a feasible solution 
more probable.  
 

3.2 Solution approaches  
Combinatorial optimization deals with optimising an objective function over a finite domain. 
Often, integers and natural numbers restrict variables. These and other restrictions result in a 
limited number of feasible solutions. The single-machine scheduling problem is a 
combinatorial optimization problem (Ramalhinho-Lourenço, 2019). Exact or approximation 
methods find utility in solving combinatorial optimization problems. (De Giovanni, 2017).  
 
Exact methods aim to find the optimal feasible solution. These methods include branch-and-
bound algorithms, dynamic programming, and integer (linear) algorithms (Reddy, 2019). 
However, there are instances when we cannot employ exact methods. This may arise due to 
the problem's complexity, where an exact method fails to yield an optimal feasible solution, 
or because of time constraints that hinder the search for a solution. Approximation methods 
use heuristics to find a good, not necessarily optimal, feasible solution in a reasonable amount 
of time (De Giovanni, 2017).  
 

3.2.1 Algorithms 
Table 3.1 provides multiple algorithms used to solve combinatorial optimization problems. 
The choice of algorithm depends on the size and complexity of the problem, as well as the 
desired level of optimality of the solution (Tahami & Fakhraver, 2022). 
 
Table 3.1: Algorithms for combinatorial optimization problems (Tahami & Fakhraver, 2022). 

Category Example of algorithms 

Fitting algorithms Next fit, first fit, and best fit 

Exact enumerative methods Branch-and-bound and branch-and-price algorithms 

Basic approximation algorithms Near-optimal algorithms and efficient approximation schemes 

Heuristics Local search algorithms, greedy procedures, simulated annealing, 
and GRASP algorithms 

Hybrid approaches Metaheuristics and combining Lagrangian relaxation and column 
generation 

 
The theory does not recognize one method as best for solving combinatorial optimization 
scheduling problems. In Section 4.1, we conclude that the problem is a real-time scheduling 
problem. In most existing methods for time-restricted scheduling, such as real-time or online 
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scheduling, the theory employs heuristics, primarily due to the intensive computational time 
required by conventional search and optimization methods, making them less favoured for 
time-restricted scheduling (Ang et al., 2009). The remainder of this section gives multiple 
constructive and improvement heuristics to solve the scheduling problem at Euroma.  
 

Constructive heuristic 
A constructive heuristic starts with an empty solution and iteratively adds one element to the 
solution by applying some specific selection criterion (De Giovanni, 2017). In the real-time 
scheduling problem at Euroma, we have the practical requirement for the algorithm to make 
fast decisions. Therefore, the constructive heuristics mentioned next are relatively simple 
algorithms. 
 

First-come-first-serve 
The first-come-first-serve (FCFS) heuristic schedules the jobs in order of arrival, where the first 
arrived processes first. This method is straightforward and reduces the variation in waiting 
time between jobs. However, it does not consider other performance criteria, such as 
minimizing set-up time, resulting in a higher average waiting time (Ahmad, 2023).  
 

Nearest neighbour heuristic 
In specific cases, solving a single-machine scheduling problem with sequence-dependent set-
up times aligns with the approach of solving a travelling salesman problem (TSP) (Minetti, et 
al., 2001; Mustu & Eran, 2018). In the TSP, the assignment is finding an optimal route between 
a given set of cities. A relatively simple heuristic used for TSP is the nearest neighbour heuristic 
(NNH). Here, the city closest to the last added city becomes the next addition. In machine 
scheduling, the cities represent jobs, and the nearest neighbour corresponds to the job that 
contributes most positively to the objective and repeats for all jobs. Because of its simplicity, 
this is a fast algorithm. However, the solutions are not necessarily close to the optimum 
(Oliveira & Carravilla, 2009). Moreover, additional constraints or goal functions can disqualify 
this heuristic from applying to the single-machine scheduling problem with sequence-
dependent set-up times.  
 

NEH algorithm 
A well-known constructive heuristic in the scheduling problem is the Nawaz, Enscore, Ham 
(NEH) algorithm (Nagano & Miyata, 2016). This algorithm first sorts the jobs in descending 
order of processing time. The first job on the list, the one with the largest processing time, is 
scheduled in an empty schedule. Next, the second job on the list is added by trying to insert it 
in every possible place in the existing sequence and calculating the objective function value. 
The schedule with the best objective function value is selected. This repeats until the 
scheduling of all jobs (Nawaz et al., 1983). More complicated metaheuristics do not 
outperform this algorithm (Ruiz & Stützle, 2007). Moreover, this algorithm proves effective 
scheduling for the mixers at Euroma (Benthem, 2021). However, it is more computationally 
expensive than the aforementioned algorithms (Nagano & Miyata, 2016). 
 

Improvement heuristic 
The goal of the improvement heuristic is to find the best solution among many possible 
solutions. Often, a local search finds neighbouring solutions that give a better objective than 
the current solution. The set of all solutions obtained by making a small change to the current 
solution defines the neighbouring solutions (Cormen et al., 2009), see Section 3.3.3 for more 
information. One of the simplest methods for minimizing a function is the steepest descent 
(Rosing et al., 1998). Moreover, simulated annealing (SA), tabu search (TS), and genetic 
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algorithms (GA) are popular improvement heuristics applied to machine scheduling problems 
(Ruiz & Vázquez-Rodríguez, 2010; Cinar et al., 2015). 
 

Steepest descent 
Steepest descent searches for the best neighbour in the complete neighbourhood of the initial 
solution. This best neighbour is accepted if it does not decrease the objective function value. 
Iterations continue until reaching a local optimum or a stopping criterion. It is a very simple 
and quick algorithm. However, it has no method of getting out of a local optimum, often 
preventing it from finding the optimal solution (Winston, 2004). 
 

Tabu search 
Tabu search (TS) uses a local search method where local optima are escaped by remembering 
already explored solutions in a tabu list. In addition, a set of aspiration criteria allows the 
algorithm to make exceptions to the tabu list when finding a better solution. The search stops 
when meeting a stopping criterion, such as reaching a maximum number of iterations. The 
best solution found during the iterations is returned as the result (Glover, 1989).  
 
A long tabu list can restrict the algorithm's ability to explore promising areas of the search 
space, reducing the diversity of solutions generated. Therefore, the algorithm may get stuck 
in suboptimal solutions and fail to find better alternatives. Moreover, by keeping solutions 
marked as tabu for an extended period, the algorithm may struggle to adapt to changes made 
in the solution. When previous moves become more favourable, the tabu list prevents the 
algorithm from revisiting them, preventing the discovery of improved solutions.  
 
A small tabu list can cause premature convergence by quickly exhausting available moves and 
revisiting solutions frequently, resulting in the algorithm settling for suboptimal solutions too 
early. In addition, the limited diversification capacity of a small tabu list narrows the 
exploration of the solution space, reducing the chances of finding globally better solutions and 
keeping the algorithm stuck in suboptimal regions. Moreover, it may lead to cycle formation, 
where the algorithm repetitively revisits the exact solutions without making significant 
progress, hindering the search for better solutions. Lastly, a small tabu list may not provide 
enough opportunities to escape local optima, causing the algorithm to get trapped in 
suboptimal points and failing to reach better global solutions (Salhi, 2002). 
 

Simulated annealing 
Simulated annealing (SA) starts with an initial solution and iteratively explores the 
neighbourhood by making random changes to the current solution. Based on a temperature 
parameter, the algorithm accepts moves that lead to better solutions and moves that lead to 
worse solutions with a certain probability. When the temperature is high, relatively more 
worse solutions are accepted. As the algorithm progresses, the temperature gradually 
reduces, allowing the algorithm to focus more on exploiting the best solutions found so far. 
As with TS, SA iterates until it meets a stopping criterion and the best solution is returned 
(Kirkpatrick et al., 1983). 
 

Genetic algorithms 
Genetic algorithms are optimization algorithms inspired by natural selection and genetics. The 
algorithm creates a population of potential solutions and iteratively evolves the population 
over many generations. In each generation, the algorithm evaluates each individual's fitness 
based on a given objective function and selects the best individuals to reproduce and create 
the next generation. The algorithm creates new individuals that combine the traits of the 
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selected individuals. The selection, reproduction, and variation processes repeated for many 
generations, allowing the algorithm to change into optimal solutions (Holland, 1992).  
 

3.2.2 Operators and neighbourhood structures 
Local search uses neighbourhoods of the current solution to find improved solutions. All 
solutions to a problem lie within the solution space 𝑆, neighbourhood 𝑆𝑖 is part of 𝑆 that only 
includes the neighbourhood of solution 𝑖. The set of neighbourhood operators defines the size 
of the neighbourhood. The neighbourhood should be connected. This means any initial 
solution can iterate to any other solution in 𝑆 (Radar, 2010). 
 
Move, swap, K-opt, and OR-opt are operators frequently used in optimization algorithms for 
scheduling problems or TSP (Radar, 2010). 

• Move: The move operator removes a job from the current schedule and relocates it 
to a new position, causing the other jobs to shift up or down to accommodate the 
move.  

• Swap: The swap operator involves swapping the positions of two jobs within the 
schedule without changing the positions of any other jobs.  

• K-opt: K-opt refers to a move operator that involves removing 𝑘 connections from the 
current schedule and reconnecting the separate parts to form a new schedule.  

• OR-opt: The OR-opt algorithm analyses every possible subsequence of 𝑠 jobs within 
the given schedule, checking whether inserting them between two other jobs results 
in a lower cost. When finding a solution with a lower cost, the operator replaces the 
original sub sequences. Otherwise, it reduces the size of 𝑠 by one. 

 
One or multiple jobs, positions, or connections need to be selected to use an operator. This 
should be selected with care, as this can determine if a neighbourhood is connected or if a 
schedule is feasible (Zhang et al., 2018). For move, we need to select a job and position. The 
swap operator requires selection of two jobs. The selection of the jobs depends on the 
heuristic. Regarding K-opt and the number of connections to choose (𝑘), a smaller 𝑘 leads to 
fast iterations. With larger 𝑘 the algorithm becomes slower, but the solutions are generally of 
a higher quality (Lin & Kernighan, 1973). 
 

3.3 Conclusion 
The literature review's main objective is to address the second sub-research question:  
 
What available theory applies to improving the scheduling of the packaging process of the IBCs 
at Euroma? 
 
To answer this question, we provide literature related to improving the filling rate of the IBCs 
and solution approaches. This section answers the sub-research question by combining 
information from this and the previous chapters. 
 
Section 3.1 gives literature on reducing the lead time of IBCs. First, it explores the overall 
production planning process. Relating this to findings of Section 2.1 we find that the 
scheduling at packaging can be placed at the lowest level in the hierarchical production 
planning scheme. Where the output from the mixers constrains the decisions possible at this 
level. 
 
Section 3.1 continues by discussing the different types of problems related to machine 
scheduling. The packaging operations involve using bags and big bags, which renders the sets 
of jobs unexchangeable between the machines. Consequently, we classify the problem as two 



 

20 
 

separate single-machine scheduling problems. Our findings in Section 2.2 indicate that the 
packaging process can only begin after completing the preceding steps, and the finished 
products can remain in an IBC for a limited period. Therefore, the packaging problem involves 
release and due dates. The change in colour and allergens between two sequential jobs 
influences the cleaning time, related sequence-dependent set-up time. 
 
We differentiated between online, offline, and real-time scheduling. Given the dependence 
of the packaging process on the progress of preceding processes (mixing) and transportation, 
we cannot precisely determine when the IBCs will arrive at the packaging step. However, we 
do have an idea of the events about to happen in the preceding step. Therefore, an offline 
scheduling technique that responds to real-time information is more appropriate for our 
research than a completely online scheduling technique.  
 
Section 3.1 provides multiple ways to deal with restrictions; these include rejecting infeasible 
solutions, repairing infeasible solutions, improving operators, or penalizing infeasible 
solutions.  
 
Section 3.2 gives solution approaches for the described problems. In Section 3.3.1, we find 
solution approaches for reducing the lead time of IBCs, where the main focus is on 
constructive and improvement heuristics that give solutions in a reasonable amount of time. 
We explain different operators and neighbourhood structures. The operators and relevant 
parameters must be carefully selected to realise a connected neighbourhood.  
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4 Modelling and solution approaches 
In this chapter, we explain the modelling approach and multiple approaches for decreasing 
the stagnation of IBCs in the packaging process. Section 4.1 outlines the modelling approach. 
Next, Section 4.2 gives the modelling assumptions and simplifications. Section 4.3 outlines the 
model description. Section 4.4 explains the parameter calculations, which connect the 
practical situation to the model. Section 4.5 defines the objective function. Section 4.6 shows 
multiple solution approaches. Lastly, Section 4.7 provides the summary of this chapter and 
answers the following sub-research question:  
 
What solutions can potentially contribute to enhancing the availability of IBCs at Euroma? 
 

4.1 Modelling approach 
Per machine, there is one queue. The machines work constantly, without exactly knowing 
when a job arrives; therefore, solving the problem in real-time is appropriate. The queues are 
primarily independent of each other. However, they are connected by sharing the same 
limited number of buffer places before the packaging machines. To treat the problem as 
separate single-machine scheduling problems we use an input variable representing the state 
of the buffer (see Section 4.3).  
 
The processing times of the jobs are job dependent. The change in colour and allergens 
between two sequential jobs determine the cleaning time. In addition, the second last 
processed job is relevant, as the scheduling of certified jobs depends on the two last processed 
jobs. These factors translate to a set-up time dependent on three sequential jobs.  
 

4.2 Modelling assumptions and simplifications 
The following statements outline the assumptions and simplifications we rely on to establish 
the model. These limit the complexity of the problem for the sake of limited available time. 

1. The processing time of a job is static and not dependent on, for example, available 

AGVs or operators. These shared resources are always available. The processing time 

includes the travel time. 

2. There are no machine breakdowns, and there is no maintenance needed. 

3. We assume that all products can stay in an IBC for a maximum of 24 hours before any 

negative impact on the product is involved. 

4. The model only uses information about jobs in the mixers or further in the process. 

4.3 Model description 
The model is a single-machine scheduling problem with release dates, due dates, and 
sequence-dependent set-up times.  

 
Following the notation from Section 3.1.2, there is a set of 𝐽 jobs to be scheduled on one 
machine. Every job 𝑗 = −1,0,1 … , 𝐽, has a release date 𝑟𝑗, processing time 𝑝𝑗, and due date 𝑑𝑗. 

Jobs -1 and 0, are the last two processed jobs. The properties of the last two processed jobs 
influence the set-up time, resulting in their inclusion in the schedule. Their positions on the 
schedule remain fixed since they are either already processed or undergoing processing. The 
set-up time for job 𝑗, which follows job 𝑘, which follows after job 𝑙, is 𝑠𝑙,𝑘,𝑗. 𝐼𝐵𝐶𝑗 detnotes the 

number of IBCs of job 𝑗 at the packaging step. 
 
𝑆𝑖 gives the order the jobs are placed in, where 𝑖 =  1. , … , 𝐼 represents different schedules. 
𝑆𝑖,𝑞 refers to the 𝑞’th job on the schedule, and the last job as 𝑆𝑖,𝑄: 𝑆𝑖 = {𝑆𝑖,−1, 
𝑆𝑖,0, … , 𝑆𝑖,𝑞 , … , 𝑆𝑖,𝑄−1, 𝑆𝑖,𝑄}. The model schedules all jobs; therefore, the number of jobs in the 
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queue equals the number of jobs in the scheduled, 𝑄 = 𝐽. Dummy jobs are excluded from this 
definition but are instead incorporated in the set-up time; see Section 4.4.1. 
 
A job cannot start before its release date and the finishing time of the previous job. In addition, 
during the set-up time 𝑠𝑙,𝑘,𝑗, which follows directly after job 𝑘 has finished, no jobs can be 

processed. The start time of job 𝑗 is ℎ𝑗 and is dependent on the decision variable 𝑆𝑖.  

 
We define the objective as a combinatorial optimization problem, with as goal to minimize 
the makespan and tardiness, curtail a full buffer, and prevent the use of dummy jobs. Section 
4.5 describes the objective function in more detail. The objective uses the binary variable 𝑋, 
which indicates if the buffer before packaging is full, meaning storing IBCs on different floors. 
𝑋 = 1 if the buffer is full and 𝑋 = 0 if not. 
 

4.4 Calculation parameters 
The model uses parameters calculated by using the information of the process. This is 
dependent on the situation at the company.  
 

4.4.1 Set-up time 
The setup time, 𝑠𝑙,𝑘,𝑗, depends on the difference in allergens, colours, and certifications of the 

sequential jobs 𝑙, 𝑘 and 𝑗.  
 
In the context of scheduling with certifications, there are instances where the available jobs 
cannot create a feasible schedule because suitable jobs for transitioning between non-
suitable and certified jobs are lacking. The parameter 𝑒𝑗,𝑐𝑒𝑟 gives information on all the 

certifications 𝑐𝑒𝑟 ∈ 𝐶𝐸𝑅 of job 𝑗, where 𝑒𝑗,𝑐𝑒𝑟 is ‘Certified’, ‘Suitable’, or ‘Not suitable’. 

Machines can process dummy jobs to create a feasible sequence if no suitable jobs are 
available before producing a certified job. There are two possible dummy jobs: ‘salt’ and 
‘stop’. In a situation where only one suitable job is available, a dummy job called ‘salt’, which 
processes salt similarly to a regular job, can be added to the schedule. This purifies the 
machine in the same way as it would have been with a regular job. However, having two salt 
jobs in a row is not allowed. Therefore, if no suitable job is present and no non-certified jobs 
are left to be processed, the only solution is to halt production and wait for suitable jobs to 
become available. In this situation, a dummy job named ‘stop’ is added to the schedule. 
 
Given these requirements for the dummy jobs, we incorporate three jobs in the sequence 
dependent set-up time, where the setup time is dependent on the sequence of job 𝑗, after 𝑘, 
after 𝑙. The time needed for the dummy job ‘salt’ is 45 minutes. The time for ‘stop’ is set to 24 
hours. This leads to a very high set-up time, preventing it from being scheduled when there 
are other options, aligning with the penalty strategy from Sun et al. (1998).  

𝑠𝑙,𝑘,𝑗
𝑐𝑒𝑟 = {

24 hours        if 𝑒𝑘,𝑐𝑒𝑟 = ′Not suitable′ and 𝑒𝑗,𝑐𝑒𝑟 = ′Certified′                                       

0.75 hours     if  𝑒𝑙,𝑐𝑒𝑟 = ′Not suitable′,  𝑒𝑘,𝑐𝑒𝑟 = ′Suitable′, and 𝑒𝑗,𝑐𝑒𝑟 = ′Certified′

0                        otherwise                                                                                                            

 

 

The set-up time also needs to incorporate the cleaning time. Binary value 𝑑𝑟𝑦𝑐𝑜𝑙1,𝑐𝑜𝑙2 sets to 
1 if between 𝑐𝑜𝑙1 ∈ 𝐶𝑂𝐿 and 𝑐𝑜𝑙2 ∈ 𝐶𝑂𝐿 a dry cleaning is necessary, where 𝐶𝑂𝐿 contains all 
the colours products can have. 𝑐𝑗 holds the colour of job 𝑗. Binary value 𝑏𝑗,𝑎 is sets to 1 if job 

𝑗 contains allergen 𝑎 and 0 otherwise, where 𝑎 = 1, … , 𝐴, and 𝐴 the total number of allergens. 
𝑡𝑑𝑟𝑦 and 𝑡 𝑤𝑒𝑡 represent the cleaning times. 

𝑠𝑘,𝑗
𝑐𝑙𝑒𝑎𝑛 = max (𝑑𝑟𝑦𝑐𝑘,𝑐𝑗

∗ 𝑡𝑑𝑟𝑦 , max
a∈A

(max(0, 𝑏𝑘,𝑎 − 𝑏𝑗,𝑎)) ∗ 𝑡𝑤𝑒𝑡)  
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In addition, the machine often holds residues of the previous product. This can affect the 
flavour or colouring of the following product. Therefore, the operator rinses with salt to 
cleanse the machine (less than needed for a ‘salt’ order). When the jobs contain the same 
product, this is not necessary. Moreover, when the colour changes, additional brushing 
removes more pigment. These small cleanings are unnecessary when already conducting dry 
or wet cleaning. 𝑚𝑗 denotes the product of job 𝑗. 

𝑠𝑘,𝑗
𝑝𝑟𝑜𝑑𝑢𝑐𝑡

=  {
15 minutes                    if 𝑚𝑗 ≠ 𝑚𝑘   and 𝑠𝑘,𝑗

𝑐𝑙𝑒𝑎𝑛 = 0  

0                                     otherwise                                
 

𝑠𝑘,𝑗 
𝑐𝑜𝑙𝑜𝑢𝑟 =  {

10 minutes                     if 𝑐𝑗 ≠ 𝑐𝑘  and 𝑠𝑘,𝑗
𝑐𝑙𝑒𝑎𝑛 = 0   

0                                      otherwise                              
 

 
These four values together add up to make the sequence-dependent set-up time.  

𝑠𝑙,𝑘,𝑗 = max
cer∈CER

(𝑠𝑙,𝑘,𝑗
𝑐𝑒𝑟 ) + max(𝑠𝑘,𝑗

𝑐𝑙𝑒𝑎𝑛, 𝑠𝑘,𝑗
𝑝𝑟𝑜𝑑𝑢𝑐𝑡

+ 𝑠𝑘,𝑗
𝑐𝑜𝑙𝑜𝑢𝑟)  

 

4.4.2 Release date, due date, start date, and status 
Table 4.1 gives an overview of the values given to parameters 𝑟𝑗, 𝑑𝑗, ℎ𝑗, and 𝑠𝑡𝑎𝑡𝑢𝑠𝑗. 

 
The status of job 𝑗, 𝑠𝑡𝑎𝑡𝑢𝑠𝑗, is ‘Planned’ when the job is still in the mixer. 𝑟𝑗 is equal to two 

hours after starting the mixer. When the IBCs are at the buffer, the status changes to 
‘Released’ and 𝑟𝑗 updates to this time. When the job status is ‘Active’, the place in the schedule 

is final. When job 𝑗 arrives at the machine, ℎ𝑗 changes from the planned starting time to the 

realized starting time. After packaging, the status changes to ‘Stopped’.  
 
The start date is restricted by the release date of the job and the finishing and set-up time of 
the previous job. 

ℎ𝑆𝑖,𝑞
 = max (𝑟𝑗, ℎ𝑆𝑖,𝑞−1

+ 𝑝𝑆𝑖,𝑞−1
+ 𝑠𝑆𝑖,𝑞−2,𝑆𝑖,𝑞−1,𝑆𝑖,𝑞

) 

 
Table 4.1: Job flow and parameter definition.  

Job place 𝑺𝒕𝒂𝒕𝒖𝒔𝒋 Release date 𝒓𝒋 Due date 𝒅𝒋 Start date 𝒉𝒋 

In mixer Planned Estimated: 2 hours after 
start mixing 

Estimated: 26 hours 
after start mixing 

Estimated: according 
to the schedule 

At buffer Released Arrival time at buffer 𝑟𝑗 + 24 hours  Estimated: ℎ𝑆𝑖,𝑞
 

Packaging Active Arrival time at buffer 𝑟𝑗 + 24 hours  Start date packaging 

Finished Stopped Arrival time at buffer 𝑟𝑗 + 24 hours  Start date packaging 

 

4.4.3 Full capacity of the buffer  
If the buffer reaches capacity, the binary value 𝑋 is 1. Calculating this, involves jobs of all 
machines, as the buffer is shared. Recall from Section 2.1.4 that when the buffer is full, IBCs 
are placed on other floors, giving additional strain to the resources. 𝑔 is of the set 𝐺, which 
contains all machines. 𝐼𝐵𝐶𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑔 represents the number of IBCs physically present at the 

queue for machine 𝑔, excluding the jobs which are still in the mixer or already left the queue. 
To make this distinction, we use the variables 𝑠𝑡𝑎𝑡𝑢𝑠𝑗 and 𝐼𝐵𝐶𝑗, which holds the number of 

IBCs used by job 𝑗. The variable 𝐼𝐵𝐶𝑓𝑢𝑙𝑙 captures the total number of IBC buffer places 
available at the packaging machines. 

𝐼𝐵𝐶𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑔 = {
𝐼𝐵𝐶𝑗                  if 𝑠𝑡𝑎𝑡𝑢𝑠𝑗 =  ′Released′  

0                        otherwise                           
     ∀ 𝑔 ∈ 𝐺 

 

𝑋  =  {
1              if    ∑ 𝐼𝐵𝐶𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑔

𝐺
𝑔=1 ≥ 𝐼𝐵𝐶𝑓𝑢𝑙𝑙

0             otherwise                                              
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4.4.4 The schedule 
The model's output is the schedule with the lowest objective function value. To use this 
schedule in practice, it is necessary to incorporate the dummy jobs and cleaning tasks into the 
schedule. The cleaning tasks take place before the processing of dummy jobs. Table 4.2 
illustrates an example of a final schedule. 
 
Section 4.4.1 gives the calculation for the start time for the jobs. However, it excluded the 
calculation for the starting date of cleaning and dummy jobs.  
 
The start date for the cleaning job between job 𝑘 and 𝑗 is calculated by ℎ𝑘 + 𝑝𝑘. This is a wet 

cleaning when max
a∈A

(max(0, 𝑏𝑘,𝑎 − 𝑏𝑗,𝑎)) > 0 and a dry cleaning otherwise. In the example, a 

wet cleaning takes 2 hours and a dry cleaning 1 hour. The starting time of a dummy job is ℎ𝑗 +

𝑝𝑗 + 𝑠𝑘,𝑗
𝑐𝑙𝑒𝑎𝑛.  

 
Table 4.2: Example of a final schedule, including dummy and cleaning jobs. 

Job Product Start date Allergen Colour Halal Kosher 

J1 64600 24-03-2023 16:26  Red Suitable Suitable 

J2 60931 24-03-2023 19:00 A1 Red Not suitable Suitable 

CleanDry   24-03-2023 19:44         

J3 62038 24-03-2023 20:44 A1, A2 Brown Not suitable Suitable 

J4 62040 24-03-2023 21:08 A1, A2 Brown Suitable Suitable 

CleanWet   24-03-2023 21:32         

DummySalt   24-03-2023 23:32         

J5 55422 24-03-2023 00:17 A2 Orange Certified Not suitable 

J6 59884 25-03-2023 00:59 A2, A3 Brown Certified Suitable 

J7 59884 25-03-2023 01:45 A2, A3 Brown Certified Suitable 

 

4.5 Objective function  
In this problem, there are multiple (competing) objectives. This section first gives the different 
objectives. Next, these objectives are combined. 
 

Objectives 
The main goal is to minimize the time of IBCs in the packaging process. This aligns with the 
objective of minimizing the makespan of jobs, as stated in Section 3.2. The makespan accounts 
for processing, machine cleaning, and machine idle time for jobs finishing in the mixers. The 
time the last job, 𝑆𝑖,𝑄, is planned to start, plus its processing time forms the makespan.  

𝐹𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = ℎ𝑆𝑖,𝑄
+ 𝑝𝑆𝑖,𝑄

 

 
Using dummy jobs is costly in terms of production time. Therefore, we want to delay using 
dummy jobs until there is no other possibility. Hence, we would rather not place them early 
in the schedule. An incorporated penalty when the first jobs in the schedule use dummy jobs 
causes postponement of the use of dummy jobs. Penalizing only the first jobs that use dummy 
jobs offers several advantages. Firstly, it improves production time efficiency by avoiding 
excessive penalties on all occurrences of dummy jobs. As using dummy jobs is time-
consuming, limiting the penalty to only a few instances helps maintain overall efficiency while 
ensuring feasible schedules. Secondly, this approach preserves flexibility in optimization. By 
penalizing only 𝑟 initial jobs that use dummy jobs, the scheduling algorithm can make 
decisions for the near future without overly constraining other optimizations later in the 
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schedule. This balance between feasibility and flexibility allows for adaptability to future jobs, 
resulting in better overall scheduling outcomes.  
 
Multiplying the duration of the dummy job by a factor that decreases as the job's position in 
the schedule is further in the future defines the penalty. We set this factor to 𝑟 + 1 minus the 
place of the job; the first processed job has a factor of 𝑟 + 1 − 1, and the 𝑟’th on the schedule 
𝑟 + 1 − 𝑟 = 1. This approach leads dummy jobs to be used further in the future, rather than 
close, where more suitable jobs are available. 

𝐹𝐷𝑢𝑚𝑚𝑦 = ∑ 𝑠𝑆𝑖,𝑞−2,𝑆𝑖,𝑞−1,𝑆𝑖,𝑞

𝑐𝑒𝑟 ∗𝑟
𝑞=1 (𝑟 + 1 − 𝑞)  

 
Minimizing the tardiness of individual jobs is necessary, as products cannot remain too long 
in an IBC. Tardiness happens when jobs exceed a specified time limit, as Section 3.1.2 outlines. 
After the due date passes, the job needs to be processed as fast as possible. A commonly used 
method to deal with this is squared tardiness (Sun et al., 1999; Schaller & Valente, 2012). 

𝐹𝑇𝑎𝑟𝑑𝑦 = ∑ max(ℎ𝑗 + 𝑝𝑗 − 𝑑𝑗, 0)
2𝐽

𝑗=1   

 
Lastly, we incorporate a discount (𝐹𝑠𝑒𝑞) in the objective, which has as goal to create room 

when all the buffer places at the machines are full. When the long queues at the machines fill 
all the buffer places, IBCs are stored on other floors, creating additional strain on shared 
resources. Only when the buffer is full do we give a discount in the objective for sequences of 
the same product. 𝑋 is one if the buffer is full (see Section 4.4.1). The two requirements for 
giving a discount are:  

1. 𝑋 is 1. 
2. A sequence of the same products is processed next on the machine. 

o By having the next job on the schedule be the same product as the last fixed 
job, 𝑚𝑠𝑖,0

= 𝑚𝑠𝑖,1
. 

o Or the next two scheduled jobs contain the same product, 𝑚𝑠𝑖,1
= 𝑚𝑠𝑖,2

. 

 
After meeting these requirements, we add the number of IBCs of the second job in the 
sequence to 𝐹𝑆𝑒𝑞. When the following job (the third job in the sequence) also contains the 

same product, the number of IBCs of this job is added. This is repeated for the following jobs 
in the schedule and stops until a different product is in the sequence.  
 
Figure 4.1. gives an example with five different scenarios to illustrate how 𝐹𝑠𝑒𝑞 is calculated. 

in Appendix IV provides a large version. We assume here that 𝑋 = 1. The fixed jobs in the 
scenarios are the last two processed jobs; they cannot change. The scenarios have different 
fixed jobs to illustrate the workings of the calculation. In the first scenario, a product sequence 
forms the last fixed and the next job. The second scenario has a sequence with the two next 
jobs. In both cases 𝐹𝑆𝑒𝑞 = 2, as we start adding the number of IBCs from the second job in the 

sequence. In the third scenario 𝐹𝑆𝑒𝑞 = 2 + 2. In scenario 4 there is no discount to be given, as 

there is no sequence: 𝐹𝑆𝑒𝑞 = 0. In the last scenario, the sequence does not start at the last 

processed or the next scheduled job; therefore 𝐹𝑆𝑒𝑞 = 0. 
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Figure 4.1: Examples of schedules to illustrate when to give a discount for a sequence of the same product. Green 
indicates the jobs used in the example.  

Combining objectives 
Section 3.1.2 provides the following approaches for dealing with multi-criteria optimization: 
(1) goal programming, (2) ϵ-constraint methods, (3) lexicographic method, and (4) weighted 
scoring method. 
 
Goal programming and the ϵ-constraint method require setting predefined goals, which does 
not apply to our problem. The lexicographic method prioritizes objectives based on their 
importance, which is well suited to our problem. However, this method can be 
computationally expensive as it requires solving the problem for each objective, which leads 
to a longer computation time. Lastly, the weighted scoring method allows for assigning 
different weights to objectives to prioritize them. However, determining the appropriate 
weights can be challenging.  
 
Given these alternatives, we select the weighted scoring method to limit the computation 
time. In Section 5.3, we determine the weights to their appropriate values by experimenting 
with different configurations of the weights and analysing the individual objectives. The 
objective function with weights is the following: 

min 𝐹 =  𝑤𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛𝐹𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 + 𝑤𝐷𝑢𝑚𝑚𝑦𝐹𝐷𝑢𝑚𝑚𝑦 + 𝑤𝑇𝑎𝑟𝑑𝑦𝐹𝑇𝑎𝑟𝑑𝑦 − 𝑤𝑆𝑒𝑞 𝐹𝑆𝑒𝑞 

 

4.6 Solution approaches 
Section 3.2 states that exact or approximation methods (heuristics) can solve combinatorial 
optimization problems (De Giovanni, 2017). Exact methods can lead to a computationally 
expensive algorithm—the approximation methods usually find a feasible, not necessarily 
optimal, solution. However, heuristics yield a solution in a reasonable amount of time. Section 
4.1 states that the problem is a real-time scheduling problem. Most existing methods for real-
time scheduling use heuristics, mainly because other search and optimization methods come 
with less suitable, longer computation time (Ang et al., 2009). 
 
Given these findings, we select heuristics for solving the problem. These algorithms give a 
suitable solution generated in real-time. In addition, when the number of jobs or machines 
grows at Euroma, we are not limited by a computationally expensive algorithm.  
 

4.6.1 Constructive heuristics 
This section presents four construction heuristics applicable to this problem. There is always 
a partial schedule known that holds the last two processed jobs. The constructive heuristics 
consider these jobs' colours, allergens, and certifications.  
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Section 3.2 shows that NNH is a relatively fast algorithm. Optimization is done more 
extensively by NEH but is more computationally expensive. However, it is proven to work on 
the similar process of scheduling the mixers at Euroma. The trade-off between the 
computation time and the optimisation level is interesting to research. To research this, we 
include both heuristics in the experiments.  
 
The problem is solved multiple times per hour. Hence, the problems solved after each other 
have similar characteristics. Therefore, we propose using the last schedule constructed as the 
basis of the new schedule. 
 
Recall from Section 4.1 that the set-up time depends on the certifications when using dummy 
jobs. We propose a heuristic that limits the dummy jobs needed to minimise this time. 
Because this heuristic is not derived from theory but created for this research, we explain this 
heuristic in more depth compared to the others.  
 

Adapted nearest neighbour heuristic  
Section 3.2 shows that the single-machine scheduling problem with sequence-dependent 
setup times can, in some cases, be solved as a travelling salesman problem. The set-up time 
includes restrictions regarding certified jobs and cleaning time. However, since the problem is 
limited to release dates, we adapt NNH to incorporate the release date in the start date of a 
job in the schedule. 
 
The heuristic schedules the best non-scheduled job after the already scheduled jobs (recall 
the two fixed jobs). The best job is the job that contributes most positively to the objective. 
This repeats for all jobs (Oliveira & Carravilla, 2009). 
 

Adapted NEH algorithm 
The NEH algorithm sorts the jobs in descending order of processing time; the sorted list is 
input for the sequence. Hereafter, the jobs get a place on the schedule one by one, based on 
the order of the list. The place of the job is the place in the schedule that yields the best 
objective. This repeats until all the jobs are scheduled (Nawas et al., 1983).  
 
Adapting the first step of NEH, defining the input sequence, impact the solution (Puka et al., 
2022; Puka & Lamasz, 2022; Bhatt, 2019). Planning the hardest-to-plan jobs first yields the 
best results. In most problems, these are the jobs with the longest processing time. In the 
situation at Euroma, this could be the certified jobs. Therefore, we propose sorting the input 
sequence to the number of certifications, with as tie-break rule the due date. The downside 
to this approach is that the schedule can hold many dummy jobs after scheduling just the 
certified jobs. However, grouping the certified jobs would minimize the set-up time. The 
requirement for dummy jobs decreases by adding the suitable jobs. 
 

Adjust the old schedule 
With the constructive heuristic, adjust the old schedule (AOS), we depend on the following 
property: the problem to be solved is only slightly different than the problem that needed to 
be solved previously. Using the previous solution as the basis for the new schedule should 
save computational time. First, it removes the already processed jobs. The algorithm places 
new jobs in the queue to the place in the existing schedule, which yields the best objective, 
similar to NEH.  
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Minimal dummy jobs 
Reducing the number of dummy jobs should reduce the makespan. To achieve this, we 
propose a constructive heuristic, minimal dummy jobs (MD), that returns a schedule with the 
least disruption of dummy jobs possible. Least description means first realizing the lowest 
number of ‘stop’ orders needed and second the lowest number of ‘salt’ orders needed; we 
claim minimization because it reviews all possible sequences of transitions between 
certifications during the scheduling process before choosing the best sequence. The 
remainder of this section explains the steps of this heuristic. The due date is the tie-breaker 
in the steps, except for the last step.  
 
Step 1: Certifications present 
Checking the job queue for jobs with certifications and identifying their certification 
combinations is part of the process. In the current situation at Euroma, the combinations can 
be kosher, halal, or both kosher and halal. A generated list outlines all possible sequences for 
placing these certifications. In the example in Figure 4.2 (with an enlarged version in Appendix 
V), kosher and halal certified jobs are present. Therefore, the list in the example is:  

1. Kosher → halal 
2. Halal → kosher 

 
Step 2: Schedule jobs with certificates 
Utilizing the list generated in the prior step, we plan the jobs with certificates based on the 
combinations specified in the list. In the provided example, for the first row in the list (kosher 
→ halal), this means scheduling kosher jobs before halal jobs. Figure 4.2 shows this step in the 
example.  
 
The jobs certified for one certification and suitable for the other (e.g., halal certified and 
kosher suitable) get a place after the other suitable jobs of that type. This placement gives a 
better starting position for the jobs following them.  
 
Step 3: Schedule single suitable jobs 
The place of jobs not suitable for one and suitable for the other certification (single suitable 
jobs) is in front of the certification for which they are suitable. The example in Figure 4.2 places 
𝐽1 before 𝐽2.  
 
Step 4: Schedule double suitable jobs 
Jobs that are both kosher and halal suitable (double suitable jobs) can be useful for multiple 
certification combinations. Therefore, the algorithm checks for all present certifications in the 
partial schedule on how many suitable jobs they need to reach a feasible schedule without 
adding dummy jobs. The example shows that the kosher certified job has enough suitable 
jobs. The halal job, however, does still need two suitable jobs. In the example, there is only 
one double suitable job remaining. Because the halal certified job is the only one that needs 
the double suitable job, the solution is to place job 𝐽1 before job 𝐽3 in the example.  
 
When multiple places in the schedule need double suitable jobs, the algorithm makes multiple 
alternative schedules that continue to the next steps. 
 
Step 5: Add remaining jobs 
The remaining jobs get behind all other jobs in increasing due date order. In addition, this step 
includes the addition of necessary dummy jobs. Figure 4.2 shows one necessary salt job. 
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Step 6: Compare schedules 
Step 2 and Step 4 can yield multiple alternative schedules. This ensures that we always find a 
schedule with the least disruption of dummy jobs, as all the possible sequences with 
certifications are created (step 2), in addition to placing the relevant, suitable jobs before the 
certifications (step 2 by placing combined certified and suitable jobs after certified and non-
suitable jobs, step 3, and step 4).  
 
Figure 4.3 provides the steps in the example for the second row in the list made in step 1; 
scheduling halal is before kosher. Therefore, 𝐽3 is in front of 𝐽2. It shows the example for the 
second row on the list (see Appendix VI for a larger version). Step 4 yields two alternative 
schedules because 𝐽1 is usefull at two different places in the schedule.  
 
We now compare the number of dummy jobs of these schedules. The schedule is judged first 
on the number of ‘stop’ jobs, then the number of ‘salt’ jobs, and the lowest objective function 
value as the last tiebreaker. 
 
Comparing the three alternative schedules, we conclude that no schedule needs stop jobs; 
they all need one salt job. Therefore, we would calculate the objective and select the schedule 
with the best objective as the best solution.  
 

 
Figure 4.3: Example calculation of heuristic for minimal dummy jobs, where halal is planned before kosher. 

 

Figure 4.2: Example calculation of heuristic for minimal dummy jobs, where kosher is planned before halal. 
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Different sequences 
The example given only included jobs with either halal or kosher certificates, not both. When 
there are jobs present with both certificates, next to only halal and kosher certified jobs, the 
list at step 1 is: 

1. Kosher & halal → kosher → halal 
2. Kosher & halal → halal → kosher 
3. Kosher → kosher & halal → halal 
4. Halal → kosher & halal → kosher 
5. Kosher → halal → kosher & halal 
6. Halal → halal → kosher & halal 

 
Instinctively, it seems wise to sequence the jobs from one certificate to two certificates, back 
to one certificate, as in the 3rd and 4th place in the list. Alternatively, the 1st and 2nd are also 
good options, as after kosher & halal jobs, kosher or halal jobs do not need any additional 
suitable jobs. However, the 5th and 6th options also need to be investigated, as they can yield 
the best solution in some scenarios. Figure 4.4 (see Appendix VII for an enlarged version) gives 
an example of this scenario.  
 
The example shows that the first 2 schedules need a stop job (the numbers correspond to the 
list with sequences), and the 3rd, 4th, and 6th need a salt job. The 5th schedule does not need 
any jobs and is, therefore, the best schedule.  

Figure 4.4: Example of possible schedules when halal, kosher, and halal & kosher certified jobs are present. 

4.6.2 Improvement heuristics 
Improvement heuristics SA and TS can be used to get out of a local optimum. Mexicano et al. 
(2023) show that for the total weighted tardiness problem with sequence-dependent set-up 
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time, SA was more effective than TS in finding a better solution, but TS was faster than SA. 
Both are desirable properties for our problem. Therefore, we test both algorithms. The 
literature review, Section 3.2.1, stated that SD does not come out of local optima but is very 
fast. It is interesting to see if the extra computational power used in SA and TS reflects in the 
outcome and if it outperforms the expected faster algorithm of SD.  
 

Simulated annealing 
As noted in the literature review in Section 3.2, the simulated annealing (SA) algorithm accepts 
a neighbouring solution 𝑆′ if it yields a better or equally good objective as 𝑠. However, if 𝑆′ is 
worse than 𝑆, SA incorporates randomness in the acceptance criterion to avoid being trapped 
in local optima. In such cases, the acceptance of 𝑆′ is determined by a probability function that 
considers the difference between the objective function values of 𝑆 and 𝑆′, as well as the 
temperature 𝑇. 𝑇 starts at 𝑇0 and decreases over time with a cooling factor 𝛼. This decrease 
in temperature reduces the acceptance probability of worse solutions, making it less likely 
that SA accepts them over time. The acceptance probability function is as follows.  

𝑃(𝑆, 𝑆′, 𝑇) = {
1                              𝑖𝑓   𝑓(𝑆′) ≤ 𝑓(𝑆)

𝑒  
𝑓(𝑆)−𝑓(𝑆′)

𝑇              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒          
  

 
The operator selection must ensure a connected neighbourhood (Zhang et al., 2018). We 
select to combine swap and move from the operators described in Section 3.2.2. Among 
others, Li et al. (2011) and Umam et al. (2022) use this combination in the heuristics to solve 
the machine scheduling problem with SA and reach a connected neighbourhood A 50/50 
chance of move or swap determined the operator—the jobs or place to move to are selected 
randomly.  
 
The outcomes of the experiments in Section 5.4. determine the cooling scheme, 𝑇0, 𝑇𝑚𝑎𝑥, the 
Markov length, and parameter 𝛼. 
 

Tabu search  
The literature review (see Section 3.2.1) explains that TS uses a list containing (parts of) 
already explored solutions. This prevents exploring these solutions again and should prevent 
getting stuck in local optima.  
 
The search for the best solution extends through the whole neighbourhood of a solution (in 
contrast to simulated annealing, which uses only one neighbour per iteration), which is 
computationally expensive. To limit the number of neighbouring solutions, we select only to 
use the swap operator. By doing so, the number of neighbourhood solutions is 𝑛 − 1. 𝑛 is the 
number of jobs to schedule. In addition, it leads to a connected neighbourhood. Other 
operators can be applied, such as move, but we exclude this for the sake of limited time.  
 
The length of the tabu list can be static or dynamic, whereas in the latter, the size of the list 
changes. When the list is full, the new value replaces the first solution added. A shorter list 
stimulates diversification, whereas a longer list leads to intensification, where local search 
around the current point intensifies. We select a static list size for the simplicity of the model.  
 
Attributes on the list can differ from changed items to entire solutions. We select as attributes 
the swapped jobs, meaning adding the attribute {1,2} to the list after swapping jobs 1 and 2. 
 
Lastly, we select the number of iterations after not finding a better solution as stopping 
criterion. The results from experiments in Section 5.4 determine the list size and number of 
iterations for the stopping criterion.  
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Steepest Descent 
In Section 3.2, we found that steepest descent searches for the best neighbouring solution 
until reaching a local optimum or a stopping criterion (Winston, 2004). Similar to SA, we select 
to use both swap and move. The algorithm ends when not finding a better solution in the 
neighbourhood. 
 

4.7 Summary 
In this chapter, we provide information to answer the third sub-research question:  
 
What solutions can potentially contribute to enhancing the availability of IBCs at Euroma? 
 
Section 4.1 provides the modelling approach; it models the problem as two separate single-
machine scheduling problems to solve in real-time. 
 
Section 4.2 lists the modelling assumptions used to set up the model description, described in 
Section 4.3. In the latter, we format the single-machine scheduling problem with release 
dates, due dates, and sequence-dependent set-up times, where the sequence-dependent set-
up times depend on three consecutive jobs. Section 4.4 provides the calculation of the 
parameters used in the model, adapted to the processes at Euroma. 
 
In Section 4.5, we select using the weighted scoring method to solve the multi-criteria 
optimization problem. Section 5.3 provides the determination of the weights.  
 
Section 4.6 formulates alternative solutions using algorithms designed to decrease the lead 
time for IBCs at the packaging. Figure 4.5 illustrates the structure of this model.  
 

  

 
The first step is to construct an initial schedule. The adapted heuristics NNH and NEH are the 
first two options. We develop an alternative constructive heuristic to ensure the minimal use 
of dummy jobs in a schedule. This heuristic is currently designed for halal and kosher 
certifications, as the situation at Euroma requires, but applies to any certification that looks 
at the last two processed activities, both in and outside the food sector. The computational 
cost, however, increases with the number of certifications included. Lastly, the previously 
made schedule forms the basis for an initial schedule.  
 
The improvement heuristics SA and TS can overcome local optima but are computationally 
more extensive. SD is relatively fast but does not overcome local optima.  
 
We explore in Chapter 5 the impact of the more computationally expensive heuristics' extra 
computation time on the solution compared to the cheaper options.  

Figure 4.5: Structure of scheduling model. 
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5 Experiments   
This chapter provides information to answer the fourth sub-research question:  
 
Which of the proposed solutions gives the best results for the situation at Euroma?  
 
First, Section 5.1 describes the setup of the experiments. Section 5.2 gives the different 
experimental designs used in the later sections to find the best model configurations. Section 
5.3 describes the selection of the weights needed in the objective function. Section 5.4 
provides the tuning process of the SA and TS parameters. Section 5.5 provides the 
experiments for the different models. Section 5.6 compares the sequence made by the best 
model configuration to the sequence at Euroma. Section 5.7 provides insight into the impact 
increased demand would entail. Finally, Section 5.8 provides a summary of this chapter. 
 

5.1 Experimental setup 
This section describes the setup of the experiment. The model operates over a rolling horizon. 
This means that the solution to one problem impacts the next problem. The goal is to find the 
best solution in the long run. This means we prefer solutions that are beneficial for a longer 
period instead of making choices only for that moment. Therefore, the test environment for 
the experiments also represents this. Hence, we use a simulation that uses historical input 
from Euroma to test the implications of the different solutions over a longer period.  
 
Simulation 
The simulation represents a real-life situation. Therefore, this simulation does not have 
stochastic variables and is a deterministic simulation, where we test the impact of input 
parameters over a rolling horizon. This is why it might not fit the typical simulation theory 
framework. However, we refer to it as such in this research. 
 
Historical input fills the queues. We select this approach rather than generating jobs because 
the machine input from the mixers also adheres to the cleaning and certification rules. This 
impacts the schedule for the packaging machines. The jobs from a mixer arrive in the queue 
at packaging after each other, hence the positive impact it can have on the scheduling 
problem. Generating these jobs would require an additional analysis of the jobs scheduled on 
the mixer. To simplify, we instead use historical data. We note that the queue splits for both 
packaging machines, but this does not entirely eliminate the correlation between jobs.  
 
The simulation starts with a queue and the last two processed jobs per machine known, 
matching the real-life situation at Euroma at that point in time. The simulation includes the 
jobs in the queues at the moments they were available in real life.  
 
The output of the simulation is the schedule with the best objective function values (for the 
Votech and the Dinnissen). Next, the simulation jumps to the next event closest in time. The 
events are: 

• A machine becomes empty.  

• A job starts in the machine.  

• A new job arrives in the queue.  

• A new job arrives in a mixer.  

• After not creating a new schedule for 10 minutes.  
 
Not every schedule actively contributes to selecting the next job for processing. Typically, only 
when a machine becomes idle, the next job selection occurs. However, all the mentioned 
events impact the objective regarding job scheduling, updated times, or tardiness. 
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Consequently, the optimal schedule can change. One of the heuristics, ‘adjust old schedule’ 
(AOS), leverages the last generated schedule to create a new one. Because of the influence of 
the previous schedule on the new one, we opt to employ all the listed events as triggers for 
generating a fresh schedule. We employ the same approach for the other heuristics to ensure 
a fair comparison. 
 
At each event, the schedules of both machines are made, instead of only the machine of the 
job of the event. This is because the event can impact the buffer, impacting the objectives. 
Next, the time jumps to the next event, and the process repeats. This repeats until reaching a 
predetermined finishing time. For illustration purposes, when simulating one day, and 20 jobs 
arrive on that day, 20 𝑗𝑜𝑏𝑠 ∗ 4 𝑒𝑣𝑒𝑛𝑡𝑠 𝑝𝑒𝑟 𝑗𝑜𝑏 = 80 schedules, plus additional schedules 
when after 10 minutes no new schedule is made, are generated.  
 
For each experiment, we simulate three non-overlapping periods of one week. Due to limited 
available data, we find a balance between simulated longer or multiple periods. We set the 
period to one week to see the impact of the model alternatives, for example, an accumulation 
of IBCs during the period when an algorithm performs poorly. In contrast, simulating multiple 
periods minimizes the input's effect on the model's performance. Section 5.2 describes any 
deviations from this approach. The heuristic simulated annealing (SA) depends on a random 
function, as described in Section 4.6. When using randomness, we include five replications per 
configuration to minimize the effect of randomness. 
 
Table 5.1 shows the cleaning times of the machines based on the experience of the operators 
of the machines. Appendix VIII gives the contamination matrix, explaining for which colour 
change a dry cleaning is necessary. For the processing times of the jobs, we use the norm as 
used by Euroma, which depends on the quantity and the article.  
 
Table 5.1: Cleaning times per machine. 

Machine Cleaning type Cleaning time (min) 

Votech Dry 60 

Votech Wet 120 

Dinnissen Dry 30 

Dinnissen Wet 75 

 
During the experiments, we encountered too positive results: the number of IBCs in the buffer 
went down very fast. This result can not all be credited to an algorithm, leading us to conclude 
that the norms used for processing and set-up times are too low. In Appendix IX, we increase 
the norms for a more realistic situation. The experiments done in this chapter use the adjusted 
norms. 
 
Output parameters 
The results of the simulations are compared to each other using multiple parameters. The 
objective represents the combined optimization criteria. In addition, we measure the time it 
takes to construct the schedules, which we refer to as CPU time, to indicate the configuration's 
suitability to a real-time setting. The maximum CPU time allowed is 1 second to act fast in the 
factory setting. We run the experiments using Delphi 11 on a computer with an Intel Core 
1.00GHz processor and 12.5GB of RAM. 
 
Per experiment, additional parameters can be useful, for example, looking at individual 
objective function values for determining the weights for the objective or the number of 
dummy jobs needed. When this is the case, we refer to it in Section 5.2. 
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When we compare objective function values of multiple simulated periods, we use the 
average objective weighted over time, with as time the time before a new schedule is made. 
We use a weighted objective method to prevent a high impact of very similar problems to the 
average objective.  
 

5.2 Experimental design 
This section outlines the experimental design for each experiment, while the subsequent 
sections present the corresponding experiment outcomes. As the results reveal unexplored 
yet promising areas, the experimentation scope broadens to encompass various input 
parameters in those sections.  
 
Recall that in Section 4.5 we stated that the number of jobs to be penalized in the objective 
function for needing a dummy job is 𝑟. Due to limited time, we do not experiment with this 
number and set the number of jobs to penalize on 3. We select this number because when 
these jobs are processed, we expect new suitable jobs to be added to the queue before the 
tardiness becomes too much of a problem. This number could be experimented with, e.g., 
setting it higher, lower, or dependent on the queue length. 
 
Experiment 1: Objective weight selection  
Section 4.5 described that the objective includes weights to balance the individual objectives. 
For this experiment, we select using the NNH heuristic and steepest descent. Both heuristics 
are not dependent on randomness, which gives the experiments an equal ground. We select 
the best configurations by comparing the individual objectives, in addition to the time spent 
on dummy jobs and the average number of IBCs. This shows the impact of penalizing dummy 
jobs in the objective and the flow of the IBCs. 
 
As described in Section 4.5, the makespan is the most important objective to increase the 
availability of the IBCs. Therefore, we set this weight to at least 50% for each experiment, 
dividing the remaining fraction over the other three objectives. Each weight has a minimum 
of 10% and increases with steps of 10% to create impact in each experiment. Given these 
bounds, we experiment with every configuration of the weights possible.  
 
Experiment 2: Simulated annealing parameters  
For simulated annealing, the parameters 𝑇𝑜, 𝑇𝑚𝑎𝑥, Markov length and 𝛼 need to be 
established. We first determine 𝑇𝑜 and 𝑇𝑚𝑎𝑥, by looking at the acceptance ratio per 
temperature (the fraction of proposed worse solutions accepted compared to the current 
solution) at the end of each Markov chain. Using preliminary experiments, we find the range 
in which 𝑇𝑜 and 𝑇𝑚𝑎𝑥 should be between 0.0001 and 20. Subsequently, these values are input 
into the experiment to determine 𝑇𝑜 and 𝑇𝑚𝑎𝑥. As initial parameters, we set the Markov chain 
length to 500 and define 𝛼 = 0.99. We run the test for 10 individual problems, all from different 
days (not using simulation), and take the averages over the results found. 
 
Next, we determine the Markov chain lengths (250, 500, 750) and values for 𝛼 (0.98, 0.99, and 
0.995). The experiments include all combinations of the parameters, as they both heavily 
impact the exploration and exploitation dynamics of the algorithm. We compare the results 
by the difference in objective function values and the CPU time. The experiment includes all 
configurations for the Markov chain length and value of 𝛼. NNH is the constructive heuristic.  
 
Experiment 3: Tabu list length and stopping criterion 
The third experiment determines the tabu list length and stopping criterion. Section 4.6.2 
describes that the tabu list length is static. However, we expect that the queue length impacts 
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the optimal list length. For example, the impact of the list length is different if the queue holds 
100 jobs or 10 jobs. Therefore, during the experiments, the list length changes to fit the 
number of items in the queue. The possible number of possible exchanges (which is the 

attribute on the tabu list) is 𝑁𝑟𝑃𝐸 =
𝐽(𝐽−1)

2
. In this experiment, we test a percentage of this 

number as length.  
 
A total of 5 values of percentages are experimented with, covering a range from 10% to 60% 
with steps of 10%. We opt to conclude at 60% due to the anticipation that a higher value 
would excessively constrain possible swaps. 
 
The heuristic stops when not finding a better solution after a preset number of iterations. In 
this experiment, we test different numbers of iterations, namely 10, 25, 50, and 100. We select 
the value which leads to the lowest objective function value within 1 second.  
 
We use 100 iterations after a better solution as stopping criterion for the experiments for 
selecting the tabu list length. The tabu list length selected in this experiment determines the 
value used in the stopping criterion selection. NNH is the constructive heuristic.  
 
Experiment 4: Heuristics 
This experiment tests the performance of different heuristics. As constructive heuristics, we 
test adapted NNH, adapted NEH, adjusting the old schedule (AOS), and minimal dummy jobs 
(MD), as described in Section 4.6.1. The experiments combines every one of these 
constructive heuristics to each improvement heuristic: Simulated annealing (SA), Tabu search 
(TS), and steepest descent (SD), as well as a benchmark without an improvement heuristic. 
The performance analysis compares the average objective function values and the CPU time. 
The best configuration is the configuration which gives the lowest objective with the average 
CPU time below 1 second.  
 

5.3 Determining weights  
Experiment 1: Objective weight selection  
Table 5.2 provides the results of the experiments for weight selection. It shows the averages 
of each objective, the number of IBCs, and the time spent on dummy jobs. The highlighted 
cells represent the best results per objective. Recall that the objectives are 𝐹𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛, 

𝐹𝑡𝑎𝑟𝑑𝑦 , 𝐹𝑑𝑢𝑚𝑚𝑦, and 𝐹𝑠𝑒𝑞, which give the total makespan of a schedule, the tardiness squared, 

a penalty for scheduling dummy jobs at the beginning of the schedule, and a discount for 
sequences of the same product when the buffer is full, respectively.  
 
Configuration 6 yields the lowest value for 𝐹𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 and 𝐹𝑡𝑎𝑟𝑑𝑦 at the Votech machine, 

where 7 is the second-best option for 𝐹𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 and a close third for 𝐹𝑡𝑎𝑟𝑑𝑦. It is noteworthy 

that the value of 𝑤𝑡𝑎𝑟𝑑𝑦 is relatively small in this configuration. This can be expected, as the 

value of 𝐹𝑡𝑎𝑟𝑑𝑦 is high in comparison with the other objectives. Consequently, a lower value 

achieves a better balance in this regard. 
 
For the Dinnissen machine configuration, number 6 is in the top 20% for all objectives except 
𝐹𝑠𝑒𝑞. However, for this machine, we see that the values are very low: a 𝐹𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 of around 

7 hours, and 𝐹𝑡𝑎𝑟𝑑𝑦 of a fraction of the tardiness at the Votech. The small queue at the 

Dinnissen in comparison to the Votech can explain this. The latter is the biggest bottleneck of 
this process and the most improvements we expect here. Therefore, we look at only the best 
configurations for the Votech for this and further experiments. 
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Table 5.2: Experiment 1, results: individual objectives for weight selection 

  Weight Votech Dinnissen     

N
r 

𝑤
𝑚

𝑎
𝑘

𝑒
𝑠𝑝

𝑎
𝑛

  

𝑤
𝑡𝑎

𝑟
𝑑

𝑦
  

𝑤
𝑑

𝑢
𝑚

𝑚
𝑦

  

𝑤
𝑠𝑒

𝑞
  

𝐹
𝑚

𝑎
𝑘

𝑒
𝑠𝑝

𝑎
𝑛

  

𝐹
𝑡𝑎

𝑟
𝑑

𝑦
  

𝐹
𝑑

𝑢
𝑚

𝑚
𝑦

  

𝐹 𝑠
𝑒

𝑞
  

𝐹
𝑚

𝑎
𝑘

𝑒
𝑠𝑝

𝑎
𝑛

  

𝐹
𝑡𝑎

𝑟
𝑑

𝑦
  

𝐹
𝑑

𝑢
𝑚

𝑚
𝑦

  

𝐹 𝑠
𝑒

𝑞
  

IB
C

s 
 

D
u

m
m

y 

ti
m

e
 (

h
) 

1 0.5 0.3 0.1 0.1 1.52 7.14 0.003 0.004 0.29 0 0 0.002 15.9 9.33 

2 0.5 0.2 0.1 0.2 1.49 7.5 0.002 0.035 0.27 0.004 0 0.009 16.1 17.33 

3 0.5 0.2 0.2 0.1 1.49 7.5 0.002 0.035 0.27 0.004 0 0.009 16.1 16.33 

4 0.5 0.1 0.2 0.2 1.38 7.77 0 0.042 0.26 0.037 0 0.005 15.8 0 

5 0.5 0.1 0.3 0.1 1.48 7.77 0 0.042 0.26 0.037 0 0.005 15.8 0 

6 0.5 0.1 0.1 0.3 1.38 7.14 0 0.004 0.26 0 0 0.002 15.9 0 

7 0.6 0.2 0.1 0.1 1.4 7.16 0 0.004 0.29 0 0 0.003 16.3 0 

8 0.6 0.1 0.2 0.1 1.48 9.09 0.003 0.065 0.29 0.005 0 0.014 17.4 0 

9 0.6 0.1 0.1 0.2 1.48 9.07 0 0.065 0.29 0.005 0 0.014 17.4 0 

10 0.7 0.1 0.1 0.1 1.49 7.48 0.003 0.037 0.29 0.004 0 0.014 16.5 1.00 

 
The value of 𝐹𝑑𝑢𝑚𝑚𝑦 of the Votech is very low, indicating that there are not many dummy 

jobs planned. The last column of the table, dummy time, gives the total hours needed for 
dummy jobs in the 3 weeks of the experiments. Recall that a stop job equals 24 hours, and a 
salt job is 0.5 hours. The results confirm that the schedules do not use many dummy jobs. In 
addition, not always when a penalty occurs, a dummy job processes (dummy time is zero, 
while the penalty is more than zero). This indicates that the dummy job stood before the 
machine's second or third next job, and suitable jobs arrived in the queue before the job 
processes. This aligns with expectations, as the penalty increases if the job is first in the 
schedule.  

Figure 5.1: Distribution of objective values. 

 
Overall, the best configuration found is from configuration 6, where the values of 𝑤𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛, 

𝑤𝑡𝑎𝑟𝑑𝑦,𝑤𝑑𝑢𝑚𝑚𝑦, and 𝑤𝑠𝑒𝑞 is 0.5, 0.1, 0.1, and 0.3, respectively. However, the first three values 

include the lower bound set for the weight, suggesting the presence of potentially better, 
unexplored configurations. Figure 5.1 shows the distribution as a boxplot of the objective 
values using the sixth configuration. 
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The objective function value for tardiness stands out because it spans over a considerable 
interval with high outliers. This is to be expected, as it represents the squared values. The 
penalty for the dummy jobs and the discount for a sequence is primarily 0 and has few outliers. 
The makespan has no apparent outliers and heavily affects the overall objective, which is 
logical as it represents 50% of the objective. 
 
With this information, we explore additional configurations that span beyond the original set 
bounds of the weights but are in the area in the best found configuration. 𝑤𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 still 

represents the most important goal; hence, the new interval is still a substantial portion [0.4-
0.55]. The values for tardiness are substantially higher than for the other objectives. 
Therefore, the new interval of 𝑤𝑡𝑎𝑟𝑑𝑦 is [0.025-0.1.25]. The intervals for 𝑤𝑑𝑢𝑚𝑚𝑦 and 𝑤𝑠𝑒𝑞 

are [0.05-0.15] and [0.25-0.35] respectively. Every possible configuration of the weights 
adding up to 1 is tested, with intervals of 0.025. 
 Table 5.3 shows the two best configurations for each objective of the Votech 𝐹𝑝𝑒𝑛𝑎𝑙𝑡𝑦 as this 

is often 0. Appendix X gives the complete results.  
 
 Table 5.3: Additional experiments weight selection. 

 
The bottom four rows, the first two rows and the third and fourth rows give the same result 
over all parameters, indicating the generation of equal or similar schedules. Noteworthy is 
that this shows that the configuration of 𝑤𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 and 𝑤𝑡𝑎𝑟𝑑𝑦 seem to make the most 

impact as 𝑤𝑑𝑢𝑚𝑚𝑦 and 𝑤𝑠𝑒𝑞 differ within these groups. Because not all combinations of 

𝑤𝑑𝑢𝑚𝑚𝑦 and 𝑤𝑠𝑒𝑞 are covered in the groups, we conclude they do impact the schedule.  

 
The four bottom rows give a minimal value regarding 𝐹𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛. The tardiness of these 

configurations is close to the lowest value of 𝐹𝑡𝑎𝑟𝑑𝑦 found, 7.16 and 7.13 respectively. In 

addition, it uses no dummy jobs. The discount represented by 𝐹𝑠𝑒𝑞 is low in these 

configurations; this can indicate a low number of IBCs in the buffer, consistent with the high 
number of IBCs at the highest value of 𝐹𝑠𝑒𝑞 in the third and fourth rows.  

 
We conclude that the best configuration is in the four bottom rows. Of these, we select the 
configuration 0.5, 0.075, 0.125, and 0.3 to use in the following experiments, where 𝑤𝑑𝑢𝑚𝑚𝑦 

and 𝑤𝑠𝑒𝑞 are middle values of the four configurations.  
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5.4 Determine parameters heuristics  

5.4.1 Simulated annealing 
Experiment 2.1: Simulated annealing – Start and lower temperature 
The experiment for determining the starting temperature includes comparing the acceptance 
ratio and the temperature. Figure 5.2 displays the average acceptance ratio per temperature 
found in the experiments. It shows that the acceptance ratio gradually decreases.  
 

 
Figure 5.2: Experiment 2.1, results: temperature and acceptance ratio. 

When the temperature is high, the acceptance ratio is close to 1. There, almost all solutions 
are accepted. Towards the end, this goes down, and only better solutions are accepted. If the 
temperature is between 20 and 0.13, we see that the chance of acceptance is above 75%. We 
select to set the starting temperature at 0.13, where the acceptance ratio is around 75%. 
When starting at this temperature, we still have a high acceptance ratio at the beginning 
without spending computational time exploring with an even higher acceptance ratio. We 
accept that we might get stuck in a local optimum by not accepting every selected neighbour. 
However, since the acceptance ratio is still high at the start, we find this possibility acceptable. 
 
When the temperature is low, the acceptance ratio approaches zero. We expected this, as the 
probability of selecting a worse is also near zero. The acceptance rate is close to zero around 
the temperature of 0.0001. After this point, we do not expect to find new and better solutions. 
In conclusion, we select a starting temperature of 0.13 and a lower bound of 0.0001. We test 
this configuration in the remaining experiments. 
 
Experiment 2.2: Simulated annealing – Markov chain length and value of 𝛼  
To evaluate the different Markov chain lengths and values for 𝛼, we compare the objective 
function value and the CPU time. As explained in Section 5.3, we only focus on the settings for 
the Votech. Figure 5.3 shows the results.  
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Figure 5.3: Experiment 2.2 results: objective Votech and computation time. 

First, analysing the computation time, we see results logical results: the configuration with the 
highest value of 𝛼 and the Markov chain length has the highest CPU time, and the lowest 
values of the parameters yield the lowest CPU time. Higher values of the Markov Chain yield 
more iterations per temperature, and the higher value of 𝛼 means that the temperature 
decreases in smaller steps, resulting in more iterations and therefore a CPU time rise.  
 
Next, we focus on the objective. Surprisingly, the lowest parameters yield the lower objective 
function values and vice versa. This is surprising because we would expect that more iterations 
would lead to a higher probability of finding a good solution. However, it can also mean that 
more bad solutions are accepted when the temperature is high for longer. This can lead to a 
bad final solution.  
 
The results show that for the best objective value, the best values for 𝛼 and the Markov chain 
length are 0.98 and 500, respectively. The CPU time is around half a second, therefore well 
below the set threshold of 1 second. Therefore, we choose this as the configuration to use in 
the heuristic. 
 

5.4.2 Tabu Search 
Experiment 3.1: Tabu search – Tabu list length 
The results of experiment 3.1 show the impact of the length of the tabu list. Figure 5.4 displays 
the results. The objective is the lowest when the tabu list holds 40% of the possible solutions. 
Recall from Section 3.2.1 that the implications of a too long or too short tabu list need a 
compromise between limiting the choices of moves in a too long tabu list without premature 
convergence in a smaller list. We find this balance at 40% of the potential swaps. We choose 
not to explore more in the range of around 40% as this may cause overfitting. We use this 
parameter for the list length for all the following experiments.  
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Figure 5.4: Experiment 3.1, results, objective Votech and the fraction of possible swaps. 

Experiment 3.2: Tabu search – Stopping criterion 
The goal of this experiment is to select after what number of iterations not finding a better 
solution the algorithm stops. Figure 5.5 gives the results of the stopping criteria selection. It 
shows a high objective when the number of iterations is small. This is to be expected, as it 
invests no time in exploring. From 40 iterations onwards, the extra iterations stop leading to 
improvements in the schedule, and the objective stays the same. The CPU time is for all 
configurations below the one-second threshold. We select 60 as our parameter. This allows 
the algorithm more iterations should the problem instances become more complex, but 
without adding strain to the computation time.  
 

 
Figure 5.5: Experiment 3.2, results: objective Votech, computation time and nr of iterations no better solution 
found. 

5.5 Model alternatives 
Experiment 4: Heuristics  
In the fourth experiment, we compare the performance of the different constructive and 
improvement heuristics. Table 5.4 provides the results of the experiment. The colours indicate 
a good (green) or bad result (red) for the objective and CPU time for the combination of 
constructive and improvement heuristics. 
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 Table 5.4: Experiment 4, results: objectives of Votech and CPU time per configuration. 

 
First, we analyse the experiments without an improvement heuristic (column ‘No IH’). The 
differences in performance are big. The objective of MD is very high. This is logical, as finding 
a low objective is not the primary concern of this heuristic. NEH performs best, followed by 
AOS, which is not surprising, as AOS uses NEH to schedule new jobs. The CPU time is between 
36 and 43 milliseconds and, therefore, negligible. Interestingly, from the theory, we expected 
that NEH would be more time extensive (Section 3.2.1). However, the results do not confirm 
this. 
  
The outcomes with the improvement heuristic show that all the solutions generated by only 
the constructive heuristics can still be improved. SA gives the best results, and SD and TS are 
comparable. Notably, SD gives better results than TS when using NEH as a constructive 
heuristic. This is possible because the tabu list saves swaps instead of whole solutions. In 
addition, the constructive heuristic, NEH, already gives a great solution and the diversification 
of TS improves less than the intensification of SD. This also explains that the performance is 
best at SA, where diversification and intensification are combined. 
 
The combination of constructive and improvement heuristics yields a comparable ranking to 
only using a constructive heuristic. NEH scores better than AOS, MD, and NNH. NNH performs 
poorly, which can be because the initial schedule is in a local optimum. This explanation is 
affirmed by the relatively good results when combining NNH with SA. The combination of NEH 
or AOS and SA gives the best objective values. We do note that MD and SA give results close 
to these configurations.  
 
Regarding the CPU time, the algorithms show a big difference. However, the solution forms 
below a second; hence, we do not exclude any solutions for this reason.  
 
In the previous experiments, we excluded the Dinnissen machine from the selection of 
parameters. However, the algorithm still needs to work for this machine. Therefore, we also 
display the impact of the heuristics on this machine in Table 5.5. The table shows that the 
objectives are still very low, and the differences between all the objectives are minimal. 
Therefore, all configurations of constructive and improvement heuristics are acceptable when 
applied to the Dinnissen machine.   
 
Table 5.5: Experiment 4, results: objectives of Dinnissen per configuration 

  Objective Dinnissen  

Heuristics SA SD TS No IH 

AOS 0.11 0.123 0.114 0.124 

MD 0.112 0.11 0.113 0.114 

NEH 0.11 0.113 0.117 0.121 

NNH 0.114 0.117 0.125 0.127 

 

  Objective Votech CPU time (ms) 

Heuristic SA SD TS No IH SA SD TS No IH 

AOS 0.75 0.81 0.81 2.03 688 65 71 39 

MD 0.77 1.07 0.96 4.80 653 85 99 36 

NEH 0.75 0.80 0.81 0.85 636 73 78 43 

NNH 0.81 0.94 0.91 2.12 645 71 77 42 
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Given these findings, we conclude the following. AOS and NEH give the best results of the 
constructive heuristics. Of the improvement heuristics, SA works best. The combination of 
NEH and AOS results in the lowest objective for the Votech, closely followed by NEH and SA. 
Regarding computation time, there are no notifiable differences between the constructive 
heuristics. However, SA takes significantly longer compared to the other improvement 
heuristics. Because this is still within bounds, we accept this. Therefore, we choose 
configurations AOS and SA as well as NEH and SA to use in the following experiment.  
 

5.6 Comparison with the current situation 
The configurations found as best in Section 5.5, NEH with SA and NEH with SA, are compared 
with the sequence of jobs that happened at Euroma - without using an algorithm. We compare 
the same 26 consecutive days. Due to the different processing and set-up times, we cannot 
reasonably compare objectives. Instead, we compare the number of processed jobs, cleanings 
needed, and dummy jobs needed.  
 
We recognize that the situations cannot be compared precisely for multiple reasons. First, 
despite using the same days, with the same starting situation and input, there is still the 
possibility that processed jobs differ during the 26 days. This can result in more cleaning or 
dummy jobs in one of the situations. However, as 26 days is a relatively long period, we expect 
this to have a minimal effect. In contrast, having a small queue, caused by faster processing 
of the jobs, there are fewer jobs to choose from, which can result in a schedule that needs 
more cleaning than when having a longer queue. Concurrently, a smaller problem instance - 
occurring when the queue is small - can be solved more easily and may result in a solution 
closer to the optimum. Lastly, the processing times and set-up times used in the simulation 
are based on an estimation, while the real-life sequence is not. While recognizing this, we still 
think a comparison is valuable.  
  
Table 5.6 shows the results, it uses V for the Votech and D for the Dinnissen. The upper rows 
show the number of transitions of certifications where dummy jobs are necessary. The real-
life situation needs 7 ‘stop’ jobs and 3 ‘salt’. The scenario created using NEH, uses 1 salt job in 
1 of the 5 simulations. AOS uses no dummy jobs. This shows that the algorithm works well 
regarding preventing transitions to certified jobs without 2 suitable jobs. 
 
Table 5.6: Results of comparing the current situation and the model. Period of 26 days. 

Heuristics Current NEH+SA AOS+SA 

Certification transition Halal Kosher   Halal Kosher   Halal Kosher   

Nr. ‘stop’ needed 4 3   0 0   0 0   

Nr. ‘salt’ needed 1 2   0.2 0.2   0 0   

  V D Total V D Total V D Total 

Nr. wet cleaning 87 64 151 46 59 105 47 59 106 

Nr. dry cleaning 28 18 46 23 23 46 24 22 46 

Nr. cleaning total 115 82 197 69 82 151 71 81 152 

Nr. jobs processed  297 271 568 309 272 581 308 275 583 

 
The number of cleanings at the Votech decreases significantly. It reduces from 197 to around 
152 when using an algorithm. The total number of cleanings at the Dinnissen does not change 
using the algorithm. However, the increased number of dry cleanings decreases the number 
of wet cleanings for both machines. This is preferable as dry cleaning takes less time than wet 
cleaning. Similar to what we found in earlier experiments, the improvement at the Dinnissen 
machine is limited, which is explained by having fewer jobs in the queue for the machine, 
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leading to fewer jobs to choose from to create an optimal schedule. By consolidating all 
cleaning activities and converting them to hours per day, the model effectively decreases the 
daily cleaning time from 17.0 to 11.5 (NEH) and 11.6 hours (AOS) for both machines. 
 
Lastly, the table shows the number of jobs processed. This increases, but only by 2.5%. The 
demand is the same, so processing many more jobs is impossible. Hence, the number of jobs 
processed indicates that there is room for processing more jobs, but with the provided 
demand for this experiment, we cannot indicate how many jobs this can be.  
 
The previously listed results show a very positive impact. However, the number of tardy jobs 
increased. Table 5.7 shows the number and percentage of jobs per tardiness interval (for 
example, 19 jobs were between 0.5 and 1 day too late at Euroma). Recall that a job becomes 
tardy when it stands in the buffer for 24 hours. The results show that most jobs do not become 
tardy (interval [0-0] in Table 5.7). This percentage is higher in the current situation. However, 
after 0.5 days tardy, the algorithms perform better than the current situation. This suggests 
that the algorithm successfully reduces the occurrence of highly tardy jobs but at the expense 
of an increased number of jobs experiencing tardiness. Section 6.2 provides suggestions for 
improvements in this area. 
 
Table 5.7: Results, number of jobs per tardiness interval (per 12 hours). The highlighted percentages represent the 
highest values. 

Interval tardy (days) Number of jobs in the interval Aggregated percentage 

 Current NEH AOS Current NEH AOS 

[0-0] 472 461 450 83.1% 79.3% 78.6% 

<0-0.5] 45 75 78 91.0% 92.3% 91.9% 

<0.5-1] 19 25 28 94.4% 96.6% 96.4% 

<1-1.5] 14 10 12 96.8% 98.3% 98.1% 

<1.5-2] 5 5 6 97.7% 99.1% 99.0% 

<2-2.5] 4 3 1 98.4% 99.7% 99.1% 

<2.5-3] 2 1 8 98.8% 99.8% 99.8% 

<3-3.5] 4 0 0 99.5% 99.8% 99.8% 

<3.5-4] 0 1 1 99.5% 100.0% 100.0% 

<4-4+> 3 0 0 100.0% 100.0% 100.0% 

 

5.7 Increased demand 
The last section described that the demand limits the number of processed jobs. Since Euroma 
aims to grow in the long run, it is useful to explore how much demand the machines can 
handle. To address this, we conduct experiments involving increased demand scenarios to 
assess their effects. 
 
Appendix XI outlines the methodology for increasing demand. We experiment over the same 
two weeks. We choose this extended timeframe instead of multiple smaller ones to gain 
insight into potential job accumulation when demand exceeds machine capacity. The results 
of Section 5.5 and Section 5.6 show minimal differences in performance between the NEH and 
AOS heuristics. We arbitrarily select NEH as a constructive heuristic to limit experimental 
runtime in this experiment. Table 5.8 summarizes the outcomes. 
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Table 5.8: Objectives, the average number of IBCs in buffer, time spent on dummy jobs, and CPU time per demand 
increase. 

 Votech Dinnissen  
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0% 1.12 4.2 0.03 0.11 0.21 0.06 0.00 0.00 11.4 0.00 630 

5% 1.76 10.3 0.03 0.00 0.06 0.11 0.00 0.06 14.8 0.00 642 

10% 1.80 15.4 0.01 0.24 0.11 0.21 0.01 0.04 17.5 0.00 660 

15% 2.46 26.4 0.04 0.62 0.41 0.11 0.00 0.19 23.8 0.00 676 

20% 2.94 40.4 0.02 0.70 0.48 0.21 0.00 0.57 30.3 0.00 696 

25% 3.50 61.4 0.04 0.91 0.33 1.03 0.00 0.87 39.5 0.00 712 

30% 3.98 78.0 0.02 1.21 0.50 1.47 0.00 0.72 47.6 1.00 730 

 
The results show that the objective values all grow except 𝐹𝑑𝑢𝑚𝑚𝑦, which stays around 0. This 

is to be expected, as when more jobs are available, the number of suitable jobs also rises. 
Comparing the number of dummy jobs processed in the simulation, the schedule contains 
either zero dummy jobs or one salt job in the two weeks. Therefore, we state using dummy 
jobs is still limited with increased demand.  
 
The growth of 𝐹𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 is logical because by scheduling more jobs, it would take longer to 

process them all. Figure 5.6 shows the number of jobs and cleaning jobs processed. The 
growth in processed jobs aligns with expectations, while the count of cleaning operations 
shows a decline. Considering allergen and colour factors, we attribute this to the algorithm's 
improved sequencing under increased demand when having a larger pool of jobs in the queue 
to select from. 
 

 
Figure 5.6: Production and cleaning jobs processed with increased demand. 

Table 5.8 highlights 𝐹𝑡𝑎𝑟𝑑𝑦, representing squared tardiness, while Figure 5.7 presents a 

graphical representation of tardiness in processed jobs (not squared) for easier comparison. 
The depicted figure demonstrates that the maximum tardy job duration expands to 15 days 
at a 30% increase, exceeding the simulated time of 14 days. We note that this can occur when 
a job was already in the queue for at least a day prior to simulation commencement. Although 
average tardiness demonstrates a more gradual growth, the rate of increase remains steep. 
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Figure 5.7: Maximum and average tardiness with increased demand. 

The increase of 𝐹𝑠𝑒𝑞 is a predictable outcome concurrent with the growth in the number of 

jobs, thus IBC volumes. Figure 5.8 displays the average number of IBCs per day. Demand 
increase of 0%, 5%, and 10% shows a gradual decline in the number of IBCs present. At 0%, 
the buffer has an average reduction of around 10 IBCs. We credit the decline to the 
improvements in the algorithm compared to the real-life situation at Euroma. A 20% demand 
increase yields a stable IBC count range, around the average in the buffer in the current 
situation. However, demand increments of 25% and beyond lead to IBC accumulation, 
signalling the machine's incapacity to manage heightened demand loads. 
 

 
Figure 5.8: IBCs in buffer over time with increased demand. With () indicating the average number of IBCs per 
increased demand. 

Lastly, we note the rise in CPU time in the last column of Table 5.8. As job volume increases, 
problem complexity follows suit. The observed increase in computation time is thus a 
foreseeable outcome. Notably, the algorithm retains computational efficiency within the 
predefined one-second threshold. However, it is prudent to acknowledge the potential for 
threshold breach as complexity grows, necessitating adjustments to the algorithm for 
sustained performance. 
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5.8 Summary 
This chapter provides information to answer the fourth sub-research question:  
 
Which of the proposed solutions gives the best results for the situation at Euroma?  
 
Section 5.1 gives the experimental setup. Because the purpose of the model, working in real-
time in a factory setting, we use a simulation to test it. The input is the historical data of 
Euroma. The first results show that the norm times are too low for processing and set-up time. 
To be able to conduct the experiments, the norms are adjusted. 
 
Section 5.2 gives the experimental design. This holds the different experiments conducted. It 
includes the objective weight selection, SA parameters, tabu list parameters, and model 
alternatives.  
 
Section 5.3 presents the weight selection for the objective. Primarily, it finds a balance 
between the impact of the makespan and tardiness on the schedule.   
 
Section 5.4 provides the selection of parameters for SA and TS. An analysis of the acceptance 
ratio determines the starting and lower bound temperature. Markov chain length and the 
value of 𝛼 undergo testing together, and we compare the results by examining the objective 
and CPU time. In the case of TS, experiments with different percentages of potential 
exchanges set the tabu list length. A comparison between the objective function values and 
CPU times of different configurations determines the stopping criterion.  
 
Section 5.5 gives the experiments regarding the model alternatives. This entails experimenting 
with all constructive and improvement heuristics. We conclude that of the constructive 
heuristics, AOS and NEH both in combination with SA, perform best. Regarding computation 
time, the combined heuristics are all below the set upper bound of 1 second. 
 
Section 5.6 compares the sequence of the best model alternatives with the sequence that 
happened at Euroma. The sequence made by the algorithm performs better regarding the 
number of dummy jobs and cleaning jobs. The percentage of extremely tardy jobs also 
decreases. However, the percentage of jobs which become tardy is higher than at Euroma. 
Lastly, the number of jobs processed shows a slight improvement. Therefore, we test in 
Section 5.7 the effects of increased demand.  
 
Sections 5.5 and 5.6 neither show a significant superiority in performance between the 
combination of NEH with SA and AOS with NEH. Therefore, both combinations are suitable to 
use.  
 
The increased demand in Section 5.7 shows an immediate growth in tardiness and makespan 
when the demand increases. However, the number of cleaning jobs decreased due to better 
sequencing. The number of IBCs in the buffer throughout the simulation shows that the 
machines can handle the demand until a 20% increase in jobs. In addition, at 20% or below, 
the strain on IBCs is not higher than in the current situation at Euroma. 
 
Finally, it is important to highlight that these results rely on adapted time parameters and 

simulation data. More accurate parameters should match the conditions at Euroma, 

improving the accuracy. Furthermore, practical testing is necessary to solidify the model's 

viability in real-world scenarios. However, the results show promising improvements 

regarding IBC use, cleaning time, and dummy jobs.  
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6 Implementation 
This chapter advises on how to implement the model at Euroma by answering the fifth 
research question:  
 
How can the solution be implemented at Euroma? 
 
Section 6.1 describes the tool made. Section 6.2 gives an overview of how to integrate the 
tool into the current systems. Lastly, Section 6.3 advises on how to implement the tool in 
practice. 
 

6.1 Tool  
A tool uses the model developed in this research. This tool gathers and transposes information 
from the systems (see Section 6.2 for more information on the systems) to feed the model. In 
addition, the tool transposes the schedule generated by the model to fit within the systems.  
 
The tool runs every time one of the following events occurs:  

• A machine becomes empty.  

• A job starts in the machine.  

• A new job arrives in the queue.  

• A new job arrives in a mixer.  

• After not creating a new schedule for 10 minutes.  
 
Upon establishing a new schedule, a series of events occur. The tool does not execute the 
events but sets them in motion (see Section 6.2 for more details). The following events are 
triggered: 

• The schedule is updated. 

• The AGVs are triggered to move the IBCs for a job whose status becomes ‘active’.  
 
Table 6.1 (see Appendix XII for an enlarged version) shows an example of a schedule an 
operator sees. The schedule indicates to the operator what to expect regarding cleanings and 
product changes. Each schedule is also saved in an archive to reflect and improve the model 
later.  
 
Table 6.1: Example of a schedule. 

 
 

6.2 Implementation architecture 
The tool needs to be integrated with the systems present at Euroma (see Section). Figure 6.1 
shows how the tool interacts with the systems.   
 
Production jobs from ESA include details of the start and stop times. MES provides information 
about the last two processed jobs, including dummy jobs and the most recent cleaning jobs. 
The purpose of extracting the cleaning job is to establish a distinct job number for subsequent 
cleaning processes. This approach ensures proper documentation of cleaning jobs for quality 

Machine Job Article Article Description Time in Mixer Time in buffer Status Planned time start Planned time stop NrIBCs Color Halal certification Kosher certification Allergens

Z410 J00058025 59883 Jus Rundvlees 9-06-23 17:51 9-06-23 20:09 Stopped 9-06-23 23:50 10-06-23 1:14 2 Bruin Halal suitable Trefa

Z410 J00058189 51108 Oosterse melange 9-06-23 1:41 9-06-23 3:18 Active 10-06-23 1:38 10-06-23 2:55 2 Lichtbruin Halal suitable Kosher suitable

Z410 J00057271 65893 Oosterse mix 9-06-23 3:38 9-06-23 5:26 Released 10-06-23 3:11 10-06-23 4:43 2 Lichtbruin Halal suitable Kosher suitable

Z410 J00058024 59417 BBQ classic 9-06-23 16:49 9-06-23 18:56 Released 10-06-23 5:07 10-06-23 6:51 2 Oranje Halal Kosher

Z410 J00058449 60931 Fajita mix 10-06-23 1:10 Mixer 10-06-23 7:15 10-06-23 8:51 2 Rood Halal suitable Kosher suitable

Z410 J00058432 52426 Bolognese 9-06-23 6:15 9-06-23 7:57 Released 10-06-23 9:15 10-06-23 11:11 3 Oranje Halal suitable Kosher suitable So;So

Z410 S00000001 67106 Dry Cleaning 10-06-23 11:11 10-06-23 12:47

Z410 J00058415 65139 Curry Japans 9-06-23 16:35 9-06-23 17:31 Released 10-06-23 12:47 10-06-23 14:28 2 Groen Haram Trefa Gl;Me;So;So

Z410 J00058250 55158 Curry Geel 10-06-23 0:57 Mixer 10-06-23 14:52 10-06-23 16:01 2 Donkergeel Halal suitable Kosher suitable Gl;Me;So;So

Z420 J00058420 66204 Champignons saus 9-06-23 16:25 9-06-23 18:04 Stopped 9-06-23 23:57 10-06-23 0:58 1 Geel Halal suitable Trefa Mo

Z420 J00058418 66204 Champignons saus 9-06-23 20:33 9-06-23 23:02 Active 10-06-23 0:58 10-06-23 1:59 1 Geel Halal suitable Trefa Mo

Z420 J00058245 65745 Nacho mix 9-06-23 19:54 9-06-23 20:47 Released 10-06-23 6:04 10-06-23 6:43 1 Geel Halal suitable Kosher suitable Mo

Z420 J00058244 65745 Nacho mix 9-06-23 16:31 9-06-23 18:52 Released 10-06-23 6:43 10-06-23 7:22 1 Geel Halal suitable Kosher suitable Mo

Z420 S00000002 67107 Wet Cleaning 10-06-23 7:22 10-06-23 10:34

Z420 J00058525 61775 Nasi kruiden 9-06-23 18:06 9-06-23 19:42 Released 10-06-23 10:34 10-06-23 11:16 1 Geel Halal Kosher suitable So

Z420 J00058526 61775 Nasi kruiden 10-06-23 1:03 10-06-23 2:45 Mixer 10-06-23 11:16 10-06-23 11:58 1 Geel Halal Kosher suitable So
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assurance purposes. LN contains information about article colours, certifications, and the 
contamination matrix (see Section 5.1). Additionally, PLS Pro contains allergen information 
per article. 
 
Data extraction from ESA and MES occurs every 5 minutes to provide real-time insight into 
the ongoing production status and to identify any significant events as described in Section 
6.1 promptly. 
 
Every 12 hours, information from LN and PLS Pro updates. This schedule aligns with the 
infrequent nature of changes in this data. For example, changes in allergen composition 
require modifications in various departments, such as product development, quality control, 
and planning. Consequently, these changes require more than 12 hours to propagate and 
impact the packaging stage of the product. 
 

 
Figure 6.1: Interaction between tool and current systems  

The server stores the acquired data. Subsequently, the tool processes this data for utilization 
within the model, undertaking calculations as detailed in Section 4.4. Once the model finalizes 
the scheduling, the tool arranges the schedule's format to facilitate storage within the MES 
database. MES updates the dashboard on the production floor, ensuring that operators 
remain informed in addition to calling AGVs to transport IBCs for the impending job. 
 
The server holds an archive containing the schedules and an error log. The error log serves as 
a repository for tool activities, including data extraction and schedule creation, as well as any 
identified discrepancies, such as absent data or incomplete scheduling. The preservation of 
the schedules and error log is to reflect and improve the scheduling process. 
 

6.3 Implementing the tool in practice 
An engineer leads the implementation and requires close cooperation with a diverse team, 
including operators, team leaders, planners, and the ICT department. The engineer expertise 
should encompass knowledge of the process at Euroma and proficiency in programming and 
scheduling.  
 
Presently, the determination of the next processed job lies with the operators. The tool 
supersedes this approach by presenting the operators with a schedule-based job processing 
sequence. While we have conducted testing and comparative analysis of the algorithm in 
alignment with the scenario outlined in Section 5.6, we recognize disparities that prevent an 
entirely equitable comparison. Therefore, we recommend a phased approach to tool 
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implementation, initially focusing on providing schedule recommendations. This enables 
operators to assess potential tool deficiencies, propose enhancements, and exercise 
discretion in following the suggestions. 
 
Instances with disregarded scheduling suggestions are documented and reflected on by the 
engineer and operators. Proposed improvements undergo testing within a simulated 
environment before being integrated into the tool, provided they demonstrate improved 
outcomes. 
 
Table 6.2 outlines the proposed implementation timeline. The programming of the tool is 
based on the model developed in this research but requires adaptation to suit the company’s 
environment. Concurrently, adjustments need to be made to the current systems to 
accommodate this tool. Once the technical implementation is complete, testing occurs within 
the factory environment. This testing phase, known as 'shadow running,' allows operators and 
planners to provide feedback on the suggested schedules. Weekly evaluations of the findings 
will inform ongoing adjustments to the tool. While initially set at four weeks, extending this 
period is crucial if improvements are still necessary. This extension is particularly important 
because the final step involves full integration, requiring operators to strictly adhere to the 
schedule without personal adjustments when they deem necessary.  
 
Table 6.2: Timeline implementation. 

Activity  

Week 

1 2 3 4 5 6 7 

Programming tool               

Adjusting current systems               

Shadow running               

Full integration               

 

6.4 Summary  
The chapter discusses the implementation of a model at Euroma in response to the fifth 
research question:  
 
How can the solution be implemented at Euroma? 
 
Section 6.1 integrates the developed model into a practical tool that collects and transforms 
information from various systems to feed the model. The tool operates based on specific 
events such as machine status changes, job start, and new job arrivals. It triggers events upon 
establishing new schedules, updating the schedule and prompting AGVs to move IBCs for 
active jobs. 
 
Section 6.2 focuses on the implementation architecture. The tool must integrate with existing 
systems at Euroma. Data extraction takes place every 5 minutes or 12 hours, based on the 
changing nature of the data. Acquired data is transformed in the tool and used as input for 
the model, and the output is formatted and stored in the MES database.  
 
Section 6.3 outlines the practical implementation of the tool, involving an engineer, operators, 
team leaders, unit managers, and the ICT department. The tool replaces the manual job 
sequencing operators do with a schedule-based approach. We propose a phased 
implementation strategy, starting with providing schedule recommendations to operators for 
assessment and improvement proposals. Instances of disregarded recommendations serve as 
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evaluation points for potential improvements. An evaluation in a simulated environment first 
tests the proposed before being incorporated into the tool. 
 
Overall, the chapter guides the integration of the model into a practical tool, its interaction 
with existing systems, and its gradual implementation in collaboration with various 
stakeholders at Euroma. 
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7 Conclusion and recommendations 
This chapter concludes the thesis by first answering the main research question in Section 7.1. 
Next, Section 7.2 gives recommendations to the company. Section 7.3 provides the discussion 
and limitations of this research. Section 7.4 discusses the contribution of this research to the 
literature and practice. Lastly, Section 7.5 outlines potential avenues for future research to 
further enrich and expand upon the current findings. 
 

7.1 Conclusion  
Euroma's strategic goal is to increase its output. A critical bottleneck in production is the 
availability of IBCs within the mixing department. This situation is compounded by the 
accumulation of filled IBCs in the packaging process, stagnating the release of new jobs. The 
corresponding research question is:  
 
How can the lead time at the packaging process be decreased to improve the availability of 
IBCs at Euroma? 
 
Our analysis concludes that we can achieve the most improvements by reducing the extended 
waiting time at the packaging process, thereby enhancing the throughput time of the IBCs. In 
line with this finding, we define the main objective of the research as finding a solution that 
contributes to decreasing the lead time at packaging to enhance the availability of the IBCs. 
 
We model the problem as two single-machine scheduling problems solvable in real-time, with 
additional constraints for product sequencing. We propose combinations of 4 constructive 
and 3 improvement heuristics as solution approaches. The constructive heuristics include a 
developed heuristics aimed to minimize the number of dummy jobs necessary, MD. The 
objectives include four individual objectives combined with the weighted scoring method.  
 
The experiments include testing constructive and improvement heuristics combinations in a 
simulated environment. The combination of AOS and SA and NEH and SA gives the best results 
for minimizing the objective. The CPU times are within set bounds. MD minimized the dummy 
jobs scheduled. However, the other constrictive with improvement heuristics performed 
almost equally well regarding minimising dummy jobs. MD with SA generated results 
regarding the objective close to the best two configurations. 
 
We compare the two best found configurations to the situation at Euroma. Table 7.1 
summarizes the differences between the situation at Euroma and the simulation. The 

percentage gives 
𝐶𝑢𝑟𝑟𝑒𝑛𝑡−𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚

𝐶𝑢𝑟𝑟𝑒𝑛𝑡
∗ 100% and is green or red when it is a positive or 

negative outcome, respectively.  
 
The results of SOA or NEH with SA do not differ significantly. The algorithms yield better results 
than the current situation, especially regarding the number of dummy jobs and cleanings 
needed. It reduces the cleaning time from 17.0 hours per day to 11.5 (NEH) and 11.6 hours 
(AOS). However, the total amount of tardy jobs increased, although the amount of extremely 
tardy jobs decreased.  
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Table 7.1: Overview of all results of the algorithms compared to the current situation at Euroma. Given in 
percentage and absolute change from the current situation. 

 Current NEH + SA AOS + SA 

Certification 
transition 

Halal Kosher  Halal Kosher  Halal Kosher  

Nr. ‘stop’ needed 
4 3 

 
0  
(-100%) 

0  
(-100%) 

 
0  
(-100%) 

0  
(-100%) 

 

Nr. ‘salt’ needed 
1 2 

 
0.2  
(-80%) 

0.2  
(-90%) 

 
0  
(-100%) 

0 
 (-100%) 

 

 V D Total V D Total V D Total 

Nr. wet cleaning 
87 64 151 46  

(-47%) 
59  
(-8%) 

105  
(-30%) 

47 
 (-46%) 

59  
(-8%) 

106  
(-30%) 

Nr. dry cleaning 
28 18 46 23  

(-18%) 
23  
(28%) 

46  
(0%) 

24  
(-14%) 

22  
(22%) 

46  
(0%) 

Nr. cleaning total 
115 82 197 69  

(-40%) 
82  
(0%) 

151  
(-23%) 

71  
(-38%) 

81  
(-1%) 

152  
(-23%) 

Nr. jobs processed 
297 271 568 309  

(4%) 
272  
(0%) 

581  
(2%) 

308 
(4%) 

275  
(1%) 

583  
(3%) 

Percentage jobs 
tardy 

  
83.1% 

  
79.3%  
(-5%) 

  
78.6%  
(-5%) 

Percentage jobs > 
1 day tardy 

  
94.4% 

  
96.6% 
(2%) 

  
0.964 
(2%) 

Percentage jobs > 
2 days tardy 

  
97.7% 

  
99.1% 
(1%) 

  
99.0% 
(1%) 

 
Experiments with increased demand, in line with Euroma’s objective to increase production, 
show a rise in both tardiness and makespan. However, the implementation of improved 
sequencing results in a decrease in the number of cleaning jobs. The analysis of IBC quantities 
indicates that the machines can effectively handle demand growth of up to 20% in jobs. 
Beyond this point, the quantity of IBCs at the buffer surpasses the buffer and machine 
capacity. This surplus would have a detrimental impact on the overall availability of IBCs, the 
primary focus of this research. 
 
Compared to the current situation, our proposed model exhibits significant improvements 
across almost every KPI at various demand levels, except for the count of tardy jobs. In Section 
7.2, we provide recommendations for addressing this issue. Overall, the reduction in the 
required number of IBCs, a contribution aligned with Euroma’s primary goal, drops from 23.5 
in the current situation to 13.4. Additionally, when using our model, the demand can be 
elevated by up to 20% before the buffer reaches the same occupancy level as observed in the 
current scenario. 
 

7.2 Recommendations 
We recommend adopting a real-time scheduling model designed to improve job sequencing 
using NEH or AOS in conjunction with SA optimization techniques. Among the various 
configurations considered, these approaches demonstrate the most favourable performance 
concerning the defined objective while falling within acceptable CPU time limits. We first 
recommend testing both models in practice before selecting one as superior. 
 
The algorithm outperformed real-world scenarios across all dimensions except for the count 
of tardy jobs. We propose improving this aspect by refining the objective's weighting scheme 
or redefining the tardiness criteria. Moreover, the current determination of job tardiness, set 
at 24 hours after buffer arrival, does not apply to all jobs. To rectify this, we recommend 
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introducing a due date specific to each article or article group. However, implementing such 
article-specific due dates requires data collection for each article. 
 
We recommend integrating mixer planning with machine operations to enhance the current 
setup. The current proposed model focuses solely on optimizing scheduling within the 
packaging machines based on the demand stemming from the mixers. To improve overall 
efficiency, it is beneficial to synchronize the mixer planning to ensure the processing of 
suitable jobs in the mixer process before certified jobs that require the same packaging 
machine. This also applies to allergens and colour changes. A harmonized coordination has 
the potential to increase operational efficiency significantly. 
 

7.3 Discussion and limitations 
In this model, we integrated all constraints related to tardiness and certifications as soft 
constraints incorporated in the objective function. The outcomes of our analysis demonstrate 
the effective handling of certifications through this approach. However, the prevention of 
tardiness does not yield the desired results. In retrospect, exploring the incorporation of 
tardiness as a hard constraint could offer potential advantages in preventing tardiness, albeit 
at the expense of potential increases in dummy jobs, cleaning jobs, and makespan. Since the 
MD heuristic yields the minimum number of dummy orders, we can use the calculation 
employed in this heuristic to establish a constraint concerning the minimal use of dummy jobs. 
 
Our findings indicate that under conditions of low demand, the sequencing effectiveness 
diminishes due to the limited selection of jobs. While we tested the model under regular and 
heightened demand scenarios, we have not examined scenarios with reduced demand (e.g., 
holidays) or machine disruptions (e.g., maintenance). As a result, the model's optimal 
performance might not extend to these situations. 
 
Currently, the processing times for jobs have fixed values. In reality, such times exhibit 
variability. We choose to exclude this variability from the model for simplicity. However, in 
hindsight, incorporating this variability would likely yield more accurate results, provided 
accurate data is available. 
 
Due to time constraints, we did not conduct experiments varying the value of 𝑟, which 
represents the number of jobs integrated into the penalty within the objective function for 
dummy job requirements. We fixed this value at 3. There is potential for improvements by 
experimenting with different values, such as increasing, decreasing, or making it dependent 
on the queue size. However, since the best algorithms found already minimized the use of 
dummy jobs, we do not anticipate significant improvements in this aspect. 
 
It is important to acknowledge that data availability and reliability limited the research. While 
sequence data for machines and mixers were accessible, the recorded times were sometimes 
unrealistic. We observed instances where, theoretically, one machine started processing a 
new job while still processing another job, or where a job seemingly took negative time to 
process. Consequently, we heavily leaned on established norms for time values rather than 
historical data, which also proved unreliable but was adjusted to be more realistic. 
 

7.4 Contribution 
Our examination of the existing literature highlighted an absence of addressing sequence-
dependent setup times for sequences of more than two tasks. To address this gap, we created 
a model that considers the two most previously completed jobs and the upcoming jobs in the 
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sequence. This approach bridges the knowledge gap in effectively handling setup times within 
extended task sequences. 
 
Our research contributes to scheduling optimization, focusing on the company's operational 
context. By integrating real-time scheduling techniques with the company's data, we 
harnessed practical insights to increase efficiency. Additionally, our work extends the 
understanding of job-dependent setup times by considering sequences of three tasks, offering 
a more accurate representation of real-world scenarios. 
 
We introduced an approach that merges existing heuristics with penalty mechanisms to 
prevent using dummy jobs in scheduling. This approach not only streamlines scheduling but 
also improves overall robustness. Acknowledging the practicality of dummy jobs, we 
incorporated their presence into our model while maintaining optimized, feasible schedules. 
Our contributions bridge theoretical advancements and pragmatic implementation, 
empowering our company with improved scheduling techniques that reflect real-world 
complexities. 
 
We developed a heuristic approach aimed at minimizing the necessity for dummy jobs. While 
the outcomes of this research reveal that the NEH and AOS combined with SA strategies also 
reduce the requirement for dummy jobs, they do not guarantee the absolute minimum. Our 
algorithm can offer significant value in situations where the utmost reduction of dummy jobs 
is paramount. 
 
The model is designed with the company in mind, ensuring seamless integration into existing 
operations. Moreover, the generality of the model makes it applicable to various 
organizations, requiring only input modifications to suit different contexts. This approach is 
especially useful when real-time information impacts the schedule and is impacted highly by 
sequence-dependent set-up time.  
 

7.5 Future research 
The first suggestion for future research involves exploring the potential benefits of integrating 
other departments into the scheduling process. This extension could encompass not only the 
mixers but also the precursor and subsequent steps in the operational sequence, such as 
replenishment and packaging for consumers. We can uncover opportunities to develop more 
comprehensive and harmonized scheduling strategies by thoroughly examining how these 
inter-departmental interactions impact scheduling dynamics. 
 
Another significant aspect for future investigation revolves around refining the scheduling 
model to minimize tardiness. This involves researching the underlying factors contributing to 
delayed job completion and identifying critical parameters within the model. Strategies to 
mitigate tardiness may involve optimising task sequences, assigning varying priority levels, or 
incorporating dynamic adjustments to account for real-time delays. 
 
In a dynamically changing operational landscape, assessing the impact of fluctuating demand 
patterns, such as those experienced during holidays, is imperative. Furthermore, examining 
the consequences of machine breakdowns and unplanned disruptions on scheduling 
outcomes is necessary. We can develop robust strategies to navigate unforeseen 
interruptions by simulating different scenarios and analysing their effects while maintaining 
optimal scheduling performance. 
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Another research line entails investigating how variable task times influence the scheduling 
model. This exploration involves introducing variety in processing and setup times. Analyzing 
the implications of this can fine-tune the model to accommodate better real-world variations. 
This adaptation would ultimately lead to creating scheduling strategies that are more accurate 
and reliable in practical scenarios. 
 
In essence, these envisioned paths of future research hold the potential to extend and refine 
the current scheduling at Euroma and other organizations. By venturing into the integration 
of departments, tackling tardiness, addressing demand fluctuations and disruptions, and 
accommodating variable task times, the future of scheduling optimization poises to deliver 
more resilient, adaptable, and practical strategies in meeting the demands of complex 
operational environments. 
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Appendix I. Determine the product route  
Every product has a standard route in the mixing department. A route includes the mixer, 
order quantity, and mixing steps. The mixing steps state the mixing orders of the ingredients. 
Table  A provides a fictive example of a product route. It shows the optimal order quantity, 
calculated by the process engineer, the minimum order quantity (MOQ) and the incremental 
order quantity (IOQ), which depend on agreements with the customer. The IOQ often depends 
on the bag or pallet size of the finished product. 
 
Table  A: Example of a product route used for mixing 

Description Information 

Product Noodle soup mix 

Optimal order quantity 1000kg 

Minimal order quantity  800kg 

Incremental order quantity 25kg 

Ingredients Salt Paprika Pepper Oil Noodles 

Ingredient steps 1 1 1 2 3 

 
The standard route is composed by a process engineer using an Excel tool and the engineer’s 
knowledge of ingredient properties and mixers. The process engineer designs the route by 
first meeting the restrictions of the product. For example, adding liquid after mixing most dry 
ingredients. The process engineer then checks whether the customer demand is satisfied, and 
a suitable mixer is assigned (a mixer must not be too full or too empty). After developing a 
feasible route, the process engineer optimizes it. Optimization can include switching 
ingredients from steps, switching to another size mixer, or changing the quantity made.  
 
Table  B shows an example of switching the ingredient steps. In this table, we see a fictive 
example of a mix for noodle soup. For almost every mixture, the dry (powder) ingredients are 
mixed first, the liquid is added and mixed through, and finally, the ingredients that need to be 
mixed last. In scenario 1 (columns 3 to 5) in the example, the route is designed using this 
method. The dry powders are added in the first step, liquid in the second, and noodles last to 
prevent them from breaking in the mixer. This scenario requires 4 IBCs: 3 IBCs in the first step 
and 1 in the third (for adding liquid IBCs are not used).  
 
Table  B: Example of switching ingredients. 

Ingredient Scenario 1 Scenario 2 

Name IBCs needed  Step 
Nr. IBCs  
step 1 

 Nr. IBCs  
step 2 

Step 
Nr. IBCs  
step 1 

Nr. IBCs  
step 2 

Salt 0.3 1 0.3   2   0.3 

Paprika powder 0.9 1 0.9   1 0.9   

Pepper 0.9 1 0.9   1 0.9   

Oil - 2 - - 2 - - 

Noodles 
(only after liquid) 

0.2 3   0.2 3   0.2 

Total per step   2.1 → 3 0.2 → 1   1.8 → 2 0.5 → 1 

Total per scenario 4 3 

 
In scenario 2 (columns 6 to 8), the salt switches to process step 3. This relatively small quantity 
can fit in the remaining space in the IBC used in step 3. This change effectively reduces the 
required number of IBCs from 4 to 3.  
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Appendix II. Processes within the mixing department 
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Appendix III. Simplified map of the mixing department  
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Appendix IV. Examples of schedules to illustrate when a discount for a 
sequence of the same product 
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Appendix V. Examples of schedules to illustrate when to give a discount for a 
sequence of the same product. 
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Appendix VI. Example calculation of heuristic for minimal dummy jobs, where 
kosher is planned before halal  
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Appendix VII. Example of possible schedules when there are halal, kosher, and 
halal & kosher certified jobs present 
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Appendix VIII. Contamination matrix 
 
A value of 1 in a cell refers to a necessary cleaning, and a 0 to no cleaning is necessary. 
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white 0 0 0 0 0 0 0 0 0 0 0 0 
white / green 0 0 0 0 0 0 0 0 0 0 0 0 
grey 0 0 0 0 0 0 0 0 0 0 0 0 
green 1 1 1 0 0 0 0 0 0 0 0 0 
yellow  1 1 1 0 0 0 0 0 0 0 0 0 
dark yellow  1 1 1 0 0 0 0 0 0 0 0 0 
orange  1 1 1 1 1 1 0 0 1 0 0 0 
red  1 1 1 1 1 1 0 0 1 1 1 1 
light brown 1 1 1 0 0 0 0 0 0 0 0 0 
brown  1 1 1 1 1 1 0 0 0 0 0 0 
dark brown  1 1 1 1 1 1 1 0 0 0 0 0 
black 1 1 1 1 1 1 1 1 1 0 0 0 

  



 

68 
 

Appendix IX. Enhancing the processing and set-up time 
 
This Appendix provides the method for enhancing the norms to create a more realistic 
situation. The times used are processing time and set-up time. The set-up time exists out of 
cleaning time, time for changing a colour or product, and dummy jobs.  
 
The adjustment increases all the times with a factor expressed as a percentage:  

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑇𝑖𝑚𝑒 = 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑇𝑖𝑚𝑒 ∗
100% + 𝐹𝑎𝑐𝑡𝑜𝑟

100%
 

 
We experiment with enhancing this factor until we have an IBC level comparable to the 
situation at Euroma. For this experiment, we use NNH and steepest descent. This does not 
require any adjustment of parameters in the heuristics. As weights, we use 50%, 20%, 15%, 
and 10% for makespan, tardiness, discount for sequences, and penalty for the dummy jobs, 
respectively. 
 
We experiment over 1 period of 20 days with different factors. The factor increases with steps 
of 5%. Figure  A displays the result of four of the simulations. It shows the average number of 
IBCs per day per simulation and the average number of IBCs in the buffer at Euroma.  
 

 
Figure  A: Comparing the number of IBCs over time with different factors to increase the norm times. 

To easily compare the results, the averages from the simulations subtract from the number of 
IBCs waiting at Euroma at that time. Table  C shows the deviation of the four factors with the 
sum closest to zero and the absolute deviation. In both instances, the factor of 60% gives the 
lowest deviation from the situation at Euroma. This indicates that this simulation is most 
representative of the situation at Euroma. Therefore, we select this parameter, 𝐹𝑎𝑐𝑡𝑜𝑟 =
60%, for the experiments. 
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Date 
Average number of IBCs waiting per 
factor 

The absolute average number of 
IBCs waiting per factor 

Experiment 50% 55% 60% 65% 50% 55% 60% 65% 

03-jun 16.8 15.4 16.4 15.8 16.8 15.4 16.4 15.8 

04-jun 10.3 10.2 9.9 7.6 10.3 10.2 9.9 7.6 

05-jun 2.2 -0.3 1.0 -1.4 2.2 0.3 1.0 1.4 

06-jun -1.2 -4.1 -0.7 -6.7 1.2 4.1 0.7 6.7 

07-jun -0.9 -3.9 -2.0 -8.1 0.9 3.9 2.0 8.1 

08-jun 9.0 7.9 9.2 1.0 9.0 7.9 9.2 1.0 

09-jun 8.8 7.2 9.5 0.8 8.8 7.2 9.5 0.8 

10-jun -4.1 -4.0 -3.1 -11.3 4.1 4.0 3.1 11.3 

11-jun -0.1 -0.6 0.3 -7.3 0.1 0.6 0.3 7.3 

12-jun 11.5 9.0 11.1 4.7 11.5 9.0 11.1 4.7 

13-jun 0.8 2.4 3.6 -2.2 0.8 2.4 3.6 2.2 

14-jun -5.3 -6.3 -3.9 -11.0 5.3 6.3 3.9 11.0 

15-jun 1.3 -0.3 1.7 -4.8 1.3 0.3 1.7 4.8 

16-jun 5.2 3.4 4.8 -0.3 5.2 3.4 4.8 0.3 

17-jun 1.3 -0.8 0.0 -4.8 1.3 0.8 0.0 4.8 

18-jun 1.9 -0.9 -1.3 -4.8 1.9 0.9 1.3 4.8 

19-jun 9.7 3.7 3.2 -0.3 9.7 3.7 3.2 0.3 

20-jun 10.0 5.1 3.3 -1.3 10.0 5.1 3.3 1.3 

Table  C: Impact on enhancing demand and IBCs in the buffer. 
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Appendix X. Results weight selection objective 
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0.4 0.1 0.15 0.35 1.49 7.16 0.007 0.000 16.3 0.051 

0.4 0.125 0.125 0.35 1.50 7.14 0.007 0.000 16.2 0.093 

0.4 0.125 0.15 0.325 1.50 7.14 0.007 0.000 16.2 0.093 

0.425 0.075 0.15 0.35 1.47 7.84 0.004 0.000 15.6 0.000 

0.425 0.1 0.125 0.35 1.37 7.63 0.042 0.000 16.0 0.019 

0.425 0.1 0.15 0.325 1.37 7.63 0.042 0.000 16.0 0.019 

0.425 0.125 0.1 0.35 1.50 7.13 0.007 0.000 16.4 0.090 

0.425 0.125 0.125 0.325 1.50 7.13 0.007 0.000 16.4 0.090 

0.425 0.125 0.15 0.3 1.50 7.14 0.007 0.000 16.2 0.093 

0.45 0.05 0.15 0.35 1.41 8.28 0.007 0.000 16.3 0.071 

0.45 0.075 0.125 0.35 1.48 9.07 0.065 0.000 17.4 0.002 

0.45 0.075 0.15 0.325 1.48 9.09 0.065 0.000 17.4 0.002 

0.45 0.1 0.1 0.35 1.37 7.62 0.042 0.000 16.0 0.023 

0.45 0.1 0.125 0.325 1.37 7.62 0.042 0.000 16.0 0.023 

0.45 0.1 0.15 0.3 1.37 7.62 0.042 0.000 16.0 0.023 

0.45 0.125 0.075 0.35 1.51 7.63 0.055 0.001 16.5 0.096 

0.45 0.125 0.1 0.325 1.51 7.63 0.055 0.001 16.5 0.096 

0.45 0.125 0.125 0.3 1.51 7.63 0.055 0.001 16.5 0.096 

0.45 0.125 0.15 0.275 1.51 7.63 0.055 0.001 16.5 0.096 

0.475 0.025 0.15 0.35 1.46 9.15 0.004 0.000 16.5 0.000 

0.475 0.05 0.125 0.35 1.41 8.29 0.007 0.000 16.3 0.071 

0.475 0.05 0.15 0.325 1.41 8.29 0.007 0.000 16.3 0.071 

0.475 0.075 0.1 0.35 1.37 7.46 0.004 0.002 15.5 0.022 

0.475 0.075 0.125 0.325 1.37 7.46 0.004 0.002 15.5 0.022 

0.475 0.075 0.15 0.3 1.37 7.46 0.004 0.002 15.5 0.022 

0.475 0.1 0.075 0.35 1.43 8.53 0.042 0.000 16.7 0.000 

0.475 0.1 0.1 0.325 1.43 8.53 0.042 0.000 16.7 0.000 

0.475 0.1 0.125 0.3 1.43 8.53 0.042 0.000 16.7 0.000 

0.475 0.1 0.15 0.275 1.43 8.53 0.042 0.000 16.7 0.000 

0.475 0.125 0.05 0.35 1.53 8.12 0.058 0.001 16.8 0.100 

0.475 0.125 0.075 0.325 1.53 8.12 0.058 0.001 16.8 0.100 

0.475 0.125 0.1 0.3 1.53 8.12 0.058 0.001 16.8 0.100 

0.475 0.125 0.125 0.275 1.53 8.13 0.058 0.001 16.8 0.088 

0.475 0.125 0.15 0.25 1.55 8.17 0.058 0.002 16.9 0.093 

0.5 0.025 0.125 0.35 1.45 9.03 0.004 0.000 16.3 0.000 

0.5 0.025 0.15 0.325 1.45 9.03 0.004 0.000 16.3 0.000 

0.5 0.05 0.1 0.35 1.48 9.48 0.004 0.000 16.9 0.000 

0.5 0.05 0.125 0.325 1.48 9.48 0.004 0.000 16.9 0.000 

0.5 0.05 0.15 0.3 1.48 9.48 0.004 0.000 16.9 0.000 

0.5 0.075 0.075 0.35 1.36 7.16 0.004 0.001 15.5 0.000 

0.5 0.075 0.1 0.325 1.36 7.16 0.004 0.001 15.5 0.000 

0.5 0.075 0.125 0.3 1.36 7.16 0.004 0.001 15.5 0.000 

0.5 0.075 0.15 0.275 1.36 7.16 0.004 0.001 15.5 0.000 

0.5 0.1 0.05 0.35 1.38 7.77 0.042 0.000 15.8 0.018 

0.5 0.1 0.075 0.325 1.38 7.77 0.042 0.000 15.8 0.018 

0.5 0.1 0.1 0.3 1.38 7.77 0.042 0.000 15.8 0.018 
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0.5 0.1 0.125 0.275 1.38 7.77 0.042 0.000 15.8 0.018 

0.5 0.1 0.15 0.25 1.38 7.77 0.042 0.000 15.8 0.018 

0.5 0.125 0.05 0.325 1.49 7.16 0.007 0.000 16.3 0.052 

0.5 0.125 0.075 0.3 1.49 7.16 0.007 0.000 16.3 0.052 

0.5 0.125 0.1 0.275 1.49 7.16 0.007 0.000 16.3 0.051 

0.5 0.125 0.125 0.25 1.49 7.16 0.007 0.000 16.3 0.051 

0.525 0.025 0.1 0.35 1.49 9.81 0.006 0.000 16.9 0.000 

0.525 0.025 0.125 0.325 1.49 9.81 0.006 0.000 16.9 0.000 

0.525 0.025 0.15 0.3 1.49 9.81 0.006 0.000 16.9 0.000 

0.525 0.05 0.075 0.35 1.48 9.47 0.004 0.000 16.6 0.048 

0.525 0.05 0.1 0.325 1.48 9.47 0.004 0.000 16.6 0.048 

0.525 0.05 0.125 0.3 1.48 9.47 0.004 0.000 16.6 0.048 

0.525 0.05 0.15 0.275 1.48 9.48 0.004 0.000 16.6 0.048 

0.525 0.075 0.05 0.35 1.36 7.16 0.004 0.001 15.5 0.073 

0.525 0.075 0.075 0.325 1.36 7.16 0.004 0.001 15.5 0.073 

0.525 0.075 0.1 0.3 1.36 7.16 0.004 0.001 15.5 0.073 

0.525 0.075 0.125 0.275 1.36 7.16 0.004 0.001 15.5 0.073 

0.525 0.075 0.15 0.25 1.36 7.16 0.004 0.001 15.5 0.073 

0.525 0.1 0.05 0.325 1.37 7.90 0.042 0.000 16.2 0.002 

0.525 0.1 0.075 0.3 1.37 7.90 0.042 0.000 16.2 0.002 

0.525 0.1 0.1 0.275 1.37 7.90 0.042 0.000 16.2 0.002 

0.525 0.1 0.125 0.25 1.37 7.90 0.042 0.000 16.2 0.002 

0.525 0.125 0.05 0.3 1.38 7.63 0.042 0.000 16.2 0.014 

0.525 0.125 0.075 0.275 1.38 7.63 0.042 0.000 16.2 0.014 

0.525 0.125 0.1 0.25 1.38 7.63 0.042 0.000 16.2 0.014 

0.55 0.025 0.075 0.35 1.44 8.86 0.004 0.003 16.3 0.075 

0.55 0.025 0.1 0.325 1.44 8.87 0.004 0.002 16.3 0.064 

0.55 0.025 0.125 0.3 1.44 8.87 0.004 0.001 16.3 0.060 

0.55 0.025 0.15 0.275 1.48 10.27 0.004 0.001 16.8 0.073 

0.55 0.05 0.05 0.35 1.46 9.13 0.004 0.000 16.6 0.000 

0.55 0.05 0.075 0.325 1.46 9.13 0.004 0.000 16.6 0.000 

0.55 0.05 0.1 0.3 1.46 9.13 0.004 0.000 16.6 0.000 

0.55 0.05 0.125 0.275 1.46 9.13 0.004 0.000 16.6 0.000 

0.55 0.05 0.15 0.25 1.46 9.13 0.004 0.000 16.6 0.000 

0.55 0.075 0.05 0.325 1.39 7.76 0.007 0.000 16.0 0.063 

0.55 0.075 0.075 0.3 1.39 7.76 0.007 0.000 16.0 0.063 

0.55 0.075 0.1 0.275 1.39 7.76 0.007 0.000 16.0 0.063 

0.55 0.075 0.125 0.25 1.39 7.76 0.007 0.000 16.0 0.063 

0.55 0.1 0.05 0.3 1.44 7.66 0.004 0.000 15.3 0.000 

0.55 0.1 0.075 0.275 1.44 7.66 0.004 0.000 15.3 0.000 

0.55 0.1 0.1 0.25 1.44 7.66 0.004 0.000 15.3 0.000 

0.55 0.125 0.05 0.275 1.37 7.63 0.042 0.000 16.0 0.029 

0.55 0.125 0.075 0.25 1.37 7.63 0.042 0.000 16.0 0.029 
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Appendix XI.  Increasing demand 
This Appendix provides the method for generating input for the experiments when a higher 
demand is required. The incoming jobs correlate, as they come from mixers that must follow 
the same restrictions as the packaging machines. An exception is the Tumbler, where the 
product stays in the IBC and does not go into a mixer. As this is only one of four (and the 
smaller one) mixers, we generalize the statement of the correlation.  
 
To generate more demand in the same period we can create more demand in the same period 
or speed up the period with the same demand. We choose the second option to not lose the 
correlation between the jobs. The following steps show the generation of increased demand. 
Table  D shows an example of two jobs. 
 

1. Choose a base time. This is the starting point in time that does not change. We select 
this to be the starting time of the simulation.  

2. Create a delta for every time recorded for a job.  
3. Reduce (or increase if we want to decrease demand) the delta with the desired factor. 

In the example, we increase demand by 20%. The new delta is, therefore, generated 
by (100% − 80%) ∗ 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑒𝑙𝑡𝑎. 

4. Tstart time value increases by the new delta. 
 

Job In Mixer In Buffer In Machine Out Machine 

Original values 

J00058219 2023-06-02 01:07 2023-06-02 05:31 2023-06-04 08:18 2023-06-04 09:10 

J00056134 2023-06-02 05:43 2023-06-02 08:07 2023-06-03 21:53 2023-06-03 23:07 

Delta (in days): Start Time = 2023-06-01 12:00 

J00058219 0.55 0.73 2.85 2.88 

J00056134 0.74 0.84 2.41 2.46 

New Delta: Factor of -20% 

J00058219 0.44 0.58 2.28 2.31 

J00056134 0.59 0.67 1.93 1.97 

New values 

J00058219 2023-06-01 22:30 2023-06-02 02:01 2023-06-03 18:38 2023-06-03 19:20 

J00056134 2023-06-02 02:10 2023-06-02 04:06 2023-06-03 10:19 2023-06-03 11:17 
Table  D: Generation of increased demand.  

 
 
 
 
  



 

73 
 

Appendix XII. Example complete schedule 
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