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Abstract

In this research, we investigate the use of statistical analysis and machine learning methods to
predict corporate greenhouse gas emissions. We trained and tested these models on corpora-
tions that disclose emission data, aiming to create models applicable to corporations that do not
disclose this information. Due to a scarcity of Environmental, Social, and Governance (ESG)-
related data, we used financial, geographical, and sector classification data as predictor variables.
We applied a log transformation to both the predictor and output variables. Multiple imputation
was employed to handle missing data, thereby enlarging our dataset while preserving underlying
variable distributions. We evaluated the models in three rounds of testing: first on the imputed
data, then on baseline data, and finally on baseline data after correcting for log transformation
bias. In the log-transformed feature space, the models accurately predict corporate greenhouse
gas emissions. However, in the original feature space, they fail to provide accurate predictions.
Our findings suggest that the models struggle with the complexity of the data and do not gen-
eralize well. For more accurate predictions, additional ESG-related data, as well as information
on production processes, materials, and other physical assets, are needed.
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Chapter 1

Introduction

In the Chapter 1, we introduce the company where the research was conducted, discuss the context
in which the research is performed, identify the core problem, define the research questions, discuss
the research methodology, and give the research outline.

1.1 Company Introduction

Zanders was founded in 1994 and, in recent years, has grown into a leading consultancy firm spe-
cializing in treasury management, risk management, and corporate finance. The company has
more than 250 consultants working for over 500 clients. The head office is based in Utrecht, the
Netherlands. Other offices exist in Belgium, Germany, Switzerland, Sweden, the United Kingdom,
the United States, and Japan. This research was carried out in the Financial Institutions depart-
ment, which provides financial risk advice to banks, insurers, and asset managers. Within the
Financial Institutions department, multiple employees work together in an Environmental, Social,
and Governance (ESG) expert group which focuses, among others, on climate change risks. All
banks are currently investigating, measuring, or modeling climate change risks in their portfolio.
One of the components of climate change risks relates to measuring Greenhouse Gas (GHG) emis-
sions. Reliable GHG emission data could ultimately be used in risk management practices and
publication purposes. Unfortunately, not all corporations disclose GHG emission data. This re-
search focuses on the implementation of statistical and machine learning methods to predict GHG
emissions for corporations that do not disclose this information, based on corporations that do
disclose this information.

1.2 Problem Context

On December 12th, 2015, 196 Parties adopted a legally binding, international UN treaty on cli-
mate change to limit global warming to well below 2, preferably 1.5 degrees Celsius, compared
to pre-industrial levels. The formulated strategy to reach this goal is to reach global peaking
of GHG emissions as soon as possible and, thereafter, undertake rapid reductions to achieve a
carbon-neutral climate by 2050 (UNFCC, 2018). Financial institutions have an important role
in the transition towards a carbon-neutral climate. First, because financial institutions are the
instrument through which large investments can be facilitated to adhere to the Paris Agreement,
and, second, because the effects of climate change result in financial risks that affect the finan-
cial system (González and Soledad, 2021). Climate change risks for financial institutions can be
divided into physical risks and transition risks. Physical risks occur through gradual changes in
ecosystems or sudden extreme weather phenomena, otherwise known as chronic and acute changes.
Both categories lead to physical damage to assets, disruptions to supply chains, or expenditures to
prevent these damages and disruptions (An et al., 2022). Transition risks occur through the tran-
sition towards a low-carbon economy that results in changing policies, regulations, technologies,
and consumer preferences (González and Soledad, 2021). Given that we concern ourselves with
the prediction of GHG emissions, this research focuses on transition risks.
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The transition towards a low-carbon economy is not going as planned in the Paris Agreement. A
German study stated that meeting the 1.5 degrees Celsius goal is already not plausible, and limiting
the temperature rise to well below 2 degrees Celsius can only become plausible if efforts are rapidly
increased (Engels et al., 2023). A more rapid transition poses risks for financial institutions that are
exposed to corporations with business models that are unaligned with the transition towards a low-
carbon economy, such as fossil fuel sectors and corporations with high GHG emissions (Nguyen,
Diaz-Rainey, Kuruppuarachchi, et al., 2023). These exposures lead to increased levels of the
traditional types of risk that financial institutions face. Credit risk is increased when loans are
issued to corporations that fail to adapt, risking fines and loss of customers, resulting in increased
probabilities of default. Market risk is increased when the transition towards a low-carbon economy
leads to sudden repricing of assets, or to markets being dissolved over time. Other risks that may
increase are, e.g., operational risk, liquidity risk, reputational risk, legal risk, and model risk. The
increased level of risk that financial institutions face due to transition risk is likely to be significant.
A transition risk stress test, using data from more than 80 Dutch financial institutions, showed that
portfolio values can decline by up to 11%, and CET1-ratios can decline by up to 4.1% (Vermeulen
et al., 2021).

1.3 Core Problem

The international trajectory towards a low-carbon economy has led financial institutions to evaluate
their climate change exposures. Where physical risk is relatively easier to grasp due to its physical
materialization, mapping transition risks is more of a challenge. A method often recognized in
literature as a method to quantify transition risk is the evaluation of financial institutions’ carbon
footprints, also referred to as carbon footprinting (Yang, Li, and Pan, 2022). Investments and
loans to corporations with large carbon footprints may lead to increased exposures to transition
risks, as large carbon footprints may imply that these corporations are lagging in the transition
towards a low-carbon economy. Carbon footprinting, thus, enables financial institutions to under-
stand and monitor their climate change risks while simultaneously helping steer towards global
climate change reduction goals (PCAF, 2019).

There is a need for reliable publicly available emission data, not only in order to incorporate
corporations’ GHG emission data into risk management practices, but also for reliable reporting
of emissions. In 2014, an EU Directive stated that undertakings are required to prepare non-
financial statements that should contain, among others, GHG emission data (EU, 2014). Problems
as to the effectiveness of this directive were identified in a commission report which stated that
there is significant evidence that many undertakings do not disclose material information on all
major sustainability-related topics, including GHG emissions (EU, 2022a). In practice, we see
that only a subset of corporations do disclose GHG emission data. On January 5th, 2023, the
Corporate Sustainability Reporting Directive (CSRD), a new EU reporting directive, entered into
force. With this directive, the set of corporations that are required to report on non-financial
data is increased from 11,700 to approximately 50,000 corporations, as compared to the policies
introduced in the Non-Financial Reporting Directive (NFDR) (EU, 2022b), the predecessor of the
CSRD. Although the set of large corporations, as well as listed small- and medium-sized enterprises
(SME), is significantly increased, there is still a large portion of SMEs that is not covered by the
new directive. Thus, in the coming years, a large portion of SMEs will not yet be obliged to
disclose their GHG emissions. This issue is the main motivation for this research. We will focus on
creating models that predict GHG emission data for individual corporations. Subject to this, we
may also question the reliability of GHG emission data that is disclosed, as was justified following
the Volkswagen Diesel Scandal (Aurand et al., 2018). In such a scenario, a GHG emission prediction
model could act as a benchmark to detect outliers in disclosures.

1.3.1 Previous Research

Relatively little research is done on predictions for individual corporations. Current research on
predicting GHG emissions focuses mainly on predictions for sectors (Pandey and Agrawal, 2014),
regions (Franco et al., 2022), and countries (I. Ulku and E. E. Ulku, 2022), for which a variety of
regression and machine learning methods are used. In our search for previous research on predict-
ing GHG emissions for individual corporations, we found 5 research articles and 1 white paper,
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which focused on GHG emission prediction through regression analysis, as well as machine learning
methods.

First, there are two studies that focus solely on regression analysis. One of these studies generated
an estimate of GHG emissions by regressing emissions for disclosing firms on a linear combination
of several relevant variables used for a study on the effect of emission disclosure on equity value
(Griffin, Lont, and Sun, 2017). The other study tested 5 hypotheses that focused on the effect of
single variables on carbon footprint (Goldhammer, Busse, and Busch, 2017). Both report on the
R2, which measures a model’s goodness of fit, but do not report on the models’ accuracies. The
first research on GHG emission prediction using machine learning follows up on the two previously
discussed studies by implementing several machine learning methods and comparing these methods
to the proposed regression methods. The best-performing model achieves an accuracy gain of 25%
and 30% based on Mean Absolute Error (MAE) (Nguyen, Diaz-Rainey, and Kuruppuarachchi,
2021). Finally, there are three papers that are not linked to the previously mentioned papers.
These three focus on creating Gradient Boosting Decision Trees (GBDT) which are compared to
‘baseline’ models, which are a variety of regression methods (Han et al., 2021) (Bloomberg, 2021)
(Assael et al., 2023).

1.4 Research Problem

Financial institutions want to quantify their transition risk exposures by attaining carbon footprints
for underlying corporations. The fact that a large subset of corporations does not disclose the
information needed to map the GHG footprints results in the need for GHG emission prediction
modeling. This research focuses on the prediction performance of traditional statistical analysis
and the prediction performance of several machine learning methods. By doing so, we intend on
mapping the emissions of SMEs that are not theoretically subject to new legislation. Hence, we
have the following research question:

What model is best suited for the prediction of GHG emissions of corporations?

Following the research question, we state the following hypothesis:

Machine learning methods significantly outperform naive prediction and statistical
analysis.

To approach the research question in a structured manner and either accept or reject our hypoth-
esis, several sub-research questions are defined. The sub-research questions will help answer the
research question and are listed below with a brief motivation:

1) What is the impact of climate change on financial institutions?
Prior to starting with prediction modeling of GHG emissions, it is important to understand what
the climate change risks for financial institutions are, and why and how GHG emission predictions
could be of value for financial institutions.

2) What are appropriate statistical and machine learning methods from literature for
the application of GHG emission prediction?
We will assess and select appropriate statistical and machine learning methods from literature.

3) What variables are best suited as GHG emission predictors?
We will assess what variables can best be implemented in the prediction models in terms of predic-
tion power. Here, the key is to select variables that are publicly accessible to financial institutions.

4) What is an appropriate way to compare traditional statistical analysis with machine
learning methods?
As stated in the research question, we want to compare the prediction performance of traditional
statistical analysis with the prediction performance of machine learning methods. A framework is
proposed wherein the performance of the proposed methods will be assessed in terms of accuracy
and applicability.
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1.5 Problem Approach

This section gives an outline of the plan of approach for solving the research questions. Next to
describing the methodology, we will discuss the outline of the thesis.

1.5.1 Methodology

The methodology for answering the research questions composes of qualitative research and quan-
titative research:

1. Qualitative Research
The qualitative research consists of a literature study which enables us to create a theoretical
framework necessary to understand the outcomes of this research. Furthermore, a literature
study is conducted to create a framework wherein appropriate performance measures are
defined for the comparison of the different prediction models. Finally, before doing quanti-
tative research on predictors, we conduct qualitative research to find possible variables that
theoretically could serve as important predictors.

2. Quantitative Research
For the quantitative research, we need access to data from GHG emission-disclosing corpo-
rations. The first step is processing and visualizing this data. From there, we can create
and tune the prediction models. The data will be extracted from Refinitiv Eikon, which has
a large database of corporations with included emission data and other relevant financial
data. The prediction models that we will focus on are regression models and machine learn-
ing models, specifically, tree-based models, Artificial Neural Networks (ANN), and Support
Vector Machines (SVM).

1.5.2 Thesis Outline

We will give an overview of the outline of the thesis so that the reader has a clear overview of
what to expect while reading the thesis. Chapter 2 provides the theoretical context in which
the research is placed. First, we discuss climate change risk and its implications for financial
institutions. Second, we evaluate and select important predictors based on previous research and
literature. Chapter 3 discusses the methodology, specifically the prediction models that are used
and the comparative framework through which the prediction models are evaluated. Chapter 4
describes the process of data selection and preparation, and provides a visualization of the used
data. Chapter 5 describes the process of prediction modeling, which contains descriptions of model
evaluations and improvement, the model results, and the feature importance. In Chapter 6, we
formulate our final conclusions and reflect on these conclusions in the discussion.
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Chapter 2

Theoretical Context

Chapter 2 describes, in further detail, the context in which we aim to create GHG prediction mod-
els, namely climate change risk. We discuss the global effects of climate change, the risks of climate
change for financial institutions, and the increasing need for GHG accounting. Furthermore, we
address previous research and literature to evaluate possible predictors.

2.1 Climate change risk

This section elaborates on the context of the research. First, we will describe the significance of
climate change. Second, we will describe the way in which climate change risk impacts financial
institutions, namely through risks and regulations. We want to emphasize that, considering the
concept of double materiality, we are aware that climate change risk does not only have an impact
on financial institutions, but that financial institutions also have an impact on climate change.
Although the application of our research could be considered for both materialities, this section
focuses on the former materiality.

2.1.1 Climate change

Climate change is one of the most significant global issues facing humanity today, with far-reaching
impacts on the environment, economy, and society as a whole. Earth’s climate is changing at an
unprecedented rate, primarily due to human activities that have been releasing greenhouse gases
into the atmosphere. These gases trap heat from the sun, leading to an increase in global temper-
atures and causing a wide range of environmental and social consequences. The Intergovernmental
Panel on Climate Change (IPCC), a scientific body established by the United Nations, has been
studying the causes and impacts of climate change for several decades. According to the IPCC’s
Fifth Assessment Report, published in 2014, “human influence on the climate system is clear, and
recent anthropogenic emissions of greenhouse gases are the highest in history” (IPCC, 2014). In
2021, a contribution to this Sixth Assessment was published which focused on the latest physical
science basis of climate change. Figure 2.1 shows the change in global surface temperature as
observed and simulated using human and natural factors, and only natural factors (IPCC, 2021).
The report states that the average global temperature has increased by approximately 1.2 degrees
Celsius since 1880. Through the differentiation between human and natural factors, and only nat-
ural factors, it can be clearly observed what effect human activities have on global warming.
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Figure 2.1: Change in average surface temperature (IPCC, 2021).

One of the most significant consequences of climate change is the melting of glaciers and polar
ice caps, which leads to rising sea levels. Sea levels have risen by around 26 centimeters since
1880, and this rate is accelerating (IPCC, 2021). The IPCC predicts that sea levels could rise by
up to 98 centimeters by the end of the 21st century if emissions continue to increase at current
rates. This already affects several island groups, and could also have catastrophic consequences
for coastal cities and low-lying regions, leading to increased flooding, erosion, and displacement
of people and wildlife. Another major impact of climate change is changes in rainfall patterns,
and the frequency and intensity of extreme weather events such as floods, droughts, heatwaves,
and hurricanes. In 2022, monsoon rains caused severe floods in Pakistan, causing one-third of
the country to be flooded. Such events have severe economic, social, and environmental impacts,
causing crop failures, infrastructure damage, and loss of life. The IPCC predicts that extreme
weather events will become more frequent and intense in the coming decades, especially in regions
that are already vulnerable to these hazards. Climate change also affects ecosystems and biodiver-
sity, leading to changes in species distributions, ecosystem productivity, and the spread of invasive
species and diseases. The Partnership for Biodiversity Accounting Financials (PBAF) states that
biodiversity is declining fast and that this decline is undermining nature’s productivity, resilience,
and adaptability, fueling risk and uncertainty for our economies and well-being (PBAF, 2022).

2.1.2 Risks for financial institutions

Section 1 briefly introduced the concept of climate change risk for financial institutions. As stated
in Section 1, there are two main drivers of climate change risks for financial institutions: physical
risks and transition risks. Although this research mainly focuses on transition risks, we will also
treat the concept of physical risks for the sake of clarity.

• Physical risks
Physical risks arise due to the physical materialization of climate change as discussed in
section 2.1.1. The impacts of physical risks include the costs and losses that are incurred
due to alterations in ecosystems (e.g. rising sea levels) and extreme weather phenomena (e.g.
heavy precipitation that results in floods). The former is often referred to as chronic risks,
whereas the latter is often referred to as acute risks. The physical risks are no longer risks
that can be referred to as ”risks of the future”. Worldwide economic costs have exceeded the
30-year average more and more in the past 15 years. Furthermore, the number of extreme
weather events has more than tripled since the 1980s (NGFS, 2019).

• Transition risks
Physical risks, and even more the prospect of future physical risks, are the origin of transition
risks. Physical risks have resulted in the adoption of laws, regulations, and directives that aim
to decarbonize the economy as quickly as possible. Transition risks arise from this transition
towards a low-carbon economy. As global efforts to address climate change intensify, there

6



is a growing recognition that the transition towards a low-carbon economy will have far-
reaching impacts on economic activities, markets, and financial institutions. Transition risk
drivers, such as changes in policies, technologies, and consumer preferences, lead to economic
costs (e.g. stranded assets, unemployment), and financial impacts (e.g. portfolio losses,
higher default probabilities). The economic costs and financial impacts directly result in
macroeconomic impacts which can, again, fuel the transition risk drivers (Semieniuk et al.,
2021).

Physical risks and transition risks both materialize through the traditional risks that financial
institutions face, such as credit risk, market risk, operational risk, liquidity risk, reputational risk,
legal risk, and model risk. Table 2.1 shows an overview of the possible implications of physical
risks and transition risks for these traditional financial risks.

Table 2.1: Implications of physical risks and transition risks for traditional risks for financial
institutions.

Physical Risks Transition Risks

Credit Risk
Increased expected loss
due to physical damages
to assets/supply chains.

Increased expected loss
due to business models not
being aligned to the transition
towards a low-carbon economy.

Market Risk

Increased price volatility
due to unavailable products/
processes caused by
extreme weather.

Sudden repricing of assets.

Operational Risk
Extreme weather may
affect business continuity.

Threat of greenwashing and fraud.

Liquidity Risk

Physical damages can
affect the liquidity of
assets (e.g. properties), or
lead to increased withdrawals.

Liquidity can be affected by
the shift in market sentiment
towards low-carbon investments,
causing increased withdrawals.

Reputational Risk

Increased risk if business
models are not aligned with the
transition towards a low-carbon
economy.

Legal Risk
Increased risk of litigation
if businesses do not adapt quickly
to new regulations.

Model Risk

The incorporation of
physical risks in e.g.
credit risk models leads
to risk due to its novelty.

The incorporation of transition
risks in e.g. credit risk models
leads to risk due to its novelty.

2.1.3 GHG accounting

As stated in Section 1.3, there is a need for reliable publicly available emission data in order to
incorporate corporations’ GHG emission data into risk management practices, as well as to comply
to new regulations. The measurement of the amount of GHGs generated, avoided, or removed by
a corporation is referred to as GHG accounting (PCAF, 2022). Loans and investments do not
necessarily result in GHG emission generation. Projects that are focused on removing GHG from
the atmosphere or projects that avoid GHG emissions are also considered in GHG accounting. The
Kyoto Protocol defined what gases we should see as GHGs. These are the following: carbon diox-
ide (CO2), methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons
(PFCs), sulfur hexafluoride (SF6), and nitrogen trifluoride (NF3) (Brander, 2012). These gases
have different properties and therefore differ in their impacts on global warming. In order to make
comparisons between the gases possible, the Global Warming Potential (GWP), a GHG metric, is
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used to normalize GHGs as carbon dioxide equivalents (CO2e) (Neubauer, 2021).

GHG accounting is one of the building blocks that allow financial institutions to quantify their
transition risks and enables them to publish reliable GHG emission data. Comprehensive GHG
accounting demands more data than one might initially anticipate. The complexity of GHG ac-
counting arises from the fact that GHG emissions fall into two broad categories: direct emissions
and indirect emissions. Direct emissions are generated by sources owned or controlled by the re-
porting corporation. Indirect emissions are generated by sources within the operating cycle owned
or controlled by other corporations. These direct and indirect emissions are further categorized
into three scopes: (PCAF, 2022)

• Scope 1
Direct emissions generated by sources owned or controlled by the reporting corporation.

• Scope 2
Indirect emissions generated by sources from which electricity, steam, heating, and cooling
are purchased for use by the reporting corporation.

• Scope 3
All other indirect emissions from activities from other corporations/entities, but part of
the reporting corporation’s operating cycle. These activities are divided into upstream and
downstream activities.

Figure 2.2: Schematic of scope 1, 2, and 3 emissions for reporting corporations (PCAF, 2022).

8



Figure 2.2 gives a clear overview of the direct and indirect emissions for a reporting corporation.
It can be seen that the ‘investments’ category of scope 3 is circled. The ‘investments’ category,
also known as scope 3 category 15 emissions, are called financed emissions. For financial institu-
tions, financed emissions are the highest contributor to their overall emissions. The question then
arises of how financial institutions should report their financed emissions. In general, there are
three approaches to measuring financed emissions: the equity share approach, the financial control
approach, and the operational control approach (PCAF, 2022).

• The equity share approach requires an organization to report emissions according to the share
it has in the underlying organization. For example, holding an equity share of 15% means
that 15% of all emissions (scopes 1, 2, and 3) should be reported as financed emissions in the
respective scopes.

• The financial control approach requires an organization to report on 100% of emissions for
all activities where it can directly influence financial and operational policies or benefit from
the corporation’s activities.

• The operational control approach requires the reporting of 100% of emissions from operations
for which it can introduce and implement operational policies.

The Partnership for Carbon Accounting Financials (PCAF) requires financial institutions to report
their financed emissions using the financial control approach or the operational control approach, as
a loan or investment is not meant to result holding a controlling interest. As financial institutions do
not have 100% control over underlying corporations, an attribution factor is used for the calculation
of financed emissions. The attribution factor is calculated as follows (PCAF, 2022):

AttributionFactor =
OutstandingAmount

TotalEquity +Debt
(2.1)

To calculate the financed emissions, the attribution is calculated. In order to comprehensively
report all its financed emissions, financial institutions need corporations’ GHG emission data for
all three scopes. This again emphasizes the need for GHG emission data for scopes 1, 2, and 3.
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2.2 GHG predictor evaluation

The goal of the research is to create prediction models that predict GHG emissions for corporations
that do not disclose GHG emission data. We aim to do this by fitting prediction models on
corporations that do disclose this information. To create a well-performing prediction model, it
is important to find the right combination of predictor variables. In this section, we will explore
what predictor variables were employed in previous research, what the rationale is behind the
application of these variables, and how significant their contribution is to the overall prediction
performance of the models. These include sector classifications, geographical information, financial
information, energy consumption levels, and ESG scores. Furthermore, we assess corporation
performance indicators from literature based on the sub-categories performance, efficiency, leverage,
and liquidity.

2.2.1 Sector classification

The sector in which a corporation operates is likely to be a relevant GHG emission predictor.
Logically, a corporation within the fossil fuel industry will have higher GHG emissions than a
corporation within the renewable energy industry. Previous research on GHG emission prediction
implements three different sector classification variables. These are the Global Industry Classifi-
cation Standard (GICS), the North American Industry Classification System (NAICS), and the
Business Industry Classification System (BICS). The BICS classifies a corporation by examining
in which industry it is making the biggest fraction of its revenues. It is a rather detailed method as
there are seven hierarchical levels. This sector classification method was found to be paramount for
GHG emission prediction (Assael et al., 2023). The GICS and NAICS are less granular than the
BICS with four and five hierarchical levels, respectively. Again, the industry classification helped
achieve substantial accuracy gains (Nguyen, Diaz-Rainey, and Kuruppuarachchi, 2021).

2.2.2 Geographical classification

The country in which the corporation is headquartered is a relevant predictor. The country in
which a corporation operates can give information on what regulatory environment a corporation
operates. Consequently, it can be distinguished whether a country has relevant GHG laws and reg-
ulations. The presence or absence of such laws is seen as relevant information. This is represented
by its relatively high level of predictor importance (Assael et al., 2023).

2.2.3 Corporation size

In general, the assumption is made that when two corporations produce the same system, using the
same processes under the same circumstances, ceteris paribus, the larger corporation will produce
higher GHG emissions (Goldhammer, Busse, and Busch, 2017). Turnover and revenue are both
often referred to as indicators of corporation size. As GHG are emitted in the process of creating
revenue, this seems like a logical predictor to consider. Next, corporation size can be expressed
through the number of employees. High numbers of employees could indicate that the production
processes are labor-intensive, or it could indicate that employees are divided over several production
facilities, indicating low production centrality. Both imply higher GHG emissions (Goldhammer,
Busse, and Busch, 2017) (Nguyen, Diaz-Rainey, and Kuruppuarachchi, 2021). Other financial
information is not necessarily classified under the numerator of ‘corporation size’. However, we
will classify these as indicators of the size of corporations as we identify these as representatives of
production processes and capital structure. These include capital expenditure, Property, Plan &
Equipment (PPE), assets, intangibles, and leverage (Nguyen, Diaz-Rainey, and Kuruppuarachchi,
2021) (Goldhammer, Busse, and Busch, 2017) (Assael et al., 2023) (Han et al., 2021) (Griffin,
Lont, and Sun, 2017).

2.2.4 Energy consumption

Energy consumption of production processes is naturally directly related to GHG emissions. On
the one hand, we have energy that is used in production processes through the use of corporations’
facilities and vehicles, and on the other hand, we have energy that is purchased for own use. These
differences are represented through the differences in scope 1 and 2 emissions. Energy consumption
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is shown to be one of the best predictors in the prediction models in previous research (Assael et al.,
2023). However, no distinction was made between renewable and non-renewable energy sources.
We believe that this distinction could be a relevant factor in the prediction models.

2.2.5 ESG

Refinitiv Eikon provides ESG scores that are designed to measure corporations’ relative ESG per-
formance. The ESG scores are built out of the three main pillars of ESG, namely Environmental,
Social, and Governance. These pillars consist of several categories, for Environmental, the cat-
egories Emission, Innovation, and Resource Use, for Social, the categories Community, Human
rights, Product responsibility, and Workforce, and for Governance, CSR strategy, Management,
and Shareholders. As these ESG scores provide relevant corporate information with regards to
ESG, and emissions do no necessarily need to be included for the calculation of the ESG score, the
ESG scores could be a relevant predictor in the prediction models.

2.2.6 Performance

The financial performance of a corporation is related to its ability to manage environmental impact.
Financial performance can be affected by market sentiment towards GHG emissions, exposure to
transition risks, and cost savings due to energy efficiency measures. We have three indicators
of corporations’ financial performance: Return on Capital (ROC), Return on Equity (ROE), and
Return on Assets (ROA). ROC measures performance by calculating the return a corporation earns
over its own capital, the ROE measures performance by calculating the return over outstanding
equity and the ROA measures performance by calculating the return over its total assets, which is
equal to the sum of its total liabilities and its total equity (Brealy, Myers, and Allen, 2017).

2.2.7 Efficiency

Financial efficiency indicates the efficiency with which a corporation uses its assets. The asset
turnover ratio measures a corporation’s ability to generate revenue from its assets, by dividing
its net sales over its average total assets. The inventory turnover ratio indicates how quickly a
company is selling its inventory and replacing it with new inventory. A high inventory turnover
ratio generally indicates that a company is efficiently managing its inventory and is selling its
products quickly (Brealy, Myers, and Allen, 2017).

2.2.8 Leverage

Financial leverage can be an indicator of a corporation’s GHG emissions, because companies that
are heavily reliant on debt financing may be more vulnerable to transition risks. Financial leverage
is measured by the debt-to-equity ratio, which measures the amount of debt a corporation has
relative to its equity. Next to the debt-to-equity ratio, we consult the interest coverage ratio,
which measures the extent to which interest obligations are covered by earnings, and the cash
coverage ratio, which measures the extent to which interest obligations are covered by operating
cash flow (Brealy, Myers, and Allen, 2017).

2.2.9 Liquidity

Financial liquidity can be an indicator of the availability of funds for investing in the transition
towards a low-carbon economy and the exposure to transition risks. The liquidity measures that
we use are the current ratio and the quick ratio. The current ratio measures a corporation’s
ability to pay its short-term liabilities with its short-term assets. The quick ratio also measures a
corporation’s ability to pay its short-term liabilities with its short-term assets, but excludes assets
that cannot be liquidized quickly, such as inventories (Brealy, Myers, and Allen, 2017).

2.2.10 Conclusion

We evaluated predictor variables from previous research on GHG emission prediction, as well as
other literature, and divided these variables into 9 categories. We consider all predictor variables
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discussed in this section as potential significant predictor variables for our models. We assess the
availability of these variables in Section 4.
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Chapter 3

Methodology

In this Chapter, we give background information on the proposed prediction methods and describe
the comparative framework in which we focus on several accuracy measures.

3.1 Prediction methods

In Chapter 1, we described that we test multiple models to examine which of those models is
best suited for the prediction of corporate GHG emissions. The models that we consider can be
categorized into regression analysis and machine learning methods. Machine learning is the field
within artificial intelligence (AI) that is involved with making machines learn from examples by
recognizing patterns in data. By recognizing patterns in data, machine learning models extract
information that is relevant for future data. This section gives a brief introduction to the concept
of regression analysis and machine learning by introducing linear regression, supervised learning,
and unsupervised learning. Next, we introduce several specific machine learning methods that we
use to tackle the core problem of this research.

3.1.1 Regression

Regression analysis focuses on deriving a relationship between a dependent variable and one or more
independent variables. The most known and basic form of regression analysis uses linear regression.
In linear regression, it is assumed that the relationship between the dependent and independent
variables is approximately linear. For example, if we would want to test the relationship of sales
with marketing expenditure using linear regression, we get a representation of the linear relationship
between these two variables through a linear equation. The parameters that are predicted are
the coefficients of the independent variable and the intercept of the linear model, where, in our
example, sales is the dependent variable and marketing expenditure is the independent variable
(James et al., 2021). Linear regression can also be used for prediction purposes. In this case,
linear regression predicts output for the dependent variable based on the linear equation of the
independent variables.

3.1.2 Supervised Learning

Supervised learning is one of the most often used machine learning methods. When we refer to
a machine learning method as a ‘supervised’ method, we indicate that we have training input for
which we know the desired output (Müller and Guido, 2016). An example of supervised learning
is spam detection. Using a training set that consists of emails that are labeled as ‘spam’ and
emails that are not labeled as ‘spam’, we can train a model that detects future spam mail. Given
that we know the input/output pairs available in our training set, we can verify the performance
of the supervised learning model. There are two main categories of supervised learning methods:
classification and regression.

3.1.2.1 Classification & Regression

Classification models are algorithms that have as a goal to predict a discrete class label, which is
one from a sample of predetermined class labels (Domingos, 2012). Here, the model uses a training
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set consisting of input/output pairs to train the model so it can predict the class label for data
not seen during the training of the model. The class can be a binary output, e.g. when predicting
whether patients are dead or alive after a certain period of time, or the class can have more than
two output possibilities, e.g. when predicting the color of flowers based on measurements of petal
and sepal lengths.

Figure 3.1: An unambigious example of the output of a classification model that uses three one-
versus-the-others classification models (Müller and Guido, 2016).

Regression models are algorithms that focus on predicting a continuous output value. The predic-
tion of an individual’s income based on several variables is an example of a regression problem,
as the income has a continuous value that can be any given number (within a reasonable range)
(Müller and Guido, 2016). If we compare classification and regression models, it is clear that
the prediction of GHG emissions is a regression problem. Note that there is a difference between
regression in the context of supervised learning and in regression analysis (multiple linear regres-
sion). In regression analysis, regression focuses on deriving a causal relationship that can be used
to predict output values, whereas, in supervised learning, regression focuses on purely predicting
a continuous value. This difference is highlighted in Section 3.1.5.

Figure 3.2: An example of the in-sample relationship of a regression model on cricket chirps per
minute and the temperature in Celsius (Google, 2022).
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3.1.3 Unsupervised learning

Unsupervised learning is the field of machine learning where we have no prior knowledge of the
output. The measurement method is given, but information on what to expect is not (Müller and
Guido, 2016). Unsupervised learning can be implemented to uncover hidden patterns in the data,
but not for classification and regression problems as supervised learning can. There are two main
categories of unsupervised learning methods: dimensionality reduction and clustering.

3.1.3.1 Dimensionality reduction & clustering

Dimensionality reduction is literally the reduction of the dimensions of the data. In other words,
with dimensionality reduction, we decrease the number of input variables available in the training
set. The result is that we have fewer input parameters which leads to less complex models.
Furthermore, dimensionality reduction can be used to better visualize data. Clustering aims to
divide data into groups with similar characteristics. The goal of clustering is that we end up with
clusters that have high similarities within the cluster, but low similarities between the clusters.
The similarities of the clusters are defined using the input variables.

3.1.4 Machine Learning methods

In the previous section, we discussed the main categories of machine learning. Looking at our
research problem, we identify that we need to apply supervised learning methods, specifically
supervised regression models. We have known input/output pairs, where the input is the set of
predictor variables identified in Section 2.2, and the output is the set of corporate GHG emissions.
As it is almost impossible to predict in advance what model suits a specific problem best, we will
implement several supervised regression algorithms (Sterkenburg and Grünwald, 2021). In the
following sections, we will introduce the methods that we will implement on our problem. Note
that the following sections are not meant to be fully explanatory, but merely a short introduction
to the concept of the methods. We will give more specific explanations of the applied methods
later in this research.

3.1.4.1 Decision Trees

Decision trees are tree-structured machine learning algorithms that are assembled using a hierarchy
of if/else questions (Müller and Guido, 2016). All if/else questions are linked to one of the predictor
variables, and are represented by nodes. The nodes are connected by branches that represent the
different answer options for the if/else questions. Take for example the problem of determining
a person’s salary using decision trees. The question at the first node could be “What industry
sector does person X work in?” from which several industry branches can be picked. The goal is
to create an accurate final prediction using as few if/else questions as possible. In itself, a single
decision tree may lead to mediocre results. However, there are several methods to combine machine
learning models into a more powerful model, often referred to as ensemble methods (James et al.,
2021). This research will focus on two specific decision tree ensemble methods, namely bagging
and boosting, and for these methods consider two specific applications.

Bagging
Bagging, short for bootstrap aggregating, is an ensemble method that builds multiple decision trees
using random bootstrap samples of the data and aggregates the predictions of each decision tree
into a single final prediction. Every individual decision tree is optimized for its bootstrap sample.
By combining the results of a large number of decision trees, the variance of the decision trees
is significantly decreased. Random forest is a popular bagging method that also builds trees by
using a different bootstrap sample of the data for each tree. The difference with other bagging of
decision tree methods is that each node within the trees is split by choosing the best predictor in
a random subset of predictors (Liaw and Wiener, 2002). For a regression problem, each decision
tree will generate a continuous output. The final prediction is typically the mean of the outputs
of the individual decision trees. The main advantage of random forest is that the model, and its
feature importance, can be easily visualized and understood by non-experts. Next to this, random
forest works well for a mix of discrete and continuous variables as no pre-processing of the data is
necessary (Müller and Guido, 2016).
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Figure 3.3: Simplified representation of a random forest model (TIBC, 2023).

Boosting
Boosting is an ensemble method that does not combine multiple decision trees, but creates a
sequence of decision trees where each tree uses information from previous trees (Müller and Guido,
2016). Boosting is achieved by progressively adjusting the weights of the training samples based
on the prediction errors of the preceding models. The sequence of decision trees is created one at
a time, where each new tree is fine-tuned to correct the mistakes made by the prior tree. Extreme
Gradient Boosting (XGBoost) is a tree boosting method that focuses on minimizing a specified
error function by combining weak base learning models into a stronger learner in an iterative
fashion. The XGBoost’s biggest advantages over other boosting methods are its scalability and its
speed (Laurensia, Young, and Suryadibrata, 2020).

3.1.4.2 Support Vector Machine

The goal of support vector machines is to find the perfect boundary of a hyperplane that separates
different classes or gives a predicted output. SVMs can thus be used for classification and regression
purposes. The simplest classification SVM is the maximal margin classifier which only works for
linearly separable data. Although this means that this version can not be used often with real-world
data, it is relevant for understanding the main concept of SVMs (Cristianini and Shawe-Taylor,
2014). The maximal margin classifier tries to find a decision boundary that maximizes the distance
between the decision boundary and the closest of the data points. Figure 3.4 shows the maximal
margin classifier for a two-dimensional space. The bold ‘Os’ and ‘Xs’ are the closest of the data
points and are referred to as support vectors.

Figure 3.4: A maximal margin hyperplane with highlighted support vectors (Cristianini and Shawe-
Taylor, 2014).

In SVMs for regression, also referred to as Support Vector Regression (SVR), the goal is to find
the hyperplane that fits the training data whilst minimizing an ϵ-insensitive error function. The
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ϵ-insensitive error function ignores errors that are within the bandwidth of the error margin and
measures the cost of errors for errors outside of this margin, given by ξ. Again, the goal is to
maximize the distance between the decision boundary and the support vectors.

Figure 3.5: An ϵ-insensitive error function for a regression problem (Cristianini and Shawe-Taylor,
2014).

Figures 2.5 and 2.6 depict SVM examples for linear problems in low-dimensional input spaces.
In practice, SVM applications have higher dimensional feature spaces. This is made possible by
applying the kernel trick on the input space. The kernel trick allows the input to be mapped
into a higher-dimensional space which in turn allows the SVM to capture non-linear relationships
between the input and the target output (Bishop, 2006).

3.1.4.3 Neural Networks

Artificial Neural networks (ANNs) are based on biological neural networks and consist of several
layers of nodes. Figure 3.6 shows the structure of an ANN and the structure of a single node. In
the ANN, the first layer of nodes represents the input variables, the last layer of nodes represents
the output variables, and the layers between the input and output layers are called hidden layers.
The nodes are interconnected by links that represent the weights of each of the nodes (Bishop,
2006). Each node has an activation function that processes the weighted inputs of the previous
layer and an added bias into an output value. The output value is then used as input for the nodes
in the next layer. Finally, the last layer of nodes uses an activation function to create a set of
output values. The output values are compared to the target values using an error function. The
weights can be adjusted to minimize the error function using backpropagation, which uses gradient
descent (Bishop, 2006).

Figure 3.6: Structure of an ANN and the structure of a single node (Kimura et al., 2019).

3.1.5 Causality versus prediction

We discussed the concept of regression analysis and the machine learning methods that we imple-
ment in this research. However, we want to make a final note on a key difference between the two
distinct approaches used in regression analysis and machine learning.
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Regression analysis is primarily concerned with understanding the causal relationship between a
dependent variable and one or more independent variables. The goal of regression analysis is
to identify the impact of independent variables on the dependent variable and to estimate the
magnitude of this impact. In other words, regression analysis seeks to determine how much the
dependent variable changes as a result of changes in the independent variables. On the other hand,
machine learning is primarily focused on making predictions based on patterns and relationships
in the data. Machine learning algorithms use mathematical models to learn from data and make
predictions about new observations. Unlike regression analysis, machine learning is not necessarily
concerned with understanding the causal relationship between variables. Instead, its sole focus is
to attain accurate results in its predictions. Although, in general, machine learning methods are
superior to regression analysis in terms of prediction accuracy, we consider both regression analysis
and machine learning to provide a more comprehensive understanding of the relationship between
variables and possibly improve the accuracy of the results.
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3.2 Comparative framework

In the previous section, we discussed several machine learning methods that we employ for the
prediction of corporate GHG emissions. These methods are employed to output predictions, Ŷi,
based on data of GHG-disclosing corporations. Here, i refers to the corporation. We want to
compare model accuracies, based on the difference between the observed values and model output,
Ŷi − Yi. This section outlines the metrics to evaluate these model accuracies. Furthermore, we
discuss the difference between in-sample performance and out-of-sample performance, and the
bias-variance trade off.

3.2.1 In-sample & out-of-sample performance

The goal of this research is to predict corporate GHG emissions for corporations that do not
disclose this information. We approach this problem by taking emission data of corporations that
do disclose GHG emissions, fitting a model on this data, and measuring whether the predictions
made by the fitted model come close to the actual observed values. Given that we have good
prediction accuracies, we can implement the fitted model for corporations that do not disclose
GHG emission information. The assessment of the prediction accuracies can be done by assessing
the in-sample prediction performance and the out-of-sample prediction performance. The in-sample
prediction performance refers to a model’s ability to accurately predict the model output for data
it has seen during the training stage. The out-of-sample prediction performance refers to a model’s
ability to accurately predict the model output for data unseen during the training stage. A fitted
model will always incorporate some of the sample-specific noise into the model fit. The in-sample
performance is therefore always higher than the out-of-sample performance, as it complies with
this fitted noise. Referring to the research goal, we want to predict GHG emissions for corporations
unseen during the training stage of the models, as we do not have information on the output for
these corporations. Therefore, for our research, the out-of-sample prediction performance is of more
relevance than the in-sample prediction performance. In Section 5.3, we reflect on both in-sample
and out-of-sample performance. However, our main conclusions are based on the out-of-sample
performance.

3.2.2 Prediction accuracy

First, we measure the performance of the prediction models as compared to a no-skill predictor.
This comparison allows us to inspect how our prediction models perform when compared to an
untrained predictor. For this comparison, we compute Theil’s inequality coefficient, which is
obtained as follows: (Bikker et al., 2008)
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Theil’s U is a scale-independent measure of forecast quality, where U is equal to zero for a perfect
prediction (Ŷi = Yi), and equal to one for no-skill prediction (Ŷi = 0). Consequently, we are aiming
for a value close to zero. A value close to one would indicate that our models perform only slightly
better than a no-skill predictor, in which case you can wonder whether our prediction models are
a useful contribution. Another scale-independent error measure is the Mean Absolute Percentage
Error (MAPE), for which we aim for a value close to zero, similar to Theil’s U. The MAPE is
obtained as follows:

MAPE =
1
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n∑
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Next to relative error measures, we include absolute error measures. Previous research on the topic
of GHG prediction uses a variety of methods to measure the performance of the prediction models.
(Griffin, Lont, and Sun, 2017) and (Goldhammer, Busse, and Busch, 2017) both reported only on
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the explanatory power of the used prediction variables using R-squared. These research papers did
not report on the prediction errors of their respective regression models. The previously discussed
research papers that used machine learning methods either used the Mean Squared Error (MSE)
(Nguyen, Diaz-Rainey, and Kuruppuarachchi, 2021) or the Root Mean Squared Error (RMSE)
(Assael et al., 2023) (Han et al., 2021) (Bloomberg, 2021) to compare model accuracy. The MSE
and RMSE are calculated using formulas (3.3) and (3.4), respectively.

MSE =
1

n

n∑
i=1

(Yi − Ŷi)
2 (3.3)

RMSE =

√√√√ 1
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(Yi − Ŷi)2 (3.4)

The MSE takes the average squared distance between the predicted value, Ŷi, and the target value,
Yi. The RMSE takes the square root of the MSE. The advantage of the RMSE over the MSE is
that the RMSE is expressed in the same ‘unit’ as the target value. In the context of GHG emis-
sion prediction, this means that the RMSE is expressed in tonnes, which makes the error rate of
the model more easily understandable. For both RMSE and MSE, a lower value implies higher
prediction accuracy.

Lastly, we evaluate the prediction performances through a goodness-of-fit measure, R-squared. The
R-squared measures the proportion of variance in the dependent variable that can be explained by
the independent variables. The R-squared is obtained as follows:

R2 = 1−
∑

(yi − ŷi)
2∑

(yi − ȳi)2
(3.5)

In Equation 3.5, the numerator is defined as the sum of squared errors, and the denominator is
defined as the total sum of squares. Here, the sum of squared errors is the sum of the squared
residuals produced by the prediction model, and the total sum of squares is the sum of the squared
distance between the output and the mean of the training output. The ratio of these two metrics
represents the proportion of the total variation in the dependent variables that is not explained by
the prediction model. Subtracting this from 1 gives you the proportion of total variation that is
explained by the prediction model.

3.2.3 Bias-Variance Tradeoff

Next to assessing the performance of the prediction models based on error measures, it is essential
to discuss the bias-variance tradeoff of the models. It is well-known that we need to understand
the bias-variance tradeoff to optimize our models’ prediction accuracy. Ultimately, we want to
minimize both bias and variance. However, the two are inversely related. Therefore, we ideally
need to approach an equilibrium between the two to get the best results. Before we elaborate on
this equilibrium, let us first explain the concepts of bias and variance.

Bias is the difference between the predicted values and the actual values. Models with high bias
tend to perform poorly on both training and testing data. This indicates that a model with high
bias underfits the training data, meaning it oversimplifies the relationship between dependent and
independent variables. On the contrary, variance is the variability of the prediction of a single data
point. Models with high variance tend to put too much weight on the training data. This leads to
overfitting of the model to the training data, meaning the model does not generalize well, causing
it to perform poorly on unseen data.

As stated earlier, we can improve model performance by finding an equilibrium for the bias-variance
tradeoff. Figure 3.7 visualizes the bias-variance tradeoff. Here, the prediction error is made up
of three aspects: the bias, the variance, and the irreducible error. Obviously, we are unable to
reduce the irreducible error. The bias and variance can be reduced by finding a balance in model
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complexity. We can control the complexity of the model by tuning regularization parameters that
control how ’aggressive’ the learning process for a specific model is. Furthermore, we can control
the number of predictor variables that are used in building the models and combine models using
ensemble models, as we do with the XGBoost and the Random Forest. As bias and variance are
important factors in the evaluation of predictor models, we will estimate and assess the bias and
variance of our models to make coherent conclusions.

Figure 3.7: Visualization of the bias-variance tradeoff (Singh, 2018).

3.2.4 Conclusion

We introduced five performance metrics that we use for the assessment of our prediction models.
We include two scale-independent error measures, where Theil’s U measures the performance
of the prediction models as compared to a no-skill predictor, and the MAPE measures relative
prediction accuracy. Furthermore, we include two absolute error measures, the MSE and the
RMSE. Lastly, we evaluate the prediction performance through a goodness-of-fit measure. Next
to these five performance metrics, we introduced the distinction between in-sample and out-of-
sample performance, and discussed the bias-variance tradeoff through which we can assess model
generalization. With both accuracy and generalization measures, we expect to be able to make
meaningful conclusions on the performance of our models.
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Chapter 4

Data Selection & Preparation

In this Chapter, we describe our data source and describe how we extracted the data from this
data source. Furthermore, we describe the data preparation process for both emission data and
the predictor variables. Finally, we visualize our data to enable us to better understand the data.

4.1 Data description

As stated in Chapter 1, we extract data from Refinitiv Eikon, a financial analysis desktop. We
manually extracted data on four emission categories: ‘Total’ emissions (scope 1 + scope 2), scope
1 emissions, scope 2 emissions, and scope 3 emissions. This data is gathered by Refinitiv Eikon
through a team of content research analysts that are trained to collect reported ESG data, as well
as a broad range of other data points. Next to emission data, we extracted data on all variables
described in Section 2.2, ordered by the main industries as described by Refinitiv, namely Energy,
Basic Materials, Industrials, Consumer Cyclical, Consumer Non-Cyclical, Financials, Healthcare,
Technology, Utilities, Real Estate, Academic & Educational Services.

4.2 Data preparation

4.2.1 Emission data

We extracted corporate emission data for the last 20 years for all emission categories. This implies
that we have a mixture of time-series data and cross-sectional data, i.e. panel data. Note that
not all corporations in our data frame have published emissions for the last 20 years, indicating
that we have an unbalanced data panel. We convert the panel data into a cross-sectional data
frame, meaning that corporations now have multiple data rows, one for each year that they have
published their emissions. So, we now have a cross-sectional data frame consisting of emission data
for all emission categories over a differing number of years.
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Figure 4.1: Total Disclosures in the previous 20 years.

Figure 4.1 depicts the number of ‘Total’ emission disclosures over the past 20 years. Disclosures of
the other emission categories show similar counts, as can be seen in Appendix A.1. The figure shows
that the number of emission disclosures decreases as we go back in time. This can be explained by
the increasing importance of GHG disclosures. For the sake of relevance of the data and decrease
of data instability, we exclude emission data from the years before 2018. Furthermore, we divide
our data frame into four separate data frames, one for each emission category. In each of these
data frames, information on the other emission categories is deleted. Table 4.1 shows the number
of data rows for each of the four data frames.

Data frame Year Number of disclosures

Total

2022 5863
2021 5126
2020 4387
2019 3555
2018 2923
Total 21854

Scope 1

2022 5329
2021 4605
2020 3904
2019 3067
2018 2466

Scope 1 19371

Scope 2

2022 5334
2021 4613
2020 3891
2019 3052
2018 2451

Scope 2 19341

Scope 3

2022 3291
2021 2889
2020 2338
2019 1791
2018 1404

Scope 3 11713

Table 4.1: Disclosure counts for all emission categories (2018-2022).
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4.2.2 Predictor data

In section 2.2, we discussed possible predictors found in previous research and literature. Subse-
quently, we assessed which of these predictors were available in Refinitiv Eikon. With regards to
the three ‘sector classification’ predictors, Refinitiv Eikon only provides the GICS classifier. In
total, we selected 29 possible predictors. Although Refinitiv Eikon has a large range of other possi-
ble variables, we choose to focus on the 29 predictors that are discussed in this section. Appendix
A.2 gives a more detailed description of what these predictors denote. Now that we have four
data frames, one for each emission data frame together with data on the 29 possible predictors, we
inspect the usability of these predictors.

Predictor Category Predictor variable Percentage of missing values
Year Fiscal Year 0.0%

Sector Classification GICS Sub-Industry Name 0.79%
GICS Industry Name 0.79%

GICS Industry Group Name 0.79%
GICS Sector Name 0.79%

Geographical Classification Country 0.0%
Region 0.0%

Corporation Size Revenue 10.36%
Employees 14.22%

Capital Expenditure 25.45%
Net PPE 2.71%

Net Intangibles 12.44%
Operating Expenses 0.77%

Total Assets 0.56%
Energy Consumption Energy Purchased 19.31%

Energy Produced 75.67%
Renewable Energy Purchased 72.12%
Renewable Energy Produced 78.28%

ESG ESG Score 0.01%
Financial Performance ROE 14.18%

ROC 40.87%
ROA 23.28%

Financial Efficiency Asset Turnover 9.95%
Inventory Turnover 24.94%

Financial Leverage DE Ratio 23.28 %
Interest Coverage Ratio 25.41%

Cash Flow Coverage Ratio 3.82%
Financial Liquidity Current Ratio 12.83%

Quick Ratio 12.83%

Table 4.2: The percentage of missing values of predictor variables in the ‘Total’ emission data
frame.

Table 4.2 shows that most of the predictor variables have missing values. A high number of
missing values can introduce an unwanted bias into our prediction models. Therefore, we disregard
variables that have a proportion of missing values higher than 30%. This results in the deletion of
the variables ‘Energy Produced’, ‘Renewable Energy Purchased’, ‘Renewable Energy Produced’,
and ‘ROC’. Next to this, we delete the rows that have missing data on variables with a percentage
of missing values lower than 5%. These include the GICS sector classification variables, ‘Operating
Expenses’, ‘Total Liabilities’, ‘Total Assets’, and ‘Cash Flow Coverage Ratio’. So, we delete rows
with missing values for one or more of these variables. Lastly, we evaluate the availability of the
predictor ‘ESG Score’ in the subset of corporations that do not disclose emission data. We observe
that ‘ESG score’ is missing for most of the data in this subset. Furthermore, one can argue about
the reliability of ESG data. Therefore, we exclude ‘ESG Score’ as a predictor variable. We are
now left with four data frames that still contain missing values. Next to this, we need to address
the possible collinearity, and outlier values in our data frames. In the following sections, we will
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first describe the procedure of handling outliers, discuss the procedure of multiple imputation for
missing values, and discuss the issue of collinearity.

4.2.2.1 Outliers

Outliers are data points for which the values lie at an abnormal distance from other observed
values. Outliers can arise due to errors in observations or measurements, or due to extreme obser-
vations. We assume that the outliers in our data frames are due to extreme observations and we
will treat them as such.

Figure 4.2: Total Emission data with extreme observation.

Figure 4.2 shows an example of the influence of an extreme observation in the ‘Total’ emission
variable. Extreme observations in large sample data are common and therefore not necessarily an
issue. One can argue that the existence of outliers in data is noise that can create a bias. However,
on the other hand, we can argue that extreme observations are relevant data points from which
a model can learn. For the former argument, we would need to do an extensive analysis of the
extreme observations for all variables. As this is not in the scope of this research, we will consider
all extreme observations but one as relevant data points. The outlier in Figure 4.4, which is almost
20 times larger than the closest value is deleted from the data set. After the deletion of this specific
outlier, the data for the predictor variables remain skewed due to outliers. To ensure that smaller
values are not overwhelmed by their abnormally large counterparts, we use log transformation to
transform the data of continuous variables. In other words, variables x will be transformed in
log(x). Log transformation de-emphasizes outliers and enables the visualization of the distribution
of the variables to be clearer (Metcalf and Casey, 2016).

Figure 4.3 shows a boxplot of the ‘Total’ emission variable. The distribution is more clearly
depicted than the distribution prior to the log transformation. Furthermore, we see that the data
is more closely distributed, indicating that the outliers are de-emphasized.
Preliminary test results show that, even after log-transformation, the models are unable to predict
outlier values. This implies that the inclusion of outliers in the training and testing of the prediction
models leads to highly inaccurate results. The prediction models will make sense only for ‘central’
data points. Therefore, we eliminate outlier values based on the interquartile ranges.
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Figure 4.3: Total Emission data without extreme observation.

4.2.2.2 Data imputation

Table 4.2 shows that a large portion of predictor variables has missing values in their data. The
deletion of all rows with missing values can have an impact on the validity of our prediction meth-
ods, as the deletion of rows will create biased results. On the other hand, if we choose to impute
all rows, the validity of our prediction methods will be biased due to data rows with a large portion
of imputed values. We want to increase the validity of our prediction methods by deciding on the
trade off between the two former issues. We inspect the pattern of missing data to see how the
missing values are dispersed over the data set. We choose to use multiple imputation for data
rows that have at most 3 missing values. Multiple Imputation (MI) is a statistical technique that
has gained popularity in recent years as a way to handle missing data in research studies. The
principle behind MI is that the imputed values are not known with certainty, and thus multiple
imputed data frames are created, each with different plausible values for the missing data. These
data frames are then analyzed separately, and the results are combined to produce a final result
that accounts for the uncertainty introduced by the missing data.

There exist several MI methodologies for which the usability depends on the subjected data frame.
Unfortunately, there is no universal method that works well for all data frames unconditionally.
Therefore, there are several choices to be made. First, we make the assumption that the miss-
ing values in our data frames are Missing at Random (MAR). Data is MAR if the probability
of data missing is equal within subsets defined by observed data. Second, we choose the form of
the imputation model. Our data contains multivariate missing data, meaning that missing data
is not limited to one variable, but occurs everywhere in the data set. One method of dealing
with multivariate missing data is through the use of Fully Conditional Specification (FCS). FCS
imputes variables one by one conditional on the other variables in the data set. We will implement
one specific application of FCS: the MICE algorithm (Buuren and Groothuis-Oudshoorn, 2011).
MICE, or Multiple Imputation by Chained Equations, imputed variables one by one conditional on
other variables using a pre-specified univariate imputation model. This leads us to the third choice
to make, the choice of the univariate imputation model. MICE offers several built-in univariate
imputation techniques. The most commonly used technique for continuous variables is predictive
mean matching (PMM). PMM takes place in several steps. First, a linear regression model is fitted
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on the target variable, that is the variable to be imputed, which returns regression coefficients for
the predictor variables. Second, Bayesian regression coefficients for the predictor variables are de-
fined. All observed target values are then predicted by the linear regression model, and the missing
target values are predicted by the Bayesian regression model. Finally, the Bayesian prediction for
one target value is subtracted from all predictions of observed values. The five smallest differences
are pooled together from which a value is randomly drawn. This is repeated for all missing val-
ues within the target variable (Heymans and Eekhout, 2019). The main advantages of predictive
mean matching are that imputations are restricted to the observed values, that it is fairly robust
to transformations of the target variable, and that it can preserve non-linear relations even if the
structural part of the imputation model is wrong (Buuren and Groothuis-Oudshoorn, 2011).

Figure 4.4: Convergence of MI of ‘Revenue’, ‘Employees’, and ‘Capital Expenditure’.

Figure 4.5: Density of observed data (blue) against the density of imputed data (red) for the
variables ‘Revenue’, ‘Employees’, ‘Capital Expenditure’, and ‘Net Intangibles’.
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Figure 4.4 shows us the convergence of the imputation of the variables ‘Revenue’, ‘Employees’,
and ‘Capital Expenditure’. The convergence of the imputations of the remaining variables in the
‘Total’ emission category are found in Appendix A.3. In every iteration, five imputation streams are
projected. The results are combined into a final data frame that does not contain missing values.
Figure 4.3 shows the density plots of the variables ‘Revenue’, ‘Employees’, ‘Capital Expenditure’,
and ‘Net Intangibles’. We observe that the density of the distribution of the imputed values is
similar for these four variables, with only ‘Revenue’ observably deviating. This indicates that
the underlying distribution of the variables is preserved after the MI process. Density plots are
created for all imputed variables of the data frame of the ‘Total’ emission category and are found
in Appendix A.3. We repeated the MI process for the emission categories ‘Scope 1’, ‘Scope 2’, and
‘Scope 3’.1 We now have four data frames without missing values. It is possible to even further
analyze the imputed values, however, this is out of the scope of this research.

4.2.2.3 Collinearity

Collinearity occurs when 2 or more predictor variables are correlated with each other, which can
cause problems in prediction methods that assume the independence of predictors. Collinearity is
especially a problem for regression methods that investigate the causal relationship of predictors
with the dependent variable. In other words, it can be difficult to assess the interaction of 2 pre-
dictors with the dependent variable separately, when the 2 tend to increase or decrease together
(James et al., 2021). The prediction model would then overfit the training data, causing poor
results on out-of-sample data. We describe the procedure for testing for collinearity using the data
frame of the emission category ‘Total’. The procedure is done for all four data frames.

Before we test for collinearity, we create a correlation matrix for all numerical predictor variables.
First, we inspect whether there are predictors that are approximately perfectly correlated. Ap-
pendix A.4 depicts the plotted correlation matrix. We find that ‘Quick Ratio’ has an almost perfect
correlation with ‘Current Ratio’, and ‘Revenue’ has an almost perfect correlation with ‘Operating
Expenses’. For these highly correlated pairs, we use a correlation higher than 0.8 as a cut-off (Ma-
son and Perreault, 1991). Thus, we drop the variables ‘Current Ratio’ and ‘Revenue’. This causes
no problems as to the loss of explanatory power, as these predictors add no independent infor-
mation to the prediction methods. The deletion of highly correlated variables, however, does not
directly indicate an absence of collinearity. It is possible that collinearity exists between more than
2 variables without high correlation. This is called multicollinearity. We measure multicollinearity
by calculating the Variance Inflation Factor (VIF) for all predictors. Formula 4.1 shows the VIF
calculation: (James et al., 2021)

V IF =
1

1−R2
Xj |X−j

(4.1)

Here, R2
Xj |X−j

is the R2 from a regression of Xj onto all other predictors. A VIF value that exceeds

5 or 10 is an indication of a problematic amount of collinearity, whereas a value of 1 indicates an
absence of multicollinearity (James et al., 2021). Table 4.3 gives an indication of multicollinearity
when fitting a linear regression model on the ‘Total’ data frame.

1For figures on convergence and densities on the other data frames, please consult the author.
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Predictor variable VIF
Fiscal Year 1.08
Country 3.32

GICS Sector Name 7.09
Revenue 6.01
Employees 3.59

Capital Expenditure 4.45
Net PPE 5.43

Net Intangibles 2.55
Total Assets 6.02

Energy Purchased 2.59
Asset Turnover 2.06

Inventory Turnover 1.02
ROE 1.07
ROA 1.24

DE Ratio 1.01
Interest Coverage Ratio 1.00

Cash Flow Coverage Ratio 1.01
Quick Ratio 1.17

Table 4.3: VIF values for all predictor variables for the ‘Total’ data frame.

Table 4.3 shows the presence of considerable multicollinearity in the ‘Total’ data frame. As stated
earlier, this is especially a problem for regression methods. Thus, we want to select a regression
method that can handle multicollinearity. Regression methods that eliminate multicollinearity
can be categorized into two methods: variable selection and modified estimates. Variable selection
methods select a subset of predictor variables. Often used variable selection models are the forward
and backward selection models. The former starts with zero predictors and iteratively adds a
predictor, whereas the latter starts with all predictors and iteratively drops predictors. These
methods are known to be interpretable but do not indicate why predictor variables are included
or dropped from the final model (Chan et al., 2022). Modified estimates, also known as shrinkage
methods, fit the predictor variable coefficients towards zero, which significantly reduces the variance
and consequently overfitting of the model (James et al., 2021). There are two well-known shrinkage
methods, namely ridge regression and lasso. Ridge regression works well for multicollinearity, but
the coefficients are not reduced to zero, which makes interpretability difficult (Chan et al., 2022).
The lasso regression, however, does shrink the coefficients to zero which leads to variable selection.
Variable selection through the use of Lasso regression eliminates the problem of multicollinearity
for the regression method. Because of this characteristic, we choose to implement Lasso regression.
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4.3 Data Visualization

In the previous sections, we selected, processed, and finalized our data frames. In this section, we
will examine the data frames through data visualization. This allows for a better understanding
of the data, before going into the prediction modeling process.

4.3.1 Demographics

The demographics give us information on the population of corporations in our data set. The
corporations are headquartered in 79 different countries divided over 5 regions: Africa, Oceania,
Americas, Asia, and Europe. Figure 4.6 shows the regional distributions of the disclosures of all
emission categories. The regions Europe and Asia are represented the most in our data set. Asia
and Europe account for the largest portion of disclosures. The Americas come in third place and
Africa and Oceania are least represented in the data set. Figure 4.7 gives an overview of the top
10 countries with the most disclosing corporations in our data set, for all emission categories. We
see that the United States of America has by far the most disclosures, followed by the United
Kingdom and Japan. Finally, Figure 4.8 shows the distribution of disclosing corporations in the
highest segment of the GICS classification segments, the sector name. Industrials is the leading
sector within our data set when it comes to GHG emission disclosures, followed by Materials and
Consumer Discretionary. Remarkable to notice is that although there is a relatively small number
of disclosing corporations from the Energy sector in our data set, it still sums up to be one of the
most emitting sectors.

Figure 4.6: Regional distribution of emission disclosures.
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Figure 4.7: Top 10 disclosing countries for all emission categories.

Figure 4.8: Disclosing corporations per sector name for all emission categories.
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4.3.2 Distribution of Predictor Variables

In this section, the distribution of four numerical predictor variables, for which we observed a
visible relation after log transformation, is plotted against the ‘Total’ emission category. Before
log-transformation, we observe a distribution that is similar to the distributions of other combina-
tions of emission categories and predictor variables, as seen in Figure 4.9. The distribution of data
points lies close to the axes with several outlier values. From these scatter plots, we can conclude
that there is no clear relationship to be found between ‘Total’ emissions and the predictor vari-
ables ‘Total Assets’, ‘Net PPE’, ‘Employees’, and ‘Energy Purchased’, in the original feature space.

We discussed earlier that we decided to log-transform the emission and predictor variables such
that the outliers are de-emphasized and the visualization of the distribution of the variables is more
clear. Figure 4.10 shows the scatter plots of ‘Total’ emission with the predictor variables ‘Total
Assets’, ‘Net PPE’, ‘Employees’, and ‘Energy Purchased’. We now observe a sample distribution
that seems to have a small, but observable relationship. Appendix A.5 shows the distributions of
the remaining predictor variables. Besides the variables ‘Capital Expenditure’ and ‘Revenue’, the
remaining variables show no observable relationship with ‘Total’ emissions.

Figure 4.9: Scatter plots of Total Emission with the predictor variables ‘Total Assets’, ‘Net PPE’,
‘Employees’, and ‘Energy Purchased’ before log transformation.
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Figure 4.10: Scatter plot of Total Emission with the predictor variables ‘Total Assets’, ‘Net PPE’,
‘Employees’, and ‘Energy Purchased’ after log transformation.
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Chapter 5

Prediction Modeling

In this chapter, we will discuss the process of prediction modeling. The goal of the prediction
models is to attain accurate GHG emission predictions, based on the predictor variables described
in chapters 2 and 4. We use the programming language ‘Python’ for the prediction modeling,
specifically using the libraries ‘Skicit-learn’, ‘XGBoost’, and ‘Keras’. This chapter describes the
process of cross-validating the results, the grid search process through which we tune hyperpa-
rameters, and for each model, the specific hyperparameters that we tune. Finally, we present the
results of the grid search and give, for each model and scope, the specific hyperparameters that we
use.

5.1 Model Evaluation and Improvement

5.1.1 Train-test split

To train and evaluate our prediction models, we split the data frames into training sets and test sets.
The training set is the subset on which we fit the prediction models. Prediction models try to learn
from the training data by recognizing relationships and patterns between the predictor variables
and the output variable. The test set is used to assess the performance of the fitted prediction
models on new, unseen data. The prediction models are used to predict the output variables based
on the predictor variables, and these predictions are compared to the observed values in the test
set. In Section 3.2.1, we discussed the difference between in-sample and out-of-sample performance.
The in-sample performance is measured by assessing the prediction performance of the prediction
models on the training set, whereas the out-of-sample performance is measured by assessing the
prediction performance of the prediction models on the test set.

5.1.2 Group K-Fold Cross-Validation

Before we describe the prediction models and the tuning of hyperparameters, we introduce the
method with which we will evaluate the models. Cross-validation is a method of evaluating the
generalization of our models. We described the splitting of the data into a training set and a test
set. Cross-validation is seen as an improvement over such a split, as it splits the data multiple
times and trains a model for each of these splits. K-fold validation splits the data set into K folds.
If we take K = 5, the data set is split into five folds, with which five models are trained. The first
model is trained using the first four folds and tested on the fifth fold, the second model is trained
using folds 2-5, and tested on the first fold, and so on.

Earlier, we described that our data frames consist of panel data, meaning we have multiple mea-
surements over time for individual corporations. We want to prevent that the data of a single
corporation is present in both the training and the test set. After all, if the model is tested on
corporations it has previous information on due to its presence in the training set, the results of
the generalization of the model are biased. To ensure that we have independence between the
training and test set, we use group k-fold cross-validation. Figure 5.1 shows how, for each fold (CV
iteration), the groups are kept intact by placing them in their entirety in either the training set
or, the test set. In our application, the groups are labeled by ‘Company ID’. The ‘class’ section of
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Figure 5.1 can be ignored for our specific application. Group K-fold cross-validation results in K
measurements per performance metric. The final prediction performance results are calculated as
the mean of the K measurements.

Figure 5.1: Group K-Fold Cross-Validation (Pedregosa et al., 2011).

5.1.3 Grid Search Cross-Validation

Grid search cross-validation is used for hyperparameter tuning, meaning that we use grid search
cross-validation to find the combination of hyperparameters that gives us the best results for a
specific model. The rationale behind applying grid search CV to our prediction models is that it
is not possible for us to know beforehand what combinations of hyperparameters result in the best
model performances. Next to this, we note that we cannot test for all possible hyperparameter
combinations due to the high computational cost of this procedure. Therefore, we use a selection
of hyperparameters for all models in our grid search.

We specify a parameter grid in which we give the parameters and their possible values (e.g. the
learning rate of the XGBoost model). The grid search then applies all possible combinations
of parameter values in the parameter grid by building models using these combinations. The
grid search compares model performance by comparing the negative MAE and returns the best
combination of hyperparameters. We use the MAE as we try to minimize the distance between
observed values, and predicted values. The grid search CV’s scoring function links higher values
to better performance. As our scoring function is MAE, we use the negative MAE within the grid
search so that the highest scoring value refers to the model with the smallest MAE.

5.1.4 Random Search Cross-Validation

Grid search cross-validation is a useful tool to inspect all possible combinations of hyperparameters
for some models. However, for the models that are significantly more computationally intensive,
we need an alternative method of hyperparameter tuning. In our case, the random forest and
artificial neural network are significantly more computationally intensive. For these two methods,
we implement the random search cross-validation. This model is similar to the grid search cross-
validation in terms of selection criteria. The difference is that it does not test for all possible
hyperparameter combinations, but makes a specified number of random combinations for which
it tests the model performance. Although this method may overlook the optimal hyperparameter
combination, it gives us the possibility to cross-validate several hyperparameter combinations while
keeping the computational effort in check.
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5.2 Model Specifications

In Section 5.2, we explain, shortly how the prediction models operate, followed by introducing the
hyperparameters that we tune with the grid search CV and the results of the grid search.

5.2.1 Lasso

We use lasso as our model for regression analysis. Lasso regression is a regression model that
incorporates feature selection by shrinking coefficients toward zero. The Lasso coefficients are
selected such that the following quantity is minimized:

n∑
i=1

yi − β0 −
p∑

j=1

βjxij

2

+ λ

p∑
j=1

|βj |

The left-hand side of the equation is known as the Residual Sum of Squares (RSS), used for es-
timating coefficients in linear regression. The right-hand side is known as the lasso penalty, also
referred to as the L1 penalty. This penalty has the advantage of shrinking coefficients towards
zero, and even equal to zero when parameter λ is large enough. The result is that the model
performs feature selection, meaning only a subset of the possible predictor variables is considered
in the final model. Note that we use a general λ instead of a β-specific λ. A β-specific λ could
be introduced when predictor variables are in different scales, or prior information on predictor
variables requires that a specific variable needs a higher or lower λ. Both do not apply to our
research. The main advantages of Lasso are its simplicity and interpretability, its feature selec-
tion, the handling of collinearity (as explained in Chapter 4), and the dampening of model variance.

In panel data regression, it is common practice to include fixed or random effects in the regression
model to account for endogeneity caused by unobserved heterogeneity, i.e. the correlation between
the independent variable and the error term, caused by the unobserved dependency of other inde-
pendent variables. This is particularly useful in the case of estimation, where you are interested
in the causal relationships between dependent and independent variables. As stated before, we
are in the first place not interested in causal relationships, but in prediction accuracy. While
including fixed or random effects are very useful in estimation models where the goal is to under-
stand causality, it is not necessary and might not be beneficial to include them in prediction models.

The hyperparameter that is most interesting for the model improvement, is the tuning parameter
λ. This parameter determines the amount of shrinkage of the coefficients. When λ = 0, there is no
shrinkage and the coefficients will be equal to the RSS estimates. As λ increases, the amount of
shrinkage increases. The shrinkage is based on the relative predictor importance of the variables,
variables with low importance have a higher shrinkage than those with high importance. Other
tuning parameters are the number of iterations, the tolerance for optimization, i.e. at what level
of improvement do we conclude that the model is no longer significantly improving and stop the
model, whether to fit an intercept, and whether the updating of coefficients follows a sequence or
happens randomly.

Hyperparameter Grid Total Scope 1 Scope 2 Scope 3
λ: [0.1, 0.01, 0.001, 0.001] 0.001 0.0001 0.0001 0.001
Intercept: [True, False] True False False True
Max iterations:
[10000, 100000, 1000000, 10000000]

100000 10000 10000 1000000

Tolerance:
[1e-1, 1e-2, 1e-3, 1e-4, 1e-5, 1e-6, 1e-7]

1e-2 1e-7 1e-4 1e-2

Selection: [’cyclic’, ’random’] ’random’ ’random’ ’random’ ’random’

Table 5.1: Results of the hyperparameter grid search cross-validation for the Lasso-model.

Table 5.1 shows the results of the hyperparameter grid search cross-validation for the Lasso model.
These combinations of hyperparameters performed best in terms of negative MAE. We observe
that models for ‘Total’ and scope 3 emissions perform better with a higher λ, while models for
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scope 1 and scope 2 perform better with a lower λ. This implies that, for the latter models, a lower
shrinkage penalty is applied, meaning that more predictor variables have non-zero coefficients.
Furthermore, we observe that for ’Total’ and scope 3, the Lasso model performs best with similar
hyperparameter values, whereas the same goes for scope 1 and scope 2, with the exception of
optimization tolerance.

5.2.2 Decision Trees

As discussed in Section 3.1.4.1, decision trees are tree-structured machine learning algorithms that
can be combined into two decision tree ensemble methods, namely bagging and boosting. We
consider two specific applications that we use in our research.

5.2.2.1 Extreme Gradient Boosting

The XGBoost is an ensemble method that uses a sequence of many weak learners, in this case,
shallow decision trees, and combines them into a superior model. Here, each subsequent decision
tree learns from the previous tree. This optimization is done using gradient descent, which is a
commonly used optimization algorithm in the field of machine learning for finding the minimum
of a loss function. XGBoost is known for its speed and superior performance over other methods
in many machine learning competitions. Furthermore, the XGBoost provides feature importance
scores for the models which makes it easier to interpret the outcomes of the models and the relative
importance of the predictor variables.

The are two common strategies for the generalization of tree-based models, namely pre-pruning
and post-pruning. Pre-pruning involves stopping the construction of the trees early, whilst post-
pruning involves removing splits in the tree that have a low information gain after the model is
built. We will focus only on pre-pruning. For the XGBoost, we apply the grid search on five
hyperparameters. First, we have the learning rate. In gradient descent optimization, a learn-
ing rate is used as a step size by which the gradient is updated. In other words, the learning
rate decides at what rate the gradient descent optimization algorithm converges to the optimal
solution, that is, the minimum of a loss function. Thorough consideration of the choice of the
learning rate is important, as a too-low value leads to slow convergence, whereas a too-high value
leads to possible overshooting of the optimal solution. Other tuning parameters are the maximum
depth of the trees, the minimum sum of instance weights needed in a child, i.e. a measure to
control the minimum number of samples that must be present in a node during training, the min-
imum loss reduction, and the ratio of the training sample that is used for constructing a single tree.

Hyperparameter Grid Total Scope 1 Scope 2 Scope 3
Learning rate:
[0.001, 0.01, 0.1, 0.15, 0.20, 0.30]

0.2 0.2 0.15 0.1

Max depth:
[6, 8, 10, 12]

12 10 12 12

Min child weight:
[1, 5, 7, 9, 11]

1 1 1 1

Gamma:
[0.0, 0.001, 0.01, 0.1]

0.0 0.001 0.01 0.0

Training sample ratio:
[0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]

1 0.8 1 0.9

Table 5.2: Results of the hyperparameter grid search cross-validation for the XGBoost.

Table 5.2 shows the results of the hyperparameter grid search cross-validation for the XGBoost.
We observe that models for ‘Total’ and scope 1 emissions need a more ‘aggressive’ learning rate to
attain better predictions that models for scope 2 and scope 3. The remaining hyperparameters do
not differ significantly from each other.
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5.2.2.2 Random Forest

Random Forest is an ensemble method that aggregates many separate decision trees into a superior
model. Where a single decision tree has a high likelihood of overfitting the data, a collection of
decision trees decreases this likelihood whilst preserving high prediction performance. A disad-
vantage of Random Forest is that it loses interpretability relative to single decision trees. Single
decision trees can be easily visualized. This becomes inherently more difficult as the number of
trees increases. The hyperparameters of the random forest that we focus on are the number of
decision trees, the number of predictor variables considered when looking for a split with the high-
est information gain, the maximum depth of the tree, the minimum number of samples to split an
internal node, i.e. the minimal number of observations that need to be present in a node for it to
split in further child nodes, the minimum number of samples to split a leaf node, i.e. the minimal
number of observations needed to form a leaf node (end node), and whether bootstrap samples are
used to build the decision trees, instead of the entire data frame.

Hyperparameter Grid Total Scope 1 Scope 2 Scope 3
Number of trees:
[500, 1000, 1500]

500 500 500 500

Maximum depth:
[10, 20, 30 ,40, 50]

50 50 50 50

Maximum features:
[‘sqrt’, ‘log2’, None]

‘sqrt’ ‘sqrt’ ‘sqrt’ ‘sqrt’

Minimum sample split:
[2, 3, 4, 5, 6]

1 1 1 1

Minimum sample leaf:
[1, 2, 3, 4, 5]

2 2 2 2

Bootstrap:
[True, False]

True True True True

Table 5.3: Results of the hyperparameter random search cross-validation for the Random Forest.

5.2.3 Support Vector Regression

Support Vector Regression uses Kernel functions to project data in a higher-dimensional feature
space to increase the prediction and computation power of linear models. In this higher-dimensional
feature space, the SVR estimates a function that approximates the relationship between the depen-
dent and independent variables. The goal of the model is to minimize the residuals, whilst allowing
a bandwidth in which the model may deviate from the actual values, specified by the ϵ-insensitive
error function. The advantage of SVR is that for small- and medium-sized data frames, such as
our data frame. The disadvantage is that the use of higher-dimensional feature spaces leads to a
decrease in the interpretability of the model.

The first hyperparameter that we tune is the type of kernel that is used in the algorithm. We test
for two different kernel types, namely a linear transformation, and a transformation using a Radial
Basis Function (RBF). For these specific kernel types, we have different hyperparameters to apply.
First, we have gamma for the RBF, which accounts for the consideration of other data points
when looking at a single data point. So, when we have a low gamma, we consider a large number
of data points close to the considered data point. This would lead to possible over smoothing of
the regression boundary, which can be described as underfitting. The opposite happens for a high
gamma. Second, we have for both kernel types the regularization parameter. Similar to other
methods, the regularization parameter determines the tradeoff between minimizing the training
error and the complexity of the model.
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Hyperparameter Grid Total Scope 1 Scope 2 Scope 3
Kernel:
[‘rbf’, ‘linear’]

‘rbf’ ‘rbf’ ‘rbf’ ‘rbf’

Gamma: (only for rbf)
[0.001, 0.01, 0.1]

0.01 0.01 0.01 0.01

Regularization:
[0.001, 0.01, 0.1, 1, 10]

10 10 10 10

Table 5.4: Results of the hyperparameter grid search cross-validation for the SVR.

5.2.4 Artificial Neural Network

ANNs consist of several layers of nodes. The input layer represents the predictor variables, where
we have one node for each of the predictors, and an added bias. The input layer is followed by
several hidden layers. The hidden layers take the summation of the weighted inputs and bias,
which are the output of the nodes in the previous layer, and incorporate these in an activation
function. Finally, we have one output node which takes the summation of the weighted output of
the last layer and incorporates it in an activation function to produce a final output. The ANN
learns by a process called backpropagation. The final output is compared to the actual value using
a loss function, and the error is propagated back through the network, adjusting the weights to
minimize the error function.

For the ANN, we do not only use the random grid search for determining the hyperparameters but
also for determining the structure of the neural network. Naturally, the input and output layers
both have a predetermined size. The structure of the hidden layers, however, is for us to determine.
We use the grid search to determine the number of hidden layers to use, and the number of nodes
present in these hidden layers. Next to the structure, we use grid search to determine the learning
rate with which the weights are updated.

Hyperparameter Total Scope 1 Scope 2 Scope 3
Number of layers 13 12 12 12

Number of nodes
per layer

[480, 288, 512,
288, 224, 512,
288, 32, 224,
160, 512, 224, 64]

[512, 480, 320,
32, 512, 320,
288, 192, 224,
256, 32, 32]

[512, 480, 320,
32, 512, 320,
288, 192, 224,
256, 32, 32]

[512, 480, 320,
32, 512, 320,
288, 192, 224,
256, 32, 32]

Activation function ReLu ReLu ReLu ReLu
Learning rate:
[0.1, 0.01, 0.001, 0.0001]

0.001 0.01 0.01 0.01

Table 5.5: Results of the random search cross-validation for the ANN.

Table 5.5 shows the results of the random grid search for the ANN models. Note that the number
of layers does not include the input and output layers. The random search comprised of a hyper-
parameter grid of 10 to 50 hidden layers, with a possible number of nodes between 32 and 512,
looped over with a step size of 32. The learning rate grid was [0.1, 0.01, 0.001, 0.0001] and we
tested solely for the ‘ReLu’ activation function.
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5.3 Model Results

In the previous section, we discussed the hyperparameter selection for each model. In this section,
we apply these hyperparameters and discuss the results of our prediction models. We performed
several rounds of testing. First, we have our imputed data frames where we applied log transfor-
mation and outlier deletion. Second, we compare the results of the previous round of testing to
a baseline data frame, namely the data frames where no imputations were performed. Third, we
perform a bias correction for the bias introduced through the log transformation of the data.

5.3.1 Imputed Data

In the imputed data frames, we corrected the data for missing values. The goal of the imputation
was to enlarge the available data while preserving the relations within the original data. We
applied five prediction models and one naive predictor (mean prediction) on the imputed data
frames, the results of which we discuss in this section. We present the results for each emission
category separately, such that comparisons can be made between models’ performances for each
category. First, we look into the results of the prediction models without back-transformation to
assess the performance of the models for log-transformed output. Note that we need to transform
the output back to the original scale in order to make meaningful conclusions.

Metric Mean Lasso XGB RF SVR ANN
Out-of-Sample Theil’s U 0.094 0.043 0.044 0.043 0.044 0.062

MAPE 0.166 0.065 0.065 0.068 0.063 0.098
MSE 5.736 1.235 1.330 1.259 1.316 2.772
RMSE 2.373 1.078 1.113 1.090 1.108 1.570
R-Squared -0.056 0.764 0.747 0.763 0.751 0.516

In-Sample Theil’s U 0.095 0.043 0.003 0.014 0.036 0.061
MAPE 0.166 0.063 0.004 0.020 0.043 0.096
MSE 5.729 1.171 0.005 0.118 0.850 2.679
RMSE 2.394 1.082 0.071 0.344 0.922 1.534
R-Squared 0 0.800 0.999 0.979 0.852 0.532

Bias-Variance Bias - 1.238 1.211 1.284 1.310 5.819
Variance - 0.010 0.164 0.011 0.063 1.145

Table 5.6: Results for the emission category ‘Total’ for the imputed data frame, without back-
transformation of the output.

Table 5.6 shows the results for the emission category ‘Total’ for the imputed data frame before the
transformation of the output back to the original scale. We observe that, in general, the in-sample
performance is better than the out-of-sample performance, as we expected. The naive estimator
shows inferior prediction performance in terms of all accuracy measures. The MAPE has a promis-
ing value of 0.166. However, this is most probably caused by the log transformation that pushes
the output into a relatively small output range. The R-squared takes a negative value. Referring to
Equation 3.5, this can happen when the sum of squared residuals of the prediction model is higher
than the sum of the squared distance between the output and the mean of the training output.
Generally, a negative R-squared indicates that the prediction model does quite a poor job of fitting
the data. Looking at our prediction models, we observe that the out-of-sample performance is
similar for the Lasso, XGBoost, Random Forest, and SVR models. Theil’s U is close to zero for
all models, indicating that the models’ predictions are significantly outperforming the no-skill pre-
dictor, and the predictions are close to the observed values. This is also reflected in the low scores
for the error measures MAPE, MSE, and RMSE. Based on the MAPE, we can conclude that these
models are able to accurately predict the emission output in the log-transformed feature space.
For in-sample predictions, the XGBoost is clearly superior to other prediction models, with error
terms close to zero for all accuracy measures. Finally, we observe that the bias-variance trade off
is tilted towards model bias. Theoretically, this implies that all models are currently underfitting
the data, and that model complexity needs to be increased for the errors to decrease.
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As stated earlier, we need to transform the output back to the original scale in order to make
comparisons that are meaningful within the context of this research. Therefore, we need to take
the exponential of both the predicted values and the observed values. This implies that we take

eŶ , and eY as the input for our accuracy measures.

Metric Mean Lasso XGB RF SVR ANN
Out-of-Sample Theil’s U 0.930 0.366 0.477 0.600 0.389 0.460

MAPE 14.398 3.739 3.806 3.045 5.521 5.635
MSE 1.18e14 5.44e13 7.17e13 7.67e13 6.3e13 6.26e13
RMSE 8378767 5330841 6328310 8422895 5711859 7587840
R-Squared -0.147 0.308 0.073 0.303 0.138 0.425

In-Sample Theil’s U 0.971 0.367 0.049 0.252 0.338 0.458
MAPE 14.367 2.536 0.067 0.256 3.683 5.653
MSE 1.17e14 5.01e13 1.09e12 2.1e13 4e13 5.99e13
RMSE 10838823 7079848 1039885 4579171 6333988 7728440
R-Squared -0.073 0.542 0.990 0.808 0.633 0.452

Bias-Variance Bias - 1.238 1.211 1.284 1.310 5.819
Variance - 0.010 0.164 0.011 0.063 1.145

Table 5.7: Results for the emission category ’Total’ for the imputed data frame.

Table 5.7 shows the results of the prediction models for the emission category ‘Total’ for imputed
data after transforming the output back to the original scale. Immediately, we observe that, in the
original scale, the prediction models do not perform well for out-of-sample predictions. Although
Theil’s U suggests that all models perform significantly better than a no-skill predictor, the accu-
racy measures show large errors in predicting the ‘Total’ emissions. The Random Forest shows the
lowest MAPE, meaning that it is able to make predictions closest to the observed values. However,
the best prediction model is still not able to accurately approach the actual output values. The
MAPE of the Random Forest suggests that the difference between its predicted values and the
observed values is, on average, approximately 300%. The absolute error measures are substantial
and also indicate a large deviation between the predicted values and the observed values. After
transforming the output back to the original scale, the residuals exponentially increase, causing
the error measures to significantly increase. Especially for outliers, the back-transformation leads
to a significant increase in prediction error. Next to high error measures, the R-squared is consis-
tently low for all prediction models, indicating that our independent variables are not adequately
explaining the variability in our dependent variable. Furthermore, consistent with the results in
Table 5.6, the bias-variance trade off is tilted towards high model bias, implying that the predic-
tion models are underfitting the data. For most prediction models, the in-sample predictions also
show poor performance in terms of accuracy. The tree-based models have a relatively low MAPE,
suggesting that they perform well on data that was used during the training phase of the model.
However, due to poor model generalization, this does not results in significantly higher results for
out-of-sample predictions.

Overall, we observe that the prediction models perform best for the ‘Total’ emission category,
followed by scope 2, scope 1, and scope 3 emissions, respectively. Scope 2 emission prediction
accuracies are in the same order of magnitude as the prediction accuracies of ‘Total’ emissions.
We observe a performance decline when looking into the results of scope 1 emissions, whereas the
performance plummets when we look into the results of Scope 3 emissions. We assess the differences
in prediction performance in later sections. The prediction results of scope 1, 2, and 3 emissions
are found in Appendix B.1. In Appendix B.2, we visualized the increase in error after transforming
the output back to the original scale by plotting the observed values against the predicted values,
plotting a regression line for the observed and predicted values (red), and comparing the plotted
regression line to the line y = x (blue).
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5.3.2 Baseline data

In the previous section, we showed the results of the prediction models on our imputed data frames.
As stated earlier, the initial motivation to implement multiple imputation on our data frame, was
to enlarge the data frames, while preserving the variable distributions. It is possible that the
multiple imputation process added bias to the data. Predictive mean matching assigns values that
are already in the data to impute missing values. This could have an impact on the dynamics with
which independent variables interact with each other within the prediction models. Therefore, it is
important that we consider unimputed (complete cases) data as a baseline with which we compare
the results of the previous section. Consequently, the number of available data rows for the training
and testing of the prediction models is cut in more than half the size of that of the imputed data,
for all emission categories. This could have a negative impact on the prediction performance, as
there is less data available to train the models.

Metric Mean Lasso XGB RF SVR ANN
Out-of-Sample Theil’s U 0.808 0.232 0.399 0.487 0.239 0.336

MAPE 9.243 4.178 3.185 1.972 5.188 4.094
MSE 7.28e13 1.86e13 3.37e13 4.08e13 2.09e13 2.54e13
RMSE 5842261 2656402 3868111 5756435 2841653 4628389
R-Squared -0.216 0.334 -0.073 0.446 0.546 0.596

In-Sample Theil’s U 0.951 0.253 0.008 0.191 0.178 0.352
MAPE 9.208 2.656 0.010 0.174 2.718 4.494
MSE 7.28e13 1.64e13 1.92e10 8.12e12 8.32e12 2.56e13
RMSE 8530302 4047998 136617 2848105 2884342 5019654
R-Squared -0.091 0.754 0.999 0.878 0.875 0.616

Bias-Variance Bias - 0.589 1.350 0.822 1.163 5.718
Variance - 0.021 0.169 0.009 0.069 1.484

Table 5.8: Results for the emission category ’Total’ for the baseline data frame.

Table 5.8 shows the results for the emission category ‘Total’ for the baseline data frame. We
observe a decrease in Theil’s U for all prediction models, indication that the overall prediction
performance of the models has improved. The accuracy measures decreased for most prediction
models. The Random Forest model shows the most significant accuracy improvement, where the
MAPE decreased by 1.073, to 1.972. The overall increase in prediction performance indicates that
the multiple imputation method imposed on the data has added a bias to the data frames. As pre-
dictive mean matching assigns values available in the data to missing data, it is possible that bias
was added to the data, which causes inferior prediction performance compared to predictions done
on the baseline data. Another possible explanation is that the cutoff proportion for the imputation
of an allowed maximum percentage of missing values of 30% is too high. The Lasso model is the
only model that performs better in the imputed data frame. This could be explained by the fact
that the Lasso model performs better with an enlarged sample size.

Overall, we observe that the trend described above also applies on the remaining emission cat-
egories. Notable is the fact that the prediction models perform best on scope 2 emissions for
the baseline data frames, followed by ‘Total’, scope 1, and scope 3 emissions, respectively. The
prediction results of scope 1, 2, and 3 emissions are found in Appendix B.3.

5.3.3 Log transformation bias correction

During pre-processing of the data, we decided to apply log transformation to improve model per-
formance. Without such a transformation, the prediction models are not able to accurately predict
the emission data, due to the skewed nature of our data (Appendix B.4 shows the results of the
Random Forest model applied on untransformed data). However, introducing a log transformation
means that we will have to transform the data back to the original format in order to make mean-
ingful comparisons and conclusions. When transforming the output back to the original format,
we introduce a transformation bias to the predictions.
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As a logarithmic function is a concave function, the log transformation of the dependent and
independent variables can be seen as a concave transformation. Jensen’s inequality states that we
have the following for concave transformations (More, 2022):

E[f(X)] ≤ f(E[X]) (5.1)

In the context of our research, this looks as follows:

E[log(Emissions)] ≤ log(E[Emissions]) (5.2)

exp(E[log(Emissions)]) ≤ E[Emissions] (5.3)

Equations 5.2 and 5.3 show that a transformation bias is introduced when transforming the output
of our prediction models back to the original format. Given this bias, and the poor observed
performance in previous data frames, we introduce a bias correction. We assume that for all test
folds, the residuals are not normally distributed. This gives us the following bias correction:

BC = eϵ =

∑N
i=1 e

ϵi

N
(5.4)

The corrected prediction is then calculated as follows:

E[Y ] = BC ∗ f−1(E[f(Y )]) (5.5)

The bias correction of the prediction models is applied on the baseline data frames. Theoretically,
this should imply that both imputation and transformation bias are both corrected for.

Metric Mean Lasso XGB RF SVR ANN
Out-of-Sample Theil’s U 0.557 0.263 0.404 0.349 0.278 0.895

MAPE 72.774 6.686 7.785 3.242 7.070 114.291
MSE 5.86e13 5.40e14 1.63e14 2.83e13 6.64e14 1.31e17
RMSE 5256347 638853 7289789 4875121 6479286 2.61e08
R-Squared 0 -4.989 -22.002 0.582 -6.436 -1628

In-Sample Theil’s U 0.715 0.299 0.008 0.179 0.206 0.897
MAPE 78.562 6.702 0.010 0.182 3.582 230.359
MSE 6.67e13 3.26e13 1.90e10 7.31e12 1.45e13 8.26e16
RMSE 8167803 5710122 136023 2702696 3806028 2.44e08
R-Squared 0 0.511 0.999 0.890 0.783 -1260

Bias-Variance Bias - 0.606 1.336 0.818 1.149 5.313
Variance - 0.010 0.173 0.009 0.066 1.990

Table 5.9: Results for the emission category ’Total’ for the baseline data frame after bias correction.

Table 5.9 shows the results for the emission category ’Total’ for the baseline data frame after
bias correction. It becomes immediately clear that the bias correction did not have its desired
result. Theoretically, the negative bias created by the log transformation should be reduced by
incorporating a bias correction of a value larger than 1, consequently leading to better prediction
performance. However, we observe that the prediction performance has decreased with respect to
previous results. The MAPE, MSE, and RMSE have all increased, meaning that the overall pre-
diction accuracies of the model have decreased. Also, most models show a negative out-of-sample
R-squared. Again, this indicates that the model predictions are wildly different from the actual
emission output. Although, theoretically, the log transformation leads to a negative bias in the
prediction output, we observe that for approximately half of the predictions, the model overesti-
mates the emissions. Applying a bias correction of a value larger than 1 will in those cases increase
the prediction errors, thus explaining the decreased prediction performances.

Overall, the best model performance is attained in the ‘Total’ emission category, followed by scope
2, scope 1, and scope 3 emissions, respectively. The prediction results of scope 1, 2, and 3 emissions
are found in Appendix B.5.
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5.3.4 Follow-up testing

In the previous sections, we observed that the prediction models could not accurately predict cor-
porate GHG emissions. We follow up on these results by performing additional tests using linear
regression, scaled variable predictions, and other combinations of sector and geographical classifi-
cations.

Appendix B.8 shows the results of the linear regression model on the baseline data frame. We
observe that, for scope 2 emissions, linear regression outperforms the other prediction models in
terms of out-of-sample prediction accuracy. We do not observe improved performance for the
other emission categories. Furthermore, we tested the prediction performance of the random forest
model on input and output variables, both normalized for ‘Revenue’. In other words, we assess
whether the prediction performance increases when we predict corporate GHG emissions per dollar
of revenue. Again, we see a slight increase in prediction accuracy, without coming significantly
close to observed emission values.

Appendix B.9 through B.11 show the results for the application of other specified sectors and
geographical classifications. In the previous sections, we used ‘GICS Sector Name’ as the sector
classifier, and ‘Country’ as the geographical classifier. Appendix B.9 shows the results for sector
classifiers ‘GICS Sub-Industry Name’, ‘GICS Industry Name’, and ‘GICS Industry Group Name’.
However, we observe no significant improvements in terms of prediction accuracy. Appendix B.10
shows the results for predicting within sector subsets. We divided the imputed data frame into 11
subsets, based on the variable ‘GICS Sector Name’. Within these data frames, we added the sector
classifier ‘GICS Industry Name’, such that we could differentiate sectors within the sector subsets.
We observed the highest prediction accuracy for the ‘Industrials’ sector and the lowest prediction
accuracy for the ‘Energy’ sector. Lastly, we tested for the geographical classifier ‘Region’, instead
of ‘Country’. Again, we observed no significant increase in prediction accuracy.
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5.4 Feature Importance

In the previous section, we observed that our models are unable to accurately predict corporate
GHG emissions. In order to make meaningful conclusions on these performances, we want to
interpret the output by assessing feature importance. Feature importance tells us the relative ’im-
portance’ a predictor variable, or feature, has in the prediction model. We perform this assessment
by implementing SHAP values (SHapley Additive exPlanations).

5.4.1 SHAP

SHAP is a method originating from cooperative game theory, where the output for a player de-
pends on the relative contribution of that player. When applied to machine learning, we can assess
the relative contribution of a single predictor variable on the prediction output. Using SHAP
values allows us to increase the interpretability of our models, and provides useful information for
further research. In this section, we investigate three explanatory SHAP plots on the prediction
performance of the random forest model on the baseline data frame (our best-performing model)1.
Using these plots, we will explain what happens within the model.

The random forest model applied on the baseline data frame is our best-performing model for the
‘Total’ emission category, with a MAPE of 1.972. This is the result of the use of group K-validation
using 10 folds. We analyze the best-performing and the worst-performing fold to assess whether
we observe differences in the models that may explain the variability in prediction accuracy among
the 10 validation folds. Furthermore, the additive explanation may inform us about the cause of
our poor prediction performances.

Figure 5.2: Beeswarm plot of the best-performing fold of the random forest model on the baseline
data for the ‘Total’ emission category.

1For figures on SHAP values of other models, emission categories, or data frames, please consult the author.
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Figure 5.3: Beeswarm plot of the worst performing fold of the random forest model on the baseline
data for the ‘Total’ emission category.

Figures 5.2 and 5.3 show beeswarm summary plots of the best-performing fold and the worst-
performing fold, respectively, of the random forest model on the baseline data for the ‘Total’
emission category. An overview of all features and their corresponding variable name can be found
in Appendix B.6. The beeswarm plots give summaries of how the most important input features
affect the models’ output. The x-axis displays the SHAP value, which is defined as the impact the
feature has on model output. Each dot represents the impact of that feature on a single data row.
The dots are stacked on top of each other to represent the density of SHAP values for a single
feature, whereas the color of the dot represents the value of a feature.

The first thing that we observe is that there are no major differences between Figures 5.2 and
5.3. For both folds, we see that the most important feature is feature 7, ‘Energy Purchased’. The
higher the level of ‘Energy Purchased’, the higher the level of ‘Total’ emissions. This corresponds
with what we would expect, as ‘Energy Purchased’ is classified under scope 2 emissions. After
‘Energy Purchased’, feature 4 is the most important feature, which is represented by ‘Net PPE’.
‘Net PPE’ is short for Net Property, Plant & Equipment and represents the physical assets that a
corporation has on its balance sheet. The SHAP value for ‘Net PPE’ implies that the higher the
level of net property, plant, and equipment a corporation has on its balance sheet, the higher the
level of Total emissions. This can be explained by a simple correlation of more machinery equals
more emissions. However, ‘net’ implies that it is net of accumulated depreciation of physical assets.
Thus, a lower level of ‘Net PPE’ could also indicate a high level of machinery that is amortized over
the years, implying a higher level of outdated machinery. Remaining features 75, 3, 6, 1, 9, 2, and
68 are represented by ’GICS Sector Name: ‘Information Technology’, ‘Capital Expenditure’, ‘Total
Assets’, ‘Revenue’, ‘Inventory Turnover’, ‘Employees’, and ‘GICS Sector Name: Communication
Services’, respectively.
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Figure 5.4: Mean absolute SHAP values of the best-performing fold of the random forest model
on the baseline data for the “Total” emission category.

The importance that the predictor variables have relative to each other is denoted in Figures 5.2
and 5.3 through the span width of the SHAP values for each of the displayed variables. However,
the relative importance is best portrayed by the mean absolute values of the SHAP values. Figure
5.4 shows the mean absolute SHAP values of the best-performing fold of the random forest model
on the baseline data for the ‘Total’ emission category. When observing Figure 5.4 it becomes
inherently clear that ‘Energy Purchased’, together with ‘Net PPE’, define the prediction perfor-
mance. The fact that only a small portion of the predictor variables has such a large effect on
the prediction output, combined with the fact that we have high prediction errors and high model
bias, states that our models correctly capture the high-level relationships in the data, but do not
capture remaining relationships that could explain the variability in corporate GHG emissions.

Figure 5.5: Waterfall plot for the first corporation in the best-performing fold of the random forest
model on the baseline data for the ‘Total’ emission category.

We assess a single prediction within the previously mentioned random forest fold to understand
how the SHAP values, i.e. the predictor variables, affect the model output. Figure 5.5 shows the
waterfall plot for the first corporation in the best-performing fold of the random forest model on
the baseline data for the ‘Total’ emission category. The bottom of the waterfall plot starts at the
expected value of the model output, E[f(x)], which is the average model output. From there, we
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see the effect that the 14 most important features have towards reaching the model output, f(x),
for this specific corporation. The three most important predictor variables for this prediction are
‘Energy Purchased’, ‘Net PPE’, and ‘Capital Expenditure’, which all have a positive (red) impact
on the model output. Again, we observe that ‘Energy Purchased’ supplies a significant portion of
the model output.

The SHAP values of our predictor variables give a clear insight into how our prediction models
operate and increase the interpretability of our models. Here, we again need to note the difference
between prediction and causality, referring to Section 3.1.5 on causality versus prediction. We
observe high SHAP values for the predictor variables ‘Energy Purchased’ and ‘Net PPE’, meaning
that these variables have a strong influence on the models’ prediction output. However, this does
not necessarily imply that a direct causal relationship between these variables and the output is
present in the real world. In other words, the SHAP values do not imply that unilaterally changing
the value for one predictor variable, for example ‘Energy Purchased’, has a direct proportional
impact on the actual observed emissions. What it does imply, is that given our data and models, the
predictor variable ‘Energy Purchased’ is crucial in determining corporate GHG emissions. Given
that our goal is purely prediction-oriented, it is useful that there is a strong positive relationship
between ‘Energy Purchased’ and corporate GHG emissions. However, the important predictor
variables do not provide us with enough information as to how each feature independently relates
to corporate GHG emissions.

5.4.2 Monotonic Relationships

The previous section gave us insight into the importance of the predictor variables in our prediction
models. We observed that the predictor variable ‘Energy Purchased’ is crucial in determining the
prediction output and that a large portion of the predictor variables is trivial. The SHAP value
analysis helps us understand the results of our prediction models. In turn, we can explain the
SHAP values by assessing the presence or absence of monotonic relationships between the numeric
predictor variables and corporate GHG emissions. The relationship between an independent vari-
able and the dependent variable is monotonic when the value of the dependent variable consistently
increases or consistently decreases as the value of the independent variable increases. The presence
of a monotonic relationship between the dependent variable and an independent variable increases
the probability that the feature will have high importance in the prediction model.

Figure 5.6: Monotonic relationship between ‘Energy Purchased’ and ‘Total’ emissions.

Figure 5.6 shows the relationship between ‘Energy Purchased’ and ‘Total’ emissions. We divided
the values of ‘Energy Purchased’ into 50 quantiles, and, for each quantile, we calculated the mean
‘Total’ emissions. We observe an increasing monotonic relationship between the two variables. This
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observation is in line with what we observe in Figure 5.3; both figures imply that there is a constant
positive correlation between ‘Energy Purchased’ and ‘Total’ emissions. While this monotonicity
implies a consistently positive relationship, the existence of this relationship does not guarantee
a high SHAP value. However, in the context of our research, we observe that more important
features display a higher level of monotonicity, hence giving some explanation as to why certain
features have higher importance than others. Take for example feature 11, ‘ROE’, which is not
present in the top 20 most important features for the ‘Total’ emission category depicted in Figure
5.4. We observe a non-monotonic relationship, which could explain the low level of importance in
the prediction model. Figures on the remaining relationships between numeric features and ‘Total’
emissions are found in Appendix B.7.

Figure 5.7: Monotonic relationship between ‘ROE’ and ‘Total’ emissions.
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Chapter 6

Conclusions & Discussion

In Chapter 1, we identified the need for corporate GHG emission prediction modeling, due to the
large portion of corporations that are currently not obliged to report their emissions. As a result,
corporate GHG emission predictions could enable financial institutions to incorporate these emis-
sions in their climate change risk framework. Through this research, we investigated whether we
can acquire accurate corporate GHG emission predictions through the use of traditional statistical
analysis, and the use of machine learning methods. In this chapter, we provide the conclusions of
the research. First, we assess our research questions and discuss the results. Thereafter, we reflect
on the results in the discussion.

6.1 Conclusions

The goal of the research was to implement statistical analysis and machine learning methods for
the prediction of corporate GHG emissions for corporations that do not disclose this information,
by using data of corporations that do disclose GHG emissions. Moreover, we focused on the dis-
tinction between the prediction performance of statistical analysis and machine learning methods.
Therefore, we formulated the following research question:

What model is best suited for the prediction of GHG emissions of corporations?

Following the research question, we stated the following hypothesis:

Machine learning methods significantly outperform naive prediction and statistical
analysis.

To answer the research questions, we first provided the theoretical context of the research by
discussing the impact of climate change on financial institutions, and selecting possible predictor
variables from literature. We identified that reliable GHG emission data could be used by financial
institutions to quantify their exposure to climate change risks, specifically transition risks.
Next, we gave background information on the proposed prediction methods and described the
comparative framework through which we compared the prediction performance of the models.
We identified regression analysis, specifically Lasso regression (and later linear regression as a
baseline), and four machine learning models, specifically Random Forest, XGBoost, Support Vector
Regression, and Artificial Neural Network, as the prediction models to be implemented for the
prediction of corporate GHG emissions. The introduced comparative framework consisted of two
relative prediction accuracy measures, Theil’s U and MAPE, two absolute prediction accuracy
measures, MSE and RMSE, and a goodness-of-fit measure, R-squared. Furthermore, we introduced
the concept of the bias-variance tradeoff, through which we can assess model fit.
Subsequently, we discussed data selection, preparation, and visualization, and assessed the results
of our prediction models. We implemented group K-fold cross-validation for the evaluation of
our models, we used grid search cross-validation and random search cross-validation to tune our
hyperparameters, and we discussed the results of the prediction on imputed data, baseline data, and
prediction with a log transformation bias correction. Hereafter, we assessed the feature importance
of the predictor variables and discussed the results of some residual testing. With these findings,
we can answer the research question.
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6.1.1 General conclusions on results

In the log-transformed feature space, the prediction models are able to accurately predict corporate
GHG emissions. The best prediction performance is acquired by the XGBoost, with a MAPE of
6.3% for ‘Total’ emissions. The log transformation dampens the effect of outliers and coerces the
variables into a smaller value range. Furthermore, the log transformation causes the variables to
have an approximately normal distribution. These factors induce the prediction models to utilize
the added variable distributions, simplifying the process of recognizing patterns and finding re-
lationships. Although the results in the log-transformed feature space are positive, the observed
emissions and predicted emissions need to be transformed back to the original scale to make mean-
ingful conclusions in the context of our research.

In the original feature space, the prediction models are unable to accurately predict corporate
GHG emissions. Logically, when both observed emissions and -predicted emissions are exponen-
tiated, the error also increases exponentially. The result is that the prediction models have high
error scores, making them not pragmatically useful for their intended purpose. The best prediction
results for ‘Total’ emissions, in terms of MAPE, are 304.5%, 197.2%, and 324.2%, for the imputed
data frame, the baseline data frame, and the application of a bias correction, respectively. These
results suggest that the imputation process added a bias to the data that negatively impacted
the prediction performance. Besides, the bias correction did not have the desired effect and led
to a decrease in prediction performance. Predictions for scope 2 emissions had results similar to
‘Total’ emissions. Scope 1 emissions performed significantly worse with twice as high values for
the MAPE, as compared to ‘Total’ and scope 2 emissions. For scope 3 emissions, the prediction
errors increased by a factor of 100 as compared to the errors of the other emission categories.

In general, the prediction models are not able to grasp the complexity of the data, and as a re-
sult, do not generalize well. We observe that some prediction models perform well for in-sample
prediction, hinting at the fact that the models are overfitting on the training data. However, the
observed bias-variance tradeoffs suggest that the prediction models are in the underfitting zone of
the tradeoff. The cause is most probably the fact that the models are correctly capturing the most
important and prominent patterns and relationships in the training data, causing high in-sample
performance, but missing the variability inferred by remaining relationships, hence the high bias
that suggests an oversimplification of the variable relationships.

The analysis of the SHAP values confirms the above statement, as we observe that the predictor
variable ‘Energy Purchased’ has a significantly higher mean absolute SHAP value than the remain-
ing predictor variables. The fact that ‘Energy Purchased’ supplies such a significant portion of
the final prediction output suggests that the models capture the positive relationship between this
variable and ‘Total’ emissions, whilst not recognizing usable relationships amongst the remaining
predictor variables, indicating poor generalization performance. The superiority of ‘Energy Pur-
chased’ in the prediction models is most logically explainable for ‘Total’ emissions and scope 2
emissions, as purchased energy falls directly under scope 2 emissions. However, we observe that
‘Energy Purchased’ is also the superior feature in the prediction models for scope 1 and scope 3
emissions. This indicates that the models for these emission categories overestimate the relation-
ship between ‘Energy Purchased’ and these emission categories, due to a lack of other significant
predictors, causing worse prediction results for scope 1 and scope 3 emissions, as compared to
‘Total’ and scope 2 emissions.

In the follow-up testing, we affirmed that, given our data frames, we did not overlook viable
combinations of predictor variables that lead to enhanced prediction performances. We included
tests for the remaining sector classifiers and the remaining geographical classifier. We observed
that increasing the granularity of the sector classification and decreasing the granularity of the
geographical classification, does not improve the prediction performances for emission categories
‘Total’, scope 1, and scope 3. We observe a slight increase in prediction performance for scope 2
emissions, however, this increase in performance is not significant. Hence, increasing the granularity
of the sector classification, and consequently increasing model complexity, does not improve the
models’ performances. Finally, the prediction performances within sectors lead us to conclude
that, even within sectors, there is a high level of variability and complexity not grasped by the
prediction models.
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6.1.2 Conclusion on the research question

The research found that the prediction models are unable to accurately predict corporate GHG
emissions in the original feature space. The research question focuses on the difference in model
performance, specifically distinguishing between the performance of naive prediction, statistical
analysis, and machine learning methods. Both statistical analysis and machine learning methods
significantly outperform a naive predictor, in our case the mean of the subjected data frame, for
emission categories ‘Total’, scope 1, and scope 2. For scope 3, taking the mean of the subjected
data frame gives higher prediction accuracies for some instances. Next to this, the values of Theil’s
U, for both statistical analyses and machine learning, indicate that our prediction models outper-
form a ‘worthless’ predictor.

The distinction between the performance of statistical analysis and machine learning methods
is not unambiguous. In the baseline data frame, the best-performing machine learning method
outperforms statistical analysis for emission categories ‘Total’, scope 1, and scope 3. For scope 2
emissions, both lasso regression and linear regression (Appendix B.8) outperform machine learning
methods. In Chapter 1, we stated the hypothesis that machine learning methods significantly
outperform naive prediction and statistical analysis. Given that machine learning methods do
outperform naive prediction but not statistical analysis, we must reject the hypothesis.
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6.2 Discussion

In the discussion, we reflect on the results and conclusions of the research by considering data lim-
itations, discussing our assumptions and choice of actions, describing the theoretical contribution,
and formulating recommendations for further research.

6.2.1 Data limitations

The foremost limitation of our research is data availability. The need to predict corporate GHG
emissions identified earlier in this research indicates that the current availability of data on corpo-
rate GHG emissions is scarce. Hence, we have a relatively low number of data points with which
we can train our prediction models, and, in general, machine learning methods benefit from a high
number of data rows. In addition, we obtained our data exclusively from Refinitiv Eikon, which
also limited the number of corporations from which we could extract data.

Next to data availability, we have the limitation of data quality and reliability. Currently, many
corporations are in the early stages of tracking emission data, and, therefore, may lack the necessary
processes and expertise to accurately measure their emissions. Although there are several corpo-
rate standards that provide requirements and guidance for corporations that disclose emissions,
there is a lack of a single globally accepted standard that emission-disclosing corporations follow.
This may lead to the fact that similar corporations in the same industry measure their emissions
differently. The variability in emission measurement processes between similar corporations makes
it difficult to detect generalized patterns and relationships in the data, making prediction modeling
inherently complicated.

Finally, we note the lack of available ESG data. Besides a scarcity of emission data, there is also
a scarcity of other ESG-related data, such as energy consumption, waste, and water usage. This
scarcity lead us to examine if we were able to accurately predict corporate GHG emissions without
the usage of ESG-related predictor variables, but instead, use corporate financials, sector classifiers,
and geographical classifiers as predictor variables. The results of our research imply that without
ESG data, it is very difficult to accurately predict emissions, because, one, the use of corporate
financials, sector classifiers, and geographical classifiers leads to poor prediction accuracies, and
two, because we see that the most important predictors in our models are information on energy
consumption (‘Energy Purchased’), and information on corporations’ physical assets (‘Net PPE’).
Thus, we believe that the disclosure of information on ESG data, physical assets, production
processes, and materials is critical for improving the prediction performance of our models.

6.2.2 Assumptions

We made several assumptions in the processes of data preparation and model improvement that
may have significantly affected the outcomes of our research. First, we disregarded disclosed emis-
sion data prior to the year 2018. We did this for the sake of relevance as a large portion of the
recovered emission data was derived from the last 5 fiscal years. This led to the deletion of a large
number of data rows that were not taken into account for the training of the prediction models. It
is possible that the inclusion of these years would have increased the prediction performances of
the models due to a higher number of available data points during the training stage.

During the handling of outliers in the data, we deleted a large number of outliers. We deleted data
outside of the interquartile range before getting useful results. Before outlier deletion, the MAPE
could be as high as 1500%. Although the outlier deletion decreased prediction errors, it introduced
a bias in the prediction models toward data within the selected data range. The models are not
able to generalize well for corporations outside of this selected range, causing the prediction errors
for these corporations to be high. Furthermore, we log-transformed the input and output variables
to coerce the variables into a smaller variable range, and to decrease skewness. There are several
other possible techniques to transform the data. We did not test the prediction performance on
alternative variable transformation methods, and, therefore are unable to say whether the usage
of these alternatives could lead to an increase in prediction performance.
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Due to the large number of missing values, we chose to correct the data for these missing values.
The goal of the data imputation was to enlarge the available data while preserving the relations
within the original data. In the results, we identified that, through the data imputation, we in-
troduced a bias that negatively affected prediction performance. We made several choices during
the imputation stage that could have affected this outcome. First, we chose to apply the impu-
tation method ‘predictive mean matching’. The main argument for this choice is the fact that
it is the most commonly used imputation technique for continuous variables due to the fact that
imputations are restricted to observed values, and it can preserve non-linear relations. Although
we assessed and tested several other imputation methods, there are also methods we did not con-
sider. Second, we decided on a maximum percentage of missing values a variable could have to be
considered for the imputation process, namely 30%. This could have affected the outcome of our
research in two ways: one, this cutoff led us to disregard variables that could have been significant
predictors, and two, the cutoff of 30% could have led to a too high number of data points being
imputed. Finally, we decided that a data row could have a maximum of three imputed data points
for it to be considered for the training and testing of our prediction models. Again, this cutoff
could have led to similar consequences as discussed for the maximum percentage of missing values.

The selection and tuning of hyperparameters is an important part of setting up prediction models
and can improve the performance of these models. We used two methods for hyperparameter tun-
ing: grid search cross-validation and random search cross-validation. For these two methods, we
specified the hyperparameters that were to be tuned, and the hyperparameter grids that consisted
of the values to be tested for. It has to be noted that we did not do this for all possible hyper-
parameters, and all hyperparameter values. Therefore it is possible, and even very likely, that we
did not implement the ‘optimal’ combination of hyperparameters for all prediction models. Hence,
it is also very likely that we did not attain the highest possible prediction accuracies for these
models. However, we are confident about the fact that finding such an ‘optimal’ combination of
hyperparameter values will not lead to dramatically better outcomes.

6.2.3 Contribution

This research represents a theoretical contribution to academic literature in the application of sta-
tistical analysis and machine learning methods for predicting corporate GHG emissions. Although
the research resulted in prediction accuracies below anticipated levels, the value of this research
lies in the examination and interpretation of the challenges and limitations currently associated
with predicting corporate GHG emissions. Specifically, the research reveals that, with current data
limitations, it is extremely challenging to detect patterns and relationships that aid the predic-
tion models due to the inherent variability that is present in emission data, even within sectors.
Despite poor prediction accuracies, the research demonstrated the potential of statistical analysis
and machine learning methods in the analysis of corporate GHG emissions. We hope that this
research serves as a stepping stone towards future research, through careful consideration of our
conclusions and our recommendations for further research, discussed in the next section.

6.2.4 Recommendations

In this section, we elaborate on our main recommendations for further research. These recommen-
dations focus on data and an alternative prediction approach.

6.2.4.1 Data

As stated earlier, we encountered several significant limitations regarding the data used in this
research. Future research should focus on identifying and selecting corporations that have similar
processes for measuring their GHG emissions. By doing so, prediction models will have a higher
probability of finding useful patterns and relationships in the data. Furthermore, the volume
of available data points should be increased by combining several data providers, so that the
prediction models have a higher number of corporations to train on. Again, this would result
in a higher probability of finding useful patterns and relationships in the data. Finally, future
research should complement the set of available predictor variables with variables on ESG-related
data, and data on production processes, materials, and other physical assets. Naturally, under the
assumption that in the coming years, more data will be made available for these data categories.
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6.2.4.2 Classification models

Our research focused on applying regression methods to predict a continuous output: GHG emis-
sions. Future research might focus on adjusting the corporate GHG emission prediction problem
from a regression problem, into a classification problem. Both earlier research and our research
resulted in poor prediction accuracies when predicting continuous emission outputs. An alternative
methodology would be to divide corporate emission data into several classes based on the mag-
nitude of the emissions. Consequently, prediction models can be trained to predict the emission
class of a corporation, instead of its actual emissions. Such a method has not yet been examined
in academic literature, as to our knowledge, and, would therefore be an interesting idea for future
research.
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Assael, Jérémi, Thibaut Heurtebize, Laurent Carlier, and François Soupé (Feb. 2023). “Greenhouse
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Appendix A

Data Preparation & Visualization

A.1 GHG emission disclosures over the past 20 years

Figure A.1: Scope 1 disclosure in the previous 20 years.
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Figure A.2: Scope 2 disclosures in the previous 20 years.

Figure A.3: Scope 3 disclosures in the previous 20 years.
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A.2 Predictor variables descriptions

Predictor variable Description
Fiscal Year Reported fiscal year.

GICS Sub-Industry Name Global Industry Classification Standard (GICS)
Sub-Industry description.

GICS Industry Name Global Industry Classification Standard (GICS)
Industry description.

GICS Industry Group Name Global Industry Classification Standard (GICS)
Industry Group description.

GICS Sector Name Global Industry Classification Standard (GICS)
Sector description.

Country Country of headquarters.
Region Region of headquarters.
Revenue Represents gross sales and other operating revenue less

discounts, returns, and allowances.
Employees The number of full-time employees.

Capital Expenditure Expenditure for acquiring or
maintaining fixed assets.

Net PPE Represents the total gross value of fixed assets net
accumulated depreciation expenses.

Net Intangibles Net intangibles under GAAP.
Operating Expenses Total cost of operations.

Total Assets Represents the total assets reported by a company.
Energy Purchased Direct energy purchased.
Energy Produced Direct energy produced.

Renewable Energy Purchased Total energy purchased from primary renewable
energy sources.

Renewable Energy Produced Total energy purchased from primary renewable
energy sources.

ESG Score Refinitiv ESG score based on reported
information in the environmental, social, and

corporate governance pillars.
ROE Net income to the average of fiscal year’s common equity.
ROC Net income to the average of fiscal year’s capital.
ROA Net income to the average of fiscal year’s assets.

Asset Turnover The amount of revenue generated for each unit of assets.
Inventory Turnover Total cost of revenue to the average total inventory.

DE Ratio Total debt to total equity.
Interest Coverage Ratio Net earnings to total interest expense.

Cash Flow Coverage Ratio Net cash flow from operating activities to total debt.
Current Ratio Total current assets to total current liabilities.
Quick Ratio Total current assets less inventory to total

current liabilities.

Table A.1: Overview of all considered predictor variables.
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A.3 Convergence and density plots for remaining predictor
variables in ‘Total’ data frame

Figure A.4: Convergence of MI of ‘Net Intangibles’, ‘Energy Purchased’, and ‘Asset Turnover’.

Figure A.5: Convergence of MI of ‘Inventory Turnover’, ‘ROE’, and ‘ROA’.
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Figure A.6: Convergence of MI of ‘Interest Coverage Ratio’, ‘Current Ratio’, and ‘Quick Ratio’.

Figure A.7: Density of observed data (blue) against the density of imputed data (red) for the
variables ‘Energy Purchased’, ‘Asset Turnover’, ‘Inventory Turnover’, and ‘ROE’.

Figure A.8: Density of observed data (blue) against the density of imputed data (red) for the
variables ‘ROA’, ‘Interest Coverage Ratio’, ‘Current Ratio’, and ‘Quick Ratio’.
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A.4 Correlation matrix of ‘Total’ data frame

Figure A.9: Correlation matrix for continuous predictor variables in the ‘Total’ data frame.

A.5 Predictor variable distributions after log-transformation

Figure A.10: Distribution of Total Emission to the predictor variables ‘Capital Expenditure’,
‘Operating Expenses’, ‘Net Intangibles’, and ‘DE Ratio’.
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Figure A.11: Distribution of Total Emission to the predictor variables ‘ROA’, ‘ROE’, ‘Asset
Turnover’, and ‘Inventory Turnover’ after log transformation.

Figure A.12: Distribution of Total Emission to the predictor variables ‘Interest Coverage Ratio’,
‘Cash Flow Coverage Ratio’, and ‘Quick Ratio’.
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Appendix B

Model Prediction Results

B.1 Results Scope 1, 2, and 3 for the imputed data frames

Metric Mean Lasso XGB RF SVR ANN
Out-of-Sample Theil’s U 0.963 0.397 0.443 0.638 0.435 0.478

MAPE 51.969 5.291 6.751 6.664 13.882 10.909
MSE 1.1e14 5.62e13 6.81e13 7.84e13 7.36e13 6.42e13
RMSE 7820773 5355780 5743010 8527126 5963146 7745319
R-Squared -0.147 -0.322 -0.931 0.274 -3.712 0.382

In-Sample Theil’s U 0.991 0.371 0.103 0.304 0.387 0.482
MAPE 51.766 3.239 0.137 0.356 8.032 11.092
MSE 1.1e14 5301e13 4.24e12 2.69e13 4.84e13 6.14e13
RMSE 10494089 7077533 2052743 5181364 6954864 7828517
R-Squared -0.066 0.515 0.959 0.740 0.532 0.407

Bias-Variance Bias - 1.737 1.934 2.109 2.237 9.590
Variance - 0.064 0.237 0.020 0.078 3.138

Table B.1: Results for the emission category ’Scope 1’ for the imputed data frame.

Metric Mean Lasso XGB RF SVR ANN
Out-of-Sample Theil’s U 0.839 0.383 0.413 0.589 0.398 0.115

MAPE 12.072 6.751 3.575 3.235 4.212 5.646
MSE 2.56e12 1.19e12 1.72e12 1.86e12 1.60e12 1.64e12
RMSE 1175976 809727 870822 1259721 878687 1184076
R-Squared -0.217 0.245 0.305 0.281 -0.310 0.346

In-Sample Theil’s U 0.927 0.365 0.072 0.262 0.322 0.529
MAPE 12.061 3.828 0.093 0.300 2.718 5.065
MSE 2.56e12 1.02e12 5.21e10 4.90e11 8.00e11 1.53e12
RMSE 1599620 1012318 227429 703018 894993 1232203
R-Squared -0.085 0.565 0.978 0.790 0.660 0.352

Bias-Variance Bias - 1.354 1.372 1.494 1.579 4.893
Variance - 0.043 0.147 0.012 0.066 0.914

Table B.2: Results for the emission category ’Scope 2’ for the imputed data frame.
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Metric Mean Lasso XGB RF SVR ANN
Out-of-Sample Theil’s U 0.964 0.605 0.592 0.678 0.589 0.576

MAPE 288.720 205.790 358.838 144.191 295.519 548.424
MSE 8.58e15 8.15e15 6.34e15 6.82e15 4.7e15 6.59e15
RMSE 51135562 48065804 41498637 69538946 4700000 69620926
R-Squared -0.204 -0.640 -0.218 0.212 -1.091 0.157

In-Sample Theil’s U 0.996 0.559 0.132 0.366 0.476 0.663
MAPE 287.444 147.013 0.181 0.878 198.694 268.961
MSE 8.62e15 7.40e15 5.10e14 2.78e15 5.10e15 7.45e15
RMSE 92846795 86031963 22530500 52618284 7200000 85942058
R-Squared -0.041 0.106 0.938 0.662 0.379 0.099

Bias-Variance Bias - 6.093 6.489 6.459 6.546 13.521
Variance - 0.238 0.525 0.062 0.087 3.221

Table B.3: Results for the emission category ’Scope 3’ for the imputed data frame.

B.2 Visualization increase error after back-transformation
for ‘Total’ data frame.

Figure B.1: Visualization error for log-transformed feature space.

Figure B.2: Visualization error for back-transformed feature space.
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B.3 Results Scope 1, 2, and 3 for the baseline data frames

Metric Mean Lasso XGB RF SVR ANN
Out-of-Sample Theil’s U 0.892 0.318 0.335 0.542 0.304 0.362

MAPE 24.020 6.701 7.808 3.551 11.534 6.824
MSE 6.57e13 2.22e13 2.28e13 3.93e13 1.84e13 2.37e13
RMSE 5462330 2886113 2938878 5867271 2727630 4673147
R-Squared -0.221 -0.983 -0.479 0.389 -0.0086 0.571

In-Sample Theil’s U 0.984 0.247 0.017 0.201 0.191 0.344
MAPE 23.975 3.017 0.021 0.249 5.067 8.285
MSE 6.59e13 1.54e13 8.18e10 7.87e12 8.58e12 2.42e13
RMSE 8115129 3920373 282343 2803682 2928553 4836543
R-Squared -0.081 0.748 0.999 0.870 0.859 0.600

Bias-Variance Bias - 1.089 1.154 1.407 1.876 8.004
Variance - 0.063 0.157 0.017 0.091 2.407

Table B.4: Results for the emission category ’Scope 1’ for the baseline data frame.

Metric Mean Lasso XGB RF SVR ANN
Out-of-Sample Theil’s U 0.721 0.318 0.332 0.460 0.309 0.100

MAPE 6.390 1.483 1.799 1.713 1.733 1.710
MSE 1.47e12 7.03e11 7.31e11 8.51e11 6.11e11 8.00e11
RMSE 925605 606066 609010 845969 571227 824731
R-Squared -0.285 0.200 0.220 0.364 0.266 0.353

In-Sample Theil’s U 0.853 0.323 0.021 0.174 0.206 0.425
MAPE 6.367 1.022 0.031 0.210 0.667 1.489
MSE 1.47e12 5.08e11 2.77e09 1.53e11 2.24e11 6.88e11
RMSE 1213412 712725 52526 390484 473738 826870
R-Squared -0.137 0.608 0.998 0.882 0.827 0.465

Bias-Variance Bias - 0.815 0.898 5.277 1.295 3.677
Variance - 0.051 0.009 0.061 0.062 1.108

Table B.5: Results for the emission category ’Scope 2’ for the baseline data frame.

Metric Mean Lasso XGB RF SVR ANN
Out-of-Sample Theil’s U 0.853 0.575 0.580 0.711 0.519 0.830

MAPE 155.804 731.259 309.931 351.199 680.532 717.120
MSE 1.1e16 2.28e16 9.50e15 9.90e15 9.36e15 3.25e16
RMSE 51303902 63524053 45379845 83358382 44169424 1.80e08
R-Squared -0.402 -70.478 -4.751 0.191 -3.314 -0.057

In-Sample Theil’s U 0.991 0.570 0.030 0.419 0.564 0.515
MAPE 154.706 390.760 0.038 0.757 479.769 298.545
MSE 1.13e16 8.53e15 4.03e13 4.41e15 7.75e15 9.81e15
RMSE 1.06e08 92315140 6262845 66197641 87984471 99051408
R-Squared -0.057 0.203 0.996 0.589 0.276 -0.162

Bias-Variance Bias - 5.501 5.660 5.277 6.345 7.041
Variance - 0.395 0.497 0.061 0.450 0.789

Table B.6: Results for the emission category ’Scope 3’ for the baseline data frame.
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B.4 Results of Random Forest applied on untransformed
data

Metrix Total Scope 1 Scope 2 Scope 3
Out-of-Sample Theil’s U 0.411 0.438 0.443 0.498

MAPE 29.435 246.968 17.310 3335.981
MSE 5.51e13 5.85e13 1.52e12 5.83e15
RMSE 7130185 7332103 1136120 65602838
R-Squared 0.492 0.446 0.400 0.240

In-Sample Theil’s U 0.098 0.114 0.108 0.125
MAPE 9.233 83.726 5.268 967.263
MSE 4.01e12 4.96e12 1.06e11 4.48e14
RMSE 2001985 2223463 325009 21127342
R-Squared 0.963 0.952 0.955 0.946

Bias-Variance Bias 5.61e13 5.68e13 1.54e12 5.9e15
Variance 4.59e11 5.86e11 1.24e10 5.55e13

Table B.7: Results of the Random Forest model applied on untransformed data.

B.5 Results Scope 1, 2, and 3 for the baseline data frames
after bias correction

Metric Mean Lasso XGB RF SVR ANN
Out-of-Sample Theil’s U 0.604 0.347 0.356 0.410 0.349 0.987

MAPE 556.545 10.121 32.446 7.855 16.968 1817
MSE 5.44e13 2.83e14 6.18e15 3.49e13 5.01e14 6.44e18
RMSE 4961275 5624184 13154211 5687538 6465324 1.87e09
R-Squared 0 -13.223 -837.606 0.274 -24.814 -104469

In-Sample Theil’s U 0.745 0.362 0.017 0.181 0.224 0.989
MAPE 546.441 10.766 0.021 0.264 8.383 2214.182
MSE 6.09e13 5.3e13 8.08e10 6.66e12 1.61e13 3.11e18
RMSE 7803574 7278129 280691 2578585 4008383 1.65e09
R-Squared 0 0.129 0.999 0.890 0.736 -51608

Bias-Variance Bias - 1.168 1.178 1.403 1.524 8.436
Variance - 0.025 0.156 0.017 0.097 2.647

Table B.8: Results for the emission category ’Scope 1’ for the baseline data frame after bias
correction.
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Metric Mean Lasso XGB RF SVR ANN
Out-of-Sample Theil’s U 0.492 0.313 0.329 0.371 0.309 0.823

MAPE 20.521 3.250 4.613 3.431 3.552 36.267
MSE 1.12e12 2.29e13 5.35e13 1.00e12 4.56e13 2.05e14
RMSE 812097 1154904 1512612 888188 1360371 12214124
R-Squared 0 -13.979 -31.847 0.269 -27.232 -145.77

In-Sample Theil’s U 0.617 0.337 0.021 0.161 0.200 0.823
MAPE 24.771 2.214 0.031 0.216 1.294 33.185
MSE 1.29e12 8.39e11 2.71e09 1.34e11 2.70e11 1.34e14
RMSE 1137764 915832 51928 365428 519094 11190444
R-Squared 0 0.352 0.998 0.896 0.792 -102.758

Bias-Variance Bias - 0.891 0.898 1.033 1.894 3.55349
Variance - 0.023 0.095 0.010 0.106 1.265

Table B.9: Results for the emission category ’Scope 2’ for the baseline data frame after bias
correction.

Metric Mean Lasso XGB RF SVR ANN
Out-of-Sample Theil’s U 0.528 0.313 0.616 0.371 0.309 0.978

MAPE 7128 3.250 19277 3.431 3.552 236981
MSE 8.87e15 2.29e13 1.45e17 1.00e12 4.56e13 8.01e20
RMSE 44771485 1154904 1.64e08 888188 1360371 1.89e10
R-Squared 0 -13.979 -4.751 0.269 -27.232 -140008

In-Sample Theil’s U 0.784 0.337 0.029 0.161 0.200 0.981
MAPE 4932 2.214 0.038 0.216 1.294 525292
MSE 1.07e16 8.39e11 3.80e13 1.34e11 2.70e11 6.22e20
RMSE 1.03e08 915832 6081991 365428 519094 2.06e10
R-Squared 0 0.352 0.996 0.896 0.792 -59510

Bias-Variance Bias - 0.891 5.674 5.302 6.548 11.673
Variance - 0.023 0.512 0.061 0.083 4.989

Table B.10: Results for the emission category ’Scope 3’ for the baseline data frame after bias
correction.
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B.6 Features with corresponding variable name

Feature Predictor Variable Feature Predictor Variable
Feature 0 Fiscal Year Feature 39 Country: Italy
Feature 1 Revenue Feature 40 Country: Japan
Feature 2 Employees Feature 41 Country: Jersey
Feature 3 Capital Expenditure Feature 42 Country: South Korea
Feature 4 Net PPE Feature 43 Country: Luxemburg
Feature 5 Net Intangibles Feature 44 Country: Malaysia
Feature 6 Total Assets Feature 45 Country: Mexico
Feature 7 Energy Purchased Feature 46 Country: Netherlands
Feature 8 Asset Turnover Feature 47 Country: New Zealand
Feature 9 Inventory Turnover Feature 48 Country: Norway
Feature 10 ROE Feature 49 Country: Peru
Feature 11 ROA Feature 50 Country: Philippines
Feature 12 DE Ratio Feature 51 Country: Poland

Feature 13
Interest Coverage
Ratio

Feature 52 Country: Portugal

Feature 14
Cash Flow
Coverage Ratio

Feature 53 Country: Russia

Feature 15 Quick Ratio Feature 54 Country: Saudi Arabia
Feature 16 Country: Australia Feature 55 Country: Singapore
Feature 17 Country: Austria Feature 56 Country: South Africa
Feature 18 Country: Belgium Feature 57 Country: Spain
Feature 19 Country: Bermuda Feature 58 Country: Sweden
Feature 20 Country: Brazil Feature 59 Country: Switzerland
Feature 21 Country: Canada Feature 60 Country: Taiwan
Feature 22 Country: Chile Feature 61 Country: Thailand
Feature 23 Country: China Feature 62 Country: Turkey
Feature 24 Country: Colombia Feature 63 Country: Ukraine
Feature 25 Country: Cyprus Feature 64 Country: UAE
Feature 26 Country: Denmark Feature 65 Country: UK
Feature 27 Country: Faroe Islands Feature 66 Country: USA

Feature 28 Country: Finland Feature 67
GICS: Communication
Services

Feature 29 Country: France Feature 68
GICS: Consumer
Discretionary

Feature 30 Country: Germany Feature 69
GICS: Consumer
Staples

Feature 31 Country: Greece Feature 70 GICS: Energy
Feature 32 Country: Hong Kong Feature 71 GICS: Financials
Feature 33 Country: Hungary Feature 72 GICS: Health Care
Feature 34 Country: Iceland Feature 73 GICS: Industrials

Feature 35 Country: India Feature 74
GICS: Information
Technology

Feature 36 Country: Indonesia Feature 75 GICS: Materials
Feature 37 Country: Ireland Feature 76 GICS: Real Estate
Feature 38 Country: Israel Feature 77 GICS: Utilities
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B.7 Relationships between features and ‘Total’ emissions

Figure B.3: Relationship between ‘Revenue’ and ‘Total’ emissions.

Figure B.4: Relationship between ‘Employees’ and ‘Total’ emissions.
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Figure B.5: Relationship between ‘Capital Expenditure’ and ‘Total’ emissions.

Figure B.6: Relationship between ‘Net PPE’ and ‘Total’ emissions.

Figure B.7: Relationship between ‘Net Intangibles’ and ‘Total’ emissions.
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Figure B.8: Relationship between ‘Total Assets’ and ‘Total’ emissions.

Figure B.9: Relationship between ‘Inventory Turnover’ and ‘Total’ emissions.

Figure B.10: Relationship between ‘ROA’ and ‘Total’ emissions.

74



Figure B.11: Relationship between ‘DE Ratio’ and ‘Total’ emissions.

Figure B.12: Relationship between ‘Interest Coverage Ratio’ and ‘Total’ emissions.
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Figure B.13: Relationship between ‘Cash Flow Coverage Ratio’ and ‘Total’ emissions.

Figure B.14: Relationship between ‘Quick Ratio’ and ‘Total’ emissions.
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B.8 Linear Regression

Metric Total Scope 1 Scope 2 Scope 3
Out-of-Sample Theil’s U 0.259 0.349 0.329 0.585

MAPE 4.440 6.933 1.639 1102.02
MSE 2.60e13 2.58e13 7.5e11 9.99e15
RMSE 3088550 3185268 616457 46535016
R-Squared 0.273 0.275 0.014 -7.037

In-Sample Theil’s U 0.328 0.339 0.365 0.648
MAPE 3.655 5.365 1.321 813.741
MSE 2.37e13 2.36e13 6.27e11 9.45e15
RMSE 4869142 4858369 791627 97192243
R-Squared 0.645 0.612 0.516 0.116456

Bias-Variance Bias 3.81e15 1.175 0.879 5.694
Variance 1.52e16 0.027 0.022 0.178

Table B.11: Linear regression applied on the baseline data frame.

B.9 Remaining GICS classifications

Metric Total Scope 1 Scope 2 Scope 3
Out-of-Sample Theil’s U 0.522 0.581 0.479 0.716

MAPE 2.253 4.447 1.631 423.074
MSE 4.27e13 4.23e13 9.01e11 9.96e15
RMSE 5922909 6059366 866122.4 83590814
R-Squared 0.405 0.354 0.342 0.186

In-Sample Theil’s U 0.199 0.212 0.188 0.403
MAPE 0.181 0.264 0.209 0.745
MSE 8.71e12 8.50e12 1.74e11 4.14e15
RMSE 2946716 2914483 416694 64147827
R-Squared 0.869 0.860 0.865 0.614

Bias-Variance Bias 0.876 1.569 1.053 5.375
Variance 0.010 0.018 0.011 0.061

Table B.12: Results of Random Forest model with GICS classifier sub-industry, for ‘Total’ data
frame

Metric Total Scope 1 Scope 2 Scope 3
Out-of-Sample Theil’s U 0.501 0.570 0.469 0.715

MAPE 2.207 4.465 1.678 355.430
MSE 4.17e13 4.16e13 8.81e11 9.93e15
RMSE 5815001 6003152 865400 83554950
R-Squared 0.431 0.367 0.355 0.187

In-Sample Theil’s U 0.189 0.205 0.182 0.415
MAPE 0.175 0.252 0.208 0.751
MSE 7.98e12 8.15e12 1.64e11 4.35e15
RMSE 2821990 2852241 405094 65726154
R-Squared 0.880 0.866 0.873 0.595

Bias-Variance Bias 0.828 1.467 1.039 5.386
Variance 0.010 0.017 0.010 0.060

Table B.13: Results of Random Forest model with GICS classifier industry name, for ‘Total’ data
frame.
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Metric Total Scope 1 Scope 2 Scope 3
Out-of-Sample Theil’s U 0.489 0.544 0.458 0.718

MAPE 1.927 3.833 1.719 306.435
MSE 4.11e13 3.97e13 8.45e11 9.94e15
RMSE 5779046 5887475 842594 83694483
R-Squared 0.441 0.387 0.368 0.183

In-Sample Theil’s U 0.191 0.202 0.174 0.417
MAPE 0.173 0.244 0.206 0.757
MSE 8.18e12 7.94e12 1.52e11 4.40e15
RMSE 2856986 2816607 389022 66085231
R-Squared 0.877 0.869 0.883 0.591

Bias-Variance Bias 0.820 1.377 1.023 5.342
Variance 0.010 0.017 0.010 0.064

Table B.14: Results of Random Forest model with GICS classifier industry group name, for ‘Total’
data frame.

B.10 GICS classification subsets

Metric C
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Out-of-Sample Theil’s U 0.409 0.396 0.415 0.273 0.464
MAPE 2.526 1.765 2.460 20.502 2.115
MSE 2.89e11 1.89e13 1.95e12 6.97e13 1.75e13
RMSE 412650 1815118 1146991 7175951 1401123
R-Squared 0.338 0.519 0.416 0.636 -1.475

In-Sample Theil’s U 0.256 0.691 0.210 0.077 0.388
MAPE 0.229 0.224 0.208 0.352 0.313
MSE 1.08e11 1.62e13 4.97e11 5.79e12 5.49e12
RMSE 321649 3832815 702471 2404458 2224052
R-Squared 0.735 0.241 0.826 0.969 0.666

Bias-Variance Bias 1.202 1.205 1.051 1.671 3.373
Variance 0.024 0.016 0.017 0.028 0.065

Table B.15: Results of Random Forest model within ‘GICS Sector Name’ classified subsets for
‘Total’ emissions (1/2).
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Out-of-Sample Theil’s U 0.324 0.574 0.441 0.425 0.574 0.626
MAPE 1.129 0.969 1.063 3.853 6.363 5.836
MSE 1.18e11 6.7e12 1.04e12 1.7e14 1.39e13 6.59e14
RMSE 2812572 2337678 856114 11710663 1799811 22795369
R-Squared 0.537 0.335 0.457 0.443 0.199 -0.078

In-Sample Theil’s U 0.110 0.232 0.144 0.139 0.560 0.266
MAPE 0.162 0.196 0.194 0.226 0.307 0.345
MSE 1.3e10 1.62e12 1.33e11 2.37e13 8.12e12 1.6e14
RMSE 113758 1269721 363803 4859953 2771077 12617638
R-Squared 0.943 0.833 0.919 0.920 0.439 0.753

Bias-Variance Bias 0.802 0.885 0.833 1.368 2.143 2.936
Variance 0.015 0.011 0.015 0.016 0.036 0.049

Table B.16: Results of Random Forest model within ‘GICS Sector Name’ classified subsets for
‘Total’ emissions (2/2).

B.11 Region

Metric Total Scope 1 Scope 2 Scope 3
Out-of-Sample Theil’s U 0.448 0.492 0.440 0.694

MAPE 2.106 3.898 1.659 325.155
MSE 3.79e13 3.59e13 8.16e11 9.83e15
RMSE 5529459 5589376 826897 82771540
R-Squared 0.490 0.445 0.390 0.202

In-Sample Theil’s U 0.175 0.183 0.168 0.415
MAPE 0.163 0.240 0.204 0.783
MSE 7.05e12 6.73e12 1.43e11 4.38e15
RMSE 2652724 2593231 377920 65935968
R-Squared 0.894 0.889 0.889 0.592

Bias-Variance Bias 0.721 1.281 0.983 5.390
Variance 0.010 0.017 0.010 0.077

Table B.17: Results of Random Forest model using ‘Region’ instead of ‘Country’.
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