
1

Look at this, not that! – Improving the

alignment of PIP-Net with domain

knowledge

Franziska Fobbe

8th September 2023

Master Thesis
Computer Science - Data Science, University of Twente
Artificial Intelligence, Universitè Paris-Saclay
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Abstract

Interpretable computer vision models like PIP-
Net can push the application of machine learning
models in critical domains like radiology. Based
on PIP-Nets prototypes we propose two meas-
ures to evaluate a model’s adherence to domain
knowledge (which we define as not relying on
spurious correlations of medically irrelevant fea-
tures (shortcuts) and as being focused on regions
of interest). We show that the methods are suf-
ficient to discriminate models that adhere more
to domain knowledge and can provide an addi-
tional dimension to traditional evaluation met-
rics like accuracy and AUC. By knowing which
prototype correspond to shortcuts we can im-
prove the models adherence to domain know-
ledge by retraining and reinitialising the classi-
fication layer of PIP-Net. For regions of interest
the same strategy does not work and we propose
and discuss a loss term that could improve the
results in future research.

Medical Abstract

Objective We aimed to improve an inter-
pretable machine learning model (PIP-Net), to
align its decision to medical domain knowledge
for hip fractures. Domain knowledge is defined
as not relying on medically irrelevant features
(shortcuts), such as hospital specific ”L” and
”R” tokens [1], and instead on fracture areas (re-
gions of interest).

Methods We defined two measures (Inter-
section over Union and Prototype Importance)
which combined give a metric to quantify do-
main knowledge adherence. With these we fine-
tuned the model to correct shortcut learning,
and proposed measures to improve reliance on
regions of interest.

Results We found that shortcut learning can
be mitigated by reinitialising the classification
layer of PIP-Net. The same was not true when
only focusing on Regions of interest. We pro-
posed and discussed a new loss term that could
lead to better coverage of Regions of Interest,
improving the results in the future.

Conclusions Practitioner’s feedback can be
used to create a machine learning model that
has high accuracy, is interpretable and adheres
to domain knowledge. The model needs to be
tested on more datasets and should go through
iterative testing within the hospital to assess the
quality more extensively.

1 Introduction

Applications of machine learning based tools
have become increasingly used in radiology prac-
tice [2, 3], though not as pervasive as prior pre-
dictions suggested [4].

One reason for the slow uptake could be
the black-box nature of neural networks, which
do not explain their predictions in a human-
understandable way. This is a major drawback
for high-stakes decision-making (such as polit-
ical or medical decisions), where the reasoning
for decisions might need to hold up in court or
under public scrutiny [5], or might even cost lives
and livelihoods. It has led to calls for the devel-
opment of interpretable models [6, 7, 8], which
are built to be understood, instead of explain-
able models, which add post-hoc explanations
on top of already established deep learning mod-
els. Explainable model additions, for example
saliency maps can sometimes be misleading and
should undergo sanity checks to avoid false con-
fidence [9].

One class of interpretable models, especially
for image categorisation, are prototypical mod-
els, first developed by Chen et.al. [10], which ex-
tract representative features (called prototypes)
from a convolutional neural network (CNN)
backend which are an input to an interpretable
method such as a logistic regression or a de-
cision tree. Combining these two model classes
creates inherently interpretable models that can
achieve similar accuracies to the black-box mod-
els and are therefore a natural choice for high
stakes decision making. PIP-Net is a recent ad-
dition to the prototypical model class, which op-
timises the model for semantic understanding,
by prioritising semantic cohesion of prototypes.
As it also outperforms other prototypical mod-
els such as ProtoPNet [10] and is on par with
ProtoPool [11] and therefore we chose it as the
baseline model for this thesis.

However, while an interpretable model ex-
plains its reasoning, it does not mean that the
reasoning is aligned with the human perception
of the problem it is solving. For example a model
can pick up spurious correlations in the data,
leading to so-called shortcut learning [12, 1]. If
we want a model to be used in practice, it is
important to build trust in the decision making,
which means that a radiologist needs to agree
with the reasoning of the model. The classifica-
tion of whether or not a X-ray depicts a fracture,
should be based on the area of the image that
shows the fracture.

Taking advantage of the interpretable nature
of PIP-Net, we can use the additional inform-
ation that the model gives to improve PIP-
Net to adhere closer to domain knowledge, by
discouraging it to look at (known) shortcuts
and encouraging it to look at (known) regions
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of interest (ROI). By quantifying the influence
of ROIs and shortcuts on the decisions of the
model, we open up a new evaluation dimension
as an extension to traditional performance met-
rics, which can be used to assess the effectiveness
of the model. This thesis aims to answer the fol-
lowing two research questions:

RQ1: How can we measure the ability to detect
a) (known) spurious correlations and b)
the alignment with domain knowledge for
prototypical models?

RQ2: How can we adapt prototypical models,
such that they a) do not rely on spurious
correlations and b) better align with do-
main knowledge?

We wrote the thesis in cooperation with the
ZGT Almelo-Hengelo, and domain knowledge
was provided by Han Hegeman, MD PhD, a
trauma surgeon with a special interest in hip
fractures. The context in which these questions
are answered, are therefore limited to this ap-
plication.

The rest of the thesis is structured as follows:
Section 2 summarises related works, Section 3
explains the architecture and training process of
PIP-Net. The datasets, their customisation and
the annotation process is described in Section 4.
Research Question 1 is answered in Section 5
and Research Question 2 is expanded upon in
Section 6. Finally, Section 8 discusses the res-
ults, and Section 9 concludes the thesis.

2 Related Work

Part-Prototype Models Interpretable mod-
els (see [13] for a first overview of methods and
definitions) have been researched more as an
answer to calls for transparent algorithmic de-
cision making. This also led to the inception
of part-prototype models for image classification
tasks [10]. Prototypes are a learned represent-
ation of a feature in an image, similar to iden-
tification keys used in entomology when identi-
fying an insect (see [14]). These prototypes can
then be used as an input to interpretable de-
cision making functions e.g. decision trees, rules
or linear models [15, 16, 17], thereby making
use of both the nonlinear optimisation properties
of neural networks and the interpretability of
the decision-making models. In part-prototype
models, prototypes are first learned from an im-
age corpus in the convolutional neural network
(CNN) backbone and then identified (for ex-
ample through a distance measure) in an image
to be classified. The identified prototypes are
compared to similar instances from the corpus,
and therefore the model does not only rely on
the prototype location (like a saliency map) but

through the comparisons it becomes clear what
semantic features it has picked up.

While Chen et al. [10] used a predetermined
number of prototypes per class, Nauta et al. [18]
showed that prototypes can be redundant. Mul-
tiple works [19, 20, 21] built on this foundation
and adapted the original idea to reduce the num-
ber of prototypes further to reduce the explana-
tion size. Taking human perceptive similarity of
prototypes into account, PIP-Net [22] uses self-
supervised representation learning to learn the
prototypes and further improve the interpretab-
ility of the prototypes. Therefore PIP-Net is
uniquely suited to produce interpretable proto-
types and will form the basis of this thesis. More
detail about PIP-Net can be found in Section 3.

Shortcut Learning Deep Neural Networks
have been known to learn spurious correla-
tions or become so-called ”Clever Hans” pre-
dictors [12]. Shortcut learning can be hard to
detect [23] and can not only lead to a reduced
accuracy on the test set but also to unintended
consequences [24], which could be especially tra-
gic in the medical domain. As shown in [25] an
interpretable model like PIP-Net can be used to
identify clinically irrelevant artefacts and they
can subsequently be removed from the model.
Building on these results, Section 5 will identify
”Clever Hans” artefacts in hip fracture x-ray
datasets (see Section 4) and Section 6 will ex-
pand on it.

Alignment with Domain Knowledge In
interpretable models, it is necessary that the
model’s explanation can be understood by a hu-
man, even though Borowski et al. [26] showed
that neural networks use different strategies in
recognising objects than humans. Makino et
al. [27] shows that also in the field of radiology,
a deep learning model focuses on (spurious) fea-
tures usually ignored by radiologists. Similarly,
Nauta et al. [25] shows that the PIP-Net model
can likewise produce prototypes that are relev-
ant to medical domain knowledge, but not ex-
clusively. This alignment with domain know-
ledge is also evaluated and discussed in Sec-
tion 5.

3 PIP-Net

In this section, we shortly describe PIP-Net [22],
which is used in this thesis. PIP-Net combines
a CNN backbone, that extracts latent features
corresponding to prototypes with a linear layer.
PIP-Net’s reasoning can be seen as an inherently
interpretable function. We briefly summarise
the model in this paper for the context of further
exploration. The model is described in detail in
[22].
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Figure 1: Schematic depiction of the PIP-Net architecture, as described in [22]. Two images,
one original, one transformed are forwarded through the CNN backbone, and the prototypes are
pretrained and fine-tuned by minimising the alignment and tanh loss of the latent features of both
images. The identified prototypes are used as an input to the linear classification layer. The result
can be shown as a scoring sheet reasoning.

Architecture Details A schematic repres-
entation of PIP-Net’s architecture is shown in
figure 1.

The CNN backbone learns prototypical
representations which are represented as 1-
dimensional prototype presence scores in the last
layer of the network. The CNN backbone can
consist of any context specific architecture, e.g.
ResNet [28] or ConvNeXt [29], because differ-
ent architectures can be appropriate for a use
case. We use ConvNeXt in this thesis. Two
images, one of which is a transformed version
of the other, are processed by the CNN (shared
weights) resulting in a convolutional output z for
each image. The final layer consists of D (num-
ber of prototypes) feature maps with dimension
(H×W ). After applying a softmax over D, such

that
∑D

d zh,w,d = 1, a patch (zh,w,:) is forced to
belong to exactly one prototype. This has the
additional effect that the last layer can be in-
terpreted as a saliency map of the prototype’s
existence over the image. By applying a max-
pooling function per feature map z:,:,d we can
identify the presence of a prototype in an image
and forward the resulting image encoding p to
the next stage.

The image encoding p is the input to the
sparse linear classification layer, with weights
ωc ∈ RD×K

≥0 . The learned weights per class rep-
resent the relevance of a prototype to the class.
The output from this layer can therefore be in-
terpreted as a scoring sheet, where the score for
a class is the sum of all present prototypes mul-
tiplied by their weights.

Training process The training process con-
sists of two distinct training stages: (i) The self-
supervised pre-training stage, which pre-trains
the last layer of the CNN to be a probability
map of a prototype distribution. (ii) A training
stage, which trains the model to achieve a high
classification accuracy.

During self-supervised pretraining only the

CNN backbone is trained. The aim is to learn
semantic similarities and not to achieve a high
classification accuracy. To attain this, the net
is been given contrasting inputs, e.g. an image
and a transformed version of the image. The
aim of the stage is to minimize the difference in
the feature representation of both images in the
final layer of the CNN. This is achieved by the
alignment loss:

LA = − 1

HW

∑
(h,w)∈H×W

log(z′h,w,: · z′′h,w,:) (1)

To prevent a trivial solution, a second loss,
the tanh-loss LT is utilised to ensure that every
prototype should be present at least once in a
mini-batch.

LT (p) = − 1

D

D∑
d

log(tanh(

B∑
b

pb) + ϵ) (2)

The two losses are combined into the overall
loss of this stage: λA ∗ LA + λT ∗ LT

After the first training step, the linear layer
will be trained along with the CNN, and a clas-
sification loss is added to the previous loss term.

The third loss term is the standard negative
log-likelihood loss for classification tasks.

LC(x, y) =

N∑
n=1

1∑N
n=1

− wynxn,yn (3)

where y is the target, x is the prediction, N is the
size of the mini-batch, and w is the weight asso-
ciated with the predicted class (1 if no weights
are chosen).
They are combined into the total loss as

λA ∗ LA + λT ∗ LT + λC ∗ LC
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4 Experimental Setup

To set up the experiments we introduce the data-
set, model parameters and the evaluation met-
rics, which are used to create a baseline model
that are analysed in Sections 5 and 6.

Datasets. The datasets for answering the re-
search questions have been provided by the ZGT
Almelo-Hengelo and consist of X-rays of hips,
some of which depict fractures. The data-
sets include one high-quality dataset depicting
trochanteric fractures of the hip (named HIP-
TF). These fractures are are often obvious even
to the untrained eye. The second dataset (HIP-
CF) includes multiple different fracture types,
but mostly column fractures. These fractures
are harder to spot and the fracture area usu-
ally takes up a smaller percentage of the overall
X-ray than in the HIP-TF dataset1. All data-
sets have binary labels (”fracture” and ”no frac-
ture”), which indicate the presence or absence
of a fracture in the X-ray.

To answer the research questions the data-
sets are annotated with the positions of the ar-
tificially inserted patches and regions of interest.

Shortcuts. We added rectangular patches to
the images in the HIP-CF dataset, which pres-
ence is positively correlated with the ”no frac-
ture” class. The rectangles are assigned random
RGB values from the interval [200, 255]. Their
size is roughly the same as an image patch from
PIP-Net (image size divided by 10), so their
presence in a patch can be confidently attributed
to a found shortcut, and not to other informa-
tion found in the patch. To make sure that no in-
formative part of the image is covered, the centre
of the image (the middle 50% of the total width)
is excluded from patch placement and a gaussian
blur (radius: image width divided by 20) is ap-
plied to the rest of the image to find the darkest
part of the X-ray. For every image the exact
location of the shortcut is recorded. To evalu-
ate the effect of shortcut learning on the PIP-
Net model, three different shortcut probabilities
are applied. The dataset HIP-CF50% includes
shortcuts in 50% of the images, the dataset HIP-
CF70% includes shortcuts in 70% of the images
and the dataset HIP-CF100% includes shortcuts
in all of the images. Figure 3 shows an example.

Regions of Interest. Regions of interests in
the context of these datasets are defined as the
areas of the X-ray that visibly depict fractures.
The images were inspected and annotated
with the labelme software, as a polygon with
the label ”fracture”. The coordinates of the

1For more details on the different fracture types refer
to Appendix B

polygon are saved for each image. To ensure
the annotation quality random samples were
controlled by domain experts and subjected
to inter-annotator agreement analysis (see
Appendix B for more details).

A summary of the datasets can be seen in
table 1.

Model Training. All of the datasets defined
above are classified with a PIP-Net model with
the same configurations: ConvNeXt Tiny as
backbone [29], a learning rate of 0.05 for the lin-
ear classification layer and 0.0001 for the back-
bone. We use a batch size of 64, 16 epochs
for pretraining, and 85 epochs for training (16
of those with a frozen backbone), as introduced
in [25].

Metrics. Traditionally, models like the ones
we present here are evaluated according to their
prediction quality.

Performance metrics like accuracy

Accuracy =
Number of Correct Predictions

Total number of predictions made

or AreaUnderCurve (AUC), which calculates the
Area under the Receiver Operating Character-
istics (ROC) curve, plotting the True Positive
Rate (TPR)

TPR =
TP

TP + FP

against the False Positive Rate

FPR =
FP

TP + FP

(where TP is the number of true positive pre-
dictions, and FP is the number of false positive
predictions) have not been designed to evalu-
ate the adherence to domain knowledge and can
therefore not distinguish between models on this
basis.

Baseline model. The baseline runs for the
two raw datasets (HIP-CF and HIP-TF) as well
as the datasets with artificially added patches
(HIP-CF50%, HIP-CF70%, HIP-CF100%) evalu-
ated with accuracy and AUC is in table 2. The
results show the average performance from three
runs, with the standard deviation of the metrics
in parentheses. All runs have a comparatively
high performance (accuracy above 0.94). While
the table shows that accuracy is increasing with
a higher correlation of artificially added patches,
it would not be possible from these results alone
to judge if a model would be determined to be
useful to deploy in medical practice.
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Description Remarks Label
Train Test

H
IP

-T
F

Dataset from hospital Ziekenhuisgroep
Twente (ZGT). ZGT’s database of di-
gital radiography was queried for hip
X-rays which were taken on the suspi-
cion of hip fracture between 2005 and
2022 (patient age ≥ 16). The fracture
class (trochanteric fracture vs. no frac-
ture) label was extracted from the elec-
tronic health record and crossmatched
with the DBC code (financial regis-
tration code for diagnostics and treat-
ment). All images were converted from
DICOM format to png.

2115 images of
fracture class
have ROI an-
notations

# fracture
1590
# no fracture
9235

# fracture
472
# no fracture
2654

H
IP

-C
F

Dataset from hospital Ziekenhuisgroep
Twente (ZGT). ZGT’s database of
digital radiography was queried for hip
X-rays which were taken on the
suspicion of hip fracture between 2005
and 2018 (patient age ≥ 21). The
fracture class (column fracture vs. no
fracture) label was extracted from the
electronic health record and
crossmatched with the DBC code
(financial registration code for
diagnostics and treatment). All images
were converted from DICOM format
to png.

≈200 ROI an-
notations in
fracture class

# fracture
3468
# no fracture
4080

# fracture
859
# no fracture
1005

H
IP

-C
F
5
0
% 50% of no

fracture class
include shortcut

# fracture
3468
# no fracture
4080

# fracture
859
# no fracture
1005

H
IP

-C
F
7
0
% 70% of no

fracture class
include shortcut

# fracture
3468
# no fracture
4080

# fracture
859
# no fracture
1005

H
IP

-C
F
1
0
0
% 100% of no

fracture class
include shortcut

# fracture
3468
# no fracture
4080

# fracture
859
# no fracture
1005

Table 1: Description of the datasets, including their number of samples. All datasets have binary
labels indicating the presence or absence of a fracture.
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(a) the original X-ray (b) The X-ray with ROI covered

Figure 2: An X-ray with column fracture on the left side of the image.
a) the ROI is visible, b) the image is covered by a patch of the average pixel colour.

(a) The original image (b) The image with added shortcut

Figure 3: An X-ray from the ”no fracture” class. a) original image, b) with added shortcut in the
upper left corner.

Class Dataset Accuracy AUC worst class
accuracy

fr
ac
tu
re HIP-TF 0.944 (0.019) 0.981 (0.003) 0.925 (0.026)

HIP-CF 0.946 (0.001) 0.983 (0.001) 0.942 (0.001)

n
o
fr
ac
tu
re HIP-CF50% 0.957 (0.001) 0.991 (0.000) 0.954 (0.003)

HIP-CF70% 0.962 (0.003) 0.992 (0.000) 0.958 (0.004)
HIP-CF100% 0.995 (0.001) 0.999 (0.000) 0.991 (0.002)

Table 2: Baseline runs for all datasets. Values are average over three runs, the standard deviation
is in parentheses. All runs are fitting a binary classification. For the first two runs the ”fracture”
class is associated with domain knowledge, through the regions of interest. For the last three
runs the ”no fracture” class is associated with domain knowledge, through the different shortcut
correlations. All runs have very comparable performances and it is not possible to detect domain
knowledge alignment from the table.
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5 Quantification

When looking at table 2 it is not possible to pick
the model which explanations are most similar
to human intuition, as the evaluation metrics are
roughly the same across all models. However,
PIP-Net provides additional information about
the classification. The locations of the activ-
ated prototypes can give us further insights into
the model quality that go beyond the established
methods.

For an example why it is important to eval-
uate adherence to domain knowledge see figure
4, where you can see a comparison between the
prototype distribution after the training on HIP-
CF and HIP-TF datasets. Looking at table 2
the models seem to be of equal quality, but the
HIP-TF model has only very few prototypes,
which have a high overlap with the ROI, whereas
the HIP-CF model has a much higher prototype
count for the same class, which are scattered
throughout the image. A good measure would
instead assess the visual alignment of the proto-
types with the interested regions, as well as the
mathematical importance of the regions to the
classification, as we want our most important
prototypes to be located in the interested areas
of the X-ray.

Prototype placement A prototype that is
aligned with domain knowledge should be loc-
ated at a ROI and should not be located at a
shortcut. Therefore we propose the Intersection
over Union (IOU) to quantify how much the pro-
totype is overlapping the interested region. We
define the area of the shortcut as ROIsc, the
area of the fracture as ROIfr and the area or
the prototype patch as Ap. To facilitate the for-
mula, both ROIsc and ROIfr are referred to
as ROI∗. To better compare the results of this
calculations for both application cases we use a
correction term, where we divide the bigger area
by the smaller one. 2

IOU =
Ap ∩ROI∗
Ap ∪ROI∗

× correction

A higher IOU with ROIs and a lower IOU with
shortcuts is evidence for a higher adherence to
domain knowledge. We apply the IOU measure
to all activated prototypes of an image to create
a candidate lists of prototypes that depict
shortcuts or ROIs.

2As the ROIfr is usually a lot bigger in this instance
than Ap the IOU would become very small, therefore
we correct the term by the differences in size in the two

areas. We calculate the correction term as
ROIfr

Ap
. The

opposite is true for ROIsc, which is smaller than Ap. In

this case we calculate the correction term as
Ap

ROIsc

To summarise the resulting distribution over all
prototypes into one value, we report IOU :

IOU = Mean(IOU |IOU ̸= 0)

We only consider instances of IOU ̸= 0 as the
artificial shortcuts are only present in the ”no
fracture” class, and ROIs are only defined in the
”fracture” class. The IOU is therefore 0 by de-
fault in these cases.

However, the current localisation of the pro-
totypes is not very accurate (see [30] for more
details), and only one instance of the prototype
is considered in this method 3. Therefore, this
measure on its own is not regarded as sufficient
for the evaluation of the prototype’s alignment
with human reasoning.

Prototype Importance A prototype should
not only be located at the interested region,
but also be important for the classification. To
quantify how much the area of the shortcut or
the ROI is influencing the classification, the area
can be masked (in the case of ROI, see figure 2)
or compared to the original image without short-
cut (in the case of the shortcut analysis, see fig-
ure 3). A prototype that is depicting the inter-
ested area can then not be activated anymore.
Comparing the activated prototypes and the res-
ulting classification weights gives a measure of
the importance of the interested area towards
the whole classification. The prototype presence
scores of the model are called p and are asso-
ciated with their weights ωC in the linear layer
for each class C. These weights are non-negative
(ωc ∈ RD×K

≥0 ) and p ∈ [0, 1]. covered indicates
the interested areas are not visible (ROIfr or
ROIsc are not masked or not visible). uncovered
indicates the image includes its ROI∗.

PI =
pcovered · ωC,covered

puncovered · ωC,uncovered

The prototypes whose presence scores were
changed the most between the covered and un-
covered images are collected in a second candid-
ate list of prototypes that depict shortcuts or
ROIs.

As masking or removing the shortcut can
change image properties such as the average
pixel value, or trigger the activation of other
shortcuts this measure is not sufficient to de-
termine which prototypes are responding to in-
terested areas.

Combining the Measures Both Prototype
placement and Prototype importance create
candidate lists for prototypes that depict ROIs

3a prototype can be activated at multiple patches in
the image, but only the patch with the highest probab-
ility is considered for the calculation
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(a) Example output from the HIP-CF model.
While some prototypes are overlapping the ROI,
there are even more scattered around the image.

(b) Example output form the HIP-TF model.
The only two prototypes are overlapping with
the ROI; The model aligns well with domain
knowledge.

Figure 4: Example images showing the prototype locations in the X-ray images. The outline of
the region of interest is shown in yellow, prototypes which overlap with the ROI are marked in
green, prototypes outside the ROI are red

or shortcuts. Examples of these results can be
seen in Figures 5a and 5b. As argued above
either of these candidate lists are not pure,
meaning they also can include prototypes that
are not depicting shortcuts and ROIs. However,
intersecting these lists leaves only candidates
with high probability of depicting an interested
area. By manually checking all prototype lists
against the visualisations of the relevant proto-
types and their positioning on the images, we
found the candidate lists to be consistent with
human evaluation. Therefore we conclude that
the methods are able to assess adherence to do-
main knowledge in PIP-Net.

5.1 Results

Applying IOU and PI to the same models
makes the differences between their adherence
to domain knowledge apparent. While all five
models have a very similar performance (see
Table 2), differences become clear when look-
ing at Table 3. Table 3 includes the number of
prototypes for the relevant class. As the ROIs
are only defined for the ”fracture” class and the
shortcuts are correlated with the ”no fracture”
class, the relevant class shifts between the two
application cases. The column IOU depicts the
average Intersection over Union for prototypes
which have an IOU bigger than 0. The higher
the IOU , the more the prototypes are aligned
with the interested area. The column PI de-
picts the average prototype importance for im-
ages where the prototype importance changed
when comparing covered and uncovered images.
The higher the PI, the higher the influence of
the interested area on the final classification. Fi-
nally, the column ”# of identified prototypes”
shows the length of the intersected candidate

lists created by both measures. The number in-
dicates the amount of prototypes that depict the
interested areas.

Regions of Interest. Adherence to the re-
gion of interest can be seen both in Prototype
Location and Prototype importance. As ROIs
are defined for the fracture class both model
HIP-TF and HIP-CF can be compared to see
that HIP-TF has a higher adherence to domain
knowledge than HIP-CF. HIP-TF only has 2.3
prototypes in the relevant class on average. Both
IOU and average prediction percentage are quite
high and most of the prototypes are identified as
depicting the ROI. This means that the model
has a very high alignment with domain know-
ledge, an impression that is confirmed by look-
ing at prediction visualisations such as in Fig-
ure 4. Comparing this to the values from the
HIP-CF model, it can be seen that this model
has a lot more prototypes in the relevant class,
but a much lower percentage of those are identi-
fied as being relevant to the identified class after
intersecting the candidate. Based on this ana-
lysis it becomes clear that the HIP-CF adheres
less to domain knowledge and leaves room for
improvement.

Shortcuts. The classification’s dependence on
shortcuts becomes visible when looking at av-
erage IOU and average change of predictions.
Shortcuts are added to the HIP-CF dataset, cor-
relating with the ”no fracture” class, therefore
to assess the models dependence on shortcuts
we analyse the models in the second section of
Table 3. Comparing the HIP-CF run to the ones
with an increasing correlation with shortcuts it
can be seen that the number of prototypes in
the relevant class is decreasing with higher cor-
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relation, but the number of identified shortcut
prototypes is increasing. Therefore a higher per-
centage of the overall classification is depended
on the existence of shortcuts. This is confirmed
through looking at average percentage of pre-
diction, which is also increasing along with the
shortcut correlation. On the other hand the av-
erage IOU stays constant. To look at this phe-
nomenon more closely it is helpful to inspect
the average IOU per prototype, as can be seen
in figure 6. The graphs show that the average
IOU and the average prototype importance per
prototype. With a higher correlation with the
shortcuts, the number of identified prototypes is
increasing, which can be seen in the higher over-
lap between the two distributions. While the
three shortcut correlation runs were almost in-
distinguishable in table 2, table 3 and figure 6
show that the proposed measures make it clear
how much the runs are diverging from domain
knowledge by their shortcut dependence.

Bringing it all together. For both ROIs and
shortcuts the proposed measures give the ability
to distinguish between models that are closely
aligned with domain knowledge and those that
are not. Therefore the measures provide another
evaluation dimension and can be used to evalu-
ate changes which we propose in section 6.

6 Model Optimisation /
Adaptation

The evaluation from section 5 enables the iden-
tification of prototypes that depict shortcuts or
ROIs. Using this information it is possible to
retrain the classification layer create a model
that adheres more closely to domain knowledge.
We use two different approaches to achieve this.
First, for the models that are trained on short-
cuts, we exclude the prototypes that depict
shortcuts. Second, for the models that are not
trained on shortcuts, we restrict the prototypes
to those that are depicting ROIs. By treating
the problems separately we can distinguish the
effectiveness of the approaches from each other.

Excluding shortcut prototypes. When the
shortcut prototypes are known, the most intuit-
ive next step is to exclude them from the clas-
sification layer and continue training for a few
epochs with the remaining prototypes 4. These
runs can be seen in Table 4, under the method
no-SPwo. However, this method leads to an de-
crease in accuracy (e.g. the accuracy for HIP-
CF70% changed from 0.962 to 0.939), especially
when a high dependency on the shortcuts ex-
ists in the datasets. The decrease in accuracy

415 epochs, batch size 64, learning rate 0.05

comes entirely from the decrease in accuracy of
the ”no fracture” class, which is correlated with
the shortcut. As can be seen the average IOU
has been decreasing, whereas the average per-
centage of prototype importance has increased.
However, it is important to note, that these res-
ults are from less prototypes, and intersecting
the candidate lists for both measures creates
an empty list of identified shortcut prototypes.
Based on this is is safe to assume that the meas-
ured overlap and shortcut importance are spuri-
ous and are not causally linked to the prototype.
A manual examination of the prototype patches
confirms this. Therefore the resulting model can
be seen as free of (known) shortcuts, but of sub-
optimal performance.

Reinitialising the classification layer. We
propose to reinitialise the classification layer
with random values (X ∼ N (0, 0.1)) and train
the classification layer with all available proto-
types from scratch, with a reinitialised scheduler
and classifier 5. Thereby the model has access
to other prototypes that may have been over-
shadowed by the shortcut prototypes before (as
PIP-Net is optimised for sparse explanations,
less important prototypes are ignored). After
every epoch we run the analysis for shortcut
prototypes again, to check if any of the pro-
totypes are depicting shortcuts. If some are
found, the classification layer weights, classifier
and scheduler are reinitialised and the weights of
the shortcut prototypes are set to zero. Thus, it
can be ensured that no new shortcut prototypes
are found by the model which replace the ones
already identified. The results from runs with
this configuration can be seen in Table 4, under
the method no-SP/w . The performance of the
new models (accuracies 0.947, 0.943 and 0.960
respectively) are equal to the models perform-
ance without shortcuts (accuracy 0.946), and do
not have the same performance drop as with the
no-SP/wo method. Figure 6 shows that there
is actually no dependence on shortcuts anymore
as the overlap between the average IOU and av-
erage shortcut importance distribution vanished
after retraining.

Focusing on ROI prototypes. When ROI
prototypes are known the most intuitive next
step is to restrict the classification for their rel-
evant class to them. Thereby all scattered pro-
totypes that are not related to the region of in-
terest are ignored. To achieve this the weights
of all prototypes for the class ”fracture” (the
only one which has ROI information) are set to
0. Prototype weights for the class ”no fracture”
are not touched, as for this class the ROI is not
defined, and therefore it is not possible to auto-

515 epochs, batch size 64, learning rate 0.05
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(a) In one HIP-CF0.5 baseline run five proto-
types were determined to be shortcut proto-
types, the most activated 10 examples can be
seen above

(b) In one HIP-TF baseline run, only one proto-
type was determined to be a ROI prototype. A
sample of the corresponding image patches can
be seen above

Figure 5: Examples for shortcut and ROI prototypes in trained models identified through the
measures described in Section 4

Class Dataset # prototypes
of class

# of ident.
prototypes

IOU PI

fracture
HIP-TF 2.33 (0.57) 1.50 (0.71) 0.53 (0.17) 0.74 (0.23)
HIP-CF 33.67 (0.58) 1.33 (0.58) 0.78 (0.20) 0.82 (0.05)

no fracture

HIP-CF 54.33 (3.05) 0 - -
HIP-CF50% 49.67 (0.58) 4.33 (0.58) 0.49 (0.08) 0.91 (0.00)
HIP-CF70% 50.00 (3.00) 8.33 (2.52) 0.50 (0.05) 0.93 (0.03)
HIP-CF100% 36.33 (1.15) 14.33 (1.53) 0.45 (0.02) 0.99 (0.00)

Table 3: Measures introduced in section 5, for the baseline runs shown in table 2. While the
runs looked very similar in the baseline runs, the measures give indications about the differing
alignment with domain knowledge. Values are average over three runs, the standard deviation is
in parentheses.

Figure 6: Average Intersection over Union and average prototype importance per prototype for a
model trained on HIP-CF50%. The upper image shows the distribution before retraining, the lower
after retraining. The overlap between the distributions diminishes. Observations in the middle of
the graph are omitted for readability. Graphs for other datasets are in Appendix C
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Method Dataset Accuracy acc(no
frac-
ture)

acc(
frac-
ture)

IOU Imp # ident.
Proto-
types

n
o-
S
P
/
w
o

HIP-CF50% 0.943
(0.003)

0.938
(0.006)

0.947
(0.006)

0.124
(0.098)

0.929
(0.015)

0

HIP-CF70% 0.939
(0.001)

0,925
(0.006)

0,953
(0.008)

0.173
(0.187)

0.932
(0.014)

0

HIP-CF100% 0.902
(0.020)

0.821
(0,042)

0.983
(0.005)

0.094
(0.012)

0.972
(0.026)

0

n
o-
S
P
/
w

HIP-CF50% 0.947
(0.000)

0.945
(0.003)

0.948
(0.002)

0.038
(0.010)

0.694
(0.111)

0

HIP-CF70% 0.943
(0.002)

0.938
(0.005)

0.947
(0.009)

0.065
(0.066)

0.829
(0.102)

0

HIP-CF100% 0.960
(0.001)

0.958
(0.001)

0.961
(0.003)

0.073
(0.015)

0.789
(0.015)

0

o
n
ly
-D

K
/
w
o HIP-CF 0.888

(0,018)
0.938
(0.017)

0.838
(0.052)

0.916
(0.131)

0.876
(0.015)

1.333
(0.577)

HIP-TF 0.942
(0.012)

0.948
(0.028)

0.937
(0.003)

0.673
(0.076)

0.668
(0.145)

2.000
(1.000)

Table 4: Results after prototype removal without re-initialisation (no-SP/wo), after prototype
removal with re-initialisation (no-SP/w), and after relying only on domain-knowledge prototypes
without re-initialisation (only-DK/wo). Values are average over three runs, the standard deviation
is in parentheses.

matically classify a prototype to be aligned with
domain knowledge. The results after retraining
the classification layer 6 are in Table 4 under the
method only-DKwo. As the HIP-TF model only
had a few prototypes in the ”fracture” class, all
of which were closely related to the ROI, the
performance metrics have not changed after re-
training (accuracy changed from 0.944 to 0.942).
The HIP-CF model however, which does not
have reliable ROI prototypes, has a highly de-
creased accuracy (accuracy changed from 0.946
to 0.888). Based on these results it becomes
clear that this simple solution is not sufficient to
provide a model that aligns with domain know-
ledge based on information about the region of
interest.

7 Increasing Prototype
Coverage

To achieve a higher model performance we need
to ensure a higher coverage of ROIs with proto-
types. Ideally the ROI of the image is covered
in prototypes, while no prototypes are activated
in the rest of the image. To achieve this a new
loss is necessary, that takes the coverage of the
ROI into account.

Loss proposal. The new coverage loss needs
to take the position of the ROI into account,

615 epochs, batch size 64, learning rate 0.05)

and compare it with the prototype activation
maps in the latent features which are an out-
put of the CNN backbone (see figure 1 for ref-
erence). The latent feature dimensions of Con-
vNeXt [29] (the backbone for these experiments)
are (h × w × d) = (13 × 13 × 768), meaning
that every image is represented as 768 probabil-
ity maps (one for each possible prototype) before
being pooled and used as input to the classific-
ation layer. The ROI maps that have been cre-
ated for a subset of the datasets (see section 4),
have to be converted to a binary mask of size
(h×w) = (13× 13), which indicate the position
of the ROI. An example can be seen in Figure 7

The probability maps are normalised with
softmax such that

∑D
d zh,w,d = 1, creating al-

most one-hot encoded tensors. This means that
for every patch position exactly one prototype
is activated already. We assume that the proto-
types that are activated in the ROI are already
useful and varied, but do not weigh into the clas-
sification layer. Then the weights of the classi-
fication layer should be used to weigh the activ-
ation maps. Using this we propose the loss term
LC as

LC =

H∑
h

W∑
w

|min(1,

D∑
d

zh,w,d · ωd)−maskh,w|

where zh,w,d is probability of prototype d at
patch h,w in the latent feature representation,
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(a) ROI activation map
(b) Origin image of the activation map

Figure 7: One hot encoding the presence of the ROI of an image into a 13× 13 matrix.

ωd is the weight of the classification layer asso-
ciated with prototype d. Summing up the latent
features weighted with the classification weights
results in a sparse matrix, which is clamped to
have values [0, 1]. All absolute deviations from
the binary mask are summed to get the LC loss
term. Applying the loss to the HIP-TF and
HIP-CF datasets does not have the desired ef-
fect, but reduces the relevant prototypes for the
”fracture” class to 0.

Discussion of proposed loss. One reason for
the loss performance can be the weight of LC as
part of the whole loss term. Fine-tuning the in-
dividual loss term weights can change the focus
of the model training.

However, we found there is one prototype
that is activated in (nearly) all images, which
encodes a variety of concepts, but nothing spe-
cific for one class (see figure 8). This can be
caused by the LA loss (see Section 3 and [22]
for further information). Nauta et al. [22] pro-
posed the LT loss to prevent this trivial solution.
As their paper was developed on datasets multi
class datasets (CUB [31] with 200 bird species
and Stanford Cars [32] with 196 car types) this
trivial solution might be because the datasets in
this thesis are binary. As the model additionally
optimises for a sparse explanation, there is no in-
centive to provide a wide variety of prototypes to
classify the two classes. As the purpose of LT is
to prevent the trivial solution, giving this term
more weight in the Loss term might solve this
issue. Additionally a loss term that takes the
patch similarities into account could be used to
prevent prototypes from encoding multiple con-
cepts. [33] (unpublished) proposed

LA(p) = ||un(p′)− un(p′′)||22

as an alignment loss for PIP-Net. Where p′ and
p′′ indicate representations of two different views

Figure 8: Extract from the unspecific prototype
that was activated across (nearly) all images.
No common concept can be seen across the in-
stances of the prototype.

of the same image and un is a function normal-
ising p to unit L2-norm and || · ||22 is the squared
L2-norm. While this loss was ultimately dis-
carded, a similar one might be able to prevent
unspecific prototypes.

With the observation of unspecific proto-
types the assumption of useful and varied pro-
totypes in the ROI is violated, which prevents a
coverage loss from being a viable improvement of
the model. Therefore further research is needed
to create a loss that focuses PIP-Net on ROIs.

8 Limitations

The solutions to the research questions in this
thesis are dependent on assumptions, limiting
their applicability for differing applications. The
most important are discussed in this section.

Known prototype locations. The methods
discussed in this thesis are highly dependent on
the knowing the prototype location of a PIP-
Net. However, Xu et.al. [30] have published a
sanity check for the prototype location, which
shows that the simplified placement of the pro-
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totypes might no be accurate. The receptive
field of the CNN backbone is quite broad, and
all pixels of the image are therefore influencing
every prototypes. The methods proposed here
are ignoring the receptive field and thus the pro-
totype placement might be faulty. While we
have taken great care in also manually checking
the prototype visualisation, to make sure that
the experimentation results are sound, this is-
sue should be addressed in future research.

Known shortcut and ROI locations. All
methods proposed here assume that shortcut
and ROI locations are known in the original im-
age, an assumption that is likely violated in real
life applications. As the shortcuts are added ar-
tificially, the exact locations were known and it
was possible to have an exact counterfactual im-
age with no shortcut. In real life the definition
of shortcut can be more fuzzy. It could be a
background colour, some writing in the image,
or other features, such as a patient wearing a
diaper. Therefore locating the exact locations
of a shortcut in an image might not be feas-
ible or even possible. Second, creating a coun-
terfactual might be very work intensive or im-
possible. Painting out the background or re-
moving parts of the image requires a high level
of domain knowledge and computation power.
Therefore the methods of calculating the influ-
ence of shortcuts as done in this thesis might not
be applicable. However, the experiments rectify-
ing the shortcuts influence are not based on the
IOU or shortcut importance measures, but on a
list of shortcut prototypes. This means that it is
possible to work together with a domain expert,
who can point out prototypes that should be ig-
nored. While this assumes expert involvement
(which is inherently expensive), it means that
the model adaption methods are more widely
applicable.

Region of interest is localised. The ROI
locations are also made on the assumption that a
region of interest is relatively easy to determined
and is located on the image in a clustered way
and not distributed or fuzzy. While this is pos-
sible for a localised trauma like a hip fracture,
this might not be true for all kind of applica-
tions. Therefore, the methods applied here in
creating a counterfactual, with the ROI painted
out, might not be feasible in other applications.
Also, it is necessary to access domain expert
knowledge to determine the ROIs in the first
place, which is expensive or might not be access-
ible. As has been shown it might not be enough
in this case to just identify the prototypes that
are located on the ROI to focus the model on
them. The ROI information is integral to the
creation of the loss function as the binary mask

is derived from them directly. To limit the costs
of the ROI creation the methods proposed here
are tested on relatively small samples of labelled
images. However, this might also lead to the
results being overfitted on the small subsample,
especially if it does not capture edge cases in the
overall dataset.

The loss function Finally, the loss function
proposed in section 6 has not been sufficiently
tested or implemented yet, but should be seen
as an inspiration for future research. The as-
sumption that a higher coverage of the regions
of interest is beneficial is yet to be proven, but
seems intuitive. However, as discussed Section 7,
due to unspecific prototypes it might not be
enough to implement a coverage loss, but also
other parts of PIP-Net need to be adjusted to
make it a feasible solution.

9 Summary

We presented two measures which in combina-
tion can evaluate a PIP-Net based on its align-
ment with domain knowledge. The measures are
Intersection over Union, an overlap calculation
between a PIP-Net prototype and an interested
region, and prototype importance, by looking
at the difference in classification weights when
comparing counterfactual images. Combining
these two measures results in a prototype list,
which depict an interested region. The measures
provide a way to discriminate between different
PIP-Net models with similar performance met-
rics based on their domain knowledge alignment.

Based on these performance metrics we fur-
ther proposed methods to use the gained in-
formation to improve the models adherence to
domain knowledge. For the datasets used in
this thesis is sufficient to reinitialise the classi-
fication layer and set known shortcut prototype
weights to zero, until no shortcut prototypes are
used in the classification anymore. With this
method the performance of the original (short-
cut less) model performance could be reached.
For the adherence to a region of interest the
reinitialisation of the classification layer has not
been shown to be sufficient to recreate the per-
formance of the original model. Therefore we
proposed a new loss term that could provide a
higher number of prototypes that refer to the
ROI. However, we found that due to the pres-
ence of unspecified prototypes more changes to
PIP-Net need to be conducted in order to make
this approach feasible. More research in this
area is needed.
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B. Zieliński, “Interpretable Image Clas-
sification with Differentiable Prototypes
Assignment,” Sept. 2022. arXiv:2112.02902
[cs].

[12] S. Lapuschkin, S. Wäldchen, A. Binder,
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A Non-technical summary

When we are deploying machine learning models
into a medical context it is important to increase
trust in the technology so it can actually be used
in the daily practice. With traditional methods
like deep learning the output of the model comes
out of a black box and cannot be explained or
interpreted. PIPNet, the basis of this thesis, is
a model that combines a black box with an in-
terpretable model. It creates so called ”proto-
types” (recurring features in images) and finds
them in the images, at locations called patches.
Each prototype is associated with a class and
weighs into the classification decision the model
has to make. When looking at the output the
practitioner can see on which patches the model
has based its decision. For example when look-
ing at a hip fracture, we would like to see that
all the patches are clustered around the area of
the fracture, and not seemingly randomly strewn
around the image.

This thesis aims to improve the model based
on the location of the patches. It assumes two
scenarios: 1. We DO NOT want the model
to look at so called ”shortcuts”. In real ap-
plications this could be some writing in the
background, a patient wearing another medical
device, etc. In the context of this thesis we ad-
ded artificial shortcuts to the image, to be able
to control their influences better. 2. We DO
want the model to look at the Region of Interest
(ROI). In the case of hip fractures this is the
fractured bone. For this thesis we have marked
the area accordingly.

To achieve this goal the thesis introduces
two measures, Intersection over Union (IoU) and
Prototype importance. IoU measures how much
patch is overlapping with an area (either ROI or
Shortcut) and Prototype importance measures,
how much the influence of the found prototype
changes when we cover up the area. Combining
these two measures helps us to identify whether
a model is adhering to domain knowledge and it
shows us which prototypes are depicting short-
cuts or ROIs. With this knowledge we can then
improve the model. For example by removing
shortcut prototypes, or by restricting it to ROI
prototypes. In the thesis we showed that it is
possible to retrain the model without the short-
cuts and to receive the same accuracy as before.
However, we also showed that it is not always
possible to restrict the model on only the regions
of interest. Therefore we propose a new loss (a
new priority in the model training process) that
takes ROI coverage into account. The reasoning
behind this is that we want more prototypes that
are depicting the ROI than we already have, as
this could make the classification more confid-
ent. However, because of technical reasons and
time restrictions the new loss is not sufficiently

tested and not currently improving the model
performance.

For a practitioner these results mean, that is
is possible to react to feedback and to improve
the model based on domain knowledge. If a ra-
diologist is shown the model results, they can
indicate which parts of the classification make
sense to them and which do not. They could also
indicate where the model should have looked in-
stead. After collecting this feedback, the model
can be retrained to fit more closely to the spe-
cification. Over time, we can then hopefully get
a model that is trustworthy and that can be used
in the daily work flow.

B Region of Interest -
Annotation

For the purpose of this thesis we annotated 2114
images with trochantic fractures, and 200 images
with column fractures. The annotations were
done with the labelme software version 5.3.0a0,
from the labelme github. Labelme only takes
standard image compressions as input, therefore
the images were converted from dicom to png
or jpg. The annotations take the form of poly-
gons, which surround the fractured area of the
image. Each image has one and only one region
of interest, that is marked with the tag ”frac-
ture”. The points of the ROI are stored in json
files with the same name as the original image.
To secure the accuracy of the the annotations of
the trochanteric fracture dataset two approaches
were used to evaluate them: 1. Another re-
searcher (Jeroen Geerdink) annotated a subset
of images (256). The overlap of the polygons for
images in both datasets were compared. On av-
erage 87% of my annotations were overlapping
with Jeroens and Jeroens polygons were over-
lapping 69% with mine, which is in accordance
with the difference in our annotation methods.
Jeroen tends to make the annotation area big-
ger. For 2% of the observations there was a
disagreement in the placement of the ROI. 2.
10% of the dataset were also sent to Han Hege-
man (trauma surgeon) to evaluate from a med-
ical perspective. He rejected about 5% of the
annotations. The reasons for rejections also in-
cluded incomplete annotations, mostly ROIs are
missing lower placed fraction areas.

Overall the annotations are of reasonably
high quality.

As the model of the trochanteric fractures
is not exhibiting a high spread of prototypes,
the images unfortunately could not be used for
model adjustments as originally planned.

Therefore I also annoated 200 images from
the column fracture dataset. For time reasons
the same quality controls were not undertaken as
for the first dataset. However, as in this dataset
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the fractures are more varied, and harder to spot
it is likely that these dataset annotations are not
of the same quality as the other.

C Further Graphs

Graphs depicting the effect of retraining with
linear layer reinitialisation based on the datasets
HIP-CF70% and HIP-CF100% are in figure 9

Figure C screenshot showing an example
of a prototype (prototype 653) being activated
across most of the image. It is exemplary for
other images, which have been omitted for space
reasons. The screenshots hints that the align-
ment loss leads to a trivial prototype attibution
for many patches in the image.

D Shortcut unlearning

A (failed) attempt to unlearn shortcut was to
use the same technique that is currently used
to teach the model to ignore the transforma-
tions applied to the input images on the sub-
ject of shortcuts as well. To do this, we in-
serted a second pretraining step after the first
one, but changing the input from one ”normal”
image and one transformed image to one ”nor-
mal” image and one ”shortcut” image instead.
The alignment loss forces the model to create
the same prototype distributions across both im-
ages, meaning it is encourage to ignore the short-
cuts. A proposed architecture can be seen in
Figure 13. Comparing the visualized prototypes
before and after the shortcut unlearning step
gave some encouraging results. Some ”short-
cut prototypes” seem to have become ”short-
cut agnostic”, displaying areas with and without
shortcut in the same prototype. However, as the
method is assuming access to a whole dataset
with shortcuts and without is quite unrealistic
(unless the shortcuts are added artificially like
in this case), there is a very limited practical
value to the method. Therefore the attempt was
abandoned after a few weeks in favour of more
realistic solutions.

E Practical Application as
a Service in ZGT

The PIP-Net Model (trained on the HIP-TF
dataset) will be deployed as a service with the
support Pukka-J, who have been sponsoring this
thesis. MSc. Quang-Hung Nguyen, is creating a
backend which is able to deploy the model and
store the results. He is also working on a front
end, which the radiologist can use to see the
output from PIP-Net. The current development
state of the application can be seen in figure E.

The aim of the application is to get feedback on
the prediction quality. As this thesis showed,
it is possible to amend PIP-Net so it conforms
closer to domain knowledge. It is unfeasible to
label a lot of images next to the normal hos-
pital workflow. However, the visual application
makes it possible to quickly give feedback on the
quality of the prediction. Currently this consist
of a RADPEER score (developed by the Amer-
ican College of Radiology to standardise the peer
review process), and a free input box for input.

In a future version of the application it
should be possible to select which prototypes
are helpful, and which are not. The prototypes
which are not helpful can then be ignored in
the classification layer, like shown in this thesis.
Through knowing which prototypes ARE helpful
could be possible to deduce regions of interest,
and focus the prediction more on these areas.

Hopefully the deployment of PIP-Net in this
application will lead to an improvement of the
model and increased trust in the AI’s capabilit-
ies.
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(a) Comparison of IOU and PI values for a model trained on HIP-CF70%

(b) Comparison of IOU and PI values for a model trained on HIP-CF100%

Figure 9: Average Intersection over Union and average prototype importance per prototype for
models trained on HIP-CF70% and HIP-CF100%. The upper image shows the distribution before
retraining, the lower after retraining. The overlap between the distributions diminishes.
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Figure 10: Screenshot of most activated prototypes in an image
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Figure 11: Examples of pertronchanteric frac-
tures

Figure 12: Examples of column fractures
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Figure 13: Architecture of the shortcut unlearning idea

Figure 14: Prototype comparison before and
after a shortcut unlearning step, it can be
seen that the prototype that was only depict-
ing shortcut before now depict both other image
features and shortcuts at the same time
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(a) Overview of the images and their predicted labels

(b) A detailed view of the X-ray and the found prototypes, the radiologist can give a RADPEER score
and comment on the prediction quality.

Figure 15: Screenshots from the ZGT application front-end of the PIP-Net deployment
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