
MSc Computer Science

Final Project

Neural Network Backdoor
Removal by Reconstructing
Triggers and Pruning
Channels

Dylan Koldenhof

Committee:
dr. ing. Ernst Moritz Hahn
Akshay Dhonthi, MSc
dr. Mannes Poel

September 12, 2023

Department of Computer Science
Faculty of Electrical Engineering,
Mathematics and Computer Science,
University of Twente

In collaboration with AUDI AG Ingolstadt.

Abstract

Backdoor attacks in neural networks are a threat in certain applications with important
requirements for safety, such as autonomous driving. Current backdoor defense methods
are limited either in effectiveness, speed or insight into the nature of the attack. In this
work, we propose a new backdoor defense method that combines trigger reconstruction
with pruning, allowing for relatively fast mitigation while also giving insight into the
nature of the attack. The method was evaluated on various model architectures trained
on the GTSRB dataset, with a patch trigger and a blended trigger. On large networks, the
proposed method shows better performance than the methods of Dhonthi et al. and CLP,
which served as inspiration for the new method. However, the method lacks consistency,
with the performance varying significantly even on models of the same architecture, trained
with the same backdoor and dataset, only differing in their weight initialization. This was
also observed for the other evaluated defense methods. Furthermore, the new method is
faster than the similar method of Dhonthi et al. and reconstructs the backdoor triggers
reasonably well. The modular nature of the proposed method allows for many directions
for improvements in future work.

Contents

1 Introduction 4
1.1 Research Question . 5
1.2 Structure . 6

2 Background 7
2.1 Artificial Neuron Networks . 8
2.2 Convolutional Neural Networks . 9
2.3 Backdoor attacks . 11
2.4 Backdoor defenses . 13

3 Related Work 15
3.1 Relevant defense methods . 16

3.1.1 Artificial Brain Stimulation (ABS) 16
3.1.2 Dhonthi et al. 17
3.1.3 Channel Lipschitz Pruning (CLP) 18
3.1.4 Tao et al. 19

3.2 Other related work . 19
3.2.1 Topological Prior . 19
3.2.2 Ex-Ray . 19
3.2.3 Adversarial Neuron Pruning (ANP) 20
3.2.4 FreeEagle . 20

4 Methodology 22
4.1 Candidate selection . 23

4.1.1 Sensitivity metric . 24
4.1.2 Threshold . 24
4.1.3 Candidate selection with ABS . 25

4.2 Trigger reconstruction . 26
4.2.1 Intermediate trigger . 26
4.2.2 Original trigger . 28
4.2.3 Complexity . 31
4.2.4 Trigger reconstruction in ABS . 31

4.3 Finding channels associated with a trigger 32
4.4 Pruning final candidates . 33
4.5 Evaluation . 33

5 Evaluation 37
5.1 Evaluation methodology . 38

5.1.1 GTSRB dataset . 38

1

5.1.2 Network architectures . 38
5.1.3 Training with backdoors . 39
5.1.4 Defense methods . 39

5.2 Results . 40
5.2.1 SQ1: Pruning effectiveness . 40
5.2.2 SQ2: Execution time . 41
5.2.3 SQ3: Reconstruction accuracy . 41

6 Discussion & Conclusion 43
6.1 Discussion . 44

6.1.1 SQ1: Pruning effectiveness . 44
6.1.2 SQ2: Execution time . 47
6.1.3 SQ3: Reconstruction accuracy . 47

6.2 Conclusion . 50
6.2.1 SQ1: Pruning effectiveness . 50
6.2.2 SQ2: Execution time . 50
6.2.3 SQ3: Reconstruction accuracy . 50
6.2.4 Conclusion on Research Question . 50
6.2.5 Other conclusions . 51

6.3 Future work . 51
6.4 Acknowledgements . 51

A Additional experiments 56
A.1 CLP results . 57
A.2 TAC pruning . 59

2

Acronyms

ABS Artificial Brain Stimulation (Section 3.1.1).

ANN Artificial Neural Network (Section 2.1).

ASR Attack Success Rate (Section 2.3).

BN Batch Normalization (Section 2.2).

CE Cross Entropy (Section 2.1).

CLP Channel Lipschitz Pruning (Section 3.1.3).

FC Fully Connected (Section 2.1).

MSE Mean Squared Error (Section 2.1).

ReLU Rectified Linear Unit (Section 2.1).

TAC Trigger Activated Change (Section 4.3).

3

Chapter 1

Introduction

4

Artificial Neural Networks are vulnerable to so-called ‘backdoor’ (or ‘Trojan’) attacks.
Though there are many differences between methods, the essence of all such attacks is
that by altering the network’s training process in some fashion, it can appear to function
normally in ordinary use, but provide a wrong output under certain conditions known to
the attacker. Typically, these conditions are in the form of a trigger : a certain perturbation
of input that is small enough to not result in a changed output for a non-backdoored (‘clean’
or ‘benign’) model.

With training of large models being very computationally expensive, there is an in-
centive in recent years to handle this by third-parties. However, this provides a perfect
opportunity for an adversary to insert a backdoor attack in this shared model. While for
many applications a backdoor might be fairly harmless, for some it can be devastating.
For instance, self-driving vehicles using a backdoored neural network to classify traffic
signs could be made to crash by inserting the trigger physically on traffic signs, with a
stop sign for example being interpreted as a ‘120 km/h’ sign. Some attacks have also been
developed outside the image classification domain [35, 13, 34], but this is beyond the focus
of this work.

Hence, it is important to defend against such attacks. In 2017, the phenomenon of
backdoor attacks in image classification networks was introduced with BadNets [8]. In the
years since then, many defense methods have been developed, that are then superseded by
newer attack methods. This ‘cat-and-mouse’ game provides much incentive for developing
improved defense methods, in the hope of at least temporarily improving safety for a
trained model. However, many of these methods are computationally expensive, making
them unfeasible to use for larger models.

An example is the method of Dhonthi et al. [4] Their approach consists firstly of
detecting backdoored networks and reconstructing their triggers using an already existing
method known as ABS by Liu et al. [17] The method of Dhonthi et al. adds onto this
with a method of mitigating backdoors, by retraining the network with images with the
reconstructed triggers applied.

However, this method is fairly slow, and detection is difficult against some more recent
attacks, as will be further explained in Chapter 3. Other methods have shown to be
more robust against recent attacks or to be faster [36, 29, 33], but none of them combine
backdoor detection, trigger reconstruction, and backdoor mitigation as the method of
Dhonthi et al. does. Thus, in this thesis, we propose a new method performing detection,
reconstruction and mitigation, while improving upon the method of Dhonthi et al.

1.1 Research Question

This can be formulated into the following research question:

RQ: What is the effectiveness and speed of a novel backdoor detection and
mitigation method for image classification networks?

Which can be further split into the following subquestions:

� SQ1: What is the effectiveness of the mitigation?

� SQ2: How fast is the method?

� SQ3: What is the effectiveness of the trigger reconstruction?

5

The proposed new method selects candidate channels of the convolutional layers in
the network based on their output variance for a set of sample data. The trigger of these
candidates is then reconstructed in two stages. Firstly, an ‘intermediate trigger’, applied at
the candidate channel, is reconstructed. If this trigger is not satisfactory, the candidate can
be ignored. Otherwise, using the reconstructed intermediate trigger, the original trigger,
to be applied to the input images, is reconstructed. If any trigger successfully shifts the
output of the network to the target label, the network is considered backdoored. Finally,
any channels that are sensitive to this trigger are pruned to mitigate the backdoor.

1.2 Structure

After this section, background on neural networks and backdoor attacks are covered,
defining the most important terms used throughout the thesis. In Chapter 3, related
defense methods are covered. A new method is proposed in Chapter 4, with experiments
evaluated the method defined and their corresponding results shown in Chapter 5. Finally,
the results are discussed and conclusions drawn in Chapter 6.

6

Chapter 2

Background

7

x1

w
(1)
1,2

w
(1)
1,1 w

(3)
1,1

w
(2)
2,2

n
(1)
1 (x)

n
(1)
2 (x)

n
(2)
1 (x)

n
(2)
2 (x)

w
(2)
1,1

w
(3)
2,1

n(x)1

Figure 2.1: A very simple FC network with one input, two hidden layers and one
output.

2.1 Artificial Neuron Networks

An Artificial Neural Network (ANN) is a form of machine learning model that can be used
to ‘learn’ complex non-linear relationships in large datasets, roughly inspired by biological
neural networks [1]. Hence, ANNs are very popular for domains like image classification,
object detection, natural language generation, and much more.

Though there are many variations in details, every ANN is at its core composed of
artificial neurons. These have two main components. Firstly, a linear function taking
in input values, with the weight and biases of this function as parameter. The second
component is a parameter-less non-linear activation function, which transforms the linear
output so that when the neurons are connected in a network, non-linear relationships can
be modeled. To illustrate, we take the example of a neuron in a Fully-Connected (FC,
also termed Dense) network, the most basic form of ANN:

n
(l)
i (x) = a

Nl−1∑
j=1

w
(l)
j,in

(l−1)
j (x)

Where l stands for a given layer and i a given neuron in that layer, so that n

(l)
i (x) is the

output of neuron i in layer l given input x, a stands for the nonlinear activation function,

and Nl−1 the number of neurons in layer l − 1. n
(l−1)
j (x) is then defined in similarly, as

a function of the weights and outputs of layer l − 2. This goes back to the start of the

network, with n
(0)
j (x) = xj . The activation function is often the Rectified Linear Unit

(ReLU) defined as ReLU(x) = max(x, 0). All layers between the input and output layers
are known as hidden layers. See Figure 2.1 for an illustration of a simple FC network.

To train the network, meaning to fit the function described by the ANN to the data,
the weights and biases of the neurons are optimized with a procedure known as gradient
descent. Gradient descent is an iterative optimization procedure that usually makes the
network converge to a solution of the loss function. This is a function where the optimal
solution is the lowest value. For a regression model, an example of a loss function is the
Mean Squared Error (MSE):

MSE(n,X,y) =
1

|y|

|y|∑
i=1

(yi − n(Xi))
2 (2.1)

where n(x) denotes the predictions made by a network for input x. This input is part of
data set X, and y denotes the corresponding true values. When the predictions match the
true values exactly, this is zero. For classification models, the Cross-Entropy (CE) loss is
generally used, defined as:

8

CE(n,X,y) = −
|y|∑
i=1

Nc∑
j=1

n(Xi)j log 1(yi = j) (2.2)

Where n(x) denotes the predictions made by a network for input x, as a vector with
values for each class. This input is part of data set X, and y is a vector containing the
corresponding true class labels. 1(yi = j) then stands for the 0-1 indicator function,
with value 1 if the equality holds and 0 otherwise. Finally, Nc is the number of classes.
Thus, for the sake of the Cross-Entropy, the true labels are defined as discrete probability
distributions where the probability is 1 for the correct label, and zero otherwise.

Then, in training, the formula for a parameter update given a single data point x is
as follows:

θt+1 = θt − η
∂L(n(x),y)

∂θt

where L stands for a loss function, with the network’s predictions n(x) and true values y
as parameters. η stands for the learning rate, which can be seen as trade-off parameter
with higher values allowing for faster convergence, but also increasing the likelihood of the
network failing to converge properly to the minimum.

This update is applied for every weight in every iteration. The core of this is the
gradient ∂L

∂w . The nature of the neural network makes it possible to use the chain rule to
derive this gradient as a multiplication of each individual neuron gradient going ‘back’ to
some weight w. Hence, this is termed backpropagation.

Usually these gradient updates to the parameters are in the form of Minibatch Gradient
Descent, where the updates are based on averages over portions (minibatches) of the data.
One pass over all the minibatches in the dataset is known as an epoch.

Described here is the most basic form of the gradient update, but more complex vari-
ants with adaptive parameters have been developed, such as Adam [12], which generally
provide better results than ordinary gradient descent on neural networks.

2.2 Convolutional Neural Networks

The models typically considered in this field of research are forms of Convolutional Neural
Networks (CNN) [6], meant for image classification. CNNs are different from FC networks,
in that they make use of convolutional layers. For images, the weights of these layers
are composed of multiple 3D matrices termed kernels or filters. Unlike a FC-layer, in a
convolutional layer weights are shared between different neurons. As the name of the layer
implies, the way these weights are shared correspond to a discrete convolution operation
between the weights and inputs. When applied to images, a way this can be viewed is as
the weights ‘sliding over’ the input. An illustration of this can be seen in Figure 2.2.

An RGB image is three-dimensional, consisting of dimensions for width, height and the
channel (red, green or blue). This image is passed through a convolutional layer consisting
of multiple three-dimensional kernels. Each two-dimensional slice of a three-dimensional
kernel is associated with a channel of the input, and the convolution operation is applied on
this input channel. Then, the results of applying convolution to each slice are summed to
yield a 2D output known as a feature map. A convolutional layer is generally composed of
multiple of these 3D kernels, yielding a feature map for each kernel. Finally, just like with
FC-layers, a non-linear activation function is applied to each feature map to result in the
output for the layer. This output can then be used as input for the following convolutional

9

0 1 1 1 0 0 0

0 0 1 1 1 0 0

0 0 0 1 1 1 0

0 0 0 1 1 0 0

0 0 1 1 0 0 0

0 1 1 0 0 0 0

1 1 0 0 0 0 0

∗
1 0 1

0 1 0

1 0 1

=

1 4 3 4 1

1 2 4 3 3

1 2 3 4 1

1 3 3 1 1

3 3 1 1 0

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1

0 1 1 1 0 0 0

0 0 1 1 1 0 0

0 0 0 1 1 1 0

0 0 0 1 1 0 0

0 0 1 1 0 0 0

0 1 1 0 0 0 0

1 1 0 0 0 0 0

x

∗
1 0 1

0 1 0

1 0 1

k

=

1 4 3 4 1

1 2 4 3 3

1 2 3 4 1

1 3 3 1 1

3 3 1 1 0

x ∗ k

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1

Figure 2.2: Two steps of the convolution operation on a single channel [23]. The
highlighted portion of an input x is multiplied by the kernel k to form the high-
lighted output. To generate a feature map, the operation is performed separately
for each channel.

layer, wherein each feature map corresponds to an input channel. See Figure 2.3, showing
how the input is processed in the first convolutional layer.

Convolutional layers are generally interspersed with pooling layers, that reduce the
size of the feature maps by sliding over the input in a similar manner to a convolutional
layer, but only applying an aggregation function without additional parameters, instead
of a kernel. Most commonly used are max pooling, taking the maximum value over the
sliding window (pool), and average pooling, taking the average instead.

To get the final output for classification, at some point in the network, the feature
maps are flattened and passed through one or multiple FC layers.

Another commonly used addition to CNNs are batch normalization layers. In these
layers, firstly the inputs are normalized along each dimension to have zero mean and
unit variance, based on the values of the batch. Secondly, the normalized inputs are
transformed with two sets of training parameters, γ and β. Both of these are vectors with
one value for every feature map in preceding convolutional layer. They are then applied
for each output channel k in layer l as follows:

BN
(l)
k = γ

(l)
k n̂(l)(x)k + β

(l)
k

where n̂(l)(x)k represents the normalized output of channel k in the convolutional layer l
given the data point x. Batch normalization was initially proposed to reduce the problem
of internal covariate shift [11], where the distributions of inputs in each layer change con-
stantly during training, which is theorized to hinder the training process. However, this is
disputed, with Santurkar et al. [26] proposing the main benefit of batch normalization is
smoothing the loss function instead. Regardless, batch normalization often improves net-
work performance and is a common addition to CNNs, added either before the activation
or after.

10

k1

k2

k3

k4

x

a
(∑3

c=1 xc ∗ k1,c

) n(x)
(1)
1

∗

n(x)
(1)
2

n(x)
(1)
3

n(x)
(1)
4

∗

∗

∗

a
(∑3

c=1 xc ∗ k2,c

)

a
(∑3

c=1 xc ∗ k3,c

)

a
(∑3

c=1 xc ∗ k4,c

)

Figure 2.3: Illustration of the RGB channels being processed to feature maps
by their respective kernel ki in a convolutional layer at the start of the network.
For each kernel ki, the convolution operation of Figure 2.2 is performed. After

applying the activation a, these result in feature maps n(x)
(1)
i . These feature maps

then become input channels for the following convolutional layer, so that the next
layer will have 4 input channels.

2.3 Backdoor attacks

A backdoor attack on a classification network consists of the trigger t(X) applied to benign
data X, and a target label yt. For the backdoor attack, a model is trained with a proportion
p of data where the backdoor trigger is applied, with the corresponding labels set to yt.
For an attack to be considered successful, the trained network should predict the target
label, i.e. satisfy the equation arg maxi n(t(x))i = yt.

This differentiates it from the similar phenomenon of adversarial attacks, where altered
output is not induced by the training process, nor with a trigger known in advance by the
attacker.

An attack can either be supposed to cause predictions of all labels to result in the
target label (an all-to-one attack) or only be activated when data for specific labels is
backdoored (a label-to-label attack). The effectiveness of an attack can be measured by
the Attack Success Rate (ASR), the proportion of predictions on a set of backdoored test
images that correspond to the target label.

Furthermore, for an attack to be a threat, the trigger should not change the input too
much; otherwise it would not be much different from simply changing the input image to
one with a completely different label, making the model naturally give different results.
The threat lies in the fact that a triggered image still clearly belongs in the same class as
the original benign image when observed by a human, but the network will not see the
similarity, due to the backdoor insertion.

See Figure 2.4 for an example of a backdoor attack. Shown here is a simple patch attack,
also known as BadNets after the paper first proposing it [8]. Since then, more advanced
attacks have been developed, such as incorporating transparency in the trigger [15, 19],
feature-space attacks using complex image transformations [21] or simple Instagram image

11

“20 km/h”

“Stop sign”

Figure 2.4: An example of a backdoor attack with a patch trigger. Without
the trigger, the correct label (20 km/h) is predicted. With the trigger, the wrong
backdoor target label is predicted instead.

filters [17] and finally dynamic attacks, where a different trigger is used for each image [25,
20].

12

2.4 Backdoor defenses

Naturally, with backdoor attacks also come defenses against these attacks. Based on Li et
al. [14], backdoor defense methods can be grouped into six main categories: preprocessing,
model reconstruction, trigger synthesis, model diagnosis, poison suppression and sample
filtering. These can be summarized as follows:

� Preprocessing: The approach aims to eliminate a backdoor preemptively by altering
triggered samples in the training data set before training.

� Model reconstruction: The approach alters the model to make it robust against
attacks, often by eliminating certain neurons.

� Model diagnosis: The approach aims to detect whether a model is backdoored based
on certain internal model behavior.

� Trigger synthesis: The approach recovers the trigger used in a backdoor, often used
in conjunction with diagnosis or reconstruction.

� Poison suppression: The approach aims to neutralize the backdoor by altering the
training process.

� Sample filtering: The approach aims to filter out backdoored images during train-
ing or inference. Unlike preprocessing, these methods simply removed backdoored
images from the dataset or not predicted in inference.

Type Aim Scope Preemptive/reactive

Preprocessing Mitigation (pre-emptive) Data Preemptive
Model reconstruction Mitigation Model Reactive
Trigger synthesis Both Model Reactive
Model diagnosis Detection Model Reactive
Poison suppression Mitigation Model Preemptive
Sample filtering Mitigation Data Both

Table 2.1: Attributes of each backdoor defense category.

These categories can be further grouped by certain attributes, the most prominent
being the method’s aim: some only mitigate possible attacks assuming the model is back-
doored, while others only allow for detection with no mitigation method. There are also
categories containing both types, sometimes as part of a single method. The second at-
tribute is the defense’s scope. A defense is either applied to the backdoored model itself,
or to the data going into the model, preventing the backdoor from being triggered. A
final attribute is the moment the defense is applied. Most methods are reactive, defending
against already backdoored models. But some are preemptive, preventing a backdoored
model from being trained in the first place. See Table 2.1 for an overview of the attributes
of each category.

Since this work is based on that of Dhonthi et al. [4], it was decided to look into
similar defense methods. The core of their approach is Artificial Brain Stimulation (ABS)
by Liu et al. [17] (see Section 3.1.1), which is then used to detect and reverse engineer a
potential trigger. Afterwards, the mitigation is performed by retraining the model with

13

triggered images. This entire process is a reactive, model-based approach, combining both
mitigation and detection. Furthermore, a requirement of any new method is a lack of
access to training data, as in the industry the risk of backdoor attacks typically occurs
using models from third-parties, of which the training data is often not available to the
client. So, this leaves the following categories considered:

� Model reconstruction

� Trigger synthesis

� Model diagnosis

14

Chapter 3

Related Work

15

3.1 Relevant defense methods

The following is an overview of the methods most relevant to the newly proposed method,
and as such are described in more detailed compared to the other related work in the
Section 3.2.

3.1.1 Artificial Brain Stimulation (ABS)

ABS by Liu et al. [17] is a model diagnosis and trigger synthesis method inspired by
the idea of Electronic Brain Stimulation in neuroscience, where neurons are artificially
stimulated to study their behavior. ABS in a similar manner ‘stimulates’ the artificial
neurons by manually altering a certain neuron’s input and then observing the final output
layer. This alteration is done based on the activation values for a small set of benign data.

From this stimulation analysis, so-called Neuron Stimulation Functions (NSFs) are
derived. There exists an NSF for each neuron and label, taking in input for the given
neuron and returning the final output value for the given label, with other activations
based on the benign data as mentioned.

In the implementation of the method, this idea is simplified to make it computationally
feasible. Points of the NSF are sampled rather than computed analytically, and the NSFs
are computed over entire output channels of convolutional layers rather than over the
individual neurons.

The NSFs can then be used to compute the label elevation; how much a channel can
raise a label output compared to the original value given the benign data. However,
having a high elevation does not necessarily imply a backdoor, since there are benign
features replicated by the stimulation that could significantly raise the values of many
labels. So instead, the difference between the two highest elevation values across all labels
is considered instead, termed Elevation Difference. If one label is raised much higher than
others, the possibility of this channel contributing to a backdoor is high and this channel
is then added to a list of candidates.

Next, these candidates are used to reconstruct the trigger using the same set of benign
images through an optimization procedure. A model that reproduces triggers with an
ASR high enough is considered ‘backdoored’.

See Figure 3.1 for a brief visual overview of ABS.

Shortcomings

The performance of the method is shown to be better than the state-of-the-art method
at the time, Neural Cleanse [30]. However, in the years since the ABS paper was pub-
lished (2019), there have been many new attacks. The constant trigger reverse-engineering
approach of ABS makes it unsuited against advanced dynamic attacks, which apply the
backdoor using different triggers for every input. Hence, attacks such as the Input-Aware
Backdoor (IAB) [20], and Dynamic Attack of Salem et al. [25] will presumably fail.
Furthermore, ABS also has fairly low accuracy (60%-70%) against more advanced static
attacks (attacks that rely on a single trigger applied to all inputs to apply the backdoor),
namely the composite attack [15], reflection attack [19] and hidden-trigger attack [24],
as evaluated by Liu et al. [18], with a similar poor performance as well in the TrojAI
competition [18, 10].

Another issue with the ABS method lies in its relative complexity; its method of
stimulating neurons requires multiple forward passes for every channel, and then to detect

16

Figure 3.1: Overview of ABS.

Figure 3.2: Overview of the method of Dhonthi et al.

candidates based on these stimulated values requires even more forward passes on benign
images.

The most expensive part however, is the reverse engineering, which requires a gradient
descent procedure over the set of benign images to optimize both a trigger and a mask.
This then has to be done separately for each candidate.

3.1.2 Dhonthi et al.

The method of Dhonthi et al. [4] adds a model reconstruction mitigation method to
the detection method of ABS. After applying ABS, the reconstructed triggers are tested
by applying them to a set of test data and passing this backdoored input through the
network. The corresponding predictions are then compared for images of each true class
separately, forming a matrix of dimension Nc × Nc, where Nc is the number of classes.
The classes that are most often wrongly predicted, the number of which is defined by a
hyperparameter, are then selected for retraining. The images for those classes with the
reconstructed trigger applied then become a part of the training data. See Figure 3.2 for
an overview of the entire method.

17

Shortcomings

The method generally shows a successful reduction in ASR when the number of classes
selected for retraining is limited to 15. However, this was only evaluated with a patch
attack on relatively small network architectures. Furthermore, retraining is rather time-
consuming, especially when added onto the already complex method of ABS, and it is
rather counterintuitive when the model is outsourced and trained by an external party. In
this scenario, even if training data is available, it would not make much sense to retrain
the model locally if initially it was outsourced.

3.1.3 Channel Lipschitz Pruning (CLP)

CLP by Zheng et al. [36] is a pruning-based reconstruction method, which relies on the
upper bound of the L2-Lipschitz constant of each channel, shortened to UCLC. For a given
layer l, and channel k in network n, this is defined as:

||n(l)k ||Lip = arg min
L

(
||n(l)k (x)− n(l)k (x′)||2 ≤ L||x− x′||2

)
, ∀x ∈ X

The intuition behind the Lipschitz constant is that it can be seen as the maximum
slope of a function throughout its domain. In this context it shows how sensitive the given
output channel is to a change to an arbitrary input. As a backdoor attack can be seen as
a small change in the initial input that causes significant changes to the final layer output,
the intuition is that this phenomenon could occur within an individual channel as well.

The advantage of this approach is that it can be shown that the upper bound of the
Lipschitz constant of a channel can be computed as the product of the spectral norms of
the channel’s weight matrix and that of preceding layers [7, 36], i.e.

||n(l)k ||Lip ≤ σ(W
(l)
k)

(l−1)∏
i=1

σ(W(i))

With the spectral norm σ defined as:

σ(W) = max
||x||2 6=0

||Wx||2
||x||2

This is equal to the largest singular value of W, and thus can be computed using the
weight matrix alone and no sample benign data.

However, for a convolutional layer, the original four-dimensional weight tensor has to be
put in a certain matrix form – a doubly-block Toeplitz matrix – which is a computationally
expensive process. Hence, the method applies a simpler reshaping operation which appears
to work well as an approximation. The spectral norm of the reshaped weight tensor is
then used for the channel’s UCLC. The channels with a high UCLC, crossing an outlier
threshold based on the mean and standard deviation of all the UCLCs in their respective
layers, are finally pruned by setting both their weights and biases to zero, in order to
eliminate the backdoor. Since this threshold is determined with channels in the same
layer, the product term of the spectral norm of previous layers, i.e.

∏(l−1)
i=1 σ(W(i)), can

be ignored and only the spectral norm of the given channel has to be calculated.

Shortcomings

CLP appears to be very effective and fast, outperforming all other similar pruning-based
methods. It also shows high effectiveness on more recent advanced attacks like the Input

18

Aware Backdoor (IAB) [20], that has a different trigger based on each input, and WaNet
[21], that uses a warping transformation.

However, when evaluated on the small network of Dhonthi et al. [4], with 4 convo-
lutional layers, CLP was found to perform poorly. Out of 10 runs, where the model was
retrained on the same backdoor, there were zero truly succesful defenses by CLP. Interest-
ingly, adding batch normalization layers to these models increased the effectiveness, but
still only yielded 5 succesful runs. See Appendix A.1 for the full results.

3.1.4 Tao et al.

Tao et al. [29] propose a novel (unnamed) trigger reconstruction method, that can both
find better triggers and is more efficient than existing attacks. Specifically, the methods
compared are Neural Cleanse (NC) [30], and some defenses for adversarial attacks adapted
for backdoor attacks, namely the method by Carlini & Wagner (CW) [2] and Universal
Adversarial Perturbation (UAP) [27].

It does this by optimizing perturbation tensors, rather than separating a trigger and
a mask to apply the trigger to, as methods such as ABS and NC do. These perturbation
tensors, one for negative perturbations and one for positive perturbations, are then trans-
formed using a hyperbolic tangent function before the trigger is applied, allowing for a fast
optimization with accurate reconstructed triggers. As this method will be used as part of
the proposed new method, further technical details are found in Chapter 4, Section 4.2.2.

Compared to NC, the method of Tao et al. generates triggers that had around 50 times
less perturbed pixels for some class pairs on ImageNet, while yielding a higher ASR. The
method was also twice as fast as NC on these pairs. Compared to CW and UAP, the
differences in execution time, trigger size and ASR are even larger in favour of the method
of Tao et al. A comparison with ABS was also made in the TrojAI competition, where
the method again was consistently faster and had a higher backdoor detection accuracy
than ABS.

3.2 Other related work

3.2.1 Topological Prior

Hu et al. [10] propose a trigger synthesis and model diagnosis method improving on the
typical reverse-engineering approaches by introducing the concept of a topological prior.
This consists of an component of the loss function that aims to penalise any ‘loose’ struc-
tures on the generated mask.

To decide whether a model is backdoored, features from the generated triggers are
extracted, which are then used as input in a FC network. This network is trained on
recovered triggers of clean and backdoored versions of models, intended to be generalizable
on all attacks and architectures.

This method appears to have greatly more performance compared to ABS and other
methods in the TrojAI competition. However, attacks other than the patch attack are
not evaluated, and this method’s loss function is more complex than that of ABS. The
detection model would further be expensive to train.

3.2.2 Ex-Ray

Liu et al. [18] propose an improvement on top of other trigger synthesis detection methods.
The method, known as Ex-Ray, aims to improve an already existing reconstructed trigger

19

by using Symmetric Feature Differencing. Here feature maps of a benign image with the
reverse-engineered trigger applied are compared to feature maps of a benign image whose
true label is the target label of that trigger. For example, if the target label is ‘dog’,
feature maps of images of ‘cat’, ‘deer’, etc. with the reverse-engineered trigger applied are
compared to true feature maps of ‘dog’ images. If the trigger is ‘natural’ (e.g. antlers being
a trigger for ‘deer’), the differences of the feature maps between the triggered image and
the benign image of the backdoor target class should be similar to the differences of the
feature maps between the triggered image and the original clean image. However, when
it is indeed an intentional backdoor trigger, the feature differences will be very different,
as the trigger does not resemble a feature of benign images of the target class. Hence, the
Ex-Ray method aims to better separate ‘natural’ triggers from intentional harmful ones.

This method is also evaluated on the TrojAI competition and shows improved results
compared to pure ABS. However, the method only provides overhead over the existing
methods and is thus not suitable when seeking a faster method.

3.2.3 Adversarial Neuron Pruning (ANP)

Wu and Wang [33] propose a model reconstruction mitigation method known as Ad-
versarial Neuron Pruning (ANP). This method prunes backdoored neurons through an
optimization procedure, wherein a network’s weights are pruned by a continous mask.
It then consists of two objectives. The first objective minimizes the loss of the pruned
network on a set of benign data, so that the pruning will not impact the accuracy of the
model severely. The second objective is to apply a perturbation to the pruned weights
that maximizes the loss, simulating the effect of a backdoor. While in a real backdoor
the inputs, not the weights, are perturbed, it is presumed that backdoored neurons will
be dormant for benign samples, with activations near zero. By increasing the weights and
biases, the neuron will return high activations for all outputs, and thus the expectation is
that the backdoored neuron’s effect will then be apparent even on benign data.

ANP is shown to be effective against a wide range of attacks, including the dynamic
IAB attack, and is also evaluated by third-parties as part of Backdoorbench [32]. However,
when compared in the evaluation of the CLP method [36], results were not as good as
those of CLP. Its assumption of backdoored neurons having near-zero activations for benign
inputs might also not always hold, and it could be possible to construct an attack where the
benign behaviour is realised by high activations instead. Furthermore, the optimization is
rather time-consuming, especially compared to CLP. Unlike ABS, this optimization gives
no insight into the trigger either, and is for mitigation only.

3.2.4 FreeEagle

Fu et al. [5] propose a model diagnosis detection method not requiring any benign data.
The method works by splitting the network at a point roughly in the middle, so that
in the first part the primary behaviour is feature extraction while the second part is
primarily dedicated to classification of the extracted features. The feature extraction part
is then ignored, and using the classifier part a dummy Intermediate Representation (IR) is
generated for each class by maximizing the output for that class. The generated dummy
IR is then forward propagated in the network and the corresponding outputs are analyzed.
The idea is that for a backdoored network given benign data, there will be some trace
outlier values for the backdoor target in the final output. So, when inserting the dummy
IRs into the classifier part, the output is analyzed. Naturally, the output for the class the

20

IR was generated for should give the highest value. But, when ignoring this class, if some
other class in the output has an outlier value, the model is presumed backdoored.

The detection accuracy of the method was evaluated on GTSRB with a patch, blended,
and a simple feature-space trigger. On these it all showed better performance than other
methods tested, including ABS. However, for this method there is no trigger reconstruc-
tion, so it gives little insight into the nature of the trigger. Furthermore, the exact layer
where the model should be split into the respective parts depends on the architecture
and the type of backdoor, so one might have to try this for multiple layers to verify the
detection, making the method rather expensive for large networks.

21

Chapter 4

Methodology

22

Considering the shortcomings of the methods from Chapter 3, it seems necessary to
come up with a new method. This chapter describes this new method in detail, along
with justifying the design choices made. Some technical details on ABS and the method
of Dhonthi et al. are also presented, so that they can be compared to the new method.

Since the goal is ultimately both detection and mitigation, it is desirable to integrate
this efficiently in one method. The new method relies on two core ideas from the existing
methods. Firstly, for detection, the aim is to reconstruct the trigger, which can be applied
to a small set of benign data to determine if the network is backdoored. The second idea
is for mitigation, which is to prune output channels involved in the backdoor, similar to
CLP.

To integrate these ideas, a multi-step approach is used. In the first step, a list of
candidate channels is selected, similar to ABS. However, unlike ABS, these candidates are
selected based on their sensitivity to pruning. The intent is that the channels which are
the least sensitive to pruning when considering benign input, are the channels that are
potentially associated with the backdoor, as they are (near) irrelevant for benign input.

In the second step, a trigger corresponding to each candidate channel is reconstructed
with a small set of benign data. Then, each trigger is evaluated with that benign data to
validate it. If any channel has a valid trigger, the model is considered backdoored. At a
high level this works like ABS. However, as described in Section 4.2, a somewhat different
trigger reconstruction procedure is proposed, which also incorporates the method of Tao
et al.

Then, a further extension to ABS is made by producing a list of ‘final candidates’.
This list includes candidates for which a valid trigger has been reconstructed, but also
channels that reconstruct no valid trigger on their own, but are deemed to contribute to
a candidate’s trigger.

Finally, all channels in the final candidate list are pruned by setting their weights to
zero (but keeping their biases intact). This should then mostly preserve the accuracy of
the model but eliminate the backdoor.

Each of these steps will now be described, and comparisons against ABS are made
where applicable.

4.1 Candidate selection

For the proposed new method, the ultimate goal is to prune backdoored channels. Hence,
inspiration was sought from criteria for pruning methods, where the goal is to simply elimi-
nate redundant neurons. Backdoored channels which can be pruned without impacting the
accuracy of the model should be largely redundant for benign data, so this should transfer
over well to detect backdoors. The chosen criterion is based on the output variance of
channels, as will be described in Section 4.1.1.

As candidates, only output channels of convolutional layers are considered. When
the convolutional layers are followed by a batch normalization layer, the output of this
batch normalization layer is considered for candidate selection and trigger reconstruction
instead. This is necessary since batch normalization changes the distribution of activations
of the channels, so anything based on the channels of the preceding convolutional layer
could already be made invalid by the following batch normalization.

23

4.1.1 Sensitivity metric

A relatively simple way of estimating a channel’s importance given a set of benign input is
by considering its variance over different inputs. Polyak & Wolf [22] propose two methods
for pruning convolutional networks based on variance. The first, inbound pruning, consid-
ers individual kernel slices going from one input channel to one output channel. That is,
for a convolutional 4D tensor W ∈ RWin×Wout×Ww×Wh – where Win, Wout, Ww and Wh

are the number of input channels, number of output channels, kernel width and kernel
height, respectively – each slice Wi,k ∈ RWw×Wh is considered.

The criterion for a slice W(l)
i,k is then defined as

var(||(W(l)
i,k ∗ n

(0, l−1)
i (x)||F)

where n
(0, l−1)
i (x) denotes channel i of the output of the last convolutional layer l in

network n, given input x. This is then the input for the following convolutional layer l

taking weights W(l)
i,k . ∗ denotes the convolution operation and F stands for the Frobenius

norm.
The second method proposed by Polyak & Wolf is reduce and reuse. This is similar,

except now the variance is taken across all output channels, i.e. over the three-dimensional
tensor Wk ∈ RWout×Ww×Wh . So, the criterion is as follows:

var(||(Wk ∗ n(0, l−1)(x))||F)

Where n(0, l−1)(x) now stands for all the channels of the input to the layer.
This is the reduce step. Since their method prunes the entire feature map, including

bias, the next reuse step exists to restore the functionality of the original network, by
adding 1x1 convolutional layers that reconstruct the pruned channels using the remaining
channels. However, this step is not necessary when used for the proposed new method as
only weights will be pruned.

Hence, for the new proposed method, the criterion from the ‘reduce’ step is used as
a sensitivity metric for output channels, estimating how redundant each channel is for
benign input. A redundant channel could then possibly be backdoored, as it might only
be relevant for backdoored input.

Complexity

Applied to the sample data DS , computing this metric requires |DS | forward propagations,
with additional overhead for the variance and norm computations for each output channel.
This is dependent on implementation and parallelization, making this difficult to quantify
in narrower terms. However, the number of forward propagations can be compared with
ABS to assess which method is more complex.

4.1.2 Threshold

In order for this metric to distinguish backdoored channels from benign ones, a threshold
on the metric is used. The Z-score is computed over the values of each layer to have
comparable values across layers. The candidates are then selected based on being below
the threshold:

v
(l)
k −mean(v(l))

σ(v(l))
< ucandidate (4.1)

24

v
(l)
k −mean(v(l))

σ(v(l))
< u

< u

< u≥ u

≥ u ≥ u

≥ u

≥ u ≥ u

Figure 4.1: Example of candidate selection. The channels below the threshold u,
selected as candidates, are marked in red, while the other considered channels are
marked in green.

Where v
(l)
k stands for the output variance of channel k, and v(l) the vector with variance

for all channels in layer l. σ(x) stands for the standard deviation of x, ucandidate is the
threshold.

See Figure 4.1 for an illustration of this step. In these and all subsequent figures
explaining the method, a graph of a simple FC-network is used for simplicity. To represent
a CNN with this, a nodes in the hidden layer represents a whole feature map, with each
incoming edge representing kernel weightsWi,k applied to the corresponding input channel
of the previous layer.

4.1.3 Candidate selection with ABS

As described in Section 3.1.1, ABS computes the NSFs by sampling across a set of benign
data. These are then used to compare the output of benign data to the values of the
NSF, and measuring the elevation of each label. The channels with the highest Elevation
Difference, the number of which is set by a hyperparameter, are selected as candidates.

The downside of this approach is that it is rather complicated; first the NSFs are
computed for each channel and label using a number of samples. Then in the second step,
the Elevation Difference is computed by performing inference across the benign sample
data again.

Computing the NSFs requires NS ∗NC ∗ |DS | forward propagations, where NS is the
number of sampling points per benign image, NC the total number of channels in the
network, including neurons in dense layers, and |DS | the number of benign images used
(at least one per label).

Then for the actual candidate selection, another NC ∗ |DS | propagations are necessary,
as the benign outputs are compared to the NSF for each channel and image. Thus, in
total there are (NS + 1) ∗NC ∗ |DS | propagations needed. Again, depending on hardware
configuration and the values of NS , NC and |DS |, a significant portion of the inference
can be parallelized, so the exact time complexity is variable. But in terms of forward
propagations, this is much more expensive than the variance-based method that requires
just |DS | propagations. The candidate selection of ABS is by far not as costly as the
reverse engineering, but it can still be quite time-consuming for large networks.

25

4.2 Trigger reconstruction

After selecting the candidates, they are put in reverse layer order: from the deepest layers
to the shallowest ones. What follows next is the trigger reconstruction. This is split into
two separate optimization steps. The network n(l)(x), where x is the input data, can
be split up into n(0, l)(x) denoting the output feature map of layer l, and n(l)(O), where
O = n(0,l)(x), denoting the output of the network starting at layer l, given intermediate
feature maps O as input.

For a candidate channel k and layer l, an intermediate trigger will first be constructed,
to be applied on an intermediate feature map Ok. This intermediate trigger is then
used to reconstruct the original trigger using the first part of the network, n(l)(x). The
methodology of reconstructing the intermediate trigger will first be described, then that
of the original trigger.

4.2.1 Intermediate trigger

Backdoor behavior is generally largely constrained to a few channels, as shown by the
relative success of the defense methods focused on specific channels (e.g. ABS candidate
selection, CLP and ANP pruning). So, the small perturbation of the original trigger has
to be reflected in the intermediate layers up to the backdoored channels. See Figure 4.2a,
where the presence of the original trigger can still be clearly inferred from intermediate
feature maps. In contrast, the feature map of a backdoored channel would be significantly
different for a backdoored input compared to a benign input, allowing for any input to be
misclassified to the backdoored target label. See Figure 4.2b. However, even these large
changes are still fairly regular across the input, and can thus be seen as ‘triggers’ of their
own.

Hence, since the candidate channels could possibly be backdoored we aim to find in-
termediate triggers akin to the rightmost column of Figure 4.2b. This involves optimizing
over only a part of the network, which can especially save time for candidates that do not
appear to be backdoored. If the intermediate trigger is not valid, the next candidate can
be considered, and thus only this optimization over a part of the network is needed. Oth-
erwise, if the intermediate trigger is satisfactory, the original trigger can be reconstructed
using the intermediate trigger.

Now we elaborate on this formally. The intermediate trigger, known as tI , is applied
as:

T (l)
k = n(0,l)(x)k + tI

and
T (l)
i = n(0,l)(x)i, ∀i ∈ {{1 . . . Nl} − {k}}

Here, the subscript denotes an output channel i of n(0,l)(x) and T (l). So, the trigger is
only applied for the candidate channel and the rest is left as it was for benign input.

The limitation of this candidate selection method is that it does not result in any
target label for the candidate. Hence, in order to reconstruct an accurate intermediate
trigger, a different way of retrieving this is necessary. The trigger is initially reconstructed
by minimizing tI over the following loss function:

Lim1(tI) = −CE(n(l)(T (l)),y)

Here ‘CE’ stands for the Cross-Entropy loss (see Equation 2.2). This maximizes the loss
with the true labels y, ensuring the trigger moves the output away from the true values.

26

X Xt n
(0,l)
k (X) n

(0,l)
k (Xt) n

(0,l)
k (Xt)− n

(0,l)
k (X)

0

5

0

5

0

5

0

5

0

5

1(a) On a non-backdoored channel. The difference between the feature
maps caused by the trigger is quite similar to the original trigger, in
both scale and location.

X Xt n
(0,l)
k (X) n

(0,l)
k (Xt) n

(0,l)
k (Xt)− n

(0,l)
k (X)

−10

−5

−10

−5

−10

−5

−10

−5

−10

−5

1(b) On a backdoored channel. The difference between the feature
maps now is not constrained to the upper-left corner and is significant
across the image.

Figure 4.2: Visualization of the impact of the trigger on a non-backdoor channel
compared to a backdoored channel. From left to right, the columns show a clean
image, the same image with a backdoor applied, then the intermediate output of
the clean image and backdoored image respectively. The rightmost column shows
the difference between the benign and backdoored intermediate output.

27

+tI

−CE(n(l)(T (l)),y)

+tI

− 1
|DS |

∑|DS |
i=0 n

(l)(T (l))i,yt
l l

Figure 4.3: Optimization of the intermediate trigger tI . The intermediate trigger
is applied by adding it to a certain channel. Then firstly, the values for the true
label (green) are minimized w.r.t. tI . Based on the results from this, the target
label (red) can be established and maximized to yield a more targeted trigger.
Only the part of the network to the right of the dashed line is considered in the
optimization.

After doing this for 20 epochs, the target label can be established as:

yt = arg max
j

1

|DS |

|DS |∑
i=0

n(l)(T (l))i,j − n(DS)i,j

Where |DS | is the number of sample data images by which n(l)(T (l))i,j is indexed row-wise
using i, denoting the output for the different image, and each column j corresponding to
a label. Thus, the target label is the one that has the largest difference between triggered
input and benign input, on average over all sample images.

With this target label, the trigger is further refined using the following loss function:

Lim2(tI) = − 1

|DS |

|DS |∑
i=0

n(l)(T (l))i,yt

This maximizes the output for the target label yt, making the trigger focused on a specific
target label, rather than only moving away from the true label as in Lim1.

Finally, the reconstructed intermediate trigger is validated by evaluating the average
increase of the target label. If the trigger raises the target label enough, while not raising
other labels significantly, it is considered valid. The threshold for this is determined at an
average raise of 0.3, with the highest label raise having to be 1.3 times more than the next
highest label, so that the trigger is properly targeted.

See Figure 4.3 for an overview of this step.

4.2.2 Original trigger

When the intermediate trigger is a valid trigger, the original trigger is reconstructed using
the intermediate trigger as a ground truth, using the method of Tao et al. [29] The recon-
struction method of ABS, consists of optimizing a trigger and mask, while constraining
the L1 norm of the mask. The correlation between the trigger and the mask can generate
a complex loss landscape, which can easily get the optimization stuck in local minima.
Hence, Tao et al. do not make use of a mask, only a trigger perturbation over the entire
image. As patch triggers only perturb a small portion of the image, a simple approach of

28

optimizing the perturbations and then directly adding them to the pixels will not suffice,
since without a mask, it would be difficult to constrain the many pixels that are not part
of the trigger to have zero perturbation. Tao et al. solve this issue by applying a hyper-
bolic tangent function over the perturbation tensor. With its long tails, it allows for a
large portion of the optimized trigger’s range to result in near-zero perturbation. With
the lower tail of the function limited at zero, two variables are necessary, one to represent
a positive and another to represent a negative perturbation. See Figure 4.4 for the shape
of this perturbation function. The perturbations are applied to input by simply adding
the positive perturbation to the input, then subtracting the negative perturbation, and
finally clipping the values between 0 and 1.

−6 −4 −2 0 2 4 6

0

0.2

0.4

0.6

0.8

1

t

1 2
(t

an
h
(t

)
+

1)

Figure 4.4: The perturbation function 1
2(tanh(t) + 1), used in the method of Tao

et al. Here, t represents the optimized perturbation variable, which results in near
zero perturbation for negative values of t, ascending to the maximum of 1 for high
values.

The hyperbolic tangent functions applied over these perturbations then serve both to
apply the reconstructed trigger to an image and as a smoothly differentiable penalty on
the size of the trigger, by summing over the output of these functions for each pixel.

So, the triggered input is defined as:

xt = clip

(
x +

1

2
(tanh(t+)− tanh(t−))

)
Where t+ is the positive perturbation, t− the negative perturbation, and clip(x) a function
that clips the values in x between 0 and 1. Since here the trigger is applied to an entire
input image instead of a single feature map, the trigger can have more than one channel
(3 for an RGB image).

This trigger is then reconstructed using the following loss function:

Lor(t+, t−, tI) = MSE(n
(0,l)
k (xt), n

(0,l)
k (x) + tI) + αLpixel(t+, t−)

Where ‘MSE’ stands for the Mean Squared Error (see Equation 2.1), with the squared
difference applied per pixel. Lpixel is defined as:

Lpixel(t+, t−) =

i≤w,j≤h∑
i=1,j=1

max
c

(
1

2
tanh

(
t+
10

)
+

1

2

)
c,i,j

+

i≤w,j≤h∑
i=1,j=1

max
c

(
1

2
tanh

(
t−
10

)
+

1

2

)
c,i,j

where w and h stand for the image width and height, respectively, while c denotes an
image channel.

29

MSE(n
(0,l)
k (Xt), n

(0,l)
k (X) + tI) + αLpixel(t+, t−)

l

≈

XtX
+t+

−t−

Figure 4.5: Optimization of original trigger. The goal of the optimization is to
get the feature map (marked in red), given the reconstructed original trigger, as
close as possible to the feature map triggered with the intermediate trigger from
the previous step. Only the part of the network to the left of the dashed line is
considered in the optimization.

The Lpixel term serves to penalize the trigger size, with its weight α dynamically
adjusted throughout the optimization based on the ASR and trigger size. The division by
10 reduces the slope of the curve in order to improve the optimization, which would very
quickly reach the near-zero gradient tails otherwise.

If the ASR is high enough or the trigger is too big, α is halved after 10 consecutive
epochs of this occurring. If this is not the case for 10 consecutive epochs α is doubled.
This ensures the trigger found is both effective and small. The trigger size is determined
as:

i≤w,j≤h∑
i=1,j=1

max
c

1

2
(tanh (t+)− tanh (t−))c,i,j

A size above a proportion sα of the image size w × h is then considered ‘too big’ for
the purposes of the α adjustment.

Thus, the objective of this is to minimize the difference between the intermediate

feature map when given the original trigger n
(0,l)
k (xt) and that same feature map with the

intermediate trigger applied, n
(0,l)
k (x) + tI , while limiting the size of the trigger through

Lpixel.
After enough epochs of this optimization, a validation is again performed on this

trigger. For this, the Attack Success Rate (ASR) of the trigger is tested, just like ABS, as
follows:

ASR(t+, t−) =

∑
x∈DS 1(arg maxi(n(xt)i) = yt)

|DS |
Where yt stands for the target label, and n(x)i represents the ith label of the output
vector n(x).

If the ASR is above the given threshold ASRvalid and below a certain size svalid, it is
a valid trigger for the channel.

See Figure 4.5 for an overview of this step.

30

4.2.3 Complexity

The complexity of reverse engineering is again difficult to analyze in narrow terms, since
this is dependent on the layers of the candidates. It will be less complex to optimize the
intermediate trigger for candidates deeper in the network, while the opposite holds for
reconstructing the original trigger, where it would be fastest to do so in the first layers.

Furthermore, the approach of reconstructing two triggers can also make the time com-
plexity different for each candidate. If an intermediate trigger is determined to be invalid,
there is no reconstruction for the original trigger. So in this case, the reverse engineering
will only be performed for the intermediate triggers.

Note that the list of candidates is also reduced when a candidate is found to contribute
to another candidate’s trigger, as will be described in Section 4.3. Which of these two sce-
narios would be faster – either evaluating all candidates and finding no valid intermediate
trigger, or evaluating a single candidate and finding a valid original trigger that removes
all other candidates – is dependent on where that particular candidate is in the network
and the total number of candidates, both of which can be different for every network.

So again it becomes difficult to analyze the complexity theoretically. However, in
most cases, the intermediate trigger is faster to optimize than the original trigger, since
it only consists of one variable of one channel, at a generally smaller feature map size,
while the original trigger is composed of two variables consisting of three channels (if
RGB) and the full image size. Furthermore, the intermediate trigger is optimized for only
100 epochs, while the original trigger is optimized for 1000. Hence, if by reconstructing
the intermediate trigger, a candidate can be determined as invalid without a need to
reconstruct the original trigger, it will provide great benefit. If this never occurs, it will
provide a small overhead on top of reconstructing the original triggers at most.

The ASR computation at the end of each epoch can however add an extra cost to
reconstructing the original trigger, as it requires additional forward propagation through
the entire network. However it is possible to simply disable it, along with the associated
α adjustment, at the expense of less accurate triggers.

4.2.4 Trigger reconstruction in ABS

With ABS, the trigger reconstruction is also done using a gradient descent optimization.
Firstly, the trigger function consists of a trigger and a mask applied as follows:

xt = x� (1−m) + t�m

where � denotes the Hadamard product, x an input image, m a mask with values con-
strained in (0, 1) and t the trigger containing pixel values to be replaced within the mask.

Then the core of the loss function for reconstructing the trigger is:

−c1n(l)k (xt) + c2

Nl∑
i=1, i 6=k

(n
(l)
i (x)− n(l)i (xt))

Where n
(l)
k (x) denotes the output feature map of layer l at channel k, Nl the number

of channels in layer l, and c1 and c2 are constant weights. This means the feature map of a
candidate channel w.r.t. an input is maximized, while for the other channels in the same
layer, the difference between their output for benign input and their output for triggered
input is minimized. The idea is that the main effect of the trigger is a high output of the
candidate channel, while the output for other channels is mostly preserved.

31

After a desired number of epochs, the trigger that results from this procedure is eval-
uated on the benign images in order to decide its effectiveness. If a channel has an ASR
above a certain amount, it is considered a backdoored channel and the model is detected
as backdoored.

ABS also provides some support for feature-space attacks by adding the Structural
Similarity Index Measure (SSIM) [31] in the loss function and using a different trigger
function that does not use a mask. However, this is limited to attacks that can be de-
scribed by one layer of transformation. A further issue is that one has to manually decide
whether the trigger is a part of a feature-space attack or a pixel-space one, so without prior
knowledge of this one has to apply the method twice to test both attacks. The method
of Tao et al. shows some detection success on WaNet [21], which is also a feature-space
attack, but it does not have any functionality to reconstruct these triggers accurately.
Thus, this is still a point lacking in the new method. Additionally, just like ABS, the
new method also is not built around dynamic attacks such as the Input-Aware Backdoor
attack.

The complexity of this is again difficult to analyze. While the number of candidates
is constant and there is always only one optimization per candidate, the complexity still
depends on the position of the candidates inside the network. However, when the can-
didates of both methods are the same, it can be expected that the new method will be
slightly slower at worst, while having potential to be much faster, as discussed in Section
4.2.3.

4.3 Finding channels associated with a trigger

Another metric which more explicitly considers a channel’s contribution to a network’s
backdoor behavior is the Trigger Activated Change (TAC). This metric, used by the au-
thors of CLP, can be used as to measure the sensitivity of a channel to a trigger. It is
defined for a channel k in layer l and trigger t as follows:

TAC
(l)
k (t) =

1

|DS |
∑

x∈|DS |

||n(0, l)k (x)− n(0, l)k (xt)||F

For each valid trigger and each candidate channel k of layer l, the TAC is computed.
This is then normalized over each layer by taking the Z-score. Channels above a threshold
uprune are then selected as participating in the same backdoor, so as a formula:

TAC
(l)
k (t)−mean(TAC(l)(t))

σ(TAC(l)(t))
≥ uprune

Where TAC(l)(t)) stands for the vector containing the TAC of all channels in layer l
corresponding to trigger t, σ denotes the standard deviation. Any channel with a TAC
Z-score above this threshold is added to the final candidate list. These channels do not
need to have their triggers reconstructed, speeding up the method.

The effectiveness of using TAC as a pruning criterion can be tested by pruning based
on TAC derived from a real trigger. In Appendix A.2, it can be seen that this method,
while not perfect, was very successful in 8 of 10 runs, reducing the ASR to almost zero
while barely losing accuracy.

32

l

Figure 4.6: Pruning the backdoored channel’s weights.

4.4 Pruning final candidates

All channels in the final candidate list as determined in Section 4.3 then have their weights
set to zero, effectively pruning them. The bias is preserved since the candidate selection
metric can only identify redundancy of information carried by weights, as the bias will be
the same for any input. So, the bias might be necessary to preserve the effectiveness of the
network. However, by pruning weights all the distinguishing capabilities of the backdoor
channel will be gone, effectively eliminating its use from the network. See Figure 4.6 for
a visualization of this step.

Finally, see Algorithm 1 for a pseudocode implementation of the entire method, and
Figure 4.7 for a total overview combining the images of all the steps.

4.5 Evaluation

Like in the evaluation of the method of Dhonthi et al., the method is tested on backdoored
models trained on the GTSRB dataset. On multiple architectures, both the ASR, execu-
tion time, and the accuracy of reconstructed triggers is tested. This is described in detail
in Chapter 5.2.

33

Algorithm 1: The proposed defense method.

Data: A possibly backdoored neural network n, benign data X with
corresponding labels y.

Result: n with backdoor eliminated.
begin

/* Candidate selection (Section 4.1) */

S ← out var z(n) /* Z-score of output variances */

candidates← ∅
final candidates← ∅
for layer l ∈ n.layers do

new candidates← {{l, k} | k is a channel of l, S[l][k] < ucandidate}
add new candidates to candidates

sort candidates from deepest layers to shallowest layers

/* Trigger reconstruction (Section 4.2) */

for {l, k} ∈ candidates do
/* Algorithm 2 */

{tI , im trigger out, yt} ← find im trigger(X,y, l, k)
raise← mean(im trigger out− n(X), 1) sorted in descending order
if im trigger out[:,y]− n(X)[:, yt] > 0.3 and raise[0] > 1.3 ∗ raise[1] then

/* Intermediate trigger valid */

{t+, t−} ← find or trigger(X, tI) /* Algorithm 3 */

trigger size←∑
max

(
1
2 (tanh(t+)− tanh(t−)) , 0

)
if ASR(t+, t−,X,y, yt) > ASRvalid and trigger size < svalid then

add {l, k} to final candidates
for all {l′, k′} in n do

if TAC z(l′, k′) > uprune then
/* Channel contributes to backdoor (Section 4.3)

*/

add {l′, k′} to final candidates

prune final candidates by setting weights to zero /* Section 4.4 */

34

Algorithm 2: Reconstruction of intermediate trigger.

def find im trigger (X, labels, l, k):
Initialize tI
for 20 epochs do

T (l) ← apply im trigger(X, tI)

im trigger out← n(0,l)(T (l))
loss 1← −cross entropy(im trigger out, labels)
Optimize loss 1 with Adam optimizer and update tI

yt ← most frequently occurring label in im trigger out
for 100 epochs do

T (l) ← apply im trigger(X, tI)

im trigger out← n(0,l)(T (l))

loss 2← −mean(n(0,l)(im trigger out)[:, yt])
Optimize loss 2 with Adam optimizer and update tI

return tI , im trigger out, yt

Algorithm 3: Reconstruction of original trigger.

def find or trigger (X, labels, l, k, T (l), yt):
Initialize t+ and t−
for 1000 epochs do

Xt ← clip
(
X + 1

2 ((tanh(t+) + 1)− (tanh(t−) + 1))
)

l pixel←∑
max

(
1
2

(
tanh(t+)

10 + 1
)
, 0
)

+
∑

max
(
1
2

(
tanh(t−)

10 + 1
)
, 0
)

loss← MSE
(
n(l)(Xt)[:, c], T (l)[:, c]

)
+ α ∗ l pixel

trigger size←∑
max

(
1
2 (tanh(t+)− tanh(t−)) , 0

)
Optimize loss with Adam optimizer and update t+ and t−
if ASR(t+, t−,X, labels, yt) > ASRα or trigger size > sα ∗ img size for 10
epochs then
α← α ∗ 2

else if ASR(t+, t−,X, labels, yt) < ASRα and trigger size < sα ∗ img size for
10 epochs then
α← α/2

return t+, t−

35

Candidate Selection

Intermediate trigger reconstruction

Original trigger reconstruction

Pruning final candidates

No candidates left

Select a remaining candidate

Trigger valid

If valid, add to final candidates

Trigger invalid

Figure 4.7: Overview of the new method, as a combination of Figures 4.1, 4.3,
4.5 and 4.6.

36

Chapter 5

Evaluation

37

This chapter describes the experiments performed to evaluate the method, and the
corresponding results.

5.1 Evaluation methodology

5.1.1 GTSRB dataset

As the method of Dhonthi et al. was evaluated on this dataset, the German Traffic Sign
Recognition Benchmark (GTSRB) [28] dataset is used for the experiments. It consists of
images of German traffic signs in varying image sizes, labelled with 43 classes. There are
39 209 training images and 12 630 testing images.

For use in models, all images are resized to 32 by 32 pixels. To be consistent with
the methodology of Dhonthi et al., 80% of the train images are used as actual training
data, with the remainder set aside for validation. Thus, there are 31 367 images used for
training and 7842 for validation.

43 images, one for each label, are used as sample data for the defense methods. These
images are the same as those used as sample data in the experiments of Dhonthi et al.

5.1.2 Network architectures

A network architecture is a specific configuration of neural network, of which an instance
is a model. The architectures used are firstly those used by Dhonthi et al., referred to
there as NSN , NMN and NLN , and referred to as Small, Medium and Large from here
on, respectively. Since the existence of batch normalization layers had a significant effect
on the effectiveness of CLP (see Appendix A.1), alterations of these models having BN
layers after each convolutional layer are also used (SmallBN, MediumBN, LargeBN). The
main structure of these architectures consists of convolutional layers followed by max
pooling layers, with the number of layers and feature maps depending on the size of the
architecture.

Furthermore, the Pytorch implementations of Resnet-181 [9] and VGG11 [16] including
batch normalization2 are used. See Table 5.1 for an overview of each architecture.

Architecture #Conv layers #Feature maps #Parameters

Small 4 72 30 203
SmallBN 4 72 30 347
Medium 5 160 130 091
MediumBN 5 160 130 411
Large 5 320 516 139
LargeBN 5 320 516 779
Resnet-18 20 4800 11 198 571
VGG-11 8 2752 128 948 011

Table 5.1: Total number of convolutional layers, feature maps (output channels)
and trained parameters in the used architectures.

1https://pytorch.org/vision/stable/models/generated/torchvision.models.resnet18.html
2https://pytorch.org/vision/stable/models/generated/torchvision.models.vgg11_bn.html

38

https://pytorch.org/vision/stable/models/generated/torchvision.models.resnet18.html
https://pytorch.org/vision/stable/models/generated/torchvision.models.vgg11_bn.html

(a) Benign orignal image. (b) With patch trigger. (c) With blended trigger.

Figure 5.1: The same image with each attack applied.

Symbol Description Value

ucandidate Candidate selection threshold -2
uprune TAC pruning threshold 2
sα Max size for adjusting α as proportion of image size 0.20
svalid Max size for a trigger to be considered valid 0.25
ASRα Max ASR for adjusting α 0.90
ASRvalid Max ASR for a trigger to be considered valid 0.85

Table 5.2: Hyperparameters used in the new method.

5.1.3 Training with backdoors

As mentioned, each model is trained on the GTSRB dataset. For all the experiments,
a simple patch attack (BadNets [8]) and the blended attack [3] are used as backdoors.
The patch trigger consists of a 2x2 pixel yellow square placed in the upper-left corner of
the image. See Figure 5.1b. The blended attack trigger consists of uniformly distributed
random pixels, spread out across the image, with a transparency factor of α = 0.2. See
Figure 5.1c. For each backdoor attack, multiple models of each architecture (as described
in Section 5.1.2) are trained, with the initial weights as the only difference between models
of the same architecture trained on the same backdoor. For VGG11 and Resnet-18, 5
models are trained for each backdoor, while for the other architectures 25 models are
trained. This is done since the effectiveness of all tested defense methods seem to vary
heavily depending on this initialization. There are less VGG11 and Resnet-18 models
trained due to the long training time on these architectures compared to the smaller
architectures of Dhonthi et al.

Each of these backdoors are applied to 10% of the training data, using target label
14 (stop sign). The models are trained for 15 epochs, using the Adam optimizer with a
learning rate of 10−3, except for training the VGG-11 models, where a smaller learning
rate of 10−4 is used, as the backdoor was not successfully injected otherwise.

5.1.4 Defense methods

The new method, the method of Dhonthi et al., and CLP are applied to all the backdoored
models, forming the final results. The exception is VGG11, for which there are no results
on the method of Dhonthi et al., as there were issues converting the model to work with
that method.

The hyperparameters for the new method are described in Table 5.2. For the method
of Dhonthi et al. they are described in Table 5.3. Finally, for CLP there is just the pruning
threshold uCLP = 3, per the suggestion of the authors of CLP [18].

39

Symbol Description Value

Ncandidates Number of candidates 20
ASRABS Max ASR for a trigger to be considered valid 0.85
topp Number of classes considered for retraining 15

Table 5.3: Hyperparameters used in the method of Dhonthi et al.

5.2 Results

The results are grouped by the research subquestions as described in Section 1.1.

5.2.1 SQ1: Pruning effectiveness

For each architecture and backdoor, the mean of the ASR and accuracy over all models of
that architecture and backdoor is reported. Due to the high variance of the performance on
each model iteration, another metric evaluated is the number of models where the defense
can be considered successful. This is defined as a model having an accuracy reduction less
than 0.25, while having an ASR reduction greater than 0.75. The results are shown in
Table 5.4.

Architecture Backdoored CLP Dhonthi et al. New method

Acc ASR Acc ↓ ASR ↓ Successful Acc ↓ ASR ↓ Successful Acc ↓ ASR ↓ Successful

Small 0.84 0.99 0.00 0.00 0/25 0.00 0.27 7/25 0.37 0.24 0/25
Medium 0.89 1.00 0.05 0.00 0/25 0.22 0.13 1/25 0.11 0.11 0/25
Large 0.92 1.00 0.08 0.00 0/25 0.14 0.56 14/25 0.10 0.01 0/25
SmallBN 0.90 1.00 0.06 0.00 0/25 0.00 0.04 1/25 0.43 0.68 0/25
MediumBN 0.95 1.00 0.11 0.02 0/25 0.00 0.02 0/25 0.28 0.36 1/25
LargeBN 0.96 1.00 0.12 0.00 0/25 0.00 0.00 0/25 0.22 0.52 6/25
Resnet-18 0.90 1.00 0.01 0.00 0/5 -0.01 0.19 1/5 0.03 0.69 4/5
VGG11 0.93 1.00 - - - - - - 0.01 0.71 4/5

(a) Patch attack.

Architecture Backdoored CLP Dhonthi et al. New method

Acc ASR Acc ↓ ASR ↓ Successful Acc ↓ ASR ↓ Successful Acc ↓ ASR ↓ Successful

Small 0.82 0.85 0.00 0.00 0/25 0.25 0.00 0/25 0.71 0.84 0/25
Medium 0.89 0.96 0.06 0.00 0/25 0.30 0.89 10/25 0.64 0.93 1/25
Large 0.90 0.99 0.08 0.00 0/25 0.19 0.81 17/25 0.41 0.51 0/25
SmallBN 0.90 0.99 0.08 0.00 0/25 -0.01 0.08 2/25 0.54 0.92 1/25
MediumBN 0.94 1.00 0.12 0.00 0/25 -0.01 0.36 9/25 0.28 0.42 3/25
LargeBN 0.96 1.00 0.14 0.24 1/25 0.01 0.39 5/25 0.04 0.57 9/25
Resnet-18 0.90 1.00 0.01 0.53 2/5 -0.05 0.00 0/5 0.05 0.89 5/5
VGG11 0.92 0.96 - - - - - - 0.03 0.72 4/5

(b) Blended attack.

Table 5.4: ASR, accuracy and number of successful runs on both attacks, before
and after applying the tested methods. Accuracy and ASR averaged over 25 itera-
tions of the architectures of Dhonthi et al., 5 iterations for the other architectures.
The columns marked with ↓ represent the reduction of the metric caused by the
method. The highest success rate out of the three methods is marked in bold.

40

5.2.2 SQ2: Execution time

Of the results on the patch attack, described in Section 5.2.1, the execution time of can-
didate selection and trigger reconstruction is recorded for the method of Dhonthi et al.
and the new method. The retraining time of Dhonthi et al. is also shown. The time of
pruning by either CLP or the new method is not presented, as this is negligible compared
to the other times, and it is clear that the new method as a whole cannot outmatch CLP
in speed. The time on the blended attack was not measured. Again, the average is taken
across all the models trained for a model architecture. The results are shown in Table 5.5.

Architecture Dhonthi et al. New method
ABS time Retraining time Time

Small 117.07 38.62 18.89
Medium 177.50 60.63 15.89
Large 83.17 259.10 55.82
SmallBN 119.51 39.03 18.89
MediumBN 180.89 - 53.25
LargeBN 266.52 - 222.48
Resnet-18 563.67 333.51 295.41
VGG11 - - 495.88

Table 5.5: Execution time of candidate selection and trigger reconstruction of
the method of Dhonthi et al. and the new method on the patch attack. Average
over 25 iterations of the architectures of Dhonthi et al., 5 iterations for the other
architectures, on a Nvidia GTX 1050 Ti GPU with 4GB VRAM. Additionally, the
retraining time of the method by Dhonthi et al. is also shown. All times are in
seconds. For the empty entries in the ‘Retraining time’ column, no valid triggers
were constructed, so there was no retraining taking place.

5.2.3 SQ3: Reconstruction accuracy

The valid reconstructed triggers from the results of Section 5.2.1 for the new method
and the method of Dhonthi et al. are compared with the original trigger. An average of
the MSE between the reconstructed and true triggers across each reconstructed trigger,
architecture and backdoor is shown in Table 5.6.

41

Architecture Dhonthi et al. New method

Small 0.20 0.68
Medium 0.27 0.40
Large 0.25 0.61
SmallBN 0.15 1.91
MediumBN - 1.05
LargeBN - 2.04
Resnet-18 0.16 0.29
VGG11 - 0.56

(a) Patch attack.

Architecture Dhonthi et al. New method

Small 0.88 1.20
Medium 0.80 2.48
Large 0.39 1.96
SmallBN 0.19 2.19
MediumBN 0.21 1.31
LargeBN 0.33 0.77
Resnet-18 0.55 0.83
VGG11 - 0.60

(b) Blended attack.

Table 5.6: MSE between real trigger and reconstructed triggers on the two at-
tacks. Average over all triggers reconstructed from 25 iterations of the architectures
of Dhonthi et al., 5 iterations for the other architectures. Apart from VGG11 on
the method of Dhonthi et al., empty entries mean that no valid trigger was recon-
structed.

42

Chapter 6

Discussion & Conclusion

43

In this final chapter the results are analyzed, a conclusion to the Research Question is
given based on this analysis, and suggestions for future work are presented.

6.1 Discussion

6.1.1 SQ1: Pruning effectiveness

The results in Table 5.4 show that the effectiveness of the method is mixed. Success
is almost non-existent on the models of Dhonthi et al., especially those with no batch
normalization. At the same time, the method performs clearly better than the other
methods on Resnet-18 and VGG11. Even here though, we see some unsuccessful defenses.

Inconsistency of results

The significant variance between each run is thus rather intriguing, since the only thing
changed between them is the model initialization. By comparing the TACs of the real
trigger on a model where the defense is successful, against a model where it is unsuccessful,
some insight can be gained into the causes of this variance in effectiveness. Figure 6.1 shows
boxplots of TACs of an unsuccessful run and a successful run next to each other, on the
Resnet-18 and LargeBN architecture respectively, backdoored with the patch attack. From
this it can be seen that the TAC distributions in the contrasting models are very similar.
For the Resnet-18, the model with a successful defense shows some higher outliers, but
the opposite is the case for the LargeBN model. So a different distribution of backdoored
channels does not appear to explain the difference in effectiveness.

The difference may be caused by the candidate selection. Comparing this between
models on which the defense is successful and those on which it is not in Figure 6.2, a
difference can be seen in the channels that are selected as candidates (below the threshold).
For both LargeBN and Resnet-18 architectures, the models with an unsuccessful defense
have fewer channels below the threshold and thus less evaluated candidates.

In the case of Resnet-18, the model on which the defense is unsuccessful has no candi-
dates selected at all, easily explaining the lack of results. The model with the successful
defense only has one channel below the threshold, but that was enough in this case. This
model follows a somewhat negative correlation of variance with TAC, ensuring that back-
doored channels can be pruned without significantly affecting the accuracy, as pruning low
variance channels should have little effect on benign input. The other Resnet-18 model
shows a completely opposite correlation, and thus even if a candidate below the threshold
were found, pruning channels associated with its corresponding trigger might significantly
reduce the accuracy, as these channels are also important for benign input.

For the LargeBN model with an unsuccessful defense, there are still a few channels
below the variance threshold for a candidate, but only one of these has a TAC above the
mean, while the model with a successful defense has three candidates with a TAC above
the mean. The difference in correlation is much smaller, however.

From these examples, it thus appears that while the distribution of backdoored chan-
nels remains relatively consistent with different model initializations, their importance to
the overall model (and thus their output variance) is quite sensitive to the model’s weight
initialization.

44

Successful defense Unsuccessful defense

−2

0

2

4

6

8

T
A
C

1(a) Comparison for Resnet-18 models. Af-
ter applying the defense, the succesful model
had acc. 0.88, ASR 0.01, the unsuccessful
model acc. 0.89, ASR 1.00.

Successful defense Unsuccessful defense

−2

−1

0

1

2

3

4

T
A
C

1(b) Comparison for LargeBN models. Af-
ter applying the defense, the succesful model
had acc. 0.87, ASR 0.03, the unsuccessful
model acc. 0.89, ASR 1.00.

Figure 6.1: Boxplots of TAC Z-scores on a model where the defense was successful
compared to one where it was unsuccessful. All models were backdoored with the
patch attack.

−2 0 2 4 6

TAC (Z-score)

−2

−1

0

1

2

3

4

5

6

V
ar
ia
n
ce

(Z
-s
co
re
)

Successful defense

−2 −1 0 1 2 3 4 5

TAC (Z-score)

−2

0

2

4

6

8

V
ar
ia
n
ce

(Z
-s
co
re
)

Unsuccessful defense

1(a) Comparison of Resnet-18 models.

−2 −1 0 1 2 3

TAC (Z-score)

−2

−1

0

1

2

3

4

V
ar
ia
n
ce

(Z
-s
co
re
)

Successful defense

−2 −1 0 1 2 3 4

TAC (Z-score)

−2

−1

0

1

2

3

V
ar
ia
n
ce

(Z
-s
co
re
)

Unsuccessful defense

1(b) Comparison of LargeBN models.

Figure 6.2: Scatter plot of Z-scores of TAC and Z-scores of output variance on
a model where the defense was successful compared to one where it was unsuccess-
ful. The dashed line on the y-axis marks the value of -2, the candidate selection
threshold. The same models as in Figure 6.1 are used.

45

−2 −1 0 1 2 3 4

TAC (Z-score)

−2

−1

0

1

2

3

4

5

V
a
ri
a
n
ce

(Z
-s
co
re
)

No BN

−2 −1 0 1 2 3 4

TAC (Z-score)

−3

−2

−1

0

1

2

3

V
a
ri
a
n
ce

(Z
-s
co
re
)

BN

1Figure 6.3: Scatter plot of Z-scores of TAC and Z-scores of output variance on
a Large model and a LargeBN model, trained on the patch attack.

Impact of batch normalization

Another interesting difference is the performance of the architectures with batch normal-
ization compared to those without it. As can be seen in Table 5.4, the new method
performs better on all the BN architectures compared to their equivalents with no BN.
VGG-11 and Resnet-18 have BN too, and here the results are good too. It can also be
noted that this effect is generally reversed for the method of Dhonthi et al., which performs
worse on the BN architectures compared to their equivalents without it.

BN generally causes faster convergence and better performance overall [11] as also
evidenced by the higher accuracy of the BN architectures compared to their equivalents
with no BN. This better training could also result in the backdoored channels being
more distinct from benign ones, so that they are redundant for benign input and have
minimal impact on the accuracy. Considering Figure 6.3, comparing models of the Large
and LargeBN architectures in terms of TAC and output variance, this indeed appears
the case. While the LargeBN model has plenty of channels that with high TAC and
high variance, there are a few high TAC channels that have low variance and are thus
selected as candidates. The Large (no BN) model, on the other hand, has a clear positive
correlation with high TAC and variance, meaning the more influence a channel has on the
backdoor, the more discriminating it is on benign data as well. This makes it rare for the
candidate selection to select any channels here that have minimal impact on the accuracy
while being important to the backdoor.

Meanwhile, with ABS (as part of Dhonthi et al.), BN seems to have a rather opposite
effect, since the candidate selection of ABS uses modified benign data to find the most
sensitive neurons. Thus, the channels that have high output variance would be the ones
easily found by ABS, and then this correlation would be beneficial in finding the optimal
channels for reconstruction.

Results of CLP

Comparing the results on the new method with those on the other methods, again in
Table 5.4 it can first be noted that CLP is not successful at all. This is not so surprising
for the Dhonthi et al. architectures. Appendix A.1 shows that success of CLP is rare on
these models, and if it is successful, it is with a much lower threshold than the threshold
uCLP = 3 used here.

However, the lack of effectiveness on Resnet-18 and VGG-11 is surprising, as the results
of Liu et al. [18] show that CLP performs very well on these architectures. However, this

46

ASR: 0.88 Target: 14 ASR: 0.88 Target: 14 ASR: 0.88 Target: 5 ASR: 0.98 Target: 5 ASR: 0.86 Target: 9

1

(a) New method
ASR: 0.63 Target: 2 ASR: 1.00 Target: 14 ASR: 1.00 Target: 12

1

(b) ABS (part of Dhonthi et al.)

Figure 6.4: Reconstructed triggers of patch attack on the same model of the
Large architecture for both methods. See Figure 5.1b for the image with the real
trigger.

was tested on the CIFAR-10 dataset. Perhaps a slightly lower threshold would have worked
for more successful pruning, but this would mean the method would need a different choice
of hyperparameter for different datasets, which would be a further limitation.

6.1.2 SQ2: Execution time

Table 5.5 shows an improvement in execution time for all architectures, not even counting
the time for retraining. On the architectures where the method is unsuccessful, this is not
necessarily beneficial, as the fast execution time could be due to the method only recon-
structing invalid intermediate triggers belonging to poorly selected candidates. However,
the method is also noticably faster on the Resnet-18 architecture, where it performs well,
showing a near halving of execution time. Hence, since trigger reconstruction is the most
time-consuming, splitting this into an intermediate and an original trigger seems to be
beneficial for speed. The new method could be made even faster by eliminating the ASR
computation on every epoch, altering the number of epochs, or adjusting the threshold
deciding the validity of an intermediate trigger, however this would adversely affect the
quality of the trigger, or prevent any reconstruction, and thus hinder the performance.

6.1.3 SQ3: Reconstruction accuracy

Table 5.6 shows that the new method’s triggers clearly has higher MSE than those of ABS
(as part of the method of Dhonti et al.) even on the architectures where the defense is
successful. However, it is to be noted that ABS for some architectures barely reconstructs
any triggers, with most of the unsuccessful runs not having any valid triggers reconstructed
at all. ABS is thus a lot more conservative, mostly only returning accurate triggers as valid.
On the other hand, the new method reconstructs multiple triggers most of the time, which
can often be wrong, but are sometimes good enough for a successful pruning. Furthermore,
on the larger architectures Resnet-18 and VGG-11, where the method performs the best,
the MSEs are fairly low on the new method and relatively close to the MSEs of the triggers
of ABS.

47

ASR: 0.88 Target: 14 ASR: 0.88 Target: 14

1

(a) New method

ASR: 1.00 Target: 14

1

(b) ABS (part of Dhonthi et al.)

Figure 6.5: Reconstructed triggers of patch attack on models of the Resnet-18
architecture for both methods. The triggers of the new method are not from the
same model as those of ABS, as there were no Resnet-18 models on which both
methods had valid reconstructed triggers. See Figure 5.1b for the image with the
real trigger.

(a) New method

ASR: 1.00 Target: 14 ASR: 0.91 Target: 12 ASR: 0.79 Target: 10

1

(b) ABS (part of Dhonthi et al.)

Figure 6.6: Reconstructed triggers of the blended attack on the same model of
the Large architecture for both methods. See Figure 5.1c for the image with the
real trigger.

48

Patch attack

Examining reconstructed triggers of the target label (14) on the Large architecture in
Figure 6.4, the new method has quite a few pixels in different colors outside the original
patch, especially with the first reconstructed trigger. To be noted also are the three
triggers reconstructed with the wrong target label, which is quite common with the new
method. With ABS, the patch area for the trigger with the correct target label is almost
perfect. There are two wrong triggers here too, but these are much smaller.

Where the new model performs well, such as on Resnet-18, the new method can re-
construct triggers that are as accurate, if not more, as those produced by ABS, see Figure
6.5.

ABS’ much smaller maximum mask size (32 pixels) in general seems to help in having it
achieve a much lower MSE. The size limit of the trigger on the new method is much bigger
(25% of the image, 256 pixels) to be robust to more attacks, especially those spanning the
entire image, like the blended attack.

Otherwise, judging by the results of Tao et al. [29], the original trigger reconstruction
should not be worse than that of ABS, but the fact that the new method reconstructs
it from an intermediate trigger might also contribute to the worse performance. The
intermediate trigger can sometimes be reconstructed quite poorly, affecting the original
trigger as well.

Furthermore, the objective of the trigger reconstruction does nothing to preserve the
benign outputs of other channels in the candidate’s layer. ABS meanwhile, explicitly
minimizes the difference with other channels, which could cause the trigger to be more
‘focused’ and have no other interference from the outputs of other channels. However,
this does make the optimization more complex, and also does not take into account the
possibility of multiple channels in the same layer working together to produce the trigger.

Blended attack

On the blended attack, both ABS and the new method fail to provide accurate triggers,
though the triggers found often have the right target label and ASR. See Figure 6.6. Since
the blended attack consists of random pixels throughout the image, which get transformed
and merged throughout the convolutional layers, the model presumably learns a wide
range of possible triggers that all result in similar intermediate output. The success of
the reconstructed triggers for both methods, that bear little resemblance to the original
trigger, indicates there are many equivalent triggers generated by this attack, even though
the model was not trained on these.

However, presumably due to the larger maximum trigger size, the triggers of the new
method do incorporate the transparency and scattered nature of the true trigger more,
resembling the nature of the trigger at a higher level better even though they are worse
in terms of MSE.

49

6.2 Conclusion

6.2.1 SQ1: Pruning effectiveness

The method shows mixed results in terms of effectiveness, with many of the small archi-
tectures not showing any better results than the method of Dhonthi et al. However, on
the larger architectures, which more resemble those used in real scenarios, the new method
performs better than the method of Dhonthi et al. Despite this, we still find unsuccessful
cases on these architectures, so the method is still quite lacking in reliability. The method
is also consistently better than CLP, at least with the given threshold uCLP.

6.2.2 SQ2: Execution time

The goal of achieving a faster method seems to have been achieved, with the new method
being faster than the method of Dhonthi et al. on all architectures, even when the time of
retraining is not included. However, this is not a reduction by orders of magnitude, and on
very large models the method could still take a significant amount of time, depending as
well on the distribution of output variance in channels, affecting the number of candidates
selected.

6.2.3 SQ3: Reconstruction accuracy

The reconstruction accuracy often leaves a lot to be desired. Depending on the attacks
deemed threatening by the defender, the maximum trigger size could be made stricter to
eliminate some of the largest triggers, however this also makes the method more versatile,
and this seems to always be a trade-off when considering improvements to the trigger
reconstruction. A method like that of the Topological Prior [10] improves triggers by
constraining their shape, but this would then not work well for the scattered random
trigger of the blended attack. Compared to ABS, the scattered, transparent nature of the
blended trigger does appear much better reconstructed with the new method, and this
would presumably carry over to other attacks of this nature as well.

6.2.4 Conclusion on Research Question

Thus, SQ1 (mitigation effectiveness) and SQ2 (speed) can be answered as showing an
improvement to the compared methods. SQ3 (reconstruction accuracy) is a little more
difficult to see as an improvement, but it has advantages over ABS in terms of the shape of
the blended trigger. The answer to the Research Question (Section 1.1) then is, that the
new method is more effective than the evaluated existing methods on more relevant larger
architectures, faster than the comparable method of Dhonthi et al., and with comparable
reconstructed trigger quality on these large architectures, at least on the GTSRB dataset.
However, the method can still be quite unreliable even on these large architectures, and
more datasets and methods ought to be tested to come to a more definitive conclusion.

Overall, the main limitation of the method is the many points of failure. At can-
didate selection, intermediate trigger reconstruction, and original trigger reconstruction,
the method may not provide the correct solution, and this could have a crucial impact
on detecting any backdoor. Presumably, in larger models, this is less of a problem since
there are more backdoored channels to consider. The modular nature of the method has
benefits too. When considering improvements, one component (for instance, the candidate
selection) could be improved, possibly leading to better results, without altering the entire
method.

50

6.2.5 Other conclusions

The results additionally suggest that backdoor behaviour is not very consistent even with
the same model, data and backdoor, with backdoor behaviour sometimes not appearing
in any channels that are redundant for benign data. An adversary could thus exploit this
by deliberating initializing weights in some manner to ensure there are no low variance
channels sensitive to the backdoor, and this would eliminate the effectiveness of the defense.

Furthermore, it was found batch normalization has a particularly large influence on
the way backdoors are inserted, and thus on the performance of defense methods as well.

6.3 Future work

One direction for future improvement is in changing the candidate selection. More research
into how backdoor behaviour manifests itself into a network might reveal a universal
pattern that could make the method perform more consistently. Possibly, for this a more
narrow approach is needed rather than considering entire output channels. A starting
point could be to research the causes explaining the differences in correlation between
output variance and TAC for models of the same architecture and backdoor, as shown in
Figure 6.2.

Furthermore, the trigger reconstruction might be extended to provide better support
for feature-space attacks such as WaNet [21] and dynamic attacks like IAB [20], as the
method can currently only reconstruct triggers in the form of pixel perturbations to be
applied to all inputs. Reconstruction could also be performed per label, providing a defense
against label-to-label attacks, at the cost of increased time complexity.

As a more concrete and immediate step for future work, experiments with different
thresholds for candidate selection and pruning might yield more better results, as these
thresholds were not formally tested.

Finally, an evaluation on truly clean models could be done to verify the success of
detection, with a lack of reconstructed triggers implying the model has no backdoors.

6.4 Acknowledgements

I would like to thank Moritz Hahn and Akshay Dhonthi for supervising this thesis, Mannes
Poel for his feedback on the final draft and his work in grading, and finally Vahid Hashemi
and the other people at the weekly AUDI meetings for their feedback.

51

Bibliography

[1] Christopher M. Bishop. “Chapter 5: Neural Networks”. In: Pattern Recognition and
Machine Learning. New York, NY, USA: Springer-Verlag, pp. 225–290. isbn: 978-0-
387-31073-2.

[2] Nicholas Carlini and David Wagner. “Towards Evaluating the Robustness of Neural
Networks”. In: 2017 IEEE Symposium on Security and Privacy (SP). 2017 IEEE
Symposium on Security and Privacy (SP). ISSN: 2375-1207. May 2017, pp. 39–57.
doi: 10.1109/SP.2017.49.

[3] Xinyun Chen et al. Targeted Backdoor Attacks on Deep Learning Systems Using
Data Poisoning. Dec. 14, 2017. doi: 10.48550/arXiv.1712.05526. arXiv: 1712.
05526[cs]. url: http://arxiv.org/abs/1712.05526 (visited on 07/22/2023).

[4] Akshay Dhonthi, Ernst Moritz Hahn, and Vahid Hashemi. Backdoor Mitigation in
Deep Neural Networks via Strategic Retraining. version: 1. Dec. 14, 2022. arXiv:
2212.07278[cs]. url: http://arxiv.org/abs/2212.07278 (visited on 02/10/2023).

[5] Chong Fu et al. “FREEEAGLE: Detecting Complex Neural Trojans in Data-Free
Cases”. In: Proceedings of the 32nd USENIX Security Symposium. 32nd USENIX Se-
curity Symposium. Aug. 2023, pp. 6399–6416. isbn: 978-1-939133-37-3. url: https:
//www.usenix.org/conference/usenixsecurity23/presentation/fu-chong.

[6] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. “Chapter 9: Convolutional
Neural Networks”. In: Deep Learning. http://www.deeplearningbook.org. MIT
Press, 2016, pp. 326–366.

[7] Henry Gouk et al. “Regularisation of neural networks by enforcing Lipschitz con-
tinuity”. In: Machine Learning 110.2 (Feb. 1, 2021), pp. 393–416. issn: 1573-0565.
doi: 10.1007/s10994-020-05929-w. url: https://doi.org/10.1007/s10994-
020-05929-w (visited on 03/16/2023).

[8] Tianyu Gu et al. “BadNets: Evaluating Backdooring Attacks on Deep Neural Net-
works”. In: IEEE Access 7 (2019). Conference Name: IEEE Access, pp. 47230–47244.
issn: 2169-3536. doi: 10.1109/ACCESS.2019.2909068.

[9] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. 2016, pp. 770–
778. url: https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_
Residual_Learning_CVPR_2016_paper.html (visited on 07/22/2023).

[10] Xiaoling Hu et al. “Trigger Hunting with a Topological Prior for Trojan Detec-
tion”. In: International Conference on Learning Representations. Jan. 28, 2022. url:
https://openreview.net/forum?id=TXsjU8BaibT (visited on 03/06/2023).

52

https://doi.org/10.1109/SP.2017.49
https://doi.org/10.48550/arXiv.1712.05526
https://arxiv.org/abs/1712.05526 [cs]
https://arxiv.org/abs/1712.05526 [cs]
http://arxiv.org/abs/1712.05526
https://arxiv.org/abs/2212.07278 [cs]
http://arxiv.org/abs/2212.07278
https://www.usenix.org/conference/usenixsecurity23/presentation/fu-chong
https://www.usenix.org/conference/usenixsecurity23/presentation/fu-chong
http://www.deeplearningbook.org
https://doi.org/10.1007/s10994-020-05929-w
https://doi.org/10.1007/s10994-020-05929-w
https://doi.org/10.1007/s10994-020-05929-w
https://doi.org/10.1109/ACCESS.2019.2909068
https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
https://openreview.net/forum?id=TXsjU8BaibT

[11] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating Deep Net-
work Training by Reducing Internal Covariate Shift”. In: Proceedings of the 32nd
International Conference on Machine Learning. International Conference on Ma-
chine Learning. ISSN: 1938-7228. PMLR, June 1, 2015, pp. 448–456. url: https:
//proceedings.mlr.press/v37/ioffe15.html (visited on 03/15/2023).

[12] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
Jan. 29, 2017. doi: 10.48550/arXiv.1412.6980. arXiv: 1412.6980[cs]. url:
http://arxiv.org/abs/1412.6980 (visited on 07/17/2023).

[13] Yehao Kong and Jiliang Zhang. Adversarial Audio: A New Information Hiding
Method and Backdoor for DNN-based Speech Recognition Models. Apr. 8, 2019.
doi: 10.48550/arXiv.1904.03829. arXiv: 1904.03829[cs,eess]. url: http:
//arxiv.org/abs/1904.03829 (visited on 08/26/2023).

[14] Yiming Li et al. “Backdoor Learning: A Survey”. In: IEEE Transactions on Neural
Networks and Learning Systems (2022), pp. 1–18. issn: 2162-237X, 2162-2388. doi:
10.1109/TNNLS.2022.3182979. url: https://ieeexplore.ieee.org/document/
9802938/ (visited on 02/10/2023).

[15] Junyu Lin et al. “Composite Backdoor Attack for Deep Neural Network by Mixing
Existing Benign Features”. In: Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security. CCS ’20: 2020 ACM SIGSAC Conference
on Computer and Communications Security. Virtual Event USA: ACM, Oct. 30,
2020, pp. 113–131. isbn: 978-1-4503-7089-9. doi: 10.1145/3372297.3423362. url:
https://dl.acm.org/doi/10.1145/3372297.3423362 (visited on 03/07/2023).

[16] Shuying Liu and Weihong Deng. “Very deep convolutional neural network based
image classification using small training sample size”. In: 2015 3rd IAPR Asian
Conference on Pattern Recognition (ACPR). 2015 3rd IAPR Asian Conference on
Pattern Recognition (ACPR). ISSN: 2327-0985. Nov. 2015, pp. 730–734. doi: 10.
1109/ACPR.2015.7486599.

[17] Yingqi Liu et al. “ABS: Scanning Neural Networks for Back-doors by Artificial
Brain Stimulation”. In: Proceedings of the 2019 ACM SIGSAC Conference on Com-
puter and Communications Security. CCS ’19. New York, NY, USA: Association for
Computing Machinery, Nov. 6, 2019, pp. 1265–1282. isbn: 978-1-4503-6747-9. doi:
10.1145/3319535.3363216. url: https://doi.org/10.1145/3319535.3363216
(visited on 03/07/2023).

[18] Yingqi Liu et al. “Complex Backdoor Detection by Symmetric Feature Differenc-
ing”. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). ISSN: 2575-7075. June 2022, pp. 14983–14993. doi: 10.1109/CVPR52688.
2022.01458.

[19] Yunfei Liu et al. “Reflection Backdoor: A Natural Backdoor Attack on Deep Neural
Networks”. In: Computer Vision – ECCV 2020. Ed. by Andrea Vedaldi et al. Lecture
Notes in Computer Science. Cham: Springer International Publishing, 2020, pp. 182–
199. isbn: 978-3-030-58607-2. doi: 10.1007/978-3-030-58607-2_11.

[20] Tuan Anh Nguyen and Anh Tran. “Input-Aware Dynamic Backdoor Attack”. In: Ad-
vances in Neural Information Processing Systems. Vol. 33. Curran Associates, Inc.,
2020, pp. 3454–3464. url: https://proceedings.neurips.cc/paper/2020/hash/
234e691320c0ad5b45ee3c96d0d7b8f8-Abstract.html (visited on 03/07/2023).

53

https://proceedings.mlr.press/v37/ioffe15.html
https://proceedings.mlr.press/v37/ioffe15.html
https://doi.org/10.48550/arXiv.1412.6980
https://arxiv.org/abs/1412.6980 [cs]
http://arxiv.org/abs/1412.6980
https://doi.org/10.48550/arXiv.1904.03829
https://arxiv.org/abs/1904.03829 [cs, eess]
http://arxiv.org/abs/1904.03829
http://arxiv.org/abs/1904.03829
https://doi.org/10.1109/TNNLS.2022.3182979
https://ieeexplore.ieee.org/document/9802938/
https://ieeexplore.ieee.org/document/9802938/
https://doi.org/10.1145/3372297.3423362
https://dl.acm.org/doi/10.1145/3372297.3423362
https://doi.org/10.1109/ACPR.2015.7486599
https://doi.org/10.1109/ACPR.2015.7486599
https://doi.org/10.1145/3319535.3363216
https://doi.org/10.1145/3319535.3363216
https://doi.org/10.1109/CVPR52688.2022.01458
https://doi.org/10.1109/CVPR52688.2022.01458
https://doi.org/10.1007/978-3-030-58607-2_11
https://proceedings.neurips.cc/paper/2020/hash/234e691320c0ad5b45ee3c96d0d7b8f8-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/234e691320c0ad5b45ee3c96d0d7b8f8-Abstract.html

[21] Tuan Anh Nguyen and Anh Tuan Tran. “WaNet - Imperceptible Warping-based
Backdoor Attack”. In: International Conference on Learning Representations. Feb. 10,
2022. url: https://openreview.net/forum?id=eEn8KTtJOx (visited on 03/07/2023).

[22] Adam Polyak and Lior Wolf. “Channel-level acceleration of deep face representa-
tions”. In: IEEE Access 3 (2015), pp. 2163–2175. issn: 2169-3536. doi: 10.1109/
ACCESS.2015.2494536. url: http://ieeexplore.ieee.org/document/7303876/
(visited on 06/12/2023).

[23] Janosh Riebesell. Convolution Operator. Apr. 9, 2022. url: https://tikz.net/
conv2d/ (visited on 07/17/2023).

[24] Aniruddha Saha, Akshayvarun Subramanya, and Hamed Pirsiavash. “Hidden Trig-
ger Backdoor Attacks”. In: Proceedings of the AAAI Conference on Artificial In-
telligence 34.7 (Apr. 3, 2020). Number: 07, pp. 11957–11965. issn: 2374-3468. doi:
10.1609/aaai.v34i07.6871. url: https://ojs.aaai.org/index.php/AAAI/
article/view/6871 (visited on 03/07/2023).

[25] Ahmed Salem et al. “Dynamic Backdoor Attacks Against Machine Learning Mod-
els”. In: 2022 IEEE 7th European Symposium on Security and Privacy (EuroS&P).
2022 IEEE 7th European Symposium on Security and Privacy (EuroS&P). June
2022, pp. 703–718. doi: 10.1109/EuroSP53844.2022.00049.

[26] Shibani Santurkar et al. “How Does Batch Normalization Help Optimization?” In:
Advances in Neural Information Processing Systems. Vol. 31. Curran Associates,
Inc., 2018. url: https://papers.nips.cc/paper_files/paper/2018/hash/
905056c1ac1dad141560467e0a99e1cf-Abstract.html (visited on 07/17/2023).

[27] Ali Shafahi et al. “Universal Adversarial Training”. In: Proceedings of the AAAI
Conference on Artificial Intelligence 34.4 (Apr. 3, 2020). Number: 04, pp. 5636–
5643. issn: 2374-3468. doi: 10.1609/aaai.v34i04.6017. url: https://ojs.aaai.
org/index.php/AAAI/article/view/6017 (visited on 06/20/2023).

[28] J. Stallkamp et al. “Man vs. computer: Benchmarking machine learning algorithms
for traffic sign recognition”. In: Neural Networks. Selected Papers from IJCNN
2011 32 (Aug. 1, 2012), pp. 323–332. issn: 0893-6080. doi: 10.1016/j.neunet.
2012.02.016. url: https://www.sciencedirect.com/science/article/pii/
S0893608012000457 (visited on 07/22/2023).

[29] Guanhong Tao et al. “Better Trigger Inversion Optimization in Backdoor Scan-
ning”. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). New Orleans, LA, USA: IEEE, June 2022, pp. 13358–13368. isbn: 978-1-
66546-946-3. doi: 10.1109/CVPR52688.2022.01301. url: https://ieeexplore.
ieee.org/document/9879000/ (visited on 06/19/2023).

[30] Bolun Wang et al. “Neural Cleanse: Identifying and Mitigating Backdoor Attacks
in Neural Networks”. In: 2019 IEEE Symposium on Security and Privacy (SP).
2019 IEEE Symposium on Security and Privacy (SP). ISSN: 2375-1207. May 2019,
pp. 707–723. doi: 10.1109/SP.2019.00031.

[31] Zhou Wang et al. “Image quality assessment: from error visibility to structural sim-
ilarity”. In: IEEE Transactions on Image Processing 13.4 (Apr. 2004). Conference
Name: IEEE Transactions on Image Processing, pp. 600–612. issn: 1941-0042. doi:
10.1109/TIP.2003.819861.

54

https://openreview.net/forum?id=eEn8KTtJOx
https://doi.org/10.1109/ACCESS.2015.2494536
https://doi.org/10.1109/ACCESS.2015.2494536
http://ieeexplore.ieee.org/document/7303876/
https://tikz.net/conv2d/
https://tikz.net/conv2d/
https://doi.org/10.1609/aaai.v34i07.6871
https://ojs.aaai.org/index.php/AAAI/article/view/6871
https://ojs.aaai.org/index.php/AAAI/article/view/6871
https://doi.org/10.1109/EuroSP53844.2022.00049
https://papers.nips.cc/paper_files/paper/2018/hash/905056c1ac1dad141560467e0a99e1cf-Abstract.html
https://papers.nips.cc/paper_files/paper/2018/hash/905056c1ac1dad141560467e0a99e1cf-Abstract.html
https://doi.org/10.1609/aaai.v34i04.6017
https://ojs.aaai.org/index.php/AAAI/article/view/6017
https://ojs.aaai.org/index.php/AAAI/article/view/6017
https://doi.org/10.1016/j.neunet.2012.02.016
https://doi.org/10.1016/j.neunet.2012.02.016
https://www.sciencedirect.com/science/article/pii/S0893608012000457
https://www.sciencedirect.com/science/article/pii/S0893608012000457
https://doi.org/10.1109/CVPR52688.2022.01301
https://ieeexplore.ieee.org/document/9879000/
https://ieeexplore.ieee.org/document/9879000/
https://doi.org/10.1109/SP.2019.00031
https://doi.org/10.1109/TIP.2003.819861

[32] Baoyuan Wu et al. “BackdoorBench: A Comprehensive Benchmark of Backdoor
Learning”. In: Advances in Neural Information Processing Systems 35 (Dec. 6,
2022), pp. 10546–10559. url: https://proceedings.neurips.cc/paper_files/
paper/2022/hash/4491ea1c91aa2b22c373e5f1dfce234f-Abstract-Datasets_

and_Benchmarks.html (visited on 08/22/2023).

[33] Dongxian Wu and Yisen Wang. “Adversarial Neuron Pruning Purifies Backdoored
Deep Models”. In: Advances in Neural Information Processing Systems. Vol. 34. Cur-
ran Associates, Inc., 2021, pp. 16913–16925. url: https://proceedings.neurips.
cc/paper/2021/hash/8cbe9ce23f42628c98f80fa0fac8b19a-Abstract.html (vis-
ited on 03/06/2023).

[34] Jing Xu, Minhui (Jason) Xue, and Stjepan Picek. “Explainability-based Backdoor
Attacks Against Graph Neural Networks”. In: Proceedings of the 3rd ACM Workshop
on Wireless Security and Machine Learning. WiseML ’21. New York, NY, USA:
Association for Computing Machinery, June 28, 2021, pp. 31–36. isbn: 978-1-4503-
8561-9. doi: 10.1145/3468218.3469046. url: https://dl.acm.org/doi/10.
1145/3468218.3469046 (visited on 08/26/2023).

[35] Xinyang Zhang et al. “Trojaning Language Models for Fun and Profit”. In: 2021
IEEE European Symposium on Security and Privacy (EuroS&P). 2021 IEEE Euro-
pean Symposium on Security and Privacy (EuroS&P). Sept. 2021, pp. 179–197. doi:
10.1109/EuroSP51992.2021.00022.

[36] Runkai Zheng et al. “Data-Free Backdoor Removal Based on Channel Lipschitzness”.
In: Computer Vision – ECCV 2022: 17th European Conference, Tel Aviv, Israel, Oc-
tober 23–27, 2022, Proceedings, Part V. Berlin, Heidelberg: Springer-Verlag, Oct. 23,
2022, pp. 175–191. isbn: 978-3-031-20064-9. doi: 10.1007/978-3-031-20065-6_11.
url: https://doi.org/10.1007/978-3-031-20065-6_11 (visited on 03/07/2023).

55

https://proceedings.neurips.cc/paper_files/paper/2022/hash/4491ea1c91aa2b22c373e5f1dfce234f-Abstract-Datasets_and_Benchmarks.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/4491ea1c91aa2b22c373e5f1dfce234f-Abstract-Datasets_and_Benchmarks.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/4491ea1c91aa2b22c373e5f1dfce234f-Abstract-Datasets_and_Benchmarks.html
https://proceedings.neurips.cc/paper/2021/hash/8cbe9ce23f42628c98f80fa0fac8b19a-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/8cbe9ce23f42628c98f80fa0fac8b19a-Abstract.html
https://doi.org/10.1145/3468218.3469046
https://dl.acm.org/doi/10.1145/3468218.3469046
https://dl.acm.org/doi/10.1145/3468218.3469046
https://doi.org/10.1109/EuroSP51992.2021.00022
https://doi.org/10.1007/978-3-031-20065-6_11
https://doi.org/10.1007/978-3-031-20065-6_11

Appendix A

Additional experiments

This appendix consists of additional experiments that were done to provide justification
for design choices.

56

A.1 CLP results

See Section 3.1.3 for the background on this experiment.
The architecture used for this experiment corresponds to the small architecture as

described in Dhonthi et al. [4] Additionally, a variant of it with batch normalization layers
after each convolutional layer, referred to as SmallBN in Chapter 5, is also used.

All the models were trained on the GTSRB dataset, backdoored with a 4x4 pixel yellow
patch trigger, placed at coordinates (2,2), starting from the upper-left corner of the image,
with 14 (stop sign) as the target label. This backdoor was applied to 10% of the training
data, The models are trained for 15 epochs.

For every iteration, thresholds that give either a reduction in benign accuracy less
than 0.25 or an ASR reduction more than 0.75 are considered as successful results. The
thresholds evaluated are values from 0 up to and including 3, in discrete steps of 0.25
(0.0, 0.25, . . . 2.5, 2.75, 3.0). Out of these, the best threshold is determined by the formula
1
2(1 − ASR reduction) + 1

2Acc. reduction. This threshold, and its associated ASR and
accuracy, are reported in Table A.1. If there are no successful results, the results for value
for u = 3 are reported.

57

Accuracy ASR

Before After CLP Reduction Before After CLP Reduction u

0.89 0.89 0.00 0.89 0.89 0.00 3.00
0.90 0.89 0.01 0.99 0.99 0.00 3.00
0.89 0.55 0.34 1.00 0.02 0.98 1.25
0.90 0.90 0.00 0.99 0.99 0.00 3.00
0.88 0.88 0.00 1.00 1.00 0.00 3.00
0.88 0.88 0.00 0.99 0.99 0.00 3.00
0.89 0.89 0.00 1.00 1.00 0.00 3.00
0.89 0.89 0.00 0.99 0.86 0.13 2.75
0.90 0.90 0.00 1.00 1.00 0.00 3.00
0.91 0.91 0.00 1.00 1.00 0.00 3.00

(a) Results for Small.

Accuracy ASR

Before After CLP Reduction Before After CLP Reduction u

0.92 0.79 0.13 1.00 0.10 0.90 1.75
0.88 0.55 0.33 1.00 0.35 0.65 1.25
0.92 0.89 0.03 1.00 0.03 0.97 2.00
0.92 0.92 0.00 1.00 1.00 0.00 3.00
0.89 0.81 0.08 1.00 0.05 0.95 2.00
0.93 0.89 0.04 1.00 0.02 0.98 1.75
0.92 0.92 0.00 1.00 1.00 0.00 3.00
0.92 0.92 0.00 1.00 1.00 0.00 3.00
0.90 0.78 0.12 1.00 0.02 0.98 2.50
0.90 0.71 0.19 1.00 0.84 0.16 2.00

(b) Results for SmallBN.

Table A.1: Results for CLP for 10 different iterations of the two architectures.
In bold are reduction values that correspond to a successful defense.

58

A.2 TAC pruning

See Section 4.3 for the background on this experiment.
The architecture used for this experiment corresponds to the medium architecture as

described in Dhonthi et al. [4], with the addition of batch normalization layers after each
convolutional layer, referred to as MediumBN in Chapter 5.

All the models were trained on the GTSRB dataset, backdoored with a 4x4 pixel yellow
patch trigger, placed at coordinates (2,2), starting from the upper-left corner of the image,
with 14 (stop sign) as the target label. This backdoor was applied to 10% of the training
data, The models are trained for 15 epochs.

The TAC for each channel is computed, then the weights for all channels with a layer-
wise Z-score above 2 are pruned. The results are shown in Table A.2.

Accuracy ASR

Before After TAC pruning Reduction Before After TAC pruning Reduction

0.94 0.93 0.02 1.00 0.52 0.48
0.94 0.91 0.03 1.00 0.02 0.98
0.93 0.92 0.02 1.00 0.56 0.43
0.94 0.92 0.03 1.00 0.02 0.98
0.95 0.92 0.03 1.00 0.07 0.93
0.94 0.92 0.02 1.00 0.05 0.95
0.95 0.92 0.02 1.00 0.07 0.93
0.95 0.90 0.05 1.00 0.02 0.98
0.95 0.92 0.02 1.00 0.09 0.90
0.94 0.91 0.03 1.00 0.03 0.97

Table A.2: Results for pruning by TAC for 10 different iterations of the Medi-
umBN architecture. In bold are reduction values that correspond to a succesful
defense.

59

	Introduction
	Research Question
	Structure

	Background
	Artificial Neuron Networks
	Convolutional Neural Networks
	Backdoor attacks
	Backdoor defenses

	Related Work
	Relevant defense methods
	Artificial Brain Stimulation (ABS)
	Dhonthi et al.
	Channel Lipschitz Pruning (CLP)
	Tao et al.

	Other related work
	Topological Prior
	Ex-Ray
	Adversarial Neuron Pruning (ANP)
	FreeEagle

	Methodology
	Candidate selection
	Sensitivity metric
	Threshold
	Candidate selection with ABS

	Trigger reconstruction
	Intermediate trigger
	Original trigger
	Complexity
	Trigger reconstruction in ABS

	Finding channels associated with a trigger
	Pruning final candidates
	Evaluation

	Evaluation
	Evaluation methodology
	GTSRB dataset
	Network architectures
	Training with backdoors
	Defense methods

	Results
	SQ1: Pruning effectiveness
	SQ2: Execution time
	SQ3: Reconstruction accuracy

	Discussion & Conclusion
	Discussion
	SQ1: Pruning effectiveness
	SQ2: Execution time
	SQ3: Reconstruction accuracy

	Conclusion
	SQ1: Pruning effectiveness
	SQ2: Execution time
	SQ3: Reconstruction accuracy
	Conclusion on Research Question
	Other conclusions

	Future work
	Acknowledgements

	Additional experiments
	CLP results
	TAC pruning

