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Effects of short-term body-weight support training on soleus motor unit behaviour

Alexandra Millar

Abstract—Gait impairment arises from a range of conditions,
many of which fall under the umbrella of central nervous system
injury. Central nervous system disorders are one of the largest
contributors to disability worldwide and stem from a multitude
of causes ranging from genetic disorders to traumatic injuries. A
variety of treatment options exist for individuals with central ner-
vous system disorders. These treatments can range from manual
physiotherapy to gait training using robotic interventions such
as body-weight support. Body-weight support is a rehabilitative
tool that can support patients over a wide variety of tasks from
simple treadmill walking to dynamic actions such as climbing
stairs. While extensive research has been done to evaluate the
physiological outcomes of body-weight support training, there
is limited understanding of the underlying neurophysiological
adaptations that drive these changes. The soleus stretch reflex
is one window into the motor unit behaviour that drives gait
and balance. By examining the effects of short-term body-weight
support training on motor unit behaviour, further insights into
the kinematic improvements of patients may be understood. In
this study, the soleus short latency reflex response is selected as
a method of evoking motor unit discharges. The reflex is evoked
by administering approximately 80 dorsiflexion perturbations
while the subject maintains 20% of their maximum voluntary
contraction. This perturbation protocol is administered once
as a baseline measurement and compared to recordings taken
after training with the ZeroG body-weight support system at
40% gravity compensation and unassisted treadmill walking.
Electromyography data is recorded using a high-density sensor
grid during the perturbation protocols, and decomposed into
motor unit innervation pulse trains using Convolution Kernel
Compensation. Peri-stimulus time histograms and frequency-
grams are used to extract the latency, amplitude, duration,
and mean discharge rate of the short latency reflex from the
decomposed motor unit data. A total of 99 motor units were
pooled across subjects and recordings. No changes were found
in the pooled data, however, an analysis of individual motor
units tracked between recordings indicated that there may be
an increase in latency after training with body-weight support.
This limited but promising result suggests that the analysis
of individual motor units may hold the keys to unlocking
overarching motor unit behaviour.

I. INTRODUCTION

Gait impairment as a result of a central nervous system (CNS)
disorder is increasingly prevalent in the global society, with
neurological disorders being the leading cause of disabilities
worldwide [1][2]. CNS disorders that affect gait include, but
are not limited to, cerebrovascular injury (CVA), spinal cord
injury (SCI), traumatic brain injury, Parkinson’s disease and
multiple sclerosis. These disorders can affect the individual’s
balance and muscle spasticity, leading to difficulty walking
and interacting with their surroundings [3]. This in turn
puts an emotional and financial burden on the patient, as
they may require life-long assistance to navigate everyday
scenarios. Currently, a variety of rehabilitation methods for
CNS disorders exist, ranging from manual physiotherapy
to robotic-assisted therapy, with many focusing on the
improvement of balance and gait [4].

Methods of rehabilitation are ever-improving and evolving,
however, historically there has been an emphasis on the
clinical outcome of rehabilitation with little insight into
the underlying physiological adaptations [5]. At this time,
there is little agreement between researchers as to the most
effective approach to CNS rehabilitation [6]. The traditional
approach to gait rehabilitation has been to address the
physical symptoms with the aim of influencing the neural
system [3]. Typically, gait rehabilitation sessions consist of
repetitive actions completed with the assistance of either a
physiotherapist or an assistive device [7]. At this time, lower-
limb rehabilitation assistive devices may range from crutches
or canes to treadmill walking to body-weight support. Training
sessions may be repeated over a period of days, months, or
even years. Training protocols are simultaneously varied in
their content, while applied in the same manner to patients
regardless of the patient’s impairment [5][6]. There is a lack
of research into how training protocols should account for
conflicting considerations of either improvement after injury
(for instance post-stroke or SCI) or mitigation of disease
progression, in the case of Parkinson’s and multiple sclerosis
[5]. There is growing evidence to suggest that individualized,
targeted, training produces the best rehabilitative results [8][9].

In terms of assistive devices for improving balance and gait,
exoskeletons and body-weight support (BWS) devices are
the current state of the art, with a report finding that of
316 studies analyzed, the majority of robotic interventions
targeting the lower limbs were exoskeletons [5]. Both
exoskeletons and BWS devices work by lowering the
amount of force the patient needs to generate in order to
complete a task. Reducing the load on the patient’s limbs
can decrease the muscle forces throughout the lower limbs,
as well as the aerobic requirements of patients to complete
such tasks [10][11]. Exoskeletons achieve this by adding
mechanical power to a particular joint or joints, such as
the knee or ankle. In the case of SCI patients, training
using an exoskeleton has been shown to improve walking
kinematics and locomotor ability, and neurophysiological
changes at the spinal and supraspinal level have been shown
[12][13]. In healthy subjects, short-term training using an
exoskeleton has shown a reduction in muscle activation
[14][15]. Body-weight support works by reducing the effects
of gravity on the patient’s limbs [10]. Through training, the
patient can regain strength or re-learn how to execute certain
actions [6][16]. Long-term use of BWS training by chronic
SCI patients has shown promising results, with significant
increases in functional walking abilities [17]. BWS appeals
to both clinicians and researchers as it is typically simple to
use and can be easily adjusted to a wide range of subjects
and training scenarios. While the physiological outcomes
have been thoroughly studied, the underlying mechanisms
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guiding these outcomes are still not well understood [5]. By
gaining a better understanding of how such training affects
the neurophysiological system, targeted training plans could
be developed to improve their outcome.

Many individuals with a CNS disorder exhibit abnormally
high stretch reflexes that prohibit them from walking with a
typical gait [14]. There are two reflexes commonly studied
in the soleus muscle, the stretch reflex and the Hoffman (H-)
reflex. The stretch reflex is comprised of several successive
bursts of excitation, known as the short-, medium-, and
long-latency responses [18]. These bursts are also respectively
referred to as the M1, M2, and M3 responses [19]. The M1
response is the first to appear and is primarily generated by
group Ia afferents [19]. The M2 response has contributions
from group Ib and II afferents, and the M3 response may be
mediated by transcortical pathways [18][19][20]. The H-reflex
is the electrical analogue to the M1 response, and is induced
by electrically stimulating the relevant nerve. The H-reflex
can be used to quantify the excitability of alpha-motoneurons
as it elicits a direct response from the spinal pathway and
is composed almost entirely of Ia afferents [19][21][22].
The stretch reflex, however, also includes contributions from
the muscle spindle otherwise bypassed by the H-reflex.[19].
One benefit of studying the stretch reflex is that it more
accurately reflects natural behaviour. Since a main application
of this research is to gait training, contributions from the
muscle spindle sensitivity should also be considered. From
a purely practical level, the stretch reflex is simple to evoke
and requires very little inter-patient tuning when compared to
the electrically induced H-reflex. During this thesis, the M1
response of the soleus muscle will be examined for its insight
into afferent activity[19]. The soleus muscle is essential for
both stance and motion due to its role as a plantarflexor of the
ankle joint. The ability to understand and tune the effects of
training this muscle could therefore have a significant impact
on patients’ balance. The soleus stretch reflex is elicited by
applying a rapid dorsiflexion perturbation to the ankle joint
with the M1 response being the first peak to appear after the
ankle joint is perturbed.

Four parameters can be used to describe the motor unit
response; the latency, amplitude, and duration of the M1
response, and the motor unit discharge rate. Latency is the
time between the perturbation and the onset of the M1 reflex,
and can be considered a measure of the synaptic delay.
Amplitude is the difference in height of the reflex between
the onset and the peak of the M1 response when observed
in the frequency domain. The amplitude gives an indication
of the strength of the afferent input. The duration is the time
between the onset of the reflex and the first plateau of the
response and reflects the response time of the reflex system.
It has been found that latency is influenced by the muscle
spindle sensitivity, and can be modulated during isometric
contractions by the ankle angle [23]. Latency does not change
with respect to ankle angle during normal walking, which
is postulated to be due to the muscle spindle modulation
[23]. Both amplitude and duration have been shown to

be influenced by the contraction force during isometric
contractions [24]. The motor unit discharge rate has also been
found to increase with contraction intensity during isometric
contractions [25].

While previous studies have examined the reflex behaviour
of the soleus muscle after short-term training with body-
weight support, these studies have used bipolar surface
electromyography (sEMG) to examine the H-reflex, without
looking directly into the underlying motoneuron activity
[14][26]. Intramuscular electromyography has typically been
used to directly measure motor unit action potentials, however,
this is an invasive method that is limited to a small area of
the muscle and can only detect a small number of motor units
[27][28]. Spike-triggered averaging is a method often used
in EMG-based reflex studies[29][30]. This method requires
averaging EMG data across the timing of spike occurrences
and consequently is susceptible to amplitude cancellation
and motor unit synchronization[31]. Studying individual
motor units circumvents these limitations of global EMG
data. High-density surface electromyography (HD-EMG)
provides a non-invasive method of examining the underlying
changes at the muscular level. Gradient Convolution Kernel
Compensation (CKC) offers the opportunity to directly
measure motoneuron activity when used in conjunction
with HD-EMG. The use of gradient CKC allows for the
decoding of individual motor unit innervation pulse trains
from HD-EMG data and has been shown to be robust to
noise [32].

Thus, the aim of this thesis was to determine whether the use
of high-density electromyography in conjunction with cross-
kernel convolution could provide sufficient statistical power
to gain insight into the underlying neurophysiological adapta-
tions to body-weight support training. By understanding how
to manipulate the stretch reflex using body-weight support,
specific training stratagems can be developed to help bring
atypical reflexes in injured patients toward the desired level.

II. METHODS

A. Subject Preparation

Six healthy subjects (5 male, 1 female) volunteered to par-
ticipate in the experiment. Subjects provided their written
consent in accordance with the University of Twente Ethics
Committee. The subject’s right medial soleus muscle was
first located by muscle palpation, and then the area was
shaved and cleaned using isopropyl alcohol. The area was then
gently abraded using an abrasive gel. A high-density surface
electromyography grid (TMSi; Oldenzaal, Netherlands) was
then placed on the belly of the soleus using a double-sided
adhesive. The sensor consists of an eight-by-eight array of
monopolar EMG sensors with a 4mm inter-electrode distance.
The HD-EMG grid was then further secured using tape over
the grid to ensure even contact between the sensors and the
skin across the muscle and to prevent the grid from slipping
during the protocol.
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Fig. 1: Schematic of the experimental protocol. A: Overview of the experimental protocol. B: HD-EMG data is recorded
from the medial soleus muscle during the stretch-reflex protocol. C: Perturbations duration the torque-tracking component of
the stretch-reflex protocol are used to elicit the M1 motor unit response, which can be observed in the HD-EMG data. The
HD-EMG data is then decomposed into motor unit spike trains using a cross-kernel convolution algorithm.

B. Data Collection

The experiment was set up as a crossover study in which
the order the subjects underwent the intervention or control
training was randomized. Of the six subjects enrolled,
four first completed the ZeroG (intervention) training, and
two first completed the unassisted walking control. Data
was collected during a stretch-reflex protocol upon subject
arrival, and after both the ZeroG and unassisted walking
tasks. Figure 1 gives an overview of the experimental protocol.

1) EMG Recording: Electromyography data was collected
during a stretch-reflex protocol at 2048 Hz using a REFA
(TMSi; Oldenzaal, Netherlands) EMG amplifier. The subject’s
maximum voluntary contraction (MVC) was measured upon
subject arrival using a Biodex dynamometer (Biodex Medical
Systems, Inc.; Shirley, New York, USA). The MVC was taken
to be the maximal peak from three consecutive contractions.
Torque, position, and velocity data were also recorded at this
time using the Achilles ankle perturbator (MOOG; Nieuw
Vennep, Netherlands). Subjects were seated in the Achilles
with the backrest and foot-rest angles adjusted such that the
subjects’ maintained a knee angle of 120 degrees and ankle
angle of 90 degrees. During the stretch-reflex protocol, the
subject was prompted to follow a torque-based ramp and hold
tracking task, with a ramp peaking at 30% MVC, and the
hold being maintained at 20% MVC. This level of sustained
contraction was chosen to limit the potential of muscle fatigue
during recording and to maximize the number of motor units
that could be decomposed [25]. During the hold section of
the task, approximately 75 dorsiflexion perturbations were
applied using the Achilles at a randomized interval of two
to three seconds over 200 seconds. As the data analysis

requires the averaging of data with respect to the number of
perturbations, this amount of stimuli should ensure that the
results are accurate [33]. The perturbation was a 0.08 rad
change in position with a peak velocity of 3.3 rad/s and a pulse
duration of 0.24s. The stretch-reflex protocol was administered
upon subject arrival, this initial recording will henceforth be
called the baseline recording, and after both the ZeroG training
session and walking control session. Subjects were permitted
two attempts at the task for the baseline measurement to allow
the subject to become familiar with following the tracking task.

2) Walking tasks: During the ZeroG and unassisted walking
control tasks subjects were asked to walk at a continuous self-
selected walking speed. Subjects were directed to walk as if
they were taking a long walk through a park- the pace should
be comfortable and possible to maintain for all 30 minutes
of the trial. Subjects walked at speeds ranging from 2.4-3.0
kilometers per hour. The cadence was controlled between the
ZeroG and control tasks using Metronome Beats (Stonekick;
London, UK) an app-based metronome. Speed was controlled
using the treadmill settings. The ZeroG Gait and Balance
system (Aretech, LLC; Ashburn, Virginia, USA) is a device
used for both rehabilitation and research [10]. This device
works by dynamically supporting a person using a harness
attached to a robot that travels on a ceiling-mounted track.
The user can select the amount of weight to compensate
for, allowing the patient to support themselves to a specified
degree and perform tasks such as sitting, standing, walking,
and climbing stairs. During the ZeroG tasks subjects walked
at 40% weight compensation. Literature suggests that this
level of weight compensation provides the largest decrease in
muscle activation without compromising the subject’s natural
walking pattern [11] [26]. Subjects were instructed to walk for
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a minimum of two minutes with the ZeroG providing support
to become comfortable with the application of the weight
compensation. When the subject was ready, the 30 minutes of
training began. No subject walked for more than 35 minutes
during the ZeroG training. For the control portion subjects
walked on the treadmill without any support from the ZeroG
apparatus for 30 minutes.

C. Data Analysis

The EMG data was analyzed offline using MATLAB R2020a
(The Mathworks Inc.; Natick, USA). The EMG and Achilles
perturbator data were first aligned using a synchronization
channel and the corresponding Achilles signal, such as the
position, to measure the offset between the two devices.
During data post-processing, it was found that the majority
of EMG data showed a linearly increasing lag. The affected
data was resampled accordingly in a process that is further
described in Appendix A.

The quality of the raw EMG data was first checked by
evaluating the power spectral density for each channel. The
EMG data was then filtered using a 50 Hz Notch filter to
remove power line noise, and a fourth-order Butterworth
zero-lag filter with cut-off frequencies of 20 Hz and 500 Hz
was applied. The data was then evaluated for a-typical peaks
in frequency by once again examining the power spectral
density for each channel, and specific notch filters were
applied per data set to remove any further contamination.
Channels with poor electrode-skin impedance (no signal
recorded) were then removed from the data set, and the
decomposition algorithm was applied.

The motor unit spike trains were extracted using DEMUSE
(The University of Maribor; Maribor, Slovenia) a MATLAB-
based convolutive blind source separation software [32]. The
data was segmented into 60-second epochs with a ten-second
overlap between windows. Segmenting the data into epochs
decreases the processing time and amount of noise in the
motor units decomposed. The decomposed spike trains were
then merged using a cross-correlation algorithm that mapped
spike trains in adjacent epochs to each other using a threshold
level of 85% correlation [24]. The first of the four features
used in this thesis to analyze motor unit behaviour was
extracted at this time. This feature is the mean discharge
rate, which can be defined mathematically as the inverse of
the interspike interval [34]. One subject’s (S3’s) data was
decomposed as a whole, due to the presence of bursts of
noise throughout all three recordings for this subject that
interfered with the epoch decomposition method.

1) Pooled Motor Units: Peri-stimulus time histogram (PSTH)
and peri-stimulus frequency-gram (PSF) analyses were per-
formed. The PSTH gives the number of motor unit spike
occurrences within a set time window around the stimulus
[35]. In this instance the time window ranged from 200ms
before the perturbation to 250ms after the perturbation. This
is a longer pre-stimulus time window than the typical 50ms

prior to stimulus. The 200ms was chosen due to the high
noise level in the decomposed motor unit data, as the reflex
is represented against an estimated baseline based on data
in the pre-stimulus time window. The PSF compares the
instantaneous discharge rates of single motor units against
the time instant of the stimulus [24]. Both methods are also
analyzed with their respective cumulative sums, which can be
mathematically described as:

CUSUM(tpre) = 0

CUSUM(t) =
tpost

∑
tpre

(x(t)−M) (1)

where x(t) is the instantaneous discharge rate at time t and
M is the mean pre-stimulus discharge rate. tpre and tpost
give the respective beginning and end time the peri-stimulus
window. The use of cumulative sums can reveal small changes
otherwise undetectable in the PSTH or PSF methods [35].

Using the peri-stimulus cumulative sum frequency-gram
(PSFC) three of the four features used to evaluate motor unit
behaviour in this thesis were extracted. The features are the
latency, amplitude, and duration. The M1 onset is defined
as the first change in direction of the PSFC curve after the
perturbation is applied. The latency is then measured as the
difference between the perturbation time and the reflex onset.
The peak of the M1 response is considered the next change
in direction, or “plateau” of the PSFC curve. The duration is
determined as the time period between the onset and plateau
of the M1 response. The amplitude is taken as the distance
between the onset and plateau of the curve. Figure 2 illustrates
how these features are determined using the PSFcusum. Motor
units without a clear M1 response or excessive noise in the
pre-stimulus window were eliminated from the analysis at this
time.

Fig. 2: Example of PSFC curve showing the M1 and M2
reponses. The beginning and end points of the M1 and M2
responses are indicated by the solid vertical lines. The latency,
amplitude, and duration have also been indicated using double
arrows. The dashed horizontal lines give the baseline used
to determine the significance level of the reflex response. A
shortened window of -50ms to 150ms is shown in the figure
for clarity
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In order to control for between-subject effects the results
from this peri-stimulus analysis were then z-score normalized
and the normalized data was pooled for further analysis. The
formula for z-score normalization is as follows:

Z =
x−µ

σ
(2)

Where Z is the normalized value, x is the observed value, µ
is the mean value of all motor units per subject per trial, and
σ is the standard deviation of the value for all motor units
per subject per trial.

2) Tracked Motor Units: The decomposed motor unit spike
trains were matched between conditions using a two-
dimensional cross-correlation as described by Martinez-Valdez
et al. [36]. This method uses spike-triggered averaging to
compare the action potentials of two motor units for all
64 channels of the HD-EMG sensor. In other words, for
each channel an average action potential was generated by
averaging every 50 milliseconds of the filtered EMG signal
for the duration of the corresponding motor unit spike train
for each motor unit. For each condition, every motor unit
was compared against each motor unit of the next condition,
and the greatest cross-correlation between the two motor unit
action potentials (MUAPs) was recorded. For this analysis, a
threshold of 85% cross-correlation was used.

Muscle fatigue between trials was checked for by comparing
the discharge rate over time of matched MUs for the post-
ZeroG and post-control conditions to the baseline condition.
A trend of increasing discharge rates over time when compared
to the baseline condition would indicate that the muscle was
experiencing fatigue [37].

D. Statistical Analysis

Statistical testing was performed using IBM SPSS Statistics
v.27 (IBM Corporation, New York, USA). A linear mixed-
effects analysis was fitted to the observed data values, as these
were measured across three separate conditions which were
measured consecutively. The trial condition (baseline, post-
ZeroG, or post-control) was considered a fixed effect, and
the subjects were defined as a random effect. The level of
significance was P< 0.05. Descriptive statics include the mean
and standard deviation per subject for each feature.

III. RESULTS

A. Pooled Motor units

A total of 31 motor units were pooled for the baseline
condition, 33 motor units for the post-ZeroG condition,
and 36 for the post-control condition. 31 motor units from
the baseline and post-ZeroG conditions and 32 motor units
for the post-control condition were included in the z-score
normalization. The number of motor units decomposed per
subject varied between conditions by a minimum of 1 motor
unit, and a maximum of eight motor units.

The averaged latency, amplitude, duration, and mean discharge
rates were measured for each motor unit. Figure 3 gives the
observed latency in Figure A and the observed amplitude in
Figure B. Figure 4 gives the observed duration and mean
discharge rate for Figures A and B respectively. Looking
further into each feature, it can be seen that the range of the
observed latency decreases for subjects one, three, four, and
five. Subject six shows an increased range for both the post-
ZeroG and post-control conditions. When subject effects are
considered there is no significant change in latency between
conditions (P = 0.087).

Fig. 3: A: Observed latency for all subjects across all three conditions; B: Observed amplitude for all subjects across all three
conditions. The whiskers indicate the maximum and minimum values of the data. The upper limit of the box indicates the
median of the third quartile, while the lower limit of the box gives the median of the first quartile. The horizontal line within
the box gives the median of the whole, and the X indicates the mean of the whole. Outliers are indicated with dots.
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Fig. 4: A: Observed duration for all subjects across all three conditions; B: Observed mean discharge rate for all subjects
across all three conditions. The whiskers indicate the maximum and minimum values of the data. The upper limit of the box
indicates the median of the third quartile, while the lower limit of the box gives the median of the first quartile. The horizontal
line within the box gives the median of the whole, and the X indicates the mean of the whole. Outliers are indicated with dots.

The range of the observed amplitude decreases between the
baseline and Zero-G conditions for subjects one, three, five,
and six. These changes are not considered significant, with
P = 0.418. It can be seen that there is no distinguishable
trend in the duration between the baseline and post-ZeroG
or post-control values (duration: P = 0.878; discharge rate: P
= 0.129). The average of the mean discharge rate increases
for all subjects with the exception of subjects one and two
between the baseline recording and both the post-ZeroG and

post-control conditions. Subjects three, four, and five show an
increase in the distribution of the mean discharge rate between
the baseline and post-ZeroG recordings. No significant differ-
ences were found between any of the three conditions for any
of the four features.

Figure 5 provides the z-score normalized values of the pooled
motor units for each of the four features. This figure shows the
jittered value of the data, as well as the box and whisker plots
with the mean denoted by a cross and the inter-quartile means

Fig. 5: Z-score normalized features of motor units pooled across subjects for all three conditions represented by jitter, box and
whisker, and distribution plots per each condition and figure
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denoted by triangles. The distribution is shown to the right
of the respective jitter and box and whisker plots. When the
normalized data is compared, the post-ZeroG values have less
range than those of the baseline and post-control conditions
for the latency and amplitude of the motor units. The mean
increases for latency and discharge rate for both the post-
control and post-ZeroG conditions, and decreases for both
the amplitude and duration when compared with the mean
baseline value. The latency, amplitude, and duration all show
a more normal distribution for the post-ZeroG condition when
compared with the other two conditions.

B. Tracked Motor units

One subject had motor units that could be tracked across all
three conditions. Four other subjects had motor units that could
be mapped across two conditions. No discernible trends were
observed for any features other than latency. Looking into all
twelve tracked motor units, it can be seen in Figure 6 that
the greatest latency is observed in the post-ZeroG condition,
while the lowest latency is observed in the baseline condition.
The only exception is motor unit seven, which has a slightly
larger latency in the post-control condition compared to the
ZeroG condition. Similar figures for the amplitude, duration,
and mean discharge rates of the tracked motor units may be
examined in Appendix D.

Fig. 6: Latency for all twelve MUs tracked across at least two
conditions. MUs observed in only the baseline and control
conditions are related with a dash-dot line. MUs observed in
only the control and ZeroG conditions are not linked. MUs
observed in all three conditions are related with a solid line

Figure 7 gives the values for all four features for the motor
units tracked over all three conditions. It can be seen in
Figure 7 that the latency of the stretch-reflex increases for both
walking conditions, with the post-ZeroG latency being greater

than the post-control latency. The amplitude and duration both
decrease for the two walking conditions for motor units one
and two, however there is no notable difference between the
post-ZeroG and post-control values. A slight decrease is seen
in the mean discharge rate for motor units one and two the
ZeroG condition, and a slight increase is seen in the same
motor units for the post-control condition.

Fig. 7: From top to bottom: Latency, amplitude, duration, and
mean discharge rate for the three tracked motor units for all
three conditions
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IV. DISCUSSION

The aim of this study was to develop a methodology
that would be able to elicit and observe the underlying
neurophysiological adaptations to short-term body-weight
support training. The proposed methodology was comprised of
three portions, the data recording phase, BWS walking using
the ZeroG, and unassisted treadmill walking. During the data
recordings, a perturbation protocol was administered, with
the subject undergoing approximately 75 ankle dorsiflexion
perturbations while the subject maintained an isometric
contraction of 20% MVC. It was expected that the use of
HD-EMG in conjunction with CKC decomposition methods
would make it possible to observe adaptations to short-term
body-weight support training in the soleus short-latency
stretch reflex. While no significant results were found in the
pooled motor unit analyses, changes could be found in the
latency of individual motor units tracked across the three
separate conditions.

In total, 31 motor units were pooled for the baseline condition
and ZeroG conditions, and 32 motor units were pooled for the
control condition. After Z-normalizing the data, three motor
units (two from Subject 6 and one from Subject 3) were
excluded from the post-control pool due to insufficient data
points for the normalization. Two motor units from Subject 6
were excluded from the post-ZeroG pool for the same reason.
For the Z-normalized data, the mean amplitude and duration
decrease for both the post-ZeroG and control conditions when
compared to the baseline recording. The average latency
and mean discharge rate both increase for the post-ZeroG
and control conditions when compared to the baseline. The
increase was greater for the post-ZeroG than the post-control
for all four features. It is also interesting to note that while
no significant change in the value of the observed data was
found between the different conditions, the Z-normalized data
did assume a more normal distribution for all four features
after the post-ZeroG and post-control conditions. The latency
shows greater normality for the post-ZeroG condition than
for the post-control condition. This indicates that variance in
motor unit behaviour could be decreased through treadmill
walking.

The analysis of motor units tracked across all three conditions
showed limited but promising results. Three motor units for
a single subject were tracked across all three conditions.
These three motor units showed an increase in latency for
both the ZeroG and control conditions when compared to
the baseline. This increase in latency was slightly larger for
the ZeroG condition, an average increase of 6.9ms ± 1.1ms,
compared to the control which had an average increase of
3.7ms ± 2.0 ms. Nine further motor units, seven of which
were obtained from three other subjects, were tracked across
only two conditions. These motor units agree with the trend
in latency seen in the first three motor units. The latency is
greater for all but one motor unit after the baseline when
compared to either the ZeroG or baseline condition. Ankle
angle has been shown to affect the latency of motor units in

seated humans, with the latency increasing with the degree
of plantar flexion [38]. However, as the ankle angle was held
constant for all subjects across all recordings, the cause for
this increase may be due to a decrease in the sensitivity of
the muscle spindle. It has been suggested that changes in
muscle spindle sensitivity may influence the latency of the
soleus muscle [23]. An increase in latency such as that seen
in the tracked motor units may be due to the introduction of
slack in intrafusal fibres, as this slack must first be shortened
before the muscle spindle could begin to respond [38][39].
Simulated microgravity has been shown to decrease tendon
stiffness, and it may be that short-term gravity compensation
already evokes slight tendon compliance [40]. The decrease
in amplitude and duration after the walking taks observed in
tracked motor units one and two suggests that fatigue may
be another contributing factor to the concurrent increase in
latency [41]. However, this decrease was only observed in
three of the seven motor units that could be tracked between
the baseline recording and at least one walking condition. An
examination of the motor unit discharge rates over time found
that fatigue likely was not a contributing factor, however an
analysis of the EMG data for the possible influence of fatigue
should be additionally performed to conclusively rule this
out. This examination was not performed in this thesis due to
time constraints. No discernible trends were observed for any
of the three other features when examining all twelve tracked
motor units. This could change with an increased pool of
tracked motor units, which could be achieved by improving
the methodology to decrease noise and improve motor unit
decomposition. The presence of a trend in the latency of the
tracked motor units suggests that investigating the modulation
of individual motor units may provide insights otherwise
obscured by the high variability of motor unit behaviour
when pooled [42].

Based on previous studies that used HD-EMG for motor
unit decomposition, it was expected that approximately five
to fifteen motor units could be decomposed per subject
per condition [24][25]. Due to the small surface area of
the soleus muscle, this is of course fewer motor units than
would be expected for larger muscles such as the tibialis
anterior. While some subjects had more motor units found
in this study, these were not included in the analysis due
to noise obscuring the stretch reflex. The need to resample
the data is assumed to be the cause for the fewer motor
units successfully decomposed in this study. This assumption
is corroborated by the results of Subject 5. The baseline
recording for Subject 5 is the only data that did not require
resampling, and 13 motor units were decomposed for this
condition, compared to five and seven motor units being
decomposed for the post-ZeroG and post-control conditions
respectively. The greatest concern with the application of
the resampling process was the introduction of uncertainty
into the timing of the reflex. Subject 5 provides insight into
this, with the resampled and original data both being within
similar time ranges with the baseline ranging from 47-57ms,
post-ZeroG from 48-53ms, and post-control from 55-58ms.
The latency ranged between 31ms and 65ms across patients
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and recordings, which is slightly outside the expected range
of approximately 35-50ms [20][43].

It is worth noting that discharge rate, duration, and amplitude
have all been shown to be modulated with contraction force,
and as such it was unlikely to see changes in these features
when the contraction force was held constant [24][25].
Changes in the soleus H-reflex before and after short-term
body-weight or exoskeleton training have so far only been
recorded in subjects with spinal cord injury, such as in a
study from Phadke et. al, where the H-reflex was measured
during swing-phase in both uninjured controls and subjects
with SCI [26]. Previous studies have thoroughly examined the
H-reflex with both exoskeleton and body-weight support for
short-term training, and have found no statistically significant
changes after training with either device [14][44]. It was
expected that the use of high-density EMG would provide
greater insight into the motor unit behaviour than would be
possible using intramuscular EMG due to the potential for
decomposing a greater number of motor units per subject.
However, while statistically significant results were not found,
several insights into improving the methodology in order to
improve the results were developed.

This study could be refined through the reduction of
uncertainties in the methodology. A separate study into the
amount of time using the ZeroG at 40% weight compensation
is required to reduce muscle activation could verify the
assumption that body-weight support reduces muscle
activation by approximately twenty percent in a similar
time frame to a lower-limb exoskeleton. Previous literature
evaluating the effect of body-weight support on muscle
activation were able to observe a reduction in activation
in a matter of minutes, with Kristiansen et al using only
two minutes, and Maclean and Ferris using eight minutes
[11][44]. This indicates that while there was likely a reduction
in muscle activation during this study, it may not have been at
the desired 20% threshold. The measurement of EMG during
the walking sections could also be recorded in future studies.
This could allow for greater control of the muscle activation
level, as well as provide further insight into the motoneuron
behaviour during walking. This methodology was considered
for this thesis, however was ultimately rejected due to the
potential for the EMG sensors to slip or come unstuck during
walking due to the subject’s sweat and movement. The use
of wireless EMG sensors may allow for this adaptation to
future studies, as removing the influence of the cables on the
sensors’ position could allow them to retain their position for
the entirety of the walking task.

A further improvement to this study would be to simplify the
tracking task. This would achieve two purposes, improving
the efficiency of the underlying code, which would likely
remove the delayed signal recording seen in this study.
The second outcome would be to potentially improve the
ability of the subject to more accurately follow the task, by
providing a simpler goal such as increasing applying pressure
to raise a bar until it reaches a certain point. Removing the

need to resample the EMG data in post-processing would
allow for more certainty regarding the timing of the reflex
and increase confidence in the between-trial results per subject.

This study indicates that further investigation into the modula-
tion of individual motor units may hold the key to understand-
ing motor unit adaptations to rehabilitative gait training. An
increased subject pool and refinements of the methodology
to reduce noise could build on this thesis towards a greater
understanding of the modulation of motor units to short-term
body-weight support training.
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A. Resampling methodology

During the post-processing synchronization of the Achilles and EMG signals, a lag was observed in the EMG data. It can be
seen in Figure 8 that the EMG signal records a perturbation prior to the Achilles signal at the beginning of the recording,
however the EMG signal lags increasingly until the EMG signal shows the perturbation after the Achilles signal.

Fig. 8: Comparison of Achilles sync signal and the EMG synchronization signal

Files with a lag in the synchronization signal were resampled by segments. The two synchronization signals were used to
determine the size of the lag between the REFA and the Achilles. The REFA data was then segmented into sections between
the peaks in the synchronization signal, and resampled using the MATLAB “resample” function. This function uses an FIR
anti-aliasing lowpass filter on the input signal, in this case, the respective EMG signals. Each segment of the EMG data is
resampled by multiplying the relevant signal by the ratio of the number of data points in the Achilles synchronization signal
segment, divided by the number of data points in the REFA synchronization signal segment. The relevant mathematics as
written in MATLAB are as follows:

function resamped = resampleData(data,AchSync,EMGSync,fs)
a=detrend(EMGSync,0);
b = detrend(AchSync,0);
% Locate perturbations
[pk,EMG_ind]=findpeaks(a,’MINPEAKHEIGHT’,max(a)*40/100,’MINPEAKDISTANCE’,0.5*fs);
[pk,Ach_ind]=findpeaks(b,’MINPEAKHEIGHT’,max(b)*40/100,’MINPEAKDISTANCE’,0.5*fs);

% Initialize arrays for resampled data and include data prior to first perturbation
resamped.delayTrend = delay;
resamped.EMGSync = EMGSync(1:EMG_ind(1));
resamped.EMG = data(1:EMG_ind(1),:);

% Resample data
for j = 1:length(delay)-1

if delay(j) < 0
resamped.EMGSync = [resamped.EMGSync; resample(EMGSync(EMG_ind(j):EMG_ind(j+1))...

,(Ach_ind(j+1)-Ach_ind(j)),(EMG_ind(j+1)-EMG_ind(j))+1)];
resamped.EMG = [resamped.EMG; resample(data(EMG_ind(j):EMG_ind(j+1),:)...

,(Ach_ind(j+1)-Ach_ind(j)),(EMG_ind(j+1)-EMG_ind(j))+1)];
else

resamped.EMGSync = [resamped.EMGSync;resample(EMGSync(EMG_ind(j):EMG_ind(j+1))...
,(Ach_ind(j+1)-Ach_ind(j))+1,(EMG_ind(j+1)-EMG_ind(j))+1)];
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resamped.EMG = [resamped.EMG; resample(data(EMG_ind(j):EMG_ind(j+1),:)...
,(Ach_ind(j+1)-Ach_ind(j))+1,(EMG_ind(j+1)-EMG_ind(j))+1)];

end
end

[˜,new_ind] = findpeaks(resamped.EMGSync,’MINPEAKHEIGHT’,max(resamped.EMGSync)*40/100,...
’MINPEAKDISTANCE’,0.5*fs);

resamped.delay = Ach_ind(1)-new_ind(1);

end

B. Peri-stimulus analysis

The four figures used for analyzing the averaged motor unit reflex are shown in Figure 9. The M1 and M2 reflexes are
indicated, with the onset and plateau of the M1 reflex shown in the PSF cumulative sum graph being used to calculate the
latency, amplitude, duration, and mean discharge rate for each decomposed motor unit.

Fig. 9: Peri-stimulus analysis for a single motor unit. The sub-figures show from top to bottom: peri-stimulus cumulative sum
time histogram (PSTHC), peri-stimulus time histogram (PSTH), peri-stimulus cumulative sum frequency-gram (PSFC), and
peri-stimulus frequency-gram (PSF). The M1 and M2 reflexes are indicated on the PSFC
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C. Tracked Motor Units: Analysis

Figure 10 shows the comparison of action potentials for two motor units from separate conditions (baseline and post-ZeroG)
with a cross-correlation of 94%. Dead channels have been removed, resulting in only 61 channels being displayed.

Fig. 10: Comparison of averaged action potentials between motor units from the post-ZeroG and baseline conditions for subject
1 for each active HD-EMG channel. The last channel shows the axes for each of the generated waveforms

The outcome of a comparison between two conditions for a subject is exemplified in Table I. In this table, it can be seen that
there are multiple matches above the 85% threshold for the same motor unit. In this instance, the motor unit with the highest
cross-correlation value will be selected. In this example, the bold-ed motor units are considered to be matches.

TABLE I: Example of output from motor unit matching analysis showing the results from the post-ZeroG and baseline
conditions for subject 1

Post-ZeroG
MU no.

Baseline
MU no.

Cross-
correlation

1 4 0.986498
2 2 0.670222
3 1 0.940327
4 4 0.940897
5 3 0.893971
6 1 0.731418
7 1 0.879175
8 4 0.672965
9 1 0.603152
10 4 0.920998
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D. Tracked Motor Units: Results

Fig. 11: Amplitude for all twelve MUs tracked across at least
two conditions. MUs observed in only the baseline and control
conditions are related with a dash-dot line.MUs observed in
only the control and ZeroG conditions are not linked. MUs
observed in all three conditions are related with a solid line

Fig. 12: Duration for all twelve MUs tracked across at least
two conditions. MUs observed in only the baseline and control
conditions are related with a dash-dot line.MUs observed in
only the control and ZeroG conditions are not linked. MUs
observed in all three conditions are related with a solid line

Fig. 13: Mean discharge rate for all twelve MUs tracked across
at least two conditions. MUs observed in only the baseline
and control conditions are related with a dash-dot line.MUs
observed in only the control and ZeroG conditions are not
linked. MUs observed in all three conditions are related with
a solid line


