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ABSTRACT 
 

Evapotranspiration (ET) is an important parameter that influences the availability of water for 

crop production. ET comprises of two processes: evaporation, which is water loss from soil 

and vegetation surfaces, and transpiration, which is water release through plant roots and leaf 

openings. Accurate and timely information about ET is essential for understanding the global 

water balance, which is vital for irrigation scheduling, assessing plant water requirements, 

and overall water resource management. However, accurate estimation of ET, especially on a 

larger scale, is clogged with a lot of uncertainties. The choice of data used as input for ET 

estimates is a key factor contributing to these uncertainties. Similarly, the partitioning of 

evapotranspiration into its components of evaporation and transpiration also contributes to 

the uncertainties of ET estimate. To address these uncertainties and enhance accurate ET 

estimation, this study leveraged the capabilities of both Sentinel-1 (sensitive to canopy 

structure and soil moisture content) and Sentinel-2 (sensitive to photosynthesis, canopy 

structure, and moisture contents), by integrating their indices. The analysis was performed on 

two different water regimes, allowing for exclusive evaluation of the performance of 

Sentinel- and Sentinel-2 indices. This was essential to see if there would be differences in the 

predictive power of the RF model. Furthermore, the most important vegetation and 

polarimetric indices were evaluated. The result revealed that Chlorophyll red-edge (Chlre) 

was the most important vegetation index given its sensitivity to chlorophyll contents in 

plants. The results proved that the integrated use of Sentinel-1 and Sentinel-2 improved ET 

estimates on both rainfed and irrigated agriculture achieving an overall R2 =0.67. Sentinel-2 

accounted for 66% of the variability in ET. While Sentinel-1 indices explained 26% 

variability in ET, suggesting that Sentinel-1 cannot explain variability in  ET in isolation. The 

result of the ET estimate for rainfed agriculture using all sensors  S1+S2 (rainfed) was 

reduced by 2%. The outcomes of irrigated agriculture, though subject to scrutiny due to the 

limited sample size, exhibited a 2% improvement. This improvement was expected given the 

substantial occurrence of evapotranspiration in irrigated agriculture found in the literature. 

Overall, Sentinel-2 has contributed to the total ET in this study due to its sensitivity to 

chlorophyll and moisture content. These parameters are related to photosynthesis, which is 

directly connected to ET process. 
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1. Introduction 
1.1 Background 
 

Water is an essential resource for several applications including agricultural 

production. It is the foundation of sustainable development and the driver of socioeconomic 

growth, the production of energy and food, the maintenance of healthy ecosystems, and 

human existence itself (United Nations, 2015; Chen et al., 2004) Though it is a renewable 

resource, competition for water is expected to increase due to increased water demands for 

agriculture production, urbanization, and climate- driven drying (Postel, 2000; Zhen et al., 

2021). Globally, agricultural practices are deteriorating biodiversity, land, water, and climate 

at the same time. Irrigation agriculture, for instance, accounts for 70 percent of all freshwater 

withdrawals globally and has been recognized as a primary source of water depletion in many 

regions of the world (Anderson et al., 2012; Biggs et al., 2015; Rosegrant et al., 2009). For 

instance, Morocco’s arable lands consume 83% of its total water resources (El Hachimi et al., 

2022). Similarly, the overexploitation of groundwater in six agricultural regions of India to 

support agricultural production is causing water shortages estimated at 100 x109 m3 (Postel, 

2000), a  quantity of water that is more than the typical annual flow of the Nile River (Postel, 

2000). Climate change also influences the global water budget (Wanniarachchi & 

Sarukkalige, 2022). In dry regions of the world, climate change accounts for the highest 

water loss (Wanniarachchi & Sarukkalige, 2022).  Low rainfalls and high temperatures 

increase the evaporation of water from the soil and vegetation canopy into the atmosphere 

(Chapin et al., 2006). In addition, demand for water in urban areas for domestic and industrial 

uses has increased with the number of people living in cities. Rosegrant et al. (2009) 

estimated that urbanization and industrial water demands will double from 13 % to 27%, 

particularly in developing countries by the year 2025. Although some ecosystems may 

struggle to cope with water scarcity, human society possesses the capability to adapt when 

offered timely information regarding water scarcity (Fisher et al., 2017).  

 

Evapotranspiration (ET) is also an important parameter that influences the availability of 

water for agriculture. Evapotranspiration is the process where water undergoes a phase 

change, converting from a liquid state to vapor, while being transported from the surface to 

the atmosphere (Troch et al., 1997). ET is the collective term used to describe the combined 

processes of evaporation and transpiration. Evaporation refers to the process of water loss 

from the soil and vegetation surfaces, while transpiration involves the release of water 

through leaf openings called stomata (Anderson et al., 2012). The energy equivalent is latent 

heat (LE). ET plays a crucial role in agricultural systems, serving as a regulatory mechanism 

for crop water demands, ensuring that the right amount of water is provided to sustain 

optimal growth and development (Ito et al., 2018). As a result, it is often regarded as an 

indicator of soil water availability and plant health (Yang et al., 2018). Yet, it is perhaps one 

of the most challenging hydrological flux to quantify particularly at regional to global scale 

(Liou & Kar, 2014). Hydrologists and agronomists have long recognized the importance of 

ET due to its close connections with terrestrial water use, crop photosynthesis, and plants 

development in agroecosystems (Biggs et al., 2015; Penuelas et al., 1993; Yang et al., 2018; 

K. Zhang et al., 2016). Providing accurate and real-time information on ET is essential for 

quantifying the global water budget which is critical for irrigation scheduling, assessing plant 

water requirements, and water management (Badgley et al., 2015; Biggs et al., 2015; L. 

Zhang et al., 2021).  Also, assessments of global ET can be used to determine, for instance, 

how the world's food supply system may adapt to a changing climate (Biggs et al., 2015). 

 



With the advancement in technology, field scale ET can be estimated directly using a number 

of techniques, including; surface renewal methods (SR), weighing Lysimeters, 

scintillometers, and eddy covariance (EC) etc. (Biggs et al., 2015; Yao et al., 2018a). The SR 

method estimate ET by measuring heat transfer between plant canopy and the atmosphere 

due to temperature differences which is prevalent in areas with sufficient water supply (Y. Hu 

et al., 2018). Hence, the SR approach is valuable for estimating ET in well-watered 

agricultural systems (Y. Hu et al., 2018). The weighing lysimeter on the other hand, is one of 

the best ways of measuring ET on small parcel of land. The instrument  operates by isolating 

a specific volume of soil and measuring the change in mass by monitoring the amount of 

precipitation that an area receives and the amount lost through the soil  (Seifert Schmidt et al., 

2013). In addition, scintillometers are instruments that measure the atmospheric turbulence 

using the principle of light propagation (Perez-Priego, 2021). Scintillometers work by 

emitting a laser or light beam to measure the fluctuations in the received signal caused by 

atmospheric turbulence. To this end, the use of the aforementioned techniques are 

economically expensive, time-consuming, labor-intensive, susceptible to instrument failure, 

and they are only able to offer localized estimates of ET (Liou & Kar, 2014). The EC method 

measures the exchange of gases, particularly water vapor and carbon dioxide, between an 

ecosystem and the atmosphere over a variety of time intervals, ranging from minutes to years 

(Y. Hu et al., 2018). EC towers are also considered the gold standard for estimating ET due to 

their direct measurements, high temporal resolution, and accurate results (Fisher et al., 2008). 

These features make them the preferred data source for Earth scientists studying ET. 

Additionally, ET data from EC are easily accessible and freely available. Moorhead et al. 

(2019) reaffirmed the easy accessibility of EC data,  reinforcing how it had predominantly 

been utilized for research purposes. In summary, this study employed EC method to calibrate 

the model due to its easy accessibility, spatial distribution and the provision of longest time 

series data. 

 

Earth observation ( EO) has also provides spatially explicit and continuous information for 

the mapping of regional and small-scale ET on the surface of the earth (Fisher et al., 2017). 

Here, the term "EO" refers to the collecting of images from satellite and airborne platforms 

(Biggs et al., 2015). It is generally accepted as the only realistic way to obtain estimates of 

ET at the spatiotemporal scales and accuracy levels required for many applications (Biggs et 

al., 2015). Sentinel, Landsat, and the Moderate-Resolution Imaging Spectrometer (MODIS) 

are a few of these remote sensing datasets. The information encoded in the visible, near-

infrared (NIR), Short wave infrared (SWIR), microwave, and thermal infrared bands make it 

possible to obtain ET estimate from these datasets (Liou & Kar, 2014). SWIR region in 

particular is sensitive to changes in canopy and soil moisture due to its strong water 

absorption characteristics (Marshall et al., 2020). The chlorophyll absorption (red) is an 

indicator of photosynthetic activity in vegetation (Fernández-Manso et al., 2016). As a result, 

plants with high amount of chlorophyll tends to absorb a greater amount of red light for their 

energy needs through photosynthesis. The NIR range also provides insights into the structural 

properties of vegetation canopies . The red-edge on the other hand, represents a transitional 

region between Red and NIR, where vegetation reflectance changes rapidly (Mutanga et al., 

2012). This region is particularly sensitive to chlorophyll content and leaf structure 

properties. Vegetation indices (VIs) including; Normalized Difference Vegetation Indices 

(NDVI), Chlorophyll red-edge (Chlre) , and Normalized Difference Water Index (NDWI), 

are frequently interpreted as proxies for crop productivity and health (Khan et al., 2010). 

NDVI for instance relies on  variations in how vegetation reflect red and NIR lights. Healthy 

vegetation absorbs red light for photosynthesis and reflects NIR light (Debats et al., 2016). 

Higher NDVI values indicates active photosynthesis, revealing insights into vegetation 



density, and productivity. Chlre refers to chlorophyll red-edge index, which is a measure of 

the amount of chlorophyll, the green pigment in plants responsible for photosynthesis 

(Gitelson et al., 2003). The red-edge is the wavelength between red and the near infrared 

band. It is characterized by a point of maximum slope called  Red-Edge Inflexion Point 

(REIP) (Gitelson et al., 1996). The REIP describes the chlorophyl concentration in plants. A 

shift in the REIP towards the blue band indicate water stress in plants whiles a shift  in REIP 

toward the red band shows a healthy vegetation (Gitelson et al., 1996) Higher Chlre values 

usually indicate presents of vegetation, reflecting greater potential for photosynthetic activity 

and overall plant health. NDWI is sensitive to changes in water content within the plant 

tissues, which can be indicative of plant stress or health (Khan et al., 2010). These vegetation 

indices are calculated from specific combinations of spectral bands, which serve as input 

variables for ET models (Marshall et al., 2020). That said, the use of remote sensing data 

have gained popularity due to several advantages it offers. One is its affordability , as remote 

sensing data has become more accessible and cost-effective over time (Tasumi, 2019; Yao et 

al., 2018b). Remote sensing provides a means to obtain data on a large scale, covering  large 

areas, and capturing detailed geographic information that may not be easily accessible 

through ground-based methods (Khan et al., 2010). 

 

Given that remote sensing does not directly measure evapotranspiration (ET), it becomes 

crucial to apply modeling techniques to translate remote sensing data into meaningful ET 

estimates. This has led to the development of various methods, as explored by K. Zhang et al.  

(2016), for estimating ET by utilizing remote sensing data as inputs. These methods can be 

classified into Direct, indirect and data-driven methods. Direct methods estimates ET from 

net radiation directly (Cleugh et al., 2007). Example includes, Priestley Taylor-Jet Propulsion 

Laboratory, and Penman-Monteith equation. Direct methods are widely used for large scale 

studies, because they requires few inputs (Jiménez et al., 2011). Indirect methods on the other 

hand, estimate ET by calculating the latent heat flux, which represents ET equivalent as the 

difference between net radiation (incoming minus outgoing energy) and sensible heat flux 

(heat exchange between surface and air) (Norman et al., 1995). Examples includes, 

Atmosphere-Land Exchange Inverse (ALEXI) and Surface Energy Balance (SEB). However, 

it should be pointed out that direct and indirect methods  struggled to accurately capture the 

complex underlying processes of ET, particularly in areas with varying local conditions, 

specifically when applied in moisture-limited areas (X. Hu et al., 2021a). Data-driven method 

on the other hand, measure ET directly from input data using machine learning algorithms 

like random forest, support vector machines, and neural networks (Kumar et al., 2002). 

Tuning parameters and interpretation are the challenges to the application of machine 

learning algorithms (X. Hu et al., 2021b). Although there is no unified solution to solving this 

problem, Kumar et al. (2002) proposed several strategies including grid search, feature 

reduction, increase sample size, random search, and Bayesian optimization. Again, machine 

learning algorithms are able to explain complex underlying physical processes governing ET  

(Biggs et al., 2015). This ability is attributed to their capacity to recognize intricate patterns, 

interactions, and nonlinearities that may not be easily discernible through the direct and 

indirect methods (X. Hu et al., 2021b). Specifically, this study employed random forest 

algorithms, since it is the most widely used shallow learner in field of Earth observation. This 

is due to its ensemble learning capabilities, which can lead to more stable and accurate 

predictions by reducing  the impact of individual trees biases (Breiman, 2001). Furthermore, 

random forest does not assume a specific data distribution; instead, it relies solely on the data 

itself (El-Baroudy et al., 2010). This characteristic makes it well-suited for capturing intricate 

relationships. Furthermore, random forest tends to outperform other methods in various 

application, as demonstrated in studies by (X. Hu et al., 2021a; Kumar et al., 2002). 



 

  

However, accurate ET estimation in the scientific literature is still clogged with a lot of 

uncertainties. A significant part of these uncertainties is connected to both the choice of the 

model used and the data inputs incorporated into the ET estimation process (Badgley et al., 

2015). Thus, ET estimates can be scale-up from local to regional scale by using remote 

sensing-based ET models calibrated with in situ data (Van Dam et al., 2006).  However, these 

models inherently involve simplifications and assumptions that might not fully capture the 

complexity of real-world conditions. This disparity between model representation and actual 

phenomena introduces uncertainties into the ET estimation process. Equally significant for 

accurate and reliable ET estimation relies on the quality and suitability of inputs data. Any 

errors, inconsistencies, or biases within these input datasets can propagate throughout the 

modeling process, amplifying uncertainties in the final ET outcomes (Kingston et al., 2009). 

Moreover, accurately partitioning total ET into its components of evaporation and 

transpiration also poses challenge to ET measurement (Badgley et al., 2015). Transpiration 

accounts for about  57.2% of the total  ET on the earth surface making it the most researched 

component of ET (Schlesinger & Jasechko, 2014). Soil evaporation is also important to the 

total ET estimate but difficult to distinguish the contribution of soil evaporation to total ET 

(Liou & Kar, 2014; Purdy et al., 2018). While soil moisture indicates soil evaporation, 

multispectral Earth observation data typically lacks the granularity required for accurate 

measurement of soil evaporation (Liou & Kar, 2014). This inadequacy can be attributed to 

the relatively coarse spatial resolution of the data, which makes it challenging to capture the 

finer variations in soil moisture necessary for precise soil evaporation estimation (Lowder et 

al., 2016).  

 

To reduce the uncertainties and improve ET estmate, this study employed high quality data 

by integrating Sentinel-1 and Sentinel-2. This integration is particularly valuable due to the 

distinct nature of the processes driving soil evaporation and canopy transpiration, which 

requires different data to capture this processes. Generally, Sentinel-2 multispectral imagery 

which is the target variable for this analysis, offers valuable insights into land cover, 

vegetation health and surface characteristics, which can contribute to a comprehensive 

understanding of ET. Sentinel-2 includes two satellites, Sentinel-2A and Sentinel-2B, with 

revisit cycles of 5 days when both satellites are active (ESA, 2023). As a results it has been 

used for monitoring changes in vegetation and land surface (2021), monitoring irrigation 

events Ma et al. (2022) and to study crop water use in agriculture (Vanino et al., 2018). 

Moreover, Sentinel-2 provides high spatial resolution imagery, capturing details of earth 

surface, essential for distinguishing various land cover types, vegetation patterns and changes 

overtime (Xun et al., 2021). However, the limitations of optical imagery under cloud cover 

and during nighttime operations can hinder its comprehensive data collection for ET 

estimation. The Synthetic Aperture Radar (SAR) technology of Sentinel-1 transcends these 

limitations, delivering data regardless of weather conditions. This is made possible because, 

Sentinel-1 is an active remotes sensing technology that operates based on radar signals. They 

transmit electromagnetic pulses and receive the echoes of the backscattered signal after they 

interact with  earth surface (Moreira et al., 2013). This capabilities ensure consistent data 

availability,  and reducing uncertainties associated with data gaps (Harfenmeister et al., 

2019). Moreover, Sentinel-1 capability to penetrate vegetation and soil provides a unique 

advantage in accurately estimating ET, especially in regions with intricate landscapes and 

variable vegetation cover (Lu et al., 2016). Though, data from both sensors are freely 

available, to our knowledge they have not been integrated for ET estimate on a large scale. 

The integration of Sentinel-2 with Sentinel-1 using data-driven method was therefore an 



attempt to explore the complementary information offered by each sensor in order to reduce 

the uncertainties and enhance the accuracy and the reliability of ET estimate on a global 

scale. 

 

1.2 Problem statement  
 

The choice of inputs for accurate measurement of ET for effective water management has 

been a long-standing problem both in literature and international development agenda. The  

problem arises from the fact that soil moisture, which often serve as surrogate of soil 

evaporation, is often misrepresented (Badgley et al., 2015). Vegetation indices existing in the 

literature, derived from multispectral or hyperspectral data are designed to capture the 

photosynthetic activity of the canopy (Marshall et al., 2016). By extension they are a good 

proxy for crop transpiration component of total ET process. However, these indices are not 

capable of  measuring soil evaporation particularly during the period where canopies are fully 

developed (Glenn et al., 2010). As a result, soil evaporation representation remains a 

challenge for total ET estimation in rainfed and irrigated agriculture (Purdy et al., 2018). 

Studies used short wave infrared broadbands, thermal infrared broadbands, and microwave to 

estimate soil evaporation due to their sensitivity  to soil moisture (Purdy et al., 2018). 

However, these portions of the electromagnetic spectrum have been studied in isolation for 

different applications. By integrating Sentinel-1 (sensitive to canopy structure, canopy and 

soil moisture content) and Sentinel-2 (sensitive to canopy transpiration and soil evaporation), 

the goal is to enhance the representation of both soil moisture and canopy transpiration to 

minimize uncertainties and improve ET estimate. 

 

1.3 Research objectives, research questions, and hypothesis. 
 

The primary aim of this study is to assess the performance of spectral indices from Sentinel-2 

and polarimetric indices from Sentinel-1 in estimating evapotranspiration over crop-lands. To 

achieve this objective, the study aimed to identify the most important vegetation and 

polarimetric indices for the estimation of total evapotranspiration. Additionally, the study 

aimed at assessing the relationship between the spectral indices, polarimetric indices and 

evapotranspiration. Moreover, the research evaluated the proportion explained by each 

indices by sensor under rainfed and irrigated agriculture. 

The detailed Sub-objectives, research question and hypothesis are: 

1. To identify the most important vegetation and polarimetric indices of 

evapotranspiration in croplands from Sentinel-1 and Sentinel-2. 

a) What is the most important vegetation and polarimetric indices in estimation 

evapotranspiration? 

Hypothesis: Red edge, Near Infrared narrow bands from Sentinel-2 will be the most 

important predictors given their sensitivity  to transpiration, the largest component of 

evapotranspiration, while Sentinel-1 backscatter VH will be more important, but less 

so, given its sensitivity to soil evaporation, the second largest component. 

b) What is the relationship between the spectral vegetation indices, polarimetric indices 

and evapotranspiration? 

Hypothesis: NDVI, and Chlre would demonstrate a significant correlation with 

Evapotranspiration given their sensitivity to crop transpiration, whiles VH backscatter  

will have a significant relationship with evapotranspiration, but less so given its 

sensitivity to soil evapotranspiration. 

 



2.        To assess the relative proportion of total evapotranspiration explained by spectral 

vegetation  and polarimetric indices. 

a) What is the relative proportion of  total evapotranspiration explained by spectral 

vegetation indices and polarimetric indices? 

Hypothesis: The proportion of total evapotranspiration explained by spectral vegetation 

indices would be 10% as crop  progress over the growing season. 

3. To assess the relative proportion of evapotranspiration explained by spectral 

vegetation  and Polarimetric indices on rainfed and irrigated agriculture. 

a) What proportion of total evapotranspiration is explained by spectral vegetation and 

polarimetric indices on rainfed and irrigated agriculture? 

b) What proportion of total evapotranspiration is explained by spectral vegetation and 

polarimetric metric on irrigated agriculture? 

c) Do  vegetation and polarimetric indices improve  the evapotranspiration estimation on 

rainfed and irrigated agriculture? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 



2.0 Data and Methods 
 

The following sections summarize the workflow in the integration of Sentinel-1 and Sentinel-

2 for total ET estimation. The main steps that were taken are presented in fig.1 below. The 

first step was to acquire Sentinel-1, Sentinel-2 data, Moderate Resolution Imaging 

Spectrometer data (MODIS) and Eddy covariance data (EC). Both Sentinel-1 and Sentinel-2 

data were acquired from Google Earth Engine (GEE), MODIS from AppEARS whiles EC 

data were acquired from 15 flux tower stations specifically from Ameriflux and Euroflux. 

Sentinel-2's reflectance data were used to derive vegetation indices, while Sentinel-1 

backscatter data were used to derive polarimetric indices. Variables Selection using random 

forest (VSURF) package in R was used to eliminate irrelevant and redundant variables. The 

important variables selected by VSURF were used to build random forest (RF) model. The 

RF model was subsequently used to predict ET for rainfed, irrigated ET, transpiration and 

soil evaporation. The purpose was to determine the proportion of ET that could be attributed 

to spectral vegetation and polarimetric indices. Finally, the  model was subjected to accuracy 

assessment to ascertain the goodness of fit of the proposed RF model. 

Figure 1. Technical workflow.  

 

2.1.1 Data acquisition and processing 

2.1.2 Eddy covariance and micrometeorological measurements 

 

Ground-scale ET data used as reference data were acquired from 15 eddy covariance flux 

towers across major agroecological zones. The 15 selected eddy covariance flux tower sites 

were specifically chosen due to their availability of continuous data spanning a period of 

three years or longer. This was necessary for the reduction of data gaps which could arise 

from due sensor malfunctions, and weather conditions (Falge et al., 2001). Moreover, 3 years 

of continuous data was necessary to facilitate  the validation of the model under a wide range 

of conditions, such as different seasons, vegetation growth, and variations in soil moisture 

(Fisher et al., 2008). All 15 selected sites are croplands consisted of wheat (4 sites), soybean 

(2 sites), rice (1 site), and corn (8 sites).  Generally, these  crops were chosen because they  



represent major staple food crops with significant global agricultural importance (Oerke & 

Dehne, 2004). From the 15 selected sites, 11 sites were rainfed, 4 sites were irrigated. 10 sites 

were acquired from AmeriFlux available at: (ameriflux.lbl.gov), and 5 from EuroFlux 

available at: (https://fluxnet.org/data/fluxnet2015-dataset/). Micro-meteorological variables 

from  this sites included, latent heat flux (LE, W m-2), sensible heat (H Wm-2), relative 

humidity and ground heat flux (G m-2). The LE variable acquired from AmeriFlux were 

recorded at a daily time step and gap-filled using the marginal distribution sampling approach 

and linear interpolation with locally weighted regression (Pastorello et al., 2020). However, 

LE variable acquired from EuroFlux: BE-Lon, CH-Oe2, FR-Gri, DE-Kli, and DE-Rus, were 

available and recorded at a half-hour time step. Half-hourly LE data (LE W m-2) was 

converted into daily averages by multiplying the half-hourly LE by the number of hours in a 

day, and smoothed using a 5-day exponential filter. Subsequently, the LE data from the 15 

sites were converted from Wm-2 to MJ m-2d-1. Table 1. and Fig. 2 show the distribution and 

location of each sites.  

 

Table 1. EC flux Stations and their information. 

 

Site 

 

Site Name 

 

Lon 

 

Lat 

 

Crop Grown 

Mean 

annual 

Temp 0c 

Annual 

precipitation 

(mm) 

 

System 

BE-Lon Lonzee 4.7461 

 
50.5516 Corn 10 800 Rainfed 

CA-ER1 Elora Research 

Station 

-80.4123 43.6405 Corn 6.7 946 Rainfed 

CH-OE2 Oensingen2 

crop 

7.7343 47.2863 Wheat 9.8 1155 Rainfed 

US-ROI Rosemount-

G12 

1.9497 44.7143 Soybeans 6.4 879 Rainfed 

DE-Kli Klingenberg 13.5267 50.8937 Corn/Wheat 7.6 842 Rainfed 

DE-Rus Selhausen 

Juelich 

6.4471 50.8659 Wheat 10 700 Irrigated 

FR-Gri Grignon 1.9497 48.8447 Wheat 12 650 Rainfed 

US-Twt Twichell Island -121.653 38.1087 Rice 15.6 421 Irrigated 

US-ARM Arm Southern 

Great Plainds 

site-Lamont 

-97.4887 36.6068 Corn 14.8 843 Rainfed 

US-Bi2 Bouldin Island 

corn 

-121.535 38.1091 Corn 16 338 Rainfed 

US-CF1 CAF-LTAR 

Cook East 

-117.082 46.7815 Corn 9 550 Rainfed 

https://fluxnet.org/data/fluxnet2015-dataset/


US-NE1 Mead-irrigated 

maize site 

41.164 -96.477 Corn 10.1 790 Irrigated 

US-Ro5 Rosemount 

I18_South 

-93.0578 44.6946 Corn 6.4 879 Rainfed 

US-Ro6 Rosemount 

L18_North 

-93.0576 44.691 Soybeans 6.4 879 Rainfed 

US-CS3 Central Sands 

Irrigated 

Agricultural 

Field 

-89.5727 44.1394 Corn 7 830 Irrigated 

 

 

Figure 2. Map of Flux towers distribution 

 

2.1.3 Satellite data used and acquisition. 

2.1.4 Satellite data used 

Three datasets derived from satellite remote sensing were used for this study. Sentinel-1, 

Sentinel-2, and Moderate Distance Image Spectrometer (16-day composites). The Sentinel-2 

level 2A bottom-of-the-atmosphere data were accessed through the Google Earth Engine 

platform available at: (https://code.earthengine.google.com/). The Sentinel-2 level 2A data in 

GEE has been pre-processed for atmospheric and topographic effects (Praticò et al., 2021). 

For this analysis, the preprocessing of the Sentinel-2 data in GEE was mainly filtering and 

selecting images from the Copernicus Sentinel-2 Surface Reflectance (S2-SR) image 

collections. The filtering included selecting images within the specific date range for which 

there were EC data (2018-2020). Additionally, the "maskS2clouds" function was utilized to 

https://code.earthengine.google.com/


apply a cloud mask to the Sentinel-2 images, effectively removing cloud-covered pixels from 

the analysis. Only pixels with a cloud coverage under 10% were retained for the analysis. The 

table 2 below shows the specification of Sentinel-2 data used in this study. 

 

Table 2. Sentinel-2 specifications used in this study. 

 

Satellite Sentinel-2 

Spatial Resolution & Bands 10m(B2,B3,B4,B8), 20m (B5,B6,B7,B8A,B11,B12)  

Revisit Cycle 5 days (Sentinel-2A and Sentienl-2B) 

Swath 290 km 

Date Range 2018-2020 

Data source Google earth engine (http://earthengine.google.org). 

 

 

 

Sentinel-1A and Sentinel-1B under the Copernicus program by the European Space Agency 

were used for this analysis. The Sentinel-1 products that are readily available include Level-1 

data, which come in two formats: Single Look Complex (SLC) and Ground Range Detected 

(GRD) (Reiche, 2015). Similarly, Sentinel-1 offers data in three acquisition modes: 

Interferometric Wide (IW) swath, Extra-Wide swath and  Stripmap (SM). Ground Range 

Detected (GRD) acquired in the Interferometric Wide mode were used for this study. The 

GRD product available on GEE were radiometrically calibrated, multi-looked, which 

improves the signal-to-noise ratio and enhances the quality of the imagery (Devries et al., 

2020). The IW mode is the main operational mode for Sentinel-1 which offers information on 

land surfaces and is commonly used for large-scale mapping (Torres et al., 2012). The IW 

mode of Sentinel-1 C-band is provided in dual-polarizations combinations: vertical transmit 

and vertical receive (VV) and vertical transmit and horizontal receive (VH). Their pixel 

spacing is 10 m. Owing to its 6 day revisit cycle, Schlund & Erasmi (2020a), used it to study 

phenology of wheat. Other applications includes, crop mapping (Xun et al., 2021), estimating 

of soil moisture (Liu et al., 2021), and quantitative estimation of biophysical variables in 

vegetation (Frampton et al., 2013). A summary information of Sentinel-1 is presented in table 

2. 

 

Table 3. Overview of Sentinel-1 data used in this analysis. 

 

Data Characteristics Descriptions 

Satellite Sentinel-1A & Sentienl-1 B 

Revisit Cycle 6- days for both Satellites 

Polarization VH & VV Polarization 

Pixel Spacing 10m x 10m 

 

 

MODIS data were not directly used as input for the ET model but were used to define the 

start of season (SOS) and end of the season (EOS) for crops grown on the 15 sites used in this 

study. This choice was influenced by the continuous data provided by MODIS, which 

enabled the tracking of daily and gradual vegetation changes throughout the growing season 

which is not possible  using Sentinel-1 and Sentinel-2 indices due to their revisit cycles (Sun 

et al., 2012).  The MODIS 16-day NDVI product was acquired from AppEARS available at: 



appeears.earthdatacloud.nasa.gov. A Savitzky-Golay filter as recommended by Chen et 

al.(2004), was applied to the MODIS 16-day NDVI product. This filter was used because it  

reduces noise, fill gaps and smooth any remaining data inconsistencies (Chen et al., 2004).  

 

2.1.5 Sentinel-1 data and Sentinel-2 data preprocessing  

 

Sentinel-2 reflectance and Sentinel-1 backscatter values were acquired from GEE data 

catalog, covering the period between 2018 to 2020. The backscatter and reflectance values 

were extracted around the crop fields where the eddy covariance fluxes were stationed. To 

extract the Sentinel values, point features were generated based on the longitude and latitude 

coordinates of each flux tower site in GEE. A rectangular buffer area of size 60m x 60m was 

generated  around the locations on the fields where the flux towers were stationed. The 

decision to adopt a buffer size of 60m x 60m was based on Sentinel-2, the target resolution of 

20m  for the analysis. This selection aligns with the suggestions by Congalton (2001), who 

proposed a buffer size three times the target resolution of any given studies. The rectangular 

shape buffer was due to the shape of the fields on which the flux towers were located. These 

buffer areas served as the sampling zone for extracting the Sentinel-1 and Sentinel-2 values. 

The values for Sentienl-1 and Sentinel-2 were extracted by taking the average pixel values 

within the 60 x 60 buffer. The average values obtained were used as the representative values 

for that flux tower. It is important to note that, GEE platform automatically performs the 

preprocessing steps and extract the Sentinel-1 backscatter and Sentinel-2 reflectance values 

for each pixel in the buffer area. 

 

2.1.6 Vegetation and Polarimetric metrices. 
 

The VV and VH polarization from Sentinel-1 and Sentinel-2 bands, were used to derived 

polarimetric and vegetation indices (VI) to estimate ET. The Vegetation indices including 

Sentinel-2 bands shown in table 2 were used as inputs for ET estimate. VIs were incorporated 

because, they minimize the impact of soil background, atmospheric constituents and other 

sources of noise that can impede the ET estimate (Vreugdenhil et al., 2018). The Normalize 

Difference Vegetation Index (NDVI) for instance, is suitable for assessing crop health and 

development (Tucker, 1979). It is also sensitive  to chlorophyl contents (red) and cell 

structure of canopies (NIR) (Becker & Choudhury, 1988). These parameters are directly 

related to the process of photosynthesis in plants and, in turn, impact the transpiration of 

water from plants into the atmosphere, which ultimately affects the overall ET process. The 

red-edge1 Normalized difference vegetation indices (NDVIRE1), red-edge2 Normalized 

difference vegetation index (NDVIRE2), and red-edge3 Normalized difference vegetation 

indices (NDVIRE3) calculated with (red-edge1 band 5, red-edge2 band 6 and red-edge3 band 

7) and the red-edge4 band8A are known for their sensitivity to vegetation chlorophyll and 

water contents. The red-edge captures light wavelengths that are slightly longer than those 

captured by the traditional red band, but shorter than those captured by the near-infrared 

band. This unique position allows it to detect specific spectral signatures related to vegetation 

characteristics that are not as prominent in the red or near-infrared bands (Fernández-Manso 

et al., 2016). Chlorophyll red-edge index (CHlre) on the other hand, is known for its ability to 

discriminate  between  chlorophyll pigment (a + b) and reduced intra-species reflectance 

variation (Gitelson et al., 2003). This index was necessary for this analysis due to its valuable 

information it provides about the presence and health of chlorophyll in vegetation. The 

Normalized Difference Water Index (NDWI) is used to assess the amount of liquid contents 

in plants (Hamrell, 2014). Since the analysis was performed on different water regimes, 

utilizing NDWI would help detect shifts in water availability within both plant canopy and 



soil, a valuable information about the broader water dynamics, enhancing the precision of  ET 

predictions. The Soil Adjustment Vegetation Index (SAVI) is often regarded as a revised 

version of NDVI because it has a soil adjustment parameter that compensates for the 

sensitivity of NDVI to wet and dry soil background (Alam et al., 1996). By incorporating soil 

adjustments, SAVI provides a more accurate representation of vegetation density and health, 

thus enhancing the reliability of ET estimates. 

 

The Sentinel-1 indices, (VV/VH), VV-VH, and VV+VH used for this analysis were also 

calculated using the backscatter coefficients of VV and VH polarization. The backscatter 

measurements were initially represented in decibel (dB) in Google Earth Engine (GEE), after 

which a transformation to a linear scale was carried out. This was important because, 

performing arithmetic operations directly on values in decibels can lead to inaccurate results 

or misinterpretations. For instance, in the decibel scale, adding or subtracting values does not 

correspond to simple arithmetic addition or subtraction (Becker & Choudhury, 1988). 

Converting to linear scale allows you to perform these operations correctly. The conversion 

from dB scale to linear scale was conducted using the formulae below. 

 

Linear scale=10(dB/10) 

 

Where dB is the backscatter values in decibel. The Sentinel-1variables in the linear scale 

were used to  train RF model, allowing for the selection of the most important variable for ET 

prediction. However, it was converted into dB scale for visualization of the relationship 

between ET and Sentinel-1 indices. Table 4 and Table 5 provide a summary of the vegetation 

and polarimetric indices used in this analysis. 

 

Table 4. Sentinel-2 Vegetation indices 

Multispectral  broadband 

indices 

Abbreviations Equations Source 

Normalized Difference 

vegetation index  

NDVI 𝐵8 − 𝐵4

𝐵8 + 𝐵4
 

(Tucker, 1979) 

Narrow band red-edge1  

Normalized difference 

vegetation indices  

NDVIR

E1 

𝐵8𝐴 − 𝐵5

𝐵8𝐴 + 𝐵5
 

(Fernández-

Manso et al., 

2016) 

Narrow band red-edge2  

Normalized difference 

vegetation indices 

NDVIR

E2 

𝐵8𝐴 − 𝐵6

𝐵8𝐴 + 𝐵6
 

(Fernández-

Manso et al., 

2016) 

Narrow band red-edge3 

Normalized difference 

vegetation indices 

NDVIR

E3 

𝐵8𝐴 − 𝐵7

𝐵8𝐴 + 𝐵7
 

(Fernández-

Manso et al., 

2016) 

Chlorophyll red-edge index CHlre 𝐵7

𝐵5
− 1 

(Gitelson et al., 

2003) 

 

Normalize Difference water 

Index. 

NDWI 𝐵8 − 𝐵12

𝐵8 + 𝐵12
 

(Hamrell, 2014) 

Soil Adjustment Vegetation 

Index. 

SAVI (𝐵8 − 𝐵4)(1 + 𝑋𝑆𝐴𝑉𝐼)

(𝑏8 + 𝑏4) + 𝑋𝑆𝐴𝑉𝐼
 

(Alam et al., 

1996) 

 

 



Table 5. Sentinel-1 Polarimetric indices. 

Polarimetric 

metrics 

Purpose Source 

VV Sensitive to crop growth and 

development. 

(Nasirzadehdizaji et al., 2019) 

VH Sensitive to leaf area and 

crop biomass 

(Harfenmeister et al., 2019) 

VV-VH Less responsive to changes 

in soil moisture during crop 

growths and development 

(Gorrab et al., 2021) 

VV+VH Sensitive to crop height 

through the planting season 

(Gorrab et al., 2021) 

VV/VH Sensitive to both vegetation 

structure and moisture. 

(Vreugdenhil et al., 2018) 

 

2.1.7 defining the start of season and end of season. 

 

The NDVI-defined phenology from MODIS 16-day composites acquired on the fields where 

the 15 flux tower were located were used to define the start of season and end of season. This 

was crucial since these periods coincide with crop presence in the fields. For each of the 15 

sites under study, the SOS and EOS season were determined using the delayed moving 

average method which is adapted from the auto regression moving average model (Reed et 

al., 1994). The SOS  was defined as the point where NDVI temporal profile (blue line) 

crossed the smooth profile (moving average) curve (red dash line) in the upward direction. 

The  EOS on the other hand, was defined as  the point  where the NDVI temporal profile 

crossed the smooth curve in downwards direction. The smooth profile curve representing the 

moving average was defined by window size 7 days. Using 7-days was motivated by the 

consideration that this timeframe is sufficient to detect significant changes associated with the 

onset and harvest of crop growth in the field. The start and end of the season information was 

then used to omit Sentinel-2 spectral values and Sentinel-1 backscatter outside the growing 

season from the analysis. Subsequently, date matching was carried out on Sentinel-2 and 

Sentinel-1 extracted values to compensate for their different temporal resolutions. The study 

applied 7 days time lag to align observations between both sensors. This approach recognize 

that although plants begin responding to changes immediately, it might take a few days to 

become noticeable. 7 days time lag can help capture the combined effects of plants responses 

to changing  conditions over multiple days (SIMS & PEARCY, 1994). Furthermore, the ET 

values from both sensors were averaged over that period. In total, a master file containing 22 

variables which consisted of 5 Sentinel-1 variables and 17 Sentinel-2 variables and 464 

observations were used for ET estimate. Fig. 3 below presents a delayed moving average 

method for US-Ro6 site.  
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Figure 3. Start of season and end of season. 

2.1.8 Training Random forest and Variable Selection using Random  Forest (VSURF)  
 

Variable Selection was conducted to assess most important variables and enhance accurate 

ET estimates for this analysis. As reported by Maya Gopal & Bhargavi (2019), the goal of 

variable selection is to remove non-informative variables from a data in order to enhance the 

model performance, reduce the complexities of the model and making it easier to interpret. 

To achieve the aim of assessing key variables and improving ET estimation accuracy in this 

analysis, we utilized Variable Selection using Random Forest (VSURF). This was due to RF 

ability to provide a measure of feature importance and indicating which features are most 

relevant for making prediction (Touw et al., 2013).  In addition, RF produces models with 

more predictive power and lower error than other techniques and does not easily over-fit 

(Belgiu & Dra, 2016). 

That said, the dataset created in chapter 2.1.7 with 464 samples was split into training and test 

set. The splitting was based on temporal criteria which was performed independently for each 

site. Since each site contained three years of data, one year was used  for testing, whiles two 

years were used for training. This aligns with Congalton (2001) who stated that, it can help 

break down spatial autocorrelation by introducing temporal independence and capturing the 

natural variability present across different years. The training set consisted of 303 

observations and the validation set consist of 161 observations. The training set consisting of 

303 observation and 22 variables were used to train random forest for feature selection. It 

associated package in R called “variable selection using random forest ”(VSURF) was used 

for the variables selection. The version v.1.2.0 VSURF used is available in the 

Comprehensive R Archives Network (CRAN) at (https://cran.r-

project.org/package=VSURF.) 

 

The Variable selection using VSURF is a three step process. The first phase referred to as the 

preliminary elimination (thresholding), removes irrelevant variables after several iterations. 

In this study the number of iteration was set to 20 to reduce the computational time. Variable 

https://cran.r-project.org/package=VSURF
https://cran.r-project.org/package=VSURF


were ranked according to their mean importance score, beginning with variables with the 

highest importance scores. Next a decision tree was built using the standard deviation of the 

variable importance scores, and a minimum threshold was set (Genuer et al., 2015). Any 

variable with an important score less than the threshold was remove from further analysis. 

For this analysis after 20 iterations 12 variables were retained. 

 

In the second phase referred to us the interpretation phase, eliminate redundant variables but 

some redundancies still remain. As a result, a new sets of RFs were built, starting with the 12   

with the variables identified in the thresholding phase. Then, additional RFs were built, each  

using a different combination of variables from the selected subset in a stepwise manner until 

all variables selected in the thresholding phase were included. During the process, a new 

threshold was set by calculating the minimum mean out-of-bag (OOB) error of the random 

forest and their standard deviation (Genuer et al., 2015). The RF model with the least number 

variables, but still achieving a mean OOB error less than the “min error” was selected. The 

variables used in the chosen RF models were considered as the final selected variables in this 

phase. 12 variables were selected in this phase. 

 

The final phase representing the predictive phase, a stepwise selection of variables was 

performed, beginning with the variables selected in the first phase. A variables was selected if 

it inclusion to the RF model would results in a significant decrease in OOB error, exceeding 

the threshold referred to as the “mean jump value”. The mean jump value was determined 

using the unselected variables from the interpretation phase. It represents the average 

difference in OOB error between a model and the subsequent model when variables are 

added one by one in a stepwise manner. 6 variables were selected in the last phase  and were 

used to train RF. parameters as recommended by  Belgiu & Drăgu (2016), were defined 

which are the number of trees Ntree and number of variables Mtry. For this analysis the 

parameter Ntree was set to 500 as noted by  Lawrence et al.(2006) that, errors stabilize before 

reaching this number of trees in the random forest model. To reinforce this point,  Belgiu & 

Drăgu (2016) proposed that, the default value of 500 for Ntree is an acceptable value when 

using RF on remotely sensed data. In the case of Mtry, the number of variable to be 

considered in each split of the RF model was determined by dividing the total number of 

variables selected through the VSURF process by 3 (Mutanga et al., 2012).  

 

2.1.9 Partial Dependence Plots (PDP) 

 

Identifying the most significant variables is vital for simplifying data analysis, cutting down 

on computational demands, and enhances processing speed. However, as highlighted by 

Sheikholeslami and Dowling  (2019), the most important variables might not offer a 

comprehensive information about the relationship between input parameters and the predicted 

outcomes, as well as the manner in which changes in input variables influence predictions. 

Nonetheless, PDPs proved to be a valuable in analyzing input variables on predicted outcome 

and how changes in input variables influences predicted results.  Friedman (2001) underscore 

this assertion, stating that PDPs explains the marginal effects that individual or pairs of 

variables have on the predicted outcome of a machine learning model. Moreover, PDPs serve 

as a form of validation by confirming whether the observed relationships align with what we 

expect based on our knowledge of the subject matter. Figures 11,12,13,14,15, and 16 show 

the PDPs for the variables selected for the first scenario. 

 



2.2.0 Accuracy assessment. 

To evaluate the performance of the final model, four statistical parameters were used. They 

are, coefficient of determination denoted as R2, the root mean square (RMSE), Relative root 

mean square error rRMSE and Bias. The R2 quantifies the proportion of variance in the 

predicted variable that can be explained by the model. It was calculated by dividing the sum 

of square residuals (SSR) by the total sum of squares (SST) and the result subtracted from 1. 

It ranges from 0 to 1, with values close to 1 indicates a better fit of the model to the data . The 

second parameter, root mean square error (RMSE), is a commonly used metric to measure the 

overall error of a model. It is derived by taking the square root of the average of the squared 

differences between predicted and observed values. RMSE provides insight into how closely 

the model's predictions match the actual observation, giving a sense of the accuracy of the 

model's performance. A lower RMSE indicates a better alignment between predictions and 

observed values. The rRMSE error is the square root of the average of squared difference 

between the predicted and the observed value. Bias, reflects the average difference between 

predicted and observed values across the entire dataset. It was calculated by summing up all 

the differences and dividing by the total number of data points. A smaller Bias value indicates 

that the model's predictions are, on average, closer to the true values. 

 

2.2.1 Proportion of ET explain by vegetation and polarimetric indices on Rainfed and 

Irrigated agriculture. 

 

To assess the proportion of ET explained by VI and polarimetric indices the method referred 

to as Ablation was conducted. An Ablation involves systematically removing factors, in this 

case variables such as vegetation and polarimetric indices, from the analysis to observe how 

their  absence impact the  explained proportion of ET (Sheikholeslami & Dowling, 2019). To 

assess the proportion explained by Sentinel-1 and Sentinel-2 indices, 9 different scenarios 

were conducted under two water regimes. In the first, second and third scenarios, the analysis 

predicted overall ET for all crops in both rainfed and irrigated agriculture using both 

Sentinel-1 and Sentinel-2 indices. Subsequently, the study predicted ET again with all crops 

under both water regimes using Sentinel-1 and Sentinel-2 separately. The analysis above was 

performed exclusively for crops under rainfed and again irrigated agriculture. The goal was to 

examine possible differences in outcomes among various water regimes. The table below 

illustrates the scenarios under for both water regimes. 

 

Table 6. List of scenarios. 

 

Scenarios  Crop Types Sensor Used 

1  

All Crops 

All Sensors 

2 Sentinel-2 only 

3 Sentinel-1 Only 

4  

Rainfed 

All Sensors 

5 Sentinel-2 only 

6 Sentinel-1 Only 

7  

Irrigated 

All Sensors 

8 Sentinel-2 Only 

9 Sentinel-1 Only 

  



3.0 Results. 
 

The boxplots in Figures 4 and 5 are representation of the variability of ET over rainfed and 

irrigated agriculture and the four crops used in this analysis. In figure 4 it can be observed 

that ET appears to be higher and varies more in irrigated agriculture. Usually, ET for irrigated 

crops are higher but with less variation in the distribution pattern. This could be due to the 

number of sample size for irrigated agriculture (78 samples). It could also relates to the 

different crop types, since different crops have varying water requirements and responses to 

irrigation. As illustrated in figure 5, wheat has a lower variability in ET compared to corn, 

soybean and rice. In rainfed agriculture with 386 samples, ET variability is lower compared 

to irrigated agriculture. This is due to rainfed systems relying on natural rainfall, resulting in 

reduced water availability and subsequently lower ET, while irrigated systems have 

controlled water supply leading to higher ET. Hadadi et al (2022) further elaborated on this 

stating that, ET is higher for wet surface than dry surface soils due to the contribution of soil 

evaporation. Thus, in irrigated agriculture, the balance between soil evaporation and 

transpiration is such that, a reduction in soil evaporation is compensated by increased 

transpiration, keeping total evaporation relatively stable. This mechanism contributes to 

higher ET in irrigated areas. In rainfed settings, water scarcity limits this compensation, 

leading to comparatively lower ET.   

 

 

 

Figure 4: Boxplots for Rainfed and Irrigated ET. 



Figure 5: Boxplot of ET for different crop types. 

 

2.1 Variable selection using Random Forest for first scenario. 
 

Figures 6 to 9 presents the variables selection process conducted with VSURF. Figure 6 and  

figure 7 represent the threshold phase. The figure 6 demonstrates how variables are ranked 

according to their mean variable importance. Clearly variable more than 5 seems to be noisy 

but variables less than 5 are seen as significantly important. In figure 7 variables are 

eliminated 

in order of importance. Based  on the ranking, a plot of these standard deviations is 

generated, and a threshold value for VI is estimated based on this plot. A threshold as shown 

by doted red lines serves as a cutoff point for variable selection. Only variables with an 

average VI exceeding this this threshold are retained. 22 variables were retained at the 

threshold phase. The least OOB error was attained when using 15 variables as seen in figure 

8. From the 15 variables in the interpretation phase, only 6 variables were kept  after the 

prediction phase. Figure 9 represents the prediction phase, showing the number of variables 

retain.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 6. Variable ranking in the thresholding step. 

 
 

Figure 7. A step-by-step stepwise regression for variable elimination. 

 

Figure 8. Nested RF Model for Model’s definition with the lower OOB. 

 

Figure 9. Predictive model based on OOB error. 



 

 

 

 

2.2 Variable importance for the first scenario. 

 

This study’s primary objective was to assess the most important vegetation and polarimetric  

indices. As shown in figure 10, a total of 6 variables were selected namely: Chlre, Band 12 

Short-Wave Infra-red, (B12_SWIR2), NDVIRE1, SAVI , VH, and NDVI. The variables 

importance graph demonstrates that Chlre is the most important variable with a percentage 

increase in mean square of error of 27.18. This implies that excluding Chlre from the model 

results in an approximately 27.18% rise in the error. Similarly, removing B12-SWIR leads to 

a 23.51% increase in the RF model's error. Among the six variables, NDVI has the least 

impact, causing a reduction of 15.85% in the model's error. 

 

 
Figure 10. Variables according to their importance using increase %IncMSE 

 

2.3 Partial Dependence Plots for first scenario. 
 

The Partial Dependence Plots below provide a visual and intuitive way to explore the 

relationship between individual variables and model predictions, contributing to the 

interpretability of the RF models. These PDPs are specific to the first scenario, where the 

analysis was performed on all crops and all sensors. The PDPs are arranged in order of 

importance. Observing from figure 11, Chlre increases linearly with ET until around 3, after 

which it plateau. Meaning ET remained the same regardless of how much Chlre increases. 

However, the PDP for B12-SWIR in figure 12, keep increasing with ET. This implies that ET 

never stops once B12-SWIR continue to increase. In contrast, the PDP for NDVIRE1 

illustrates that, the relationship between ET and NDVIRE1 starts around 0.2 but ET begins to 



decrease when NDVIRE1 reaches a value of approximately 0.75. The PDP for SAVI as 

illustrated in figure 13, also increases with ET until 0.3, but begins to increase slowly when 

SAVI reaches a value approximately 0.35. In figure 15, ET begins to increase when VH 

backscatter reaches -20. Furthermore, the relationship between ET continues to increase with 

increase in VH backscatter. Finally, the  PDP for NDVI revealed that, ET reaches 4.92 even 

when NDVI was 0.0. But ET saturates when NDVI was around 0.48, but decreased to 0.5 

when NDVI was approximately 0.58.  

 

 
 

Figure 11. Partial Dependence Plot for Chlre and ET. 

 

 
 

Figure 12. Partial Dependence Plot for B12_SWIR2 and ET. 

 

 
 

 



Figure 13. Partial Dependence Plot for NDVIRE1 and ET. 

 

 

 

 

Figure 14. Partial Dependence Plot for SAVI and ET. 

 

 
 

Figure 15. Partial Dependence Plot for VH and ET. 

 

 
 

Figure 16. Partial Dependence Plot for NDVIRE1 and ET. 



 

3.4 Random Forest Model and ET Prediction. 
 

This section presented the outcomes of the Random Forest Model for evapotranspiration 

prediction for the first three scenarios as described in the method section. The section also 

reported an ablation analysis conducted to assess the contributions of Sentinel-1 and Sentienl-

2 indices on rainfed agriculture and irrigated agriculture. This approach was essential to 

assess whether differences in estimated ET existed between rainfed and irrigated agriculture. 

The outcomes for scenarios 4, 5, 6, 7, 8, and 9 are detailed in the appendices 1, 

2, 3, 4, 5, and 6. 

 

3.5 Scenario 1: ET prediction for first scenario. 

 

The RF model was trained with 303 samples using the six most important Sentinel-l and 

Sentienl-2 indices: Chlre, NDVIRE1, SAVI, NDVI, VH, and B12-SWIR2 shown in figure 

10, to predict ET for all crops, all sensors. The validation of the model using 161 hold-out 

samples achieved (R2 =0.67, RMSE = 1.8 MJm-2d-2, rRMSE = 0.13 MJm-2d-2, and Bias= -

0.11 MJm-2d-2). The R2  = 0.67 for the model of the first scenario indicated that approximately 

67% of the variance in ET was explained by the indices from both sensors. The Root Mean 

Square Error (RMSE) of 1.8 MJm-2d-2 suggests that, on average, the ET estimates provided 

by the model were within 1.8 MJm-2d-2 of the true values. This level of accuracy is 

acceptable for many practical applications. Additionally, the Bias value of -0.11 MJm-2d-2 

indicates that, on average, the model slightly underestimated the ET values, regardless of 

whether Sentinel-2 or Sentinel-1 variables were used. Though, the model shows a negative 

bias, the overall performance appears satisfactory. The scatterplot shown in figure 17 was 

generated to compare the observed ET (found on the x-axis) with the predicted ET (found on 

the y-axis).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. A scatterplot for all crops, all sensors. 

N=486 
RMSE: 1.8 
R2: 0.67 
Bias: -0.1 
rRMSE: 0.13 

N=486 



3.6 ET prediction for scenario 2 and scenario 3. 
 

The analysis conducted for scenario 2 (all crops, S-2 only) using 303 samples to train RF 

model revealed that the following Sentinel-2 indices: Chlre, SAVI, NDVIRE1, B12-SWIR2 

and B12_SWIR2, NDVI, B8A_Red_edge4, NDVIRE2, and NDWI  contributed 66% to the 

overall model achieving (R2 = 0.66, RMSE = 1.9MJm-2d-2, rRMSE=0.13MJm-2d-2, and Bias = 

-0.11MJm-2d-2) on the 161 hold-out samples. In the case of scenario 3, (all crops, S-1 only), 

the following Sentinel-1indices: VV/VH, VV+VH, VH, and VV contributed 26% to the 

overall, model achieving (R2 = 0.26, RMSE = 2.8MJm-2d-2, rRMSE = 0.20 MJm-2d-2 , and 

Bias = -0.56MJm-2d-2). Overall, the results from both sensors indicated that, Sentinel-2 

indices contributed significantly to the variability in ET than Sentinel-1. The scatterplots in 

figure 18 and figure 19 illustrates the contributions by each indices categorized by sensor. 

 

  
Figure 18. Scatterplot for all crops, Sentinel-2 only. 

 

 

  
 

Figure 19. Scatterplot for all crops, Sentinel-1 only 

RMSE= 2.8 
R2=  0.26 
Bias= -0.56 
rRMSE= 0.20 

RMSE=1.9 
R2= 0.66 
Bias=-0.11 
rRMSE=0.13 



 

3.7 ET prediction for scenario 4, 5, and 6. 

 

For scenarios 4, 5 and 6, RF model was trained with 249 samples and validated using a hold-

out sample of 137. The results for scenario 4, (rainfed, all sensors),  the model explained 65% 

variability in ET on rainfed agriculture achieving (R2 = 0.65, RMSE = 1.9MJm-2d-2=0.18, 

rRMSE=0.1MJm-2d-2, and Bias = -0.11MJm-2d-2). The result suggest that the predictive 

power of the  model has reduce by 4% when validated on rainfed agriculture. Similarly, the 

predictive power of the model also reduced by 3% using Sentinel-2 alone. Sentinel-2 indices 

explained 63% of  the variability in ET achieving (R2 = 0.63, RMSE = 1.9MJm-2d-2, 

rRMSE=0.14MJm-2d-2, and Bias = -0.15MJm-2d-2). However, Sentinel-1 predictive power 

increase by 10% on rainfed agriculture achieving (R2 = 0.36, RMSE = 2.6MJm-2d-2, 

rRMSE=0.19MJm-2d-2, and Bias = -0.61MJm-2d-2). The scatter plots of scenarios 4, 5 and 6, 

can be located in appendices 1, 2 and 3.  

 

3.8 ET predictions for scenario 7, 8, and 9. 

 

The RF model for scenarios 7, 8, and 9 were trained with 49 samples and validated with 29 

hold-out samples. The result of scenario 7 (Irrigated, all sensors) show that, 69% of the 

variability in ET is better explained by Sentinel-1 and Sentinel-2 in irrigated agriculture. 

These result in 4% increase in its ET predictive power on irrigated agriculture after achieving 

(R2=0.69, RMSE=3.3MJm-2d-2, rRMSE=0.24MJm-2d-2, and Bias = 2.2MJm-2d-2). The results 

for scenario 8 (Irrigated, S-2 only), achieved (R2 = 0.67, RMSE = 3.3MJm-2d-2, 

rRMSE=0.25MJm-2d-2, and Bias = 2.3MJm-2d-2). For scenario 9 (Irrigated, S-1 only), the 

result was (R2 = 0.29, RMSE = 4.5MJm-2d-2, rRMSE=0.34MJm-2d-2, and Bias = 2.95MJm-2d-

2). It can be observe that Sentinel-2 indices has 4% more ET predictive power on irrigated 

agriculture than Rainfed. However, the predictive power of Sentinel-1 has also increased by 

3%. The scatter plots for scenario 7, 8, and 9, can be found in appendices 4, 5, and 6 

respectively.  

 

4.0 DISCUSSION 
 

This section discussed the the most important Sentinel-1 and Sentinel-2 indices,  and 

interpreted the PDPs illustrating the relationship between ET and (Sentinel-2 and Sentinel-1 

indices). The section also discussed the model performances for rainfed and irrigated 

agriculture  and evaluated the proportion explained by Sentinel-1 indices and Sentinel-2 

indices  exclusively for each water regimes. Moreover, the section also addressed the study’s 

limitations, implications and presented relevant recommendations for future research and 

other applications. 

 

4.1 The most Important Sentinel-1 and Sentinel-2 indices. 

 

One of the prime objectives of this study was to assess the most important Sentinel-1 and 

Sentienl-2 indices which was critical to identify the key vegetation and polarimetric indices 

that can precisely predict ET. This was an attempt to avoid including irrelevant and redundant 

variables that could potentially introduce noise and decrease the model’s predictive 

performance. The results for the first scenarios  as shown in figure 10,  six (6) variables were 

considered as important suggesting that a more accurate estimation of ET can be achieved by 

incorporating variables from both Sentinel-1 and Sentinel-2. This finding greatly emphasizes 



the rationale behind integrating these two data types, given their valuable and complementary 

information they provide. From figure 10, Chlre with %IncMSE of 27.18 is considered the 

most important, meaning that RF model cannot predict ET with high accuracy when Chlre is 

missing. This can be attributed to Chlre sensitivity to changes in chlorophyll and leaf water 

contents (Gitelson et al., 2003). Chlorophyll is essential for photosynthesis, the process 

through which plants convert sunlight into energy and produce oxygen. The photosythetic 

processes have a direct connection with water loss from plants into the atmosphere through 

stomatal openings. This water loss is closely linked to the overall evapotranspiration process. 

This finding aligned with previous reseach by Haboudane et al (2002), who underscore Chlre 

to be significant and essential for prediction of crop chlorophyll content. The B12_SWIR2 

representing band 12 shortwave infra-red region of the electromagnetic spectrum was also 

selected, which is known for its sensivity to moisture contents of soil and vegetation. The 

selection of B12_SWIR reaffirm our knowledge of the pivotal role chlorophyll and water 

content plant in the processes of evapotranspiration. Similar result was found by Liu et al. 

(2021), who found B12_SWIR to be significant for estimating soil moisture in agriculture 

fields. Another significant Sentinel-2 vegetation indices selected was NDVIRE1. This index 

is specifically designed to capture chlorophyll information in vegetation.  Healthy plants with 

abundant chlorophyll content tend to have vigorous growth, which leads to increased 

transpiration, a significant component of ET (Evangelides & Nobajas, 2020). Soil-Adjusted 

Vegetation Index was selected as the fourth most important variable.  The significance of 

including the SAVI for ET  estimation lies in its capacity to address soil brightness and  

differentiate between vegetation and soil signal, thereby contributing to improved ET 

estimation (Alam et al., 1996). The VH polarization from Sentinel-1 was the only variables 

selected under the first scenario as important for ET estimate. VH polarization was selected 

because  of its sensitivity to vegetation cover and structure. VH can capture variations in 

vegetations density, height, and canopy structure, which are essential factors influencing 

transpiration and overall ET. Similarly, VH polarization can penetrate canopy cover 

influenced by its volume scattering characteristics. This allows it to captures information 

regarding soil surface and upper canopy,  providing valuable insights into the vegetation 

transpiration and soil evaporation (Harfenmeister et al., 2019). By using VH polarization 

backscatter, the study by Schlund & Erasmi (2020b), demonstrates the importance of VH for 

crop phenology, which is closely related to vegetation water intake and transpiration. Finally, 

NDVI was also selected as important for ET estimate. Although NDVI is commonly used in 

remote sensing and environmental studies, its lower ranking among the six selected variables 

for ET estimation agree with previous research. For instance, Evangelides & Nobajas, (2020), 

suggested that previously selected vegetation indices have specific capabilities for capturing 

particular vegetation characteristics, allowing them to outperform NDVI in estimating ET. 

Moreover, Meng et al (2013), added that NDVI is primarily sensitive to variations in 

vegetation density and greenness, which might limit its ability to capture other important 

factors influencing evapotranspiration, such as soil moisture and leaf water content. 

Furthermore, NDVI has a saturation point beyond which changes in vegetation density and 

greeness may not influence ET processes. Nevertheless, its simplicity and its role as a 

valuable vegetation health indicator are some of the reasons it might be choosen for ET 

estimate. To this end, the initial hypothesis posited that, Red edge and Near infra red bands 

from Sentinel-2 would be the most important predictors giving their sensitivity to 

transpiration, whiles Sentinel-1 backscatter would be more important, but less so given its 

sensitivity to soil evaporation. However, the findings of the study lead to the rejection of the 

initial hypothesis.  

 



4.2 Partial Dependence Plots. 

 

The partial dependence plots displayed in figures 11 to 16 reveal varying degrees of 

relationship between the variables and ET. Whiles some plots exhibit a linear trend, others 

demonstrate a degree of linearity but saturate at certain points. For instance,  in figure 11, ET 

increases when Chlre was 0.3, but begins to saturates after after ET reaches 6.7 and Chlre 

reaches 3.1. This is because Chlre reached saturation point beyond which additional increases 

in Chlre no longer impact ET process. Similarly observation by (Darvishzadeh et al., 2009; 

Delegido et al., 2011), who obseved a linear relationship between Chlre and the estimations 

of leaf area index  and chlorophyll content, a major parameter for photosynthesis, which 

relate to transpiration the largest component of ET.  

 

In the case of B12_SWIR as illustrated in figure 12, the PDP revealed that ET has a continous 

linear trend with B12_SWIR. This trend could be attributed to B12_SWIR sensitivity to soil 

and vegetation moisture (Liu et al., 2021), resulting in a rise even in the absence of 

vegetation.  Mandal et al. (2018), further reaffirm such occurences, stating that, such 

phenomenon can be attributed to the use of machines to harvest crops living large amount of 

crop residues on the field. As a results, the existence of crop residues leads to an increase 

B12-SWIR due to its ability to detect soil moisture and chlorophyll signals from the remnants 

(Mandal et al., 2018).  

 

NDVIRE1, as highlighted by Evangelides & Nobajas (2020), is sensitive to changes in 

chlorophyll content and vegetation density. The PDP for NDVIRE1 shows that as vegetation 

becomes healthier and denser, they tend to enhance capacity for transpiration ultimately 

leading to increased ET. From figure 13, it can be observed that, ET began to increase at 0.2 

when leaf of crops have shoot up, but increases  as crops reached maturity at 0.7 and begin to 

fall. During this stage of the plant, transpiration rate of the plants decreases as they prioritized 

reproduction over growth. This can also relates to crop adaptation to water stress. Crops 

could close their stomata to reduce water loss during time of limited water availability  (FAO, 

2002). Additionally, healthier canopy might have more dense foliage, which can lead to 

increased shading of the soil surface. Shaded soil surfaces can reduce soil evaporation, 

contributing to lower overall evapotranspiration. 

The PDP for SAVI demonstrates a similar trend to B12_SWIR. However, it reveals that ET 

rate slows down once the crops reach full maturity. As illustrated by the PDP, as SAVI 

increase, it implies increasing growth and development of crops, leading to a corresponding 

increase in ET. However, ET values decreases at 0.5 when the crop reaches its maximum 

growth, slowing down the rate of ET. Farg et al. (2012) also reported comparable results, 

stating that when crop reaches maturity, there is a reduced demand for water due to the 

stabilization of physiological processes. Consequently, the rate of water loss through 

transpiration begins to decrease, leading to the observed slowdown in ET.   

 

The VH polarization PDP in Figure 15 shows that VH and ET increase at a slow rate during 

the initial stages of crop development. The slow increase in VH polarization is likely due to 

the early growth phases, where the vegetation is still establishing and the canopy density is 

not fully developed. As the crops continue to grow and their leaves and branches expand, the 

VH backscatter increases resulting in a continous increase in ET. This finding is consistent 

with the results from Schlund & Erasmi's  (2020c)  study on winter wheat. In their study, they  

observed that VH backscatter did not decrease even after the crops had been harvested. This 

is because the crop stubble left on the field after harvest produces a backscatter signal similar 

to that of fully grown crops. Hence, the backscatter levels do not decrease significantly after 



harvesting (Schlund & Erasmi, 2020c). moreover, the pattern observed can also be attributed 

to longer growing season with a large proportion of late-planted crops, such as corn and 

soybeans. Again, it is essential to consider that this analysis was conducted across four 

different crop fields, and the practices adopted after harvesting varied among these fields. 

Therefore, to validate the underlying reasons for this phenomenon, field survey should be 

conducted in future studies as proposed by (M Bouman & J van Kasteren, 1990). 

 

The PDP of NDVI has shown a different pattern, ET increases even when NDVI was 0.0. 

This phenomenon is perhaps because crops were at their early stages of development, which 

suggests that there is greater surface area available for soil evaporation leading to an increase 

in ET. The saturation of ET when NDVI is 0.48 is related to the saturation point of NDVI 

itself. This means that NDVI becomes less sensitive to changes in vegetaion density beyond 

0.5, stabelizing the relatioship between ET and NDVI. Subsequently, the decrease in ET as 

NDVI reaches 0.75  is consistent with  annual crops under rainfed agriculture, where water 

decrease monotonously through out the growing season, resulting in general water deficit, 

neccitating the closure of stomata walls by crops to prevent water loss.  

 

4.3 Performance of Random Forest model. 

 

The study has evaluated the predictive ability of Sentinel-1 and Sentinel-2 indices to estimate 

ET in both rainfed and irrigated agriculture. The result revealed that Sentinel-2 indices 

explained more ET variability in all cases. While Sentinel-1 alone did not provide a strong 

explanation for the variations in ET. Though it increase in its explanatory power on irrigated 

as expected , it was lower compared to its explanatory power on rainfed agriculture. This 

could attributed to the sample size used in training the model which may not be 

representative enough. Congalton (2001), underscore this assertions by stating that, larger 

sample size per class provides more representative information for constructing error matrix, 

enhancing the reliability of the accuracy assessment and subsequently improving the model's 

predictive power. Moreover, Sentinel-2 might explain more variability in ET than Sentinel-1 

because, optical imagery from Sentinel-2 enables direct observation of vegetation chlorophyll 

and water contents, which are proxy to photosynthetic activities of plants, a critical 

components of ET process. Another reason stated by Nasseri et al (2023) was that, Sentinel-2 

imagery can provide data on land surface temperature, which is closely related to ET. 

Increase land surface temperature levels means increase CO2 (Hatfield & Dold, 2019). Plants 

take in CO2 for photosynthesis, but also allow water to escape through transpiration. In 

general, the dominance of  Sentinel-2 over Sentinel-1 is because Sentinel-2 is sensitive to 

vegetation density, health and greenness. These factors are directly related to transpiration the 

largest component of ET. Sentinel-1 on the other hand is sensitive to soil moisture content 

which relates to soil evaporation the second largest component of ET. Its ability to capture 

soil moisture is limited when  the canopy covers the land surface as transpiration take 

precedence. 

 

Moreover, the results has shown a decline in ET over rainfed agriculture by 2% but an 

increase  by 2% on irrigated agriculture. This phenomenon is likely due to water stress. 

According to Yang et al (2018), when there is limited rainfall, plants experience water stress, 

which can lead to stomatal closure. Stomata, the tiny pores on leaves, regulate both CO2 

uptake for photosynthesis and water vapor loss through transpiration. In response to water 

stress, plants tend to close their stomata to conserve water, reducing the rate of transpiration 

and, consequently, ET. Cammalleri et al  (2014), found similar results, stating that, on 

irrigated agriculture, water is spatially continuous, resulting in continuous movement of 



moisture in plants. With access to sufficient water, plants can maintain open stomata and 

continue transpiring water vapor actively. Higher transpiration rates contribute to increased 

ET levels. 

 

However, caution must be taking in explaining the results for irrigated agriculture due to low 

sample size used for training the model. A larger number of samples size as mentioned by 

Khalilzadeh & Tasci (2017), leads to more accurate parameter estimates and increased 

statistical power, enabling researchers to detect smaller effects with greater confidence. 

Given the bias observed in the results for irrigated agriculture, it is important to consider that 

a relatively limited dataset could introduce potential biases and might not adequately capture 

the complexity and variability of ET estimation in irrigated agriculture. Therefore, while the 

result is promising, further validation with larger datasets is recommended to ensure the 

model's robustness and reliability for broader applications.  

 

4.6  Limitations. 

 

The results from the integration of Sentinel-1 and Sentinel-2 data for estimating 

evapotranspiration in rainfed and irrigated agriculture has shown great promise. However, it 

is crucial to consider certain aspect of the study that requires further consideration when 

applying the findings to other regions. Future research should address these limitations and 

conduct further validations to enhance the robustness and applicability of the integrated 

remote sensing approach for evapotranspiration estimation.  

 

One such limitation was the limited number of samples for some crops for the analysis. As 

stated by (Ma et al., 2022), the size of dataset can significantly impact the reliability and the 

general rebustness of the results. A relatively small dataset may lead to potential biases, and 

may not fully capture the inherent variability in ET for the crops for this analysis. To mitigate 

this limitation, future research could consider collecting more data points, which could likely 

lead to more robust model training, validation, and better representaion of the true ET 

variablitity.  

 

An additional, the analysis has been able to explain why Sentinel-2 explains ET better on 

rainfed and irrigated, but lack explanation on the partitioning of ET into soil evaporation and 

canopy transpiration which is a source of uncertaintity in this analysis. In future research, 

specific methods like surface energy balace model, and eddy covariance method would be 

required to partition ET into its components. Only then can we confidently conclude that 

Sentinel-2 primarily explains the transpiration component of ET, the largest component of 

ET, while Sentinel-1 accounts for soil evaporation, the second-largest component of ET. 

 

Furthermore, an aspect that needs further consideration is the manner in which the study 

defined the start and end of seasons, employing months rather than precise dates to define the 

start and end of growing seasons. This approach affects the accuracy of ET estimate for 

Senitinel-1 in all cases, which the study expect to be more useful but apparently does not 

compete with Sentinel-2. In future studies, field survey should be conducted as proposed by 

(M Bouman & J van Kasteren (1990), on the exact dates but not excluding the management 

paractices that occurs on the fields of each crops. Alternatively, regular updates on farm 

management practices from Principal Investigators on each site could help overcome this 

challenge. 

 



Moreover, the current study was undertaken in regions where sentinel-2 target data were 

rarely obstructed by clouds, enabling the collection of reflectance values. However, if similar 

analysis were conducted in regions where cloud cover is pravalent all year-round, 

overcoming the shortage of data from Sentinel-2 may present a substantial challenge.  

 

4.7    Implications. 
 

The estimation of ET in both rainfed and irrigated agriculture has significant important 

implications for agricultural planning and water management. Farmers and stakeholders can 

make informed decisions, by practicing precision irrigation techniques that reduce water 

wastage and enhance overall water use efficiency. This can increase crop production and 

ensure the management of water resources.  

 

Moreover, the findings in this study highlighted the significance of integrating data from 

Sentinel-1 and Sentinel-2 sensors for ET estimation. In future, the identified important 

variables can guide the selection of input features for other models, potentially improving 

their predictive accuracy. 

 

Furthermore, future research could explore the potential, capabilities, and complementary 

information provided by Sentinel-1 and Sentinel-2 beyond ET estimation. One promising 

avenue is the application of this integrated approach in drought modeling and assessment. 

Drought is complex phenomenon with far-reaching socio-economic and environmental 

implications, making its accurate prediction and monitoring of utmost importance. 

 

4.8 Recommendations. 

 

Building on the outcomes of this study, it is advised to consider the following 

recommendations in order to amplify the practical application and significance of the 

research: 

 

In subsequent research, it would be valuable for researchers to investigate the feasibility and 

effectiveness of integrating Sentienl-1 and Sentienl-2 on smaller-scale farms, particularly in 

regions such as Africa where small size farms are prevalent. By conducting further research 

in this diverse geographical contexts and with various crop varieties, researchers can 

ascertain the broader applicability of estimating crop water requirements. 

 

In future study, researchers should collect more data points for each crops. Moreover, 

relevant information on farm management practices before and after harvest should be 

collected from principal investigation to enhance the interpretation of results. This can be 

achieve by collaborating with site PIs to facilitate the collection of such information, enabling 

a more comprehensive validation of random forest model for ET estimation and enhancing 

the reliability and interpretation of the results. 

 

 

 

 

 

 

 

 



5.0 CONCLUSION 
 

Global ET estimate is essential for sustainable water used on both local and regional scale, 

particularly in advancing precise irrigation practices to bolster agricultural productivity. 

However, inputs and model  uncertainties limits the estimation of ET on a global scale. Using 

quality data that strike the balance between temporal and spatial resolution using machine 

learning algorithms provides a better alternatives. These study therefore demonstrated the 

significance of integrating Sentinel-1 (sensitive to soil moisture and canopy structure) and 

Sentinel-2 (sensitive to canopy transpiration) for ET estimation on irrigated agriculture. The 

analysis was conducted on two water regimes, which was necessary to understand if the 

predictive performance of the Random Forest (RF) model would differ. 

 

The study has successfully predicted ET on rainfed and irrigated agriculture, revealing that 

RF model explained more variability in  ET on irrigated agriculture than rainfed agriculture. 

This was expected due to the continous availability of moisture for plant transpiration on 

rainfed agriculture. The lower performance on rainfed agriculture on the other hand was due 

to limited was supply, which force crops to adapt by closing their stomata walls, hence 

reducing ET. Similarly, Sentinel-2 explained significant variability in ET than Sentinel-1, 

suggesting that Sentinel-2 vegetation indices cannot explain ET variability in isolation. The 

studies further discovered that the most significant variable selected was chlorophyll red-edge 

index (Chlre), which is sentive to chlorophyll and water contents of vegetations. These 

vegetation parameters relates to photosynthesis. The photosythetic processes have a direct 

connection with water loss from plants into the atmosphere through stomatal openings. 

Moreover, NDVI, a commonly used indicator in various applications, ranked the lowest 

among the top six variables. This outcome was linked to the saturation point of NDVI, 

indicating a stage where further vegetation growth no longer leads to an increase in 

evapotranspiration. 

 

Though, the integration of both sensors using machine learning method has been able to 

explain why Sentinel-2 explains ET better on rainfed and irrigated, the study lack explanation 

on the partitioning of ET into soil evaporation and canopy transpiration which is a source of 

uncertaintity. Overall, the estimation of global evapotranspiration ET holds paramount 

importance for ensuring sustainable water management practices at both local and regional 

scales. This is particularly crucial for enhancing precise irrigation management that could 

increased agricultural productivity.  
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7.0 APPENDICES 
 

 

Appendix 1. scatter plot for scenario 4 (Rainfed) 
 

 
Appendix 2. Scatter plot for scenario 5 (Rainfed, S-2 only) 
 

 
 

Appendix 3. Scatter plot for scenario 6 (Rainfed, S-1 only) 

 

N=386 
RMSE=1.9 
R2= 0.65 
Bias=-0.11 
rRMSE=0.18 
 

RMSE=1.9 
R2= 0.63 
Bias=-0.15 
rRMSE=0.14 



 
 
 

Appendix 4. Scatterplot for scenario 7 (Irrigated, all sensors). 
 
 

 
 

 

Appendix 5. scatterplot for scenario 8 (Irrigated ,S-2 Only). 
 

RMSE=2.6 
R2= 0.36 
Bias=-0.61 
rRMSE=0.19 

Nsamples=49 
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rRMSE=0.24 



 
 

 

 

 

Appendix 6. Scatterplot for scenario 9 (Irrigated S-1 Only). 
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R2= 0.67 
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