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Abstract

The behavior of traffic on roundabouts is a complex phenomenon and it has been heav-
ily researched in the past decades. In that tendency, a discrete time approach will be
used to gain insights on the departure process of a roundabout given Bernoulli arrivals at
the entrances. We formulate a Discrete Time Markov Chain (DTMC) to form an analyt-
ical framework containing the interarrival times on the roundabout and at the exit of the
roundabout. Simulations testthis analytical framework and subsequently the introduction
of numerically acquired heuristics complement the analytical framework of these departure
processes. Two case studies concerning chains of roundabouts with Bernoulli arrivals show
that the departure process at the exit of a chain approximates the departure process at the
exit of a single roundabout; additionally one case study demonstrates that the design of a
roundabout plays a role in the probability distribution of the interarrival times. A simula-
tion study regarding the classical four-way roundabout show that the theoretical framework
along with the numerical heuristics establish a sufficient approximation of the departure
process at the exit of the roundabout, but more theory on this subject regarding a discrete
time approach is yet to be established.
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1 Introduction

1.1 Motivation

In the last decades, traffic management has grown enormously, and therefore it has become a
vast area of research. In particular the vehicular flow on roundabouts has always been a point of
interest. For this purpose two of the most popular types of models are considered: microscopic
and macroscopic models. Microscopic models show the interaction between the different vehicles.
In these models, variables like speed, accelaration and deceleration, and the behavior of vehicles
with regard to their predecessors. Macroscopic models are not based on individual vehicle be-
havior but rather characterizes traffic through global terms like flows, density, and mean speed.
This report focuses on the microscopic models, and it opts to give insights on how roundabouts
can fit in other traffic disciplines, like traffic sign intersections and priority intersections. New
theory on fixed-cycle traffic-light control by Oblakova [1] motivates to scrutinize the behavior of
vehicles on roundabouts.

1.2 The Cellular Automata model

For modelling the movement of vehicles on a roundabout, we look at one of the most used
car following models: the stochastic Cellular Automata model (CA). The fundamentals of this
model were introduced in 1992 by Kai Nagel and Michael Schreckenberg [2]. The CA model was
further specifically exploited on roundabouts by M.E. Fouladvand et al. in 2004 [3], and further
research was done by N.P. Belz et al. on priority abstaining and priority taking on roundabouts in
2016 [4]. A joint cooperation between the UvA and VU of Amsterdam by P.J. Storm (2019/2020)
did research using the CA model to investigate the importance of on- and off-ramps, as well as
looking at the entry behavior of vehicles entering a roundabout [5]. Most importantly, C.E.M.
Pearce founded a model using a probabilistic discrete time Markov Chain (DTMC), using similar
techniques for finding waiting times in the queue for threeway roundabouts [6]. However, most
of earlier research is focused on optimizing freeflow on roundabouts and minimizing queueing
times, whereas the purpose of this research concentrates on the departure times at roundabouts
and the integration of roundabouts in various types of traffic junctions. This makes it so that
no earlier research has been conducted on the subject of the departure times in the context of
the CA model.

1.3 A modified CA method

The concept of the CA model is to divide the freeway roundabout and its arrival and departure
road into cells that equal the average length of a vehicle plus the average distance between two
vehicles in free flow speed. These cells would have a length of 7m according to the Storm’s
research [5].

An alternative for choosing cells with length equal as described above, is to choose smaller cells
so that multiple cells can be occupied by the same vehicle. The advantage of splitting the cells is
that vehicles can be attributed different lengths, whereas the structure of the model is preserved.
The disadvantage is that the modelling becomes more complex and computationally costly as
more conditions need to be created for vehicles to pass through multiple cells.

The CA model keeps track for all cells at each time step whether it is occupied by a vehicle
or not. After one time step, a vehicle will move from position i to position i + j, depending
on the speed of the vehicle. Furthermore, a vehicle can be given certain attributes, namely the
following:
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• The velocity of the vehicle (slow, average or fast driver)

• The position of the vehicle

• Length of the vehicle

• If the driver is a priority taker, priority abstainer, or neither one of them

• The behavior of the vehicle when there is another vehicle in front of him

Priority taking means that vehicles coming from an entrances take priority over vehicles on the
roundabouts so that the flow on the roundabout is blocked, whereas priority abstaining causes
essentially the same, only the vehicle on the roundabout voluntarily grants vehicles from the
entrance of a roundabout priority. The versatility in the attributes that can be given to vehicles
shows that the CA model is very suitable as a simulatory model.

1.4 Objective

Whereas most research towards roundabouts focus on rush-hours or traffic jams, this report tries
to link the roundabout in the bigger picture of traffic behavior. A principal approach for this
concept is to grab a hold of the departure process of roundabouts in its most basic form. Arrivals
on roundabouts will therefore be regarded as ’random’, which in this case means that arrivals
occur according to a Bernoulli trial. Furthermore, when such a representation of the departure
process is found, it will be tested against simulations, for which we use SUMO (Simulation of
Urban MObility). Keeping in mind the bigger picture of traffic behavior, the overloaded systems
of roundabouts do not necessarily concern this paper. This leads to the following research
questions:

1. Given the arrival processes at the roundabout, what do the departure processes at the
roundabout look like?

2. What influence does a roundabout have on the departure processes of other roundabouts?

4



2 The Markov Cellular Automata model

The introduction shows that the CA model is very well suited for dissecting the behavior of
vehicles. With the help of simulations, a numerical framework for roundabouts can be created.
On the other hand, to derive analytical expressions for the arrival and departure processes for
entering and exiting a roundabout would allow for a general framework for the behavior of
vehicles on roundabouts. The idea of the CA model gives us the motivation of the Markov
Cellular Automata (MCA) model. The overall idea of the MCA model is that a Markov chain is
created using cells on the roundabout as states, and queues in front of the roundabout as states
to describe the most important aspects of the behavior on the roundabout. In this section, the
most basic model description is given for the MCA model, along with the transition behavior of
its states.

2.1 MCA model description

Consider a threeway roundabout. We formulate the most basic DTMC: the road segments of a
roundabout are split into m parts, each with equal length. When a vehicle arrives at a cell on
the entrance of the roundabout at time t and it is at the front of the queue (if there is one),
it will move to the adjacent road segment of the roundabout at time t + 1. Subsequently it
moves to the next road segment of the roundabout at time t + 2, and so on until it leaves the
roundabout. When there is no queue at the entrance of the roundabout, the vehicle will also
move to the adjacent road segment on the roundabout at time t + 1 if possible. We define the
following Discrete Time Markov Chain,

M(t) = (S(t),Q(t)), where

S(t) = {S1(t), S2(t), ...., Sm(t)},
Q(t) = {Q1(t), Q2(t), Q3(t)},

where:

• M(t) is the complete state space at time t for t = 0, 1, 2, ...

• The subspace Q = {(Q1, Q2, Q3)} defines the queue length at the entrances of the round-
about, such that Qi ∈ Z for i ∈ {1, 2, 3}.

• The subspace S = {(S1, ..., Sm)} defines the state of the road segments on the roundabout,
with Si ∈ {0, 1, 2} for i = 1, ...,m.

The dimension of the subspace S, defines how many road segments the roundabout is being split
into. For the purpose of maintaining a small state space we choose m = 6. Consequently this
means that

M(t) = (S1, S2, S3, S4, S5, S6, Q1, Q2, Q3) (1)

Qi describes the number of vehicles in the queue before entrance i of the roundabout. Therefore,
Qi = {0, 1, 2, 3, ..., ci}, where the given value of Qi is the amount of vehicles in the queue, and
ci is the maximum queue length for a given queue i. Si describes the presence of a vehicle on a
road segment.

For a three-way roundabout, Si ∈ {0, 1, 2}. If Si(t) = 0, no vehicle is currently occupying road
segment Si at time t. If Si(t) = 1, a vehicle is occupying road segment Si(t) it will take the first
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turn to the right, and at time t+1 it ’leaves’ the roundabout. If Si(t) = 2, a vehicle is occupying
road segment Si and it will take the second turn to the right, such that at time t+1 it is still on
the roundabout, but at time t+2 it leaves the roundabout. As all states Si can attain at most 3
different states and Qi can at most attain ci + 1 different states, the size of the state space will
be equal to 36 ·

∏3
i=1(ci + 1). For convenience, all three queues will have equal queue capacity

such that c1 = c2 = c3. In all further calculations, the queue capacity will be infinite, such that
the state space is also infinite.

Figure 1: A visualisation of the MCA model. A road segment Si lies on the roundabout. A
queue Qi is represented at the entry of the roundabout.

A visualisation of the MCA model can be seen in Figure 1. We will sometimes refer to the last
road segment state S6 as S0, as for the notation of the transition behavior it is shown to be more
convenient in some cases.

2.2 Transition behavior MCA model

Now that the discrete time queues and road segments have been defined, it is important to
see how the states relate to each other. The Markov chain M(t) jumps to another state as
t = 0, 1, 2, .... At time t, a vehicle can join some queue with probability qj . Furthermore, if
Qj(t) > 0, a vehicle will leave the queue if this is possible. This will only be possible if the road
segment before queue j will not block the queue on the next timestep t+1. Notice that for queue
j, the road segment before the queue can be expressed as S2(j−1)(t). If S2(j−1)(t) = 2, queue j
will be blocked at time t+ 1 and no vehicle can leave the queue between time t and time t+ 1..

When a vehicle does leave queue j, it joins road segment 2j − 1. With probability pj the vehicle
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takes a first turn on the roundabout, and with probability 1− pj the vehicle takes a second turn
on the roundabout. So if Qj(t) > 0 and no vehicles are coming from road segment Sj , then with
probability pj , state S2j−1(t+ 1) = 1, and with probability 1− pj , state S2j−1(t+ 1) = 2.

The behavior of the road segments Si(t) is fairly simple. We differentiate by ’odd’ states, so
states Si(t) where i is odd, and ’even’ states, states Si(t) where i is even. If any odd state Si(t)
equals to 0, 1 or 2, the subsequent even states Si+1(t + 1) will take on the exact same value. If
an even state Si(t) = 2, inferring the vehicle on this road segment will take a second turn, the
subsequent road segment will be Si+1(t+1) = 1 with probability 1. If an even state Si(t) = 0 or
Si(t) = 1, the subsequent state Si+1(t+ 1) = 0, unless there is at least one vehicle in the queue
at the entry of this road segment. The probabilities for these transitions are given: if Qj(t) ≥ 1,
S2j−1(t+ 1) = 1 with probability pj , and S2j−1(t+ 1) = 2 with probability 1− pj .

A next state of the Markov chain M(t) will be determined in two steps. First, the new states of
the road segements Si(t+1) will be calculated as shown earlier and Qj(t+1) will be decreased by
1 if it is non-empty and not blocked. Then a queue Qj(t+1) will increase by 1 with probability
qi after a vehicle has possibly left the queue. When Qj(t) has maximum queue capacity ci and
is also being blocked, the queue length will stay the same with probability 1 at time t+ 1 since
no one can join, and no one can leave. So, for example, if

M(t) = (2, 2, 2, 2, 2, 2, c1, c2, c3),

the next state will have no probabilistic attributes, as no new vehicle can enter the roundabout,
neither can one enter one of the queues as all have reached maximum capacity cj . Therefore,

M(t+ 1) = (1, 2, 1, 2, 1, 2, c1, c2, c3).

Formally the transition probabilities are defined as follows. For i = 1, 3, 5 and j = i+1
2 :

Si(t+ 1) =



1, if Si−1(t) = 2 with probability 1,

1, if Si−1(t) ̸= 2 and Qj(t) > 0 with probability pj ,

2, if Si−1(t) ̸= 2 and Qj(t) > 0 with probability 1− pj ,

0, if Si−1(t) ̸= 2 and Qj(t) = 0 with probability 1− qj .

1, if Si−1(t) ̸= 2 and Qj(t) = 0 with probability qj · pj .
2, if Si−1(t) ̸= 2 and Qj(t) = 0 with probability qj · (1− pj).

For ’even’ i, that is i = 2, 4, 6, we find the expression Si(t+ 1) = Si−1(t) with probability 1.

For j = 1, 2, 3:

Qj(t+ 1) =



Qj(t)− 1, if S2j−2(t) ̸= 2 and Qj(t) ≥ 0 with probability 1− qj ,

Qj(t), if S2j−2(t) ̸= 2 and Qj(t) ≥ 0 with probability qj ,

Qj(t), if S2j−2(t) = 2 and Qj(t) < cj with probability 1− qj ,

Qj(t) + 1, if S2j−2(t) = 2 and Qj(t) < cj with probability qj ,

Qj(t), if S2j−2(t) = 2 and Qj(t) = cj with probability 1.
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3 Interarrival times on the roundabout

3.1 Departure process of isolated flows

Recall Figure 1. In this subsection the merging process of the two flows from S2 and Q2 to S3

is analyzed. Consider two Bernoulli flows on entrance 1 and entrance 2. When entering the
roundabout, the Bernoulli arrivals entering at entrance 1 follow the route S1−S2−S3−S4, and
then leave the roundabout at exit 3. The Bernoulli arrivals at entrance 2 follow the route S3−S4

and then also leave the roundabout at exit 3. No arrivals enter at entrance 3. Because entrance
1 will never be blocked by another flow, there will never be a queue at entrance 1. Therefore
the Bernoulli process will also exist on cell S1 and cell S2. More specifically, the probability that
an occupation occurs on S2 is equal to p1, and the probability that a vehicle joins Q2 is equal
to p2. Therefore the interarrival times for both arrival processes at S2 and Q2 are geometrically
distributed with parameters p1 and p2.

It is observed that the departure process from S2 proceeding to S3 on its own follows a geometric
distribution, as this flow of vehicles takes precedence over the vehicles that are waiting at the
entrance at Q2. It can be shown however that the departure process from Q2 proceeding to S3

also follows a geometric distribution. Firstly it is important to observe that the process at Q2

can be modelled as a Geo/Geo/1 queue following Kendall’s notation, as the vehicles from S2

that are blocking Q2 have geometrically distributed interarrival times. This means that with
probability 1 − p1, vehicles from Q2 can recieve service. Therefore, the queue that is aimed for
will be the Geo(p2)/Geo(1− p1)/1 queue.

To prove that the departure process of Q2 follows a geometric distribution, the z-transforms of
both the arrival and service times for a general Geo/Geo/1 queue will be used.

Theorem 3.1 Let λ
µ = ρ < 1. Then the departure process of a Geo(λ)/Geo(µ)/1-queue is

geometrically distributed with parameter λ.

Let A(z) be the z-transform of the arrival times, and S(z) the z-transform of the service times.
Additionally let ρ = λ

µ be the utility of the system, which adheres to the condition that ρ < 1.
Furthermore expanding the z-transforms gives

A(z) =
λz

1− z(1− λ)
, and S(z) =

µz

1− z(1− µ)
.

It is important to see that the z-transform for the departures of a Geo/Geo/1 queue is equal to
the probability that the queue is not empty times the z-transform of the service times, added
by the probability that the queue is empty multiplied by the z-transform of the arrival times
and the service times. Let Gdep(z) be the z-transform of the departure process of a Geo/Geo/1
queue. This gives:

Gdep(z) = ρ · S(z) + (1− ρ) ·A(z) · S(z). (2)

Evaluating expression (2), we find:

Gdep(z) = ρ · S(z) + (1− ρ) ·A(z) · S(z)

= ρ · µz

1− z(1− µ)
+ (1− ρ) · λz

1− z(1− λ)
· µz

1− z(1− µ)

=
µz

1− z(1− µ)
·
(λ
µ
+ (

µ

µ
− λ

µ
) · λz

1− z(1− λ)

)
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=
µz

1− z(1− µ)
·
(λ(1− z(1− λ)) + (µ− λ)λz

µ(1− z(1− λ))

)
=

µz

1− z(1− µ)
·
(λ− λz + λ2z + µλz − λ2z

µ(1− z(1− λ))

)
=

µz

1− z(1− µ)
·
(λ(1− z(1− µ))

µ(1− z(1− λ))

)
=

λz

1− z(1− λ)
= A(z).

Therefore, the departure times are distributed exactly the same as the arrival times for all
Geo/Geo/1 queues, as the z-transforms of the two are equal to each other. □

Consequently, the departure process of Q2 on S3 is geometrically distributed with parameter p2.

3.2 Departure process of mixed flows

Now that the isolated departure processes of the two flows meeting at the intersection are found,
the following step is to find the joint departure process at road segment S3, given the geometrically
distributed arrivals at S2 and Q2. Let the arrivals from S2 that proceed to S3 be called X, and
let the arrivals from the entrance 2 be called Y . Alternatively, the arrivals of X are oftentimes
referred to as ’type 1 vehicles’, and the arrivals of Y are referred to as ’type 2 vehicles’. So an
arrival of type 1 occurs with probability p1, and an arrival of type 2 occurs with probability p2.
Let us remember that the independent process X and the independent process Y before merging
are each geometrically distributed. A visualisation of the joint process on S3 can be seen in
Figure 2.

Figure 2: A visualisation of the process X + Y , the process X and the process Y , where the last
two processes are geometrically distributed. A 0 means no arrival.

To find the probability mass function, we must look at the interarrival times of the joint process
{X or Y }, where X has priority over Y when the two arrive at the same time, and Y is being
put in a queue when this happens. We define the random variable IX+Y as the interarrival time
of the joint process of any occupation on S3 of type 1 or 2. So P (IX+Y = 0) is the probability
that two consecutive occupations at S3 of type 1 or 2 takes place. In this subsection, we will
construct the proof of the first lemma:

Lemma 3.2 Consider the discrete random variables X(t) and Y (t) to be geometrically dis-
tributed, and the merging process of the two to be described as above, where type 1 vehicles
have priority over type 2 vehicles. Then the interarrival times of the merging process takes on
the following probability mass function:

P (IX+Y = k) =

{
1− α+ p1p2

p1+p2
, k = 0

αk−1(1− α) · (1− P (IX+Y = 0)), k ∈ Z+

where α = (1− p1)(1− p2).
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Let the random variable A(t) be an occupation at S3 at time t of a specific type of vehicle:
A(t) = 0 means that no vehicle occupies S3 at time t, A(t) = 1 means that a type 1 vehicle
occupies S3 at time t, and A(t) = 2 means that a type 2 vehicle occupies S3 at time t. It
should be noted that an arrival of type 2 at time t does not necessarily mean an occupation of
type 2, as a type 1 vehicle can arrive at time t as well at S3, and type 1 vehicles have priority
over type 2 vehicles. A consecutive occupation at S3 is defined as P (IX+Y = 0). Therefore

P (IX+Y = 0) = P
(
A(t+ 1) ∈ {1, 2} | A(t) ∈ {1, 2}

)
.

By the definition of conditional law of probability,

P (IX+Y = 0) =
P
(
A(t) ∈ {1, 2}, A(t+ 1) ∈ {1, 2}

)
P
(
A(t) ∈ {1, 2}

) . (3)

Now as P
(
A(t) ∈ {1, 2}

)
is interpreted as the probability that any occupation occurs, it will be

equal to p1 + p2. This leaves P
(
A(t) ∈ {1, 2}, A(t+1) ∈ {1, 2}

)
, the numerator of equation (3),

to be calculated.

Additionally the short notation of the random variable Q(t) = Q2(t) is introduced, which de-
scribes the length of the queue for type 2 vehicles at time t. A notable detail in the definition of
Q(t) is that early arrivals are considered, such that Q(t + 1) = 0 if there are no vehicles in the
queue between time t and t+1, and a vehicle can always move onto the intersection if no vehicle
of type 1 is coming, so that the vehicle does not have to wait in the queue. As the queue is a
Geo/Geo/1-queue, the queue length distribution follows a geometric distribution, and it is found
that P (Q(t) = k) = (1− p1·p2

α )(p1·p2

α )k, where it should be noted that ρ = p1·p2

α . The derivation
of the queue length distribution can be found by solving the balance equation for the transition
diagram of Figure 3, where λ = p2 and µ = 1− p1.

Figure 3: Transition diagram for a discrete Geo/Geo/1 queue.

An expression will be found for P
(
A(t) ∈ {1, 2}, A(t + 1) ∈ {1, 2}

)
, where it will be split into

two parts:

P
(
A(t) ∈ {1, 2}, Q(t+ 1) = 0

)
· (1− α) + P

(
A(t) ∈ {1, 2}, Q(t+ 1) > 0

)
(4)

The left hand side of equation (4) can be interpreted as follows: the probability that at time
t an occupation takes place and the queue has no vehicles at time t + 1, times the probability
(1 − α), meaning that at least one arrival takes place at time t + 1, so that A(t + 1) ∈ {1, 2}.
The right hand side of equation (4) means: the probability that at time t an occupation takes
place, which is A(t) ∈ {1, 2}, and the queue being non-empty at time t+1, so that at time t+1

10



an occupation takes place regardless of whether an arrival occurs. Elaborating on both parts of
equation (4) yields for the left hand side:

P
(
A(t) ∈ {1, 2}, Q(t+ 1) = 0

)
· (1− α)

= (1− α) ·

[
P (Q(t) = 1) · α+ P (Q(t) = 0) ·

(
p1(1− p2) + p2(1− p1)

)]

= (1− α) ·

[
(1− p1 · p2

α
) · p1 · p2

α
· α+ (1− p1 · p2

α
) ·
(
p1(1− p2) + p2(1− p1)

)]

= (1− α) ·

[
p1p2 −

(p1p2)
2

α
+ p1 + p2 − 2p1p2 −

p1p2
α

(p1 + p2 − 2p1p2)

]

= (1− α)

[
p1 + p2 − p1p2 +

p1p2
α

(p1 + p2 − p1p2)

]
= (1− α)(1− α− p1p2

α
(1− α))

= (1− α)2 · (1− p1p2
α

).

For the right hand side of equation (4) we find:

P
(
A(t) ∈ {1, 2}, Q(t+ 1) > 0

)
= P (Q(t) = 0) · p1p2 + P (Q(t) = 1) · (1− α) + P (Q(t) ≥ 2)

= (1− p1p2
α

)p1p2 + (1− p1p2
α

)
p1p2
α

(1− α) +
(p1p2

α

)2
= p1p2 −

(p1p2)
2

α
+
(p1p2

α
− (

p1p2
α

)2
)
(1− α) +

(p1p2
α

)2
= p1p2 −

(p1p2)
2

α
+

p1p2
α

−
(p1p2

α

)2
− p1p2 +

(p1p2)
2

α
+
(p1p2

α

)2
=

p1p2
α

.

Hence,

P
(
A(t) ∈ {1, 2}, A(t+ 1) ∈ {1, 2}

)
= (1− α)2 · (1− p1p2

α
) +

p1p2
α

.

= (1− α)2 − p1p2
α

+ 2p1p2 − αp1p2 +
p1p2
α

= (1− α)2 + 2p1p2 − αp1p2

= (1− α)(p1 + p2 − p1p2) + 2p1p2 − αp1p2

= (1− α)(p1 + p2) + p1p2.

And to conclude, by using equation (3),

P
(
IX+Y = 0

)
=

P
(
A(t) ∈ {1, 2}, A(t+ 1) ∈ {1, 2}

)
P
(
A(t) ∈ {1, 2}

)
=

(1− α)(p1 + p2) + p1p2
p1 + p2

,
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so

P
(
IX+Y = 0

)
= 1− α+

p1p2
p1 + p2

. (5)

Thus the interarrival time for two consecutive occupations are found. For IX+Y > 0, we observe
that the queue length must be equal to zero when an occupation occurs. So the queue is always
empty for IX+Y > 0, and therefore the probability that P (IX+Y = 1) for example, will be equal
to the probability that any occupation occurs at time t+2, times the probability that there has
not been a consecutive occupation at time t+ 1. This argument can be given because there can
not be a queue at time t+1 because no vehicle occupies S3 at this time. The probability that any

occupation occurs at time t+2 is equal to 1−α. So P (IX+Y = 1) =
(
1−P (IX+Y = 0)

)
·(1−α).

For the probability that IX+Y = 2, so an occupation at time t, two empty occupations at t+1 and
t+2 and then again an occupation at t+3, with the same argument will be equal to the probability
that no consecutive occupation has occured at time t+1, times the probability that no new vehicle
arrives from S2 or entrance 2 at time t+2, times the probability that at time t+3 a vehicle does

arrive from S2 or entrance 2. Therefore P (IX+Y = 2) =
(
1− P (IX+Y = 0)

)
· α · (1− α).

It follows that the probability P (IX+Y = k), given that k ∈ Z+, follows a geometric distribution
with parameter α. Even more, P (IX+Y = k) for k ∈ Z+ can be formally expressed as
P (IX+Y = k|IX+Y > 0)P (IX+Y > 0). Since P (IX+Y > 0) = 1 − P (IX+Y = 0), we find that

P (IX+Y = k) = P (IX+Y = k|k > 0)
(
1 − P (IX+Y = 0)

)
. This leads to the probability mass

function for the interarrival times of the process X + Y :

P (IX+Y = k) =

{
1− α+ p1p2

p1+p2
, k = 0

αk−1(1− α) · (1− P (IX+Y = 0)), k ∈ Z+,
(6)

which concludes the proof of Lemma 3.2. □

One can describe the interarrival times as delayed geometric, as for IX+Y > 0 the interarrival
times indeed follow a geometric distribution. The interpretation for k = 0 in equation (6) can
be the following: the probability 1 − α represents the probability that at least one of the type
1 or type 2 vehicles arrives at the entrance of the roundabout at time t + 1, given that at
time t there has been an arrival. There is some other factor however, clearly influenced by the
queue formed by the type 2 vehicles, that accounts for the element p1p2

p1+p2
in equation (6). We

argue that this element fully accounts for the probability that a queue has formed at Q2, as
this is the only other influence on this merging process. Moreover, this element is equal to the
probability that no arrival takes place, which is α, times the probability that the queue is not
empty, P (Q(t + 1) > 0) = p1p2

α , divided by the total utility of the process, which is equal to
p1 + p2, such that α · p1p2

α · 1
p1+p2

= p1p2

p1+p2
.
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4 Interarrival times at the exit of the roundabout

As the interarrival times on the roundabout are found, a following step must be made to find
the interarrival times at the exit of a roundabout. The difference between the process on the
roundabout and the process right after exiting the roundabout is that vehicles of type Y , as
illustrated in Figure 2, have the possibility not to exit the roundabout on the first turn, but to
stay on the roundabout and leave on the second turn. Therefore we introduce a new random
variable Z, otherwise referred to as ’type 3 vehicles’. Type 3 vehicles do arrive at Q2 and they
exit the roundabout at the second turn. Type 2 vehicles, also referring to an arrival at Q2, still
leave at the first possible turn. Note that both type 2 and type 3 vehicles arrive at Q2, but they
can never arrive at the same time: either a type 2 vehicle arrives with probability p2, or a type
3 vehicle arrives with probability p3, or no vehicle arrives with probability 1− p2 − p3.

It is also important to observe that with this altered definition of type 2 arrivals the distribution
for the interarrival times, equation (6), changes, namely each p2 is altered to p2 + p3. Hence the
distribution for the interarrival times IX,Y,Z of the process X + Y + Z becomes

P (IX,Y,Z = k) =

{
1− β + p1(p2+p3)

p1+p2+p3
, k = 0

(1− β) · βk−1 · (1− P (IX,Y,Z = 0)), k ∈ Z+,
(E.1)

where β = (1− p1)(1− p2 − p3). Also the ρ that is used in the queue length distribution having

only type 1 and 2 vehicles, will from now on be defined as ρ = p1(p2+p3)
β when accounting for

type 3 vehicles as well. It can be verified filling in p3 = 0 that equation (E.1) is equal to equation
(6).

4.1 Important relationships between queue and occupations

Let us call Iexit the interarrival times of the process X + Y at the exit of a roundabout, to
make a distinction between the earlier analysed interarrival times IX+Y for the interarrivals on
a roundabout. Just like with the distribution of the interarrival times on the roundabout, it is
convenient to start with finding P (Iexit = 0), the probability that there are no vehicles between
to arrivals of type 1 or 2. There are multiple methods to find the distribution of Iexit. The
straightforward one is to use the same method as used before in section 3. However, a simpler
method is established by looking at the conditional probabilities of the exit process. Therefore
we need to find some important relationshipis between the occupation slot and the queue length.

For this purpose, type 3 vehicles, are added in the definition of the arrival process A(t): if an
arrival of type 3 occurs on the road segment at time t, we say that A(t) = 3. Secondly, the
new notation Qi(j)(t) is introduced, in which i stands for the type vehicle at the front of the
queue if the queue is non-empty, and j describes the amount of type i vehicles at the front of
the queue. Subsequently, we find for example that P (Q2(1)(t) > 0) = p2

p2+p3
ρ = p1p2

(1−p1)(1−p2−p3)
.

More generally we find that P (Q3(j)(t) = i) with j < i is equal to ( p3

p2+p3
)j · (1 − ρ)ρi =

1−p1−p2−p3

(1−p1)(1−p2−p3)
pi
1p

j
3(p2+p3)

i−j

(1−p1)i(1−p2−p3)i
. We illustrate the difference between the two departure processes

X + Y and X + Y + Z where X,Y and Z stand for the processes of occupation of type 1, type
2 and type 3 vehicles in Figure 4.

Formally, {Iexit = k} =
{
A(t) ∈ {1, 2}, A(t+ k+1) ∈ {1, 2}, A(t+ i) ∈ {0, 3} for i = 1, 2, ..., k

}
,

for k > 0. Additionally for consecutive occupations, {Iexit = 0} =
{
A(t) ∈ {1, 2}, A(t + 1) ∈

{1, 2}
}

13



Figure 4: A visualisation of the processes X + Y and X + Y + Z, the processes X, Y and Z,
where the last three processes are geometrically distributed. A 0 means no arrival.

We now introduce a very important property of the probability that a queue has length i after
time t, given that some at the same time t the occupation of the slot is known. This probability
can be defined by P (Q(t+ 1) = i|A(t) = j).

Lemma 4.1 For j = 2 and j = 3,

P
(
Q(t+ 1) = i|A(t) = j)

)
= P (Q(t) = i). (7)

We use the law of conditional probability to determine that P (Q(t + 1) = i|A(t) = 2) =
P (Q(t+1)=i,A(t)=2)

P (A(t)=2) . The probability that both events Q(t + 1) = i and A(t) = 2 occur, is

explained as follows: if there is a type 2 vehicle being accepted at time t, then it must be true
that at time t no type 1 vehicle has arrived, which occurs with probability (1− p1). The queue
length at time t + 1 can therefore be composed in two ways: by an arrival of type 2 or 3 if the
queue has i vehicles at time t, or no arrival of type 2 or 3 if the queue has i+ 1 vehicles at time
t. This means that for a non-empty queue, so i > 0:

P (Q(t+ 1) = i, A(t) = 2) = (1− p1)
(
(p2 + p3)P (Q2(t) = i) + (1− p2 − p3)P (Q2(t) = i+ 1)

)
= (1− p1)(p2 + p3)

p2
p2 + p3

(1− p1 − p2 − p3)p
i
1(p2 + p3)

i

(1− p1)i+1(1− p2 − p3)i+1

+ (1− p1)(1− p2 − p3)
p2

p2 + p3

(1− p1 − p2 − p3)p
i+1
1 (p2 + p3)

i+1

(1− p1)i+2(1− p2 − p3)i+2

= p2
(1− p1 − p2 − p3)p

i
1(p2 + p3)

i

(1− p1)i+1(1− p2 − p3)i+1
(1− p1 + p1)

= p2 · P (Q(t) = i).

So we know that P (Q(t + 1) = i, A(t) = 2) = p2 · P (Q(t) = i), and as P (A(t) = 2) = p2, it
becomes clear that

P (Q(t+ 1) = i|A(t) = 2) =
P (Q(t+ 1) = i, A(t) = 2)

P (A(t) = 2)

=
p2 · P (Q(t) = i)

p2

= P (Q(t) = i).

Therefore Lemma 4.1 holds for i > 0. For an empty queue, that is i = 0, we find using the same
logic:

P (Q(t+ 1) = 0|A(t) = 2) =
P (Q(t+ 1) = 0, A(t) = 2)

P (A(t) = 2)
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=
(1− p1)p2P (Q(t) = 0) + (1− p1)(1− p2 − p3)P (Q2(t) = 1)

p2

=
(1− p1)(1− p1 − p2 − p3) + p1(1− p1 − p2 − p3)

(1− p1)(1− p2 − p3)

=
1− p1 − p2 − p3

(1− p1)(1− p2 − p3)

= P (Q(t) = 0).

So P (Q(t + 1) = i|A(t) = 2) = P (Q(t) = i) for any integer i ∈ Z. Since the process of
type 2 vehicles and type 3 vehicles is shared and their behaviour is analogous, it follows that
P (Q(t+ 1) = i|A(t) = 3) = P (Q(t) = i) as well. This concluldes Lemma 4.1. □

It can also be proven that P (Q2(i)(t+ 1) = i|A(t) = 2) = P (Q2(i)(t) = i), using the exact same
technique of the previous proof. Lemma 4.1 invites to look at the case where j = 1:

Lemma 4.2 For i > 0,

P (Q(t+ 1) = i|A(t) = 1) =
1− p2 − p3

p1
· P (Q(t) = i),

and for the special case that i = 0,

P (Q(t+ 1) = 0|A(t) = 1) = (1− p2 − p3) · P (Q(t) = 0),

For j = 1 in equation (7), we find that

P (Q(t+ 1) = i|A(t) = 1) =
P (Q(t+ 1) = i, A(t) = 1)

P (A(t) = 1)

=
p1(p2 + p3)P (Q(t) = i− 1) + p1(1− p2 − p3)P (Q(t) = i)

p1

=
(1− p1 − p2 − p3)p

i−1
1 (p2 + p3)

i

(1− p1)i(1− p2 − p3)i
+

(1− p1 − p2 − p3)p
i
1(p2 + p3)

i

(1− p1)i+1(1− p2 − p3)i

= (1− p1 − p2 − p3)
pi−1
1 (p2 + p3)

i

(1− p1)i+1(1− p2 − p3)i
(1− p1 + p1)

= (1− p1 − p2 − p3)
pi1(p2 + p3)

i

(1− p1)i+1(1− p2 − p3)i+1
· 1− p2 − p3

p1

=
1− p2 − p3

p1
· P (Q(t) = i).

This concludes the first part of Lemma 4.2. For i = 0, we find that

P (Q(t+ 1) = 0|A(t) = 1) =
P (Q(t+ 1) = 0, A(t) = 1)

P (A(t) = 1)

=
p1(1− p2 − p3)P (Q(t) = 0)

p1

= (1− p2 − p3)P (Q(t) = 0)

This concludes the proof of Lemma 4.2. □
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Analogously, P (Q2(i)(t + 1) = i|A(t) = 1) = 1−p2−p3

p1
· P (Q2(i)(t) = i) and P (Q3(i)(t + 1) =

i|A(t) = 1) = 1−p2−p3

p1
· P (Q3(i)(t) = i) using the same concept of proof again. Additionally, it

must be observed that for j = 2 and j = 3:

P (Q(t+ 1) > i|A(t) = j) = P (Q(t) > i), (8)

arguing that P (Q(t+1) > i|A(t) = 2) =
∑∞

i+1 P (Q(t+1) = i|A(t) = 2), and then using Lemma
4.1 to find that

∑∞
i+1 P (Q(t + 1) = i|A(t) = 2) =

∑∞
i+1 P (Q(t) = i) = P (Q(t) > i), for i ∈ Z.

Once more it should be noted that for j = 1, we find that

P (Q(t+ 1) > i|A(t) = 1) =
1− p2 − p3

p1
P (Q(t) > i). (9)

Lemma 4.2, Lemma 4.1 and Equations (8) and (9) are sufficient to calculate the interarrival
times for two consecutive occupations of type 1 and type 2 vehicles.

Theorem 4.3 The probability that two consecutive occupations of type 1 or 2 take place, defined
by Iexit = 0, is equal to

P (Iexit = 0) = 1− α+
p1p2

p1 + p2
(1− p3), (10)

where α = (1− p1)(1− p2).

Proof:
Let us recall that

P (Iexit = 0) =
P
(
A(t) ∈ {1, 2}, A(t+ 1) ∈ {1, 2}

)
P
(
A(t) ∈ {1, 2}

)
It pertains that the denominator P

(
A(t) ∈ {1, 2}

)
= P (A(t) = 1) + P (A(t) = 2) = p1 + p2, as

this is the occupation rate of the process X+Y . We find that the numerator of can be rewritten:

P
(
A(t) ∈ {1, 2}, A(t+ 1) ∈ {1, 2}

)
= P

(
A(t) = 1, A(t+ 1) = 1

)
+ P

(
A(t) = 1, A(t+ 1) = 2

)
+ P

(
A(t) = 2, A(t+ 1) = 1

)
+ P

(
A(t) = 2, A(t+ 1) = 2

)
.

The law of conditional probability can be used again to find that

P
(
A(t) = i, A(t+ 1) = j

)
= P

(
A(t+ 1) = j|A(t) = i

)
· P
(
A(t) = i

)
. (11)

We can recall that P
(
A(t) = 1

)
= p1 and P

(
A(t) = 2

)
= p2. The next step is to calculate

the probability P
(
A(t + 1) = j|A(t) = i

)
for i = 1, 2 and j = 1, 2, leaving four probabilities to

calculate. The probability that a type 1 vehicle arrives after any kind of event is equal to p1, as

type 1 vehicles are never blocked by some other vehicle. So P
(
A(t+ 1) = 1|A(t) = 1

)
= p1 and

P
(
A(t+ 1) = 1|A(t) = 2

)
= p1.
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The probability that a type 2 vehicle occupies at time slot t + 1, given that its predecessor is
also a type 2 vehicle, will be equal to the probability that no type 1 vehicle arrives, times the
probability that a type 2 vehicle arrives from the queue, or either arrives while the queue is
empty. So, using Lemma 4.1 and equation (8) we find that

P (A(t+ 1) = 2|A(t) = 2) = (1− p1) ·
[
p2 · P (Q(t) = 0|A(t) = 2) + P (Q2(t) > 0|A(t) = 2)

]
= (1− p1)

[
(p2(1−

p1(p2 + p3)

(1− p1)(1− p2 − p3)
) +

p1p2
(1− p1)(1− p2 − p3)

]
= (1− p1)

[p2(1− p1)

(1− p1)
+

p1p2(1− p2 + p3)

(1− p1)(1− p2 − p3)

]
= (1− p1)

[p2(1− p1) + p1p2
1− p1

]
= (1− p1) ·

p2
1− p1

= p2.

Lastly, the conditional probability P
(
A(t+ 1) = 2|A(t) = 1

)
can be found as well, arguing that

a type 2 occupation at time t+1 is the sum of two probabilities: the first is the probability that
no type 1 vehicle arrives, times the probability that a type 2 arrives while the queue is empty.
The second is the probability that no type 1 vehicle arrives, times the probability that a type
2 vehicle arrives from the queue, given that the queue is not empty. This yields the following
expression:

P (A(t+ 1) = 2|A(t) = 1)

= (1− p1) · p2 · P (Q(t+ 1) = 0|A(t) = 1) + (1− p1)P (Q2(t+ 1) > 0|A(t) = 1)

Expanding on this equality, using Lemma 4.2 and equation (9) yields:

P (A(t) = 2|A(t) = 1) = (1− p1)
[
(p2(1− p2 − p3)P (Q(t) = 0) + p2P (Q(t) = 0) + P (Q2(t) > 0)

]
= (1− p1)p2

[
(1− p2 − p3)(1−

p1(p2 + p3)

β
) + (1− p1(p2 + p3)

β
) +

p1
β

]
= (1− p1)p2

[
(1− p2 − p3)

1− p1 − p2 − p3
(1− p1)(1− p2 − p3)

+
1− p2 − p3

(1− p1)(1− p2 − p3)

]
= (1− p1)p2

[1− p1 − p2 − p3
1− p1

+
1

1− p1

]
= p2(2− p1 − p2 − p3).

Using equation (11), the following expressions are found:

• P
(
A(t) = 1|A(t) = 1

)
· P
(
A(t+ 1) = 1

)
= p1 · p1

• P
(
A(t) = 1|A(t) = 2

)
· P
(
A(t+ 1) = 2

)
= p1 · p2

• P
(
A(t) = 2|A(t) = 1

)
· P
(
A(t+ 1) = 1

)
= p2(2− p1 − p2 − p3) · p1

• P
(
A(t) = 2|A(t) = 2

)
· P
(
A(t+ 1) = 2

)
= p2 · p2
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The sum of these probabilities divided by P
(
A(t) ∈ {1, 2}

)
equals the interarrival times for 0

interarrivals:

P (Iexit = 0) =
P
(
A(t) ∈ {1, 2}, A(t+ 1) ∈ {1, 2}

)
P
(
A(t) ∈ {1, 2}

)
=

p21 + p1p2 + p1p2(2− p1 − p2 − p3) + p22
p1 + p2

=
(1− α)(p1 + p2) + p1p2 · (1− p3)

p1 + p2
.

Simplifying concludes the proof:

P (Iexit = 0) = 1− α+
p1p2

p1 + p2
(1− p3). □

It is important to notice the saliant detail between the properties of equations (6) and (10): the
only difference between the two probabilities P (Iexit = 0) and P (IX+Y = 0) is the factor (1−p3)
before the component p1p2

p1+p2
, where (1 − p3) is the probability that no type 3 vehicle arrives at

Q2.

4.2 Interarrival times for k ∈ Z+

Like with the joint arrival process X+Y +Z on the roundabout, it is not allowed to assume that
for k ∈ Z+ the interarrival times of X+Y is distributed geometrically.The process X+Y +Z is a
merger between the process X and the process Y +Z, whereas the process X+Y is a bifurcation
of the processes X +Y +Z and Z. Intuitively and informally, the process X +Y is the splitting
between the delayed geometric distribution of X + Y + Z and the geometric distribution of Z.
The main challenge lies within the fact that type 3 vehicles can interpose between type 2 vehicles
in the queue, and therefore interfere in the splitted process X + Y .

4.2.1 Concept of proof

Let us introduce a new notation:

P (
k+1

(x0x1. . . xk) |A(t) = xk+1) = P (A(t+k) = x0, A(t+k−1) = x1, ..., A(t+1) = xk|A(t) = xk+1).
This notation is specifically introduced to find the interarrival times for k time steps between
two arrivals of type xk+1 and x0. In the following subsections, we will learn that the interarrival
times of k ∈ Z+ are equal to

P (Iexit = k) = αk(1− α+ ϕ)− ϕ(1− p3)

k−1∑
n=0

αk−1−npn3 , k ∈ Z+ (12)

The concept of the proof is similar to that of finding the interarrivals for k = 0: all the possible

combinations of probabilities P (
k+1

(x0x1. . . xk) |xk+1) must be found, where x0, xk+1 ∈ {1, 2}, and
where all x1, x2, ..., xk ∈ {0, 3}, where a type 0 vehicle means no occupation at all. Then using
equation (11), the conditional law of probability will give us the interarrival times for k > 0.

Since the proof is rather long and requires multiple steps, the structure of the proof will be as
follows:
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1. Find the four probabilities P (
k+1

(x033. . . 3) |xk+1) where x0, xk+1 ∈ {1, 2}.

2. Find the two probabilities P (
k+1

(033. . . 3) |xk+1) where xk+1 ∈ {1, 2}.

3. Find the probability P (
k+1

(x0x1. . . xk) |0) where x0 ∈ {1, 2} and x1, x2, ..., xk ∈ {0, 3}.

4. Combine all previous steps and evaluate the expression.

4.2.2 Preliminaries

Before the first step of the concept of proof can be treated, some additional properties of the
system should be looked at. The following Lemma is an extension to Lemma 4.1:

Lemma 4.4 Consider the probability P (Q3(i)(t+k+1) = i,
k

(33. . . 3) |A(t) = 1), which indicates
the probability that given an occupation of type 1 at time t, another k consecutive occupations
occur on time t+1, t+2, ..., t+k, and the queue at time t+k+1 is equal to i with all the vehicles
in the queue being of type 3. Then for i ≥ 1, k ≥ 1:

(1− p1)P
(
Q3(i)(t+ k + 1) = i,

k

(33. . . 3) |A(t) = 1
)
= pk+i

3 pi−1
1

(1− p1 − p2 − p3)

(1− p1)i(1− p2 − p3)i
(13)

The proof will be carried out using mathematical induction. The basis step is to prove that
equation (13) holds for k = 1. Let us call the probability for the basis step PBS = (1 −
p1)P

(
Q3(i)(t+2) = i, A(t+1) = 3|A(t) = 1

)
. Using the concept that the probability P (Q3(i)(t+

1) = i, A(t) = 3) can be splitted and expressed as (1− p1)p3P (Q3(i)(t) = i) + (1− p1)(1− p2 −
p3)P (Q3(i+1)(t) = i+ 1), it becomes clear that

PBS = (1− p1)P
(
Q3(i)(t+ 2) = i, A(t+ 1) = 3|A(t) = 1

)
= (1− p1)

2p3P
(
Q3(i)(t+ 1) = i|A(t) = 1

)
+ (1− p1)

2(1− p2 − p3)P
(
Q3(i+1)(t+ 1) = i+ 1|A(t) = 1

)
.

Using Lemma 4.2, we find that

PBS = (1− p1)
2
[
p3

1− p2 − p3
p1

P (Q3(i)(t) = i) +
(1− p2 − p3)

2

p1
P (Q3(i+1)(t) = i+ 1)

]
= (1− p1)

2p3
1− p2− p3

p1

pi1p
i
3(1− p1 − p2 − p3)

(1− p1)i+1(1− p2 − p3)i+1

+ (1− p1)
2 (1− p2 − p3)

2

p1

pi+1
1 pi+1

3 (1− p1 − p2 − p3)

(1− p1)i+2(1− p2 − p3)i+2

= pi+1
3 pi−1

1

1− p1 − p2 − p3
(1− p1)i(1− p2 − p3)i

(
(1− p1) + p1)

)
= pi+1

3 pi+1
1

1− p1 − p2 − p3
(1− p1)i(1− p2 − p3)i

,
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concluding the basis step, as for k = 1 this last expression is equal to equation (13). Now suppose
for some n = k equation (13) holds true. Then for n = k + 1 it must also hold true. Let us call

Pind = (1− p1)P
(
Q3(i)(t+ k + 2) = i,

k+1

(33. . . 3) |A(t) = 1
)
. Then we find that

Pind = (1− p1)P
(
Q3(i)(t+ k + 2) = i,

k+1

(33. . . 3) |A(t) = 1
)

= (1− p1)
2p3P

(
Q3(i)(t+ k + 1) = i,

k

(33. . . 3) |A(t) = 1
)

+ (1− p1)
2(1− p2 − p3)P

(
Q3(i+1)(t+ k + 1) = i+ 1,

k

(33. . . 3) |A(t) = 1
)

= (1− p1)p3

[
pk+i
3 pi−1

1

(1− p1 − p2 − p3)

(1− p1)i(1− p2 − p3)i

]
+ (1− p1)(1− p2 − p3)

[
pk+i+1
3 pi1

(1− p1 − p2 − p3)

(1− p1)i+1(1− p2 − p3)i+1

]
=
[
(1− p1) + p1

]
pk+i+1
3 pi−1

1

(1− p1 − p2 − p3)

(1− p1)i(1− p2 − p3)i

= pk+i+1
3 pi−1

1

(1− p1 − p2 − p3)

(1− p1)i(1− p2 − p3)i
,

which concludes the induction step, as the last equation is equal to the right hand side of equation
(13) at k + 1. □

Now that we have found this probability, it is necessary to find the same probability as described
in equation (13), only for the exception that i = 0. This leads to the following lemma:

Lemma 4.5 Consider the probability P (Q(t + k + 1) = 0,
k

(33. . . 3) |A(t) = 1), which indicates
the probability that given an occupation of type 1 at time t, another k consecutive occupations
occur on time t+ 1, t+ 2, ..., t+ k, and the queue at time t+ k + 1 is empty. Then for k ≥ 1:

(1− p1)P
(
Q(t+ k + 1) = 0,

k

(33. . . 3) |A(t) = 1
)
= pk3(1− p1 − p2 − p3)

k∑
n=0

(1− p1)
n (14)

This lemma will again be proven with mathematical induction. For the basis step we must prove

that PBS = (1−p1)P
(
Q(t+2) = 0, A(t+1) = 3|A(t) = 1

)
= p3(1−p1−p2−p3)

∑1
n=0(1−p1)

n.

Using lemma 4.2 again we find that:

PBS = (1− p1)P
(
Q(t+ 2) = 0, A(t+ 1) = 3|A(t) = 1

)
= (1− p1)

2
[
p3P

(
Q(t) = 0|A(t) = 1

)
+ (1− p2 − p3)P

(
Q3(1)(t+ 1) = 1|A(t) = 1

)]
= (1− p1)

2
[
p3

1− p2 − p3
p1

P (Q(t) = 0) +
(1− p2 − p3)

2

p1
P (Q3(1)(t) = 1)

]
= (1− p1)

2p3(1− p2 − p3)
1− p1 − p2 − p3

(1− p1)(1− p2 − p3)

+ (1− p1)
2 (1− p2 − p3)

2

p1

p1p3(1− p1 − p2 − p3)

(1− p1)2(1− p2 − p3)2

= p3(1− p1 − p2 − p3)(1− p1) + p3(1− p1 − p2 − p3)
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= p3(1− p1 − p2 − p3)

1∑
n=0

(1− p1)
n,

which concludes the basis step. For the induction step, it is needed to prove that Pind =

(1−p1)P
(
Q(t+k+2) = 0,

k+1

(33. . . 3) |A(t) = 1
)
is equal to pk+1

3 (1−p1−p2−p3)
∑k+1

n=0(1−p1)
n,

given that the induction hypothesis, equation (14) holds true. We will use the result from Lemma
4.4 on the part with an ⊕ in the following calculations:

Pind = (1− p1)P
(
Q(t+ k + 2) = 0,

k+1

(33. . . 3) |A(t) = 1
)

= (1− p1)
2p3P

(
Q(t+ k + 1) = 0,

k

(33. . . 3) |A(t) = 1
)

+ (1− p1)
2(1− p2 − p3)P

(
Q3(1)(t+ k + 1) = 1,

k

(33. . . 3) |A(t) = 1
)

⊕

= pk+1
3 (1− p1)(1− p1 − p2 − p3)

k∑
n=0

(1− p1)
n

+ (1− p1)(1− p2 − p3)
[
pk+1
3

1− p1 − p2 − p3
(1− p1)(1− p2 − p3)

]
= pk+1

3 (1− p1 − p2 − p3)
[
1 + (1− p1)

k∑
n=0

(1− p1)
n
]

= pk+1
3 (1− p1 − p2 − p3)

k+1∑
n=0

(1− p1)
n.

This confirms the induction hypothesis and concludes the proof of Lemma 4.5. □

The next Lemma gives an understanding in the probability that given an occupation of a type 1
vehicle at time t, that there are k occupations of type 3 vehicles, and the queue at time t+ k+1
is non-empty and the first vehicle in the queue at time t+ k + 1 is of type 3.

Lemma 4.6

(1− p1)P
(
Q3(1)(t+ k + 1) > 0,

k

(33. . . 3) |A(t) = 1
)
= pk+1

3 (15)

The proof consists of finitely splitting the probability described in Lemma 4.6 k times, and using
the result of Lemma 4.4.

Let P (begin = (1 − p1)P
(
Q3(1)(t + k + 1) > 0, (33. . . 3)

k |A(t) = 1
)
. It must be noted that

the term P
(
Q3(i+1)(t + k + 1) > i, (33. . . 3)

k |A(t) = 1
)

is always equal to the sum of (1 −

p1)
2p3P

(
Q3(i+1)(t + k) = i + 1, (33. . . 3)

k-1 |A(t) = 1
)

and (1 − p1)
2P
(
Q3(i+2)(t + k) > i +

1, (33. . . 3)
k-1 |A(t) = 1

)
as long as k ≥ 1.

PB = (1− p1)P
(
Q3(1)(t+ k + 1) > 0,

k

(33. . . 3) |A(t) = 1
)

= (1− p1)
2p3P

(
Q3(1)(t+ k) = 1,

k-1

(33. . . 3) |A(t) = 1
)
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+ (1− p1)
2P
(
Q3(2)(t+ k) > 1,

k-1

(33. . . 3) |A(t) = 1
)

= (1− p1)
2p3P

(
Q3(1)(t+ k) = 1,

k-1

(33. . . 3) |A(t) = 1
)

+ (1− p1)
3p3P

(
Q3(2)(t+ k − 1) = 2,

k-2

(33. . . 3) |A(t) = 1
)
+ ...

+ (1− p1)
3P
(
Q3(3)(t+ k − 1) > 2,

k-2

(33. . . 3) |A(t) = 1
)⊕

.

As explained, the part with the ⊕ can be finitely expanded upon. Doing this k − 2 more times,
and using Lemma 4.4, it is found that

PB =

k∑
n=1

(1− p1)
np3(1− p1)P

(
Q3(n)(t+ 1 + k − n) = n,

k-n

(33. . . 3) |A(t) = 1
)

+ (1− p1)
k+1
[
p3P (Q3(k)(t) = k) + P (Q3(k+1)(t) > k)

]
= p3

k∑
n=1

(1− p1)
npk−n+n

3 pn−1
1

1− p1 − p2 − p3
(1− p1)n(1− p2 − p3)n

+ (1− p1)
k+1
[
p3

pk1p
k
3(1− p1 − p2 − p3)

(1− p1)k+1(1− p2 − p3)k+1
+

pk+1
1 pk+1

3

(1− p1)k+1(1− p2 − p3)k+1

]
= pk+1

3

(1− p1 − p2 − p3)

p1

k∑
n=1

pn1
(1− p2 − p3)n

+ pk+1
3 pk1

1− p1 − p2 − p3 + p1
(1− p2 − p3)k+1

= pk+1
3

(1− p1 − p2 − p3)

p1

[ k∑
n=0

( p1
1− p2 − p3

)n − 1
]
+ pk+1

3

pk1
(1− p2 − p3)k

= pk+1
3

(1− p1 − p2 − p3)

p1

[1− ( p1

1−p2−p3
)k+1

1− p1

1−p2−p3

− 1
]
+ pk+1

3

pk1
(1− p2 − p3)k

= pk+1
3

(1− p1 − p2 − p3)

p1

[1− p2 − p3 − p1(
p1

1−p2−p3
)k

1− p1 − p2 − p3
− 1
]
+ pk+1

3

pk1
(1− p2 − p3)k

= pk+1
3

[1− p2 − p3
p1

− pk1
(1− p2 − p3)k

− 1− p1 − p2 − p3
p1

+
pk1

(1− p2 − p3)k

]
= pk+1

3

1− p2 − p3 − (1− p1 − p2 − p3)

p1

= pk+1
3 .

This concludes Lemma 4.6. □

With Lemma’s 4.5 and 4.6 it is possible to find the probability that, given an occupation of type
1 at time t, exactly k occupations of type 3 follow:

Lemma 4.7

P
( k

(33. . . 3) |A(t) = 1
)
= pk3

[
1 + (1− p1 − p2 − p3)

k−1∑
n=0

(1− p1)
n
]

(16)

It is straigthforward to see that P
(
(33. . . 3)

k |A(t) = 1
)
is equal to 1− p1 times the sum of the
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probability that given a type 1 occurance, k − 1 type 3 vehicles consecutively occupy the road
segment, and the queue is nonempty with a type 3 vehicle in the front of the queue, and the
probability that given a type 1 occurance, k − 1 type 3 vehicles consecutively occupy the road
segment, and the queue is empty at time t+k, times the probability that a type 3 vehicle arrives
at the queue at time t+ k. Then using Lemma 4.5 and Lemma 4.6, this yields

P
( k

(33. . . 3) |A(t) = 1
)
= (1− p1)p3P

(
Q(t+ k + 1) = 0,

k-1

(33. . . 3) |A(t) = 1
)

+ (1− p1)P
(
Q3(1)(t+ k) > 0,

k-1

(33. . . 3) |A(t) = 1
)

= pk3(1− p1 − p2 − p3)

k−1∑
n=0

(1− p1)
n + pk3

= pk3

[
1 + (1− p1 − p2 − p3)

k−1∑
n=0

(1− p1)
n
]
,

which concludes the proof of Lemma 4.7. □

Now that the probability is found that k type 3 vehicles consecutively occupy the road segment
after a type 1 occupation, the same probability will be inspected for when a type 2 occupation
occurs at time t. The following Lemma’s have the same structure as Lemma’s 4.4, 4.5 and 4.6.

Lemma 4.8 Consider the probability P (Q3(i)(t+k+1) = i,
k

(33. . . 3) |A(t) = 2), which indicates
the probability that given an occupation of type 2 at time t, another k consecutive occupations
occur on time t+1, t+2, ..., t+k, and the queue at time t+k+1 is equal to i with all the vehicles
in the queue being of type 3. Then for i ≥ 1, k ≥ 1:

P
(
Q3(i)(t+ k + 1) = i,

k

(33. . . 3) |A(t) = 2
)
= pk+i

3 pi1
(1− p1 − p2 − p3)

(1− p1)i+1(1− p2 − p3)i+1
(17)

We prove Lemma 4.8 with mathematical induction. The basis step is to prove that equation (17)

holds for k = 1. Let us call PBS = (1 − p1)P
(
Q3(i)(t + 2) = i, A(t + 1) = 3|A(t) = 2

)
. Using

the concept that the probability P (Q3(i)(t + 1) = i, A(t) = 3) can be splitted and expressed as
(1− p1)p3P (Q3(i)(t) = i) + (1− p1)(1− p2 − p3)P (Q3(i+1)(t) = i+ 1), it becomes clear that

PBS = P
(
Q3(i)(t+ 2) = i, A(t+ 1) = 3|A(t) = 2

)
= (1− p1)p3P

(
Q3(i)(t+ 1) = i|A(t) = 2

)
+ (1− p1)(1− p2 − p3)P

(
Q3(i+1)(t+ 1) = i+ 1|A(t) = 2

)
.

Using Lemma 4.1, we find that

PBS = (1− p1)p3P
(
Q3(i)(t) = i

)
+ (1− p1)(1− p2 − p3)P

(
Q3(i+1)(t) = i+ 1

)
= (1− p1)p3

pi1p
i
3(1− p1 − p2 − p3)

(1− p1)i+1(1− p2 − p3)i+1
+

pi+1
1 pi+1

3 (1− p1 − p2 − p3)

(1− p1)i+1(1− p2 − p3)i+1

= pi+1
3 pi1

1− p1 − p2 − p3
(1− p1)i+1(1− p2 − p3)i+1

(
(1− p1) + p1)

)
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= pi+1
3 pi1

1− p1 − p2 − p3
(1− p1)i+1(1− p2 − p3)i+1

,

concluding the basis step, as for k = 1 this last expression is equal to equation (17). Now suppose
for some k = n equation (13) holds true. Then for k = n+ 1 it must also hold true. Let us call

Pind = P
(
Q3(i)(t+ n+ 2) = i,

n+1

(33. . . 3) |A(t) = 2
)
. Then we find that

Pind = P
(
Q3(i)(t+ n+ 2) = i,

n+1

(33. . . 3) |A(t) = 2
)

= (1− p1)p3P
(
Q3(i)(t+ n+ 1) = i,

n

(33. . . 3) |A(t) = 2
)

+ (1− p1)(1− p2 − p3)P
(
Q3(i+1)(t+ n+ 1) = i+ 1,

n

(33. . . 3) |A(t) = 2
)

= (1− p1)p3

[
pn+i
3 pi1

(1− p1 − p2 − p3)

(1− p1)i+1(1− p2 − p3)i+1

]
+ (1− p1)(1− p2 − p3)

[
pn+i+1
3 pi+1

1

(1− p1 − p2 − p3)

(1− p1)i+2(1− p2 − p3)i+2

]
=
[
(1− p1) + p1

]
pn+i+1
3 pi1

(1− p1 − p2 − p3)

(1− p1)i+1(1− p2 − p3)i+1

= pn+i+1
3 pi1

(1− p1 − p2 − p3)

(1− p1)i+1(1− p2 − p3)i+1
,

which concludes the induction step, as the last equation is equal to the right hand side of equation
(17) at k = n+ 1. □

Lemma 4.9 Consider the probability P (Q(t + k + 1) = 0,
k

(33. . . 3) |A(t) = 2), which indicates
the probability that given an occupation of type 2 at time t, another k consecutive occupations of
type 3 occur on time t + 1, t + 2, ..., t + k, and the queue at time t + k + 1 is empty. Then for
k ≥ 1:

(1− p1)P
(
Q(t+ k + 1) = 0,

k

(33. . . 3) |A(t) = 2
)
= pk3

1− p1 − p2 − p3
1− p2 − p3

(18)

Similarly to Lemma 4.5, the method of mathematical induction will be used to prove that equa-

tion (18) holds true. For the basis step k = 1, we must prove that PBS = (1− p1)P
(
Q(t+ 2) =

0, A(t+ 1) = 3|A(t) = 2
)
= p3

(1−p1−p2−p3)
1−p2−p3

. Using lemma 4.1 again we find that:

PBS = (1− p1)P
(
Q(t+ 2) = 0, A(t+ 1) = 3|A(t) = 2

)
= (1− p1)

2
[
p3P

(
Q(t) = 0|A(t) = 2

)
+ (1− p2 − p3)P

(
Q3(1)(t+ 1) = 1|A(t) = 2

)]
= (1− p1)

2
[
p3P (Q(t) = 0) + (1− p2 − p3)P (Q3(1)(t) = 1)

]
= (1− p1)

2p3
1− p1 − p2 − p3

(1− p1)(1− p2 − p3)
+ (1− p1)

2(1− p2 − p3)
p1p3(1− p1 − p2 − p3)

(1− p1)2(1− p2 − p3)2

= p3
(1− p1 − p2 − p3)

1− p2 − p3
(1− p1) + p3

(1− p1 − p2 − p3)

1− p2 − p3
p1
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= p3
(1− p1 − p2 − p3)

1− p2 − p3
,

which concludes the basis step. For the induction step, it is needed to prove that

Pind = (1− p1)P
(
Q(t+m+2) = 0,

n+1

(33. . . 3) |A(t) = 2
)
is equal to pn+1

3
(1−p1−p2−p3)

1−p2−p3
, given that

the induction hypothesis, equation (14) holds true for k = n. We will use the result of Lemma
4.8 on the part with the ⊕ in the following calculations:

Pind = (1− p1)P
(
Q(t+ n+ 2) = 0,

n+1

(33. . . 3) |A(t) = 2
)

= (1− p1)
2p3P

(
Q(t+ n+ 1) = 0,

n

(33. . . 3) |A(t) = 2
)

+ (1− p1)
2(1− p2 − p3)P

(
Q3(1)(t+ n+ 1) = 1,

n

(33. . . 3) |A(t) = 2
)⊕

= (1− p1)p
n+1
3

1− p1 − p2 − p3
1− p2 − p3

+ (1− p1)
2(1− p2 − p3)

[
pn+1
3

1− p1 − p2 − p3
(1− p1)2(1− p2 − p3)2

]
= pn+1

3

1− p1 − p2 − p3
1− p2 − p3

[
(1− p1) + p1

]
= pn+1

3

1− p1 − p2 − p3
1− p2 − p3

This confirms the induction hypothesis and concludes the proof of Lemma 4.9. □

Lemma 4.10 Consider the probability P (Q3(1)(t+k+1) > 0,
k

(33. . . 3) |A(t) = 2), which indicates
the probability that given an occupation of type 2 at time t, another k consecutive occupations of
type 3 occur on time t+ 1, t+ 2, ..., t+ k, and the queue at time t+ k + 1 is non-empty and the
first vehicle in the queue is of type 3. Then for k ≥ 1:

(1− p1)P
(
Q3(1)(t+ k + 1) > 0,

k

(33. . . 3) |A(t) = 2
)
= pk+1

3

p1
1− p2 − p3

(19)

The proof of Lemma 4.10 is similar to that of the proof of Lemma 4.6. Let PB =

(1−p1)P
(
Q3(1)(t+k+1) > 0,

k

(33. . . 3) |A(t) = 2
)
. It must be noted that the term P

(
Q3(i+1)(t+

k+1) > i
k

(33. . . 3) |A(t) = 2
)
is always equal to (1−p1)

2p3P
(
Q3(i+1)(t+k) = i+1,

k-1

(33. . . 3) |A(t) =

2
)
+ (1− p1)

2P
(
Q3(i+2)(t+ k) > i+ 1,

k-1

(33. . . 3) |A(t) = 2
)
as long as k ≥ 1.

PB = (1− p1)P
(
Q3(1)(t+ k + 1) > 0,

k

(33. . . 3) |A(t) = 2
)

= (1− p1)
2p3P

(
Q3(1)(t+ k) = 1,

k-1

(33. . . 3) |A(t) = 2
)

+ (1− p1)
2P
(
Q3(2)(t+ k) > 1,

k-1

(33. . . 3) |A(t) = 2
)⊕

.
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The part with an ⊕ can be expanded upon k− 1 more times. Using Lemma 4.4, it is found that

PB = (1− p1)
2p3P

(
Q3(1)(t+ k) = 1,

k-1

(33. . . 3) |A(t) = 2
)

+ (1− p1)
3p3P

(
Q3(2)(t+ k − 1) = 2,

k-2

(33. . . 3) |A(t) = 2
)
+ ...

+ (1− p1)
k+1p3P (Q3(k)(t+ 1) = k|A(t) = 2)

+ (1− p1)
k+1P (Q3(k+1)(t+ 1) > k|A(t) = 2)

.

Summing over the first k elements and using Lemma 4.1 to expand on the last element yields:

PB =

k∑
n=1

(1− p1)
np3(1− p1)P

(
Q3(n)(t+ 1 + k − n) = n,

k-n

(33. . . 3) |A(t) = 2
)

+ (1− p1)
k+1P (Q3(k+1)(t) > k)

= p3

k∑
n=1

(1− p1)
n+1pk−n+n

3 pn1
1− p1 − p2 − p3

(1− p1)n+1(1− p2 − p3)n+1

+ (1− p1)
k+1 pk+1

1 pk+1
3

(1− p1)k+1(1− p2 − p3)k+1

= pk+1
3

(1− p1 − p2 − p3)

1− p2 − p3

k∑
n=1

pn1
(1− p2 − p3)n

+ pk+1
3

pk+1
1

(1− p2 − p3)k+1

= pk+1
3

(1− p1 − p2 − p3)

1− p2 − p3

[ k∑
n=0

( p1
1− p2 − p3

)n − 1
]
+ pk+1

3

pk+1
1

(1− p2 − p3)k+1

= pk+1
3

(1− p1 − p2 − p3)

1− p2 − p3

[1− ( p1

1−p2−p3
)k+1

1− p1

1−p2−p3

− 1
]
+ pk+1

3

pk+1
1

(1− p2 − p3)k+1

= pk+1
3

(1− p1 − p2 − p3)

1− p2 − p3

[1− p2 − p3 − p1(
p1

1−p2−p3
)k

1− p1 − p2 − p3
− 1
]
+ pk+1

3

pk+1
1

(1− p2 − p3)k+1

= pk+1
3

[
1− 1− p1 − p2 − p3

1− p2 − p3
− pk+1

1

(1− p2 − p3)k+1
+

pk+1
1

(1− p2 − p3)k+1

]
= pk+1

3

[1− p2 − p3 − (1− p1 − p2 − p3)

1− p2 − p3

= pk+1
3

p1
1− p2 − p3

.

This concludes Lemma 4.10. □

Lemma’s 4.9 and 4.10 can be utilized to find the probability that, given a type 2 vehicle at time
t, there will be following k type 3 vehicles:

Lemma 4.11

P
( k

(33. . . 3) |A(t) = 2
)
= pk3 (20)
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Just like in Lemma 4.7, equation (20) can be expressed as follows:

P
( k

(33. . . 3) |A(t) = 2
)
= p3(1− p1)P

(
Q(t+ k + 1) = 0,

k-1

(33. . . 3) |A(t) = 2
)

+ (1− p1)P
(
Q3(1)(t+ k + 1) > 0,

k-1

(33. . . 3) |A(t) = 2
)

= p3

[
pk−1
3

1− p1 − p2 − p3
1− p2 − p3

]
+
[
pk3

p1
1− p2 − p3

]
= pk3

1− p1 − p2 − p3 + p1
1− p2 − p3

= pk3

This concludes Lemma 4.11. □
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4.2.3 Concept of proof: part 1 and 2

Theorem 4.12 For k ≥ 1, the following two equations hold true:

P
( k+1

(133. . . 3) |A(t) = 1
)
= p1p

k
3(1 + (1− p1 − p2 − p3)

k−1∑
n=0

(1− p1)
n (21)

P
( k+1

(233. . . 3) |A(t) = 1
)
= p2p

k
3(1 + (1− p1 − p2 − p3)

k∑
n=0

(1− p1)
n (22)

For equation (21), it should be noted that

P
( k+1

(133. . . 3) |A(t) = 1
)
= p1 · P

( k

(33. . . 3) |A(t) = 1
)
,

and by using Lemma 4.7 it is quickly found that equation (21) holds true. Equation (22) can
be found by using Lemma 4.5 and and a modified version of Lemma 4.6. As it is proven that

P
(
Q3(1)(t + k + 1) > 0,

k

(33. . . 3) |A(t) = 1
)

= p3p
k
3 , the argument that the first factor p3

comes from the first customer in the queue at time t + k + 1 makes it feasible to argue that

P
(
Q2(1)(t+ k + 1) > 0,

k

(33. . . 3) |A(t) = 1
)
= p2p

k
3 . Therefore

P
( k+1

(233. . . 3) |A(t) = 1
)
= p2(1− p1)P

(
Q(t+ k + 1) = 0,

k

(33. . . 3) |A(t) = 1
)

+ (1− p1)P
(
Q2(1)(t+ k + 1) > 0,

k

(33. . . 3) |A(t) = 1
)

= p2

[
pk3(1− p1 − p2 − p3)

k∑
n=0

(1− p1)
n
]
+ p2p

k
3

= p2p
k
3

[
1 + (1− p1 − p2 − p3)

k∑
n=0

(1− p1)
n
]
,

Concluding theorem 4.12. □.

Theorem 4.13 For k ≥ 1, the following two equations hold true:

P
( k+1

(133. . . 3) |A(t) = 1
)
= p1p

k
3 (23)

P
( k+1

(233. . . 3) |A(t) = 1
)
= p2p

k
3 (24)

Using Lemma 4.11, it is again straightforward to argue that

P
( k+1

(133. . . 3) |A(t) = 1
)
= p1P

( k

(33. . . 3) |A(t) = 1
)

= p1p
k
3 ,

concluding the first part of the proof. Lemma 4.10 can be exploited by arguing once more that the

first type 3 vehicle in the queue at time t+k+1 in the left hand side of (1−p1)P
(
Q3(1)(t+k+1) >
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0,
k

(33. . . 3) |A(t) = 2
)
= p3 ·pk3

p1
1− p2 − p3

accounts for a factor p3 in the right hand side, whereas

if the first vehicle in this queue would be of type 2, this factor would be equal to p2. Therefore

(1 − p1)P
(
Q2(1)(t + k + 1) > 0,

k

(33. . . 3) |A(t) = 2
)

= p2 · pk3
p1

1− p2 − p3
, and expanding on

equation (24) yields

P
( k+1

(233. . . 3) |A(t) = 1
)
= p2(1− p1)P

(
Q(t+ k + 1) = 0,

k

(33. . . 3) |A(t) = 2
)

+ (1− p1)P
(
Q2(1)(t+ k + 1) > 0,

k

(33. . . 3) |A(t) = 2
)

= p2p
k
3

1− p1 − p2 − p3
1− p2 − p3

+ p2p
k
3

p1
1− p2 − p3

= p2p
k
3 ,

concluding the proof of theorem 4.13. □

The first step of the proof of concept is therefore found in theorems 4.12 and 4.13. For the second
step of the proof of concept, it is necessary to find the probability that, given an occupation of
type 1 or type 2 at time t, there are k consecutive occupations of type 3, followed by no occupation
at time t+ k + 1. Therefore the following theorem becomes

Theorem 4.14

P
( k+1

(033. . . 3) |A(t) = 1
)
= pk3(1− p1 − p2 − p3)(1− p2 − p3)

k∑
n=0

(1− p1)
n (25)

P
( k+1

(033. . . 3) |A(t) = 2
)
= pk3(1− p1 − p2 − p3) (26)

We can argue that this probability is equal to the probability that no arrival of type 1, 2 or 3
will come at time t + k + 1, times the probability that the queue was empty at time t + k + 1.
Using Lemma 4.5, it follows that

P
( k+1

(033. . . 3) |A(t) = 1
)
= (1− p1)(1− p2 − p3)P

(
Q(t+ k + 1) = 0,

k

(33. . . 3) |A(t) = 1
)

= (1− p2 − p3)

(
(1− p1)P

(
Q(t+ k + 1) = 0,

k

(33. . . 3) |A(t) = 1
))

= (1− p2 − p3)
[
pk3(1− p1 − p2 − p3)

k∑
n=0

(1− p1)
n
]

= pk3(1− p1 − p2 − p3)(1− p2 − p3)
k∑

n=0

(1− p1)
n.

Using Lemma 4.9, it follows that

P
( k+1

(033. . . 3) |A(t) = 2
)
= (1− p1)(1− p2 − p3)P

(
Q(t+ k + 1) = 0,

k

(33. . . 3) |A(t) = 2
)

= (1− p2 − p3)

(
(1− p1)P

(
Q(t+ k + 1) = 0,

k

(33. . . 3) |A(t) = 2
))
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= (1− p2 − p3)
[
pk3

1− p1 − p2 − p3
1− p2 − p3

]
= pk3(1− p1 − p2 − p3),

Concluding the proof of theorem 4.14. □

4.2.4 Concept of proof: part 3

Lemma 4.15 Let us define the probability P (A(t+ k + 1) = x0, 3m, 0n|A(t) = 0)

= P
( k+1

(x0x1. . . xk) |A(t) = 0
)

where x0 ∈ {1, 2} and x1, x2, ..., xk ∈ {0, 3} in an undetermined

order, such that there are m type 3 occupations and n type 0 occupations at time t+1, t+2, ..., t+k,
so that m+ n = k. Then

P
(
A(t+ k + 1) = 1, 3n, 0m|A(t) = 0

)
=

(
k

m

)
p1(1− p1)

kpm3 (1− p2 − p3)
n (27)

P
(
A(t+ k + 1) = 2, 3n, 0m|A(t) = 0

)
=

(
k

m

)
p2(1− p1)

k+1pm3 (1− p2 − p3)
n (28)

For the proof of Lemma 4.15, a nice property can be exploited: given that at time t there
is no occupation, it must be true that at time t + 1, the queue is empty, because if it would
be non-empty it would have delivered a type 2 or type 3 occupation at time t, which is not
possible. So Q(t + 1) = 0 is always true given A(t) = 0. Furthermore it should be noted that
the queue will stay empty if no arrivals of type 1 occur. Therefore, if no type 1 arrivals take
place for k timesteps, the queue will stay empty at time t+ 1, t+ 2, ..., t+ k. As a consequence,
the probability that a type 3 occupation occurs given that the queue is empty, is equal to
(1− p1)p3, and the probability that no occupation occurs given that te queue is empty, is equal
to (1−p1)(1−p2−p3). So the probability thatm type 3 occupations and n type 0 occupations (no
occupations) in a specific order take place at time t+1, t+2, ..., t+k, given that A(t) = 0 is equal
to (1− p1)

mpm3 · (1− p1)
n(1− p2 − p3)

n. This probability can be defined as P (3n, 0m|A(t) = 0)
so that P (3n, 0m|A(t) = 0) = (1− p1)

kpm3 (1− p2 − p3)
n.

Still at time t+ k+ 1, the queue is empty because no type 1 vehicles have arrived between time
t and t + k. Therefore, an occupation of type 2 at time t + k + 1 after m type 3 and n type 0
occupations in a specific order, given that A(t) = 0, would be equal to (1−p1)p2 ·P (3n, 0m|A(t) =
0). And for a type 1 occupation at time t+ k+1 it will be p1 ·P (3n, 0m|A(t) = 0). For equation
(27) this yields:

P fixed order(A(t+ k + 1) = 1, 3n, 0m|A(t) = 0) = p1 · P (3n, 0m|A(t) = 0)

= p1(1− p1)
kpm3 (1− p2 − p3)

n.

And for equaion (28) this yields:

P fixed order(A(t+ k + 1) = 2, 3n, 0m|A(t) = 0) = p2(1− p1) · P (3n, 0m|A(t) = 0)

= p2(1− p1)(1− p1)
kpm3 (1− p2 − p3)

n

= p2(1− p1)
k+1pm3 (1− p2 − p3)

n.

It must be noticed that the type 3 and type 0 occupations at time t+1, t+2, ...t+ k are in fixed
order, however when ’changing’ the order of type 3 and type 0 occupations, the probability does
not change. Therefore we find that for an undetermined order of m type 3 vehicles, and n type
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0 vehicles involves the choose function, where there are k occupations to fill for all the type 3
and type 0 occupations, where m of them are of type 3. Therefore

P (A(t+ k + 1) = 1, 3n, 0m|A(t) = 0) =

(
k

m

)
P fixed order(A(t+ k + 1) = 1, 3n, 0m|A(t) = 0)

=

(
k

m

)
p1(1− p1)

kpm3 (1− p2 − p3)
n,

and

P (A(t+ k + 1) = 2, 3n, 0m|A(t) = 0) =

(
k

m

)
P fixed order(A(t+ k + 1) = 2, 3n, 0m|A(t) = 0)

=

(
k

m

)
p2(1− p1)

k+1pm3 (1− p2 − p3)
n,

This concludes the proof of Lemma 4.15. □

4.2.5 Proof interarrival times for k interarrivals

Consider the family of probabilities P
( k+1, 3(m)

(x0x1. . . xk) |xk+1

)
, which is equal to the probability

P
( k+1

(x0x1. . . xk) |xk+1

)
where x0, xk+1 ∈ {1, 2} and where x1, x2, ..., xk ∈ {0, 3}, where the set

{x1, ..., xk} contains m of type 3 and k −m of type 0, where k −m ≥ 1 in a fixed order. Then

this probability is equal to the product of the two probabilities P
( k-j, 3(m-j)

(x0x1. . . xk-j-1) |xk−j

)
and

P
( j+1, 3(j)

(xk-j. . . xk) |xk+1

)
, where xk−j will be the first type 0 vehicle after the type xk+1 vehicle,

such that xk−j+1, xk−j+1, ...xk are all of type 3. This can be argued because after a type 0
occupation, the queue is empty again, and so the same argument holds as used in the proof of
Lemma 4.15. The following four Lemma’s (Lemma’s 4.16 until 4.19) find a direct expression for
the probability that, given a type 1 or type 2 occupation at time t, there are no type 1 or type
2 occupations at time t + 1, t+ 2, ..., t + k, and the occupation at time t + k + 1 is of type 1 or
type 2 again.

Lemma 4.16 Let {x1, ...xk} be of type 3 and type 0, with at least one of type 0. Then

P
( k+1

(1 x1. . . xk) |A(t) = 1
)
= p1(1− p1 − p2 − p3)(1− p2 − p3)α

k−1
k−1∑
j=0

(
(
p3
α
)j
1− (1− p1)

j+1

p1

)

We start by arguing that when {x1, ...xk} contains m type 3 occupations, that the probability
that the first j of those m type 3 occupations occur before the first empty occupation (type 0)
is equal to

P
( k+1, 3(m)

(1 x1. . . xk),first j occupations after A(t) are type 3 vehicles|A(t) = 1
)

=

k−m∑
m−j=0

P
( k-j, 3(m-j)

(1 x1. . . xk-j-1) |A(t) = 0
)
· P
( j+1

(033. . . 3) |A(t) = 1
)
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Expanding on these equations on the right hand side, when substituting x = m−j and y = k−j−,
and using 4.15 that

k−j∑
m−j=0

P
( k-j, 3(m-j)

(1 x1. . . xk-j-1) |A(t) = 0
)
=

k−j∑
m−j=0

P
(
A(t+ k − j + 1) = 1, 3m−j , 0k−m|A(t) = 0

)

=

k−j∑
m−j=0

(
k − j

m− j

)
p1(1− p1)

k−jpm−j
3 (1− p2 − p3)

k−m

= p1(1− p1)
y

y∑
x=0

(
y

x

)
px3(1− p2 − p3)

y−x

= p1(1− p1)
y · (1− p2 − p3 + p3)

y

= p1(1− p1)
y(1− p2)

y

= p1α
k−j .

Looking at the original expression again, and using Theorem 4.14, it is found that

P
( k+1, 3(m)

(1 x1. . . xk),first j occupations after A(t) are type 3 vehicles|A(t) = 1
)

= p1α
k−j · P

( j+1

(033. . . 3) |A(t) = 1
)

= p1α
k−jpj3(1− p1 − p2 − p3)(1− p2 − p3)

j∑
n=0

(1− p1)
n

Now summing P
( k+1, 3(m)

(1 x1. . . xk),first j occupations after A(t) are type 3 vehicles|A(t) = 1
)
over

all possible j’s from 0 to k − 1, all possible combinations are found where there are k type 0 or
type 3 occupations between A(t) = 1 and A(t+ k + 1) = 1. Therefore:

P
( k+1

(1 x1. . . xk) |A(t) = 1
)
=

k−1∑
j=0

P
( k+1, 3(m)

(1 x1. . . xk),first j after A(t) are type 3 vehicles|A(t) = 1
)

=

k−1∑
j=0

p1α
k−jpj3(1− p1 − p2 − p3)(1− p2 − p3)

j∑
n=0

(1− p1)
n

= p1(1− p2 − p3)(1− p1 − p2 − p3)α
k
k−1∑
j=0

(p3
α

)j 1− (1− p1)
j+1

p1

= (1− p2 − p3)(1− p1 − p2 − p3)α
k
k−1∑
j=0

((p3
α

)j(
1− (1− p1)

j+1
))

.

This concludes the proof of Lemma 4.16. □

The key for the proof of Lemma 4.16, that

k−j∑
m−j=0

P
( k-j, 3(m-j)

(1 x1. . . xk-j-1) |A(t) = 0
)
= p1α

k−j (29)

can be exploited again in the following Lemma:
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Lemma 4.17 Let {x1, ...xk} be of type 3 and type 0, with at least one type 0. Then

P
( k+1

(1 x1. . . xk) |A(t) = 2
)
= p1(1− p1 − p2 − p3)α

k 1−
(
p3

α

)k
α− p3

Using the same technique as in Lemma 4.16, equation (29) and employing Theorem 4.14, the
following calculations show that

P
( k+1

(1 x1. . . xk) |A(t) = 2
)
=

k−1∑
j=0

k−j∑
m−j=0

P
( k-j, 3(m-j)

(1 x1. . . xk-j-1) |A(t) = 0
)
· P
( j+1

(033. . . 3) |A(t) = 2
)

=

k−1∑
j=0

p1α
k−jP

( j+1

(033. . . 3) |A(t) = 2
)

=

k−1∑
j=0

p1α
k−jpj3(1− p1 − p2 − p3)

= p1(1− p1 − p2 − p3)α
k
k−1∑
j=0

(p3
α

)j
= p1(1− p1 − p2 − p3)α

k 1− (p3

α )k

α− p3
.

This concludes the proof of Lemma 4.17. □

Lemma 4.18 Let {x1, ...xk} be of type 3 and type 0, with at least one type 0. Then

P
( k+1

(2 x1. . . xk) |A(t) = 1
)

= p2(1− p1)(1− p1 − p2 − p3)(1− p2 − p3)α
k
k−1∑
j=0

((p3
α

)j 1− (1− p1)
j+1

p1

) (30)

Like in Lemma 4.17, it is argued that

P
( k+1

(2 x1. . . xk) |A(t) = 1
)
=

k−1∑
j=0

k−j∑
m−j=0

P
( k-j, 3(m-j)

(2 x1. . . xk-j-1) |A(t) = 0
)
· P
( j+1

(033. . . 3) |A(t) = 1
)
.

Using equation (28) of Lemma 4.15, and once more performing the substitution x = m− j and
y = k − j, it can be obtained that

k−m∑
m−j=0

P
( k-j, 3(m-j)

(2 x1. . . xk-j-1) |A(t) = 0
)
=

k−j∑
m−j=0

P
(
A(t+ k − j + 1) = 1, 3m−j , 0k−m|A(t) = 0

)

=

k−j∑
m−j=0

(
k − j

m− j

)
p2(1− p1)

k−jpm−j
3 (1− p2 − p3)

k−m

= p2(1− p1)(1− p1)
y

y∑
x=0

(
y

x

)
px3(1− p2 − p3)

y−x
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= p2(1− p1)(1− p1)
y · (1− p2 − p3 + p3)

y

= p2(1− p1)(1− p1)
y(1− p2)

y

= p2(1− p1)α
k−j .

Therefore, using Theorem 4.14,

P
( k+1

(2 x1. . . xk) |A(t) = 1
)

=

k−1∑
j=0

p2(1− p1)α
k−jP

( j+1

(033. . . 3) |A(t) = 1
)

=

k−1∑
j=0

p2(1− p1)α
k−jpj3(1− p1 − p2 − p3)(1− p2 − p3)

j∑
n=0

(1− p1)
n

= p2(1− p1)(1− p1 − p2 − p3)(1− p2 − p3)α
k
k−1∑
j=0

((p3
α

)j 1− (1− p1)
j+1

p1

)
,

which concludes the proof of Lemma 4.18. □

Lemma 4.19 Let {x1, ...xk} be of type 3 and type 0, with at least one type 0. Then

P
( k+1

(2 x1. . . xk) |A(t) = 2
)
= p2(1− p1)(1− p1 − p2 − p3)α

k 1−
(
p3

α

)k
α− p3

Once more the key for the proof of Lemma 4.18, that

k−j−1∑
m−j=0

P
( k-j, 3(m-j)

(2 x1. . . xk-j-1) |A(t) = 0
)
= p2(1− p1)α

k−j , (31)

can be used again. Using the same technique as in Lemma 4.18, equation (31) and employing
Theorem 4.14, the following calculations show that

P
( k+1

(2 x1. . . xk) |A(t) = 2
)
=

k−1∑
j=0

k−j∑
m−j=0

P
( k-j, 3(m-j)

(2 x1. . . xk-j-1) |A(t) = 0
)
· P
( j+1

(033. . . 3) |A(t) = 2
)

=

k−1∑
j=0

p2(1− p1)α
k−jP

( j+1

(033. . . 3) |A(t) = 2
)

=

k−1∑
j=0

p2(1− p2)α
k−jpj3(1− p1 − p2 − p3)

= p2(1− p1)(1− p1 − p2 − p3)α
k
k−1∑
j=0

(p3
α

)j
= p2(1− p1)(1− p1 − p2 − p3)α

k 1− (p3

α )k

α− p3
. □

Which concludes the last Lemma 4.19. Combining Lemma’s 4.16, 4.17, 4.18 and 4.19, and the
earlier proven Theorems 4.12 and 4.13, the interarrival times for type 1 or type 2 vehicles can
be found:
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Theorem 4.20 Consider the discrete random variables X(t), Y(t) and Z(t) to be geometrically

distributed, the interarrival times of the merging process of X(t) and
[
Y (t) + Z(t)

]
follow the

probability mass function P (IX+Y+Z) according to Lemma 3.2. Then the splitting of the process[
X(t) + Y (t)

]
and Z(t) leaves the interarrival times Iexit, where the probability mass function

takes the following form:

P (Iexit = k) =

{
1− α+ ϕ, k = 0

αk · (1− α+ ϕ)− ϕ(1− p3)
αk−pk

3

α−p3
, k ∈ Z+,

(32)

where α = (1− p1)(1− p2) and ϕ = p1p2

p1+p2
(1− p3)

Proof:

For k = 0, Theorem 4.3 has proven the correctness already. For k ∈ Z+, the desired answer is
found in the conditional probability

P (Iexit = k) =
P
(
A(t) ∈ {1, 2}, A(t+ i) ∈ {0, 3}, A(t+ k + 1) ∈ {1, 2}, i = 1, 2, ..., k

)
P
(
A(t) ∈ {1, 2}

) . (33)

This probability is equal to the sum of all the equations of Lemma’s 4.16 , 4.18, and Theorem
4.12 times the probability that a type 1 occupation occurs, added by the equations from Lemma’s
4.17, 4.19 and Theorem 4.13 times the probability that a type 2 occupation occurs, divided by

P
(
A(t) ∈ {1, 2}

)
. This yields that k interarrivals between two occupations of type 1 or type 2,

the numerator of equation (33) is equal to the sum of the following 8 components:

1. p1p1(1− p1 − p2 − p3)(1− p2 − p3)α
k−1

∑k−1
j=0

(
(p3

α )j 1−(1−p1)
j+1

p1

)
Lemma 4.16

2. p1p2(1− p1)(1− p1 − p2 − p3)(1− p2 − p3)α
k−1

∑k−1
j=0

(
(p3

α )j 1−(1−p1)
j+1

p1

)
Lemma 4.18

3. p1p1p
k
3

[
1 + (1− p1 − p2 − p3)

∑k−1
n=0(1− p1)

n
]

Theorem 4.12

4. p1p2p
k
3

[
1 + (1− p1 − p2 − p3)

∑k
n=0(1− p1)

n
]

Theorem 4.12

5. p2p1(1− p1 − p2 − p3)α
k−1
(

1− p3
α

k

α−p3

)
Lemma 4.17

6. p2p2(1− p1)(1− p1 − p2 − p3)α
k−1
(

1− p3
α

k

α−p3

)
Lemma 4.19

7. p2p1p
k
3 Theorem 4.13

8. p2p2p
k
3 Theorem 4.13

What follows is a combination of some pairs of the components. The sum of component 1 and
2 is equal to(

1− α
)
(1− p1 − p2 − p3)(1− p2 − p3)α

k

(
1−

(
p3

α

)k
α− p3

− (1− p1)
1−

( (1−p1)p3

α

)k
α− (1− p1)p3

)
, (34)

and the sum of components 5 and 6 is equal to

p2

(
1− α

)
(1− p1 − p2 − p3)α

k
(1− p3

α
k

α− p3

)
. (35)
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Adding components 1, 2, 5 and 6, and using that α − (1 − p1)p3 = (1 − p1)(1 − p2 − p3), this
equals

eq. (34) + eq. (35) =
(
1− α

)
(1− p1 − p2 − p3) ·

[
p2

αk − pk3
α− p3

]

+
(
1− α

)
(1− p1 − p2 − p3) ·

[
(1− p2 − p3)

(αk − pk3
α− p3

− (1− p1)
αk − (1− p1)

kpk3
α− (1− p1)p3

)]

=
(
1− α

)
(1− p1 − p2 − p3) ·

[
(1− p3)

(αk − pk3
α− p3

)
− αk + (1− p1)

kpk3

]
Furthermore components 3 and 4 must be rewritten:

p21p
k
3

[
1 + (1− p1 − p2 − p3)

k−1∑
n=0

(1− p1)
n
]
= p21p

k
3

[
1 + (1− p1 − p2 − p3)

1− (1− p1)
k

p1

]
(36)

and

p1p2p
k
3

[
1 + (1− p1 − p2 − p3)

k∑
n=0

(1− p1)
n
]
= p1p2p

k
3

[
1 + (1− p1 − p2 − p3)

1− (1− p1)
k+1

p1

]
.

(37)

Summing components 3 and 4 yields

p1(p1 + p2)p
k
3 + pk3(1− p1 − p2 − p3)

[
p1
(
1− (1− p1)

k
)
+ p2

(
1− (1− p1)

k+1
)]
.

And of course summing components 7 and 8 gives (p1+p2)p2p
k
3 . Therefore summing components

3, 4, 7 and 8 gives

(p1 + p2)
2pk3 + pk3(1− p1 − p2 − p3)

[
(p1 + p2) + (1− α)(1− p1)

k
]
. (38)

Multiplying both sides of equation (33) by P
(
A(t) ∈ {1, 2}

)
= p1 + p2, we find that

(p1 + p2)P (Iexit = k) = Eq.(34) + Eq.(35) + Eq.(38) for k ∈ Z+:

(p1 + p2)P (Iexit = k) =
(
1− α

)
(1− p1 − p2 − p3) ·

[
(1− p3)

(αk − pk3
α− p3

)
− αk + (1− p1)

kpk3

]
+ (p1 + p2)

2pk3 + pk3(1− p1 − p2 − p3)
[
(p1 + p2)− (1− α)(1− p1)

k
]

=
(
1− α

)
(1− p1 − p2 − p3)

[
(1− p3)

(αk − pk3
α− p3

)
− αk

]
+ (p1 + p2)

2pk3 + pk3(1− p1 − p2 − p3)(p1 + p2)

=
(
1− α

)
(1− p1 − p2 − p3)

[
(1− p3)

(αk − pk3
α− p3

)
− αk

]
+ (p1 + p2)(1− p3)p

k
3

= (p1 + p2)(1− α)

[
αk − (1− p3)

(αk − pk3
α− p3

)]
+ (p1 + p2)(1− p3)p

k
3
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+ (1− α)(1− p3)

[
(1− p3)

(αk − pk3
α− p3

)
− αk

]

= (p1 + p2)(1− α)

[
αk − (1− p3)

(αk − pk3
α− p3

)]
+ (p1 + p2)(1− p3)p

k
3

+ (p1 + p2 − p1p2)(1− p3)

[
(1− p3)

(αk − pk3
α− p3

)
− αk

]

= (p1 + p2)(1− α)

[
αk − (1− p3)

(αk − pk3
α− p3

)]
+ (p1 + p2)(1− p3)p

k
3

+ (p1 + p2)(1− p3)

[
(1− p3)

(αk − pk3
α− p3

)
− αk

]

− p1p2(1− p3)

[
(1− p3)

(αk − pk3
α− p3

)
− αk

]
.

Dividing both sides by p1 + p2 yields

P (Iexit = k) = (1− α)αk − (1− α)(1− p3)
(αk − pk3
α− p3

)
+ (1− p3)p

k
3 + (1− p3)

2
(αk − pk3
α− p3

)
− (1− p3)α

k − p1p2
p1 + p2

(1− p3)

[
(1− p3)

(αk − pk3
α− p3

)
− αk

]

= (1− α)αk + (1− p3)

[
− (1− α)

αk − pk3
α− p3

+ pk3 + (1− p3)
αk − pk3
α− p3

− αk

]

− ϕ(1− p3)
αk − pk3
α− p3

+ ϕαk

= (1− p3)

[
(α− p3)

αk − pk3
α− p3

+ pk3 − αk

]
+ αk(1− α+ ϕ)− ϕ(1− p3)

αk − pk3
α− p3

= (1− p3)

[
αk − pk3 + pk3 − αk

]
+ αk(1− α+ ϕ)− ϕ(1− p3)

αk − pk3
α− p3

= αk(1− α+ ϕ)− ϕ(1− p3)
αk − pk3
α− p3

.

This concludes the proof of Theorem 4.20.
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4.3 Differential equation for interarrival times

Further expanding on the interarrival times, it can be proven that the interarrival follow a
distribution containing a differential equation:

Theorem 4.21 Consider the process described in Theorem 4.20. Then the interarrival times
can be expressed as

P (Iexit = k) =

{
1− α+ ϕ, k = 0

α · P (Iexit = k − 1)− ϕ(1− p3) · pk−1
3 , k ∈ Z+,

(39)

where α = (1− p1)(1− p2), and ϕ = p1p2

p1+p2
(1− p3).

The method of mathematical induction will be used to prove the correctness of equation (39).
The induction hypothesis is that

αn(1− α+ ϕ)− ϕ(1− p3)
αn − pn3
α− p3

= α · P (Iexit = n− 1)− ϕ(1− p3) · pn−1
3 , (40)

given that the entities P (Iexit = 0) = 1−α+ϕ and P (Iexit = k) = αk(1−α+ϕ)−ϕ(1−p3)
αk−pk

3

α−p3

for k ∈ Z+ hold true. The basis step requires that that equation (40) holds for n = 1:

α(1− α+ ϕ)− ϕ(1− p3)
α− p3
α− p3

= αP (Iexit = 0)− ϕ(1− p3),

which proves to be true using the entity P (Iexit = 0) = 1 − α + ϕ. Then follows the induction
step. Assume that equation (40) is true for n = k. Then it must be shown that it is also true

for n = k + 1. Let us call Pind = αk+1(1− α+ ϕ)− ϕ(1− p3)
αk+1−pk+1

3

α−p3
. Then

Pind = αk+1(1− α+ ϕ)− ϕ(1− p3)
αk+1 − pk+1

3

α− p3

= αk+1(1− α+ ϕ)− ϕ(1− p3)
α(αk − pk3) + pk3(α− p3)

α− p3

− ααk(1− α+ ϕ)− α
(
ϕ(1− p3)

αk − pk3
α− p3

)
− ϕ(1− p3)

pk3(α− p3)

α− p3

= α
(
αk(1− α+ ϕ)− ϕ(1− p3)

αk − pk3
α− p3

)
− ϕ(1− p3) · pk3

= αP (Iexit = k)− ϕ(1− p3) · pk3

This last identity, αP (Iexit = k)− ϕ(1− p3) · pk3 , is equal to the right hand side of equation (40)
at n = k + 1. Therefore, the proof of theorem 4.21 is completed as it is shown that induction
hypothesis holds. □

The interpretation of equation (39) for k > 0 is the following: with probability α, the interarrival
time Iexit = k is delayed by one timestep when there is no queue of type 2 and type 3 vehicles,
as α represents the probability that no type 1 or type 2 vehicle arrives. This is mainly equivalent
to the interarrival times in equation (6) for k > 0. Like with k = 0, ϕ stands for the probability
that if there is a queue of type 2 and type 3 vehicles, that the first vehicle in the queue is of
type 2. However, there is a probability that the first k vehicles of Q2 are of type 3 after the last
arrival, and this probability is equal to (1 − p3)p

k−1
3 , which can be interpreted as a geometric
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distribution with parameter (1 − p3). This is necessary, as the queue hits a ’success’ when the
arrival of a type 3 vehicle is not happening. So the factor ϕ(1−p3) ·pk−1

3 signifies the probability
that if there is a queue of k vehicles, the first k− 1 are of type 3 and the last vehicle is of type 2.
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5 Simulations and results

In this section the theoretical model from section 4 will be analyzed by the means of a simulation
study. The method of sample batching will be used and subsequently confidence intervals can
be determined to compare the theoretical model with. Firstly, a cross-simulation study will be
executed, where the difference between interarrivals for independent flows on the roundabout
will be compared with dependent flows on the roundabout. Secondly, a heuristic will be used
to more accurately compare the theoretical framework with simulations, and the accuracy of
this heuristic will be challenged. Furthermore, as an extension of the three-way roundabout,
a simulation of a four-way roundabout will be carried out and will be compared to a modified
version of the analytical model of a three-way roundabout. Lastly, the final research question
will be treated regarding the influence of Bernoulli arrivals on a chain of roundabouts with two
short scenario’s in SUMO.

For the simulation study the program SUMO (Simulation of Urban MObility) is used. SUMO
is an open source microscopic traffic simulator that can handle large traffic networks. The main
interest in SUMO though is the realistic behavior of drivers in the simulations. Furthermore
SUMO is able to generate Bernoulli flows in discrete time. Hence for tiny networks, like the
simulation of a three-way or a four-way roundabout, or a chain of roundabouts, SUMO is an
appropriate tool to conduct simulations to verify the findings of section 4. Incidentally it is
possible to adjust the step-length of the discrete time in SUMO. As mentioned in the introduction
of section 2, an average vehicle will need 2 seconds to move from its cell to the next; therefore
the step-length of the simulations will be set to 2 seconds in all simulations. Additionally the
maximum speed on all road segments, entrances and exits is 20 km/h, as the average speed on a
roundabout is measured to be around this speed. The radius of a roundabout in all simulations
is 13 meters. In Figure 5, a representation of the SUMO user interface is showed and connected
to this visualisation the terminology of specific denominations of the three-way roundabout is
chosen.

Figure 5: Visualisation of a three-way roundabout

Let the data size be the amount
of interarrival times measured in
a simulation. For the confidence
intervals calculated for the sim-
ulations, the method of batched
sampling is used. This means:
the amount of interarrival times
is evenly sampled in n batches,
where each batch contains m in-
terarrival times, such that the data
size is equal to n ·m. In this study,
the amount of batches will always
be equal to n = 30. The data
size will vary between the differ-
ent simulations. Recall that if an
interarrival time is equal to 1, it
means that a consecutive occupa-
tion has occured, meaning that at
time t and at time t + 1 a vehicle has occupied a road slot. If an interarrival is equal to k, it
means that if at time t and at time t+ k an occupation has occured, but at all times between t
and t+ k, no occupation has occured.
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An annotation should be given to Figure 5 with reference to Figure 1, as a first measured
occupation on road segment 1 in SUMO corresponds to an occupation of S1 in the MCA model,
a first measured occupation on road segment 2 in SUMO corresponds to an occupation of S3 in
the MCA Model, and a first measured occupation on road segment 3 in SUMO corresponds to
an occupation of S5 in the MCA Model. Road segments S2, S4 and S6 do not have a place in
SUMO, but since no merging or splitting happens on these road segments, they are not really
interesting to analyse anyway.

5.1 Simulation of Bernoulli streams in SUMO

Consider Figure 5. To test the accuracy of SUMO’s Bernoulli trials, the input is given that only
at entrance 1 vehicles can generate according to Bernoulli trials. Then they are all routed to
exit 2, such that they leave the system there. The simulation has a data size of ≈ 1.25 · 105
interarrival times. Therefore the size of a batch will be equal to 1.25·105

30 ≈ 4.2 · 103.
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Figure 6: Bernoulli trial for ρ = 1
10 in SUMO at different locations on a roundabout as depicted

in Figure 5.

At a couple of positions in Figure 5, the interarrival times of the Bernoulli stream is measured.
All measurements for the three positions stem from the same simulation. The three positions
are the beginning of entrance 1, the beginning of road segment 1, and the beginning of exit 2.
In Figure 6, it is visible that for a low traffic load of 10%, the geometric distribution follows the
discrete function ρk−1(1 − ρ) for k ∈ Z+ with ρ = 1

10 , and at entrance 1 the interarrival times
in SUMO approximate this geometric distribution really well, except for the first and second
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interarrival time. However, when vehicles move from entrance 1 to road segment 1, the first two
interarrival times on road segment 1 are very excessive compared to the interarrival times of
entrance 1. The behavior of the interarrival times that are measured between road segment 1
and exit 2 follow a distribution that is closely similar to the interarrival times at road segment
1, with a similar confidence interval as well. Furthermore the interarrivals for k > 5 at road
segment 1 turn out slightly lower than that of the geometric distribution; however the 95% CI of
the interarrivals at exit 2 still allow for the simulation to fall within the bounds of the geometric
distribution.

Now let us consider Bernoulli arrivals at entrance 1 and entrance 2, where all arrivals exit the
roundabout at exit 3. The interarrival times in SUMO are recorded at road segment 2 and
exit 3. The probability distribution of the interarrival times should then follow the probability
distribution according to equation (6), the theoretical framework for the probability distribution
of the interarrival times of two merging Bernoulli streams where one has priority over the other.
The simulation has a size of 1.5 · 105 interarrival times.
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Figure 7: Bernoulli trial for arrival rate λ1 = 1
10 at entrance 1 and λ2 = 1

10 at entrance 2 in
SUMO at road segment 2 and exit 3 of a roundabout as depicted in Figure 5.

Keeping in mind the discrepencies in the early interarrival times in Figure 6, in Figure 7 it can
be seen that the interarrival times of the simulation at road segment 2 and exit 3 demonstrate
similar behavior in comparison to the delayed geometric distribution of equation (6): the early
interarrival times differ a lot, and the higher interarrivals for k > 3 are slightly lower again. The
interarrival times at road segment 2 and exit 3 behave similarly again. However, in comparison
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with a single Bernoulli stream at entrance 1, in this study the theoretical framework does not
fall within the 95% confidence interval of the interarrival times at exit 3 for higher interarrivals.

To conclude, from the single Bernoulli stream at entrance 1 and the double Bernoulli streams
at entrance 1 and 2 both leaving at exit 3, it is observed that the behavior of drivers does not
exactly fall in line with that of the theoretical frameworks. Especially for short interarrival
times, the interaction between drivers seems more complex than suggested in the Markov chain
in section 3. This makes an analysis to compare the theoretical framework with simulations a
direct challenge.

5.2 Self-dependent and self-independent traffic flows

Consider Figure 5 again. In the formalization of the analytical model, the assumption is made
that traffic flows only come from entrance 1 and entrance 2, where both flows have Bernoulli
arrivals, but not from entrance 3. Let us define the arrivals at entrance 1 to be type a vehicles,
arrivals at entrance 2 to be type b vehicles and arrivals at entrance 3 to be type c vehicles.
Furthermore the assumption is made that on a three-way roundabout, vehicles exit the round-
about at the first or second turn. Because of the Bernoulli arrivals, the interarrival times on
both entrances are geometrically distributed. As a result, the flow on road segment 1 also have
Bernoulli arrivals, because no vehicle can possibly ’block’ entrance 1 if no vehicles are arriving
at entrance 3. Hence, the interarrival times on road segment 1 are geometrically distributed as
well. On road segment 2, the interarrival times for the analytical model follow equation (6) as
found in section 3. The queue that forms at entrance 2 is a Geo/Geo/1-queue, where the arrival
times are geometrically distributed with parameter p2, which is the probability that a type b
vehicle arrives at entrance 2, and the service times are geometrically distributed with parameter
1 − p1, which is the probability that a type a vehicle does not block a vehicle from entrance 2.
This leads to the following definition:

Definition 5.1 (queue-independency) A queue at the entrance of a roundabout is said to be
independent if the service times and the arrival times are independent from each other.

This definition leads to the result in the specific case of the analytical model: at entrance 2 the
queue follows a Geo(1− p1)/Geo(p2)/1-queue, and since parameters p1 and p2 do not depend on
each other, therefore the queue is independent.

However, it would be closer to reality if there would also be a traffic flow at entrance 3. Therefore
let us assume Bernoulli arrivals at entrance 3 as well. The problem that now arises when all
three entrances generate Bernoulli arrivals, is that the individual type b vehicles that enter the
roundabout on road segment 2 no longer arrive in an independent queue: a type b vehicle can
cause waiting time for a type c vehicle at entrance 3; this same delayed type c vehicle can cause
waiting time for a type a vehicle at entrance 1. Lastly this delayed type a vehicle can delay
a type b vehicle again at entrance 2. Therefore any type b vehicle can receive possible delay
because of an earlier arrived type b vehicle. It is complex to find the queueing discipline of the
queue that is formed at entrance 2, but it is certain that it is not an independent queue, as the
type b vehicles have an influence on the service times. And when the service times of the queue
at entrance 2 change, the analytical model can no longer provide for the interarrival times on
the roundabout and at the exits of the roundabout.

Through a simulations it is possible to detect the difference between a threeway roundabout with
an independent queue and a dependent queue:

• Interarrival times at exit 3 in the case of an independent queue at entrance 2, where there
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are only Bernoulli arrivals at entrance 1 and entrance 2

• Interarrival times at exit 3 in the case of a dependent queue at entrance 2, where there
are Bernoulli arrivals at all entrances.

A distinction is made between low traffic load, medium traffic load, and high traffic load. The
definition of the traffic loads is:

• Low traffic load is an arrival rate of 10% at an entrance, where half of the traffic at an
entrance takes the first turn, and half of the traffic at an entrance takes the second turn.

• Medium traffic load is an arrival rate of 20% at an entrance, where half of the traffic at an
entrance takes the first turn, and half of the traffic at an entrance takes the second turn.

• High traffic load is an arrival rate of 30% at an entrance, where half of the traffic at an
entrance takes the first turn, and half of the traffic at an entrance takes the second turn.

Although it is possible to vary the ratio of the traffic flow at entrances that take a first or second
turn, in these simulations only the fifty-fifty ratio is used.

5.2.1 Low traffic load

Consider low traffic load of 10% at entrance 1 and entrance 2. This means: according to a
Bernoulli trial with probability 1

10 , a vehicle joins entrance 1 or 2, where half of this 10% takes
the first possible turn and half takes the second possible turn.
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Figure 8: Probabilities of interarrival times for the four different models with a simulation size
of 105 for the four different models.

For the independent queue at entrance 2, no vehicles arrive at entrance 3. For the dependent
queue at entrance 2, three additional instances are looked at: one where the traffic load at
entrance 2 is low, one where the traffic load at entrance 3 is medium, and one where the traffic
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load at entrance 3 is high. In Table 1, an overview of the probabilities for the different dependent
queues is given.

Type queue Traffic load
entrance 1

Traffic load
entrance 2

Traffic load
entrance 3

Indep. queue 10% 10% 0%
Dep. queue low 10% 10% 10%
Dep. queue med 10% 10% 20%
Dep. queue high 10% 10% 30%

Table 1: Traffic load probabilities at all entrances for dependent and independent queues.

It can be seen in Figure 8 that for the first 10 interarrival times at exit 3, the difference between
the self-dependent and self-independent queueing models vastly lies within the 95% confidence
intervals of the independent queue. All higher interarrival times for interarrivals k > 10 fall
within the 95% confidence interval as well.

5.2.2 Medium traffic load

Consider medium traffic load of 20% at entrance 1 and entrance 2. This means: according to a
Bernoulli trial with probability 2

10 , a vehicle joins entrance 1 or 2. For the independent queue
at entrance 2, no vehicles arrive at entrance 3. For the dependent queue at entrance 2, three
additional instances are looked at: one where the traffic load at entrance 2 is low, one where the
traffic load at entrance 3 is medium, and one where the traffic load at entrance 3 is high. In
Table 2, an overview of the probabilities for the different dependent queues is given.
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Figure 9: Probabilities of interarrival times for the four different models with a simulation size
of 105 for the four different models.
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Type queue Traffic load
entrance 1

Traffic load
entrance 2

Traffic load
entrance 3

Indep. queue 20% 20% 0%
Dep. queue low 20% 20% 10%
Dep. queue med 20% 20% 20%
Dep. queue high 20% 20% 30%

Table 2: Traffic load probabilities at all entrances for dependent and independent queues.

It can be seen in Figure 9 that for the interarrival times at exit 3, the difference between the self-
dependent and self-independent queueing models again lies within the 95% confidence intervals
of the independent queue, except for interarrival times k = 9 and k = 10. This may be due to the
moderate simulation size. All higher interarrival times for k > 10 fall within the 95% confidence
interval as well.

5.2.3 Medium traffic load

Consider high traffic load of 30% at entrance 1 and entrance 2. This means: according to a
Bernoulli trial with probability 3

10 , a vehicle joins entrance 1 or 2. For the independent queue
at entrance 2, no vehicles arrive at entrance 3. For the dependent queue at entrance 2, three
additional instances are looked at: one where the traffic load at entrance 2 is low, one where the
traffic load at entrance 3 is medium, and one where the traffic load at entrance 3 is high. In
Table 3, an overview of the probabilities for the different dependent queues is given.
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Figure 10: Probabilities of interarrival times for the four different models with a simulation size
of 105 for the four different models.
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Type queue Traffic load
entrance 1

Traffic load
entrance 2

Traffic load
entrance 3

Indep. queue 30% 30% 0%
Dep. queue low 30% 30% 10%
Dep. queue med 30% 30% 20%
Dep. queue high 30% 30% 30%

Table 3: Traffic load probabilities at all entrances for dependent and independent queues.

It can be seen in Figure 10 that for the first 10 interarrival times at exit 3, the difference between
the self-dependent and self-independent queueing models lies within the 95% confidence intervals
of the independent queue yet again, as well as all higher interarrival times for interarrivals k > 10
which fall within the 95% confidence interval.

Lastly, a two-sampled t-test can be carried out to determine if the independent and dependent
queues have a significant difference in their probability mass function. For each interarrival time
k, this test can be carried out. As the batch size n = 30, the result of a two-tailed t-test on low
traffic load can be find in Figure 11.

Figure 11: Two sampled t-test results for the first 50 interarrival times of an independent queue
with low traffic load compared to a dependent queue with low, medium and high traffic load at
entrance 3. The data size of all the samples are 4.0 · 105. Equivalence of the traffic loads of the
samples can be found in Table 1.

Figure 11 must be interpreted as follows: if for an interarrival time the sample test is lower than
the t-statistic, there is a 95% probability that the interarrival time of the independent queue and
the dependent queue match with each other. In fact, the lower the outcome of the t-test, the more
evidence there is to assume no significant difference between the two interarrival times of the
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independent and dpeendent queue. The blue line represents the t-test between the independent
queue with low traffic load and the dependent queue with low traffic load at entrance 3 as well,
corresponding to the traffic loads of ’indep. queue’ and ’dep. queue low’ in Table 1 respectively.
Almost all the interarrival times of the t-test lie below the t-statistic of the test. Only for no
consecutive arrivals and 5 interarrivals, the t-statistic is lower than the t-test of the interarrival
times. This can be seen as a really strong correlation between the interarrival times of the low
traffic load dependent queue and the independent queue. For the dependent queues with medium
and high traffic load, some more interarrival times lie above the t-statistic of 95% CI, but those
still give a really strong connection as well. We can therefore conclude that for independent
queues and dependent queues, the departure process at the exit of the roundabout follow almost
the exact same interarrival times. For the medium and high traffic load, the same t-tests can
be performed on the coherence of the interarrival times for independent and dependent queues,
and the results of these t-tests are similar to the one in Figure 11. This reinforces the conjecture
that the interarrival times at the exit of roundabouts coincide for independent and dependent
queues.

The conclusion of this specific comparison study is that systems of three-way roundabouts with
self-dependent and self-independent queues have a near 95% probability that the probability
distribution of the interarrival times are equal to each other. Near, because not all interarrival
times of the dependent queues fall within the 95% CI, but yet approach the border of the interval.
However, the t-tests let us believe that there is no distinct difference between the interarrival
times at the exit of a roundabout for independent and dependent queues at the entrance of the
roundabout.

5.3 Theoretical framework and SUMO comparison

5.3.1 Heuristic for theoretical framework

As Figure 7 suggests, the theoretical framework from equation (6) and the simulations from
SUMO do not match. A practical explanation is that at entrance 2, whenever a vehicle is
blocked, it needs to accelerate from a total or partial stop. This means it takes more time for a
vehicle to reach the cell, resulting in a higher probability that not a consecutive occupation will
happen (Iexit = 0), but that one empty spot will be between a blocked vehicle at entrance 2 and
its predecessor from entrance 1 (Iexit = 1).

The introduction of an heuristic on the analytic model is therefore needed. Let πk = P (Iexit = k).
Then the following linear transformation will be made, where π̂ is the new probability mass
function:

π0 = π̂0 +
1

2
π̂1

πk = (1− 1

2k
)π̂k +

1

2k+1
π̂k+1

This transformation can be solved using a matrix expression Aπ̂ = π, only if k is finite. Then A is
the two-diagonal matrix with A(1, 1) = 1; diagonal entries A(i+1, i+1) = 1− 1

2i for i = 1, 2, ..., k
and super-diagonal entries A(j, j + 1) = 2−j for j = 1, 2, ..., k − 1. Since the first interarrival
times are of significantly more importance than the later interarrival times, it is sufficient to set
k = 100, and solve the linear system of equations.

This transformation is a guess that coincidentally fits well for low, medium and high traffic load.
However, a second linear transformation can be laid over the first heuristic to more accurately
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approach the simulation data. This second transformation will be called π̃ and the transformation
looks as follows:

π̃0 = π̂0

π̃1 = π̂1 +
1

2
π̂2

π̃k =
1

2
π̂k +

1

2
π̂k+1 , for k ≥ 2

In Figure 12, the results of this heuristic can be measured. Whereas the probability of the first
4 interarrival times do improve for π̂ and π̃ compared to π, but not improve so much that it lies
within the 95% CI, it can be observed that for higher interarrivals, π̃ approximates the simulation
data much better than π̂ and π. Furthermore π underestimates the probabilities found in the
simulation for interarrivals k = 1, k = 2 and k = 3 and for higher traffic loads also k = 4, but it
overestimates at k = 0 and all higher interarrival times k ≥ 5.
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Figure 12: Probability distribution of the interarrival times for low (5%) and medium (10%)
traffic load of simulations with size 4 · 105, the analytical model π, the analytical model with the
first heuristic, π̂, and the analytical model with the first and second heuristic, π̃.

A more robust heuristic to approximate the simulation can be found by looking at the behavior
of the probability distribution of the interarrival times of the analytical model π compared to the
simulation: let sk be the k’th proability of an interarrival of the simulation, and then analyse the
proportion between the two values. Figure 13 shows us a plot of y = πk

sk
on interarrivals k for 7

different traffic loads. Furthermore it contains a simple red line at y = 1. Firstly the interarrival
times that are underestimated by definition of the function y = πk

sk
are located below the red line

y = 1. We observe that for values above the red line, the interarrival times for traffic loads are
arranged from highest traffic load for high values of y to lowest traffic load on low values of y.
For values of y lower than 1, the interarrival times are arranged in reverse, so that the values of
the low traffic loads are closest to y = 1 and the values of the high traffic loads are furthest away
from y = 1. Furthermore the values of y for higher interarrivals, that is k > 5, seem to be equal
to some constant, apart from the highest traffic load of 15% which comes close to an overloaded
system. This allows us to perform some form of regression, in our case an exponential one. Let
us call p0 the average traffic load of p1 and p2, such that p0 = p1+p2

2 . An approximation of the
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Figure 13: Ratio of the interarrival times between analytical framework and SUMO. A traffic
load of x% means: p1 = p2 = p3 = x%

model for a non-overloaded system,

sk ≈ πk · 1

1 + e29p0−4.605
for k > 5

For the interarrivals k ≤ 3, a linear regression seems to fit on the difference between the in-
terarrival times for the various traffic loads. The following set of equations can therefore be
found:

s0 ≈ π0 ·
5

7.75 + 9 · p0

s1 ≈ π1 ·
10

6.07− p0

s2 ≈ π2 ·
9

9− 20 · p0

s3 ≈ π3 ·
5

5− 3 · p0
.

For k = 4, the non-overloaded system approaches the line y = 1, so no change is needed on π4.
For k = 5, most values of their corresponding value y lie somewhere between the red line y = 1
and the earlier mentioned constant that is used for k > 5. Therefore,

s5 ≈ π5 ·
2

2 + e29p0−4.605
.
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And so we end up with a third heuristic for the probability distribution of the interarrival times,
called ξk, where we use that the approximation sk is equal to the heuristic ξk:

ξ0 = π0 ·
5

7.75 + 9 · p0

ξ1 = π1 ·
10

6.07− p0

ξ2 = π2 ·
9

9− 20 · p0

ξ3 = π3 ·
5

5− 3 · p0
ξ4 = π4

ξ5 = π5 ·
2

2 + e29p0−4.605

ξk = πk · 1

1 + e29p0−4.605
for k > 5

(41)

In Figure 14, the approximation of ξk in comparison with SUMO can be seen for low (5%) and
medium (10%) traffic load. Both the low and medium traffic load are extremely close to the
distribution of their respective simulations.
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Figure 14: Probability distribution of the interarrival times for low (5%) and medium (10%)
traffic load of simulations with size 4 · 105 and the analytical model with heuristic ξ.

To test the probability distribution ξ, we look at cases where p1 = p2 = p3 is not necessarily true.
Let us look at cases where (p1, p2, p3) = (0.10, 0.05, 0.10) and (p1, p2, p3) = (0.05, 0.10, 0.10). We
find that p0 = p1+p2

2 = 0.075 for both of the transformation of πk to ξk. Since the probability
distribution of the interarrival times of the analytical model are symmetric in p1 and p2, ξk applies
to both simulations. Figure 15 shows the approximation of both interarrival time distribution
compared with a simulation of size 2.0 · 105.
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Figure 15: Probability distribution of the interarrival times of ξk and SUMO for p2 = p3 =
10%, p1 = 5% (red) and p1 = p3 = 10%, p2 = 5% (green)

It can be seen that the approximation ξ for a mixed traffic load still applies to a great extend
when compared with the simulations for light to moderate traffic loads.
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5.4 Case study 1: multiple connected roundabout

Figure 16: A chain of three-way roundabouts.

0 1 2 3 4 5 6 7 8 9 10

Interarrivals: time until next vehicle occupies a road slot

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

P
ro

b
a

b
ili

ty

Probability distribution of the interarrival times

for  and SUMO on a chain of roundabouts for high traffic load

Probability distribution for interarrival times 

Probability distribution for interarrival times in SUMO

Figure 17: Probability distribution of interarrivals at
the exit of a chain of roundabouts for high traffic load
of ξ and SUMO with simulation size 2.0 · 105.

Consider Figure 16, where Bernoulli ar-
rivals occur on the blue entrances, and
the departure process of the red exit is
investigated. The theoretical framework
from section 4 shows that the departure
processes on the green road segments,
which is the same as the arrival pro-
cesses of the roundabout in the middle,
both follow the probability mass func-
tion for the interarrival times ξk of equa-
tion (41), where πk = P (IX,Y = k).
Whereas the assumption always has been
that bernoulli arrivals occur on the en-
trance of a roundabout, now arrivals ac-
cording to ξ will happen at the entrance
of the middle roundabout of Figure 16.
However, we try to use the same theoret-
ical framework for the departure process
on the exit of the middle roundabout, so
that ξk will be compared to the probabil-
ity distribution of the interarrival times
that are found by the simulation of SUMO. Following this framework, the probabilities for inter-
arrival times are found in Figures 17 and 18. The approximations of the heuristic ξ once again
approximate the simulation well for the low and medium traffic load, with a small underestimate
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at k = 1. For high traffic load, Figure 17 shows a couple of clear underestimates at k = 1,
k = 4 and k = 6. An important observation is that the shape of the probability distributions are
similar in all different kinds of traffic load.
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Figure 18: Probability distribution of the interarrival times for low (5%) and medium (10%)
traffic load of simulations with size 2 · 105 and the analytical model with heuristic ξ.

5.5 Case study 2: chain of roundabouts

In section 5.4, it is found that the departure process of three linked roundabouts as depicted
in Figure 16 behaves strongly like the departure process of a single roundabout with bernoulli
arrivals at its entrances. We will now look at a chain of five roundabouts as depicted in Figure
19.

Figure 19: A chain of five roundabouts

The traffic flow on this chain of roundabouts is defined as follows: on the first roundabout,
the traffic flows from entrance 1 according to a Bernoulli process with probability p1 taking the
second turn towards the second roundabout, and at entrance 2 the same process occurs such that
with probability p2 vehicles arrive that take the first turn towards the second roundabout, and
with probability p3 vehicles arrive that take the second turn towards the exit on the opposite
road direction of entrance 1. This is exactly the same process as an independent roundabout
with low, medium or high traffic load as discussed in section 5.2. When the traffic flow arrives
at the second roundabout, half of the traffic load leaves the roundabout, and half of the traffic
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load moves on to the third roundabout. More specifically, half of the vehicles that come from
entrance 1 leave the second roundabout, and half of the vehicles that come from entrance 2 leave
the second roundabout, such that the traffic flow that can block vehicles from entrance 3 is equal
to p1+p2

2 . Meanwhile, at entrance 3 the same process occurs as at entrance 2: with probability p2
a vechile arrives that is taking the first turn towards the third roundabout, and with probability
p3 a vehicle arrives that is taking the second turn towards the first roundabout. This same arrival
process applies to all the remaining entrances 4, 5 and 6 as well. The routes of all the vehicles
are defined as follows:

• Routes for vehicles that arrive at entrance 1 with probability p1:

– 50% Enters at entrance 1 and leaves at the opposite side road of entrance 3.

– 50% Enters at entrance 1 and leaves at the main exit.

• Routes for vehicles that arrive at entrance 2 with probability p2:

– 50% Enters at entrance 2 and leaves at the opposite side road of entrance 3.

– 50% Enters at entrance 2 and leaves at the opposite side road of entrance 4.

• Routes for vehicles that arrive at entrance 3 with probability p2:

– 50% Enters at entrance 3 and leaves at the opposite side road of entrance 4.

– 50% Enters at entrance 3 and leaves at the opposite side road of entrance 5.

• Routes for vehicles that arrive at entrance 4 with probability p2:

– 50% Enters at entrance 4 and leaves at the opposite side road of entrance 5.

– 50% Enters at entrance 4 and leaves at the opposite side road of entrance 6.

• Routes for vehicles that arrive at entrance 5 with probability p2:

– 50% Enters at entrance 5 and leaves at the opposite side road of entrance 6.

– 50% Enters at entrance 5 and leaves at the main exit

• Vehicles that arrive at entrance 6 with probability p2 all leave the main exit.

• Vehicles that arrive at entrance 2-6 with probability p3 all leave at the opposite side road
of entrance 1.

For the interarrival times, not only the main exit is observed, but also the interarrival times at
the section between two roundabouts are recorded. The probabilities p1, p2 and p3 are once again
evenly distributed so that p1 = p2 = p3. In Figure 20 and the results of the interarrival times
are showed, compared with the analytical approach for the interarrival times ξk as formulated in
section 5.3.
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Figure 20: Probability distribution of the interarrival times for low (5%), medium (10%) and
high (15%) traffic load of simulations with size 2 · 105 and the analytical model ξ for a chain of
five roundabouts.
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Figure 21: Figure 20, only zoomed in on the plot with the low traffic load. When zoomed in on
medium and high traffic load, similar plots are obtained.

The first conclusion that can be drawn from Figure 20 is that the five interarrival distributions
between the roundabouts and at the exit all take on the same probability distribution for the
interarrival times of vehicles. Furthermore the analytical approximation ξk once again takes on
the form of the distribution of the interarrival times of all SUMO-results, which can be seen as
a nice result. Zooming in on the first (k = 0) and second (k = 1) interarrival times, two details
stand out: firstly, as can be seen in the left side of Figure 21, the interarrival k = 0 at the main
exit seem to have a slightly higher probability than other segments between roundabouts, and
in the right side of the same figure it can be seen that the interarrival k = 1 between the first
and second roundabout has a slightly higher probability than the other interarrival times. For
the interarrival k = 1 the explanation can be given that the departure process from the first
roundabout to the second is distinctly different as it has bernoulli arrivals on both entrances,
whereas the other roundabouts have a modified arrival process at the entrance that is connected
to the previous roundabout. The anomaly for k = 0 at the main exit of the roundabouts however
can not be explained by the same logic. In fact, there should be no cause for the interarrival times
at the main exit to behave different than the interarrival times on the road segments between
roundabouts. It might therefore just be a coincidence in the simulations.

Another detail that stands out is that it would have made sense if the interarrival times between
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the first and second roundabout would more closely follow the analytical approximation ξ: after
all the traffic load has not changed for the three-way roundabouts in Figures 19 and 5. The
only difference that can be observed is the geometry of the roundabouts is different: in Figure
19 there is a 90◦ angle between the first and second entrance, and another 90◦ angle between
the second entrance and the road segment that connects the first and second roundabout. In
Figure 5 however, these angles are 120◦. Therefore, even though it is a three-way roundabout,
the structure of the roundabout sligthly matters as well for the interarrival times at the exit of
a roundabout. This difference can also be observed in Figure 22

0 1 2 3 4 5 6 7 8 9 10

Interarrivals: time until next vehicle occupies a road slot

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

P
ro

b
a

b
ili

ty

Probability distribution of the interarrival times for ,

a simulation with 90 degree angles between entrances and 120 degrees between entrances

Probability distribution 

Interarrival distribution with 90
°
 angle

Interarrival distribution with 120
°
 angle

Figure 22: Difference between the simulations for three-way roundabouts with a different struc-
ture, together with distribution ξ.

Altogether, the conclusion that can be drawn from this case study is that the approximation ξ still
is a solid approximation. Furthermore a small difference is observed between the interarrival times
of a roundabout with only Bernoulli arrivals and a roundabout linked in a chain of roundabouts
as can be seen in Figure 19. Lastly it is observed that, given Bernoulli arrivals, the structure of
the roundabout matters as well for the departure process at the exit of a roundabout.
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5.6 Simulation of a four-way roundabout

Let us consider a classical four-way roundabout. From all four sides, traffic flow equals each
other: at entrance 1 the probability that a vehicle arrives is pc according to a bernoulli process,
and each vehicle has the same probability to leave the roundabout at exit 2, 3 or 4. For entrance
2, 3 and 4, the same principle holds. Furthermore the traffic load at entrance 1, 2, 3 and 4 is
evenly divided, so that at each entrance the probability that a vehicle arrives is equal to pc.
This means that the traffic load at one of the exits of the roundabout will also be pc. For the
theoretical framework πk = P (IX,Y = k), the probabilities p1 and p2 are symmetrical, and will
therefore be the same in that of the approximation of a four-way roundabout. Furthermore
p1 + p2 must equal the traffic load that leaves an exit of the roundabout. Therefore we find
that p1 = p2 = 1

2pc. For convenience p3 = 1
2pc, since it does not substantially influence the

probability distribution of the interarrival times, but it is a factor that is present. We will look
at different traffic loads again:

• low traffic load means pc = 0.06.

• medium traffic load means pc = 0.12.

• high traffic load means pc = 0.18.
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Figure 23: Probability distribution of the interarrival times of a fourway roundabout with sim-
ulation size 2.0 · 105 together with the analytical framework with interarrival times ξk.

In Figure 23, one can observe that the analytical framework with distribution ξk is more accu-
rate when the traffic load decreases. The larger the traffic load, the higher the more the first
two interarrival times k = 0 and k = 1 overestimate ξk, which will be compensated with an
underestimation on later interarrival times, for example k = 2, k = 4 and k = 6. However the
form of the probability distribution is preserved and therefore the approximation can be assessed
decently.
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6 Discussion

The theoretical approach of sections 3 and 4 is too simplified to accurately describe the depar-
ture process of a roundabout with Bernoulli arrivals. Therefore the heuristic ξ as described in
subsection 5.3 is needed. Moreover, the results of case study 2 of section 5.6 suggest that the
design of the roundabout plays a part in the interarrival times of the departure process. Another
argument can be given however, that the discrete measurement of vehicle positions enables for a
wider range of the probability distribution of the interarrival times. In SUMO, vehicles can only
’spawn’ on a certain timestep, unlike in continuous time, and that can cause an alteration in the
design of a roundabout to have a small impact on the probability distributions.

Furthermore the importance of a precise probability distribution of the interarrival times can be
questioned. In the context of linking roundabouts and its departure process in the bigger picture
of traffic networks, it certainly is of use. However, the arrival process towards roundabouts is
not always Bernoulli, for instance during rush-hours or congestions. Likewise the connection
between the arrival and departure processes of roundabouts and traffic-lights is missing, which
is an important link in traffic networks.

Other topics of interest are the fourway roundabout, specifically a theoretical framework equiv-
alent to the probability distributions (6) and (32). A direct approach is to find the queue length
distribution of the queue for a Geo/DGeo/1-queue, where the distribution of DGeo refers to
the interarrrivals of the delayed geometric distribution (6). Similar techniques that are used in
section 4 to find the interruptive vehicles that do not exit the roundabout at the place where the
departure process is measured can be performed, and as such the four-way roundabout can be
analyzed. As observed in section 5.2, the interference of other Bernoulli streams do not have an
effect on the departure process for three-way roundabouts, and it can be cautiously presumed
that for four-way roundabouts, this same principle holds.

A point of improvement could be to look at vehicular flow that moves at a higher speed than
20 km/h. This speed was chosen conveniently as it makes a discretization of ∆t = 2 seconds
possible. However, for practical use this does not translate to reality. Therefore a continuous
equivalent of the departure process would be a step in the right direction for future research.
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7 Conclusion and Recommendations

A basic DTMC is formulated to describe the behavior of vehicular flow on a roundabout and
the queues at the entrances of a roundabout for Bernoulli arrivals, which is used to find the
probability mass function of the interarrival times of vehicles on the roundabout in equation (6).
More importantly, the PMF of the interarrival times at the exit of a roundabout is described
in equation (32), allowing for a complete description of the departure process of a roundabout
given Bernoulli arrivals. Simulations show that the numerically obtained heuristic ξk is needed
to accurately approximate the interarrival times of a three-way roundabout.

Simulations additionally demonstrate that, given Bernoulli arrivals at each entrance, the depar-
ture process at the exit of a roundabout exhibits near exact interarrival times for self-dependent
and self-independent traffic flows, meaning that the departure process of a roundabout is equiva-
lent to the departure process of a priority road with Bernoulli arrivals. Furthermore the structure
of the departure process of a chain of three-way roundabouts with Bernoulli arrivals resembles
the departure process of a single three-way roundabout with Bernoulli arrivals. However, the
design of roundabouts have an effect on the departure times as well.

Future research should focus on the expansion of the theoretical framework on the classical four-
way roundabout. Additionally it is recommended to formulate the analogous continuous time
departure process at roundabouts. A necessity to fully understand traffic networks is to explore
the relationship between roundabouts and (actuated) traffic lights, which can be achieved by
looking at a combination of Bernoulli arrivals, batch arrivals or hyperexponential arrivals rather
than just Bernoulli arrivals.
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