Software on Internet of Things devices: monolithic
vs containerized

Jagvir Singh Bal,
j-s.bal@student.utwente.nl,
University of Twente,
The Netherlands

Abstract—This study compares container-based versus mono-
lithic application techniques while examining the performance
metrics when updating IoT devices. IoT device security is
in danger from flawed security implementations and ignored
updates. For each architecture, the effects of resource limitations
are looked at. The study aims to identify and compare these
challenges and their effects on updating IoT devices. Applications
built with containers are anticipated to perform better and be
easier to maintain. Tests are run to investigate these aspects.
The tests show that Django is able to manage resources better
compared to Flask, but the overall deployment of a container
application is easier to manage and scale up. This study sheds
light on IoT web application initialization and updating difficul-
ties. There seem to be advantages and disadvantages depending
on which implementation is used. The paper emphasizes the
advantages of container-based applications.

Index Terms—Internet of Things (IoT), monolithic application,
container-based application

1. INTRODUCTION

The speed at which new devices are connected to the
internet is increasing exponentially. The use of IoT devices
is increasing all across the world [1]].

The world is developing at a high rate at this also has
a similar effect on IoT devices. Technological advancements
lead to devices that have more software components. Devices
need to provide even more functionality and also need to create
support for new and upcoming services that make use of data
available on the internet [2].

However, the implementation of IoT devices as it is right
now does bring risks, such as exposing data of individuals or
falsifying data [3|]. Therefore, it is important that updating and
patching of these software components is done on a regular
basis to ensure that a certain level of security is maintained
and new vulnerabilities or attacks are neutralized.

In recent years, there has been notable attention towards
research on the process of updating software/firmware of
IoT devices. There are many challenges, mainly because of
limitations in IoT devices and networks [2[]. Examples of these
limitations include power consumption or memory availability,
and on a network there could be bandwidth constraints.
The ever growing complexity of current IoT systems and
deployments necessitates the management of software versions
and dependencies between the various software components
within a device or system, if this is not done complex systems
may easily stop functioning. It may be crucial to ensure that
updating such systems do not cause any disruption in the

service that they are providing, e.g. for IoT devices used
in the medical field. Additionally the process of updating
should not compromise the security of the system or any of
its components.

So, there is a need for a better approach to update IoT de-
vices while taking networks constraints into account in particu-
lar for remote IoT devices. The approach should be lightweight
and flexible. Because it is important that a suggested approach
can be used in different kinds of environments. IoT systems
can have different underlying communication technologies and
protocols [2]]. This is also one of the limitations of IoT systems.
This study looks at the two different ways an IoT device can
run an application, while monitoring the resources used on the
IoT device. First of all, the application can be run in monolithic
structure, meaning that the architecture is designed as a single,
self contained unit. The monolithic application and all its
components, modules and functionalities are tightly integrated
together. The application is deployed as a whole, there is no
separation between the management of the individual func-
tionalities. Secondly, we look at container based applications
which is an application that is split into containers which
are lightweight and isolated environments that encapsulate the
applications and its dependencies. The container provides a
standardized and portable way to run applications, and the
underlying architecture can be anything as all the necessary
information is available inside the container.

2. PROBLEM STATEMENT

The problem at hand are concerns in the field of IoT devices
with regards to software updates and vulnerability patches.
Specifically, there are cases that implementations of update
methods are flawed, such as the lack of proper software
patch signing, or in some cases even worse the disregards of
updates altogether. There is literature that describes challenges
with software updates on IoT devices [2f], but there is no
comparison between monolithic and container applications
when initializing or updating an application.

2.1 Research question

From the problem statement the following research question
is established.

What are the effects on the IoT device’s performance when
initializing and updating a container based application



compared to a monolithic application?

Sub-questions are as follows.

What is the initialization time?

What is the update time?

How is the CPU usage affected during initialization and
updating?

How is the memory affected when initialization and updating?
How is the storage effected when initialization and updating?

The research questions suggests a general comparison be-
tween the two different application structures. To access the
differences of the application we will make use of the sub
questions. The sub question focus of the different permorfence
metrics that will be collected.

3. RELATED WORK

As mentioned above there is an increase in complexity
of IoT systems. The development of monolithic systems has
reached its limitations, because in today’s large, complex,
and fast advancing technology such systems are slow and
inefficient. The monolithic system works as a whole so it
will need to be updated or adjusted as one unit. It would
not be possible to simply update partial parts of the system
on the go to maintain efficiency. So, connecting a lot of
devices to the internet has many benefits and possibilities,
but there is still room for improvement. This is the main
reason for the development of the container based applications,
this is comparable to microservices architecture. Instead of
maintaining a large amount of code, it is modularized. Modular
code is easier to update, fix and work with even for new
employees, they can more easily understand their task as it
is a specific module of the code [4].

The researchers in [5] talk about the use of microservices
approach to split up a monolithic application into a set of
distributed services. Also the best practices that are used in
microservices approach are investigated and considered to be
applied in IoT systems. This can lead to a high maintainability
and scalability. Similarly research [6] shows that implementing
a micoscerces-based IoT device can lead to benefits such as
better mitigation time, performance and impact on the IoT
device’s functionality.

4. RESEARCH SETUP AND DATA COLLECTION

The IoT device used in this project is a Raspberry Pi
4 Model B Rev 1.2. The operating system is the Linux
based, Raspberry Pi OS, specifically “Debian GNU/Linux 11
(bullseye)” [7]. All development and testing is done on the
raspberry through visual studio code using a SSH connection
from a windows machine. In this research we will compare two
web application deployments, both of them are based on the
python programming language. Raspberry Pi OS has python 3
[8]] installed by default. Besides python the packages manager
for python (pip) is also required. Pip is used to install python
packages also known as modules [9]]. The modules are pulled
from The Python Package Index(PyPI) [10]. Python and pip
are the minimum software requirements to get started. The

two different application deployments that will be tested are
using the Flask [11] and Django [[12]] modules respectively.

Flask is a micro web framework that does not have any
outside dependencies on external libraries. It is known to be
flexible and lightweight. The developer can create a more
personalized development environment, as per requirement
external libraries can be added.

On the other hand we will be looking at Django, a full
stack framework. This framework has a standard method for
web deployment. It also offers several extensions within the
framework to add more functionality such as forms, database
administration and authentication.

4.1 Docker setup

Docker version 24.0.5, build ced0996 will be used on the
Raspberry Pi to run the Flask application and a database in
a containerized manner. The installation guide can be found
in the docker documentation, It provides instructions on how
to setup docker on a system that is running Debian [[13]]. The
Docker software allows for virtualization on operating-system
level, using docker any kind of software can be packaged into
a container. The container is hosted by docker engine and can
be run on a system regardless of the OS or device that it is
hosted on.

4.2 Testing setup

The tests will be done using python. The python testing
programs can be found in the git repository [[14f]. The setup
sections of Flask and Django describe the structure of the
testing programs. The overall structure of each programs is
similar. Series of commands are being executed for initial-
ization and afterwards for updating while measurements are
taken. It is Important to note that the measurements must be
taken while the commands are executed and running.

Python has a module called subprocess [15] that will be
used to take measurements while other commands are run.
Subprocess enables the creation of new processes and connect
to their inputs, outputs or errors, and obtain return codes.
For this project subprocesses: run, Popen and check_output
will be used. When initiating a command using run, the
command is executed and the program will wait until the
command is finished to move on in the program. Popen is used
to run the measuring commands. These commands run like
child programs within the program so that the measurements
are taken simultaneously with the initialization and update
commands sequences. The check_output is used to read the
output of a command, which is used to determine if the
database is operational.

4.3 Flask setup

Firstly we look at a containerized approach to deploying a
web application. For this purpose, we use the Flask framework
to setup a web application that has a database. Flask version
2.3.2 is used. We start with a local Flask web application.
This needs to be turned into an image to be able to run in
a container. First a Dockerfile needs to be defined within the



local project, this file contains the instruction on how to build
the image. It starts by installing and setting up python 3.9.2
[8] in the image. This python version comes with pip 21.0.1.
Next we must define any python modules that are used in the
project. In our case, the Flask module is needed to build a
Flask application. Flask is added to the requirement by put
it in the requirements.txt file in the local project directory.
Additionally a module called mysql-connector-python 8.1.0 is
required to connect the web app to the database. Using pip
this requirements.txt file is installed in the image. Then the
application data is copied from the local project in to the
image, and lastly the Dockerfile defines how to execute the
Flask application within the image. After the image has been
created docker can be used to run the image in a container
[16].

The database will to be setup as a separate container, given
that we would like to test a containerized application. We will
be using a MySQL database for this project. The standalone
image created from the local Flask application can be run using
the docker run command, similarly is it possible to setup a
image for the database part of the application. But an easier
way to setup the database is to make use of docker compose
[17]. Like the aforementioned Dockerfile, docker compose
makes use of configuration data from a human-readable data-
serialization language (YAML) file to create the Flask and
database images respectively using only one configuration file
[18]].

The web application and MySQL database are defined as
services within the configuration. Any number of services can
be added to the configuration this is how an application can be
split up in to different micro-services. Upon executing docker
compose the Flask web app image is created and the database
image for MySQL is pulled from docker hub [19]. The version,
also known as a tag, is specified in the YAML file. This is
essential because the YAML file needs to be modified to apply
updates to the app as part of the testing. The local Flask
application folder also contains a database initialization file
which is associated with the database service defined in the
YAML file by using the same name. The database service is
”db”, the local application contains a sub folder with the same
name.

4.4 Django setup

Secondly we look at a monolithic web application deploy-
ment using the Django framework. We start by setting up
virtual environment(venv) for python. The venv [20] is created
on top of the existing python installation and is isolated from
the packages that are installed on the system. This step is
comparable with the the python installation in the docker
container from the Flask initialization. After the venv has been
setup all the testing will happen in this environment.

First of all the Django 4.2.4 package will be installed
in the venv. After the installation a blank Django project
is generated. This procedure is simple because Django, as
monolithic framework, has all the necessary information in the
Django generated project to launch a basic web application.
By default Django makes use of sqlite3 database back end.

We would like to use a MySQL database in this project.
But during the setup of the Django app it was found that
MySQL has stopped support for the Debian operating system
[21]. So instead of MySQL a PostgreSQL 13 database will
be used for testing. The setup procedure is simple using the
Django documentation. After setting up the web app, the
database details can be setup in the settings.py file within the
project directory [22]. For Django to work with a PostgreSQL
database, we first need install PostgreSQL on the Raspberry Pi.
The python module called psycopg2-binary 2.9.6 is required
for PostgreSQL to function and needs to be installed in the
venv.

As mentioned before configurations for the Django appli-
cation can be done in the settings.py. During the initialization
the following PostgreSQL database information will be added:
database engine, name of the database, username, password,
network address and port [23]]. Besides this it needs to be
specify that the web application should be viable on the
localhost, by default the application cannot be accessed.

4.5 Data collection setup

During the test execution the initialization time, CPU uti-
lization, memory usage, storage usage is collected. Time-
related measurements are done in the Raspberry Pi using
the python module time. For the performance measurements
vmstat from procps-ng 3.3.17 [24] is used. Vmstat is a
performance monitoring command for Linux. The parameter
used for vmstat is 1 this is the minimum, meaning the values
will be re-measured and reported every second. The data
output by vmstat will be converted to graphs by using the
online tool vmstatly, developed by jsargiot [25]. The power
composition cannot be measured since the Raspberry Pi does
not support the way powerstat estimates power usage [20].
All the collected data is stored in .txt files. The initialization
time for the Flask app consists of the time it takes to build
and docker compose up the application. That means the total
time is take to run the Flask service and the database service
according to the docker configuration file. The initialization
time for the Django app consists of the time spend generating
the app with the correct database setup. In the following test
we look at the same measurements when applying a update to
the database for both deployments.

In addition to automated tests the localhost is checked
after completion of every test, to ensure the web application
behaved as expected. The expected behaviour is that the two
pages of the web application load. The homepage displaying
text, and a second page accessing and printing the initial
database table.

5. RESULTS

In the following section, there is an overview of all the
data that has been collected. Most of the results have been
graphed and tables have been added where two different setups
are compared. The in-depth analysis can be found in the next
section.



5.1 Flask
5.1.1 Initialization testing

In you will find the time measurements of test 1,
building a Flask application with no cached data.
provides the measurements for test 2, essentially rebuilding
the app with cached data. show building with only
python in cache and[Table 4] with only MySQL in cache, which
function as tests 3 and 4 respectively.

TABLE 1
BUILD WITH NO CACHED DATA

TABLE 2
BUILD WITH CACHED DATA

Initialization task ~ Time in seconds Initialization task ~ Time in seconds

Total: 379.36 Total: 70.79

Application: 315.71 Application: 6.68

Database: 63.61 Database: 64.05
TABLE 3 TABLE 4

BUILD WITH ONLY PYTHON CACHED BUILD WITH ONLY MYSQL CACHED

Initialization task  Time in seconds Initialization task

Time in seconds

Total: 160.98 Total: 303.16
Application: 95.75 Application: 236.13
Database: 65.19 Database: 66.00

to [] show CPU stats over time during the four

initialization tests that have been run.

CPU STATS

100

- wa

Fig. 1. CPU stats during Flask initialization

CPU STATS
100

Fig. 2. CPU stats during Flask initialization test with cache

CPU STATS
100

Fig. 3. CPU stats during Flask initialization with python cache

CPU STATS
100

us sy id
Fig. 4. CPU stats during Flask initialization with MySQL cache

us: percentage of cpu used for running non-kernel code.
sy: percentage of cpu used for running kernel code.

id: cpu idle time in percentage.

wa: percentage of time spent by cpu for waiting to IO.

Figures 5 to 8 show memory stats during the initialization
testing.

MEMORY STATS
an

2 om

m

oM

0 50 100 150 200 250 300 350
free buff cache
Fig. 5. Memory stats during Flask initialization
MEMORY STATS

3 000k

2 500k

2 000k
2 1500k

1000k

500k

free buff cache

Fig. 6. Memory stats during Flask initialization with cache



3 000k

2 500k

2 000k

KB

1000k

500k

Fig.

3 000k
2 500k

2 000k

KB

1500k

1000k

500k

1500k

MEMORY STATS

free buff cache

Memory stats during Flask initialization with python cache

MEMORY STATS

free buff cache

Fig. 8. Memory stats during Flask initialization with MySQL cache

free: Idle Memory
buff: Memory used as buffers, like before/after I/O operations
cache: Memory used as cache by the Operating System

Figures 9 to 12 show disk stats during the initialization testing.

100k

80k

60k

BLOCKS

40k

20k

20k

10k

BLOCKS

Fig.

10 STATS

Fig. 9. Disk stats during Flask initialization

10 STATS

10. Disk stats during Flask initialization with cache

10 STATS
100k

80k

60k

BLOCKS

40k

bi bo

Fig. 11. Disk stats during Flask initialization with python cache

10 STATS
100k

50k

BLOCKS

bi bo

Fig. 12. Disk stats during Flask initialization with MySQL cache

bi: Blocks received from block device - Read (like a hard disk)
bo: Blocks sent to a block device - Write

shows the total storage used for each initialization test.

TABLE 5
STORAGE USED FOR INITIALIZATION TESTING
Test | Used storage in GB
1 1.65
2 0.19
3 1.65
4 0.67

5.1.2 Update testing

For updating the MySQL database running with Flask the
following two tests were conducted. The first pulls the new
database version from docker hub, see the results in
The second test does the update with a cached newer version
of the database, see the results in [lable 7

TABLE 6 TABLE 7
BUILD WITH PULLING MYSQL:8.0.34 BUILD WITH MYSQL:8.0.34 CACHED

119.39 seconds 10.27 seconds
0.59 GB 0.00 GB

Update time:
Space used

Update time:
Space used

Figures 13 and 14 display CPU stats during the update of the
database.



CPU STATS 10 STATS
125 100k
100 B0k
5 » 00k
4
2 g
E
g
50 40k
) M )
0 Ok
0 20 40 B0 80 100 0 20 40 60 80 100
us sy id -+ wa bi bo

Fig. 13. CPU stats during updating Fig. 17. Disk stats during updating

CPU STATS

10 STATS

100

BLOCKS

bi bo
Fig. 14. CPU stats during updating with cache
Fig. 18. Disk stats during updating with cache

Figures 15 and 16 display memory stats during the update of
the database.

MEMORY STATS 5.2 Django
2500k 5.2.1 Initialization testing
2000k
provide time measurements for the Django application
initialization for the first test with no cache. displays
the time measurements with cached data.

KB

1500k
1000k
500k

0 20 40 60 80 100 TABLE 8 TABLE 9
free buff cache BUILD DJANGO BUILD DJANGO WITH CACHE

Initialization time:  134.54 seconds Update time:  38.41 seconds
Fig. 15. Memory stats during updating Space used 0.21 GB Space used 0.00 GB

and show the CPU stats while the Django

MEMORY STATS

3000k application is initialized.
2 500k
2 000k CPU STATS
125
£ 1500k
100
1000k
500k s
=
Ok 50
] 2 4 6 8 10
free buff cache
Highcharts.com 25
Fig. 16. Memory stats during updating with cache . x_/\J\_/\d_j\_/d\_A'\_/M\_/\_A_/
0 20 40 60 20 100 120
us sy id - wa

Figures 17 and 18 display disk stats during the update of the
database. Fig. 19. CPU stats during Django initialization test 1



CPU STATS

100

us sy id wa

Fig. 20. CPU stats during Django initialization test 2

and [22] show the memory stats while the Django

application is initialized.

MEMORY STATS
3 000K

2 500k
2 000k

1500k

KB

1000k
500k

o 20 40 60 20 100 120

free buff cache

Fig. 21. Memory stats during Django initialization test 1

MEMORY STATS
3 000K

2 500k
2 000k

1500k

KB

1000k

500k

free buff cache

Fig. 22. Memory stats during Django initialization test 2

and [24] show the disk stats while the Django

application is initialized.

10 STATS
80k

60k

40k

BLOCKS

20k

Fig. 23. Disk stats during Django initialization test 1

10 STATS
2500

2000

1500

BLOCKS

1000

bi bo

Fig. 24. Disk stats during Django initialization test 2

6. DISCUSSION
6.1 Flask and Django initialization

By comparing through 2] it is found that there is a
difference in build time when cached data is used. The test in

needs to pull all the data, this is then cached and the
test in uses this data to run the initialization process.
The database initialization time is effectively equivalent, con-
sidering all tests. The graphs indicate that a significant amount
of time is spend on pulling data from the internet, that is either
from docker hub or PyPI in this case. Comparing and ]
it can be seen that having python over MySQL cached results
in a faster build time. This means that the network plays a
big role in the initialization and should be further explored in
future work.

According to tables 2] [8] and [9] the build time for
the Flask application is longer when compared to the Django
times. Flask is slower by 244.82 seconds with no cached data
internet and 32.38 seconds slower with cache. No cache means
that the python installer and MySQL image need to be pulled
from the internet. Thus we find that the initialization time
is faster for setting up the monolithic Django framework. The
steps required to setup Django are also easier compared with a
the Flask application. This is mainly because Django contains
all the necessary information to run the application, where as
Flask is run using docker and thus has to create the container
environment. If Flask is run by itself without the use of docker
the setup is as easy as the Django application, but that is not
relevant for this project’s scope.

6.2 Testing limitations

After reestablishing a SSH connection with the Raspberry
Pi, or restarting the device, and running the initialization test,
the Flask web application is not accessible or visible on the
local network. During testing this is fixed by running “docker
compose up” by itself in the terminal before running the test
file. The test file executes the docker compose up in detached
mode using parameter -d. This is the reason that the port of
the Flask web application is not opened. This would not be
relevant in a normal use case of an IoT device, but rather a
result of the Raspberry Pi having to self monitor during the
execution of the docker compose. Future work could look into
monitoring the IoT device by using a second device.

When setting up Django it was found that MySQL has been
deprecated for the Debian OS, but by using docker you are



still able to run it on the Raspberry Pi. Docker is able to
port the current version of MySQL to the ARM architecture
of the Raspberry Pi. This is one benefit of using docker to
containerize an application. This change in the setup will not
affect the results, because differences between these two types
of databases can mainly be seen when querying. In our case,
we look at the initialization.

The python testing script is unable pass commands to
PostgreSQL. Before testing PostgreSQL has been installed
manually, to set define three parameter. The user, password
and a database name is defined [27]. These operation are
simple command that are send to PostgreSQL, they have no
significant impact on the test. They are necessary to run the
test. PostgreSQL is uninstalled after the parameters are set.

6.3 CPU metrics

Looking at the CPU usage in through [ the idle
time drops significantly at the start of each test. According to

the tests this is when the docker compose is started. The CPU
usage related to non-kernel code increases, this is all code not
related to maintaining the continues operation of the operating
system. This is relevant, because the test executes a series of
commands which are not related to kernel operation. The sy,
kernel related CPU usage seems to be steady throughout all the
different tests. The us and id lines from the through
H] show a clear pattern of opposites in the CPU stats data.
The wa, time the CPU spends on waiting on 10. Throughout
test 1 with cached data and test 2 without cached data, in
IFigure 1| and [2| respectively, there seem to be significant
spiking in wa after the tests are at the halfway point. It is
notable that after the halfway point both tests have a steady
increase in wa. This is explained by the image being extracted
after it has been pulled. The steady increase towards the end
could be explained by the database initialization. Tests 3 with

python cache and 4 with MySQL cache, in and
H] seem to show a similar pattern, but with a lower usage

overall. of Django initialization has a high peak
at the halfway point this is when the PostgreSQL installation
started. Similarly, to Flask is idles towards the end of the test
when the application is started. It is notable that overall the
Django application puts less load on the CPU.

6.4 Memory metrics

The most interesting part of the memory usages is looking
at the cache line in through [8] In the first test when
there is no cached data available for the test it is notable that
during the test more data is cached. The could be explained
by the images being pulled and cached for use later in the test.
During the second test it can clearly be seen that no new data
is being cached as the graph is steady throughout the whole
duration of the test. This can be explained by the fact that the
application data is directly available in the storage.

In the last two tests some data is being cached as only a
part is available is the storage, so the overall usage is less then
the first test. The buffer is not relevant as there are no changes
during testing. For the idle memory it can be said that the
graph mostly runs as an opposite to the memory used as cache.

As the memory in use is subtracted from the overall available

memory. Comparing with [21] it is notable that Django
used less memory overall during the while duration of the test.

6.5 Disk metrics

In the disk usage we first look at bo, write operations during
the tests. Apart from the end of Flask test 1 with cache there
seems to be near zero reads happening during the tests. The
storage writes have a similar pattern to the memory usage.
Test 1 has the most usage and, with all data cached test 2 the
least. Tests 3 and 4 have different pattern, so writing happens
differently depending on what needs to be written to storage
either the python or MySQL image. The storage used to run
each test can be found in

The is no clear pattern in the disk usage that can be
explained by using the CPU or memory stats from
through [Figure 24 [Figure 23] show a significant spike at the 80
seconds mark, this is likely due to the database being installed.
In there is a spike for disk writing at the start this
because cached data is used to initialize the application. The
spike is explained be the pyhton venv setup at the start of the
test.

In the cached testing memory is even more stable. The
CPU and disk activity has moved towards the beginning of
the test.

6.6 Updating Flask

The results of the update tests can be found in table 6 and
7. When applying a update to the Flask application most
of the test duration is spend on downloading the updated
database image. The update itself is completed within 10.27
seconds, see table 7. As mentioned before network plays an
important role when initializing and also when updating.

Figure 13 and 14 show the CPU usage when updating. The
non-kernel code increases and the CPU idle time percentage
goes down. During the update test a newer image in down-
loaded and the container is rebuild, these processes are all part
of non-kernel code.

There is more free memory when cached data is used,
this is depicted in figure 16. In figure 15, there are multiple
writes to storage this is not the case in figure 16, because the
cached data is used.

6.7 Updating Django

There is no data available for update testing using the
Django environment, because running the measurements from
the same device as the tests it self proved to be difficult. There
is an opportunity to look at this aspect in future work.

7. FUTURE WORK

It was notable that network play an important role when
in comes to building an application both on the Django
framework and also with Flask. In future testing the network



of the IoT device should be monitored. This is relevant in
a real world case, because while initialization could be done
using a local device the same cannot be said about applying
updates. In most cases updates are applied remotely so the
stability and bandwidth of the network are important factors
to monitor.

During testing with Flask and Django, it was found that
measuring on the same device where the test are being run
creates limitations. For future work the use of a secondary
device or attachments to the IoT device should be considered
for measurements. For power consumption a breakout board
such as the INA219 could be used [28]).

8. CONCLUSION

Based on the results we can conclude that the Django
monolithic framework uses less resources overall. Making
use of a containerized Flask deployment does have benefits
even though it would cost more resources to initialize. The
flexibility that the container-based system offers allows for
greater scalability. Based on the exact implementation and
scale of any IoT device a trade needs to be made between the
resources required to maintain, update, and patch the device
over its service lifetime and the resources available on the
device, and the initial cost associated with it.

9. ACKNOWLEDGMENT

I would like to express my appreciation to my supervisor
S. Simonetto and my coordinator dr. ir. A. Chiumento for
providing me with the opportunity to conduct this research
and for their guidance throughout.

REFERENCES

[1] R. Kandaswamy and D. Furlonger. Blockchain-based
transformation. [Online]. Available: https://www.gartner.com/en/doc/
3869696-blockchain-based- transformation-a- gartner- trend-insight-report/
J. L. Hernandez-Ramos, G. Baldini, S. N. Matheu, and A. Skarmeta,
“Updating iot devices: challenges and potential approaches,” in 2020
Global Internet of Things Summit (GIloTS), 2020, pp. 1-5.

V. Hassija, V. Chamola, V. Saxena, D. Jain, P. Goyal, and B. Sikdar, “A
survey on iot security: Application areas, security threats, and solution
architectures,” IEEE Access, vol. 7, pp. 82721-82743, 2019.

P. Krivic, P. Skocir, M. Kusek, and G. Jezic, “Microservices as agents
in iot systems,” in Agent and Multi-Agent Systems: Technology and
Applications, G. Jezic, M. Kusek, Y.-H. J. Chen-Burger, R. J. Howlett,
and L. C. Jain, Eds. Cham: Springer International Publishing, 2017,
pp. 22-31.

B. Butzin, F. Golatowski, and D. Timmermann, “Microservices approach
for the internet of things,” in 2016 IEEE 21st International Conference
on Emerging Technologies and Factory Automation (ETFA), 2016, pp.
1-6.

U. Maroof, A. Shaghaghi, R. Michelin, and S. Jha, “irecover: Patch
your iot on-the-fly,” Future Generation Computer Systems, vol. 132,
pp. 178-193, 2022. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0167739X22000589

Debian gnu/linux 11 (bullseye). [Online]. Available: https:/www.
debian.org/releases/bullseye/

Python 3.9.2. [Online]. Available: https://docs.python.org/release/3.9.2/
whatsnew/changelog.html#changelog

Pyhton pip. [Online]. Available: https://pypi.org/project/pip/

Pypi - the python package index. [Online]. Available: https://pypi.org/
Pyhton flask. [Online]. Available: https://pypi.org/project/Flask/
Pyhton django. [Online]. Available: https://pypi.org/project/Django/
Install docker engine on debian. [Online]. Available: https://docs.
docker.com/engine/install/debian/

(2]

(3]

[4]

(31

(6]

(71
(8]

(9]
[10]
[11]
[12]
[13]

[14]
[15]
[16]

[17]
(18]

[19]
[20]

[21]
[22]
(23]
[24]
[25]
[26]
[27]

[28]

J. S. Bal. [Online]. Available: |https://gitlab.utwente.nl/jagvir/!
research-project.git
subprocess — subprocess management. [Online]. Available: https:

/ldocs.python.org/3/library/subprocess.html

Build and deploy a flask app using docker. [Online]. Available:
https://blog.logrocket.com/build-deploy-flask-app-using-docker/
Docker compose. [Online]. Available: https://docs.docker.com/compose/
Deploy flask-mysql app with docker-compose. [Online]. Available: https:
/Iwww.devopsroles.com/deploy-flask-mysql-app-with-docker-compose/

Docker hub, mysql. [Online]. Available: https://hub.docker.com/_/mysql
venv — creation of virtual environments. [Online]. Available:
https://docs.python.org/3/library/venv.html

Mysql product support eol announcements. [Online]. Available:

https://www.mysql.com/support/eol-notice.html

Writing your first django app. [Online]. Available: |https://docs.
djangoproject.com/en/4.2/intro/tutorial01/

Django documentation databases. [Online]. Available: |https://docs.
djangoproject.com/en/4.2/ref/settings/#databases

Vmstat. [Online]. Available: https://man7.org/linux/man-pages/man8/
vmstat.8.html

vmstatly by jsargiot. [Online]. Available: https://github.com/jsargiot/
vmstatly

0 w value in debian. [Online].
ColinlanKing/powerstat/issues/3
Setting up a postgresql database on a raspberry pi. [Online]. Available:
https://pimylifeup.com/raspberry- pi- postgresql/

Raspberry pi ina219 tutorial. [Online]. Available: https://www.rototron.
info/raspberry-pi-ina219-tutorial/

Available: |https://github.com/


https://www.gartner.com/en/doc/3869696-blockchain-based-transformation-a-gartner-trend-insight-report/
https://www.gartner.com/en/doc/3869696-blockchain-based-transformation-a-gartner-trend-insight-report/
https://www.sciencedirect.com/science/article/pii/S0167739X22000589
https://www.sciencedirect.com/science/article/pii/S0167739X22000589
https://www.debian.org/releases/bullseye/
https://www.debian.org/releases/bullseye/
https://docs.python.org/release/3.9.2/whatsnew/changelog.html#changelog
https://docs.python.org/release/3.9.2/whatsnew/changelog.html#changelog
https://pypi.org/project/pip/
https://pypi.org/
https://pypi.org/project/Flask/
https://pypi.org/project/Django/
https://docs.docker.com/engine/install/debian/
https://docs.docker.com/engine/install/debian/
https://gitlab.utwente.nl/jagvir/research-project.git
https://gitlab.utwente.nl/jagvir/research-project.git
https://docs.python.org/3/library/subprocess.html
https://docs.python.org/3/library/subprocess.html
https://blog.logrocket.com/build-deploy-flask-app-using-docker/
https://docs.docker.com/compose/
https://www.devopsroles.com/deploy-flask-mysql-app-with-docker-compose/
https://www.devopsroles.com/deploy-flask-mysql-app-with-docker-compose/
https://hub.docker.com/_/mysql
https://docs.python.org/3/library/venv.html
https://www.mysql.com/support/eol-notice.html
https://docs.djangoproject.com/en/4.2/intro/tutorial01/
https://docs.djangoproject.com/en/4.2/intro/tutorial01/
https://docs.djangoproject.com/en/4.2/ref/settings/#databases
https://docs.djangoproject.com/en/4.2/ref/settings/#databases
https://man7.org/linux/man-pages/man8/vmstat.8.html
https://man7.org/linux/man-pages/man8/vmstat.8.html
https://github.com/jsargiot/vmstatly
https://github.com/jsargiot/vmstatly
https://github.com/ColinIanKing/powerstat/issues/3
https://github.com/ColinIanKing/powerstat/issues/3
https://pimylifeup.com/raspberry-pi-postgresql/
https://www.rototron.info/raspberry-pi-ina219-tutorial/
https://www.rototron.info/raspberry-pi-ina219-tutorial/

	Introduction
	Problem statement
	Research question

	Related work
	Research setup and data collection
	Docker setup
	Testing setup
	Flask setup
	Django setup
	Data collection setup

	Results
	Flask
	Initialization testing
	Update testing

	Django
	Initialization testing


	Discussion
	Flask and Django initialization
	Testing limitations
	CPU metrics
	Memory metrics
	Disk metrics
	Updating Flask
	Updating Django

	Future work
	Conclusion
	Acknowledgment
	References

