

Bachelor Thesis Industrial

Engineering and Management

Optimizing Route

Planning for Connected

Green’s Customers

 Author:

 J. Kortekaas (Jordi)

S2376997

Supervisors University of Twente:

1. Dr.ir. E.D. Lalla (Eduardo)

2. Dr.ir. L.L.M van der Wegen (Leo)

 20-09-2023 Supervisor Connected Green:

H. Schaap (Hans)

Faculty: Behavioural, Management and Social Sciences (BMS)

CONTENTS

1 Introduction 7
1.1 Company description . 7
1.2 Action problem . 8
1.3 Problem identification . 8

1.3.1 Gap between norm and reality . 9
1.3.2 Research questions . 10
1.3.3 Scope . 11
1.3.4 Limitations and Restrictions . 11

2 Context Analysis 12
2.1 Connected Green . 12
2.2 The customers of Connected Green . 12

2.2.1 Personal . 13
2.2.2 Small number of sensors . 13
2.2.3 High number of sensors . 13

2.3 Connected Green their dashboard . 13
2.3.1 Project overview . 14
2.3.2 Sensor overview . 14
2.3.3 Map . 15

2.4 Current route planning . 16
2.4.1 Sensor Identification . 16
2.4.2 Route Mapping . 16

2.5 Routing characteristics and requirements . 16
2.5.1 Vehicle types and road access . 17
2.5.2 Sensor information . 17
2.5.3 Water refill point . 18
2.5.4 Watertank capacities . 18

2.6 Assumptions . 18
2.6.1 Number of trees or flower boxes per sensor 19
2.6.2 Water demand per sensor . 19
2.6.3 Start- and endpoint . 19
2.6.4 Service time per sensor . 19
2.6.5 Vehicle types . 19
2.6.6 Car specific routes . 19

2.7 Constraints . 20
2.7.1 Road accessibility . 20
2.7.2 Water tank capacity . 20

2.8 Key Performance Indicators . 20
2.8.1 Total distance . 20
2.8.2 Total driving time . 20

2.9 Moving ”South” route planning strategy . 20
2.10 Conclusion . 21

1

3 Theoretical Framework 23
3.1 The Traveling Salesman Problem and Vehicle Routing Problem 23

3.1.1 The Traveling Salesman Problem . 23
3.1.2 The Vehicle Routing Problem . 24
3.1.3 Identification of Connected Green their Vehicle Routing Problem 24

3.2 Solution approaches for Vehicle Routing Problems 26
3.2.1 Exact algorithms . 26
3.2.2 Heuristics . 26

3.3 Tools for solving a Vehicle Routing Problem . 29
3.3.1 OR-tools . 29
3.3.2 Gurobi . 29
3.3.3 PuLP . 30
3.3.4 Tools that will be used . 30

3.4 Case Studies . 30
3.5 Conclusion . 31

4 Solution Design 32
4.1 Description of the problem . 32

4.1.1 Problem description . 32
4.1.2 Parameters . 32
4.1.3 Decision variables . 33
4.1.4 Objective function . 33
4.1.5 Constraints of the objective function . 33

4.2 Requirements of the solution model . 33
4.3 Assumptions . 34
4.4 Heuristics . 34

4.4.1 Nearest Neigbourhood algorithm . 34
4.4.2 Ant Colony Optimization algorithm . 38

4.5 Solution model . 43
4.5.1 Loading in all relevant data . 43
4.5.2 Graphhopper . 44
4.5.3 Folium . 44

4.6 Conclusion . 45

5 Evaluation and implementation 46
5.1 Experimental design . 46

5.1.1 Dataset . 46
5.1.2 Scenarios . 48
5.1.3 Key Performance Indicators . 49
5.1.4 Validation of the experiments . 49

5.2 ACO tuning . 49
5.2.1 ACO and Nearest Neighbour combination 50
5.2.2 ACO without Nearest Neighbour . 51

5.3 Tested against . 52
5.4 Experiments . 52

5.4.1 Tractors . 52
5.4.2 Cars . 54
5.4.3 Combination of vehicles . 57
5.4.4 Combination of tractors and cars, where tractors visit the sensors outside

the city centre and cars the sensors in the city centre 61
5.4.5 Solution model output . 65
5.4.6 Experiment conclusion . 65

2

5.5 Evaluation plan and implementation plan . 67
5.5.1 Implementation plan . 67
5.5.2 Evaluation plan . 68

5.6 Conclusion . 69

6 Conclusion 70
6.1 Conclusions . 70
6.2 Recommendations . 71
6.3 Further research . 72
6.4 Contributions . 72

6.4.1 Theoretical contribution . 72
6.4.2 Practical contribution . 72

6.5 Limitations . 73

References 74

A Appendix 76
A.1 Appendix A: Taxonomies . 76

3

ACKNOWLEDGEMENT

Dear reader,

You are about the read my bachelor thesis that will complete my Bachelor Industrial Engineer-
ing and Management (IEM) at the University of Twente. The research for this thesis has been
conducted at Connected Green. However, before you proceed with reading the thesis I would
like the people who have supported and guided me through the process of this research.

First, I would like to thank Hans Schaap, my company supervisor, for the opportunity to conduct
the research for my bachelor thesis at Connected Green and for the guidance he has given me
throughout the process. Furthermore, I would like to thank the employees of Curious Inc. (the
parent company of Connected Green) for the warm welcome they gave me when I first started
my research.

Secondly, I would like to thank dr. Lalla, who was my supervisor of the University of Twente.
From the start of creating the project plan until the end of the thesis, he has been supporting
and guiding me. The feedback dr. Lalla provided me throughout the process, has given me
a different perspective which has helped in writing my thesis. Furthermore, I want to thank dr.
van der Wegen for being my second supervisor. Finally, I would like to thank my friends and
family for their support during the research.

Kind regards,

Jordi Kortekaas

Enschede, August 2023

4

MANAGEMENT SUMMARY

This research has been performed at Connected Green, a Curious Inc. company located in
Hengelo. Connected Green focuses on giving data insight into green projects, such as planting
new plants and trees. It does this by selling soil moisture sensors which are planted near
the roots of these plants or trees. These sensors send the measured moisture levels to a
dashboard. This dashboard indicates which plants or trees currently need the most attention
in terms of watering. The customers of Connected Green use these insights to monitor their
green projects and plan irrigation routes when the sensors indicate the plants or trees are too dry.
These irrigation routes are driven by cars or tractors with large water tanks. As these routes are
often quite costly, it is valuable to have a planning strategy which produces irrigation routes that
are close to optimal. However, the current planning strategies employed by the customers of
Connected Green are far from optimal. To solve this problem, this research focuses on creating
a solution model that will automate the irrigation route planning for the customers of Connected
Green. Therefore, the main research question of this thesis is formulated as follows:

What is the most effective approach to develop an optimal route planning model, and how can
it be leveraged by Connected Green to minimize the costs incurred by their customers?

To develop a solution model for the customers, it is first necessary to understand the situation
at both the customers and Connected Green. To do this, a contextual analysis has been per-
formed. In discussions with Connected Green’s customers and employees and the information
from the dashboard, a better insight into the current route planning strategies, constraints, cus-
tomer requirements, and Key Performance Indicators is achieved. The current route planning
strategies were identified to be far from optimal, ranging from strategies which visit every sen-
sor regardless of needing irrigation to strategies which start at the most northern sensor and by
driving south visit each sensor closest to the current sensor until all sensors are visited. The
constraining factors for the model were identified to be road accessibility and water tank ca-
pacity. Where road accessibility means that some vehicles are not allowed or are unable to
drive on certain roads, for example, a tractor which is too wide to drive on a narrow road. The
water tank capacity refers to the amount of water a vehicle can carry during an irrigation route.
Furthermore, the Key Performance Indicators were identified as the route’s total distance and
driving duration.

After the contextual analysis, a literature study was conducted to find the best route-planning
strategy for the solution model. To find this strategy, it was first necessary to identify the problem
that the customers are experiencing. This has been identified to be a Capacitated Vehicle Rout-
ing Problem with Heterogeneous Vehicles. Three solution approaches can be used to solve a
Vehicle Routing Problem: an exact approach, a heuristic approach and a metaheuristic ap-
proach since an exact approach is not able to find solutions for problems with a large number of
sensors. The heuristic and metaheuristic approaches were chosen. By analyzing case studies
which tackled similar problems to the problem of the customers, two solution approaches were
selected:

• The Nearest Neighbour heuristic (NN)

• The Ant Colony Optimization metaheuristic (ACO)

These approaches were combined into the Ant Colony Optimization metaheuristic, which takes
in an initial route generated by the Nearest Neighbour heuristic (ACO + NN).

5

After identifying the solution approaches, the solution model was created in Python. The so-
lution model automatically loads in all the relevant data, calculates the irrigation routes while
considering the constraints identified by the contextual analysis, and visualizes the routes so
they can be viewed from the dashboard. Furthermore, an Integer Linear Program was devel-
oped to test the solution model against the optimal solution.

Experiments were conducted to measure the quality of the routes that the solution model con-
structs. Here, the routes calculated by the ACO + NN were compared to those constructed by
the general Ant Colony Optimization metaheuristic and the optimal solution calculated by an
Integer Linear Program. From the experiments, it became evident that ACO + NN outperforms
the current solution strategy by an average of 30.01% and 28.84% for minimization on total
distance and total driving duration, respectively. The general ACO outperformed the current
solution strategy by an average of 31.00% and 29.93% for minimization on total distance and
total driving duration, respectively. Furthermore, the ACO + NN had an average gap with the
optimal solution of 4.42% and 1.62%. Whereas, the general ACO had an average gap of just
3.72% and 0.74%. Furthermore, the experiments showed that the general ACO produced re-
sults 1.07% and 1.19% faster than the ACO + NN. From the experiments has been concluded
that the ACO is the better fit for the solution model, providing better results than the ACO + NN.

After the solution model was tested, an implementation and evaluation plan was formed, which
could be followed to successfully implement the solution model within the dashboard and eval-
uate the solution model with customers. The evaluation plan focuses on a beta test with a small
number of customers to see if there are any mismatches between the solution model and the
actual situations so that these mismatches can be accounted for in the solution model.

Lastly, based on the performed research and conclusions, recommendations are made on how
the solution model can be further improved:

• Make it possible for the customers to select the starting location for the routes.

• Store demand of customers

• Set the parameters of the Ant Colony Optimization based on the stored demand

• Create a singular API to retrieve relevant data

• Store pre-calculated distance matrices.

6

1 INTRODUCTION

This chapter introduces the reader to the research conducted at Connected Green in Hengelo.
In Section 1.1, the reader is introduced to the company. Sections 1.2 and 1.3 elaborate on the
problem and its identification. Lastly, in Section 1.4, the research design is given.

1.1 Company description

The company at which this bachelor research has been conducted is called Connected Green, a
company of Curious Inc. located in Hengelo. Connected Green focuses on giving data insight
into green projects, such as the planting of new plants and trees. It does this by selling soil
moisture sensors which are planted near the roots of the plants or trees. These sensors send
the measured moisture levels to the dashboard of Connected Green, which is in a smart cloud
environment. Within this dashboard, all the sensors are linked with the type of plant and soil
that needs to be measured by the particular sensor. This is done by using the information of
more than 2400 plants and trees given by the plant guide of Griffioen and the Van den Berk
catalogue. Using the information of these plants and trees together with the data given by the
soil moisture sensors, the dashboard of Connected Green can indicate which plants or trees
currently need the most attention in terms of watering. This is important since research has
shown that 90% of failing trees and plants can be attributed to either over- or underwatering.

The solution of Connected Green is becoming ever more important as, in recent years, the
importance of nature has significantly increased. Plants and trees, apart from improving well-
being and biodiversity, are making us more resilient against climate change. As a result, a
growing number of green initiatives have been developed, with examples such as the Euro-
pean Green Deal (Een Europese Green Deal, n.d.) Nature-inclusive design and the Dutch
’steenbreek’(stone-break) project. (Steenbreek, 2015) It is essential to focus on these green
initiatives because nowadays vegetation1, such as the number of trees and plants, is being
reduced due to urbanization. (Urbanization - Understanding Global Change, n.d.) To allow veg-
etation to grow in more urban areas such as city centres, viaducts or rooftops, maintenance and
monitoring of the vegetation becomes necessary.

As draughts are happening more frequently and green projects are set up in more difficult or un-
natural urban places, the projects are becoming increasingly difficult. As the difficulty increases,
it becomes evident that more and more of these green projects might fail. This is problematic as
not only is the cost of replacing plants and trees multiple times the cost of the planting materials
but the amount of water used for the failed projects is also wasted.

The customers of Connected Green use the soil moisture sensors and the associated dash-
board to monitor the green projects and to take necessary action when a plant or tree is with-
ering2. The customers, which mostly consist of municipalities, waterboards3, landscapers, gar-
deners, provinces, and growers use the solution of Connected Green to plan the routes driven
to water the green projects. These routes are often quite costly, so by having insight into which
place needs the most attention, the customers are able to save water, reduce CO2 emissions
and reduce costs by only watering the plants in need of attention.
1 plants in general, or plants that are found in a particular area
2 to make flaccid, shrunken, or dry, as from loss of moisture; cause to lose freshness, bloom, vigour, etc.
3 regional or national organization which, among other things, concerns itself with nature management in and around
bodies of water

7

1.2 Action problem

Currently, the customers of Connected Green, such as the municipalities, waterboards, etc., are
using the sensors and the dashboard provided by Connected Green to plan routes to water the
plants or trees in need of hydration. In the case of municipalities with a high number of sensors,
it can be necessary to plan multiple irrigation routes in a day. These irrigation routes are mostly
done by big tractors with a water tank on a trailer behind it, the water tank contains several
thousand litres of water used to irrigate all vegetation in need of attention. Depending on the
number of sensors a municipality or other customer has, it can occur that the tractor needs to
refill the water tank and start a new irrigation round more than once per day.

These irrigation routes are quite costly and planned by the customers. The customers, often
municipalities, have many sensors, sometimes up to 200 per municipality. In general, one
sensor measures the moisture levels for around ten trees, meaning there are around 2000
trees that the customers need to monitor and irrigate. As these sensors are spread over a large
surface area, e.g., a city, and there is often one central place where the tractors that drive the
irrigation routes are stored and refilled with water, the planning of the routes becomes important.
This is the case since inefficient routing could result in high driving-related costs. Planning an
efficient route is not easy and requires specific skills and knowledge, something the workers at
the municipalities are often not trained for. Therefore, the action problem is defined as:

The irrigation routes of Connected Green’s customers are not efficiently planned.

1.3 Problem identification

With the action problem defined, it is necessary to now identify the core problem. To do so, a
problem cluster has beenmade around the action problem. The problem cluster is a tool used to
display the connections between problems. These problems and relations should be identifiable
at a glance (Heerkens, van. Winden, & Tjooitink, 2017). Starting with the action problem, the
causes that lead to the problem are identified. As these causes are, in most cases, problems
as well, their causes are identified, and this step is repeated until a core problem has been
identified. Figure 1.1 shows the problem cluster and the identified core problem.

The action problem relates to customers planning routes by themselves, leading to sub-optimal
route planning, which in turn leads to higher costs for the customers. There are three different
types of costs first of all, because there is a higher probability of trees dying. As the route is
not optimal, the plants or trees that most need attention are not always watered first, leading
to a higher probability of the plants and trees drying out. As mentioned in the first section,
90% of failing trees and plants dying can be attributed to either over- or underwatering as the
replacement cost of the plants and trees is, as mentioned before, often times multiple times the
cost of the planting material. It is necessary that the routes are planned optimally so that there
will be a decrease in trees and plants drying out and, thus, a decrease in total replacement
costs.

The second cause for the higher costs is that more fuel is used than there would be when driving
an optimal route. Since the drivers are driving sub-optimal routes, they drive more rounds than
necessary, which leads to an increase in the total distance driven to water all the plants and
trees. Logically, this leads to an increase in fuel usage and emissions. Furthermore, as more
rounds need to be driven, there is also an increase in labour hours, which also results in an
increase in cost for the customers of Connected Green.

8

Following the problem cluster, it can be seen that all three causes come back to one prob-
lem. The planning is done manually by the customers of Connected Green, and since these
customers oftentimes lack the knowledge and skill necessary to plan optimal routes, it leads
to higher costs for the Customers of Connected Green. From this, the core problem can be
identified.
Therefore, the core problem is defined as:

The lack of an automatic route planning solution for the irrigation routes leads to higher costs
for the customers of Connected Green.

Figure 1.1: Problem Cluster of Connected Green

1.3.1 Gap between norm and reality

As defined in the core problem, the reality is that, at the moment, there is no automatic route
planning for the customers of Connected Green. As a result, the irrigation routes planned and
driven by the customers are often unnecessarily long and far from optimal. The current routes
are longer than they could be in distance driven and driving duration. The long driving distance
and duration result in higher costs than what would be necessary due to, among other things,
higher fuel consumption and more working hours. These costs can be saved by making a
solution that optimizes the route automatically. Therefore, the norm for this research is to create
a solution model that will automatically plan and visualize a near-optimal route for the customers
of Connected Green based on the relevant data.

The gap is that there currently is no solution to this problem. Therefore, this research aims to
create a solutionmodel capable of creating and visualizing the irrigation routes for the customers
of Connected Green.

9

1.3.2 Research questions

The main research question is inherently based on the core problem of Connected Green. The
goal of this research is, therefore, to supply Connected Green an automated optimal route
planning solution that the customers can use to minimize costs.
The research question is defined as:

What is the most effective approach to develop an optimal route planning model, and how can
it be leveraged by Connected Green to minimize the costs incurred by their customers?

The corresponding knowledge questions are:

1. How are the irrigation routes currently planned by Connected Green their customers, and
what are the constraining factors and Key Performance Indicators that influence the route
planning?
To solve the core problem of Connected Green and supply them with an automated route
planning solution, it is necessary first to gain better insight into the current situation. To
get this, a context analysis will be performed. The goal of the context analysis is to gather
all the information that is needed to plan a route, foremost it is necessary to identify the
constraining factors, Key performance indicators (KPIs), and problems that currently arise
when planning a route, as these factors will have the biggest impact on the route planning.
Furthermore, the current decision-making process will be mapped. In this way, all the
requirements, inputs, and outputs connected to the route planning can be identified. To
do this, the customers with high numbers of sensors will be contacted, andmeetings within
the company concerning the problem will be attended.

2. What are the relevant theories and methods to identify and create the optimal route for
Connected Green their customers?
After the problem context analysis, a literature study will be conducted to find the ap-
propriate methods which can be used to create the solution. After the relevant literature
has been found, it will be analyzed, and the findings will be summarized to find the most
relevant method for the solution approach.

3. Which solution approach can be defined for the optimization of the route planning and
what should it look like?
This question aims at creating a pseudocode version of the solution approach, which will
take all the relationships between the constraining factors, KPIs, data, solving methods,
and most fitting heuristic into account. The pseudocode will be checked for completeness
with the company and supervisor and can be used as a framework to program the solution.
Afterwards, the pseudocode will be programmed in Python which will, using the planning
procedure developed, be able to automatically calculate and visualize the irrigation routes
for Connected Green their customers.

4. How can the solution be implemented and evaluated at Connected Green? The model
will be evaluated by testing it against real and made-up routes which the customers could
drive to see if there is an improvement. Furthermore, an explanation will be made on
how the model can be further evaluated. In order for the implementation of the solution
model to be successful, a plan will be developed. This will explain how the solution model
can effectively be implemented into the dashboard after the bachelor research has been
conducted.

10

5. What recommendations and conclusions can be made from conducting the thesis at Con-
nected Green?
Based on the outcome of the research at Connected Green recommendations can be
formed and conclusions can be made. These will be presented to the stakeholders of
Connected Green and the supervisors of the University of Twente.

1.3.3 Scope

The main focus of this thesis is to design a solution model for Connected Green their cus-
tomers. Through contact with the relevant stakeholders, a general outline of the situation at
the customers of Connected Green will be given. This research aims to focus exclusively on
producing a solution approach that the Customers of Connected Green can use for the planning
of their irrigation routes. Furthermore, this research aims at investigating which methods are
best to plan optimal routes in the case of Connected Green their customers. Lastly, this re-
search should provide Connected Green with a solution approach that automatically calculates
the optimal irrigation routes for their customers.

1.3.4 Limitations and Restrictions

In its optimality, the solution model will be able to automatically calculate and visualize the
optimal irrigation route based on all the constraints. However, given that the time to conduct the
research is limited to ten weeks it is necessary to clearly define the limitations of the research
beforehand.

Outside of the scope of this research are aspects like a general solution approach or framework
for route planning or solution approaches for use-cases other than the use-cases of Connected
Green.

Another limitation stems from the fact that customers will need to provide the model with data,
e.g., the average amount of water to be given to the trees. In the case that the information given
deviates from reality it is possible that the accuracy of the solution also will deviate.

Furthermore, this research mostly has a practical focus. It is a case study for Connected Green
and their customers, the findings and outcomes presented may not be directly applicable to
other companies or situations. However, in general, it could provide building blocks for further
research in studies that have a similar structure or problem context.

To solve both the action and core problem and ultimately answer the research question restric-
tions are set to help guide the research. The following restrictions are set.

• Modeling language: The modelling language chosen to create the optimization and au-
tomation solution is Python. As Pyhton has more functionalities, built-in libraries and I
have experience with it was chosen as the most suitable language.

• Information clarity for the driver: The route information that comes from the model
should be readable and interpretable for the drivers of the irrigation routes. They should
be able to immediately see what the next stop and the full route is.

• Data: The data used for the validation and testing of the model will be of the larger cus-
tomers of Connected Green. The customers with the smaller number of sensors are not
taken into account for this research.

11

2 CONTEXT ANALYSIS

The objective of this chapter is to create a better understanding of the problem and explain all
relevant aspects that will need to be incorporated into the solution model. To accomplish this,
Section 2.1 will elaborate on Connected Green and its operations. Section 2.2 will elaborate on
the different types of customers Connected Green has and what implications these customers
have for the solution model. Section 2.3 introduces the reader to Connected Green’s dash-
board and its link with moisture sensors and route planning. Section 2.4 describes the way the
customers are currently planning the irrigation routes. Section 2.5 covers the identified routing
characteristics important for irrigation route planning. Section 2.6 describes the assumptions
that have been made. In Section 2.7, the constraints of the problem are discussed. Section 2.8
describes the key performance indicators that indicate a quality route. Section 2.9 elaborates
on the algorithm of one of the current route planning strategies, which will be used to test the so-
lution model. Lastly, Section 2.10 summarizes the chapter and answers the research question
of this chapter:

How are the irrigation routes currently planned by Connected Green their customers, and what
are the constraining factors and Key Performance Indicators that influence the route planning?

All information on which this chapter is built is collected by interviewing the customers with the
highest number of moisture sensors, conversations with employees of Connected Green, and
analysis of the data within Connected Green their dashboard.

2.1 Connected Green

Connected Green is a company which focuses on giving data insight into green projects, such
as the planting of new plants and trees. It does this by selling soil moisture sensors which are
planted near the roots of plants or trees. These sensors send the measured moisture levels to
the dashboard of Connected Green. Within this dashboard, all the sensors are linked with the
type of plant and soil that needs to be measured by the particular sensor. Using the information
on these plants and trees together with the data given by the soil moisture sensors, the dash-
board of Connected Green can indicate which plants or trees currently need the most attention
in terms of watering. Customers use this information to plan irrigation routes to water the plants
and trees at these sensors. However, the routes that the customers plan are not efficient.

To facilitate the customers in the irrigation route planning and create a bigger market share,
Connected Green wants to create a solution model which can automatically calculate and visu-
alize irrigation routes. The solution model should be able to be integrated into the dashboard of
Connected Green.

2.2 The customers of Connected Green

The customers of Connected Green primarily consist of municipalities and landscaping com-
panies engaged in green space maintenance for both individual customers and municipalities.
Their usage of the sensors and the dashboard differs greatly per customer. In total, three main
use types can be identified.

1. Personal sensors

12

2. Small number of sensors

3. High number of sensors

2.2.1 Personal

The first type of customers comprises of individuals who use a small number of sensors for
personal purposes, primarily in their own gardens. These customers often have less than five
sensors. Given the nature of their usage, the development of a solution model for the planning
of irrigation routes is not applicable nor beneficial to this type of customer. Therefore, this type
of use case is not included in this research.

2.2.2 Small number of sensors

The second type of customers comprises businesses that utilize a relatively small number of
sensors (≤ 10) for their operations. Despite the limited sensor count, these customers still
encounter the need to plan efficient irrigation routes to optimize their irrigation processes. In
the case of several customers, the sensors are spread over a large area such as a city. In these
cases, the geographical distances between sensors can be quite large and it can be valuable
to have a solution model which is able to plan efficient irrigation routes.

2.2.3 High number of sensors

The third and last type of customers are the dependent customers. These dependent cus-
tomers, primarily municipalities and landscaping companies managing the green space projects
utilize the sensors for business purposes and typically have a substantial number of sensors
spread across multiple projects, with each project containing ten or more sensors. A major chal-
lenge faced by the customers is the significant time and cost required for irrigation routes due
to the widespread distribution of sensors over large areas. Therefore, it becomes necessary to
create efficient routes which minimize both cost and time. After talks with customers, several
ways of currently planning the routes have been identified. First of all, some customers divide
the routes into several different project files with each their own dashboard to create a single
route per project. For instance, the municipality of the Hague employs an approach where they
divide the routes into separate project files, each having its own dashboard. Afterwards, they
use this route to see which sensors currently are in need of the most attention. The irrigation
routes start at the most northern sensors and end at the most southern sensor, ultimately driv-
ing the routes ”top to bottom”. Secondly, some customers use the sensors to see if the trees
or plants need attention and use this indication as a start signal to drive their irrigation routes.
Visiting all the sensors and surrounding trees according to a fixed route which is mapped in
Google Maps. Both these solutions are not as efficient as they could be but provide an easy fix
to the complex problem they are facing.

2.3 Connected Green their dashboard

The customers of ConnectedGreen are able to access the dashboard via app.connectedgreen.nl.
Within it, all relevant information for the planning of irrigation routes can be found. This section
aims to further elaborate on the three main parts of the dashboard and give insight into how the
customers use the information found in these parts to plan irrigation routes.

1. The project overview

2. The sensor overview

3. The map

13

2.3.1 Project overview

To maintain organization and facilitate efficient planning of irrigation routes, the customers have
the ability to create projects within their accounts. As the customers often have several greenery
projects in different cities or are working for their own customers it is convenient and necessary
to be able to view the sensors of each project individually. The project overview allows for
focused management and easy access to project-specific information. Figure 2.1 shows the
project overview within the dashboard, here all the projects of the specific customer can be
found. In this case, the different in-house projects of Connected Green can be seen.

Figure 2.1: Overview of Connected Green their different projects

2.3.2 Sensor overview

Within the project tabs, an overview of all the corresponding sensors can be found. Figure
2.2 displays a sensor overview of customer X. It lists the sensors with their names, connection
status, moisture level (%), moisture level thresholds (%), soil type, and plant/tree species. The
moisture level thresholds, which can be seen in Figure 2.2 under the status of the sensors,
depend on the plant or tree species in combination with the soil type. For each sensor, it is
possible to give them their own name. In most cases, this means that the sensors either get the
name of the location they are placed on or the name of the plant/tree species the sensors are
placed at. The connection status indicates the link between the sensor and the dashboard, the
sensors have a typical battery life of 3 to 5 years before they stop functioning. Themoisture level
at the sensor, expressed as a percentage, is the most important information of the dashboard.
The status of the sensor is linked to the moisture level of the sensor. The sensors can have the
following statuses which all have corresponding colours.

• Too dry (red)

• Dry (yellow)

• OK (green)

• Wet (yellow)

• Too wet (red)

If a sensor is too dry, immediate action is required to prevent damage to the surrounding plants
and trees and keep the plants and trees healthy. Furthermore, if the sensor has the status dry or

14

wet, it is not necessary to take immediate action. However, it is advised to keep close attention
as it is possible that the status will shift to too dry. If a sensor has the status OK, no action is
required, and the soil moisture levels are ideal. The status of the sensor shifts to green, yellow
or red when crossing a threshold. These thresholds depend on the soil type and plant/tree
species and are given in percentages.

Figure 2.2: Sensor overview of Customer X, in which all sensors have the status too wet.

2.3.3 Map

To ensure effective irrigation route planning, it is crucial to have accurate knowledge of sensor
locations. Connected Green addresses this by providing a map feature within its dashboard;
here, all the sensors are listed along with their corresponding colour codes. The map provides
a comprehensive overview and is particularly useful for intuitively planning irrigation routes, es-
pecially when dealing with a small number of sensors. Figure 2.3 illustrates the the map feature,
which provides customers with an overview of sensor locations. Within this visual representa-
tion, the user can click on individual sensors for quick access to their name, status, and moisture
level thresholds.

15

Figure 2.3: Map of the city of the Hague with its sensors

2.4 Current route planning

After discussions with the largest customers, several route planning strategies have been iden-
tified. It is evident that these strategies vary widely and could be improved. The typical process
has two steps.

2.4.1 Sensor Identification

The initial step involves identifying which sensors are in need of irrigation. This is done by
looking at the dashboard and making a list of all the sensors with the status ”dry” or ”too dry”.
The list represents all the to-be-visited nodes.

2.4.2 Route Mapping

Once the sensors that need irrigation are identified, customers plan the irrigation routes. The
planning approach is inconsistent and varies from one customer to another. There are several
notable methods that customers currently use for route planning:

• Adhering to a predetermined route for every irrigation cycle, regardless of which sensors
need attention. These predetermined routes are often saved in Google Maps.

• Starting the route at the most northern sensor, and by moving south, visit all the sensors
which are the nearest to the current node. The route ends at the southernmost sensor.

• Visiting all sensors, even if the to-be-visited sensor does not require irrigation. The driven
routes are predetermined routes as well and are often saved in Google Maps.

It can easily be seen that the current strategies used for route planning lead to inefficiencies.
For instance, visiting sensors that don’t require irrigation can waste time and resources.

2.5 Routing characteristics and requirements

The current route planning methods have been analysed. Although the methods vary from
customer to customer, several essential characteristics have been identified that are significant
to the creation and execution of irrigation routes. These and other important characteristics
already identified in discussions with Connected Green will be elaborated on further. These

16

characteristics can be seen as requirements for the irrigation route planning and, thus, the to-
be-created solution model.

• Vehicle types

• Sensor information

• Water refill points

• Water tank capacities

2.5.1 Vehicle types and road access

The first characteristic identified is the choice of vehicle type. Connected Green’s customers
employ different types of vehicles based on their specific needs. For example, in urban city
centres, using large tractors with large water tanks on the back is impractical and not permitted
due to limitations and regulations set by the law. Instead, customers opt for small cars equipped
with smaller water tanks. Conversely, big tractors are preferred in more rural areas, where
water-carrying capacity is crucial. However, the use of big tractors presents challenges due to
road restrictions, making route planning of efficient routes more complex.

The customers indicated that vehicle types must be considered as a requirement for the solution
model. In the discussions with the customers, two vehicle types used by the customers have
been identified. These are tractors and cars. Therefore, the solution model should be able to
calculate routes for the following situations:

• Irrigation using tractors

• Irrigation using cars

• Irrigation using a combination of cars and tractors

The solution model should also consider these vehicles’ road accessibilities. The customers
indicated that the tractors used for irrigation routes are not allowed on all roads. For example,
in the Netherlands, tractors are not allowed to drive on the highway (”Rijksoverheid”, ”2023”).
Therefore, if the solution model calculates an irrigation route that only uses tractors, it should
omit highways.

2.5.2 Sensor information

The second characteristic identified is the sensors. All customers have identified the sensors as
the main indicator for route planning and execution. In the case of route planning, geolocation
is used to create a stopping point. Afterwards, the customers look at the sensor status to see if
the surrounding area requires irrigation. If so, the route is planned and driven.

Apart from being identified as the main indicator, the sensor information has also been iden-
tified as the most important requirement for the solution model. The most important sensor
information consists of the following two types:

• Geolocation

• Moisture level

17

2.5.2.1 Geolocation

The most important requirement of route planning is to know the locations on which the route
is based. Therefore, the geolocational data of the sensors is of utmost importance in the route
planning process, as without knowing the locations that need to be visited, it is impossible to
plan a route.

2.5.2.2 Moisture level

The moisture level of the sensor indicates if the surrounding area needs irrigation. Recall from
Section 2.3.2 that the sensor relays the moisture level information to the dashboard, where
the sensor’s status changes with the moisture level. Using this information, the sensors that
currently need to be irrigated can be identified. Because of this reason, the customers identified
that the solution model should automatically add the sensors that need irrigation in the route
planning.

2.5.3 Water refill point

The fourth characteristic is the water refill point. This is something which differed greatly be-
tween customers. In some cases, the refill points would be along the driven route as surface
water out of ditches, canals, etc., would be used. However, this is not allowed in certain parts
of the Netherlands (NVWA, n.d.), which forces the customers operating in these parts to fill the
water tanks at a central point using tap water.

Therefore, the customers indicated that the solution model should take two situations into ac-
count:

• Routes refilling at a central point

• Routes refilling along the route.

During the discussions with the customers, it became apparent that both these situations should
be possible in the solution model. If the customers do not refill along the irrigation route, the
water tanks of the used vehicles need to be refilled at a fixed central point. In the second
situation, the water tanks are refilled along the route. However, the refill points differ per irrigation
route, so there is no fixed point at which the tanks are refilled. Therefore, the solution model
should be able to calculate routes that do not consider the water tank capacity and visit all the
sensors in a single route.

2.5.4 Watertank capacities

The last characteristic is the water tank capacity, which is directly influenced by the choice of
vehicles used for the irrigation routes. As discussed earlier, the utilized vehicles can range from
small cars to large tractors, and their water tank capacity differs accordingly. Considering the
water tank capacity becomes crucial when planning routes as it can directly impact the number
of stops that can be made. The customers indicated this as an important requirement for the
solution model and that the capacities of the cars are often 1100 litres, and the capacity of the
tractors can be upward of 7000 litres.

2.6 Assumptions

Several assumptions have been made to ensure the solution model can be applied to as many
customer situations as possible.

18

2.6.1 Number of trees or flower boxes per sensor

The first assumption concerns the number of trees or flower boxes per sensor. Per sensor,
the number of trees or flower boxed can differ. This makes it hard to pinpoint the specific area
demand at each sensor as there is no data about the exact number of trees per sensor. It is
assumed that the number of trees can range from one to twenty-five per sensor, and the flower
boxes can range from 3 to 50. This assumption is based on discussions with customers of
Connected Green.

2.6.2 Water demand per sensor

The amount of water a plant or tree needs depends, among other things, on the species, the
type of soil it has been planted in, weather conditions and the size of the tree. Due to this, an
exact amount cannot be given.(van de Berk, n.d.) However, the customers indicated that the
amount of water they give trees ranges from 100 to 150 litres per tree and to the flower boxes is
on average, 20 litres. So in combination with the assumption of the number of trees per sensor
and the number of flower boxes per sensor, it is assumed that the water demand per sensor can
range from 60 litres per sensor to 3750 litres per sensor. However, since the customers often
drive the irrigation routes with a single vehicle with a capacity of up to 7000 litres in one day, it
is assumed that it is more likely that the water demand per sensor is in the lower ranges since,
otherwise, the capacity would already be met while visiting one or two sensors. In the case that
only cars are used, which capacity is often times at a maximum of 1100 litres, it is assumed to
range from 60 to 1000 litres.

2.6.3 Start- and endpoint

The assumed starting and ending points for the irrigation routes have been set to the project
address, which is listed in the sensor overview. This assumption is grounded in practicality; in
most instances, the project address is the actual beginning and ending point for irrigation routes.

2.6.4 Service time per sensor

The service time per sensor is assumed to be zero. This is the case because each customer
their service times per sensor differ greatly. For example, customer A uses an automated water-
ing system connected to the vehicle used for watering. Their service times are short as they only
need to turn on the system and drive past the area that needs irrigation. However, customer
B does not use an automated watering system and irrigates the area manually; furthermore,
customer B also performs maintenance on the trees or plants at the sensor, increasing the ser-
vice time even more. Therefore, to be able to provide a solution model for all the customers of
Connected Green, the service times are assumed to be zero.

2.6.5 Vehicle types

The vehicle types used within the solution model are assumed to be either tractors, cars or a
combination of both. This is because these vehicles are the only ones customers have indicated
they are using for irrigation routes.

2.6.6 Car specific routes

It assumed in projects where only the cars are used as vehicles the demand of the sensors
cannot be more than the capacity of the car. Therefore, demand per sensor for car-only routes
ranges from 60 to 1100 litres. As the customers using the cars indicated that the capacities of
the cars are 1100 litres

19

2.7 Constraints

To be able to model the planning of the irrigation routes effectively, it is necessary to set con-
straints. These constraints function as boundaries of the problem and will play an important role
in creating the solution model, which is discussed in Chapter 4. The following constraints have
been set and identified.

2.7.1 Road accessibility

The vehicle types, cars and tractors have different road accessibility. This accessibility is an
important constraint for route planning since not all vehicles are legally allowed to travel the
same routes. The tractor illustrates this problem distinctly. Due to its limited road accessibility,
it frequently takes longer or alternative routes to reach the same destination as a car would. For
instance, while cars can easily navigate motorways, tractors are prohibited, forcing them to find
alternative routes, often resulting in longer travel times.

2.7.2 Water tank capacity

The water tank capacity directly influences route planning. The water tank capacity depends on
the choice of vehicles used for the irrigation routes and essentially dictates how many sensors
can be visited per route. A water tank of 1000 litres can water fewer sensors than a tank of
5000 litres, assuming the demand for the sensors is the same.

2.8 Key Performance Indicators

Key Performance Indicators (KPIs) are benchmarks to gauge the effectiveness and efficiency
of specific processes or projects. In the case of this solution model, understanding these KPIs
can determine the effectiveness of the proposed routing methods. This section elucidates three
pivotal KPIs that give insights into the efficiency of the calculated irrigation routes.

2.8.1 Total distance

The first KPI, total distance, encapsulates the overall length of the chosen route in meters. It is
a straightforward metric that provides an immediate understanding of the efficiency of the route.
A shorter distance, in general, suggests potentially lower costs in terms of fuel and time.

2.8.2 Total driving time

The total driving time, given in minutes, is the second KPI. Stakeholders can assess its efficiency
by gauging how long it takes to traverse the proposed route. Similar to the total distance,
a shorter driving time often translates to lower operational costs and improved utilization of
resources.

2.9 Moving ”South” route planning strategy

To assert the effectiveness of the solution model, it needs to be tested against a current route
planning strategy. One of the identified strategies that is currently being used is to start the route
at the northernmost sensor and then, by moving south, visit the sensor closest to the current
sensor. Continuing this process until all sensors have been visited. This route planning strategy
works in the following way:

1. All different locations are ordered based on their latitude.

2. A vehicle starts moving and visits the nodes based on this order.

20

3. If the node’s demand is too high for the vehicle capacity, the vehicle returns to the depot.

4. A new vehicle is selected based on the remaining demand. If the demand is higher than
the capacity of the vehicle with the smallest capacity, the vehicle with the larger capacity
is selected. If the demand is not higher, the vehicle with the smallest capacity is selected.

5. These steps are repeated until all nodes are visited and a route is created.

This strategy has been converted to an algorithm so that it can be used to test the solution model
against the current situation. The algorithm can be seen in Algorithm 1. It takes the demands
of the sensors, the latitudes of the sensors, the capacities of the available vehicles, and the
vehicle-dependent distance matrices as input and creates an output in the form of a data frame
containing both the total distance and order in which the sensors are visited.

Algorithm 1 Moving_South()
Input: demand, locations, latitude, capacities, distance matrices Output: data frame

with total distance and route orders.
1: Start:
2: Order the locations based on latitude.
3: while Not all nodes are visited do
4: for each node in the ordered list do
5: if the vehicle can supply all demand to the node then
6: Add node to the route
7: Delete node out of order list
8: else
9: Return to the depot and select the next vehicle
10: end if
11: end for
12: end while

2.10 Conclusion

The context analysis provides a comprehensive understanding of the problem. It elaborates on
how Connected Green and their customers operate, the different customer groups that exist,
and what these customers are currently using the solution of Connected Green for. Further-
more, the dashboard of Connected Green is elaborated on, explaining its functionalities and
outlining its link with irrigation route planning. The current route planning of the customers is
explained, and it is shown that the current route planning is inefficient. Furthermore, the route
planning is analysed, and its main characteristics are identified and explained. The customers’
requirements of the solution model are identified and elaborated on. Based on the character-
istics, requirements, and discussions with customers, several assumptions about the solution
model have been made and elaborated. Based on the assumptions, several constraints are
set for the solution model. The constraints and assumptions will serve as input and parameters
to create the solution model and guide the literature review. Lastly, one of the current route
planning strategies is elaborated on further and converted to an algorithm, which will be used
to test the final solution model.

Furthermore, the research question of this chapter has been answered:

How are the irrigation routes currently planned by Connected Green their customers, and what
are the constraining factors and Key Performance Indicators that influence the route planning?

21

Current route planning:

The route planning of the customers differs per customer. However, the main steps include:

1. Identification of the sensors in need of irrigation: using the dashboard, a list of all the
sensors which either have the status dry or too dry is made. These are the sensors that
will need to be visited.

2. Route planning strategy: depending on the customer, the route is determined differently.
It ranges from predetermined routes that visit all the sensors regardless of the moisture
level to starting the route at the most northern sensor and driving south while visiting all
the nearest sensors in need of attention.

Furthermore, one of the route planning strategies applied by the customers has been described.
This strategy functions by starting at the northernmost sensors and by moving to the south,
visiting the sensors that are closest to it. This strategy is called the ”Moving South” strategy.
Constraining factors:

The constraining factors that influence route planning are:

1. Road accessibility: the customers can have two types of vehicles: cars and tractors. Each
type has different road accessibility, which greatly influences route planning, as in the case
of the tractor, it is not allowed on all the roads that the car is on. Therefore, it often needs
to take different routes and drive further distances to be able to visit the same sensors.

2. Water tank capacity: this constraint depends on the choice of vehicle and directly influ-
ences route planning. For instance, a tank of 5000 litres can water more sensors than a
tank of 1100 litres could. (Assuming demand stays the same)

Key Performance Indicator:

The identified Key Performance Indicators are:

1. Total distance: the total distance of a route in meters is an important indicator of the quality
of the route. A shorter distance suggests a better route.

2. Total driving time: total driving time in minutes is an important indicator of the quality of a
route. A shorter duration is preferred.

22

3 THEORETICAL FRAMEWORK

This chapter aims to cover relevant existing literature on Vehicle Routing Problems and their
solvingmethods. In Section 3.1 the reader is first introduced to the Traveling SalesmanProblem,
afterwards, the reader is introduced to Vehicle Routing Problems, the different characteristics
of a Vehicle Routing Problem, and the Vehicle Routing Problem of Connected Green is identi-
fied. In Section 3.2, the different solving methods for a Vehicle Routing Problem are discussed.
Section 3.3 elaborates on the tools used to solve a Vehicle Routing Problem. In Section 3.4,
different case studies and the corresponding solving methods, comparable to the situation of
Connected Green their customers are presented. Lastly, Section 3.5 summarizes the chapter
and provides an answer to the research question of this chapter:

What are the relevant theories and methods to identify and create the optimal route for
Connected Green their customers?

3.1 The Traveling Salesman Problem and Vehicle Routing Problem

As the Vehicle Routing Problem (VRP) is derived from the Traveling Salesman Problem (TSP),
it is necessary first to explain the Traveling Salesman Problem to develop a good understanding
of what the Vehicle Routing Problem entails.

3.1.1 The Traveling Salesman Problem

(Hoffman, Padberg, & Rinaldi, 2001) states that a Traveling Salesman Problem can be stated
as: ”if a travelling salesman wishes to visit exactly once each of a list of m cities where the cost
of travelling from city i to city j is cij and then return to the home city, what is the least costly route
the travelling salesman can take?” In simpler words, this means that the Traveling Salesman
Problem tries to find a route starting at point ”a” through all the cities of a list and back to ”a”
while incurring the least cost possible. Below an example of a Traveling Salesman Problem
solution can be seen (Kitjacharoenchai et al., 2019).

In relation to the problem of Connected Green, it can, in some customer cases, be seen as
a Travelling Salesman Problem. This is because some of the customers refill the water tanks
along the route, which can be seen as having unlimited capacity; thus, the demand at the
sensors does not influence the irrigation route creation, and since the only other constraint is to
have the least distance possible, the problem can be seen as a Travelling Salesman Problem.

Figure 3.1: Example of a TSP solution

23

3.1.2 The Vehicle Routing Problem

The Vehicle Routing Problem was first introduced by (Dantzig & Ramser, 1959) in 1959 as the
”Truck Dispatching Problem”. This problem was concerned with the modelling of a route for a
fleet of homogeneous trucks which needed to serve the demand for oil of several gas stations
starting at a centralized hub. The problem was later generalized by (Clarke & Wright, 1964)
into a linear optimization problem which was ”concerned with the optimum routing of a fleet of
trucks of varying capacities used for delivery from a central depot to a large number of delivery
points.” In other words, the Vehicle Routing Problem concerns itself with designing an optimal
routing for delivery from one or more starting points to multiple customers while adhering to
certain constraining conditions and operational rules (Zhang, Ge, Yang, & Tong, 2021).

In practice, there exist multiple variants of the Vehicle Routing Problem. This is because of the
diversity in constraining conditions and operating rules (Laporte, 2009). Therefore, the Vehicle
Routing Problem can be seen as a class of problems. (Lahyani, Khemakhem, & Semet, 2015)
provides a taxonomy of the different types of Vehicle Routing Problems. The overview can be
seen in Figure 3.2.

Figure 3.2: Taxonomy of the different types of Vehicle Routing Problems. The highlighted char-
acteristics are relevant for this research.

3.1.3 Identification of Connected Green their Vehicle Routing Problem

The specified characteristics in Figure 3.2 provide insights into the Vehicle Routing Problem
(VRP) faced by Connected Green their customers. These characteristics are:

• Deterministic Input Data: All necessary data is available and known in advance.

• Routing Objective: The primary goal is to devise an near-optimal irrigation route.

24

• Single Depot: Routes are designed with a unified starting and ending point, typically the
project address.

• Delivery Only: Vehicles are solely responsible for water delivery to the sensors.

• No Split Deliveries: A single vehicle must address the demand of a single sensor without
splitting.

• Single Planning Period: Routing is planned for a singular duration, which is the day of
planning.

• Multi-trip Vehicles: Vehicles are capable of undertaking multiple irrigation routes within
the planning period.

• Heterogeneous Fixed Fleet with Diverse Capacities: The fleet size remains constant,
but vehicles can differ in type and capacity.

• Absence of Loading Policy: There are no specific loading policies.

• Unified Objective Function: The primary target is to minimize the total distance covered
or the time spent driving.

The Vehicle Routing Problem, which aligns with these characteristics, is the Multi-trip Capaci-
tated Vehicle Routing Problem with Heterogeneous Fleet (MTCVRP). This is a complex exten-
sion of the Capacitated Vehicle Routing Problem. However, to reduce complexity, the MTVCRP
can be interpreted as a Capacitated Vehicle Routing Problem with a Heterogeneous Fleet but
with an unlimited amount of vehicles. While the MTCVRP permits a single vehicle to cover mul-
tiple routes, the simplified variant emulates this behaviour by introducing additional vehicles.
Essentially, instead of letting a vehicle handle multiple routes, each multi-trip route is allocated
to a distinct vehicle.

3.1.3.1 The Capacitated Vehicle Routing Problem (CVRP)

The Capacitated Vehicle Routing Problem is an extension of the general Vehicle Routing Prob-
lem. Essentially, it involves determining the most efficient set of routes for a fleet of vehicles
with a known capacity to serve a set of customers with known demand. (Cordeau, Laporte,
Savelsbergh, & Vigo, 2007) define the constraints for the problem as follows:

1. ”Each customer is visited exactly once by one route.” This constraint ensures that each
customer is served by exactly one vehicle route and no customer is left unattended or
visited multiple times.

2. ”Each route starts and ends at the depot.” This ensures that the vehicles can easily re-
plenish or unload their goods at the depot.

3. ”The total demand of the customers served by a route does not exceed the vehicle ca-
pacity.” This constraint ensures that a vehicle does not need to visit a customer multiple
times to fully satisfy their demand.

4. ”The length of each route does not exceed a preset limit L.” This constraint ensures that
the routes will not be exceedingly long and will keep fuel consumption, time constraints,
and operational efficiency in check.

Due to the fact that the Capacitated Vehicle Routing Problem takes the customer demand and
vehicle capacity into account, it is more applicable to real-life scenarios and, because of that,
widely used.

25

3.1.3.2 The Capacitated Vehicle Routing Problem with Heterogeneous Fleet (HCVRP)

The Heterogeneous Capacitated Vehicle Routing Problem, as the name suggests, is an exten-
sion of the Capacitated Vehicle Routing Problem, with the extension being the heterogeneous
fleet. Unlike the normal CVRP, where all the vehicles are uniform, in the HCVRP, the vehicles
can differ in capacity, operating cost, speed and range. The diversity stemming from the vehi-
cles adds an extra layer of complexity, as the problem is not just about finding an optimal route,
but also an optimal vehicle allocation. The HCVRP is particularly relevant in modern logistics,
as it is more in line with real-life situations (?, ?).

3.2 Solution approaches for Vehicle Routing Problems

In essence, a Vehicle Routing Problem is a combinatorial optimization problem. This means
that the goal is to select the best arrangement of options from a finite set to come to an optimal
value. Following from (Lenstra & Kan, 1981) it can be stated that almost all the vehicle routing
problems can be classified as NP-hard. NP-hardness is a classification of the complexity of a
problem. The NP-hard problems are categorized as problems for which no algorithm is known
which can exactly solve the problem in polynomial-time exactly. In simpler terms, as the size of
the problem grows, the time that is required to solve such a problem increases exponentially.
This makes it computationally infeasible to solve large instances of the problem in a reasonable
amount of time.

However, there are still ways of solving a Vehicle Routing Problem. The two main methods of
solving a Vehicle Routing Problem are with an exact algorithm or using heuristic approaches.
(Corona-Gutiérrez, Nucamendi-Guillén, & Lalla-Ruiz, 2022)

3.2.1 Exact algorithms

Exact algorithms guarantee finding the optimal solution to a Vehicle Routing Problem, as they
systematically explore the given search space and provide a mathematically proven optimal
solution. However, as the problem size increases, the problem’s computational complexity in-
creases exponentially. Making it very hard to solve Vehicle Routing Problems in a short time
span. (Laporte, 2009) underlines this by stating that exact algorithms are only able to solve
Vehicle Routing Problems for up to 100 customers in polynomial time.

One of themost well-known exact algorithms is the Branch-and-Bound algorithm. This algorithm
operates by continually dividing the set of all possible routes into progressively smaller subsets.
A lower bound on the route length is determined for each subset. These lower bounds steer the
subdivision of subsequent subsets. The algorithm continues until it identifies a subset containing
a single route. If this route is a lower bound less than those of all other subsets, it is recognized
as the optimal route. (Little, Murty, Sweeney, & Karel, n.d.)

3.2.2 Heuristics

In real-life application, the solutions need to be determined quickly, and the number of customers
often exceed 100. To still be able to come to a near-optimal solution, heuristics are used.
Following from (Nicholson, 1971), a heuristic is defined as a procedure ”for solving problems
by an intuitive approach in which the structure of the problem can be interpreted and exploited
intelligently to obtain a reasonable solution”. However, heuristics also have a drawback as they
are unable to provide information about the quality of the found solution.

26

Heuristics come in 3 main types: constructive heuristics, improvement heuristics, and meta-
heuristics. (Toth & Vigo, 2014)

27

3.2.2.1 Constructive heuristics

The goal of the constructive heuristic is to provide a quick solution that does not need to be
near optimal. This is because this starting solution will be provided to an improvement heuristic.
Out of the constructive heuristics, the two well-known constructive heuristics are the Clark and
Wright savings algorithm and the Nearest neighbour algorithm. In the paper of (Avdoshin &
Beresneva, 2019), the Clark is tested on a CVRP against several other constructive heuristics
and provides the best results however in the same paper, it is also mentioned that in some
cases, the Nearest Neighbour algorithm outperforms the Clark and Wright savings algorithm.

Following from (Toth & Vigo, 2014), the Clark and Wright saving algorithm begins by first con-
structing routes from the depot to each customer. Afterwards, the routes of individual customer
pairs (i and j) are merged, while taking the capacity constraints into account. The savings that
result from merging these routes are calculated by: sij = ci0 + c0j - cij, where ci0 = distance (or
cost) from customer i to the depot, c0j = distance (or cost) from depot to customer j, and cij =
distance (or cost) from customer i to j. Based on the calculated savings, the customer pair with
the maximum savings is selected, and their routes merge into a singular route. The process of
merging continues iteratively until all routes are merged, and a single route with the maximum
total savings is left.

Following from (Rio & Harahap, 2023), the Nearest Neighbour Algorithm begins by construct-
ing several routes from the depot to each customer. From there, the next customer to visit is
the customer closest to the current location. This is done until all customers are visited while
considering capacity constraints. If all the customers have been visited or the vehicle cannot
supply another customer, the vehicle returns to the depot, and the route is done.

3.2.2.2 Improvement heuristics

There are two different types of improvement heuristics: intra-route heuristics, and inter-route
heuristics. According to (Toth & Vigo, 2014) intra-route heuristics can be any improvement
heuristic designed for the Traveling SalesmanProblem, e.g., λ-opt (2-opt, 3-opt), Lin and Kernighan
algorithm. In both cases, λ edges are iteratively removed and replaced by λ other edges to try
and improve the route. In the case of the Lin and Kernighan algorithm, the value of λ is modi-
fied dynamically throughout the search. Empirical analysis performed by (Johnson & Mcgeoch,
2007) of several Traveling Salesman Problem heuristics, has shown that The Lin and Kernighan
algorithm yields the best results. Following from (Toth & Vigo, 2014) they state that: ”In prac-
tice, inter-route improvement moves are essential to achieve good results.”. The inter-route
improvement heuristics work by swapping customers or edges between different routes to see
if the route will be improved, examples of these kinds of heuristics are Swap, 2-opt*, and Re-
locate. In most cases, the number of exchanged customers remains small (<2) (Toth & Vigo,
2014).

3.2.2.3 Metaheuristics

According to (Cordeau, Gendreau, Laporte, Potvin, & Semet, 2002), metaheuristics, compared
to normal heuristics, perform a more thorough search of the solution space, allowing inferior
moves that a normal heuristic normally would not allow. Furthermore, they outperform normal
heuristics in terms of quality. However, this increase in quality is often made at the expense

28

of speed and simplicity. Metaheuristics can broadly be classified into two types: local search
methods and population-based heuristics (Toth & Vigo, 2014).

Following from (Toth & Vigo, 2014) the first type, the local search methods, ”explore the solution
space by moving at each iteration from a solution to another solution in its neighbourhood.” They
do this by moving from an initial solution x1 and each iteration t it moves from the current solution
xt to a different solution xt+1 in the neighbourhood N(xt) (Toth & Vigo, 2014). If the solution of
xt+1 is better than the current solution, xt+1 will become the new current solution. After the
comparison and possible reassignment of the current solution, a new iteration will be started.
However, local search algorithms are prone to cycling, which means that it gets stuck on local
optima. Two frequently used local search algorithms are Simulated Annealing and Tabu Search.

Following from (Toth & Vigo, 2014) the second type, the population-based methods, ”take their
inspiration from natural concepts, e.g., the evolution of species and the behaviour of social in-
sects foraging.” To defer from getting stuck on local optima the population-based methods use
high-level guidance strategies based on memory structures, such as neural networks, chro-
mosomes, or pheromones (Toth & Vigo, 2014). However, the heuristics use components of
the local search methods to search for near-optimal solutions. Some popular population-based
search methods include Ant Colony Optimization (ACO) and Genetic Algorithms (GA).

3.3 Tools for solving a Vehicle Routing Problem

The modelling of a Vehicle Routing Problem entails the utilization of mathematical models to
represent the specific problem and its associated constraints. For the purpose of this research,
the focus will be on software tools and libraries compatible with the programming language
Python. Some well-known and widely known software tools are:

• OR-tools

• Gurobi

• PuLP

3.3.1 OR-tools

OR-Tools is an open-source1 software suite2 developed by Google to tackle combinatorial op-
timization problems. The software suite includes a wide range of solvers which include linear
programming, mixed-integer programming, and constraint programming solvers. OR-Tools also
offers a Python API, making integrating within the solution model easy.

3.3.2 Gurobi

Gurobi is a mathematical optimization solver designed to handle various optimization problems,
including linear and mixed-integer linear programming. It claims to have the world’s fastest
solver, which can handle various optimization problems. Furthermore, it has a Python API,
making integrating with the solution model easy. Gurobi provides free licenses for Academic
purposes and has a great technical support team, which consists of a team of PhD-Level Opti-
mization Experts with fast response times, which makes it a great choice for optimization solu-
tions.
1 Open-source software is free to use, and the original program can be changed by anyone (Dictionary, n.d.).
2 A collection of software modules with specific functionalities that are integrated with common interface to support
different business processes/objectives(Ayanso, 2014).

29

3.3.3 PuLP

PuLP is a linear programming library in Python in which you can create and solve linear opti-
mization problems. It supports a variety of solvers, like Gurobi, and has its own built-in solver.
Since it is Python-centric, it can easily be integrated with the solution model. Furthermore, the
library has a big community, making it easy to ask for help.

3.3.4 Tools that will be used

To effectively measure the effectiveness of a route, a linear program will be created to solve the
problem to optimality. Because of its speed, versatility and integrability and the fact that it is
possible to acquire a free academic license, Gurobi will be used for this task.

3.4 Case Studies

In the literature study, three metaheuristics were found to be applied to case studies that are
comparable to the problem of Connected Green their customers. The found metaheuristics are
the Genetic Algorithm, Ant Colony Optimization, and the Tabu Search Method

The first of these three algorithms is theGenetic Algorithm (GA). The problem from (Rachmawati,
Sihombing, & Sitorus, 2020) uses the Genetic Algorithm to solve the optimization problem. The
Vehicle Routing Problem in the article is a multi-depot (capacitated) Vehicle Routing Problem.
The article, which is a case study, uses the use case of the watering of a park in Medan Indone-
sia. The algorithm finds a solution close to optimality. Following from (Collins, 1998) ”A typical
GA represents a solution to a problem in terms of its genotypic features i.e. the basic features,
or elements, that make up a solution. These features are represented using symbolic strings
(referred to as ”chromosomes”). The most common representation for a GA is a binary (i.e.
base 2) string in which each number indicates the presence or absence of a specific element.
A set of randomly generated strings is typically used as the initial population for a GA. The
chromosomes’ genotypes are then evolved through the application of fitness-biased selection
operators, and recombination and mutation reproduction operators. The simulated evolutionary
process, involving epigenesis, selection, genotypic survival, and mutation, is repeated until an
acceptable solution, or set of solutions, to the problem is discovered.”

The second heuristic is Ant Colony Optimization (ACO) which was inspired by the food-foraging
behaviour of ant colonies. In (Zare-Reisabadi & Mirmohammadi, 2015) the heuristic is used to
try and solve a site-dependent Vehicle Routing Problem. Site dependency means that differ-
ent types of vehicles need to be used to go to different locations. The article shows that the
heuristic has overall better results than the other heuristic that has been used, namely the tabu
search method. (Dorigo & Caro, 1999) explain that an ACO metaheuristic essentially simulates
a population of ants which collectively solve the optimization problem. Just as is the case with
real ants, the pheromone trail secreted by the foraging ants is stored during the search process.
These trails are associated with the connections between the nodes of the problem and initially
serve as a long-term memory for the search process. The pheromone trails of the ants are
updated based on the quality of the solutions found so that, eventually a solution for the VRP
can be found.

The third heuristic is the Tabu Search Method. In (Zare-Reisabadi & Mirmohammadi, 2015)
this heuristic is tested against the aforementioned Ant Colony Optimization on the same site-
dependent Vehicle Routing Problem. The article concludes that the ACO provides better results.
However, the tabu search method heuristic is a close second. This heuristic works by using a

30

local search procedure to find and generate new candidate solutions. It makes use of a short-
term memory that tracks ”tabu” moves to prevent it from getting stuck on local optima. These
”tabu” moves are not allowed to be made again until a certain number of iterations has been
reached. In this way, it searches for an optimal solution and ensures it does not get stuck on
local optima (Fred, 1990).

3.5 Conclusion

This chapter reviews the literature on Vehicle Routing Problems, focusing on the Capacitated
Vehicle Routing Problem (CVRP) and the Capacitated Vehicle Routing Problem with Hetero-
geneous Fleet (HCVRP). It addresses the main solving methods for Vehicle Routing Problems
and specific solving methods for both the CVRP and the HCVRP. Furthermore, it elaborates on
case studies which relate to the problem of Connected Green their customers and the solving
methods used in these studies.

Furthermore, the research question of this chapter has been answered:

What are the relevant theories and methods to identify and create the optimal route for
Connected Green their customers?

Relevant theories and methods to identify the optimal route for Connected Green their
customer:

To be able to identify the optimal route for Connected Green’s customers effectively, it is nec-
essary to use an exact method. Even though it is not fast, this will always produce an optimal
solution. The method identified and chosen to find the optimal solution will be an integer linear
program using the Gurobi solver in Python.

Relevant theories and methods to create the optimal route for Connected Green their
customer:

There are several methods of creating a solution for a Vehicle Routing Problem. From the
methods, heuristics and metaheuristics are particularly well-suited because of their scalabil-
ity and efficiency. Therefore both the heuristic and metaheuristic will be used in the solution
model. The aim of the heuristic is to provide an initial solution, which the metaheuristic can
afterwards improve upon. The type of heuristic that is used within the solution model is the
Nearest Neighbour algorithm, due to its computational speed. Furthermore, the metaheuristic
chosen to improve on the initial solution of the Nearest Neighbour algorithm is the Ant Colony
Optimization algorithm. This decision is based on its ability to outperform other metaheuristics
like the Tabu Search method and the fact that the ACO does not require an initial population of
solutions, unlike the Genetic Algorithm.

31

4 SOLUTION DESIGN

The aim of this chapter is to explain the design of the solution model. First, Section 4.1 gives a
detailed description of the problem. Section 4.2 describes all the requirements for the solution
model. Section 4.3 describes all the assumptions of the model. In Section 4.4, the solution
methodology of the model is explained. Section 4.5 describes how the solution model imports
data and visualizes the solution. Lastly, Section 4.6 concludes this chapter by summarizing it
and providing the answer to the research question of this chapter:

Which solution approach can be defined for the optimization of the route planning, and what
should it look like?

4.1 Description of the problem

The problem of Connected Green will be modelled as an Integer Linear Program (ILP) according
to the Miller-Tucker-Zemlin formulation (Miller, Tucker, & Zemlin, 1960). The following section
will first describe the problem Connected Green’s customers are experiencing. Afterwards, the
parameters, variables, objective function, and constraints of the problem will be described.

4.1.1 Problem description

The problem the customers of Connected Green are facing is creating efficient irrigation routes
to consistently irrigate their plants and trees. The plants and trees are monitored via moisture
sensors, indicating when the soil is too dry, thus requiring irrigation. Based on the moisture
level and the locations of the sensors, the customers can plan irrigation routes. However, these
routes are planned inefficiently. To address this, a solution model will be developed to automate
and improve route planning. The solution model can minimize total distance and driving time.
This model will determine efficient irrigation routes based on sensor locations, moisture levels,
road accessibility, water demand of the sensors, vehicle water tank capacity, and vehicle types.

4.1.2 Parameters

The parameters are the input of the solution model, which affects the decision-making process
within the model. The parameters are:

• Total set of sensors: N = {1, 2, ..., n}.

• Set of sensors plus the depot: V = {0, ..., N}

• Set of arcs connecting different locations: A = {(i, j) | i, j ∈ V, i ̸= j}

• All sensors have a demand which is nonnegative: qi ≥ 0, with i ∈ N . Note that q0 = 0 as
the depot does not have demand.

• Types of vehicles: T = {1, 2} where 1 is the car and 2 is the tractor.

• The fleet of heterogeneous vehicles: Kt = {1, 2, ...,Kt} with each a capacity Qt > 0, with
t ∈ T .

• Cost for moving from sensor i to sensor j using vehicle k: cijk, with i, j ∈ N , i ̸= j and
k ∈ Kt. The costs can be distance or driving time. The costs can vary per vehicle as the
vehicle types have different road accessibilities.

32

4.1.3 Decision variables

The decision variables are used to indicate the choices made within the model and can only
have binary values. In total, there are is one decision variable for this model:

xijk :

{
1 if sensor j is visited right after sensor i by vehicle k, where i, j ∈ N, i ̸= j, and k ∈ Kt.

0 otherwise

4.1.4 Objective function

The goal of the model is to construct the near-optimal route which minimizes the total cost,
which in this case can be either total distance or total driving time. Therefore, the model should
minimize the objective function:

min
∑

(i,j)∈A

K∑
k=1

cijkxijk (4.1)

4.1.5 Constraints of the objective function

The variables in the objective function are subjected to the following constraints.

∑
j∈V,j ̸=i

K∑
k=1

xijk = 1 ∀i ∈ N (4.2)

∑
i∈V,i ̸=j

K∑
k=1

xijk = 1 ∀j ∈ N (4.3)

∑
i∈N

qi
∑

j∈V,j ̸=i

xijk ≤ Qk ∀k (4.4)

∑
i∈V,i ̸=0

x0ik = 1 ∀k (4.5)

∑
i∈V,i ̸=0

xi0k = 1 ∀k (4.6)

∑
j∈V,j ̸=i

xijk =
∑

j∈V,j ̸=i

xjik ∀i ∈ N, ∀k (4.7)

xijk ∈ {0, 1} ∀(i, j) ∈ A, ∀k (4.8)

Constraints (4.2) and (4.3) ensure that each sensor is visited once by one vehicle. Constraint
(4.4) ensures that the total demand that is met by a vehicle never exceeds the vehicle’s capacity;
this ensure that a vehicle never visits a sensor whose demand it cannot meet. Constraints (4.5)
and (4.6) ensure that a vehicle starts and ends its route at the depot. Constraint (4.7) ensures
that the number of times a vehicle visits a sensor equals the number of times it exists the same
sensor; this ensures continuity so that a vehicle does not vanish after visiting a sensor. Lastly,
constraint (4.8) ensures that the decision variable xijk can only take on binary values.

4.2 Requirements of the solution model

The solution model should adhere to certain requirements to be able to mirror the real-life situ-
ations it will be used for as close as possible. This section defines the requirements the model
should have.

33

• Each moisture sensor can only be visited once per vehicle.

• The vehicles are limited to cars, tractors or a combination of both.

• The vehicles start and end at the same location, the location is the project address found
in the sensor overview in the dashboard.

• The road accessibilities differ per vehicle type. For instance, a tractor is not allowed on
the motorway.

• The capacity of the vehicles depends on the vehicle type.

• Recall from Chapter 2 that if a vehicle’s water tank is empty, it can either be refilled at the
depot or using surface water found along the route. Recall from Chapter 3 that if the water
tank is refilled along the route, the vehicle can be seen as having unlimited capacity. The
choice between refilling at the depot or along the route is specified before the routes are
calculated.

4.3 Assumptions

This section lists the assumptions underpinning the solution model. These assumptions simplify
the problem and facilitate the creation of a more efficient model.

• The water demand per sensor can range from 60 to 3750 litres for routes driven by tractors
or a combination of tractors and cars.

• The water demand per sensor can range from 60 to 1100 litres for routes driven only by
cars.

• The service time per sensor is zero.

• A vehicle can drive multiple routes in a single day. However, this is modelled as having
unlimited vehicles.

• The product delivered by the vehicles is uniform for all the sensors, so each vehicle is
allowed to service each sensor.

• Drivers do not form a limitation. So, only the number and type of vehicles are taken into
consideration.

4.4 Heuristics

The solution model is intended to find a feasible solution in an acceptable time for the current
and future customers of Connected Green. Since an ILP will not be able to do this for larger
instances, a heuristic approach will be used. In Chapter 3, it has been decided that the heuristics
used within the solution model will be the Nearest Neighbourhood heuristic and the Ant Colony
Optimization metaheuristic. The following sections explain the different heuristics and their most
important functions.

4.4.1 Nearest Neigbourhood algorithm

The Nearest Neighbourhood algorithm will provide a quick initial solution that the Ant Colony
Optimization algorithm can improve. The algorithm, which can be seen in Algorithm 2, takes
as input the list of vehicle types (vehicle_types), the list containing the demand of each sensor
(demand_list), the dictionary containing the capacities of the vehicles (capacity_dict), and the
dictionary containing the distance matrices of each vehicle type (distance_matrix_dict). Apart

34

from the distance matrices, all inputs are given by the customer. The algorithm then starts by
determining the maximum capacity of the used vehicles. If the demand of any of the nodes
exceeds this, the function stops. If not, the function continues and initializes all the nodes with
their respective demand.

Following this, a list of permutations is made, each reflecting a separate vehicle order combi-
nation. For each permutation, the vehicles will be assigned their specific properties, consisting
of the capacity and distance matrix, which can differ per vehicle type.

Within the InitialiazeVehicles() function, all vehicles are assigned their respective distance ma-
trices and capacities. Furthermore, the vehicles are added to a list in the same vehicle order
as the current permutation; this list is copied several times, and all copies are added to one big
list. Resulting in a two-dimensional list which will be used to dynamically select the next vehicle
for which to construct a route, if not all sensors have been visited.

After initialization, the Nearest Neighbour Algorithm will start, and the ComputeRoute() function
will determine routes for each vehicle. After the ComputeRoute() function has constructed the
routes, they will be saved in a data frame. Upon concluding all the permutations, the FindBe-
stRoute() function will extract the shortest route from the data frame and return the best route
order (BestInitialRoute), best route distance (BestRouteValue), and best permutation (BestOp-
tion).

Algorithm 2 Nearest Neighbour Algorithm
Input: vehicle_types, demand_list, distance_matrix_dict, capacity_dict
Output: BestInitialRoute, BestRouteValue, BestOption

1: Start:
2: Determine the maximum vehicle capacity
3: Validate vehicle capacity
4: Initialize nodes with their demands
5: Generate permutations based on all the different vehicles
6: for each permutation do
7: Assign vehicle-specific properties
8: InitializeVehicles()
9: ComputeRoute()
10: end for
11: Extract the best route from the data frame using FindBestRoute()
12: return BestInitialRoute, BestRouteValue, BestOption

35

4.4.1.1 Function to compute routes

The ComputeRoute() function, seen in Algorithm 3 and Algorithm 4, is called by the nearest
Nearest Neighbour Algorithm. The function essentially runs the route construction algorithm
of the Nearest Neighbourhood Heuristic described in Chapter 2, where it starts by construct-
ing a route to one of the unvisited sensors and, from that sensor, visits the sensor nearest
to the current sensor. The algorithm keeps constructing routes until all sensors are visited.
The ComputeRoute() function takes the sensors (nodes) and vehicles initialized by the Nearest
Neighbour Algorithm as input for the algorithm.

The first loop in Algorithm 3, which cycles through all the nodes, ensures that each time a new
route is constructed and none of the nodes have been visited, the first point visited after the
depot will be a unique node. If possible, due to capacity constraints. In other words, the function
ensures that each route starts from a different node to consider all possible permutations of
depot-to-node sequences.

At the beginning of this loop, all nodes and vehicles are reset to their original values so that a
new iteration can begin without the interference of the last iteration. The function then starts a
while loop for each node, which runs until all nodes are visited. Then, if possible, the function
adds the unique node from the first loop to the current route, marking it as visited and updating
the route distance. This ensures the vehicles start the route at a different node in each iteration.
If this is not possible due to capacity constraints, this is skipped.

Afterwards, the function starts looking for the nearest node. This is done using the FindShortest-
Distance() function, which identifies the nearest node the vehicle can serve using its capacity.
If no nodes can be visited, the function returns None, and the route for this vehicle is ended.
For a valid node, it is added to the route, marked as visited, and the route distance is updated.
Once the loop ends, either by visiting all nodes or early termination, the depot is added to the
route and marked as visited. Furthermore, after loop termination, the route distance is updated,
and the route details are stored. Lastly, the next vehicle is chosen. This is done dynamically
using the function select_next_vehicle().

After all nodes are processed, the stored route details are added to a data frame. Upon com-
pletion, the data frame is returned to the Nearest Neighbour Algorithm.

Algorithm 3 ComputeRoute (Part 1)
Input: nodes, vehicles
Output: data frame with best routes

1: Start:
2: for each node do
3: Reset all nodes and vehicles
4: while There are unvisited nodes do
5: if there are no visited nodes then
6: Add the node to the route.
7: Mark node as visited
8: Update route distance
9: end if

36

Algorithm 4 ComputeRoute (Part 2)
10: while Route is not completed do
11: Find nearest unvisited node using FindShortestDistance()
12: if No nodes can be added then
13: Add depot to route
14: Mark depot as visited
15: Update route distance
16: Exit while loop
17: end if
18: Add node to the route
19: Set node to visited
20: Update route distance
21: end while
22: Store the route details
23: Select_next_vehicle()
24: Reset route distance
25: end while
26: if All nodes have been visited then
27: Add route details to the data frame
28: end if
29: end for
30: return data frame

4.4.1.2 Function to select the next vehicle

The function select_next_vehicles() dynamically determines the next vehicle to be used for route
creation. As can be seen in Algorithm 5, it takes the list of nodes (sensors), vehicles, the cur-
rent vehicle index (vehicle_index), and the current list index (list_index) as input. It starts by
determining the total demand of the nodes that have not been visited. Afterwards, the function
starts a loop that aims to select the most appropriate vehicle for route creation based on the
current demand and available vehicles. Within the loop, the function first attempts to identify
any unused tractors or cars from the current list of vehicles. Afterwards, the following logic de-
termines the next vehicle to be used:

• If there is an available tractor and the total remaining demand exceeds the capacity of a
car, the tractor is chosen due to its higher capacity.

• If there is an available car that can at least visit one more node, the car is selected.

• If both are not true but a tractor is still available, the tractor is chosen by default.

• If there is no tractor available, the list index is incremented with 1 to consider the next set
of vehicles.

This selection procedure is based on two assumptions. First, if the remaining demand is too
high to be met by a car. It is better to use a tractor since it has more capacity and thus can visit
more sensors in a single route. Secondly, longer routes, which visit more sensors, are preferred
over shorter routes. The shorter routes require more visits to the depot, leading to an increase
in travel distance from and to the depot. By driving longer routes, it is possible to minimize the
depot visits and the overall traveled distance can be reduced. Furthermore, it also results in
fewer vehicles needed to drive the irrigation routes.

37

Algorithm 5 select_next_vehicle()
Input: vehicles, nodes, list_index, vehicle_index
Output: vehicle_index, list_index

1: Start:
2: Determine the total demand of all unvisited nodes
3: while No new vehicle is selected do
4: Determine if there is still an unused tractor in the list of the available vehicles
5: Determine if there is an unused car in the list of the available vehicles
6: Determine the capacity of a car
7: if an unused tractor is available, and the remaining demand is higher than the capacity

of a car then
8: return the index of this unused tractor
9: else if an unused car is available and there is at least one node that can be added to its

route then
10: return the index of this unused car
11: else if There is an unused tractor then
12: return the index of this unused tractor
13: else if there is no unused tractor then
14: List index+=1
15: else if there is no unused car then
16: List index+=1
17: end if
18: end while

4.4.2 Ant Colony Optimization algorithm

The Ant Colony Optimization algorithm (ACO), which will be used to create near-optimal routes,
is a modified version of the general ACO. Whereas the normal ACO does not take in an initial
solution, the ACO used in the solution model does. It takes the initial route order found by the
Nearest Neighbour algorithm and improves upon it. Following from (Wang, Ma, Li, Zhai, & Qiao,
2020), the general ACO algorithm works in the following way:

1. Initialization:

• A number of ants are divided over the nodes of the problem.
• All connecting paths between the nodes have a pheromone concentration, which
initially is set to a uniform value or in our case to values based on a heuristic.

2. Ants moving:

• Ants start moving from one node to another based on pheromone concentration on
the path and the attractiveness of the move, which often is distance, cost or time.
The probability of an ant k moving from node i to node j is given by:
pkij =

[τij]
α×[ηij]

β∑
[τij]α×[ηij]β

where,

– τij is the pheromone concentration from node i to node j.
– ηij is the attractiveness of the move from node i to node j which is given by:

ηij =
1
dij

with dij being the distance, time or other cost.
– α is the parameter which decides the relative importance of the pheromones.
– β is the parameter which decides the relative importance of the attractiveness.

3. Pheromone Update:

38

• After all ants have created a path, the pheromone levels on the trails are updated.
• To simulate the natural evaporation of pheromones, a percentage of the pheromones
is evaporated from all the paths. This is given by:
τij = (1− ρ)× τij where,
– ρ is the evaporation rate.

• On the paths the ants have used, pheromones are deposited, with the amount being
inversely proportional to the lengths of their paths (or the quality of their solution).
This is represented as:
∆τkij =

Q
Lk

where,
– Q is a constant, and Lk is the length of the path taken by ant k.

• The new pheromone levels on the paths are then: τij = τij +
∑

k ∆τkij

4. Termination:

• The algorithm is terminated when a certain condition is met, for instance, a number
of iterations.

The ants choose to travel to nodes based on the strength of the pheromone trails left by earlier
ants. The Ant Colony Optimization works by dividing all the available ants over the nodes. From
there, the ants will choose the next node based on the probability distribution.

4.4.2.1 Ant Colony Optimization algorithm

The main function of the ACO, which can be seen in Algorithms 6 and 7, has the following
inputs: the list containing the types of vehicles (vehicle_types), list with the demand of each
sensor (demand_list), a dictionary containing the distance matrices of the different vehicles
(distance_matrix_dict), and in the case of the modified Ant Colony Optimization Algorithm a list
containing the initial route calculated by the Nearest Neighbour Algorithm (initial_route).

The algorithm starts by initializing all the parameters of the ACO. These are:

• Number of ants: in the algorithm, the number of ants is set to the number of nodes divided
by two that need to be visited to ensure the ants are divided over the nodes.

• Alpha: this represents the extent of the group cooperation of the ants, meaning that the
higher value α attains, the more likely an ant will choose a path based on pheromones.

• Beta: this represents the extent to which an ant will favour taking a path with a lower
distance, time or cost.

• Evaporation rate: this must be 0 ≥ Evaporation rate ≤ 1.

• Initial pheromones: this refers to the pheromones the initial route provided by the Nearest
Neighbour algorithm will receive. This is only done for the modified Ant Colony Optimiza-
tion algorithm.

• Number of iterations

• Q: a constant.

After initializing all the parameters, the parameters, as well as the inputs given to the algorithm
are used to initialize the Ant Colony Optimization algorithm.

After initializing, Colony.optimize() is called, starting the optimization algorithm.

39

Algorithm 6 Modified Ant Colony Optimization Algorithm
Input: vehicle_types, demand_list, distance_matrix_dict, capacity_dict, initial_route
Output: best_route_order, used_vehicles, best_route_loads, best_route_distances

1: Start:
2: Initialize the parameters of the ACO.
3: Initialize the Ant Colony with the parameters
4: Colony.optimize()
5: return best_route_order, used_vehicles, best_route_loads, best_route_distances

Algorithm 7 General Ant Colony Optimization Algorithm
Input: vehicle_types, demand_list, distance_matrix_dict, capacity_dict
Output: best_route_order, used_vehicles, best_route_loads, best_route_distances

1: Start:
2: Initialize the parameters of the ACO.
3: Initialize the Ant Colony with the parameters
4: Colony.optimize()
5: return best_route_order, used_vehicles, best_route_loads, best_route_distances

4.4.2.2 The optimization function

The function Colony.optimize() will run the actual ACO algorithm. As can be seen in Algorithms
8 and 9, the function starts by checking if any node’s demand exceeds the maximum vehicle
capacity. If so, the algorithm is halted. This is because all nodes need to be visited, and all
demand of the node needs to be met during a single stop.

In the case that the algorithm is not halted, the iteration is started. The iteration starts with
resetting all vehicles and nodes to their initial state. Afterwards, it first increments the counter
with one, which lets each vehicle start on a different node. After this is done, it iterates over all
vehicles and computes the route for the vehicle using Colony.compute_solution. Throughout
the iterations, the method will update the best route if it discovers one that outperforms the cur-
rent best route.

After iterating over all the vehicles, the Colony.update_pheromone() functionality is called. This
evaporates a portion of the pheromones on all paths and adds pheromones to the paths taken
by the vehicles. As each iteration ends, the route list maintained by the Colony is cleared, pro-
viding a clean slate for the next iteration.

After all iterations are done, the best route, along with its information, is extracted and returned.

Algorithm 8 Colony.optimize() (Part 1)
Input: Output: best_route_order, used_vehicles, best_route_loads,

1: Start:
2: Verify demand with Colony.check_demand()
3: if a node’s demand exceeds maximum vehicle capacity then
4: Stop algorithm
5: end if

40

Algorithm 9 Colony.optimize() (Part 2)
6: for each iteration do
7: for each vehicle do
8: Increment counter with one
9: Reset all vehicles and nodes to their initial states using Colony.reset()
10: Compute the best route for current vehicle using Colony.compute_solution()
11: if the current route is better then
12: Update best_route and its distance
13: end if
14: Clear the current vehicle its route list.
15: end for
16: Update pheromone levels using Colony.update_pheromone()
17: Clear the Colony route list
18: end for
19: Extract best route details: best_route_order, used_vehicles, best_route_loads,

best_route_distances from best_route
20: return best_route_order, used_vehicles, best_route_loads, best_route_distances from

best_route

4.4.2.3 Function for solution computation

The function Compute.solution() determines near-optimal routes for vehicles while accounting
for vehicle capacity and various vehicle types. It can be seen in Algorithm 10 and starts by
resetting the total distance to zero and adding the depot to the route. Afterwards, it evaluates
whether the node corresponding to the counter index can be added to the route. If possible, the
node is added to the route.

The process then enters a loop which keeps running until all nodes have been visited. Within
the loop, the probability distribution is computed for visiting each node from the current node.
This same function simultaneously discerns if a vehicle has enough capacity to visit anymore
nodes. If the capacity is exhausted, the depot is added to the route, and the route is saved
using the vehicle.save_route() function. If not, the next node is selected using a random choice
based on the probability distribution.

Within the vehicle.save_route() function, the routes are saved, and the vehicle is reset so that it
starts from the depot and will be able to visit the unvisited nodes. Furthermore, if there are sev-
eral vehicle types, the vehicle type will change depending on the counter within each vehicle.
Each time a route is saved, this counter gets incremented and assigns the vehicle type with the
counter index in the vehicle_types list.
After the vehicle type is assigned, the while loop is continued.

If the capacity is not yet exhausted, the next node that was selected will be added to the route,
and the loop continues. Upon visiting all nodes, the depot is added to the last route and saved.
The function concludes by summing all the distances travelled by the vehicles. It returns the
vehicles, their respective routes and the total distance.

41

Algorithm 10 Colony.compute_solution()
Input: vehicle, counter Output: vehicle routes, total distance

1: Start:
2: Initialize total distance to zero
3: Add depot to route
4: if node at the counter index can be added to route then
5: Add node to route
6: end if
7: while there are unvisited nodes do
8: Compute probability distribution for next node using Colony.compute_probabilites()
9: Select next node using a random choice based on the probability distribution.
10: if force_depot is True then
11: Add depot to route and save the route using vehicle.save_route()
12: else if next node is the depot then
13: Add depot to route and save using vehicle.save_route()
14: else if next node can be added to route then
15: Add next node to route
16: end if
17: end while
18: Add depot to route and save using vehicle.save_route()
19: Calculate total distance travelled
20: return vehicle routes, total distance

4.4.2.4 Function for computing the probability distribution

The function Colony.compute_probabilities(), which can be seen in Algorithm 11, is used to
determine the probability distribution of visiting nodes from the current node. The function takes
in the current vehicle and the current node (current_node) and works in the following way:

1. All pheromone values τij for the paths that can be taken from the current node are loaded
in.

2. All the distances/travel times for the paths that can be taken from the current node are
loaded in.

3. All the ηij values are computed using: ηij = 1
dij

with dij being the distance, time or other
cost.

4. The probability distribution is determined using: pkij =
[τij]

α×[ηij]
β∑

[τij]α×[ηij]β

5. The vehicle is checked on if it has enough capacity to visit a node, if not, force_depot is
set to True

6. The probability distribution together with force_depot is returned to Colony.compute_solution().

42

Algorithm 11 Colony.compute_probabilities()
Input: vehicle, current_node Output: probabilities, force_depot

1: Start:
2: Access all the pheromones of the points that can be visited from the current node
3: Access the distances/traveltime from the points that can be visited from the current node.
4: Compute the η values
5: Compute the probability distribution for moving from the current node to the other nodes
6: if vehicle has too little capacity to visit a node then
7: force_depot is set to True
8: end if
9: return probabilities, force_depot

4.4.2.5 Function for updating pheromone trails

The function Colony.update_pheromones(), which can be seen in Algorithm 12, is used to up-
date the pheromone trails between the nodes. It takes the current vehicle and the current node
(current_node) as input and works in the following way:

1. Evaporate a portion of all the pheromones on the paths. Using: τij = (1− ρ)× τij where,
ρ is the evaporation rate.

2. Add pheromones on the paths traversed by the ants using: τij = τij +
∑

k ∆τkij where,
∆τkij =

Q
Lk
.

Algorithm 12 Colony.compute_probabilities()
Input: vehicle, current_node Output: probabilities, force_depot

1: Start:
2: Evaporate a portion of all pheromones trails.
3: for each vehicle in Colony.route_list do
4: for each route of the vehicle do
5: for each node in the route do
6: Add pheromone on the path between the current node and next node in the route.
7: end for
8: end for
9: end for

4.5 Solution model

Before the Nearest Neighbour algorithm and the ACO can determine a near-optimal route, it is
first necessary to import and convert all relevant data. After this has been done and the routes
have been determined, it still is necessary to create a visual representation of this route so that
the customers of Connected Green are able to view it. All relevant data must first be imported
to use the Nearest Neighbour and Ant Colony Optimization. This section will elaborate on how
all relevant data has been imported, converted and how the final route is mapped.

4.5.1 Loading in all relevant data

The final solution model should be designed to determine the most efficient irrigation route
automatically. Almost all required data for this model is available on Connected Green their

43

dashboard. Themost important data for the solution model on the dashboard consists of several
variables:

• zoneId: the sensor name used to identify which sensor is which in the routes.

• Longitude and latitude pairs: used to place the sensor on a map and calculate the dis-
tances from and to each point.

• Moisture level and thresholds: will be used to indicate if a sensor requires attention and
thus will be included as a watering point in the route.

As no dataset is available, the data is either imported into the model using the APIs of Con-
nected Green or imported into the model as user input. The API filters the sensors so that the
data frame only includes sensors with the readings dry and too dry. Ultimately the APIs return a
data frame which includes all sensors that need attention, their latitude, longitude and zoneId.

The user input covers the non-existent data needed to calculate the routes. The user input data
consists of the following:

• ProjectId: the identifier used for Connected Green their API to load the sensors of a spe-
cific project.

• Refill_at_depot: Boolean value that represents if a vehicle refills its capacity at the depot
or along the route.

• Capacities: the capacities of the vehicles differ per customer.

• Choice of vehicle: this can be a car, tractor or both.

• Number of vehicles: the number of vehicles available of each type.

• Demand of sensors

4.5.2 Graphhopper

To determine a near-optimal route, it is necessary to know the distances and/or driving times
from and to each sensor. To accomplish this, Graphhopper is used. Graphhopper is an open-
source routing library and is based onOpenStreetMap data. By hosting theGraphhopper engine
locally, it is possible to add constraints to the distance calculations based on the type of vehicle
used. For example, in the case of tractors, it is possible to exclude motorways and roads with
a speed limit of 100 km/h and include private roads normally not considered. In this way, it is
possible to create different distance matrices for each vehicle type, closely following the real-
life situations the customers of Connected Green face while executing the irrigation routes.
In the case of the solution model for the customers of Connected Green, constraints are set
for the tractor vehicle type. The constraints are modelled to take into account the legal road
accessibility regulations for tractors and the size constraints of the tractor. For example, a tractor
with a width of 2.5 meters cannot use roads that are at most 2 meters wide. Furthermore, the
Graphhopper API is also used to generate the paths to map the lines connecting the nodes on
the map.

4.5.3 Folium

After calculating the final route, it still has to be mapped. This has been done by using folium.
Folium is a Python library used for visualizing geospatial data. It takes the final route information,
the latitude and longitude, sensor names and the paths generated by the Graphhopper API as
input to map all the sensors and connect them in the order dictated by the solution method.
After everything has been mapped, the map is available as an interactive .html file and can be
viewed by the customers.

44

4.6 Conclusion

This chapter describes the design and workings of the solution model. It first gives a clear de-
scription of the problem. It does this by first summarizing the problem. Thereafter, it describes
the problem as an Integer Linear Program with its parameters, decision variables, objective
function and constraints. Afterwards, the requirements of the solution model are described,
such as road accessibility, refill points, and the start- and end locations. Next, the assump-
tions of the solution model are described. These assumptions consist of the water demand per
sensor, non-existent service time, driving multiple routes, uniformity of the product and driver
limitations. After this, the heuristics used within the solution model are elaborated on. The
heuristics consist of a Nearest Neighbourhood algorithm and an Ant Colony Optimization al-
gorithm. The logic and integration of these heuristics within the solution model are described.
Afterwards, the solution model is described, and the manner in which it loads and converts the
relevant data and transforms the calculated route into a visual representation is elaborated on.

Furthermore, this chapter has given an answer to the research question:

Which solution approach can be defined for the optimization of the route planning, and what
should it look like?

Solution approach:
The solution approaches that can be defined for the optimization of the route planning is a
combination of the use of a Nearest Neighbourhood algorithm and an Ant Colony Optimization
algorithm. Where the Nearest Neighbour Algorithm provides a quick initial route, which the Ant
Colony Optimization uses as input as an initial pheromone trail. The ACO then calculates the
near-optimal route, simulating the food-foraging behaviour of ants.

The way this approach should look is described in Section 4.4. This section elaborates on the
logic used within the solution model in detail.

45

5 EVALUATION AND IMPLEMENTATION

This chapter aims to elaborate on the evaluation and implementation of the solution model at
Connected Green. First, Section 5.1 will elaborate on the design of the experiments, data that
will be used, scenarios of the experiments, Key Performance Indicators, and the validation of
the experiments. Section 5.2 will elaborate on the parameter settings of the ACO. Section
5.3 will elaborate on the solution methods the solution model will be tested against. Section
5.4 elaborates on the results of the experiments as well as the output of the solution model.
Section 5.5 elaborates on the evaluation and implementation plan for the solution model at
Connected Green. Lastly, 5.6 concludes the chapter by summarizing and providing an answer
to the research question of this chapter:

How can the solution be implemented and evaluated at Connected Green?

5.1 Experimental design

In order to evaluate the route-creating performance of the Ant Colony Optimization algorithm
used within the solution model, it is necessary to perform several experiments. The first exper-
iments are related to the parameter setting for the Ant Colony Optimization metaheuristic and
Ant Colony Optimization with the initial solution metaheuristic. Secondly, the numerical exper-
iments aim to test both Ant Colony Optimization Algorithms against the current route planning
method described in Chapter 2, the Nearest Neighbour algorithm and an Integer Linear Pro-
gram. This section will discuss the dataset on which the experiments will be tested, how the
experiments are designed, what the Key Performance Indicators are, and how the experiments
can be validated.

5.1.1 Dataset

Unfortunately, not a significant amount of data is available to test the algorithm. In the case of
customers, the customers with the largest number of sensors in a certain area are around 20
sensors. To still be able to test the algorithm effectively, a dataset has been created for the
city of the Hague. The dataset includes latitude and longitude points for 100 different locations
for this city, distance and duration matrices for these points for both vehicle types and artificial
demand for the 100 locations.

5.1.1.1 Water demand

There is no available data on the demand of the sensors. However, as mentioned in Chapter 4,
the customers provided an average amount of water and amount of trees or flower boxes per
sensor. Under the same assumption mentioned in Chapter 4, the water demand per sensor will
range differently for the vehicle combinations.

• Tractors: the water demand ranges from 100 to 3750 litres.

• Car: the water demand ranges from 60 to 1000 litres.

• Combination of tractors and cars: the water demand ranges from 60 to 3750 litres.

As is also underlined in Chapter 2, the demand distribution is not uniform and tends to skew to
lower values. Therefore, to be able to simulate the demand effectively, a probability distribution

46

needs to be used, which can model this situation. To be able to do this, the triangular distribution
is used. This distribution is used when there is a known relationship between the variable data
but when there is relatively little data available. It is also often referred to as a ”lack of knowledge”
distribution. It is an ideal distribution based on the maximum and minimum values and the most
likely outcome: the mode. The probability density function f(x) for a triangular distribution is
given by. (Kissell & Poserina, 2017)

f(x) =

2(x−a)

(b−a)(c−a) for a ≤ x < c,
2(b−x)

(b−a)(b−c) for c ≤ x ≤ b,

0 otherwise.

where:

• a is the minimum value,

• b is the maximum value

• c is the mode.

The minimum and maximum values of all vehicle types are known, however, the modes are not.
Although the modes themselves are not known, it is given that the water demand tends to be in
the lower ranges as mentioned in Chapter 2. Therefore the modes are assumed to be:

• Tractors: 300

• Cars: 100

Using the modes two probability density functions can be created:

1. Tractors:

f1(x) =

2(x−100)

(3750−100)(300−100) for 100 ≤ x < 300,
2(3750−x)

(3750−100)(3750−300) for 300 ≤ x ≤ 3750,

0 otherwise.

where: a = 100 (minimum value), b = 3750 (maximum value), and c = 300 (mode).

2. Cars:

f2(x) =

2(x−60)

(1000−60)(100−60) for 60 ≤ x < 100,
2(1000−x)

(1000−60)(1000−100) for 100 ≤ x ≤ 1000,

0 otherwise.

where: a = 60 (minimum value), b = 1000 (maximum value), and c = 100 (mode).

To determine the demand for a combination of cars and tractors, a random number is generated
between 0 and 1. In the case that the random number is higher than the value p, the demand
gets simulated using the car its probability distribution; otherwise, the distribution of the tractors
will be used. In other words:

f3(x) =

{
f1(x) for p ≤ 0.5

f2(x) for p > 0.5

The value of p is set to 0.5 so that the probability of choosing either the demand out of the dis-
tribution of the car or the tractor is equal.

47

5.1.1.2 Latitude and latitude points

The geolocational points are generated using a Python script which takes a random value within
a polygon. The polygon covers the entire city of the Hague and excludes points in places where
no route can be created, such as points in the sea. The area in which the points can be created
can be seen in Figure 5.1.

Figure 5.1: Map of the polygon of the Hague used to create geolocational points made in Google
Maps

5.1.2 Scenarios

All experiments will be run using a Python script and will be able to automatically produce a
.csv file with the results of the experiments. The experiments will test the four different heuristic
approaches against the Mixed Integer Linear program using the dataset created for the city of
the Hague. The customers will be n= 10, 25,50,100, and the optimization will be based on total
distance and driving duration. In total, there will be three different experiment scenarios:

1. Optimization using cars

2. Optimization using tractors

3. Optimization using a combination of tractors and cars

4. Optimization using a combination of tractors and cars, where tractors visit the sensors
outside the city centre and cars the sensors in the city centre

48

5.1.3 Key Performance Indicators

The Key Performance Indicators of the experiments will be able to indicate how good the per-
formance is of the different heuristics. The Key Performance Indicators will consist of:

• Running time:
An important Key Performance Indicator of the performance of a heuristic is the total time it
takes the heuristic to produce its result. In the case of Connected Green, it is not desirable
to use a heuristic that takes a significant time to calculate a solution, as the heuristic will
need to be incorporated in the dashboard.

• Total distance:
An important indicator for the solution quality found by the heuristics is the total distance
in meters (in the case that the optimization is based on distance). A lower distance is
preferable and indicates a good quality solution.

• Total driving duration:
Just as the total distance, the total duration is an important indicator. It is given in seconds
and will only be provided if the optimization is based on driving duration.

• Difference with the ILP:
The ILP, just like the heuristics, provides the solution with its total distance or driving du-
ration (dependent on which optimization). As an ILP determines the optimal solution, the
difference in percentage between the solution of the heuristics and ILP is also an important
indicator of a found solution.

• Difference with the current heuristic:
As the current route planning strategy of the Hague has been converted to a heuristic,
it is possible to compare the Nearest Neighbour algorithm and the Ant Colony Optimiza-
tion algorithm with this strategy. This indicates the difference in percentages when the
proposed algorithms are used instead of the current strategy.

5.1.4 Validation of the experiments

This section will cover the computational setting and the randomness of the ACO.

• Computational setting:
All experiments are run on the same computer, a Windows computer with 16 GB of RAM,
and an Intel i7-9750H core and 2.60GHz core are used. All code is written in Python
3.10.12 using Visual Studio Code 1.81.1. Furthermore, the ILP is also coded in Python
using the package and solver of Guribo. The Gurobi solver is free to use under an aca-
demic license.

• Randomness of the ACO:
Since the ACO uses probability to model the foraging behaviour of the Ant, the constructed
solutions can differ per time it is running. To account for this randomness, all experiments
are run five times.

5.2 ACO tuning

Before the experiments can be run, it is necessary to set the different parameters of both ACOs.
In Chapter 4, the parameters of the ACO have been discussed. The algorithm will provide
different quality solutions based on these parameters. This section elaborates on the different
parameters and their values.

49

• Number of ants:
The number of ants is set to be the number of nodes to be visited divided by two, to ensure
that computational time is low.

• Alpha:
Alpha is the parameter that determines the extent of the group cooperation of the ants,
meaning that the higher value α attains, the more likely an ant will choose a path based
on pheromones.

• Beta:
Beta represents the extent to which an ant will favour taking a path with a lower distance,
time or cost.

• Evaporation rate: The evaporation rate determines how much of the pheromones on each
path dissipate. This value has been set to 0.5.

• Initial pheromones (only for the ACO with initial route):
This parameter determines the amount of pheromones already on the initial route. With
the initial round found by the Nearest Neighbour algorithm. As the pheromones on all
paths are set to 1, the initial route has been set to 1,5 to ensure that the ants are more
likely to follow the initial route and then deviate from it.

• Number of iterations: this is set to 100 to reduce computational times.

• Q: is a constant. It determines the amount of pheromones that will be added to each path if
it has been taken. Recall from Chapter 4: ∆τkij =

Q
Lk
. In the experiments, Q will attain the

lowest travel distance from a node to another node. This way, the maximum a pheromone
will be updated by is one, and the higher the distance, the lower the added pheromone
will be.

Alpha and beta have been selected based on the lowest average attained value of five experi-
ments with n = 25 for beta and alpha in the range [0.5,5]]. In these experiments, every possible
alpha-beta pair has been used to compute a solution for the total distance five times. After all
experiments, the alpha-beta pair with the lowest average total distance was selected.

5.2.1 ACO and Nearest Neighbour combination

For the ACO with the initial route, the alpha and beta values that reached the lowest average
are: α = 0.5, β = 1.5. A low alpha value and a relatively high beta value indicate that the ants
will favour taking paths of lower distance instead of exploring pats that at first may have larger
distances. The graph with all the different alpha-beta pairs and their average distances for the
ACO with the initial route can be seen in Figure 5.2.

50

Figure 5.2: Line plot of average total distance calculated by the ACO with initial route using the
different alpha-beta pairs for n = 25 for a combination of cars and tractors

5.2.2 ACO without Nearest Neighbour

For the ACO without the initial route, the alpha and beta values that reached the lowest average
are: α = 1, β = 0.5. A high alpha value and a relatively low beta value indicates that the ants
will favour exploration using the pheromones predominantly as a guide instead of taking paths
between nodes with a lower distance. The graph with all the different alpha-beta pairs and their
average distances for the ACO with the initial route can be seen in Figure 5.3.

Figure 5.3: Line plot of average total distance calculated by the ACO without initial route using
the different alpha-beta pairs for n = 25 for a combination of cars and tractors

51

5.3 Tested against

This section will elaborate on the two solution methods the designed solution model will be
tested against. The first solution method the solution model will be tested against is the Moving
”South” heuristic, described in Chapter 2, which is made to represent the current route planning
method of the city of the Hague. Secondly, the ACO will be tested against an ILP, which is there
to represent to the most ideal scenario.

The ILP is used to calculate the optimal value. It is used as a benchmark of the quality of
the solution found by the solution model. The ILP is modelled using the Miller-Tucker-Zemlin
formulation described in Chapter 4 in Python. Furthermore, Gurobi is used to solve the model.
For the Gurobi solver, the maximum computation time has been set to 120 seconds. If, after
120 seconds, the Gurobi solver still has not found a solution. The objective bound is taken for
the total distance or duration calculated from the ILP.

5.4 Experiments

This section will cover the results of the different experiments. The abbreviations in the tables
containing the results of the experiments refer to the following:

• MS = Moving South Heuristic

• NN = Nearest Neighbour Heuristic

• ACO = General Ant Colony Optimization Metaheuristic

• ACO + NN = Ant Colony Optimization Metaheuristic with initial Route generated by the
Nearest Neighbour Heuristic

• ILP = Integer Linear Program

• ∆% = Difference in percentage

5.4.1 Tractors

The first experiment is to create a route for customers only using tractors to irrigate the sensors.
As described in Section 5.1, the data used for the experiments is the created data of the city of
the Hague. Furthermore, the experiments are run for several instances of sensor sizes. The
optimization is done for driving duration and total distance. All different solution methods have
been tested on the same dataset.

5.4.1.1 Total distance

The results of the experiments can be seen in Table 5.1. From the experiments on minimizing
distance, it becomes apparent that all three proposed heuristic route planning approaches are
better approaches than the current route planning strategy. The general ACO is able to produce
solutions that are 20.12% (N = 10), 34.20% (N = 25), 28.58% (N = 50), and 25.42% (N = 100)
better than the current strategy, while the ACO + NN produces solutions that are 20.44% (N
= 10), 32.90% (N = 25), 27.44% (N = 50), and 24.00% (N = 100) better than the current route
planning strategy.

Furthermore, it can be seen that the general ACO outperforms the ACO + NN by approximately
2% for all N except for N = 10. Furthermore, it can be seen that the solution of the ILP, which is
assumed to be optimal, provides results that are just 1.66% (N = 10), 3.00% (N = 25) better than

52

the ACO solution. For N = 50, the ACO outperforms the ILP by 5.75% (N = 50), with no results
found for N = 100. Here, it can be seen that when N increases, the gap with ACOs decreases
to the point that the ILP cannot find a solution better than the ACO during its computational
time. Furthermore, it can be seen that the improvements the ACO + NN has on the NN range
from approximately 2 to 5% for all N except N = 25, where the difference jumps to almost 15%.
The general ACO’s improvements on the NN range from approximately 2 to 7% for all N except
N = 25, where the improvement is almost 16%. There are, however, significant differences
in computation times when comparing the ACOs and ILP with the NN and MS. The Moving
”South” heuristic and the Nearest Neighbour heuristic both achieve sub-second computational
times, whereas the ACOs and the ILP both have computational times of several seconds up to
several hours.

N 10 25 50 100

MS Distance (meters) 125635 330528 576982 1106769
time (s) 0,002 0,002 0,003 0,003

NN
Distance (meters) 102024 258153 440413 885097
time (s) 0,01 0,04 0,13 0,73
∆% MS -18,79% -21,90% -23,67% -20,03%

ACO

Distance (meters) 100358 217474 410547 825459
time (s) 1,04 21,71 233,36 3716,53
∆% MS -20,12% -34,20% -28,85% -25,42%
∆% NN -1,63% -15,76% -6,78% -6,74%
∆% NN + ACO 0,40% -1,94% -1,94% -1,86%
∆% ILP 1,66% 3,00% -5,75% -

ACO+NN

Distance (meters) 99957 221778 418668 841117
time (s) 1,05 22,22 234,01 4010,79
∆% MS -20,44% -32,90% -27,44% -24,00%
∆% NN -2,03% -14,09% -4,94% -4,97%
∆% ACO -0,40% 1,98% 1,98% 1,90%
∆% ILP 1,26% 5,03% -3,89% -

ILP

Distance (meters) 98715 211147 435600 -
Best bound 89889 88513 90236 -
time (s) 6,08 120,33 121,99 133,35
∆% MS -21,43% -36,12% -24,50% -
∆% NN -3,24% -18,21% -1,09% -
∆% NN + ACO -1,26% -5,03% 3,89% -
∆% ACO -1,66% -3,00% 5,75% -

Table 5.1: Comparison of different optimization based on distance for Tractors.

5.4.1.2 Total driving duration

From the experiments on minimizing total driving duration, it becomes apparent that the ACO
outperforms all the other heuristics. As can be seen in Table 5.2 the general ACO is able to
produce solutions that are 20.01% (N = 10), 33.90% (N = 25), 28.19% (N = 50), and 25.10% (N
= 100) better than the current strategy, while the ACO + NN produces solutions that are 19.78%
(N = 10), 33.44% (N = 25), 26.95% (N = 50) and 23.54% (N = 100) better than the current so-
lution strategy. Furthermore, the ACO + NN performs 0.28% (N = 10), 0.82% (N = 25), 1.71%
(N = 50), and 2.05% (N = 100) worse than the general ACO.

It can be seen that the solution of the ILP, which is assumed to be optimal, provides the following
improvement on the ACO: 1.14% (N = 10), 0.70% (N = 25). It furthermore provides an improve-

53

ment of 1.42% (N = 10) and 1.53% (N = 25). For N = 50, the general ACO and ACO + NN
outperform the ILP by 12.04% and 10,51% (N = 50), respectively. There are no results found
for N = 100 by the ILP. Furthermore, it can be seen that the NN is outperformed by the general
ACO by approximately 2 to 7% for all N except N = 25, where it is outperformed by almost 16%
and outperformed by the ACO + NN by approximately 2 to 5% for all N except N = 25, where
it is outperformed by almost 15%. There are, however, significant differences in computation
times when comparing the ACOs and ILP with the NN and MS. The Moving ”South” heuristic
and the Nearest Neighbour heuristic both achieve sub-second computational times, whereas
the ACOs and the ILP both have computational times of several seconds up to several hours.

N 10 25 50 100

MS Duration (minutes) 15501 41023 71692 137531
time (s) 0,003 0,002 0,003 0,004

NN
Duration (minutes) 12627 32054 55262 110799
time (s) 0,01 0,05 0,13 0,83
∆% MS -18,54% -21,86% -22,92% -19,44%

ACO

Duration (minutes) 12399,5 27078,5 51480 103005
time (s) 1,03 22,07 215,19 3633,92
∆% MS -20,01% -33,99% -28,19% -25,10%
∆% NN -1,80% -15,52% -6,84% -7,03%
∆% NN + ACO -0,28% -0,82% -1,71% -2,05%
∆% ILP 1,14% 0,70% -12,04% -

ACO+NN

Duration (minutes) 12434,3 27303,5 52374,5 105162
time (s) 1,04 22,28 214,03 3773,91
∆% MS -19,78% -33,44% -26,95% -23,54%
∆% NN -1,53% -14,82% -5,23% -5,09%
∆% ACO 0,28% 0,83% 1,74% 2,09%
∆% ILP 1,42% 1,53% -10,51% -

ILP

Duration (minutes) 12260 26891 58525 -
Best bound 11204 10884 11548 -
time (s) 6,45 120,30 121,80 133,33
∆% MS -20,91% -34,45% -18,37% -
∆% NN -2,91% -16,11% 5,90% -
∆% NN + ACO -1,42% -1,53% 10,51% -
∆% ACO -1,14% -0,70% 12,04% -

Table 5.2: Comparison of different optimization based on driving duration for Tractors.

5.4.2 Cars

The second experiment is to create a route for customers only using cars to irrigate the sensors.
The data used for the experiments is described in Section 5.1. Furthermore, the experiments
are run for several instances of sensor sizes. The optimization is done for driving duration and
total distance, and all different solution methods have been tested on the same dataset.

5.4.2.1 Total distance

The results of the experiments with regard to minimizing the total distance can be seen in Table
5.3. The table shows that all three proposed heuristic route planning approaches are better
than the current route planning strategy. The general ACO is able to produce solutions that are
29.38% (N = 10), 29.58% (N = 25), 29.56% (N = 50), and 21.10% (N = 100) better than the
current strategy, while the ACO + NN produces solutions that are 29.38% (N = 10), 29.34% (N

54

= 25), 27.74% (N = 50), and 17.48% (N = 100) better than the current route planning strategy.
Furthermore, it can be seen that the general ACO outperforms the ACO + NN by 0% (N = 10),
0.34% (N = 25), 2.51% (N = 50), 4.39% (N = 100).

The table also shows the solutions of the ILP, which are assumed to be optimal. It shows no
improvement on the ACO for N = 10. However, this is not the case for N = 25, 50 and 100,
where the ILP improves 0.79% (N = 25) and 3.91% (N = 50) on the general ACO solution, with
no results found for N = 100. In the case of the ACO + NN the ILP improves by 0% (N = 10),
1,13% (N = 25), and 6,58% (N = 50). Furthermore, it can be seen that the general ACO provides
better results than the ACO + NN for all N except N = 10, where the difference between them is
0%. For N = 25, 50 and 100, the improvements are 0.34% (N = 25), 2.51% (N= 50) and 4.39%
(N = 100). Moreover, it can be seen that the gap improvement of the general ACO on the NN
heuristic is 6.46% (N = 10), 14.90% (N = 25), 8.21% (N = 50), 8.89% (N = 100). For the ACO +
NN, the improvements on the NN are 6.47% (N = 10), 14.61% (N = 25), 5.85% (N = 50), 4.71%
(N = 100).There are, however, significant differences in computation times when comparing the
ACOs and ILP with the NN and MS. The Moving ”South” heuristic and the Nearest Neighbour
heuristic both achieve sub-second computational times, whereas the ACOs and the ILP both
have computational times of several seconds up to several hours.

N 10 25 50 100

MS Distance (meters) 134356 288883 563664 948895
time (s) 0,003 0,003 0,003 0,003

NN
Distance (meters) 101441 239053 432567 821738
time (s) 0,01 0,05 0,14 0,77
∆% MS -24,50% -17,25% -23,26% -13,40%

ACO

Distance (meters) 94884,5 203438 397069 748674
time (s) 2,10 29,74 329,39 4632,18
∆% MS -29,38% -29,58% -29,56% -21,10%
∆% NN -6,46% -14,90% -8,21% -8,89%
∆% NN + ACO 0,00% -0,34% -2,51% -4,39%
∆% ILP 0,00% 0,79% 3,91% -

ACO+NN

Distance (meters) 94882 204136 407278 783065
time (s) 2,06 29,56 335,65 4739,97
∆% MS -29,38% -29,34% -27,74% -17,48%
∆% NN -6,47% -14,61% -5,85% -4,71%
∆% ACO 0,00% 0,34% 2,51% 4,39%
∆% ILP 0,00% 1,13% 6,58% -

ILP

Distance (meters) 94882 201849 382124 -
Best bound 89490 93848 115367 -
time (s) 3,04 120,47 122,26 134,94
∆% MS -29,38% -30,13% -32,21% -
∆% NN -6,47% -15,56% -11,66% -
∆% NN + ACO 0,00% -1,13% -6,58% -
∆% ACO 0,00% -0,79% -3,91% -

Table 5.3: Comparison of different optimization based on distance for Cars.

5.4.2.2 Total duration

The results of the experiments minimizing the total duration can be seen in Table 5.4. From
the experiments on minimizing duration, it becomes apparent that all three proposed heuristic
route planning approaches are better approaches than the current route planning strategy. The

55

general ACO is able to produce solutions that are 29.63% (N = 10), 28.17% (N = 25), 28.09%
(N = 50), and 19.38% (N = 100) better than the current strategy, while the ACO + NN produces
solutions that are 29.62% (N = 10), 37.47% (N = 25), 34.22% (N = 50), and 19.72% (N = 100)
better than the current route planning strategy.

Furthermore, it can be seen that the general ACO outperforms the ACO + NN by 0.02% (N =
10), 1.25% (N = 25), 3.48% (N = 50), and 3.48% (N = 100). Furthermore, it can be seen that the
solution of the ILP, which is assumed to be optimal, provides results that are no improvement
upon the ACO for N = 50. It can be seen that the general ACO outperforms the ILP by 2.76%
(N =50). However, for N = 10 and 25, it improves 0.02% (N = 10), 2.92% (N = 25), and for N =
100 no result is found within the time limit. For the ACO + NN, the ILP outperforms it by 0.04%
(N = 10), 4.23% (N = 25) and 0.75% (N = 50). Just as the case is with the general ACO, there is
no result found by the ILP for N = 100. Furthermore, it can be seen that the Nearest Neighbour
heuristic provides results close to the general ACO, where the ACO shows improvements of
6.32% (N = 10), 14.95% (N = 25), 8.47% (N = 50) and 8.87% (N = 100). For the ACO + NN, the
improvements upon the NN are 6.31% (N = 10), 13.87% (N = 25), 5.17% (N = 50) and 5.59% (N
= 100). There are, however, significant differences in computation times when comparing the
ACOs and ILP with the NN and MS. The Moving ”South” heuristic and the Nearest Neighbour
heuristic both achieve sub-second computational times, whereas the ACOs and the ILP both
have computational times of several seconds up to several hours.

N 10 25 50 100

MS Duration (minutes) 10519 22392 44627 75861
time (s) 0,003 0,003 0,003 0,004

NN
Duration (minutes) 7902 18912 35060 67119
time (s) 0,01 0,03 0,16 0,92
∆% MS -24.88% -15.54% -21.44% -11.52%

ACO

Duration (minutes) 7402.5 16085 32090.8 61162.3
time (s) 2.04 28.65 356.76 4801.81
∆% MS -29.63% -28.17% -28.09% -19.38%
∆% NN -6.32% -14.95% -8.47% -8.87%
∆% NN + ACO -0.02% -1.25% -3.48% -3.48%
∆% ILP 0.02% 2.92% -2.76% -

ACO+NN

Duration (minutes) 7403.75 16288.8 33248.5 63365.5
time (s) 2.09 27.66 365.40 4847.66
∆% MS -29.62% -27.26% -25.50% -16.47%
∆% NN -6.31% -13.87% -5.17% -5.59%
∆% ACO 0.02% 1.27% 3.61% 3.60%
∆% ILP 0.04% 4.23% 0.75% -

ILP

Duration (minutes) 7401 15628 33000 -
Best bound 6725 8255 9868 -
time (s) 3.14 120.33 122.62 138.08
∆% MS -29.64% -30.21% -26.05% -
∆% NN -6.34% -17.36% -5.88% -
∆% NN + ACO -0.04% -4.23% -0.75% -
∆% ACO -0.02% -2.92% 2.76% -

Table 5.4: Comparison of different optimization based on duration for Cars

56

5.4.3 Combination of vehicles

The third experiment is to create a route for customers using both cars and tractors to irrigate
the sensors. The data used for the experiments is described in Section 5.1. Furthermore, the
experiments are run for several instances of sensor sizes. The optimization is done for driving
duration and total distance, and all different solution methods have been tested on the same
dataset.

5.4.3.1 Total distance

The results of the experiments with the objective of minimizing total distance can be seen in
Table 5.5. From the experiments on minimizing distance, it becomes apparent that all three
proposed heuristic route planning approaches are better approaches than the current route
planning strategy. The general ACO is able to produce solutions that are 39.55% (N = 10),
35.92% (N = 25), 40.47% (N = 50), and 39.75% (N = 100) better than the current strategy, while
the ACO + NN produces solutions that are 42.02% (N = 10), 34.65% (N = 25), 39.40% (N = 50),
and 37.48% (N = 100) better than the current route planning strategy. Furthermore, it can be
seen that the general ACO outperforms the ACO + NN for all N except for N = 10. For N = 10,
the ACO + NN outperforms the general ACO by 4.26%. However, for N = 25, 50 and 100, the
ACO outperforms the ACO + NN by 1.94% (N = 25), 1.76% (N = 50), 3.62% (N = 100)

For the ILP, it can be seen that the solution, which is assumed to be optimal, provides results
that improve the ACO for all N. The improvements of the ILP on the general ACO are 9.39% (N
= 10), 14.05% (N = 25), and 6.47% (N = 50). Since no value is found by the ILP in the set time
limit for N = 100, there is also no improvement upon the ACOs for this N. The improvements of
the ILP on the ACO + NN are 4.92% (N = 10), 16.31% (N = 25), and 8.38% (N = 50). Further-
more, it can be seen that for N = 10, the NN outperforms the general ACO by 1.87% (N = 10).
However, the general ACO improves upon the NN for N = 25, 50 and 100. The improvements
are 12.53% (N = 25), 17.23% (N = 50) and 17.69% (N = 100). For the ACO + NN, the improve-
ments upon the NN are 2.29% (N = 10), 10.80% (N = 25), 15.74% (N = 50), and 14.59% (N
= 100). There are, however, significant differences in computation times when comparing the
ACOs and ILP with the NN and MS. The Moving ”South” heuristic and the Nearest Neighbour
heuristic both achieve sub-second computational times, whereas the ACOs and the ILP both
have computational times of several seconds up to several hours.

57

N 10 25 50 100

MS Distance (meters) 105096 250038 556907 1076161
time (s) 0,003 0,003 0,006 0,004

NN
Distance (meters) 62360 183169 400544 787726
time (s) 0,02 0,10 0,38 2,62
∆% MS -40,66% -26,74% -28,08% -26,80%

ACO

Distance (meters) 63525,5 160222 331549 648409
time (s) 0,29 15,48 190,36 3243,62
∆% MS -39,55% -35,92% -40,47% -39,75%
∆% NN 1,87% -12,53% -17,23% -17,69%
∆% NN + ACO 4,26% -1,94% -1,76% -3,62%
∆% ILP 9,39% 14,05% 6,47% -

ACO+NN

Distance (meters) 60931 163396 337502 672772
time (s) 0,32 15,21 189,64 3430,39
∆% MS -42,02% -34,65% -39,40% -37,48%
∆% NN -2,29% -10,80% -15,74% -14,59%
∆% ACO -4,26% 1,94% 1,76% 3,62%
∆% ILP 4,92% 16,31% 8,38% -

ILP

Distance (meters) 58073 140478 311406 -
Best bound 52284 78858 108901 -
time (s) 2,42 120,33 121,71 132,61
∆% MS -44,74% -43,82% -44,08% -
∆% NN -6,87% -23,31% -22,25% -
∆% NN + ACO -4,92% -16,31% -8,38% -
∆% ACO -9,39% -14,05% -6,47% -

Table 5.5: Comparison of different optimization based on distance for a combination of Tractors
and Cars.

5.4.3.2 Used vehicles

The average number of cars and tractors used to construct the routes with the objective of
minimizing total distance can be seen in Table 5.6. Here, it can be seen that for all the heuristics
apart from the MS, the number of tractors used is approximately twice the number of cars used.
This makes sense since the tractors are able to visit more sensors in a single route.

N 10 25 50 100

MS Cars used 1 5 14 37
tractors used 1 4 10 19

NN Cars used 0 2 4 12
tractors used 1 4 9 16

ACO Cars used 0 2 4 9,25
tractors used 1 4 8 16,25

ACO+NN Cars used 0 2 4 9,25
tractors used 1 4 8 16

Table 5.6: Number of vehicles used during optimization on distance

58

5.4.3.3 Total duration

The results of the experiments minimizing the total duration can be seen in Table 5.7. From
the experiments on minimizing duration, it becomes apparent that all three proposed heuristic
route planning approaches are better approaches than the current route planning strategy. The
general ACO is able to produce solutions that are 32.81% (N = 10), 33.97% (N = 25), 38.06%
(N = 50), and 36.86% (N = 100) better than the current strategy, while the ACO + NN produces
solutions that are 34.98% (N = 10), 32.14% (N = 25), 37.48% (N = 50), and 34.72% (N = 100)
better than the current route planning strategy. Furthermore, it can be seen that the general
ACO is outperformed by the ACO + NN for N = 10 by 3.33% (N = 10). For N =25,50 and 100,
the general ACO outperforms the ACO + NN by 2.70% (N = 25), 0.94% (N = 50), and 3.27% (N
= 100).

In the case of the ILP, it can be seen that the solution, which is assumed to be optimal, provides
results that are an improvement upon the ACO for all N. With the ILP outperforming the ACO
by 8.27% (N = 10), 6.17% (N = 25) and 2.25% (N = 50). The ILP outperforms the ACO + NN by
4.77% (N = 10), 9.11% (N = 25), and 3.22% (N = 50). For N = 100, the ILP has been unable to
find a solution in the given time limit. It can also be seen that the Nearest Neighbour heuristic
provides results close to the ACO and the ACO + NN where the NN outperforms the general
ACO for N = 10 by 1.60% (N = 10). For N = 25,50 and 100, the general ACO outperforms the
NN by 5.10% (N = 25), 6.31% (N = 50), and 12.32% (N = 100). In the case of the ACO + NN, it
improves upon the NN by 1.68% (N = 10), 2.47% (N = 25), 5.42% (N = 50), and 9.35% (N = 100).
There are, however, significant differences in computation times when comparing the ACOs
and ILP with the NN and MS. The Moving ”South” heuristic and the Nearest Neighbour heuristic
achieve sub-second computational times, whereas the ACOs and the ILP have computational
times of several seconds up to several hours.

59

N 10 25 50 100

MS Duration (minutes) 11509 28061 64629 119408
time (s) 0,003 0,003 0,003 0,003

NN
Duration (minutes) 7611 19524 42725 85990
time (s) 0,02 0,11 0,53 2,54
∆% MS -33,87% -30,42% -33,89% -27,99%

ACO

Duration (minutes) 7732.5 18528.8 40028.8 75397.8
time (s) 0.55 16.25 181.36 3238.02
∆% MS -32,81% -33,97% -38,06% -36,86%
∆% NN 1.60% -5.10% -6.31% -12.32%
∆% NN + ACO 3.33% -2.70% -0.94% -3.27%
∆% ILP 8.27% 6.17% 2.25% -

ACO+NN

Duration (minutes) 7483 19042.3 40408.8 77950.3
time (s) 0.67 15.64 182.94 3279.19
∆% MS -34,98% -32,14% -37,48% -34,72%
∆% NN -1.68% -2.47% -5.42% -9.35%
∆% ACO -3.33% 2.70% 0.94% 3.27%
∆% ILP 4.77% 9.11% 3.22% -

ILP

Duration (minutes) 7142 17452 39148 -
Best bound 6567 9270 13237 -
time (s) 3.10 120.26 122.28 132.39
∆% MS -37,94% -37,81% -39,43% -
∆% NN -6.16% -10,61% -8.37% -
∆% NN + ACO -4.77% -9,11% -3.22% -
∆% ACO -8.27% -6.17% -2.25% -

Table 5.7: Comparison of different optimization based on duration for a combination of Tractors
and Cars.

5.4.3.4 Used vehicles

The average number of cars and tractors used to construct the routes with the objective of
minimizing the total driving duration can be seen in Table 5.8. Just as with the vehicles used for
the route construction based on distance, it can be seen that for all the heuristics apart from the
MS, the number of tractors used is approximately twice the number of cars used. This makes
sense since the tractors are able to visit more sensors in a single route and, therefore, would
be chosen more frequently than the car.

N 10 25 50 100

MS Cars used 1 5 14 37
tractors used 1 4 10 19

NN Cars used 1 2 5 12
tractors used 1 4 8 16

ACO Cars used 0 2 4,25 10,5
tractors used 1 4 8 16

ACO+NN Cars used 0 2 4 10,5
tractors used 1 4 8 16,25

Table 5.8: Number of vehicles used during optimization on duration

60

5.4.4 Combination of tractors and cars, where tractors visit the sensors outside the city centre
and cars the sensors in the city centre

The last experiment is creating a route for customers using cars and tractors to irrigate the
sensors. However, in this experiment, two scenarios are tested against each other. The first is
the scenario where the tractors only visit the sensors outside the city centre, and the cars only
visit the sensors in the city centre. The second scenario is the case where both the sensors in
the city centre and outside the city centre can be visited by both cars and tractors. The data
used for the experiments is described in Section 5.1. Furthermore, the experiments are run for
the sensor sizes N = 20, 50, and 100, and the optimization is done for driving duration and total
distance. All different solution methods have been tested on the same dataset.

5.4.4.1 Total distance

The results of the experiment conducted on minimizing the total distance can be seen in Table
5.9. Here, it can be seen that for all N, the combined case, where both the tractors and the
cars can visit all the sensors, is better than the case where the sensors are visited vehicle-
dependent. The total distances found by the general ACO on the combined case are 29.23%
(N = 20), 23.27% (N = 50), and 19.98% (N = 100) lower than the distances found by the general
ACO on the separate case. The total distances found by the ACO + NN on the combined case
are 29.58% (N = 20), 23.83% (N = 50) and 22.21% (N = 100) lower than the separate case.
This means that, in general, the combined case results in routes that are approximately 20-30%
better than the vehicle-dependent cases.

N 20 50 100

NN

Distance (meters) Tractors + Cars 205281 652553 1483175
Distance (meters) Combined Case 170957 539001 1211670
time (s) Tractors + Cars 0,031266022 0,140705776 0,38916316
time (s) Combined Case 0,081970692 0,612422705 3,543166113
∆% Combined Case -16,72% -17,40% -18,31%

ACO

Distance (meters) Tractors + Cars 199805,6 579147,8 1343357,8
Distance (meters) Combined Case 141395,4 444362,4 1074924
time (s) Tractors + Cars 4,413877 96,08278 1176,705
time (s) Combined Case 9,814246 370,6633 7357,221
∆% Combined Case -29,23% -23,27% -19,98%

ACO + NN

Distance (meters) Tractors + Cars 201276,2 579378,4 1355044,8
Distance (meters) Combined Case 141730,2 441300,2 1054074
time (s) Tractors + Cars 4,192223 100,6075 1217,662
time (s) Combined Case 9,946356 375,508 6866,73
∆% Combined Case -29,58% -23,83% -22,21%

Table 5.9: Comparison of different optimization based on distance for the comparison between
the case that tractors visit sensors outside of the centre and cars in the city centre and the
combined case.

61

5.4.4.2 Vehicles used

As can be seen in Table 5.10 for all different optimization methods and all N, the combined
case uses fewer vehicles than the separate case. More specifically, the combined case leads
to a reduced number of cars being used while the usage of the tractors increases. This is in
direct relation to the decrease in total distance. In the separate case, the increased usage
of cars means more frequent visits to the depot, thereby resulting in extra distance. Since,
in the combined case, the usage of cars decreases and the the usage of tractors increases,
extraneous distance associated with visits to the depot decreases as the tractors can visit more
sensors in a single route resulting in fewer depot visits and a lower total distance.

N 20 50 100

NN

Tractors used (Cars + Tractors) 3 9 21
Cars used (Cars + Tractors) 4 12 27
Tractors used (Combined case) 4 10 22
Cars used (Combined Case) 1 8 16
∆ tractors Combined Case 1 1 1
∆ cars Combined Case -3 -4 -11

ACO

Tractors used (Cars + Tractors) 3 9,8 20
Cars used (Cars + Tractors) 4 11 26
Tractors used (Combined case) 4 11,2 23,2
Cars used (Combined Case) 1 4 13
∆ tractors Combined Case 1 1,4 3,2
∆ cars Combined Case -3 -7 -13

ACO + NN

Tractors used (Cars + Tractors) 3 9,8 20
Cars used (Cars + Tractors) 4 11 26
Tractors used (Combined case) 4 11,4 24,2
Cars used (Combined Case) 1 3,8 11
∆ tractors Combined Case 1 1,6 4,2
∆ cars Combined Case -3 -7,2 -15

Table 5.10: Comparison of the vehicles used during optimization based on the tractors visit-
ing sensors outside of the city centre and cars in the city centre versus the combined case
(distance).

5.4.4.3 Total driving duration

The results of the experiment conducted on minimizing the total duration can be seen in Table
5.11. Here, it can be seen that for all N, the combined case, where both the tractors and the
cars can visit all the sensors, is better than the case where the sensors are visited vehicle-
dependent. The total durations found by the general ACO on the combined case are 19.22%
(N = 20), 10.89% (N = 50), and 10.68% (N = 100) lower than the distances found by the general
ACO on the separate case. The total durations found by the ACO + NN on the combined case
are 17.80% (N = 20), 12.13% (N = 50) and 12.44% (N = 100) lower than the separate case.
This means that, in general, the combined case results in routes that are approximately 10-20%
better than the vehicle-dependent cases.

62

N 20 50 100

NN

Driving duration (minutes) Tractors + Cars 19597 59457 143599
Driving duration (minutes) Combined Case 19924 56035 128739
time (s) cars + tractors 0,029916143 0,097739792 0,398420429
time (s) combined case 0,073803091 0,598010826 3,360398769
∆% Combined Case 1,64% -6,11% -11,54%

ACO

Driving duration (minutes) Tractors + Cars 19393,8 55526,8 128028,4
Driving duration (minutes) Combined Case 16267,4 50073,6 115671
time (s) cars + tractors 3,509159 76,4 1125,367
time (s) combined case 10,04111 366,8762 6612,207
∆% Combined Case -19,22% -10,89% -10,68%

ACO + NN

Driving duration (minutes) Tractors + Cars 19261,2 55856 129552,8
Driving duration (minutes) Combined Case 16351,2 49812,6 115221,8
time (s) cars + tractors 4,192223 100,6075 1217,662
time (s) combined case 9,806349 371,344 6460,155
∆% Combined Case -17,80% -12,13% -12,44%

Table 5.11: Comparison of different optimization based on duration for the comparison between
the case that tractors visit sensors outside of the centre and cars in the city centre and the
combined case.

5.4.4.4 Vehicles used

As can be seen in Table 5.12 for all different optimization methods and all N, the combined case
uses fewer vehicles than the separate case. More specifically, the combined case leads to fewer
cars being used while the usage of tractors increases. Just as with the optimization based on
minimizing distance, this directly relates to the decrease in total distance. In a separate case,
the increased usage of cars means more frequent visits to the depot, thereby resulting in extra
distance. Since, in the combined case, the usage of cars decreases and the usage of tractors
increases, extraneous distance associated with visits to the depot decreases as the tractors can
visit more sensors in a single route, resulting in fewer depot visits and a lower total distance.

63

N 20 50 100

NN

Tractors used (Cars + Tractors) 3 9 22
Cars used (Cars + Tractors) 4 11 26
Tractors used (Combined case) 4 10 22
Cars used (Combined Case) 1 8 16
∆ tractors Combined Case 1 1 0
∆ cars Combined Case -3 -3 -10

ACO

Tractors used (Cars + Tractors) 3 10 19,8
Cars used (Cars + Tractors) 4 11 26
Tractors used (Combined case) 4 10,6 22,4
Cars used (Combined Case) 1 5,8 14,2
∆ tractors Combined Case 1 0,6 2,6
∆ cars Combined Case -3 -5,2 -11,8

ACO + NN

Tractors used (Cars + Tractors) 3 9,6 20
Cars used (Cars + Tractors) 4 11 26
Tractors used (Combined case) 4 10,8 23,4
Cars used (Combined Case) 1 4,4 12,8
∆ tractors Combined Case 1 1,2 3,4
∆ cars Combined Case -3 -6,6 -13,2

Table 5.12: Comparison of the vehicles used during optimization based on the tractors visiting
sensors outside of the city centre and cars in the city centre versus the combined case (duration).

64

5.4.5 Solution model output

From the conducted experiments, several outputs have been generated. These outputs are the
maps that the customers of Connected Green will be able to view to see the calculated routes.
An example of such a map can be seen in Figure 5.4. It is a map of the city of the Hague, with
combined vehicles and N = 100 optimised on driving duration. The map contains 26 routes to
visit all the nodes, which are depicted in different colours on the map. Furthermore, each sensor
is marked with its colour and position in the route order. For example, the sensor in position
7 of a route with a red line, will have a red marker with the number seven. All the maps are
interactive so that the customers are able to click on the sensors to view the name of the sensor,
zoom in and out, and deselect specific routes to see them more clearly.

Figure 5.4: Output map of the solution model for the city of the Hague for combined vehicles
optimised on driving duration for N = 100.

5.4.6 Experiment conclusion

From the experiments, three main cases can be distinguished: comparison between assign-
ing vehicles to specific sensors, optimization based on distance, and optimization based on
duration. This section will outline the main results from the experiments on these cases.

5.4.6.1 comparison between assigning vehicles to specific sensors

Lastly, the experiment which compared the situation where sensors in the city centre can only
be visited by cars and sensors outside the city centre can only be visited by tractors. From the
experiments, it is evident that for every optimization method, the combined case, where every
vehicle can visit every sensor, provides better results. In the case of the general ACO, the im-
provements are 29.23% (N = 20), 23.27% (N = 50) and 19.98% (N = 100), with the average
over all N being 24.16%. For the ACO + NN, the improvements are 29.58% (N = 20), 23.38%
(N = 50) and 22.21% (N = 100), with the average over all N being 25.21%.

From this can be concluded that it is better to let all vehicle types visit all sensors and not assign
specific vehicles to specific sensors.

65

5.4.6.2 Optimization on distance

First, the experiments were based on distance. From the experiments conducted, it can be con-
cluded that both the ACO and the ACO + NN outperform both the current solution strategy and
the Nearest Neighbour heuristic. Table 5.13 shows the average results from the experiments
based on minimizing the total distance. Here, it can be seen that, on average, the general ACO
outperforms the current solution strategy by 29,68% (N = 10), 33.23% (N = 25), 32.96% (N =
50) and 28.12% (N = 100). Averaging a 31.00% improvement over all N. In comparison, on
average, the ACO + NN outperforms the current solution strategy by 30.61% (N = 10), 32.30%
(N = 25), 31.53% (N = 50) and 25.60% (N = 100). Averaging a 30.01% improvement over all N.

In terms of computation times, the averages are almost identical, as can be seen in Table 5.13.
Only for N = 100 are the differences greater than one second. Here, the ACO has a lower
computational time than the ACO + NN, with the difference being at most 43.51 seconds. This
is, in terms of percentages, a 1.07% difference.

In comparison with the ILP, the general ACO has, on average, a difference of 3.69% (N = 10),
5.95% (N = 25) and 1.54% (N = 50), averaging a 3.72% difference over all N. Whereas the
ACO + NN, on average, has a difference of 2.06% (N = 10), 7.49% (N = 25) and 3.69% (N =
50), averaging a 4.42% difference over all N. Meaning that the general ACO is on average just
3.69% away from the optimal solution.

Considering everything, it can be concluded from the experiments on duration that, on average,
the general ACO outperforms the ACO + NN.

N 10 25 50 100

ACO

avg. ∆% MS -29,68% -33,23% -32,96% -28,12%
avg. ∆% ACO + NN 1,55% -1,41% -2,07% -3,38%
avg. ∆% ILP 3,69% 5,95% 1,54% -
avg. time (s) 1,14 22,31 251,03 4019,91

ACO + NN
avg. ∆% MS -30,61% -32,30% -31,53% -25,60%
avg. ∆% ILP 2,06% 7,49% 3,69% -
avg. time (s) 1,15 22,33 253,10 4063,42

Table 5.13: Average experiment results for optimization based on distance.

5.4.6.3 Optimization on duration

Secondly, the experiments based on duration. From the conducted experiments, it can be con-
cluded that both the ACO and the ACO + NN outperform both the current solution strategy and
the Nearest Neighbour heuristic. In Table 5.14, the average results from the experiments based
on minimizing the total distance can be seen. From the table, it can be seen that, on average,
the general ACO outperforms the current solution strategy by 27,48% (N = 10), 32.04% (N =
25), 31.45% (N = 50) and 28.76% (N = 100). Resulting in an average of 29.93% improvement
over all N. In comparison, on average, the ACO + NN outperforms the current solution strategy
by 28.13% (N = 10), 30.95% (N = 25), 29.97% (N = 50) and 26.32% (N = 100). Averaging a
28.84% improvement over all N.

In terms of computation times, the averages are similar for the ACO and the ACO + NN. As can
be seen in Table 5.14, the only real differences are for N = 50 and 100. For N = 50, the ACO +
NN is approximately 3 seconds slower, which, in terms of percentages, is a 1.19% difference.
Whereas with N = 100, the ACO + NN is 196.28 seconds slower, which is a 4.83% difference

66

in percentages.

In comparison with the ILP, the general ACO produces solutions that are, on average, 3.14%
(N = 10), and 3.26% (N = 25) worse than the ILP. For N = 50, the average improvement of the
ACO on the ILP is 4.18% (N = 50). Averaging 0.74% difference with the ILP over all N. Whereas
the ACO + NN, on average, produces solutions that are 2.08% (N = 10), 4.96% (N = 25) worse
than the ILP. For N = 50, the ACO + NN outperforms the ILP by 2.18% (N = 50). Averaging
1.62% difference with the ILP over all N.

Considering everything, it can be concluded from the experiments on duration that, on average,
the general ACO outperforms the ACO + NN.

N 10 25 50 100

ACO

avg. ∆% MS -27,48% -32,04% -31,45% -28,76%
avg. ∆% ACO + NN 1,01% -1,59% -2,04% -3,29%
avg. ∆% ILP 3,14% 3,26% -4,18% -
avg. time (s) 1,21 22,32 251,10 3864,11

ACO + NN
avg. ∆% MS -28,13% -30,95% -29,97% -26,32%
avg. ∆% ILP 2,08% 4,96% -2,18% -
avg. time (s) 1,27 21,86 254,12 4060,39

Table 5.14: Average experiment results for optimization based on duration.

Considering everything, it can be concluded from the experiments that, on average, the general
ACO outperforms the ACO + NN. Furthermore, it can be concluded that the general ACO is
the best fit for the solution model even though with a larger N, the computational times increase
significantly. However, in the case of Connected Green, the current customers have amaximum
of 20 sensors, which means that the ACO can still be used in the solution model.

5.5 Evaluation plan and implementation plan

This section will elaborate on the evaluation and implementation plan, that Connected Green
will be able to follow to evaluate and implement the model accordingly. First, an evaluation plan
is proposed on how the solution model can be evaluated by the customers. Afterwards, an
implementation plan is proposed on how the model can be correctly implemented.

5.5.1 Implementation plan

To be able to effectively implement the solution model in the current dashboard of Connected
Green, several elements will have to be edited. The things that need to be revised are:

1. Hosting Graphhopper Server:
Currently, the solution model uses a locally hosted Graphhopper API to calculate all the
different distance matrices and route data used for mapping. For the customers to be able
to use the model this API will need to be hosted on a server by Connected Green.

2. Precalculation of distance matrices:
As the locations of the sensors do not change frequently, it is possible to calculate and
store the distance matrices with the locations from and to all sensors beforehand. This
will circumvent the solution model needing to calculate the distance matrices for the to-
be-visited points by creating a custom distance matrix copying the already calculated dis-
tances or durations from and to each point. This will speed up the solution model as the
calculation of distant matrices takes a significant time.

67

3. Predetermination of route data:
As the route between two nodes is always the same, the route data for this route can
be predetermined and saved on the servers of Connected Green. This will speed up the
solution model as it does not need to determine the route data each time an irrigation route
is calculated.

4. Making a custom API:
Currently, two APIs need to be called to load in all relevant customer data from the dash-
board. In the case that Connected Green creates a new API which loads in all relevant
data at once, the solution model can be sped up.

5. Making a demand input section in the dashboard:
As the demand of the customers is unknown, this will need to be inputted by the cus-
tomers. To be able to input this Connected Green should make an input section, where
the customers can provide them with the demand per sensor. This data should be saved
to the server to be used to create an average demand for new customers or customers
who do not want to input their own demand.

6. Precalculating irrigation routes:
As underlined by the experiments in Section 5.4, when the number of sensors that need
irrigation grows the ACO will take a significant time to determine the optimal route. There-
fore, Connected Green should predetermine routes that include all sensors and save
them. In this way, the solution model would not need to calculate these routes again.

5.5.2 Evaluation plan

This research focuses on creating a solution model that can be used by the customers of Con-
nected Green to calculate irrigation routes. Currently, there is little to no data available on how
the customers are currently doing this. Therefore to evaluate the solution model, it is first effec-
tive to evaluate and test it using a real customer scenario. The most effective way this can be
done, is to use a customer with a high number of sensors to test the solution model in a beta
test1. One of the customers who would be a good fit for the beta test is the municipality of the
Hague. This municipality has one of the highest number of sensors among the customers of
Connected Green and has indicated to use the sensors for route planning. The evaluation plan
will consist of the following steps:

1. Implement the model into the dashboard:
First, it is necessary to implement the solution model into the dashboard, while making it
not available for the customers yet.

2. Make the solution model available for the customers that will be beta testing:
Secondly, after the customers have been selected for the beta testing, it is necessary to
make sure they are the only customers able to use and see the model.

3. Let the customers use the model for a set period:
Within this step, it is very important that the customer log the problems and inconsistencies
noticed while using the solution model. Furthermore, it is important that the customers
keep track of the driven routes and the water demand of the sensors during the beta test.

4. Meet with the customers to discuss all flaws and inconsistencies:
Collect all the data the customers have created, along with their feedback on the use of
the model.

1 a field test of the beta version of a product (such as software) especially by testers outside the company developing
it that is conducted prior to commercial release

68

5. Improve the model using the customer feedback: Use the collected data and feedback to
improve the model and remove inconsistencies and flaws.

5.6 Conclusion

This chapter describes how the solutionmodel and all proposed optimizationmethods are tested
against a simulated scenario and how Connected Green can implement and evaluate the so-
lution model with their own customers. First, the design of the experiments is elaborated on.
Starting with a description of the data used within the experiments, the creation of the water de-
mand dataset and on which probability distribution it has been modelled. It then explains how
the sensor location data has been simulated and the dataset has been created. Furthermore,
the different experiment scenarios, Key Performance Indicators and validation of the exper-
iments are discussed. The setting of parameters for the proposed Ant Colony Optimization
algorithms is also clarified. The chapter then discusses how the proposed heuristics are tested
against the Moving ”South” heuristic and the ILP, followed by a comprehensive discussion of
the experiment results and the solution model output. Lastly, the implementation and evalua-
tion plan Connected Green can use to successfully implement and evaluate the solution model
within the dashboard is outlined. The evaluation plan elaborates on the beta testing Connected
Green should perform with an existing customer to identify any inconsistencies or flaws within
the solution model. The implementation plan covers the necessary steps to successfully im-
plement the solution model and make it work as efficiently as possible with the dashboard of
Connected Green.

69

6 CONCLUSION

This final chapter concludes the research that has been performed at Connected Green, and
has been reported on in the previous chapters. Section 6.1, will answer and motivate the main
research question formulated in Chapter 1. In Section 6.2, the recommendation for Connected
Green will be discussed. Section 6.3 discusses the further research that can be conducted at
Connected Green. In Section 6.4, the theoretical and practical contributions are elaborated on.
Lastly, Section 6.5 will both discuss the limitations and reflect on the solution model.

6.1 Conclusions

This section will answer and motivate the research question stated in Chapter 1. The main
research question is stated as:

What is the most effective approach to develop an optimal route planning model, and how can
it be leveraged by Connected Green to minimize the costs incurred by their customers?

The answer to the research question has been derived by answering all the sub-research ques-
tions from the previous chapters. First of all, in Chapter 2, a contextual analysis has been per-
formed to gather information about the current route planning strategies, the customers, the
requirements of the customers, all constraining factors, important features of a solution model,
and the current dashboard of Connected Green. Furthermore, a current route planning strategy
has been converted in to algorithm to be used for the testing of the solution model.

In Chapter 3, a literature study has been conducted with the aim of finding the best solution
method for route planning in the case of Connected Green. To accomplish this, the Vehicle
Routing Problem that Connected Green’s customers are experiencing has been identified to be
a Capacitated Vehicle Routing Problem. From the literature, it was concluded that a combina-
tion of an initial route creation by the Nearest Neighbourhood heuristic would be the best fit for
the solution model.

Chapter 4 describes the proposed solution model for Connected Green. The chapter discusses
the Vehicle Routing Problem that the customers are experiencing and describes it as an In-
teger Linear Program according to the Miller-Tucker-Zemlin formulation (Miller et al., 1960).
Describing the parameters, objective function, and constraints. Furthermore, the requirements
and assumptions of the solution model are elaborated on. The chapter then discusses the pro-
posed heuristic and metaheuristic in more detail, explaining how the algorithms of the solution
model work. After the inner workings of the algorithms have been explained, the chapter then
discusses the functionality of both the function that is used to create the distance matrices which
take the road accessibilities into account and the function to visualize the calculated routes.

In Chapter 5, the proposed algorithms were tested against various solution methods, including
the current solution strategy. With the experiments focusing on minimizing total distance, the
ACO + NN algorithm surpassed the current strategy by 30.01% but was 4.42% removed from
the optimal. The general ACO showed a 31.00% improvement with a 3.69% gap from the best
solution. In terms of speed, the ACO was 1.07% faster than ACO + NN. For driving duration
minimization, the ACO + NN and general ACO improved upon the current strategy by 28.84%
and 29.93%, respectively, with the ACO being 1.19% faster. Furthermore, the ACO + NN had
an average gap with the optimal solution of 4.42% and 1.62%.

70

Another experiment compared scenarios where sensors are matched with specific vehicles ver-
sus the case where any vehicle could visit any sensor. From the results it became evident that
the unrestricted approach was superior, improving performance by 24.16% by using the general
ACO and 25.21% by using the ACO + NN.

Overall, the general ACO is superior in optimization and computational efficiency compared to
ACO + NN. Despite the ACO’s longer computation times with larger sensor counts, the ACO
is a good fit for the solution model as the longer computational times should not be a concern
for Connected Green, since the current customers have a maximum of 20 sensors per project,
of which not all will need irrigation simultaneously. Furthermore, this chapter also provides an
evaluation and implementation plan for the solution model, which Connected Green will be able
to use to implement and evaluate the solution model with customers successfully.

Taking all chapters into account, the answer to the research question is to use an Ant Colony
Optimization to create near-optimal routes for the customers so that the total distance or driving
duration for the customers is significantly decreased and, therefore, the associated costs of
these irrigation routes decrease accordingly.

6.2 Recommendations

After conducting the research and creating the solution model, several recommendations for
Connected Green have been drafted.

The first recommendation is to make it possible for the customers to select the starting location
for the routes. Currently, the solution model uses the project address of the customers as the
starting location, which most customers indicated as being correct. However, some customers
indicated that the starting locations will differ per week, and it could be either at a location of
their own customers or along a route. Therefore, to have a solution model which can be used by
all customers, it may prove convenient to let the customers choose their own starting locations.

Secondly, as the demand dataset has been created using a probability distribution, which in all
likelihood will not correctly represent the reality of the customers, it is recommended to let the
customers input their own data which Connected Green should also store. This data can then
be used to create correct routes for the customers and utilised for the correct parameter settings
for the Ant Colony Optimization.

Thirdly, it is recommended for Connected Green to create an API which can be used to retrieve
all relevant information out of the dashboard that will be needed to calculate the routes. This
would decrease computational times as currently, there are two different APIs needed to re-
trieve all relevant information.

Fourthly, to further decrease the computational times of the solution model it is recommended
to store and calculate the distance matrices containing all the sensors of a project. This way,
the distance matrix calculations have already been made beforehand and will not be needed to
be done again.

Lastly, it is recommended to beta-test the solution model with several customers. In this way,
inconsistencies and flaws can be identified which can then be corrected.

71

6.3 Further research

In this research, a solution model is developed in Python to automatically calculate optimal
routes for the customers of Connected Green. However, this solution model can still be im-
proved. In this section, some suggestions regarding further research are discussed.

Firstly, the sensors of Connected Green monitor the moisture levels in the ground. In further
research, it may prove valuable to construct a model which can predict the water demand at the
sensors. Integrating this with the solution model transforms it into a solution model which can be
used to create preventive irrigation routes in which the plants can be watered at the optimal time.

Secondly, further research into the algorithms used within the solution model could prove fruit-
ful. Currently, it uses a dynamic vehicle selection procedure for heterogeneous vehicle fleets
to select the next vehicle to be used for the irrigation routes. However, it is not certain that this
procedure reflects reality in the best way. In beta testing with customers, this selection proce-
dure could be checked against real scenarios and improved if necessary.

Thirdly, the Ant Colony Optimization Algorithm, which improves upon an initial route gener-
ated by the Nearest Neighbour heuristic, uses the ”initial pheromone” parameter. In this re-
search, this parameter was set to a value of 1.5. However, adjusting this value might yield
improved results from the algorithm. Thus, further exploration of the optimal setting for the ”ini-
tial pheromone” parameter is recommended.

Lastly, since the customers of Connected Green are far from homogeneous it is recommended
to also research cases wherein the customers have several depot locations. This can further
improve the generalizability of the model for all possible customers of Connected Green.

6.4 Contributions

This section elaborates on the theoretical and practical contributions of this research.

6.4.1 Theoretical contribution

Within this research, the contribution to the literature is on the topic of Vehicle Routing Problems,
more specifically the Capacitated Vehicle Routing Problem and its solution methods. Within
the research, the Nearest Neighbour heuristic and Ant Colony Optimization metaheuristic were
selected and combined to be used within the solution model. The combined case, where the Ant
Colony Optimization takes the route found by the Nearest Neighbour heuristic as an initial route
has been tested against a general Ant Colony Optimization on the case of the Heterogeneous
Capacitated Vehicle Routing problem. This has been shown to be inferior to the general Ant
Colony Optimization Algorithm.

6.4.2 Practical contribution

This research has been performed at Connected Green. The practical contribution for the com-
pany is the solution model that has been described in Chapter 4, and the evaluation and im-
plementation plans described in Chapter 5. The solution model can be implemented into the
dashboard of Connected Green using the implementation plan. By testing the solution model
on a small number of customers using beta testing, the model can be evaluated and edited if
needed. After which it can be available for all customers to calculate better irrigation routes.

72

6.5 Limitations

This section will cover the limitations of the created solution model, Connected Green should
take these limitations into account when the solution model will be implemented into the dash-
board.

First, since there was no dataset available for the experiments, to still test the solution model
a dataset has been created. This dataset has been created under several assumptions. For
instance, the probability distribution used to create the demand for the sensors is a triangu-
lar distribution. This distribution may not represent a real-life case well enough, however, the
demand created by the distribution was used to set the parameters of the Ant Colony Optimiza-
tion. Since the real demand of the customers will more than likely not follow this distribution, the
parameters of the current Ant Colony Optimization may not be the optimal and therefore could
create solutions of less value than would be possible.

Secondly, because of the lack of data, the service times at the sensors are not taken into consid-
eration. This could lead to inconsistencies with optimal routes since it could be more beneficial
to take another route when service times are taken into consideration.

Finally, the computation time of the Ant Colony Optimization algorithm was shown to signifi-
cantly increase when the number of sensors increases. The solution model could be a bad fit
for customers with more than 50 sensors. However, in this case, the Nearest Neighbour algo-
rithm can be used to create routes that are close to the routes the Ant Colony Optimization will
generate in a fraction of the time it takes.

73

References

Avdoshin, S., & Beresneva, E. (2019). Constructive heuristics for capacitated vehicle routing
problem: a comparative study. Proceedings of the Institute for System Programming of
the RAS, 31, 145-156. doi: 10.15514/ISPRAS-2019-31(3)-12

Ayanso, A. (2014). Business and technology trends in social crm. IGI Global. doi: 10.4018/
978-1-4666-6547-7.CH013

Clarke, G., & Wright, J. W. (1964). Scheduling of vehicles from a central depot to a number of
delivery points. Source: Operations Research, 12, 568-581.

Collins, T. D. (1998). The application of software visualization technology to evolution-
ary computation: A case study in genetic algorithms artificial intelligence. Retrieved
from http://dx.doi.org/doi:10.21954/ou.ro.00006fa3http://people.kmi.open.ac
.uk/trevor/archive/thesis/ doi: 10.21954/ou.ro.00006fa3

Cordeau, J.-F., Gendreau, M., Laporte, G., Potvin, J.-Y., & Semet, F. (2002). A guide to vehicle
routing heuristics. Source: The Journal of the Operational Research Society, 53, 512-522.
Retrieved from www.palgrave-journals.com/jors doi: 10.1057/palgrave/jors/2601319

Cordeau, J.-F., Laporte, G., Savelsbergh, M. W. P., & Vigo, D. (2007). Vehicle routing. , 14. doi:
10.1016/S0927-0507(06)14006-2

Corona-Gutiérrez, K., Nucamendi-Guillén, S., & Lalla-Ruiz, E. (2022). Vehicle routing
with cumulative objectives: A state of the art and analysis. Retrieved from http://
creativecommons.org/licenses/by/4.0/ doi: 10.1016/j.cie.2022.108054

Dantzig, & Ramser. (1959). The truck dispatching problem. Management Science, 80- 91. Re-
trieved from https://ut.on.worldcat.org/search?queryString=vehicle20routing\
&clusterResults=true\&groupVariantRecords=false

Dictionary, C. (n.d.). Open-source | english meaning - cambridge dictionary. Retrieved from
https://dictionary.cambridge.org/dictionary/english/open-source

Dorigo, M., & Caro, G. D. (1999). Ant colony optimization: A newmeta-heuristic. Proceedings of
the 1999 Congress on Evolutionary Computation, CEC 1999, 2, 1470-1477. doi: 10.1109/
CEC.1999.782657

Een europese green deal. (n.d.). Retrieved from \url{https://commission.europa.eu/
strategy-and-policy/priorities-2019-2024/european-green-deal_nl},year=
{2023},

Fred, G. (1990). Tabu search: A tutorial. The Practice of Mathematical Programming, 20,
74-94. Retrieved from https://www.jstor.org/stable/25061372

Heerkens, H., van. Winden, A., & Tjooitink, J.-W. (2017). Solving managerial problems sys-
tematically. Noordhoff Uitgevers :.

Hoffman, K. L., Padberg, M., & Rinaldi, G. (2001). Traveling salesman problem.
doi: 10.1007/1-4020-0611-X_1068

Johnson, D. S., & Mcgeoch, L. A. (2007). Experimental analysis of heuristics for the stsp. ,
369-443. Retrieved from http://dimacs.rutgers.edu/Challenges/.

Kissell, R., & Poserina, J. (2017, 1). Advanced math and statistics. Optimal Sports Math,
Statistics, and Fantasy, 103-135. doi: 10.1016/B978-0-12-805163-4.00004-9

Kitjacharoenchai, P., Ventresca, M., Moshref-Javadi, M., Lee, S., Tanchoco, J. M., & Brunese,
P. A. (2019, 3). Multiple traveling salesman problem with drones: Mathematical model
and heuristic approach. Computers & Industrial Engineering, 129, 14-30. doi: 10.1016/
J.CIE.2019.01.020

Lahyani, R., Khemakhem, M., & Semet, F. (2015, 2). Rich vehicle routing problems: From
a taxonomy to a definition. European Journal of Operational Research, 241, 1-14. doi:
10.1016/J.EJOR.2014.07.048

74

Laporte, G. (2009). Fifty years of vehicle routing. Transportation Science, 43, 408-416. doi:
10.1287/TRSC.1090.0301

Lenstra, J. K., & Kan, A. H. (1981). Complexity of vehicle routing and scheduling problems.
Networks, 11, 221-227. doi: 10.1002/NET.3230110211

Li, J., Ma, Y., Gao, R., Cao, Z., Lim, A., Song, W., & Zhang, J. (2021). Deep reinforce-
ment learning for solving the heterogeneous capacitated vehicle routing problem. IEEE
TRANSACTIONS ON CYBERNETICS.

Little, J. D. C., Murty, K. G., Sweeney, D. W., & Karel, C. (n.d.). An algorithm for the traveling
salesman problem 1.

Miller, C. E., Tucker, A. W., & Zemlin, R. A. (1960). Integer programming formulation of traveling
salesman problems*.

Nicholson, T. A. J. (1971). Optimization in industry / vol. 1, optimization techniques.
NVWA. (n.d.). Gebieden met verbod op gebruik oppervlaktewater | plantenziekten en plagen |

nvwa. Author. Retrieved from https://www.nvwa.nl/onderwerpen/plantenziekten-en
-plagen/bruinrot/verbodsgebieden-gebruik-oppervlaktewater

Rachmawati, D., Sihombing, P., & Sitorus, V. A. (2020, 12). Capacitated multi depot multi
vehicle routing problem using genetic algorithm (case study: watering the medan city
park). Journal of Theoretical and Applied Information Technology, 98, 4215-4227.

”Rijksoverheid”. (”2023”). ”welke verkeersregels gelden er voor landbouwvoertuigen?”. Re-
trieved from "https://www.rijksoverheid.nl/onderwerpen/voertuigen-op-de-weg/
vraag-en-antwoord/welke-verkeersregels-gelden-er-voor-landbouwvoertuigen"
(”Accessed: September 15, 2023”)

Rio, F., & Harahap, S. (2023). Study vehicle routing problem using nearest neighbor algorithm.
J. Phys, 12027. doi: 10.1088/1742-6596/2421/1/012027

Steenbreek, S. (2015). Missie - stichting steenbreek. Retrieved from https://steenbreek.nl/
focus/

Toth, P., & Vigo, D. (2014). Vehicle routing : problems, methods, and applications.
Urbanization - understanding global change. (n.d.). Retrieved from \url{https://ugc

.berkeley.edu/background-content/urbanization/},year={2023},
van de Berk. (n.d.). Watering trees: a practical guide. Retrieved from https://www.vdberk

.com/advice/watering-trees/
Wang, M., Ma, T., Li, G., Zhai, X., & Qiao, S. (2020). Ant colony optimization with an improved

pheromone model for solving mtsp with capacity and time window constraint. IEEE Ac-
cess, 8, 106872-106879. doi: 10.1109/ACCESS.2020.3000501

Zare-Reisabadi, E., & Mirmohammadi, S. H. (2015, 12). Site dependent vehicle routing problem
with soft time window: Modeling and solution approach. Computers & Industrial Engineer-
ing, 90, 177-185. doi: 10.1016/J.CIE.2015.09.002

Zhang, H., Ge, H., Yang, J., & Tong, Y. (2021, 4). Review of vehicle routing problems: Mod-
els, classification and solving algorithms. Archives of Computational Methods in Engi-
neering 2021 29:1, 29, 195-221. Retrieved from https://link.springer.com/article/
10.1007/s11831-021-09574-x doi: 10.1007/S11831-021-09574-X

75

A APPENDIX

A.1 Appendix A: Taxonomies

This appendix includes the taxonomy used in the literature review of Chapter 3.

76

