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ABSTRACT

In the realm of freeze-dried coffee production, moisture plays a pivotal role due to its profound

impact on product quality. Maintaining a consistent moisture level is of paramount impor-

tance for coffee manufacturers like Jacobs Douwe Egberts Peet’s (JDE) to uphold stringent qual-

ity standards. However, existing manual procedures exhibit substantial moisture variation be-

tween batches and operational inefficiencies for engineers. This research endeavors to create

an enhanced automated solution for JDE’s freeze-dried coffee production, harmonizing qual-

ity and efficiency. It encompasses an extensive exploration of machine learning algorithms,

with a focus on the effectiveness of non-linear models such as the eXtreme Gradient Boosting

(XGBoost) Regression Model in moisture prediction. Simultaneously, optimization methods

are scrutinized for dynamically adjusting temperature settings based on moisture forecasts.

Among these, Adaptive Neuro-Fuzzy Inference System (ANFIS) emerges as the prime opti-

mization method, showcasing its prowess in capturing intricate, nonlinear data relationships.

Notably, ANFIS reduces the need for extensive manual engineering of linguistic variables and

membership functions while maintaining a reasonable level of generalization. The culmina-

tion of this study is the successful deployment of the automated solution, resulting in moisture

levels that are better aligned with the target, while accomplishing a significant reduction in its

standard deviation.

Keywords: Moisture Optimization, Heating Process Automation, Freeze-Dried Coffee, Data Sci-

ence, Machine Learning, Regression, Optimization Method, Fuzzy Logic, ANFIS.
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1
INTRODUCTION

1.1. RESEARCH BACKGROUND

Coffee, being one of the most widely consumed and highly popular beverages worldwide, has

experienced a substantial increase in its consumption trend. According to information gath-

ered by the International Coffee Organization (ICO), the consumption and production of cof-

fee worldwide have exhibited a steady and continuous growth pattern over the course of sev-

eral years [4]. Among the various forms of coffee, instant coffee, specifically freeze-dried coffee

stands out for its ability to capture and preserve the rich flavor and enticing aroma of freshly

brewed coffee. This trend can be attributed to their convenience and long shelf life, offering

coffee enthusiasts a quick and hassle-free way to enjoy their favorite beverage [5]. Moreover,

freeze-dried coffee is one of the flagship products of Jacobs Douwe Egberts Peet’s (JDE). In or-

der to meet the rising demand for high-quality freeze-dried coffee products and maintain their

competitive edge in the market, coffee manufacturers like JDE need to continuously innovate

and refine their production processes to ensure consistent and superior coffee experiences for

consumers.

The process of freeze-dried coffee production involves a unique preservation technique that

ensures the retention of the coffee’s desirable qualities. Appendix A depicts the end-to-end

production of freeze-dried coffee. It begins by subjecting brewed coffee extract to freezing tem-

peratures, significantly below the freezing point of water. This freezing stage is crucial as it fa-

cilitates the transformation of liquid water into ice within the coffee solution. Subsequently,

the frozen coffee undergoes sublimation, a process in which the ice converts directly into water

vapor by heating it, but without transitioning into a liquid state. Through this sublimation pro-

cess, the water content is effectively removed, leaving behind coffee particles with enhanced

stability and prolonged shelf life. At JDE, the heating process within the freeze-drying system

plays a pivotal role in achieving the desired moisture levels in the final freeze-dried coffee.

1
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The control of moisture levels throughout the freeze-drying process is of utmost importance

in guaranteeing the desired quality and characteristics of the final freeze-dried coffee product.

Any variations or deviations in moisture content can significantly impact the taste, aroma, sol-

ubility, and overall quality of the end product [6]. Consequently, it is crucial for JDE to employ

effective techniques and technologies to optimize moisture levels and automate the heating

process of freeze-dried coffee production.

1.2. PROBLEM CONTEXT

Currently, in JDE, the temperature control in the heating zones of the Freeze Dryer (FD) ma-

chine is either carried out manually by skilled machine engineers or relies on a simplistic re-

gression model. These approaches, while serving their purpose to some extent, have limita-

tions in terms of ensuring consistent and precise moisture optimization. Relying solely on

manual control introduces significant variability in moisture levels across different batches.

This variability is starkly illustrated in Figure 1.1, which showcases the moisture levels of trays

within the same FD machine. The moisture level in the y-axis is omitted for confidentiality

purposes. It is evident that even within a single machine run, there exists considerable fluc-

tuation in the moisture content of the product in the same trays. The regions marked in red

represent trays exceeding acceptable moisture criteria, which must then undergo a complete

restart of the freeze-drying process, resulting in reduced freeze-dried coffee production. Fur-

thermore, this variability in tray-level moisture propagates into the average moisture content

of the completed stacks, shown in Figure 1.2, contributing to a notable disparity in the final

product’s quality, texture, and overall consistency. In the long term, this will not only lead to

increased reject rates, but will also undermine the brand’s reputation due to the unpredictable

variations in moisture level of the product.

To address the challenge of maintaining consistent and precise moisture optimization in the

freeze-drying process, certain operational practices are currently employed within JDE. Engi-

neers are tasked with the continuous monitoring and adjustment of temperature settings to

achieve the desired moisture levels, demanding a significant allocation of their time and re-

sources. These labor-intensive tasks divert the engineers’ attention from more value-added

activities, such as process optimization, quality assurance, and innovation. Consequently, a

substantial portion of their productive work hours are dedicated to the manual supervision of

the freeze-dryer machine, detracting from their ability to focus on strategic tasks that could

significantly enhance overall production efficiency and product quality.
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Figure 1.1: Moisture of Trays in Freeze Dryer 1 over Time

Figure 1.2: Average Moisture of Stacks in Freeze Dryer 1 over Time

1.3. RESEARCH QUESTIONS

In order to address the research goal effectively, a set of research questions has been formu-

lated. These research questions serve as a framework for exploring the related existing literature

and developing the solutions to the research problems.

Main Research Question:

How can the heating process of freeze-dried coffee at Jacobs Douwe Egberts Peet’s (JDE) be op-

timized and automated to reduce the variability of its target moisture level?

Sub-Research Question:

1. Sub-RQ1 (knowledge question): What are the underlying motivations and drivers for

conducting research on the moisture optimization and heating process automation of

freeze-dried coffee production?
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Motivation: This question aims to understand the core motivations and drivers behind

this research contextualizing the significance of optimizing and automating the heating

process in freeze-dried coffee production at JDE. By identifying the underlying reasons,

the research can lay a strong foundation for its potential impact on the freeze-dried coffee

industry.

2. Sub-RQ2 (knowledge question): What are the current methods and techniques used

for the moisture optimization and heating process automation in the freeze-dried cof-

fee production?

Motivation: Gaining insights into current methods and techniques used for moisture op-

timization and heating process automation is essential for identifying existing practices.

Understanding prevailing approaches helps advancing state-of-the-art techniques into a

more efficient heating process.

3. Sub-RQ3 (knowledge question): What are the challenges and limitations associated with

the current approaches to the moisture optimization and heating process automation in

the freeze-dried coffee production?

Motivation: The obeective of this question is to recognize the challenges and limitations

associated with current approaches, which is fundamental for devising solutions that ad-

dress these critical issues. Assessing shortcomings allows formulating innovative strate-

gies to overcome challenges and achieve superior moisture optimization and automa-

tion.

4. Sub-RQ4 (knowledge question): What are the emerging trends of techniques, methods

and future directions in the moisture optimization and heating process automation in

the freeze-dried coffee production?

Motivation: This question helps to identify emerging trends and future directions in mois-

ture optimization and heating process automation. It is essential to stay at the forefront

of technological advancements by proposing forward-thinking solutions that are aligned

with industry trends, ensuring long-term relevance.

5. Sub-RQ5 (design question): Which machine learning algorithm demonstrates the best

performance for predicting the moisture levels of freeze-dried coffee?

Motivation: Evaluating and selecting the most suitable machine learning algorithm based

on the right metrics is critical for accurate moisture prediction. Rigorously testing various

algorithms ensures precise and reliable moisture level predictions, enhancing product

quality and consistency.

6. Sub-RQ6 (design question): What optimization methods are the most suitable to au-

tomatically adapt the temperature settings in the heating zones based on the predicted

moisture levels of freeze-dried coffee?

Motivation: This question aims to find the most appropriate optimization methods to dy-

namically adjust temperature settings based on predicted moisture levels. Investigating
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different optimization techniques ensures an adaptive heating process and improving

production efficiency by reducing manual workloads of the machine operators.

7. Sub-RQ7 (validation question): How does the optimized and automated heating process

perform in comparison to the current processes?

Motivation: Conducting a comprehensive performance evaluation is crucial for validat-

ing the effectiveness of the developed solution. Comparing the optimized and automated

approach with current processes provides concrete evidence of its potential benefits for

freeze-dried coffee production.

1.4. RESEARCH GOAL

The main goal of this research is to develop an optimized and automated approach for the

heating process in freeze-dried coffee production at JDE. The initial hypothesis underlying this

research is that the application of machine learning algorithms and optimization methods will

reduce the variability in target moisture levels, leading to improved product quality with con-

sistent moisture levels and enhanced efficiency by replacing manual processes with automated

schemes. Initially, this study conducts a comprehensive examination of the current state of

knowledge regarding predictive techniques, optimization methods, and the implementation of

process automation across diverse applications and disciplines. By examining a wide range of

academic articles and research papers, this thesis aims to first identify the existing gaps and re-

search opportunities in the field of machine learning. Subsequently, it seeks to provide insights

and motivation for further research on developing an optimized and automated approach for

the heating process of the freeze-dried coffee at JDE.

To accomplish the main research goal, this research endeavor will focus on three specific ob-

jectives. First, it seeks to investigate various machine learning algorithms that can fittingly pre-

dict moisture levels, based on applications in similar fields such as agriculture forecast and

climate prediction. The best-performing algorithm according to the pre-defined metrics will

be deployed into production to generate the moisture prediction. Second, the study aims to

implement the most suitable optimization methods that can adjust the temperature settings in

freeze-dried coffee production based on the moisture prediction result. Lastly, this study will

explore implementation approaches to replace manual processes with automated schemes,

identifying advancements in automation technologies and techniques that can be applied to

the automation process of freeze-dried coffee production at JDE.

1.5. RESEARCH STRUCTURE

This thesis consists of eight chapters, which are organized as follows. Chapter 1 sets the stage by

outlining the research background, defining the problem context, formulating some research

questions, and highlighting the research goal. Chapter 2 conducts a Systematic Literature Re-

view (SLR) to address sub-research questions 1-4. This chapter also synthesizes existing the-

oretical knowledge on pertinent subjects and finding existing research gaps. Next, Chapter 3
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introduces the primary methodology, delving into the theories underlying machine learning

algorithms and optimization methods central to the study’s execution. Chapter 4 then provides

insights into data sources, Exploratory Data Analysis (EDA), and outlines the minimum func-

tional and non-functional requirements of the solution. Furthermore, Chapters 5 and 6 focus

on data preparation, modeling, and evaluation. Chapter 5 specifically answers sub-research

question 5 by exploring machine learning models for moisture level prediction, while Chap-

ter 6 provides answers to sub-research question 6 by delving into optimization methods for

dynamically adjusting temperature settings. In Chapter 7, attention shifts to practical imple-

mentation, providing a comprehensive solution overview and presenting tangible outcomes

from deployment efforts, where sub-research question 7 is addressed. Finally, Chapter 8 con-

cludes the study, highlighting academic and practical contributions of this research, critically

examining its limitations, and paving the way for future research endeavors. Figure 1.3 provides

a visual overview of the research structure and indicating the specific sub-research questions

addressed in each corresponding chapter, if applicable.

Figure 1.3: Research Structure
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1.6. CHAPTER SUMMARY

In this chapter, the significance of freeze-dried coffee production is emphasized, with a specific

focus on the critical role of the heating process in maintaining product quality. The chapter

also sheds light on the prevailing manual control practices employed at JDE and the associ-

ated challenges. Then, a set of formulated research questions is introduced to guide the study’s

trajectory, encompassing motivations and practical implementation. The research objective is

defined, which is formulating an optimized and automated heating process to enhance both

product quality and production efficiency. Furthermore, three specific objectives are outlined,

entailing an investigation into machine learning algorithms, optimization methods, and inno-

vative deployment approaches, all devised to address the intricate challenges posed by freeze-

dried coffee production.



2
SYSTEMATIC LITERATURE REVIEW

This chapter presents the framework adopted to conduct the Systematic Literature Review

(SLR) in this study, which is based on the guidelines proposed by Kitchenham & Charters [7].

The steps of planning and conducting the review are adapted from their framework, ensur-

ing a rigorous and structured approach to the literature review process. The planning phase

is the first step in the SLR, which involves determining research questions, selecting scientific

databases, formulating search queries, and establishing inclusion and exclusion criteria. This

is followed by conducting the review, which focuses on the selection of articles and the subse-

quent data extraction process. These steps are essential for identifying and including studies

that are relevant to the research questions and objectives of this study, as well as for extracting

pertinent information from the selected articles. Furthermore, this chapter provides a compre-

hensive analysis and interpretation of the findings from the SLR, aiming to uncover the trends

in the literature, discuss the implications of the research questions, and identify the research

gaps.

2.1. PLANNING THE REVIEW

2.1.1. SCIENTIFIC DATABASES AND SEARCH QUERY FORMULATION

In this research, two main scientific databases were chosen for the retrieval of relevant arti-

cles, namely Scopus1 and IEEE2. Scopus was chosen as it offers extensive coverage of scholarly

publications from various fields, including peer-reviewed journals and conference papers. Its

inclusion allows for a comprehensive analysis of the research landscape related to a particular

topic [8]. In addition, the selection of IEEE, a renowned professional association, provides a

specialized database focusing on computer science, decision science, and related disciplines.

This choice emphasizes relevant studies and advancements in machine learning, automation,

1https://www.scopus.com/search/form.uri?display=advanced
2https://ieeexplore.ieee.org/search/advanced

8
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and process optimization, which are essential to this research.

Formulating the search query is a crucial step in SLR, aiming to retrieve relevant works related

to the main and sub-research questions. The search query consists of keywords and terminolo-

gies that are closely aligned with the research objectives. To enhance the comprehensiveness of

the search, four main groups of queries were constructed, each comprising the main query and

its corresponding synonyms. By incorporating synonyms, the search queries aim to encom-

pass a broader range of relevant literature. Table 2.1 presents a comprehensive list of keywords

associated with the main query, which will be executed on the selected scientific databases to

retrieve pertinent literature for the review.

Table 2.1: Search Query Keywords

Machine Learning Optimization
& Automation

Freeze-Dried Coffee Artefact

"Machine Learning" "Fuzzy Logic" Coffee Model
Regression Minimization Moisture MLflow

Temperature Algorithm

From Table 2.1, the search queries were developed by formulating logical relationships between

keywords and their synonyms. Each keyword and its synonym were connected using the logical

operator "OR," while groups of keywords were connected using the logical operator "AND." The

queries were tailored to adhere to the format requirements of each scientific database, focusing

on specific fields such as title, abstract, and keywords. The retrieval of relevant documentation

was facilitated by utilizing the advanced search bar, which allowed for the input of multiple

keywords and the creation of customized queries. The queries used on the aforementioned

databases can be seen as below:

Scopus:

TITLE-ABS-KEY(

("machine learning" OR regression)

AND

("fuzzy logic" OR minimization)

AND

(coffee OR moisture OR temperature)

AND

(algorithm OR MLflow OR model))

IEEE:

(("machine learning" OR regression)

AND

("fuzzy logic" OR minimization)

AND
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(coffee OR moisture OR temperature)

AND

(algorithm OR MLflow OR model))

2.1.2. INCLUSION AND EXCLUSION CRITERIA

The establishment of inclusion and exclusion criteria is crucial in conducting a SLR, as em-

phasized by Kitchenham and Charters [7]. These criteria play a vital role in refining the search

results and ensuring that only relevant studies are considered for the review. By adhering to

these predefined standards, the integrity and validity of the review are upheld, while poten-

tial biases arising from the inclusion of irrelevant studies are mitigated. Table 2.2 presents the

inclusion and exclusion criteria, which outline the specific protocols for study selection.

Table 2.2: Inclusion and Exclusion Criteria

Inclusion Criteria Exclusion Criteria
Literature was written in English Duplicate literatures
Literature was published in the last 10 years Full-text literature unavailability
Literature was a journal or conference pro-
ceedings in the Computer Science, Mathemat-
ics, Decision Science, or Business and Manage-
ment areas

Irrelevant literatures based on its abstract
to this study’s defined research questions

The inclusion criteria employed in this SLR entail several key aspects. First, the selected lit-

erature must be written in English, ensuring accessibility and comprehension for the research

team. Additionally, publications within the last 10 years were considered to maintain a contem-

porary perspective on the subject matter. Furthermore, specific disciplinary boundaries were

established, encompassing Computer Science, Mathematics, Decision Science, and Business

and Management. To adhere to scholarly rigor, preference was given to literature in the form of

peer-reviewed journals or conference proceedings, which are recognized avenues for scholarly

discourse.

To ensure the integrity and efficiency of the review process, steps were taken to eliminate re-

dundant and unavailable literature. Duplicate sources were identified and removed from the

pool of results obtained from the selected databases. Moreover, literature that was not acces-

sible in its full-text form was excluded, as comprehensive analysis and interpretation require

access to complete publications. In order to further streamline the review process and focus on

pertinent research, a manual assessment was conducted to identify and exclude literature that

was deemed irrelevant based on its abstract. By aligning with the defined research questions

of this study, these assessments aimed to refine the selection and retain literature that directly

contributes to the research objectives.
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2.2. CONDUCTING THE REVIEW

2.2.1. SELECTION

The literature selection process was initiated by executing the formulated search query in the

selected scientific databases. Since the search results may contain irrelevant studies, the appli-

cation of the previously established inclusion and exclusion criteria becomes crucial. This step

not only ensures the quality of the research collection but also streamlines the subsequent data

extraction process by focusing on the inclusion of relevant or highly relevant studies. Figure 2.1

depicts a more detailed illustration of the selection process.

Figure 2.1: Literature Selection Phases

The literature selection process involved several phases, guided by the inclusion and exclusion

criteria outlined in Table 2.2. After these phases, a total of 38 relevant articles were selected by

applying the criteria, with phase 6 requiring manual assessment. Subsequently, four additional

relevant articles were included, resulting in a final set of 42 papers for the SLR.
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2.2.2. DATA EXTRACTION

Once the literature were selected, the data extraction process was initiated. In this research,

the data extraction was divided into qualitative and quantitative analysis methods. These ap-

proaches were employed to gain a comprehensive understanding of the existing literature and

extract meaningful insights from the selected articles.

The quantitative analysis conducted in this SLR encompasses the examination of three dis-

tinct domains: Machine Learning (ML), Optimization Method (OM), and Implementation &

Automation (IA). The ML domain focuses on identifying whether the literature incorporates

any machine learning methods or techniques. The OM domain aims to determine if the liter-

ature discusses the optimization of multivariate objective functions by finding optimal values

for the variables within a defined set of constraints. Lastly, the IA domain evaluates whether the

literature addresses real-case implementations and automation rather than solely theoretical

or analytical discussions. By categorizing the literature according to these domains, the analy-

sis provides insights into the prevalence and application of ML, OM, and IA approaches within

the research landscape. Table 2.3 summarizes the findings, offering a comprehensive overview

of the distribution and thematic emphasis of the included studies across these domains.

The qualitative analysis approaches implemented within the SLR encompass an extensive and

in-depth exploration of the literature, delving into its intricacies. This analysis is organized to

facilitate the understanding and synthesis of the gathered insights. Table B.1 in Appendix B pro-

vides valuable insights into the identified research purposes, current challenges, and potential

future directions as discussed within the reviewed literature. For instance, Yuan [9] emphasized

the benefits of integrating expert knowledge with machine learning approaches to leverage

both the algorithmic predictive power and domain-specific insights. Sabrina [10] highlighted

the utilization of Fuzzy Logic and Adaptive Neuro-Fuzzy Inference System (ANFIS) for temper-

ature optimization based on various factors such as sensor types, crop types, and environmen-

tal conditions. Additionally, several studies, including Harsawardana [11], Imammuddien [12],

Isikdemir [13], Mohapatra [14], and Patel [15], demonstrated the integration of Fuzzy Logic into

the current systems, enabling precise control and autonomous decision-making processes.
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Table 2.3: Quantitative Analysis of the Literature

Literature Subject Area Machine Learning Optimization Methods Implementation & Automation
M. Abbaspour-Gilandeh and
Y. Abbaspour-Gilandeh (2019)
[16]

Agriculture FL, ANFIS − −

S. A. Abdul-Wahab, A. S. M.
Omer, K. Yetilmezsoy and M.
Bahramian (2020) [17]

Energy FL, MRA − −

F. Al-Shanableh, M. Bilin, A.
Evcil and M. A. Savaş (2020)
[18]

Agriculture FL, Multiple LinReg − −

K. N. Amrutha, Y. K. Bharath
and J. Jayanthi (2019) [19]

Transportation MRA, ANN, FL − −

K. Boma and S. Palizdar (2016)
[20]

Energy LinReg, FL, Fuzzy-Wavelet, ANN − −

K. T. T. Bui, D. Tien Bui, J. Zou,
C. Van Doan and I. Revhaug
(2018) [21]

Energy SONFIS, SVR, MLPNN, Gaussian processes,
RF, Different evolution-based neural FIS

− The SONFIS model is constructed au-
tonomously where the optimized antecedent
and consequent parameters of the model
were found autonomously with the use of
the PSO algorithm

A. Choudhary, D. Pandey and
S. Bhardwaj (2020) [22]

Energy ANN − −

M. El Midaoui, M. Qbadou and
K. Mansouri (2022) [23]

Healthcare ARIMA, ANN, Transfer-learning FL − −

G. Ellina, G. Papaschinopou-
los and B. K. Papadopoulos
(2020) [24]

Agriculture Fuzzy LinReg − −

M. Fauziyah, S. Adhisuwignjo,
M. Rifai and D. Dewatama
(2018) [25]

Engineering − FL −

C. G. Gay and B. O. Bastien
(2014) [26]

Climate FL, FIS − −

M. K. Goyal, B. Bharti, J. Quilty,
J. Adamowski and A. Pandey
(2014) [27]

Climate ANN, Least-squares SVR, FL, ANFIS − −

M. Gustin, R. S. McLeod and K.
J. Lomas (2019) [28]

Climate GAM, ARX Minimization of AIC, Backward stepwise re-
gression

−

Harsawardana, B. Samodro,
B. Mahesworo, T. Suparyanto,
S. Atmaja and B. Pardamean
(2020) [11]

Engineering − FL FL-based control system of the developed
prototype
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A. M. Imammuddien, S.
Wirayoga and M. D. Muliono
(2022) [12]

Engineering − FL A block diagram system of the classification
of coffee beans roasting maturity levels

Y. E. Isikdemir, G. Erturk, H.
Ates and M. O. Tas (2022) [13]

Energy RF, LinReg with various regularizations, SVR FIS Fuzzy inference-based controller

A. Khosravi, R. N. N. Koury,
L. Machado and J. J. G. Pabon
(2018) [29]

Energy MLFFNN, RBFNN, SVR, FIS, ANFIS − −

J. Y. Kim (2022) [30] Agriculture RF − −
C. E. Lachouri, K. Mansouri
and M. M. Lafifi (2022) [31]

Climate ANFIS − −

T. L. Lam (2021) [32] Engineering SVR, RNN FL (adjusting the temperature) −
C. K. Leung, J. D. Elias, S. M.
Minuk, A. R. R. d. Jesus and A.
Cuzzocrea (2020) [33]

Transportation Mean rule algorithm, RF, FL − −

S. Li (2019) [34] Healthcare KNN, DT, RF, ANN, FL − −
J. Liang, X. Liu and K. Liao
(2018) [35]

Agriculture FL, ANFIS, RF, ANN − −

D. M. Minhas, R. R. Khalid and
G. Frey (2017) [36]

Energy FL, ANN, LinReg − An implementation flow of the Hybrid Adap-
tive Fuzzy Neural System (HAFNS) algorithm

F. Mirzaei, M. Delavar, I. Al-
zoubi and B. Nadjar Arrabi
(2018) [37]

Agriculture Artificial bee colony algorithm (ABN-ANN),
Multiple LinReg, ANFIS

Hybrid Mamdani FIS, Hybrid Sugeno FIS,
Backpropagation Mamdani FIS, Backpropa-
gation Sugeno FIS

−

A. G. Mohapatra and S. K.
Lenka (2016) [14]

Agriculture Partial least-square regression, ANN − An architecture of the complete real-time
soil moisture content prediction methodol-
ogy, and a block diagram of soil MC predic-
tion model along with DSS for irrigation. FL
is used to send SMS accordingly.

S. K. Mousavi Mashhadi, H.
Yadollahi and A. Marvian
Mashhad (2016) [38]

Engineering − − PID fuzzy controller, which replaces the
manual PID controller.

H. Neog, P. E. Dutta and N.
Medhi (2022) [39]

Healthcare Seasonal ARIMA, LSTM-Markov, LinReg, DT,
KNN, K-means clustering

FL −

A. H. Orta, I. Kayabasi and M.
Tunc (2018) [40]

Energy Directional Equivalent Plant Power Curve,
Regression with different regularizations,
SVR, ANN, Non-linear ARX, ANFIS

− −

P. Patel, Y. Patel, U. Patel, V.
Patel, N. Patel, P. Oza, et al.
(2022) [15]

Agriculture CNN, Various deep learning methods FL (determining the exact time to irrigate the
crop)

A model flowchart for the implementation of
the project

V. K. Patil and V. R. Pawar
(2022) [41]

Psychology ANN, FL, K-means clustering, LinReg − −
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B. Petković, D. Petković, B.
Kuzman, M. Milovančević, K.
Wakil, L. S. Ho, et al. (2020)
[42]

Agriculture ANFIS − −

M. R. C. Qazani, V. Pour-
mostaghimi, M. Moayyedian
and S. Pedrammehr (2022)
[43]

Engineering ANFIS Genetic Algorithm (GA), Particle Swarm Op-
timization (PSO), Grey Wolf Optimization
(GWO), Bayesian Optimization (B)

−

J. Refonaa and M. Lakshmi
(2021) [44]

Climate ANN, FL, Big data assisted Integrated Rout-
ing and Surplus Memory (BIRSM)

− −

F. Sabrina, S. Sohail, F. Farid, S.
Jahan, F. Ahamed and S. Gor-
don (2022) [10]

Agriculture FL, SVM, KNN, NB − −

S. Sharma, R. K. Agrawal and
M. M. Tripathi (2020) [45]

Energy FL, RNN, SVM, ANFIS, Generic Regression
Neural Network (GRNN)

− −

A. Shastry, H. A. Sanjay and M.
Hegde (2015) [46]

Agriculture FL, ANFIS, Multiple LinReg − −

J. M. Siqueira, T. A. Paço, J.
C. Silvestre, F. L. Santos, A. O.
Falcão and L. S. Pereira (2014)
[47]

Agriculture FL − −

Q. T. T. Tran, K. Davies and L.
Roose (2021) [48]

Energy FL, SVM − −

V. Vivekanandhan, S. Sakthivel
and M. Manikandan (2022)
[49]

Agriculture ANFIS, Variable Neighborhood Seach (VNS),
Support Vector Clustering (SVC), Symbolic
Aggregate approXimation & Vector Space
Model (SAX-VSM)

− −

H. Yuan, M. Tan and Y. Chen
(2014) [9]

Agriculture Radial Basis Function (RBF), SVM, LinReg,
Non-linear Regression Model (NRM)

− −

G. Zhang, S. S. Band, S. Ard-
abili, K. W. Chau and A. Mosavi
(2022) [50]

Climate ANFIS, Bilayered Neural Network (BNN) − −



TRENDS IN LITERATURE 16

2.3. TRENDS IN LITERATURE

2.3.1. YEAR-BASED TREND

Valuable insights into the evolving trends and patterns within the academic landscape are gained

by analyzing the count of literature grouped by year. The results of this analysis, as depicted in

the Figure 2.2, provide an academic perspective on the distribution and growth of research out-

put over the years.

Figure 2.2: Year-based Trends of the Reviewed Literature

The data in Figure 2.2 reveals a notable increase in the number of publications from 2014 to

2022, indicating a growing interest in the particular research topic. Starting with a modest count

of 1 to 4 publications between 2014 and 2017, the trend demonstrates a gradual rise with inter-

mittent variations. The subsequent years show a mix of fluctuations, with varying publication

counts. However, it is important to note that in 2018, there is a substantial surge in the number

of publications, indicating a possible turning point or increased scholarly attention during that

period on the search query formulation of this study.

Furthermore, the line graph shows an upward trend from 2019 to 2021, with a relatively high

number of publications each year. However, the most significant surge in research output is

observed in 2022, where the count reaches its peak at 12 publications. This notable increase

suggests a heightened level of academic activity and interest in the research area, potentially

grounded on the advancement of computational power, big data, and data science tools.

2.3.2. KEYWORDS-BASED TREND

This subsection examines the trends based on the keywords extracted from the reviewed lit-

erature. A word cloud visualization as depicted by Figure 2.3 is used to represent the distri-

bution and prominence of keywords within the literature. The word cloud depicts the relative

frequency of keywords derived from the literature analysis. It provides a visual representation

where the size of each word corresponds to its frequency of occurrence.
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Figure 2.3: Word Cloud depicting the Keywords from the Reviewed Literature

The prominence of some keywords in the literature indicates their significant contribution to

research and applications within the field. Fuzzy Logic emerges as a central concept in the liter-

ature, with a notable frequency in the word cloud. Fuzzy Logic is widely recognized for its ability

to handle uncertainty and its explainability in decision-making processes. The mention of the

Adaptive Neuro-Fuzzy Inference System (ANFIS) in the word cloud also highlights its relevance

and utilization in the research domain. ANFIS combines the adaptive capabilities of neural

networks with the interpretability of Fuzzy Logic, making it an attractive choice for modeling

complex systems. Moreover, machine learning techniques, including Artificial Neural Network

(ANN) and regression models, play a vital role in the research landscape, as indicated by their

appearance in the word cloud. Machine learning algorithms enable the extraction of valuable

insights from data and the development of predictive models. Furthermore, the presence of

subject-specific keywords such as environmental, agriculture, and climate highlights the im-

portance of these domains within the research landscape. Researchers in the field especially

recognize the impact of environmental factors and agricultural practices, as well as the study

of climate-related phenomena.

2.3.3. SUBJECT AREA-BASED TREND

The subject area-based trend analysis reveals interesting patterns and highlights potential re-

search area gaps that can be explored in the context of this study. Figure 2.4 illustrates the

distribution of the reviewed literature in this study based on the subject area.

The analysis reveals that Agriculture and Energy are the two primary subject areas that have

received significant attention, with 14 and 10 publications, respectively. Within the Agricul-

ture domain, notable research areas that can be grouped together include soil quality analysis

[14, 16, 35, 37, 49] and crop-specific irrigation management [10, 14, 15, 46, 49]. In the Energy
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Figure 2.4: Subject Area-based Trends of the Reviewed Literature

domain, research topics such as solar radiation estimation [22, 29, 42] and electricity load fore-

casting [20, 36] have been explored. Additionally, other subject areas like weather forecasting

[27, 28, 31, 44, 50] and coffee roasting process control [11, 12, 25, 30] have also received atten-

tion in a few studies.

2.4. DISCUSSION ON RESEARCH QUESTIONS

2.4.1. SUB-RQ1: MOTIVATIONS AND DRIVERS IN FREEZE-DRIED COFFEE PRODUCTION

The first sub-research question seeks to explore the underlying motivations and drivers for con-

ducting research on the moisture optimization and heating process automation of freeze-dried

coffee production. Several factors contribute to the motivation for investigating moisture opti-

mization and heating process automation in freeze-dried coffee production.

Firstly, the demand for freeze-dried coffee products has been steadily increasing due to their

convenience and extended shelf life [5]. Consumers are seeking high-quality instant coffee

that closely resembles the flavor and aroma of freshly brewed coffee. In particular, achieving

the desired moisture levels in freeze-dried coffee is crucial for preserving the taste and sensory

characteristics of the coffee. Any variations or deviations in moisture content can significantly

impact the quality and overall experience of the end product [6]. Thus, the optimization of

moisture levels and the automation of the heating process are of paramount importance in

meeting consumer expectations and maintaining product consistency.

Secondly, the current approaches to moisture optimization and heating process control in freeze-

dried coffee production are limited in their ability to ensure consistent and precise moisture

levels. According to a discussion with a system engineer in one of the JDE factories, manual

temperature control by skilled machine engineers or simplistic regression models introduce

variability in moisture levels across different batches. This variability can lead to inconsis-

tent product quality and pose challenges for manufacturers in meeting quality standards and
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customer expectations. Therefore, there is a need to develop optimized and automated ap-

proaches that can minimize variability, enhance efficiency, and improve product quality.

Moreover, advancements in machine learning and automation technologies offer promising

opportunities for optimizing the moisture levels and automating the heating process in freeze-

dried coffee production. Machine learning algorithms can analyze complex data patterns and

make accurate predictions, enabling real-time adjustments to temperature settings based on

moisture level predictions [15]. By leveraging these technologies, coffee manufacturers can

achieve more precise control over the moisture optimization process, reducing variability, and

ensuring the production of high-quality freeze-dried coffee consistently.

2.4.2. SUB-RQ2: METHODS AND TECHNIQUES IN MOISTURE OPTIMIZATION AND HEAT-

ING PROCESS AUTOMATION

Figure 2.5: Implemented Machine Learning Techniques in the Reviewed Literature

Various machine learning models3 have been employed in the studies, as shown in Figure 2.5.

Fuzzy Logic emerged as the most used technique, constituting over 50% of the literature re-

viewed, which is justified by the aforementioned word cloud in Figure 2.3 [10, 13, 16–20, 23, 24,

26, 27, 29, 32–36, 41, 44–48]. Moreover, ANFIS [16, 21, 29, 31, 35, 37, 40, 42, 43, 45, 46, 49, 50],

tree-based models such as Decision Tree and Random Forest [13, 21, 30, 33–35, 39], Regres-

sion models (Reg) [9, 13, 14, 17–20, 24, 36, 37, 39–41, 46], deep learning algorithms such as

Neural Networks (NN) [14, 15, 19–23, 29, 32, 34–36, 40, 41, 44, 45, 50], Time Series models (TS)

[23, 28, 39], Support Vector (SV) [9, 10, 13, 21, 29, 32, 40, 45, 48, 49], and Clustering algorithms

(CLSTR) [10, 34, 39, 41] have also been utilized to address different machine learning tasks,

such as agriculture prediction, climate forecasting, and medical prognosis. These diverse ap-

3FL = Fuzzy Logic; ANFIS = Adaptive Neuro-Fuzzy Inference System; DT&RF = Decision Tree and Random Forest;
Reg = Regression models; NN = Neural Networks; TS = Time Series models; SV = Support Vector; CLSTR = Clustering
algorithms
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proaches reflect the efforts to explore and leverage the predictive potential of various machine

learning techniques.

Optimization methods have played a crucial role in refining the performance of machine learn-

ing models, which aim to discover optimal values for variables that maximize or minimize a

multivariate objective function, while taking into account certain limitations or conditions.

However, the reviewed literature indicate a relatively limited application of optimization meth-

ods compared to machine learning techniques, with Fuzzy Logic being the most commonly

used optimization approach in the reviewed literature [11, 13, 15, 25, 32, 37, 39]. Other opti-

mization methods, such as minimization of Akaike Information Criterion (AIC) [28], backward

stepwise regression [28], and optimization algorithm in Fuzzy Inference System [43], have been

utilized to a lesser extent in the different subject areas.

Furthermore, it is worth noting that only less than 20% the reviewed studies address real-case

implementations and automation, for instance, advanced PID controllers have been utilized in

certain studies to enhance the performance and efficiency of the decision-making processes

[21, 36, 38], also the block diagrams and flowcharts in some studies illustrate the integration

of Fuzzy Logic into the system, enabling precise control and autonomous decision-making

processes [11–15]. These studies go beyond theoretical or analytical discussions and provide

practical insights into the application of the proposed techniques in real-world scenarios.

2.4.3. SUB-RQ3: CHALLENGES AND LIMITATIONS IN CURRENT APPROACHES

Implementing machine learning models faces numerous challenges and limitations, as high-

lighted in the literature. One of the primary challenges is related to the availability and quality

of data, which has a significant impact on the performance and accuracy of machine learning

models [17, 23, 27, 28, 32, 34]. The requirement for extensive data collection and regression

poses practical challenges in implementing certain machine learning methods. Additionally,

poor-quality data can limit the model’s ability to generalize and make accurate predictions.

Lam [32] highlighted the shortcoming of their proposed method, which may necessitate data

collection and regression for every new product to maintain high-temperature approximation

accuracy. This requirement can be time-consuming and resource-intensive, making it a lim-

itation for practical implementation. Researchers have proposed various strategies to tackle

this challenge. For instance, Abdul-Wahab et al. [17] suggested the introduction of additional

model components and the specification of new features and functions to improve the perfor-

mance of machine learning models. Similarly, El Midaoui [23] and Li [34] emphasized the need

for additional experimental data from the literature to enhance the validity of implemented

deep learning strategies.

Another challenge in machine learning implementation is the limited availability of input vari-

ables due to the lack of data. Using only a few input variables, such as minimum and maxi-

mum temperatures, may result in poor model estimates [27]. Researchers propose incorporat-

ing state-of-the-art machine learning methods, employing proper pre-processing techniques,
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and creating model ensembles to address this limitation. Additionally, forecasting beyond the

ranges for which the models were originally trained can introduce increasing uncertainty and

amplified errors [28].

The complexity of processes and the lack of domain expertise involvement pose significant

challenges in machine learning implementation. These challenges have prompted researchers

to explore various strategies to overcome them. For example, in power load forecasting, Minhas

et al. [36] found that errors, especially for weekends, could be reduced by developing a hybrid

adaptive fuzzy neural system (HAFNS). The HAFNS incorporates probabilistic and stochastic

approaches based on day-ahead profiles, thereby improving forecasting accuracy. Similarly,

in domains such as fisheries, researchers have addressed the challenge of domain expertise to

further enhance model accuracy [9].

Moreover, the explainability of machine learning models is also a topic of concern. While more

complex models may exhibit higher performance in training and validation datasets, their in-

terpretability may be reduced. For example, Bui et al. [21] found that using a novel hybrid arti-

ficial intelligent approach in forecasting the horizontal displacement of hydropower dams re-

sulted in high performance but perplexing interpretability. Similarly, the combination of mul-

tiple machine learning models can lead to improved predictions, at the cost of explainability.

Patil & Pawar [41] achieved significant improvements in accuracy and reliability in emotion

recognition by integrating clustering and regression algorithms. Sharma et al. [45] also re-

ported higher accuracy in load forecasting by synergistically using Fuzzy Logic with an RNN

model. However, both studies concluded that such combinations resulted in solutions that are

difficult to interpret.

Integration of machine learning models with existing systems also poses challenges. While

numerous machine learning techniques and optimization methods have been proposed in the

literature, their implementation and integration into real-world systems remain limited [11, 12,

15]. The few instances where implementation has occurred often lack automation, suggesting

the need for further development in this area.

Addressing cost and resource constraints is a crucial consideration in developing practical ma-

chine learning solutions. Researchers have proposed cost-effective approaches, such as non-

contact temperature approximation and control systems, to provide low-cost and accurate so-

lutions for specific applications [32]. However, these methods may require frequent data col-

lection and regression for new products to maintain high-temperature approximation accu-

racy, which poses a potential limitation [32]. Similarly, in fields like manufacturing, advanced

machine learning techniques can be time-consuming and expensive experiments, highlighting

the needs to optimize cost and resource utilization [43].

2.4.4. SUB-RQ4: EMERGING TRENDS AND FUTURE DIRECTIONS

While current approaches to implementing machine learning models face various challenges

and limitations, researchers are actively exploring emerging trends and future directions to
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overcome these hurdles and advance the field. One important aspect that is gaining attention is

the need for model interpretability and explainability. Research has shown that more complex

non-linear models do not necessarily result in better forecasts [28]. Instead, the focus is shifting

towards developing models that are interpretable and easy to understand for end-users. This

can foster trust and acceptance of machine learning systems, making them more practical and

effective in real-world applications. The use of Fuzzy Logic and ANFIS is one approach that en-

hances interpretability and allows for customization based on different factors such as sensor

types, crop types, and environmental conditions [10].

Incorporating domain expert knowledge, cluster analysis, function fitting, and nonlinear re-

gression techniques have shown promise in improving model accuracy [9]. By integrating ex-

pert knowledge with machine learning approaches, models can benefit from both the com-

putational power of algorithms and the domain-specific insights of experts. Additionally, the

combination of Fuzzy Logic and machine learning is an area that presents potential opportu-

nities for addressing complex problems across various domains [23]. This combination allows

for a balance between automated decision-making and human expertise, enabling effective

problem-solving in uncertain and dynamic environments.

Looking ahead, there is also a need to consider cost and resource constraints in machine learn-

ing solutions. Researchers are exploring low-cost methods, such as FL-based systems, to pro-

vide accurate solutions in a cost-effective manner [32, 48]. Optimization techniques, includ-

ing Fuzzy Logic and Linear Regression, are also being employed to improve the efficiency of

machine learning algorithms while minimizing the need for time-consuming and expensive

experiments [43]. Furthermore, advancements in technology are shaping the future of ma-

chine learning implementation. For example, the integration of web-based user interfaces and

back-end servers can facilitate remote configuration and monitoring of machine learning al-

gorithms, enhancing their practicality and ease of use [13]. Such advancements can enable

real-time data analysis and decision-making, leading to more efficient and responsive systems.

2.5. CHAPTER SUMMARY

In summary, this chapter focuses on the planning and execution of the Systematic Literature

Review. The selection of scientific databases, formulation of search queries, and establish-

ment of inclusion and exclusion criteria were described in detail. The review resulted in the

identification of 42 relevant academic literature that discuss the application of machine learn-

ing techniques and optimization methods in various related fields. The chapter also analyzed

the trends in literature based on year, keywords, and subject areas, providing insights into the

research landscape. Furthermore, the discussion on research questions highlighted the moti-

vations, methods, challenges, and future directions in the field, including emerging trends in

machine learning and the potential for real-world implementation.

It is worth noting that the area of Manufacturing appears to be relatively underexplored, pre-

senting a potential research gap that this study aims to address. Specifically, within the En-
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gineering domain, which closely relates to Manufacturing, only 2 out of the 6 studies imple-

mented Machine Learning techniques [32, 43]. Furthermore, none of these studies incorpo-

rated all three key components of the proposed future solutions, namely Machine Learning Al-

gorithms, Optimization Methods, and Implementation & Process Automation. This indicates

the opportunity to bridge this gap and contribute to the field by integrating these key elements

in the context of Manufacturing. This integration can lead to the development of a decision

support system that is composed of practical and efficient ML solutions that optimize manu-

facturing operations and enhance decision-making processes, thus improving productivity.

Moreover, the utilization of Fuzzy Logic algorithms in the context of system optimization and

real-time decision-making, as highlighted by Isikdemir et al. [13] and Lam [32], represents a

promising area for future exploration within the Manufacturing domain. The interpretabil-

ity and adaptability of Fuzzy Logic make it well-suited for addressing complex manufacturing

problems and enabling real-time adjustments based on dynamic conditions. Additionally, the

integration of Fuzzy Logic with machine learning models, as proposed by El Midaoui [23], offers

an avenue for developing innovative approaches to problem-solving in manufacturing. Investi-

gating the potential of ANFIS models, which combine the advantages of Fuzzy Logic and neural

networks, could be another fruitful research direction in this domain [21, 29, 35, 40, 45, 50].
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METHODOLOGY

This chapter outlines the methodology adopted to achieve the objectives of the study. It begins

by providing an overview of the CRoss-Industry Standard Process for Data Mining (CRISP-DM),

a widely recognized framework for guiding the data mining process. Each step of this frame-

work is introduced. Following this, it also briefly discusses some theories behind the machine

learning algorithms and optimization methods which are utilized in the study.

3.1. CROSS-INDUSTRY STANDARD PROCESS FOR DATA MINING

The CRoss-Industry Standard Process for Data Mining (CRISP-DM) is a widely recognized and

comprehensive framework for guiding the process of data science projects. It provides a struc-

tured and systematic approach to tackling complex data science tasks by breaking them down

into manageable stages and activities. CRISP-DM offers a set of well-defined steps that assist

researchers and practitioners in navigating the complexities of data-driven projects, ensuring

that each phase is properly executed and aligned with the project’s goals [51]. In the context

of this study, CRISP-DM is employed as the guiding framework to structure and conduct the

research. The study can ensure a consistent and well-documented process by adhering to the

CRISP-DM methodology, which is essential for producing reliable and replicable results. Addi-

tionally, CRISP-DM aids in the integration of various techniques and methodologies at different

steps, promoting a holistic and interdisciplinary approach to building solutions to the research

problems [52]. Figure 3.1 illustrates the key steps of the CRISP-DM framework. The framework

involves six major steps, each with its own distinct set of activities and objectives, which will be

further explained in the following subsections.

3.1.1. BUSINESS UNDERSTANDING

The Business Understanding phase in the CRISP-DM framework is essential because it sets the

direction for the data analysis process. This phase is about understanding the business or sec-

24
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Figure 3.1: CRoss-Industry Standard Process for Data Mining (CRISP-DM) Framework (Adapted from [1])

tor being studied, clearly defining the goals and understanding the challenges. It’s crucial to

interact with stakeholders to determine the project’s main objectives and potential hurdles. In-

stead of solely focusing on data, this phase highlights the broader picture, making sure that

the upcoming data analysis aligns with business needs and goals, resulting in a better prepared

analysis to offer practical and relevant outcomes. This phase was primarily carried out in Chap-

ter 1.

3.1.2. DATA UNDERSTANDING

Continuing from the Business Understanding phase, the Data Understanding phase in the

CRISP-DM framework plays a pivotal role in refining the project’s direction. This phase shifts

the focus towards identifying, gathering, and scrutinizing datasets that hold the potential to fa-

cilitate the accomplishment of project objectives. This phase encompasses a set of interrelated

tasks, each contributing to a comprehensive understanding of the data’s characteristics and its

alignment with the research goals.

The first task within this phase involves the collection of initial data. This necessitates the ac-

quisition of the relevant data from various sources and, if applicable, its integration into the

chosen analysis tool. This initial data serves as the cornerstone on which subsequent analyses

are built. Subsequently, the second task pertains to the description of the acquired data. During

this step, the data is meticulously examined, and its surface properties are documented. De-

tails such as the format of the data, the number of records, and the identities of various fields

are captured. Moving further, the third task delves into the exploration of the data. This involves
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a more profound investigation, encompassing queries and visualizations to unveil underlying

patterns, relationships, and insights residing within the data. This process not only provides

an in-depth grasp of the data’s nuances but also sets the stage for generating hypotheses and

refining subsequent analyses. Lastly, the fourth task involves the verification of data quality.

This task is crucial in assessing the cleanliness and integrity of the data. Any anomalies, in-

accuracies, or inconsistencies within the data are documented at this stage. Addressing data

quality issues is imperative for ensuring the validity and reliability of subsequent analyses and

conclusions.

Looking forward, Section 4.1 will expound upon these principles by delving into the specifics

of the current data environment within JDE’s freeze-dried coffee production. Through Ex-

ploratory Data Analysis (EDA), this section will further reveal the dataset’s characteristics and

relationships, setting the stage for informed decision-making processes in the following stages

of the study. This preliminary exploration stands as a vital precursor to the subsequent analyt-

ical phases, guaranteeing that the analysis is rooted in a profound comprehension of the data.

3.1.3. DATA PREPARATION

The Data Preparation, often referred to as feature engineering, phase plays a pivotal role within

the CRISP-DM framework. This phase revolves around the essential task of refining the dataset

to make it suitable for modeling purposes. It encompasses five primary tasks, each contribut-

ing to the transformation of raw data into a more structured and usable form. During the Se-

lect data task, the decision-making process revolves around choosing the datasets that will be

used for analysis, with clear documentation of the rationale behind their inclusion or exclu-

sion. Subsequently, the Clean data task assumes prominence, addressing issues related to data

quality. This task involves solving errors, handling missing values, and removing outliers, en-

suring that the subsequent analyses are not compromised by inaccurate or inconsistent data

points. Furthermore, the Construct data task involves the creation of new attributes derived

from the existing dataset. This process aims to enhance the dataset’s predictive power by in-

troducing relevant and meaningful variables. Following this, the Integrate data task focuses on

joining data from multiple sources, thereby enriching the dataset’s breadth and depth. Lastly,

the Format data task involves standardizing the data format to facilitate consistent processing

and analysis. For instance, converting text-based numeric values into actual numeric values

is a common formatting step. It is important to note that not all of them are required in every

project, and they may not necessarily be executed in the exact order prescribed. The specific

tasks undertaken depend on the nature of the data, the project’s objectives, and the insights

sought from the analysis.

In addition to these tasks, a pivotal role is played by the train/test split, ensuring that a subset

of the dataset (approximately 80%) is utilized for training, while the remaining portion (about

20%) is reserved for testing. This partitioning enables model training and validation on inde-

pendent, unseen data, validating its generalization capabilities [53]. Another essential step is

feature scaling, which ensures that independent features are standardized to a common range
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using the StandardScaler1 approach, given by:

Standardized Value = Original Value−Mean

Standard Deviation

This not only mitigates the impact of variables with varying magnitudes but also transforms the

dataset into a standardized distribution with a mean of 0 and a standard deviation of 1. This

standardized distribution aids in improving the model’s convergence during training, enhanc-

ing its optimization and prediction accuracy [54].

In the following chapters, Section 5.1 elaborates on the data preparation procedures under-

taken for the Machine Learning aspect of the research. This section outlines the strategies

used to clean, transform, and engineer features in preparation for machine learning algorithms.

Similarly, Section 6.1 provides insights into the data preparation processes tailored for the Op-

timization Method. Here, the focus lies in structuring the data to effectively interface with op-

timization algorithms, ensuring that the ensuing analyses and model development are built on

a robust foundation of well-prepared data.

3.1.4. MODELING

The Modeling phase in the CRISP-DM framework marks a significant transition from the prepara-

tory stages to the actual development of data science models. This phase is characterized by the

construction of predictive or descriptive models based on the refined dataset obtained through

the Data Preparation phase. The primary objective of the Modeling phase is to generate models

that capture meaningful patterns, relationships, and insights from the data to address the re-

search questions or objectives. This involves selecting appropriate modeling techniques, train-

ing models on the dataset, and assessing their performance. In more detail, the steps to build

a data science model include splitting the dataset into training and testing sets, selecting the

appropriate algorithm, training the model on the training set, tuning hyperparameters to op-

timize performance, and evaluating the model on the testing set. The goal is to create models

that generalize well to new, unseen data and can make accurate predictions or provide valuable

insights.

In the aforemenationed hyperparameter tuning, GridSearch2 and K-fold validation play cru-

cial roles within the Modeling phase. GridSearch involves an exhaustive search over a pre-

defined set of hyperparameters to determine the combination that yields the best model per-

formance. This technique helps in optimizing the model’s hyperparameters and enhancing its

predictive power. In addition, K-fold validation addresses the need for robust model evaluation

by partitioning the dataset into multiple subsets (folds) and iteratively training and testing the

model on different combinations of these folds. This approach provides a more comprehen-

1https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.
html

2https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.
html

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
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sive understanding of the model’s performance across various data partitions, thereby reduc-

ing the risk of overfitting to specific subsets of the data. Both GridSearch and K-fold validation

contribute to achieving more accurate and reliable models, aligning with the objective of the

Modeling phase.

In the context of model interpretation and understanding, another valuable technique that

complements the Modeling phase is the use of SHapley Additive exPlanations (SHAP) [55–57].

SHAP is a method that helps explain the output of machine learning models by attributing the

contribution of each input feature to the model’s prediction. This technique provides insights

into which features have the most significant impact on the model’s outcomes and how they

influence the prediction. Interpreting SHAP values often involves visualizing the contributions

of individual features to the predictions. SHAP plots provide a clear graphical representation

of these contributions, helping to understand how changes in feature values lead to changes

in the model’s prediction. In these plots, each feature’s contribution to a specific prediction is

displayed along a horizontal axis. The vertical position of the feature on the plot represents the

feature’s value for that prediction. The colors of the plot indicate whether a high or low feature

value is associated with a higher or lower prediction, respectively.

Section 5.2 delves into the modeling processes related to the Machine Learning aspect of the

study. It details the selection of machine learning algorithms that are best suited to address the

specific research questions and dataset characteristics. The modeling section covers the train-

ing of machine learning models using the prepared dataset, including techniques to optimize

the models’ performance through hyperparameter tuning. Similarly, Section 6.2.1 and 6.3.1 fo-

cus on the modeling processes pertaining to the Optimization Method aspect of the study. It

outlines the formulation and testing of optimization methods to enhance the decision-making

process regarding the temperature in the domain of freeze-dried coffee production.

3.1.5. EVALUATION

The Evaluation phase within the CRISP-DM framework serves as a critical assessment of the

models developed during the Modeling phase. This phase involves rigorously evaluating the

performance and validity of the constructed models against predefined criteria. The objective

is to determine how well the models generalize to new data and whether they effectively address

the research questions or objectives. The evaluation process entails using appropriate metrics

to measure the relevant measures of the model based on the nature of the problem. In the

context of the current study, which is focused on regression tasks, several evaluation metrics are

employed, including the R-squared (R2), Root Mean Squared Error (RMSE), and Mean Absolute

Error (MAE).

The R2 metric quantifies the proportion of the variance in the dependent variable that is pre-

dictable from the independent variables [58]. It provides insight into the goodness of fit of the

model by indicating how well the observed outcomes match the model’s predictions. The RMSE

represents the square root of the average of the squared differences between the predicted val-
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ues and the actual values. It measures the typical magnitude of errors in the predictions and

is particularly useful in regression tasks where the prediction errors’ magnitude is significant

[59]. Similarly, MAE calculates the average of the absolute differences between the predicted

and actual values, providing a measure of the average prediction error magnitude.

In the context of the current study, RMSE is chosen as the main evaluation metric. This choice

is grounded in the fact that RMSE gives higher weight to larger errors, making it sensitive to the

prediction errors that may significantly impact the quality of the freeze-dried coffee produc-

tion process [59]. Minimizing RMSE aligns well with the goal of achieving accurate and precise

moisture predictions in order to optimize the freeze-dried coffee production process. Further-

more, the utilization of multiple metrics, including R2 and MAE, complements the comprehen-

sive evaluation of the models’ performance, offering a holistic view of their effectiveness.

The evaluation of machine learning models is elaborated in Section 5.3. This section assesses

the performance of the trained machine learning models, along with techniques for cross-

validation to ensure robustness of the results. Additionally, Section 6.2.2 and 6.4 addresses the

evaluation processes concerning the Optimization Method aspect of the study. It provides in-

sights into how the effectiveness of optimization algorithms or methods is quantitatively mea-

sured, considering the improvements achieved in the specific process being optimized. The

evaluation outcomes play a pivotal role in determining the success of the developed solutions

and guiding any necessary iterations or improvements in the machine learning modeling and

optimization processes. If any iterations are required, the process goes back to the Business

Understanding phase.

3.1.6. DEPLOYMENT

The Deployment phase within the CRISP-DM framework marks the final step in the journey

of a data science project, where the developed models are put into action to provide practical

solutions to the identified problems. This phase involves the integration of the developed mod-

els and solutions into the operational environment, making them accessible for end-users or

stakeholders. The primary goal of the Deployment phase is to ensure that the insights and

predictions derived from the data science models can be readily utilized to drive informed

decision-making and achieve the project’s objectives. The success of a data science project

ultimately depends on the effective deployment of the developed models and solutions in real-

world scenarios.

The deployment of machine learning and optimization methods in this study will be compre-

hensively addressed in Section 7.1 and 7.2 respectively. These sections will delve into the prac-

tical aspects of integrating the developed machine learning models and optimization methods

into the freeze-dried coffee production process. It will encompass discussions on the imple-

mentation of the models within the existing operational infrastructure, including some con-

siderations for real-time prediction and decision-making. The deployment processes aims to

bridge the gap between theoretical advancements and real-world implementation, highlight-
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ing the value of data-driven insights in optimizing manufacturing operations.

Table 3.1 below maps each of the discussed phase in the CRISP-DM framework to their respec-

tive sections in this thesis.

Table 3.1: Mapping of CRISP-DM Phases to Related Thesis Sections

Phase Related Sections
Business Understanding 1.1, 1.2, 1.3, 1.4
Data Understanding 4.1
Data Preparation 5.1, 6.1
Modeling 5.2, 6.2.1, 6.3.1
Evaluation 5.3, 6.2.2, 6.4
Deployment 7.1, 7.2

3.2. MACHINE LEARNING ALGORITHMS

This section delves into the theoretical foundations of the machine learning algorithms utilized

in this study to address the research questions posed. The selection of these algorithms was

based on a rigorous analysis of the Machine Learning techniques resulted from the SLR, as

depicted in Figure 2.5. These algorithms have been specifically chosen for their applicability to

the freeze-dried coffee production domain and their potential to predict the moisture through

regression models. Each algorithm represents a distinct approach to modeling and prediction,

offering unique strengths that align with the specific objectives of the study. By exploring the

principles and functionalities of these algorithms, this section aims to provide a comprehensive

understanding of the methods employed to develop the machine learning models within the

framework of the research.

3.2.1. ORDINARY LEAST SQUARE (OLS) REGRESSION

OLS Regression is a foundational statistical technique widely used in data analysis and machine

learning to establish a linear relationship between a dependent variable and one or more inde-

pendent variables [9, 14, 20, 41, 60]. The core principle of OLS Regression involves finding the

optimal linear equation that best represents the relationship between the dependent variable

and the independent variables. Mathematically, the linear regression model in OLS Regression

can be represented as:

y =β0 +β1x1 +β2x2 + . . .+βn xn +ε

Where:

• y is the dependent variable

• β0 is the intercept

• β1,β2, . . . ,βn are the coefficients of the independent variables x1, x2, . . . , xn
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• ε represents the error term

Another essential objective of OLS is to find the values of coefficients β0,β1, . . . ,βn that mini-

mize the sum of the squared residuals ε [60, 61], which can be expressed as:

min
β0,β1,...,βn

n∑
i=1

(yi − (β0 +β1xi 1 +β2xi 2 + . . .+βn xi n))2

Where:

• n is the number of data points

• yi is the observed value of the dependent variable for the i -th data point

• xi j is the value of the j -th independent variable for the i -th data point

By minimizing the sum of squared residuals, OLS Regression finds the coefficients that best

fit the data and provide a linear equation that predicts the dependent variable based on the

independent variables [60, 61]. This process is often referred to as the method of least squares.

Applying Linear Regression to the prediction of dependent variable involves fitting the model to

the available training data. Once the model is trained, it can be used to predict the dependent

variable for new, unseen data points. The coefficients β0,β1, . . . ,βn provide insights into the

quantitative impact of each independent variable on the predicted dependent variable [62].

While OLS Regression assumes a linear relationship between variables, it provides a solid foun-

dation for more advanced regression techniques that can capture nonlinear patterns and in-

teractions among variables [9, 18, 63]. The subsequent subsections will explore some of these

advanced techniques, building upon the principles of linear and non-linear regression models

to enhance the accuracy of moisture predictions in the freeze-dried coffee production process.

3.2.2. ELASTICNET REGRESSION

ElasticNet Regression is a regularization technique that combines both L1 (Lasso) and L2 (Ridge)

regularization penalties in order to address some of the limitations of these individual tech-

niques [64, 65]. L1 regularization encourages sparsity by adding an absolute value penalty to

the coefficients, effectively driving some coefficients to zero and resulting in feature selection.

On the other hand, L2 regularization adds a squared value penalty to the coefficients, which

helps to control multicollinearity and stabilize the model by distributing the impact of corre-

lated features. ElasticNet aims to strike a balance between the strengths of Lasso and Ridge

regularization, combining the advantages from both methods [66]. Mathematically, the Elas-

ticNet objective function can be represented as:

min
β0,β1,...,βn

[
n∑

i=1
(yi − (β0 +β1xi 1 +β2xi 2 + . . .+βn xi n))2 +α

(
λ1

n∑
j=1

|β j |+ 1

2
λ2

n∑
j=1

β2
j

)]

Where:
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• n is the number of data points

• yi is the observed value of the dependent variable for the i -th data point

• xi j is the value of the j -th independent variable for the i -th data point

• β0,β1, . . . ,βn are the coefficients of the independent variables

• λ1 and λ2 are the hyperparameters that control the strength of L1 and L2 regularization,

respectively

• α is the mixing parameter that determines the balance between L1 and L2 penalties

By tuning the hyperparameters λ1 and λ2, as well as the mixing parameter α, ElasticNet can

be customized to emphasize either L1 or L2 regularization or a combination of both. This flex-

ibility allows ElasticNet to handle a wide range of scenarios and achieve better performance

than individual regularization techniques alone [66]. It is particularly useful when dealing with

datasets that have a large number of features, as it helps to prevent overfitting and select rele-

vant features for the model [64]. Moreover, it is also useful in situations where there are many

correlated features or when the number of features is much larger than the number of data

points [67]. It offers a trade-off between feature selection and feature stability, making it a pow-

erful tool for regression tasks involving high-dimensional data.

3.2.3. SUPPORT VECTOR REGRESSION (SVR)

SVR is a powerful regression technique that is based on the principles of Support Vector Ma-

chines (SVM), a widely used machine learning algorithm for regression and classification prob-

lems [9, 10, 32, 48, 49]. SVR is particularly effective when dealing with non-linear relationships

between variables and can handle both linear and non-linear regression tasks. The fundamen-

tal idea behind SVR is to find a hyperplane that best captures the relationship between the input

variables and the target variable. Unlike traditional regression techniques that aim to minimize

the error between predicted and actual values, SVR focuses on minimizing the deviation of pre-

dicted values from a specified range (margin) around the target values [68]. Mathematically, the

objective of SVR can be stated as follows:

Given a training dataset with input vectors xi and corresponding target values yi , SVR seeks

to find the coefficients w and b that define the hyperplane w x +b, while minimizing the cost

function [32]:

min
w,b

(
1

2
∥w∥2 +C

n∑
i=1

max(0, |yi − (w xi +b)|−ϵ)

)

Where:

• n is the number of training examples

• w represents the weights of the hyperplane
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• b is the bias term

• C is the regularization parameter that controls the trade-off between minimizing the

margin error and the training error

• ϵ is the margin of tolerance that defines the error around the target values

The cost function consists of two terms: the first term ( 1
2∥w∥2) aims to minimize the norm

of the weight vector w , while the second term enforces that the predicted values lie within

a specified range around the target values [32]. Furthermore, SVR can be extended to han-

dle non-linear relationships by using kernel functions, which implicitly map the input data

into a higher-dimensional space [69]. This allows SVR to capture complex patterns and non-

linearities that might not be apparent in the original feature space.

3.2.4. RANDOM FOREST REGRESSION

Random Forest Regression is an ensemble learning technique that leverages the power of de-

cision trees to create a robust and accurate regression model. It operates by constructing mul-

tiple decision trees during training and combining their predictions to produce a final output

[30, 34, 70]. The key idea behind Random Forest is to reduce overfitting by averaging the predic-

tions of many individual decision trees. Each decision tree in the forest is trained on a random

subset of the training data and is exposed to a random subset of features. This randomness in-

troduces diversity among the trees, reducing the risk of overfitting and improving the model’s

generalization ability.

Mathematically, let X represent a set of input features and y denote the target variable. The

Random Forest model consists of N decision trees, each trained on a different subset of the

training data. The final prediction ŷ for a given sets of input X is the average of the predictions

from all N decision trees [35, 71]. Mathematically, it can be written as:

ŷ = 1

N

N∑
i=1

treei (X )

Where treei (X ) is the prediction of the i -th decision tree.

The process of building each decision tree involves recursively partitioning the feature space

into subsets that are as homogeneous as possible with respect to the target variable [35]. This

partitioning is achieved by selecting the best feature and threshold at each node to split the

data. The tree continues to grow until a stopping criterion, such as a maximum depth or mini-

mum number of samples per leaf, is met.

Random Forest Regression offers several advantages, including robustness to overfitting, the

ability to capture complex relationships, and resistance to outliers [30, 34, 35]. It is suitable for

both linear and non-linear relationships and can handle high-dimensional data effectively. Ad-

ditionally, the ensemble nature of Random Forest provides built-in feature selection and rank-
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ing, helping to identify the most important features in the dataset. In practice, Random For-

est Regression has gained popularity due to its simplicity, versatility, and strong performance

across various domains [30, 33–35, 70]. Its ability to provide reliable predictions and effectively

handle a wide range of data characteristics makes it a valuable tool for regression tasks.

3.2.5. GRADIENT BOOSTING REGRESSION

Gradient Boosting Regression is a powerful ensemble learning technique that builds a predic-

tive model by sequentially adding weak learners, typically decision trees, and combining their

predictions to create a strong overall model [72, 73]. It aims to improve upon the limitations of

individual weak learners by focusing on minimizing the residual errors of the previous model

in each subsequent iteration. The key idea behind Gradient Boosting is to iteratively fit new

models to the negative gradient of the loss function with respect to the current model’s pre-

dictions. This process effectively tunes the new models to correct the errors of the previous

models, leading to a model that continually improves its predictions [72–75].

Light Gradient-Boosting Machine (LightGBM) and eXtreme Gradient Boosting (XGBoost) are

two of the variations of the Gradient Boosting technique that enhance its efficiency and per-

formance [76, 77]. LightGBM introduces a histogram-based approach to split the data and

gradient-based one-sided sampling to reduce the computational cost of building decision trees.

XGBoost implements a regularization term and a second-order approximation to the loss func-

tion, contributing to improved stability and performance.

Mathematically, given a dataset D with input features X and target values y , the goal of Gradient

Boosting Regression is to learn a model F (x) that minimizes the loss function L(y,F (x)). In

each iteration t , a new model ht (x) is added to improve the current model Ft−1(x) [75, 76, 78].

Mathematically, this can be represented as:

Ft (x) = Ft−1(x)+ht (x)

Where ht (x) is the contribution of the new model to the ensemble.

For LightGBM, the mathematical formulation of the loss function and optimization process can

be defined as [76]:

ObjectiveLightGBM =∑
i

l (yi ,Ft (xi ))+∑
k
Ω( fk )

Where l (yi ,Ft (xi )) is the loss function at iteration t andΩ( fk ) is the regularization term for the

k-th tree.

Similarly, XGBoost introduces a regularized objective function with first-order and second-

order gradients [75, 76]:
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ObjectiveXGBoost =
∑

i
l (yi ,Ft (xi ))+∑

k
Ω( fk )+γT

Where T is the number of leaves in the tree, and γ controls the regularization term.

Both LightGBM and XGBoost excel in handling large datasets, high-dimensional data, and com-

plex relationships [72, 75, 76, 79]. Their ability to balance bias and variance and their efficiency

in training make them popular choices for various regression tasks.

3.3. OPTIMIZATION METHODS

The Optimization Methods specifically aims to optimize temperature control in the final heat-

ing zones after the machine learning predictions have been made. In essence, the optimiza-

tion methods automatically adjust the temperature based on the moisture prediction from the

machine learning algorithm, striving to reach the target moisture content efficiently and accu-

rately. These methods have been carefully selected based on the results of the SLR, as depicted

in Figure 2.5.

3.3.1. FUZZY LOGIC

Fuzzy Logic, a computational paradigm designed for reasoning under uncertainty and impre-

cision, differs significantly from traditional binary logic, which deals exclusively in true or false

values. Fuzzy Logic introduces the notion of "fuzziness," which quantifies the degree of mem-

bership of an element within a set, expressed as values between 0 and 1 [80]. This degree of be-

longingness, represented by fuzzy sets, extends classical (crisp) sets, replacing crisp values with

fuzzy values that denote the extent of an element’s membership in a set. These fuzzy values are

typically characterized using membership functions, which take various shapes, such as trian-

gular, trapezoidal, or Gaussian curves, allowing them to capture diverse levels of uncertainty

and imprecision [24, 81, 82]. To harness the potential of fuzzy logic in practical applications, it

is essential to comprehend how it works, in particular the key concept of fuzzy sets and their

role in quantifying uncertainty.

Fuzzy Logic operates on the foundation of a set of rules organized within a fuzzy rule-based sys-

tem [80]. These rules employ linguistic variables (e.g., "high" or "low") and their corresponding

membership functions to establish connections between inputs and outputs. Typically struc-

tured as "if-then" statements, these rules utilize linguistic variables in the "if" section to outline

conditions, and the "then" section specifies the resulting actions or outputs. In mathematical

terms, let A denote a fuzzy set defined within a universe of discourse X . The membership

function of A, denoted as µA(x), quantifies the degree to which x belongs to A [82]. To fur-

ther convert this fuzzy output into a crisp value, various defuzzification methods are available.

One widely used method is the centroid method, which computes the center of gravity of the

membership function curve, resulting in a single crisp value that characterizes the fuzzy output

[83]. Furthermore, it is crucial to examine the broader context of its diverse manifestations in
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real-world applications, such as a Fuzzy Inference System (FIS).

FIS stands as a computational framework grounded in fuzzy logic, employed to model intricate

relationships between input variables and output actions, facilitating decision-making amid

uncertainty and imprecision [13, 26]. Diverse types of FIS systems exist, including Mamdani,

Sugeno, and Tsukamoto. The Mamdani FIS relies on fuzzy sets to define rules and accommo-

dates linguistic variables directly [84]. In contrast, the Sugeno method employs linear combina-

tions of input variables to generate outputs, making it suitable for modeling relationships with

numerical precision [85]. Meanwhile, the Tsukamoto method employs fuzzy sets to express

output values, utilizing a "smoothing" technique in output generation [86]. Additionally, Fuzzy

Logic Controller (FLC)s, a popular application of fuzzy logic, excel in control systems [25, 32].

FLCs utilize linguistic rules for controlling complex and nonlinear systems, enabling effective

decision-making even in the presence of uncertainty and imprecision. Key advantages of Fuzzy

Control Systems encompass their capacity to handle imprecise input, adapt to dynamic con-

ditions, and offer decision-making akin to human reasoning. However, it is worth noting that

these systems may present challenges related to their interpretability [10, 87].

3.3.2. ARTIFICIAL NEURAL NETWORK (ANN)

ANNs are computational models inspired by the structure and functioning of the human brain’s

neural networks. ANNs consist of interconnected nodes, or "neurons," organized in layers: an

input layer, one or more hidden layers, and an output layer. Each connection between neurons

has an associated weight that adjusts during training to learn patterns and relationships in the

data. ANNs are capable of capturing both linear and complex non-linear relationships in data,

making them versatile for various applications, including regression and classification tasks

[35, 36, 44, 45, 88].

Mathematically, an ANN can be represented as follows:

Let X be the input vector of features, y be the output (prediction), w be the weight matrix, and

b be the bias vector. f represents the activation function applied to each neuron. The input of

neuron j in layer l is denoted as z(l )
j , and its output after activation is denoted as a(l )

j [89].

The output of a neuron in a hidden layer or the output layer can be calculated as:

z(l )
j =

n(l−1)∑
i=1

(w (l )
i j ·a(l−1)

i )+b(l )
j

a(l )
j = f (z(l )

j )

The weights and biases are adjusted during the training process using optimization algorithms

like gradient descent to minimize the prediction error. Backpropagation, a crucial step in train-

ing ANNs, involves computing the gradient of the loss function with respect to the network’s

weights and using it to update the weights layer by layer [90]. The backpropagation formula for
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updating the weights in the hidden layers is [89]:

∆w (l )
i j =α · ∂L

∂z(l )
j

·a(l−1)
i

where α is the learning rate and L is the loss function.

Training ANNs involves iterating through a fixed number of epochs [35, 91]. Each epoch con-

sists of a forward pass (input data passes through the network, and predictions are computed),

a backward pass (gradients are computed using backpropagation), and weight updates based

on the computed gradients [44]. Moreover, ANNs can be customized with different architec-

tures, activation functions, and optimization algorithms to suit specific tasks. However, they

require careful hyperparameter tuning to prevent overfitting and ensure optimal performance

[92].

3.3.3. ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS)

Introduced by Jang in his paper [2], ANFIS is a powerful hybrid computational framework that

integrates principles from both Fuzzy Logic (FL) and ANN. It combines the interpretability of

Fuzzy Logic (FL) with the learning capabilities of ANN to create a versatile model capable of

handling complex and non-linear relationships in data.

Figure 3.2: Structure of a Customized ANFIS (Adapted from [2])

Figure 3.2 depicts an example of an ANFIS structure with two inputs and one output, which

is comprised of distinct layers. A typical ANFIS configuration consists of a total of five lay-

ers, each dedicated to a specific computational role [2, 31, 35, 43, 46, 49]. The Fuzzification

Layer transforms input data into fuzzy membership degrees through membership functions,

representing linguistic terms and encapsulating input uncertainty. In the Rule Layer, firing

strengths for each rule are computed based on fuzzified inputs and rule conditions, enabling

modulation of rule contributions to the ultimate output. The Consequent Parameter Layer de-

termines parameters for rule consequents, often as linear combinations of input variables and
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firing strengths. Subsequently, the Normalization Layer ensures that firing strengths sum to

unity. The Defuzzification Layer ultimately aggregates the normalized firing strengths of rule

consequents, yielding the final ANFIS output. Mathematically, the ANFIS can be represented

as follows [2]:

y =
R∑

i=1
w̄i · fi

where yi is the output of rule i computed using its consequent parameters, R is the number

of rules, w̄i is the normalized firing strength of rule i , and fi is the crisp function in the con-

sequent. In addition, fi is computed using the consequent parameters of rule i based on the

Sugeno method [85]:

fi = ai · x1 +bi · x2 + ci

where x1, x2 represents the first and second input variable, and ai ,bi ,ci are the parameters

associated with the i -th rule’s consequent part. If there are more than two input variables, the

above formula should be adapted accordingly.

ANFIS employs a hybrid learning approach during training [2, 29, 35, 45]. In the forward pass,

the premise parameters (related to membership functions) are modified using least squares es-

timation (LSE). In the backward pass, gradient descent is applied to adjust the consequent pa-

rameters. This two-phase learning process ensures that ANFIS adapts to the data efficiently and

effectively captures complex relationships. In addition, ANFIS is particularly efficient when the

number of inputs is limited, making it suitable for applications where interpretability is crucial

and computational efficiency is desired [93]. Its ability to model complex systems using lin-

guistic rules and neural network learning makes ANFIS a valuable tool for various engineering

and scientific domains.

3.4. CHAPTER SUMMARY

This chapter introduces the methodology used to achieve the study’s objectives. The CRoss-

Industry Standard Process for Data Mining framework provides a structured approach, guiding

the research through six major phases. Table 3.1 shows the related sections with each phase

in this framework. Subsequently, the methodology involved implementing various machine

learning algorithms, which were chosen based on the SLR result in Section 2.4.2 and their suit-

ability to predict moisture values in freeze-dried coffee production. These algorithms include

Linear Regression, Ordinary Least Square Regression, ElasticNet Regression, Support Vector Re-

gression, Random Forest Regression, and eXtreme Gradient Boosting Regression. Root Mean

Squared Error will be used as the main metric to evaluate the algorithms, alongside the R-

squared and Mean Absolute Error. SHapley Additive exPlanations will also be applied to plot

the feature importance of the machine learning models. Furthermore, optimization methods
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which are derived from the result of the preliminary literature study are explored, including

Fuzzy Logic, Artificial Neural Network, and Adaptive Neuro-Fuzzy Inference System. These op-

timization methods aim to optimize and adjust temperature settings automatically in the last

heating zone based on the moisture from the machine learning prediction.



4
EXPERIMENT SETUP

In this chapter, the experimental setup for the research study is detailed, providing a compre-

hensive overview of data understanding, highlighting the sources of data and the Exploratory

Data Analysis (EDA) conducted to gain insights into the dataset. The chapter also elucidates

the minimal requirements for the proposed solution, both functional and non-functional, out-

lining the essential capabilities and qualities that it should embody.

4.1. DATA UNDERSTANDING

4.1.1. DATA SOURCES

In the context of the freeze-drying process at JDE, the data flow within the system comprises a

sequence of well-defined stages, each contributing to the comprehensive collection of relevant

information. Figure 4.1 provides an illustrative overview of this data flow. The journey com-

mences with the introduction of coffee granules into individual trays, followed by the stacking

of trays into a complete stack. At the tray level, data is collected, capturing various attributes

pertinent to the process. The frequency of data collection occurs with every tray inlet, ensur-

ing a granular and real-time representation of the coffee granules’ behavior during the initial

stages.

Upon the completion of a stack, it is conveyed into the first heating zones, where it undergoes

the freeze-drying process under specific temperature and time conditions, details of which are

masked due to confidentiality in the recipes. Subsequent to its passage through the last heating

zone, the stack’s data is systematically captured at the stack level. This data collection frequency

aligns with every stack outlet, providing insights into the collective behavior of the stacks as

they progress through the heating zones.

Moreover, an essential aspect of the data collection process occurs during the unloading of

trays onto a conveyor belt post-freeze-drying. The freeze-dried coffee is subjected to contin-

40
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uous moisture measurements using a moisture meter, generating data points every 0.5 sec-

onds. This real-time monitoring contributes a granular understanding of the moisture content

evolution within the freeze-drying process. The culmination of these data collection stages

constructs a comprehensive dataset that reflects the intricate dynamics of the freeze-drying

process, forming a critical foundation for subsequent analysis and modeling endeavors.

Figure 4.1: Current Freeze-Drying System Environment at JDE

The acquired data is systematically organized and stored within JDE’s SQL Server infrastruc-

ture. To harness the insights from this data, a strategic workflow is employed wherein Azure

Databricks is invoked to access the SQL Server database. The Databricks platform seamlessly

interacts with the SQL Server, enabling the extraction of relevant data sets for further analysis

and processing. Leveraging the capabilities of Python and SQL languages, Databricks facilitates

data manipulation, transformation, and integration, allowing for an efficient and versatile an-

alytical pipeline. Furthermore, the analytical exploration of the data is augmented through the

integration of various open-source libraries, the details of which are elaborated in Appendix C.

4.1.2. EXPLORATORY DATA ANALYSIS (EDA)

FEATURE DESCRIPTION

EDA serves as a crucial initial step in the data mining process, enabling researchers to gain

deeper insights into the characteristics of the dataset and uncover meaningful patterns. In the

context of this study, EDA provides a foundational understanding of the freeze-dried coffee pro-

duction data collected from four different FD machines, each processing various product IDs

with distinct recipes. These recipes involve specific time and temperature settings in the heat-

ing zones of the FD machines, influencing the final product’s quality. The datasets from these

machines share similar features, described in Table 4.1, containing information about mois-

ture, weight, temperature, and heating duration, among others. It is crucial to emphasize that

the datasets are devoid of any missing values, thereby eliminating the necessity for imputation

procedures.
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Table 4.1: Features of the FD Dataset

Feature Description
product_ID The identifier of the coffee product
stack_ID The identifier of the stack
moisture Average moisture of the stack
weight Total weight of the stack
temp_qty_n Heating temperature at the n-th heating zone
time_qty_n Heating duration at the n-th heating zone
stop_time_qty Total outage duration of the stack at the heating zone

FEATURE DISTRIBUTION

A comprehensive examination of feature distributions between and within each FD machine

provides valuable insights into their inherent characteristics, which are instrumental for sub-

sequent analysis. Understanding the distribution of features is essential because it allows for

a deeper grasp of the nuances within each FD machine’s operation and performance. By as-

sessing the distribution of key features, a deeper understanding of patterns, anomalies, and

variations that might otherwise remain hidden can be gained. This knowledge serves as a criti-

cal foundation for the later stage of optimization and automation in the context of freeze-dried

coffee production.

Figure 4.2 visually illustrates the density distribution of features across different FD machines

using a Kernel Density Estimate (KDE) plot. In Figure 4.2, the x-axis represents feature values,

while the y-axis signifies density, which quantifies the likelihood of observing specific values

within the feature’s range. The KDE plot employs two main visualization components: a contin-

uous line and histogram bars, which serve different purposes. The continuous line represents

the smooth probability density function, offering a continuous view of the data distribution.

In contrast, the bars represent discrete bins or segments of the distribution, providing a more

granular view of data density within specific intervals.

Upon closer examination, it becomes apparent that the moisture distributions for FD 1, 2, and

4 share a degree of similarity, indicating common moisture characteristics among these ma-

chines. Conversely, FD 3 exhibits a distinct distribution, suggesting potential disparities in op-

erational conditions or performance. A similar trend emerges when analyzing weight distribu-

tions, as comparability is evident between FD 1 and 2, as well as between FD 3 and 4. These

resemblances may be attributed to shared characteristics or processes within machine pairs.

For instance, FD 1 and 2 may share similarities in their heating zones features, as do FD 3 and

4. The significance of this distribution analysis lies in its ability to highlight variations in heating

temperature and duration across all FD machines. These variations underscore the necessity

of accommodating these differences in subsequent modeling and analysis, as they may signif-

icantly impact the efficiency and outcome of the freeze-drying process, leading to variations in

product quality. These findings suggest that the optimization and automation process must be

customized for each machine based on their distinct moisture and weight distributions.
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Figure 4.2: Feature Distribution in Different FD Machines

To further dissect the differences in feature distributions, it is also imperative to examine the

distribution within each FD machine. For instance, Figure D.1 illustrates the distribution of fea-

tures within FD Machine 1. Notably, each product processed in FD Machine 1 possesses unique

feature distributions. This pattern holds true across all FD machines, as depicted in Appendix

D. These variations in feature distributions within each FD machine are inherently linked to the

diverse recipes, characteristics, and processes associated with individual products. Given these

distinctions, it is evident that a one-size-fits-all approach to optimization and automation will

not suffice. Instead, a customized optimization and automation process tailored to the specific

attributes and requirements of each product within its respective FD machine is also essential

for achieving optimal results in freeze-dried coffee production.
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Assessing the normality of data distributions is another crucial step in statistical analysis, espe-

cially when preparing data for modeling. A normal distribution test helps determine whether

a dataset follows a Gaussian distribution, which has specific statistical properties. The rea-

son for conducting this test is to ensure that the assumptions underlying many statistical tech-

niques, such as linear regression, are met. When data closely resembles a normal distribution,

these techniques tend to perform optimally, producing reliable results [17, 94]. Various numer-

ical tests are available to assess normality, including the Kolmogorov-Smirnov test, Anderson-

Darling test, and Shapiro-Wilk test. The Shapiro-Wilk test is often regarded as the most pow-

erful method for assessing normality, particularly for the sample sizes provided in this study

[95, 96].

In the context of this analysis, the Shapiro-Wilk test was applied to the dataset, assessing the

normality of features across various dimensions, including categorization by machine and prod-

uct status. This determination is made based on the p-value criterion, where a p-value below

the chosen significance level of 0.05 signifies non-normality. The results, as presented in the

tables 4.2, indicate that none of the investigated features in each FD machine exhibit a normal

distribution. In this case, all features show p-values lower than 0.05, signifying the rejection of

the null hypothesis. Furthermore, Appendix E provides a detailed presentation of the Shapiro-

Wilk test results for the features grouped by products in each FD machine, offering comprehen-

sive insights into the non-normality of these features.

Table 4.2: Shapiro-Wilk Test Result of the Features in Different FD Machines

Feature FD p-value Description
moisture FD 1 Close to 0 Does not follow a normal distribution
moisture FD 2 Close to 0 Does not follow a normal distribution
moisture FD 3 7.35e-35 Does not follow a normal distribution
moisture FD 4 Close to 0 Does not follow a normal distribution
weight FD 1 Close to 0 Does not follow a normal distribution
weight FD 2 Close to 0 Does not follow a normal distribution
weight FD 3 8.97e-39 Does not follow a normal distribution
weight FD 4 Close to 0 Does not follow a normal distribution
temperature_1 FD 1 Close to 0 Does not follow a normal distribution
temperature_1 FD 2 Close to 0 Does not follow a normal distribution
temperature_1 FD 3 Close to 0 Does not follow a normal distribution
temperature_1 FD 4 Close to 0 Does not follow a normal distribution
time_1 FD 1 Close to 0 Does not follow a normal distribution
time_1 FD 2 Close to 0 Does not follow a normal distribution
time_1 FD 3 Close to 0 Does not follow a normal distribution
time_1 FD 4 Close to 0 Does not follow a normal distribution

The absence of a normal distribution in the features can impact the subsequent modeling

phase. Many statistical models, especially those of a parametric nature, assume that data fol-

lows a normal distribution [17, 94]. When this assumption is violated, it can potentially com-

promise the model’s performance, leading to less precise predictions. However, it is worth not-
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ing that while certain features can be transformed to approximate a normal distribution, this

transformation may have little impact on improving normality, especially in the case of linear

regression [94, 97]. In such instances, it is advisable to explore alternative modeling approaches

that are better suited for handling non-normally distributed features, such as tree-based mod-

els [98, 99]. These models can offer robust performance even when dealing with data that does

not adhere to the normal distribution assumption.

OUTAGES

The presence of outliers is a matter of paramount concern. Outliers may signify anomalies or

irregular occurrences within machine operation, prompting a deeper investigation to identify

unexpected patterns or deviations from standard operating conditions. Understanding and

addressing these outliers are essential steps in ensuring the reliability and quality of the freeze-

drying process for coffee production. In the context of freeze-dried coffee production, the oc-

currence of outages in FD machines can be seen as outliers, signifying unexpected interrup-

tions in the manufacturing process. These interruptions can result from various factors, includ-

ing power interruptions, manual stops initiated for maintenance or adjustments, or mechan-

ical failures. The identification of outages relies on a specific feature known as stop_time_qty,

which records the duration of such interruptions. Due to confidentiality constraints, the thresh-

old value for identifying outages cannot be disclosed.

Examining the impact of outages on feature distributions is a crucial aspect of this analysis.

Figure D.5 compares the feature distributions during outages and non-outage conditions. No-

tably, as expected, the visualizations reveal that the distribution of features during outage con-

ditions exhibits greater uncertainty and variability compared to non-outage conditions. This

heightened variability can be attributed to the disruptive nature of outages, which introduce

irregularities and deviations from standard operational patterns. These differences underscore

the significance of comprehending varying feature distributions in different operational states,

as they necessitate tailored strategies. This further reinforces the need for a customized opti-

mization and automation process tailored to handle outage-specific scenarios.

In addition to identifying outages, data quality is rigorously maintained through the application

of two essential filters to the dataset. Firstly, the weight feature must have a value greater than

0 to ensure that only valid data related to product weight is considered. Secondly, the moisture

feature is filtered to exclude values below 1, as validated by the factory engineers. A moisture

level below 1 indicates that the product will undergo reprocessing. These filters are integral

to preserving the integrity and reliability of the dataset, ensuring that it accurately represents

the freeze-dried coffee production process. Moreovew, it is worth noting that the volume of

data retained after applying these filters aligns with the quantities observed in related studies

[12, 30]. This assurance regarding the dataset’s size reinforces its suitability for analysis. Specific

details, such as the exact number of columns, are omitted for confidentiality reasons. Appendix

F provides further insights into the rows of datasets after applying the filters.
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FEATURE CORRELATION

Assessing feature correlation is a fundamental step in comprehending the intricate relation-

ships within the dataset. Prior studies have consistently emphasized the importance of exam-

ining feature correlation before proceeding with modeling [97, 98, 100, 101]. Understanding

these dependencies is essential before embarking on any modeling process, as it aids in iden-

tifying which features may influence each other and to what extent. Additionally, strong cor-

relations between two features should be carefully considered. Strong correlations can lead to

multicollinearity, a situation where two or more features in a model are highly correlated, mak-

ing it challenging to distinguish their individual effects. In cases of multicollinearity, it becomes

difficult to assess the precise contribution of each feature to the model, potentially leading to

less reliable and interpretable results [101, 102]. Therefore, the selection of features that are

strongly correlated should be done thoughtfully to avoid multicollinearity and ensure the ro-

bustness of the subsequent modeling process.

One of the commonly employed methods for assessing feature correlation is the Pearson corre-

lation coefficient [99], which ranges from -1 to 1 and serves as a quantitative measure of these

relationships. A coefficient of -1 signifies a perfect negative correlation, indicating that as one

feature increases, the other decreases. Conversely, a coefficient of 1 denotes a perfect positive

correlation, indicating that both features tend to increase or decrease together. A coefficient of

0 implies no linear correlation, signifying that changes in one feature do not predict changes in

the other.

In the correlation matrix depicted in Figure 4.3, each cell represents the correlation between

two specific features. The color intensity in each cell conveys the strength of the correlation,

with darker blue indicating stronger positive correlations and darker red representing stronger

negative correlations. As observed in the matrix, most of the correlations tend to be close to 0,

indicating weak linear relationships between features. This observation is reassuring, as it sug-

gests that the features considered in this study exhibit relatively independent behavior. Fur-

thermore, analyzing the specific correlations between features can provide valuable insights

into potential relationships within the freeze-drying process. For instance, a negative correla-

tion between moisture levels and heating duration might suggest that longer heating times re-

sult in lower moisture content in the final product. Conversely, a positive correlation between

weight and moisture levels may indicate that heavier product batches tend to have higher mois-

ture content. These insights can guide the subsequent modeling process by helping to engineer

relevant features based on their relationships.

4.2. MINIMAL REQUIREMENTS

This section presents the functional and non-functional requirements that should be consid-

ered for the successful implementation of the proposed solution. These requirements are de-

fined based on related studies [13, 21], which implemented fuzzy-based systems similar to the

approach considered in this research. Additionally, certain requirements are derived from the



MINIMAL REQUIREMENTS 47

Figure 4.3: Feature Correlation in FD Dataset

specific needs and constraints of JDE, providing a comprehensive foundation for the develop-

ment and implementation of the proposed solution.

4.2.1. FUNCTIONAL REQUIREMENTS

The functional requirements outline the specific capabilities and features that the proposed so-

lution should possess. These requirements are essential for achieving the desired functionality

and performance of the system. The following functional requirements are identified for the

implementation of the proposed solution:

• FR1: Data Collection and Pre-processing

The solution should be capable of collecting relevant data from various sources, such

as sensors and databases. It should also include pre-processing mechanisms to clean,

transform, and format the collected data for further analysis and model training.

• FR2: Machine Learning Model Training

The solution should incorporate machine learning algorithms to train predictive mod-
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els based on the collected data. It should support various machine learning techniques

depending on the specific application requirements.

• FR3: Model Evaluation and Validation

The solution should provide mechanisms for evaluating and validating the trained mod-

els. It should include performance metrics to assess the relevant indicators of the models’

predictive capabilities.

• FR4: Real-time Optimization and Decision-making

The solution should be capable of performing real-time optimization based on the trained

models and optimization methods. It should be capable of handling large volumes of

data and processing them within acceptable time limits to provide timely insights and

recommendations.

• FR5: Interoperability and Automation: The solution should support interoperability

with existing infrastructure and systems, such as databases, APIs, or visualization tools.

It should facilitate seamless exchange of data and information to ensure smooth opera-

tion and integration with other components of the ecosystem. Additionally, the solution

should exhibit automation capabilities to reduce manual intervention, enable efficient

data processing, and streamline workflows.

4.2.2. NON-FUNCTIONAL REQUIREMENTS

In addition to the functional requirements, the non-functional requirements define the quality

attributes and constraints that the proposed solution should adhere to. These requirements

are essential for ensuring the system’s performance, reliability, and usability. The following

non-functional requirements are identified for the implementation of the proposed solution:

• NFR1: Reliability and Robustness

The solution should be reliable, ensuring consistent and accurate predictions even in the

presence of outliers or noisy data. It should also be robust, capable of handling unex-

pected scenarios or errors gracefully, and recovering from failures effectively.

• NFR2: Scalability and Replicability

The solution should be scalable, allowing for easy replication and deployment across

multiple machines in different factories or manufacturing environments.

• NFR3: Interpretability and Usability: The solution should ensure that the outputs gen-

erated by machine learning models and optimization methods are understandable to

end-users. It should provide clear explanations, visualizations, and insights that enable

effective decision-making and facilitate user acceptance and trust in the solution.

4.3. CHAPTER SUMMARY

This chapter sets the stage for the experimental setup of the research study, outlining data

sources, the proposed solution, and essential requirements. The data originates from tray,
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stack, and moisture records of FD machines and are stored in JDE’s SQL Server. With four

FD machines handling distinct products, similar features in their datasets are present. Ana-

lyzing these datasets reveals varying feature distributions among products across machines,

especially during outages. Additionally, based on the investigation of feature correlations, no

strong correlation between features are found.

Furthermore, a general overview of the proposed solution is presented, envisioning the use of

real-time predictions and adaptive optimization method to redefine freeze-dried coffee pro-

duction. This involves crafting tailored machine learning models for each FD machine, prod-

uct, and outage event, enhancing the solution’s adaptability. The chapter closes by outlining

some essential prerequisites for the solution’s success. These include functional aspects such

as data collection, model training, real-time optimization, and interoperability. Non-functional

aspects emphasize performance, reliability, scalability, and usability. These requirements lay

the foundation for the next phase: building predictive models to develop the proposed solu-

tion.



5
MACHINE LEARNING ALGORITHMS

This chapter delves into the realm of machine learning algorithms for predicting moisture lev-

els in the freeze-dried coffee production process. It starts by explaining the steps taken in data

preparation, including feature engineering and scaling techniques. The subsequent section fo-

cuses on model building, discussing the steps that was applied along the process. Evaluation

takes precedence, where model performance is assessed through optimal parameter analysis,

metrics and model comparisons across different datasets. Additionally, the chapter explores

Automated Machine Learning (AutoML) using Databricks1 and presents the outcomes of the

fine-tuned models.

5.1. DATA PREPARATION

In line with the findings from Section 4.1.2, the datasets are partitioned into subsets corre-

sponding to different FD machines, products, and outage conditions, as detailed in Appendix

F. Within each of these datasets, features that bear no meaningful contribution to the machine

learning model’s predictive ability are eliminated. Features such as stack_id and product_id,

which do not significantly inform the moisture prediction process, are removed to enhance the

model’s focus on relevant information. Furthermore, the multiplication of time and temper-

ature values from each position within the heating zone culminates in the creation of a new

feature, termed heat. These parameters jointly dictate the chemical composition of the roasted

coffee [103], thus synthesizing them into a single feature streamlines their impact. Figure 5.1

provides a visual representation of the distribution of the heat feature across various FD ma-

chines, products, and outages.

In line with the distribution patterns observed in other features, it becomes apparent that the

means and standard deviations of the heat feature vary significantly across the distinct sub-

1https://www.databricks.com/product/automl
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Figure 5.1: Heat Feature Distribution

sets. This observation further supports the justification that different products require their

customized models, considering the unique characteristics reflected in the heat feature dis-

tribution. To mitigate the risk of multicollinearity resulting from the introduction of the new

heat feature, the original time and temperature features are deliberately excluded from each

dataset. Further steps involve splitting the dataset into training and testing sets, assigning 80%

of the data for training and reserving 20% for testing. Concurrently, feature scaling is employed

using the StandardScaler2 technique to normalize the independent variables, aligning them

within a standardized range for optimal model convergence during training. With the dataset

prepared and the features engineered, it is important to reiterate that moisture serves as the

dependent variable in this study. The independent variables include weight and the heat_n

feature, the latter representing distinct stack positions within the heating zone. These features

are harnessed by the regression algorithms to predict moisture levels in freeze-dried coffee.

5.2. MODELING

A comprehensive array of regression models are developed and scrutinized to effectively pre-

dict moisture levels in freeze-dried coffee. The primary goal is to select a model that demon-

strates robust generalization capabilities while maintaining high predictive accuracy. Accord-

2https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.
html

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
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ing to the analysis of the literature review, particularly in Section 2.4.2, six distinct regression

algorithms are employed in this endeavor: Linear Regression (LinReg), Ordinary Least Square

(OLS) Regression, ElasticNet Regression, Support Vector Regression (SVR), Random Forest (RF)

Regression, and eXtreme Gradient Boosting (XGBoost) Regression. The time series and cluster-

ing methodologies, while valuable in their own right, are not aligned with the regression prob-

lem as the focus of this study. It is also pertinent to mention that FL, ANFIS, and ANN serve as

optimization methods, a facet of this research to be comprehensively addressed in Chapter 6.

The key motivation behind employing diverse regression algorithms lies in harnessing the strengths

of each approach. (OLS) serves as a fundamental baseline, providing a straightforward lin-

ear regression framework. ElasticNet Regression introduces regularization to handle multi-

collinearity, thereby preventing overfitting and enhancing the model’s stability. SVR accommo-

dates non-linear relationships that may exist between the predictors and the target variable,

making it suitable for capturing complex patterns in the data. RF Regression exploits ensemble

learning by combining the predictions of multiple decision trees, resulting in improved predic-

tive accuracy and resilience to overfitting. Furthermore, XGBoost Regression leverages gradi-

ent boosting, a technique that sequentially builds models to correct errors made by preceding

models, ultimately refining the model’s predictions.

To commence this phase, each model is instantiated with its corresponding algorithm and an

initial set of hyperparameters. The initial set of hyperparameters for each model, drawn from

insights in similar studies [30, 73], can be found in Appendix G. The models are then subjected

to a meticulous process of hyperparameter tuning through GridSearch3. In this initial phase

of modeling, certain hyperparameter values are manually determined based on domain knowl-

edge and prior research. This proactive approach is aimed at providing a starting point for

the optimization process, ensuring that the models are not trapped in suboptimal parame-

ter configurations. The GridSearch technique systematically explores a defined hyperparam-

eter space, evaluating the performance of the model for each combination of hyperparame-

ters. For instance, SVR seeks the ideal combination of kernel, C, and epsilon, while RF Regres-

sion undergoes a GridSearch to determine the optimal values for n_estimators, max_depth,

min_samples_split and max_features.

Having established the current best initial hyperparameters through an iterative process, the

models are then constructed and subjected to 5-fold cross-validation. This technique parti-

tions the dataset into five distinct subsets, with one subset serving as the validation set and the

remaining subsets as training sets for each fold. This procedure is executed iteratively to en-

sure that each subset is employed as a validation set once. The outcomes of these iterations are

aggregated to discern the model with the optimal predictive performance.

3https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.
html

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
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5.3. EVALUATION

The evaluation process involves the calculation of pertinent metrics, including the average

RMSE, MAE, and R2 across all folds. Figure 5.2 shows a scatter plot example of Product 7 in

FD machine 2, depicting the alignment between the actual moisture levels and the moisture

levels predicted by the machine learning models. Each point on the scatter plot represents a

data point from the dataset, where the x-axis denotes the actual moisture levels observed in

the freeze-dried coffee samples, and the y-axis represents the moisture levels predicted by the

machine learning models. Additionally, each fold of the 5-fold cross-validation is distinguished

by a unique color, allowing for a comparative assessment of the model’s predictions across dif-

ferent subsets of the data. The dashed identity line represents the theoretical perfect prediction

alignment, aiding in the interpretation of the scatter plot patterns.

The OLS Regression model in Figure 5.2 presents a scatter plot where the predictions tend to

diverge from the identity line. The R2 value of 0.29 implies that approximately 29% of the vari-

ance in actual moisture levels is explained by the independent variables used in the model.

However, the relatively high average RMSE of 0.37 and MAE of 0.27 indicate a considerable

level of prediction errors. The scatter pattern suggests that the model struggles to capture the

intricate variations in moisture levels, leading to significant deviations from the actual values.

Despite its simplicity and interpretability, the OLS Regression model is limited by its linear na-

ture. It assumes a linear relationship between predictors and the target variable, which might

not adequately capture the complex interactions and non-linearities present in the data. This

deficiency in capturing non-linear patterns might be contributing to its relatively high predic-

tion errors and suboptimal R2 value compared to more advanced models.

ElasticNet Regression, characterized by regularization, offers a scatter plot in Figure 5.2 that ex-

hibits a similar pattern to the OLS Regression model. The R2 value of 0.30 indicates a marginal

improvement in capturing the variance in actual moisture levels. However, the average RMSE

of 0.36 and MAE of 0.27 remain relatively high. Despite regularization, the model appears to

face challenges in achieving a tighter alignment between predicted and actual moisture levels,

suggesting that linear relationships might not adequately capture the complex patterns in the

data. ElasticNet Regression combines both Lasso and Ridge regularization, attempting to ad-

dress multicollinearity and model overfitting. While the regularization techniques provide bet-

ter generalization compared to OLS, the model might still be constrained by its linear assump-

tions. The trade-off between Lasso and Ridge regularization parameters could be hindering

its ability to accurately capture the underlying data patterns, leading to limited performance

improvements compared to other models.

The SVR model in Figure 5.2 showcases a scatter plot with data points clustered closer around

the identity line, compared to the above two regressors. The considerably higher R2 value of

0.42 signifies that the model captures a substantial portion of the variance in actual moisture

levels. The relatively low average RMSE of 0.33 and MAE of 0.23 indicate a commendable pre-

dictive performance. The scatter pattern showcases a strong alignment, suggesting that the SVR
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Figure 5.2: Scatter Plot of Actual vs Machine Learning Predicted Moisture in FD 2, Product 7

model effectively captures underlying trends and relationships in the data. SVR excels in cap-

turing complex non-linear relationships by mapping the data into higher-dimensional spaces

using kernel functions. This ability allows the model to capture intricate patterns that might

be missed by linear models. The clustering of data points close to the identity line suggests

that SVR’s flexibility in fitting non-linear relationships contributes to its higher R2 value and

superior predictive performance compared to simpler linear models.

The RF Regression model in Figure 5.2 delivers a scatter plot characterized by data points closely

aligned with the identity line. With an moderate R2 value of 0.50, the model explains a signifi-
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cant portion of the variance in actual moisture levels. The low average RMSE of 0.31 and MAE

of 0.21 underscore the model’s accurate predictive capabilities. The consistent and tight clus-

tering of data points around the identity line signifies the model’s capacity to generalize well

and capture complex moisture level patterns. RF Regression leverages ensemble learning, ag-

gregating predictions from multiple decision trees. This ensemble approach reduces overfitting

and enhances predictive performance. The model’s ability to capture complex interactions and

non-linearities, combined with its ensemble nature, contributes to its high R2 value and supe-

rior predictive accuracy compared to simpler linear models, and even SVR in this case.

XGBoost Regression in Figure 5.2 stands out with a scatter plot that reveals data points closely

aligned with the identity line. The higher R2 value of 0.54 confirms the model’s adeptness in

capturing a substantial portion of the variance in actual moisture levels compared to the other

models in this product. Moreover, the low average RMSE of 0.29 and MAE of 0.21 denote the

model’s precision in predicting moisture levels. The tight clustering of data points around the

identity line across all folds demonstrates the robustness and generalization capabilities of the

XGBoost model. XGBoost Regression utilizes gradient boosting to sequentially improve model

predictions. It corrects errors made by preceding models, allowing for iterative refinement.

This process enhances the model’s ability to capture complex relationships in the data. The

XGBoost model’s flexibility, iterative nature, and ensemble approach contribute to its high R2

value and predictive accuracy compared to other models.

The iterative evaluation process is applied to each product across all FD machines, ensuring

a comprehensive analysis of the models’ performance across different datasets. Appendix H

shows the complete machine learning model comparison for all of the different scenarios. For

every product, the model’s predictive metrics are meticulously recorded and compared, en-

abling a holistic understanding of their effectiveness. Appendix I provides the comprehensive

summary of these metrics. The performance evaluation is further distilled through visual aids

for ease of comparison and interpretation. In the appended bar chart, shown in Figure 5.3, a

condensed representation of the models’ performance is presented. The chart succinctly out-

lines the number of occasions each machine learning algorithm secures the best metrics in

terms of R2, RMSE, and MAE.

In Figure 5.3, the machine learning algorithms are listed on the x-axis, while the counts of in-

stances in which each algorithm achieved the best metrics for R2, RMSE, and MAE are pre-

sented on the y-axis. Notably, XGBoost Regression consistently shines across all three metrics,

securing the highest counts for each. It demonstrates the best performance among all the ma-

chine learning algorithms, achieving the best R2, RMSE, and MAE results in 30 (73%), 33 (80%),

and 33 (80%) instances respectively. RF Regression and SVR also exhibit some competitive per-

formances, outperforming the other linear regression algorithms across various products and

machines.

The prominence of non-linear models, such as XGBoost Regression and RF Regression, in achiev-

ing superior predictive performance indicates that the relationship between independent and
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Figure 5.3: Machine Learning Algorithm Metrics Summary

dependent variables is likely not strictly linear. The consistently strong performance of these

models implies that they are better equipped to capture the complex and non-linear inter-

actions present in the data. Their ability to handle non-linear relationships and interactions

between variables is a key advantage over linear models like OLS and ElasticNet Regression,

which assume linear relationships. The prevalence of XGBoost and RF Regression in achieving

the best metrics reinforces the notion that these models excel in capturing complex patterns

that go beyond simple linear correlations.

However, the success of non-linear models does not necessarily mean that the entire relation-

ship between predictors and the target variable is exclusively non-linear. The presence of non-

linear models that perform well highlights the complexity of the data and the potential for both

linear and non-linear relationships to coexist. The performance differences among the models

also underscore the importance of employing a diverse range of algorithms, as different models

are capable of capturing different aspects of the underlying relationships in the data. The suc-

cess of models like XGBoost Regression in accurately predicting moisture levels reinforces the

need to consider and accommodate non-linear patterns when developing predictive models

for this application.

5.4. AUTOMATED MACHINE LEARNING (AUTOML)
One of the features in Databricks is AutoML4, which is an automated machine learning solu-

tion that aims to simplify the process of developing, training, and deploying machine learning

models. It automates various tasks such as hyperparameter tuning, model selection, and de-

ployment. In this study, AutoML is employed to efficiently search for the most optimal hyper-

parameters for each of the aforementioned machine learning models. It plays a crucial role in

this research by conducting extensive experiments to find the best-performing configurations.

Additionally, AutoML offers the ability to document and reproduce experiments, facilitating the

4https://www.databricks.com/product/automl

https://www.databricks.com/product/automl
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deployment of models at a later stage.

Building on the previous section, where the XGBoost Regression emerged as the best overall

model, it is chosen as one of the models in the training framework. Figure 5.4 shows the stan-

dardized experiment setup used for training machine learning models. While different mod-

els employ the same setup, each uses a distinct training dataset. This consistent experimental

framework ensures fairness and comparability across various models, allowing accurate assess-

ment and comparison of their performance.

Figure 5.4: AutoML Experiment Setup

An AutoML experiment consists of a sequence of iterative model training runs, each systemati-

cally exploring a range of hyperparameter combinations. This iterative process continues until

it attains a state of convergence, marked by the fulfillment of predefined stopping criteria. By

monitoring the performance metrics, the AutoML platform identifies the most successful run

based on the designated evaluation criteria, which, in this study, is the RMSE. The source code

of the optimal run can then be further examined and replicated, offering a valuable insights

into the most optimal hyperparameter configurations. Table 5.1 presents the optimal hyper-

parameters of the XGBoost Regression for Product 7 in FD 2. The adoption of these optimized

hyperparameters brings about a notable enhancement in model performance, as verified by

the comprehensive metric comparisons in Table 5.2. Notably, these improvements span across
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various aspects, such as an increased R2 score from 0.54 to 0.63, a marked reduction in RMSE

from 0.29 to 0.23, and a substantial drop in MAE from 0.21 to 0.17. Further metric comparisons

scores of pre- and post-AutoML in the other FD machines can be found in Appendix J.

Table 5.1: Most optimum hyperparameters for FD 2, Product 7

Hyperparameter Explanation Value
colsample_bytree Proportion of features used in each tree 0.7163
learning_rate Step size at each iteration 0.0137
max_depth Maximum depth of the decision tree 10
min_child_weight Minimum sum of instance weight in a child 3
n_estimators Number of boosting rounds 1604
n_jobs Number of parallel threads used 100
subsample Proportion of training data used 0.6176
verbosity Level of verbosity 0
random_state Seed for random number generation 566088010

Table 5.2: Metrics Improvement Post-AutoML for FD 2, Product 7

Metrics Pre-AutoML Post-AutoML
R2 0.54 0.63
RMSE 0.29 0.23
MAE 0.21 0.17

While there are no specific studies predicting moisture levels in freeze-dried coffee, similar

studies have applied analogous methodologies, as demonstrated in [9, 34, 104]. These stud-

ies involve the prediction of previously unexplored dependent features by leveraging domain

knowledge and established machine learning algorithms. For instance, the studies have fore-

casted fishing yield [9], predicted body temperature using smart pillows [34], and developed

data prediction models for Wireless Sensor Networks [104]. However, making direct numerical

comparisons with these studies is challenging due to disparities in context, feature sets, and

various other factors.

Moreover, the feature importance in the XGBoost Regression model is verified through SHAP

plots. Figure 5.5 provides an example of a SHAP plot for the XGBoost Regression Model applied

to Product 7 in FD 2. The plot reveals that the weight and heat values of the last six positions lo-

cated in the last two heating zones have the most significant impact on the model’s predictions.

Generally, higher heat values for these last positions are associated with lower moisture levels,

while higher weight values correspond to higher moisture levels. Appendix K shows that other

products also generated similar SHAP plots, consistently highlighting the importance of the

weight and heat values of the last two heating zones in contributing to the model’s predictive

accuracy.
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Figure 5.5: SHAP Plot of FD 2, Product 7 XGBoost Regression Model

5.5. CHAPTER SUMMARY

In this chapter, the focus shifts to the exploration of various machine learning algorithms for

predicting moisture levels in freeze-dried coffee production. The journey begins by meticu-

lously preparing the data in Section 5.1, which involves feature engineering and scaling tech-

niques. The creation of the composite heat feature emerges as a pivotal step, consolidating time

and temperature variables to better capture the chemical processes within freeze-drying. The

subsequent Section 5.2 delves into the process of model building, where a comprehensive set

of regression algorithms is evaluated. This encompasses linear models such as OLS Regression

and ElasticNet Regression, as well as non-linear models including SVR, RF Regression, and XG-

Boost Regression. The observation of non-linear models outperforming linear ones highlights

the likely presence of complex, non-linear relationships between variables.
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Section 5.4 introduces the concept of AutoML, an automated machine learning solution with

the capacity to optimize hyperparameters, select models, and facilitate deployment. AutoML

emerges as a pivotal tool in refining model performance and experiment documentation. This

section showcases how AutoML synergizes with the XGBoost Regression model, enhancing its

predictive capabilities. The optimal hyperparameters derived from AutoML yield substantial

performance improvements, as demonstrated in Table 5.1 and Table 5.2. Furthermore, the val-

idation of feature importance through SHAP plots reinforces the critical role of weight and heat

features in driving predictive accuracy.



6
OPTIMIZATION METHODS

This chapter delves into approaches that enable automated temperature adjustments based on

the predicted moisture from the previous chapter. It begins with preparing the dataset, detail-

ing feature engineering steps to transform raw data into meaningful inputs. The subsequent

section explores Fuzzy Logic and delves into Adaptive Neuro-Fuzzy Inference System (ANFIS),

elucidating modeling and optimization steps. Then, the performances of both the optimiza-

tion method will be evaluated in the next section. Lastly, Sub-RQ6 will be answered, shedding a

light in automatic temperature adaptation, revealing how the developed optimization method

can be an optimal solution to the problem context of this study.

6.1. DATA PREPARATION

In the pursuit of enhancing moisture prediction accuracy, the initial steps involve data prepa-

ration tailored for the optimization methods. An additional column named prediction is intro-

duced into the existing FD dataset stored in the SQL server. This column is sourced from the

moisture prediction results obtained from the XGBoost model, as elaborated in the previous

chapter. Importantly, the introduction of this column does not interfere with the normal oper-

ation of the FD machine. This evaluation takes place without imposing any disruptions to the

ongoing freeze-drying process. Instead, it acts as a valuable reference, facilitating the compari-

son of predicted moisture levels with the predefined target moisture levels established for each

product recipe. The evaluation of optimization method effectiveness becomes feasible through

the assessment of real-world moisture data by leveraging this prediction column.

As the accumulation of data progresses, the focus shifts towards three pivotal features that un-

derpin the optimization process. Among these features, two newcomers are introduced to

strengthen the optimization methods. The first feature, denoted as prediction_error, is com-

puted by subtracting the prediction column from the target moisture values. The target mois-

ture values are established in accordance with the unique recipe of each product. The predic-

61
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tion_error thus offers insights into the disparities between predicted moisture and the prede-

fined target moisture levels. This understanding proves crucial for the temperature adjustment

process based on the prediction results. The second feature, heat_sum, is a summation of heat

values up to the last two heating zones, further added by the actual heat of the remaining po-

sitions. Together with the existing weight attribute, these features provide a robust foundation

for the optimization methods. Figure 6.1 shows the distributions of these features. Further-

more, to ensure equitable treatment of features with varying scales, StandardScaler is deployed

for feature normalization. This is done to normalize all features to a uniform scale, so that the

dominance of any single feature is averted.

Figure 6.1: Feature Distribution for the Optimization Methods

6.2. FUZZY LOGIC

6.2.1. MODELING

The first step in the application of Fuzzy Logic is to identify the input and output variables. For

the Fuzzy Logic model developed in this study, the input variables are the three aforementioned

features: fl_prediction_error, fl_heat, and fl_weight. The output variable is the temperature of

the second last heating zone, denoted by fl_temperature_n-1. Each of these variables spans a

universe of information that is divided into a number of fuzzy subsets, with each subset as-

signed a linguistic variable. Table 6.1 presents the linguistic variables assigned to each feature.

These linguistic variables were defined in collaboration with expert engineers from the factory
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to ensure their relevance and accuracy.

Table 6.1: Linguistic Variable of the Features

Feature Linguistic Variables
fl_prediction_error Very Under, Under, Accurate, Over, Very Over
fl_heat Very Low, Low, Medium, High, Very High
fl_weight Very Light, Light, Normal, Heavy, Very Heavy
fl_temperature_n Very Low, Low, Medium, High, Very High

The subsequent step involves the derivation of membership functions for each fuzzy subset.

These functions are initially derived from the empirical distribution of each feature within

the historical dataset. However, these membership functions do not rely exclusively on data-

driven methodologies. Instead, they undergo refinement and calibration in collaboration with

the engineers from the factory, whose expertise and profound domain knowledge significantly

contribute to the development of the Fuzzy Logic model. This collaboration ensures that the

membership functions are aligned with the intricate nuances of the industrial process. In the

model, Gaussian membership curves have been selected for all features. This choice is rooted

in their capacity to closely approximate the empirical distributions of the features present in

the dataset. Figure 6.2 is provided to offer a visual insight into these membership functions.

For confidentiality reasons, the real values on the x-axis have been omitted from the figure.

Figure 6.2: Membership Functions of Each Feature

After establishing the rules, the next step is the fuzzification process. This process involves

transforming the clear-cut values of the actual inputs into fuzzy values. These fuzzy values

are then matched with specific rules to acquire fuzzy output values. This entails identifying
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the output resulting from each rule through fuzzy approximation reasoning. Subsequently, the

fuzzy outputs from all rules are amalgamated. Following this step, defuzzification is performed

to convert these fuzzy values back into crisp output values. Mamdani’s centroid method is

adopted for the implementation of this process. The outcome of these processes is depicted in

Figure 6.3, where each point signifies a data point within the Fuzzy Logic system. For ease of

representation, one axis, fl_prediction_error, has been omitted from this illustration. However,

the complete Fuzzy Logic system encompasses all three features.

Figure 6.3: Fuzzy Logic Scatter Plot of FD 1, Product 2

Furthermore, the crisp outputs belonging to the same fuzzy rule are grouped and averaged.

This averaging results in a rule-surface plane for the product, as shown in Figure 6.4. Similar to

the previous figure, one axis has been omitted from this illustration for clarity. This rule-surface

plot provides a visual representation of how the Fuzzy Logic model operates and how inputs are

transformed into outputs for a specific product.

After the temperature of the second last heating zone has been optimized, a secondary phase of

Fuzzy Logic implementation emerges. This second iteration seeks to optimize the temperature

settings for the last heating zone of the FD machine. The input variables for this phase mirror

the previous model, including fl_prediction_error and fl_weight. However, a notable distinc-

tion arises in the handling of fl_heat. In this second Fuzzy Logic model, fl_heat incorporates

the newly optimized temperature value of the second last heating zone, fine-tuned through the

preceding Fuzzy Logic iteration. This introduces a feedback mechanism, where the tempera-
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Figure 6.4: Fuzzy Logic Rule-Surface Plot of FD 1, Product 2

ture of the penultimate heating zone actively influences the settings of the last heating zone,

fostering continuous optimization.

Similar to the initial Fuzzy Logic model, this second phase follows a structured approach. It

commences with the derivation of membership functions tailored to the dataset, forming the

basis for rule configuration. Fuzzy rules are then defined, outlining intricate relationships be-

tween input variables and the desired output, optimizing the last heating zone’s temperature

setting. Subsequently, the fuzzification process transforms crisp input values into fuzzy equiva-

lents. These fuzzy values inform the appropriate rules, generating fuzzy output values through

a nuanced reasoning process. Finally, defuzzification translates these fuzzy outputs into pre-

cise temperature parameters for the last heating zone, thereby optimizing the freeze-drying

process to the utmost precision.

6.2.2. EVALUATION

This section critically evaluates the Fuzzy Logic model employed in the freeze-drying process,

providing an objective assessment of its merits and limitations in the real operational shifts.

One paramount advantage to the Fuzzy Logic model is its inherent customizability. This feature

has enabled the fine-tuning of linguistic variables and membership functions through close

collaboration with domain experts. This adaptability empowers the system to seamlessly align

with the nuanced dynamics of our freeze-drying process, accommodating variations that may
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arise across different products and production runs. In an industrial context characterized by

evolving demands and diverse products, this level of flexibility proves invaluable. Furthermore,

the Fuzzy Logic system possesses the unique capability to emulate human deductive reason-

ing. Its rule-based architecture capitalizes on the collective expertise of the system engineers,

effectively encapsulating their domain knowledge and decision-making processes. This quality

imbues the system with a level of interpretability that is often elusive in more complex machine

learning models. Engineers can readily decipher the logic underpinning the temperature ad-

justments, fostering an environment of trust towards the optimization method.

However, amid its considerable strengths, the Fuzzy Logic system is not without its limitations.

A notable challenge is its sensitivity to outliers within the input data. In instances where out-

liers in heat or weight persist, the model’s ability to provide accurate temperature predictions

may diminish. Such instances are particularly conspicuous during significant outages or sit-

uations involving empty trays. Over time, there is a gradual and continuous increase in the

fl_prediction_error. Consequently, the model tends to respond by generating only the very high

temperature recommendations, which, if not rectified, can potentially lead to process ineffi-

ciencies or compromise product quality. An example of this in the implementation will be

further covered in the next chapter. This sensitivity underscores the imperative of continuous

vigilance and adaptability. Moreover, addressing this issue necessitates the periodic refinement

of Fuzzy Logic rules. As outliers or exceptional scenarios surface in the production process, the

engineering team must still intervene to adjust and fine-tune the ruleset. This iterative main-

tenance process is essential to ensure the system remains responsive to changing conditions

and aligned with the evolving intricacies of freeze-drying. Such adaptability demands a high

level of human expertise, both in understanding the freeze-drying process itself and in expertly

navigating the nuances of Fuzzy Logic modeling.

6.3. ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS)
Having explored the development and limitations of Fuzzy Logic in the preceding section, it

becomes evident that a more robust optimization method is imperative to automatically fine-

tune the temperature in the last two heating zones. As discussed in Section 2.4.4, while Fuzzy

Logic stands out for its customizability and interpretability through linguistic rules and mem-

bership functions, ANFIS represents an evolutionary step, amalgamating the strengths of Fuzzy

Logic with the adaptability inherent in neural networks. It introduces a data-driven approach to

modeling, thereby enhancing the capacity to accurately adjust temperature parameters within

the freeze-drying process. Notably, ANFIS has found applications in similar studies aimed at

forecasting and optimizing comparable dependent features in various domains, including Agri-

culture [16, 35, 37, 46, 49], Energy [29, 45], and Climate [31, 50]. In this section, the intricacies

of ANFIS will be navigated, providing a comprehensive account of its configuration, training

process, and the pivotal role it assumes in optimizing heating zone temperatures.
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6.3.1. MODELING

In the development of the ANFIS model for this study, a custom-built function was crafted to

create the architecture. While there are existing open-source ANFIS packages available, such as

anfis1 and sanfis2, the decision to create a custom function was driven by the need for enhanced

customizability and the ability to conduct rigorous testing throughout the modeling process.

The architecture of the customized ANFIS model is determined by some critical parameters:

• Number of Input Features (n): There are three input features, which directly corresponds

to the dimensionality of the training dataset. As mentioned before, these input features

consist of x1=fl_prediction_error, x2=fl_heat, and x3=fl_weight.

• Number of Fuzzy Subsets (fs): This corresponds to the linguistic variables of each fuzzy

subset, for instance "Very High", "High", "Medium", "Low", and "Very Low". Aligned with

the fuzzy subsets used for the Fuzzy Logic in the previous section, five fuzzy subsets are

used for each input feature.

• Number of Fuzzy Rules (m): To effectively capture the underlying data patterns, the num-

ber of rules, m, is set to (fs)n. This results in the construction of a total of 125 rules, ensur-

ing a thorough representation of the system’s behavior.

• Learning Rate: During the training phase, a learning rate of 0.01 is chosen deliberately.

This learning rate strikes a balance between rapid convergence and stability in the train-

ing process. A higher learning rate might lead to faster convergence but risks overshoot-

ing the optimal parameter values, causing instability and divergence. Conversely, a smaller

learning rate ensures stability but may result in slow convergence.

• Number of Epochs: The training process spans 20,000 epochs to ensure convergence.

The ANFIS model is then trained using the TensorFlow3 framework. The training process en-

compasses the following key stages:

INITIALIZATION

The model parameters, including the means (mu) and standard deviations (sigma) of Gaussian

membership functions, as well as the weights (w) for fuzzy rules, are initialized with random

values.

FORWARD PASS ( TRAINING)

The training dataset, composed of input features (X_train) and target values (y_train), is fed into

the ANFIS model. Utilizing Gaussian membership functions based on the input features and

parameters, the model follows the processes depicted in Figure 3.2 until it derives the predicted

output (Y_train) in the first epoch.

1https://pypi.org/project/anfis/
2https://pypi.org/project/sanfis/
3https://www.tensorflow.org/

https://pypi.org/project/anfis/
https://pypi.org/project/sanfis/
https://www.tensorflow.org/
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LOSS COMPUTATION ( TRAINING)

To gauge the model’s performance, the RMSE is employed as the main loss function, quantify-

ing the disparity between the predicted output (Y_train) and the actual target values (y_train).

BACKWARD PASS (BACKPROPAGATION)

The Adam optimizer is employed for minimizing the loss. This optimization phase employs

backpropagation to adjust the model’s parameters, specifically the membership function pa-

rameters (mu and sigma) and rule weights (w), to gradually enhance predictive accuracy of the

model.

TESTING

A separate test dataset (X_test) is used to evaluate the model’s generalization capabilities. The

ANFIS model computes predictions (Y_test) for this test dataset.

LOSS EVALUATION ( TESTING)

The evaluation metrics are recalculated for the test dataset, providing an assessment of the

model’s ability in generalizing to unseen data.

MODEL SAVING

Upon completion of the training, the trained ANFIS model is saved for future deployment.

The crux of this optimization process centers around minimizing a designated objective func-

tion, frequently representing a measure of prediction error. Through iterative refinement, the

ANFIS model adapts its fuzzy rules to furnish increasingly precise predictions. The outcome is

an adaptive, hybrid system that learns from historical data while retaining the ability to articu-

late its logic through human-understandable fuzzy rules.

6.4. EVALUATION

The evaluation of the ANFIS model encompasses a comprehensive assessment of its predictive

capabilities. To gauge the model’s performance, several key metrics are employed, with RMSE

serving as the primary indicator of predictive accuracy. Additionally, MAE and R2 are consid-

ered to provide a well-rounded evaluation. Similar to the machine learning evaluation, a robust

5-fold k-fold cross-validation methodology is employed to ensure the reliability of the results.

For a visual representation, Figure 6.5 illustrates two scatter plots of predicted against actual

temperature values for Product 7 in FD 2, one for the training set and another for the test set.

The averaged metrics are also displayed on these plots, providing a consolidated overview of

the model’s overall performance.

Analyzing the metrics in detail, for the training set, the model achieves an R2 coefficient of 0.72,

indicating its capacity to capture a significant portion of data variance. Additionally, the RMSE

value is 7.92, and the MAE value is 5.99, underscoring the model’s ability to make predictions

with minimal error on the training data. Moving to the test set, the model maintains its predic-

tive strength with an R2 coefficient of 0.73, demonstrating its robust generalization capabilities.



EVALUATION 69

Figure 6.5: ANFIS Scatter Plot of FD 2, Product 7

Figure 6.6: ANFIS Scatter Plot of FD 2, Outage

While the RMSE (8.04) and MAE (6.13) in the test set are slightly higher than those in the train-

ing set, they remain at reasonable levels, indicating the model’s resilience against overfitting.

Moreover, in Appendix L, a comprehensive table provides an extensive overview of the ANFIS

model’s performance across different freeze-drying scenarios. Notably, the test metrics in this

table align closely with the train metrics, affirming the model’s consistent generalization across

various scenarios. However, specific situations, such as outages, present unique challenges,

leading to less favorable metrics. Figure 6.6 shows that in outage conditions, the model ex-

hibits a lower R2 coefficient but higher RMSE and MAE values, signifying the model’s reduced

predictive accuracy and increased prediction errors. This divergence can be attributed to the

complexity and variability inherent in these conditions, with unusual data patterns and limited

historical data for training. Nevertheless, it is crucial to highlight that the model’s performance

decline in outage situations is expected due to the substantial disruptions and anomalies asso-

ciated with such scenarios. Despite these challenges, the ANFIS model maintains a reasonable

level of generalization, underscoring its versatility and robustness in real-world freeze-drying

applications.

The ANFIS model exhibits several notable strengths that contribute to its effectiveness in freeze-

drying applications, allowing for a comparison with the Fuzzy Logic model. One of its paramount



CHAPTER SUMMARY 70

advantages lies in its capacity to capture intricate, nonlinear relationships within the data. This

characteristic is particularly advantageous in scenarios where freeze-drying dynamics can be

highly complex and nonlinear, outperforming Fuzzy Logic models in handling such intricacies.

Moreover, ANFIS is adept at automatic feature selection and extraction, reducing the need for

extensive manual engineering of linguistic variables and membership functions, as is often re-

quired in Fuzzy Logic models. This automates and streamlines the model-building process,

potentially saving time and effort in model development. Furthermore, the model’s adaptabil-

ity and capacity to generalize across different freeze-drying conditions highlight its versatility

and real-world applicability, comparable to Fuzzy Logic’s customizability.

However, akin to the Fuzzy Logic model, ANFIS is not without its limitations. One notable chal-

lenge is the requirement for a substantial amount of high-quality data for training. In the case

of freeze-dried coffee production, obtaining such data can be challenging and may necessitate

significant effort and resources. This includes a considerable amount of time needed to ac-

quire the data, and potentially the addition of more machines and setups to add features or to

scale up the dataset. Additionally, ANFIS performance can be sensitive to the quality of input

features and the selection of appropriate hyperparameters, demanding meticulous data pre-

processing and tuning, similar to the need for fine-tuning Fuzzy Logic rules. Another aspect

to consider is that ANFIS, although interpretable to some extent, may not offer the same level

of transparency and interpretability as Fuzzy Logic in certain cases, as Fuzzy Logic inherently

emulates human deductive reasoning and encapsulates domain knowledge explicitly. This nu-

anced comparison illustrates that while ANFIS excels in handling complex data relationships

and automating feature engineering, Fuzzy Logic stands out in its interpretability and adapt-

ability to domain-specific expertise, albeit with sensitivity to outliers.

6.5. CHAPTER SUMMARY

This chapter explores optimization methods for automatically adjusting temperature settings

in freeze-drying processes based on predicted moisture levels. Two primary approaches are

discussed: Fuzzy Logic and ANFIS. The chapter begins with data preparation, introducing a

prediction column sourced from moisture predictions and highlighting key features. Fuzzy

Logic is then detailed, emphasizing its modeling process, customizability, and interpretabil-

ity. However, this approach is sensitive to outliers and necessitates continuous manual rule

adjustments.

The chapter further delves into ANFIS, explaining its modeling process, automatic fuzzy rules

engineering, and its unique ability to handle complex, nonlinear relationships while minimiz-

ing manual intervention. Both methods are evaluated, with the evaluation of relevant perfor-

mance metrics, highlighting ANFIS as the preferred choice due to its adaptability and efficiency

in handling intricate data dynamics. In summary, ANFIS excels in automating temperature ad-

justments in freeze-drying processes, offering a robust solution to optimize production effi-

ciency.
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IMPLEMENTATION AND AUTOMATION

This chapter provides a practical exploration of how the proposed solution transforms the

freeze-dried coffee production process at JDE. Section 7.1 delves into the implementation of

machine learning algorithms, carefully tailored to various FD machines and products. Section

7.2 discusses the seamless integration of the optimization method, highlighting its role in au-

tomating temperature adjustments within the last heating zones of the FD machine based on

moisture predictions. The overview of the entire solution framework is presented in Section 7.3.

Finally, in Section 7.4, the tangible results of the implemented solution are presented, offering

a comparative analysis against previous manual processes to showcase its real-world effective-

ness and efficiency.

7.1. DEPLOYMENT OF MACHINE LEARNING ALGORITHM

The initial phase of implementation involved deploying a machine learning algorithm, a cru-

cial step that laid the foundation for subsequent optimization methods. In commencing this

process, the machine learning model was executed in the FD machines 1 and 2. The implemen-

tation began with these machines, paving the way for the creation of the new prediction column

in the dataset and generating initial data. This prediction column played a pivotal role in facili-

tating moisture predictions, as it would be used for calculating the later prediction_error. Figure

7.1 visually depicts the interface button within the FD machine system, through which the ma-

chine learning algorithm was executed. The successful execution of the model in these initial

machines laid the groundwork for its expansion to FD machines 3 and 4, further enhancing the

automation of the freeze-drying process.

Figure 7.2 provides a visual representation of the machine learning algorithm’s implementation

in FD machine 2. Notably, this phase of implementation focused solely on predicting moisture

levels, with no temperature adjustments made at this stage. The chart illustrates the model’s

predictions alongside actual moisture values and target moisture levels. Upon close examina-
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Figure 7.1: Machine Learning Enabler Button

tion of the results, it becomes evident that the machine learning model performed well in pre-

dicting moisture levels. The predicted values closely align with the actual moisture measure-

ments, with deviations well within acceptable margins. This outcome underscores the model’s

proficiency in capturing the intricate dynamics of moisture within the freeze-drying process,

setting a solid precedent for its role in subsequent optimization phases.

Figure 7.2: Implementation of the Machine Learning Algorithm

7.2. DEPLOYMENT OF OPTIMIZATION METHOD

Following the successful implementation and operation of the machine learning algorithm,

the next crucial phase in the enhancement of the freeze-dried coffee production process is the

deployment of the optimization method. As previously mentioned, the machine learning al-

gorithm precedes the optimization method and plays a pivotal role in generating the requisite

dataset. After the prediction column accumulates sufficient data through the machine learn-

ing algorithm’s predictions, this data undergoes the data preparation process, serving as the

foundation for the optimization method. The optimization method is strategically designed to

harness this enriched dataset, enabling it to make data-driven temperature adjustments in the

later stages of the freeze-drying process.

Figure 7.3 offers a visual representation of the machine learning algorithm and optimization

method’s deployment within FD machine 2. The operation of the machine learning algorithm

initiates before the freeze-dried coffee stack enters the last two heating zones, specifically at

stack position n-6. The machine system interface located in the top right corner of Figure

7.3 displays essential parameters that provide insight into the optimization process. Notably,

act_temp_n showcases the current actual temperature within the heating zones, while sp_temp_n_opt
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Figure 7.3: Implementation of the Optimization Method

reveals the optimum temperature determined by the optimization method. As the stack pro-

gresses through the heating zones, the system adapts, regulating the temperature to align with

the calculated optimum temperature, thereby optimizing the moisture content.

The results of this optimization become evident once the stack surpasses position n. The ac-

companying line chart in Figure 7.2 illustrates that the optimization method effectively brings

the moisture content closer to the predefined target. When the predicted moisture significantly

deviates from the target, the optimization method orchestrates adjustments to the actual mois-

ture, steering it towards proximity with the target. The provided reference numbers corroborate

this process, demonstrating how the optimization method diligently fine-tunes the moisture

content to achieve consistency, a critical factor in freeze-dried coffee production’s quality and

efficiency enhancement.

7.3. SOLUTION OVERVIEW

The proposed solution aims to revolutionize the freeze-dried coffee production process by in-

tegrating advanced data-driven techniques to enhance efficiency and quality control. As il-

lustrated in Figure 7.4, the framework of the solution encompasses multiple stages, each con-

tributing to the optimization of the production process. The process begins with the acquisition

and storage of data from the FD machine. As the stack of trays reaches the few last position in

the FD machine’s heating zone, a machine learning model is employed to predict the moisture

content of that stack. This prediction is based on calculated features derived from the accumu-

lated data, capturing critical nuances that influence the moisture outcome. Notably, distinct

machine learning models are tailored for specific FD machines, products, and even instances

of outages, acknowledging the aforementioned unique characteristics of each product.
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Upon obtaining the moisture prediction, the solution introduces a dynamic adjustment mech-

anism that holds the potential to reshape the traditional production paradigm. The machine

learning model triggers automatic temperature adjustments in the last remaining heating zones

of the FD machine by means of ANFIS. This optimization method is meticulously calibrated to

ensure that the desired target moisture is achieved consistently across batches. Subsequently,

the actual moisture content is measured using a moisture meter and compared against the pre-

dictive output of the machine learning model. Any disparities between the prediction and ac-

tual outcome are recorded and further assimilated into a feedback loop that continually refines

and enhances the predictive capabilities of the machine learning and optimization method

model.

Figure 7.4: Framework of the Proposed Solution

7.4. IMPLEMENTATION RESULT OF THE SOLUTION

Within the scope of this section, a thorough examination of the results achieved during the

practical implementation of the proposed solution is presented. Figure 7.5, which illustrates

the moisture distribution in each FD machine under non-outage conditions, serves as a valu-

able reference point for the analysis.

The results indicate a substantial improvement in the performance of the current solution. No-

tably, the machine learning model’s mean moisture content consistently approaches the target

value, denoted by the "X" mark on the x-axis, compared to the previous manual approach.

This suggests a remarkable level of precision and consistency in the production process. Fur-

thermore, a notable decrease in the standard deviation of moisture levels in the current out-

come compared to the previous manual process underscores the superior control and mini-

mized variability attained through the automated solution. Specifically, the automated pro-

cess yielded moisture levels that were 72% closer to the target, accompanied by a notable 29%

reduction in the standard deviation when compared to the manual process. These outcomes

are particularly relevant in the context of freeze-dried coffee production, where product quality
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Figure 7.5: Implementation Result in Every FD Machine (Non-Outage)

and consistency are of utmost importance. Furthermore, the analysis extends to the robustness

of the solution, as evidenced in Appendix M, which presents results obtained during outage sit-

uations. This supplementary data reaffirms the solution’s effectiveness, even when facing op-

erational challenges. It is noteworthy that the solution continues to perform admirably during

outages, demonstrating its potential to revolutionize freeze-dried coffee production at JDE.

In addition to precision and robustness, the solution showcases its ability to seamlessly execute

end-to-end processes within the allocated time limits at each stack along the production line.

This means that from data gathering and pre-processing to machine learning-based moisture

level predictions and the subsequent optimization method to adjust temperature, every step

operates efficiently in synchronization with the production line’s movement. Importantly, all

of these processes are completed before a stack progresses to the next heating zone. This time-

liness is vital for enabling real-time decision-making and process optimization, allowing for

swift adjustments in response to dynamic production conditions.
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Figure 7.6: Implementation Percentage of the Solution in the FD Machines over Time

The line graph in Figure 7.6 illustrates the utilization percentage of the solution across all FD

machines over time. The implementation was divided in three phases, where it was initially

deployed in FD 1 and 2 in the first phase. In the second phase, the solution’s usage steadily in-

creased, eventually encompassing FD 3 and 4. In the second phase, some questions were also

asked to the expert regarding the fluctuation of the implementation in each of the machine.

Notably, the periods of reduced usage are typically associated with maintenance activities or

ad-hoc tests in the machines. During these events, the end-to-end processes in the machines

require manual control and constant monitoring, hence turning off the solution for the pe-

riod. Additionally, there was a period of improvement in FD 3 that coincided with reduced

solution usage, although the specific details of this experiment could not be directly disclosed.

The latter portion of the graph indicates that the solution has been consistently implemented

in all FD machines during the third phase. Although the graph does not directly convey ex-

pert’s opinions, it indirectly emphasizes the solution’s pivotal role in production, highlighting

its alignment with routine activities. Furthermore, the engineer’s productivity increment re-

sulting from the FD machines can be quantified by examining the average percentage of its

implementation over time. During the first phase, there is a 14% increase in productivity. The

second phase demonstrates a remarkable 61% boost, and during the third phase, this figure

further escalates to an impressive 83%. These findings underscore the indirect positive impact

of the solution on the engineer’s productivity, as they can spend their valuable time in doing

other improvements.

The insights and methods discussed in this study hold promise for wider use. Although the fo-

cus has been on improving freeze-dried coffee production at JDE, but the developed framework

and techniques can serve as a valuable starting point for similar projects in other companies

and industries. The method, combining machine learning and optimization, can be applied

in various scenarios where it’s necessary to automatically adjust certain aspects to achieve de-

sired results based on predictions. The solution’s resilience, especially its ability to perform well

under tough conditions like outages, demonstrates its adaptability to different manufacturing
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settings where quality control and process improvement are crucial. The core idea of using

data-driven techniques for better processes and quality control may be applicable to many

situations, such as predicting product characteristics, optimizing production processes, or en-

hancing quality assurance in different industries. However, it is important to note that each

case and industry may require some customization. While the basic principles remain consis-

tent, the way to implement and fine-tune models and optimization methods will vary depend-

ing on the specific situation. So, it is essential to tailor the approach to get the best results, even

though the method itself has proven effective in this study.

7.5. CHAPTER SUMMARY

This chapter presents the practical implementation of the proposed solution for enhancing

freeze-dried coffee production at JDE. The broader solution framework integrates data-driven

techniques, from data acquisition, machine learning prediction, to automatic temperature ad-

justments, enhancing production efficiency and quality control. In addition to presenting the

framework, this chapter showcases the tangible results of the implemented solution. Moisture

distribution analysis under non-outage conditions demonstrates the solution’s precision and

consistency in approaching the target moisture content, accompanied by a reduced standard

deviation, highlighting enhanced control and minimized variability. Collectively, this section

underscores the potential of the automated solution to revolutionize freeze-dried coffee pro-

duction at JDE, offering improved efficiency and heightened product quality consistency.



8
CONCLUSION

This concluding chapter encapsulates the essence of the research journey, concluding the pro-

cesses and key findings discovered throughout the study. Section 8.1 provides a comprehensive

overview of the study’s main conclusions. Subsequently, in Section 8.2, the research addresses

sub-research questions 5, 6, and 7, respectively. Furthermore, this chapter delves into the aca-

demic and practical contributions of this thesis in Section 8.3, emphasizing the research’s rele-

vance and impact on both academic knowledge and real-world applications. Lastly, in Section

8.4, the study acknowledges its limitations and outlines promising avenues for future research

in the domain of this study.

8.1. CONCLUSION

This thesis embarked on a mission to develop an optimized and automated approach for the

heating process of freeze-dried coffee production at JDE. The primary aim was to diminish

the variability in target moisture levels, ultimately leading to a considerable enhancement in

product quality through consistent moisture levels, and a substantial boost in efficiency by re-

placing manual processes with automated schemes. The research journey commenced with

an exhaustive examination of the current state of knowledge, spanning predictive techniques,

optimization methods, and the implementation of process automation across diverse fields.

Through a meticulous analysis of academic articles and research papers, this thesis identified

critical gaps and research opportunities in the realm of machine learning, laying the ground-

work for the research endeavors.

The methodology was firmly rooted in the CRISP-DM framework, providing a robust structure

for the systematic exploration of machine learning algorithms, optimization techniques, and

automation approaches. A spectrum of machine learning algorithms was carefully evaluated,

drawing inspiration from applications in related fields. The selection of the most adept algo-

rithm, guided by predefined metrics, formed the cornerstone of the approach. Subsequently,
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optimization methods capable of dynamically adjusting temperature settings based on mois-

ture predictions were seamlessly integrated, ushering in a new era of precision in freeze-dried

coffee production.

The culmination of this research journey witnessed the proposal of a groundbreaking solution

— a synergy of machine learning and optimization methods. This solution was validated and

implemented within the real-world freeze-dried production system at JDE. Through meticu-

lous implementation, the power of data-driven automation was harnessed to achieve the re-

markable goal of consistency in moisture levels, significantly elevating product quality. This

journey underscores the significant potential of data-driven automation in industrial settings,

offering a guiding light towards improved productivity and product quality in freeze-dried cof-

fee production and beyond.

8.2. ANSWERS TO RESEARCH QUESTIONS

8.2.1. SUB-RQ5: MACHINE LEARNING ALGORITHM TO PREDICT THE MOISTURE OF FREEZE-

DRIED COFFEE

The ultimate goal in finding the optimal machine learning algorithm to predict moisture lev-

els in freeze-dried coffee production involved the collaboration of advanced algorithms, data

complexity, and model performance. The comprehensive evaluation of various regression al-

gorithms highlights the superiority of the XGBoost Regression model in achieving the most ac-

curate and reliable predictions. This conclusion is substantiated by the model’s remarkable

performance across key metrics such as R2, RMSE, and MAE. XGBoost Regression consistently

achieved the highest counts for the best metrics across different products and FD machines, se-

curing the top position in terms of predictive accuracy. This model’s ability to capture complex

interactions and non-linear relationships within the data sets it apart from other models.

The prevalence of non-linear models, such as XGBoost Regression, highlights the likely pres-

ence of non-linear relationships between predictors and the target variable, indicating the in-

adequacy of purely linear models in capturing the intricate patterns in the data. The robust

performance of XGBoost Regression reinforces the necessity of incorporating non-linear algo-

rithms to accurately predict moisture levels in freeze-dried coffee production. By leveraging

ensemble learning and gradient boosting, XGBoost Regression excels in capturing the nuanced

relationships and interactions that contribute to the variability in moisture levels. This pre-

dictive accuracy can significantly enhance the quality and consistency of freeze-dried coffee

products, ultimately benefiting the consistency level in the production process.

8.2.2. SUB-RQ6: OPTIMIZATION METHOD TO AUTOMATICALLY ADJUST THE TEMPERA-

TURE

In identifying the most suitable approach for automatically adjusting temperature settings in

heating zones based on predicted moisture levels in freeze-dried coffee production, the Adap-

tive Neuro-Fuzzy Inference System (ANFIS) method stands out as the favored choice. AN-
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FIS offers a unique blend of capabilities that makes it exceptionally well-suited for this task.

Freeze-drying processes are often characterized by complex and nonlinear relationships be-

tween variables. ANFIS excels in handling these intricacies through its data-driven approach.

It has the ability to effectively model the nonlinear dynamics of moisture prediction and sub-

sequent temperature adjustments. This is particularly crucial in a freeze-drying context, where

precise control over temperature is paramount for product quality.

One of the significant strengths of ANFIS is its ability to continuously optimize the weights

associated with the rules derived from membership functions. Through epoch-based itera-

tive forward and backward passes, ANFIS dynamically adjusts these rule weights to refine its

predictive accuracy. This process allows ANFIS to fine-tune its decision-making mechanism,

continuously learning from the data to provide increasingly precise temperature recommenda-

tions. Additionally, it reduces the need for extensive manual work in crafting linguistic variables

and membership functions, streamlining the model-building process. This not only potentially

saves time and effort but also reduces the risk of human error in feature engineering. Addition-

ally, ANFIS exhibits remarkable versatility and generalization capabilities across diverse freeze-

drying conditions. Real-world production scenarios can vary widely, and ANFIS’s adaptability

ensures consistent and efficient temperature adjustments. It can effectively handle variations

in process dynamics, making it a reliable choice for optimizing temperature settings in the face

of changing conditions.

While Fuzzy Logic has its strengths, such as customizability and interpretability, ANFIS’s unique

ability to handle complex, nonlinear relationships in data and its continuous optimization of

rule weights derived from membership functions make it the preferred method for automati-

cally adapting temperature settings in freeze-drying processes. ANFIS not only enhances pro-

duction efficiency by reducing manual workloads but also ensures precise temperature control

amidst intricate process dynamics. Unlike Fuzzy Logic, which often requires manual crafting

of linguistic variables and membership functions, ANFIS automates much of the feature engi-

neering process. This automation streamlines model development and reduces the potential

for human errors. In essence, ANFIS aligns perfectly with the goal of optimizing temperature

settings based on predicted moisture levels while minimizing operational complexities and el-

evating production efficiency.

8.2.3. SUB-RQ7: COMPARISON OF THE OPTIMIZED AND AUTOMATED HEATING PRO-

CESS WITH THE MANUAL PROCESS

The optimized and automated heating process, as implemented in this study, exhibits signifi-

cant advantages when compared to the current manual processes. Through the deployment of

machine learning algorithms and subsequent optimization methods, the automated solution

has demonstrated superior performance in controlling moisture levels during the freeze-drying

process. The results reveal that the mean moisture content closely aligns with the target value,

indicative of a higher degree of precision and consistency in production. Moreover, a substan-

tial reduction in the standard deviation of moisture levels underscores the enhanced control
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and reduced variability achieved by the automated solution.

Additionally, the analysis extends to outage situations, where the automated solution contin-

ues to perform admirably, reaffirming its robustness and reliability even when facing opera-

tional challenges. These findings underscore the potential of the automated solution to revo-

lutionize freeze-dried coffee production at JDE, offering the promise of improved efficiency in

production processes and heightened consistency in product quality. This comprehensive per-

formance evaluation provides concrete evidence of the significant benefits and advancements

brought about by the implementation of the proposed solution, marking a pivotal step towards

the future of freeze-dried coffee production.

8.3. STUDY CONTRIBUTIONS

8.3.1. ACADEMIC CONTRIBUTION

This study makes several notable academic contributions. Firstly, it conducts an extensive SLR

to comprehensively analyze the existing body of knowledge related to predictive techniques,

optimization methods, and process automation across various fields. In doing so, it identi-

fies the research gaps, particularly within the Manufacturing domain, which appears relatively

underexplored. Significantly, within the broader engineering domain closely associated with

manufacturing, only a few studies have integrated both machine learning algorithms and op-

timization methods. Moreover, none of these existing studies have combined all three crucial

components of the proposed solutions in this thesis: machine learning algorithms, optimiza-

tion methods, and implementation & process automation, in the domain of freeze-dried coffee

production.

This research addresses this gap by exploring, evaluating, and selecting the most suitable ma-

chine learning algorithms for predicting moisture levels in freeze-dried coffee production. The

rigorous assessment of these algorithms according to predefined metrics adds to the existing

knowledge base in predictive modeling. Additionally, the study investigates optimization meth-

ods tailored for temperature adjustments based on moisture predictions, thereby enhancing

the understanding of optimization techniques in industrial applications. These contributions

aim to advance the academic discourse surrounding data-driven automation in manufactur-

ing, potentially leading to the development of decision support systems that optimize manu-

facturing operations and enhance decision-making processes.

8.3.2. PRACTICAL CONTRIBUTION

In practical terms, this research offers substantial contributions to the field of freeze-dried cof-

fee production at JDE. The developed solution, encompassing machine learning algorithms

and optimization methods, has been implemented and validated within the real production

system. This practical application showcases the feasibility and effectiveness of the proposed

approach in a real-world industrial setting, providing actionable insights for process improve-

ment. Moreover, the implementation of data-driven automation contributes to enhanced ef-
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ficiency and consistency in freeze-dried coffee production. This transition from manual pro-

cesses to automated schemes is expected to yield tangible benefits for JDE, including reduced

variability in moisture levels, improved product quality, and it supports increased productivity

of the engineers. In addition to validating the feasibility of the proposed approach, these prac-

tical contributions also hold the potential to drive positive transformations within the manu-

facturing industry, particularly in coffee production.

8.4. STUDY LIMITATIONS AND DIRECTION FOR FUTURE RESEARCH

While this research has made significant strides in advancing data-driven automation within

freeze-dried coffee production, certain limitations should be acknowledged. First, this research

primarily operates within the domain of freeze-dried coffee production at JDE. Although the

findings are promising, the generalizability of the proposed solution to other manufacturing

processes or industries remains untested. It is essential to recognize that different production

systems may exhibit unique complexities that necessitate tailored solutions. The optimiza-

tion methods employed in this study can be further fine-tuned and customized to suit other

specific production scenarios, for instance predicting defects or quality issues in automotive

parts production, thus optimizing the manufacturing process in engineering field, or forecast-

ing variations in drug formulations and optimizing the pharmaceutical production to account

for these variations. Comparative studies in various industries could elucidate the transfer-

ability and adaptability of the approach. Future research could also delve into advanced op-

timization techniques or explore the potential of reinforcement learning for dynamic process

control, as several papers has proposed new techniques such as Deep Q-Networks, Proximal

Policy Optimization, and Actor-Critic Methods [105–107].

Second, the focus of this study primarily centered on moisture prediction and optimization of

heating processes. Other critical aspects of the production pipeline, such as quality control at

subsequent stages or environmental sustainability, were not explored. One avenue for further

investigation is the integration of additional data sources, such as environmental conditions or

equipment health parameters, into the predictive and control frameworks. This expansion of

data inputs could enhance the accuracy and robustness of the automation system. Addition-

ally, exploring advanced quality control mechanisms within the production process, possibly

utilizing computer vision or sensor technologies, could be a valuable area of research.

Moreover, time constraints have played a role in the validation process. The implementation

and validation of the proposed solution occurred over a relatively limited time frame. While the

results are promising, an extended validation period would provide a more robust assessment

of the solution’s performance, especially in capturing long-term variations and production dy-

namics. Therefore, future research should consider longer-term validation studies to further

enhance the solution’s reliability and effectiveness in real-world industrial scenarios.
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Figure A.1: Freeze-Dried Coffee Production Process (Illustration by [3])
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Table B.1: Qualitative Analysis of the Literature

Literature Main Purpose Main Findings/Results Other Remarks
M. Abbaspour-Gilandeh and
Y. Abbaspour-Gilandeh (2019)
[16]

"The aim of this study was predicting arable
soils cone index values by effective parameters
on the soil cone index, including bulk density,
soil moisture content and soil electrical conduc-
tivity by using Fuzzy and neuro-fuzzy systems."

In comparison with regression models, ANFIS
model has high accuracy and can be used to es-
timate the soil cone index in agricultural land.

−

S. A. Abdul-Wahab, A. S. M.
Omer, K. Yetilmezsoy and M.
Bahramian (2020) [17]

"A prognostic approach based on a MISO (mul-
tiple inputs and single output) fuzzy logic model
was introduced to estimate the pressure differ-
ence across a gas turbine (GT) filter house in a
heavy-duty power generation system."

The results revealed that the proposed fuzzy
logic model produced very small deviations and
showed a superior predictive performance than
the conventional multiple regression methodol-
ogy.

Considering the usefulness of an artificial in-
telligence–based modelling scheme, a MIMO
(multiple inputs and single output) fuzzy logic-
based model (introduction of additional model
components and specification of new member-
ship functions with different levels) will be use-
ful to improve the proposed strategy on the GT
filter houses. It is also needed to provide addi-
tional experimental data from the literature for
the validity of the implemented deep learning
strategy.

F. Al-Shanableh, M. Bilin, A.
Evcil and M. A. Savaş (2020)
[18]

"a fuzzy logic (FL) model and a multilinear re-
gression model (MLR) for the prediction of jo-
joba oil yield was developed for the cases where
the optimum conditions could not be attained
easily in practice."

It was noted that the proposed FL model can
provide high accuracy and reliability for predict-
ing the oil yield as compared to the linear math-
ematical MLR models.

−

K. N. Amrutha, Y. K. Bharath
and J. Jayanthi (2019) [19]

"In this paper, a model has been proposed to
obtain the performance deterioration of Turbo-
prop engine."

Both ANN and Fuzzy systems are good predic-
tion models and by comparing the error perfor-
mance values, it can be seen that ANN model
gives slightly better performance.

,−

K. Boma and S. Palizdar (2016)
[20]

"In this study, linear prediction methods and
neural networks and fuzzy logic have been stud-
ied and emulated. An optimized fuzzy-wavelet
prediction method is proposed to predict the
price of electricity."

The use of fuzzy logic-wavelet forecasting
method resulted in an improved performance,
compared with that of fuzzy logic forecasting
method. Also choosing two different types of
filters; low-pass and high-pass, in the wavelet
transform, increased the efficiency of the pre-
dictor in the fuzzy prediction method.

Fuzzy-wavelet method has a higher computa-
tional volume due to the use of wavelet trans-
form as well as double use of fuzzy prediction.

K. T. T. Bui, D. Tien Bui, J. Zou,
C. Van Doan and I. Revhaug
(2018) [21]

"This paper proposes a novel hybrid artificial
intelligent approach, namely swarm optimized
neural fuzzy inference system (SONFIS), for
modeling and forecasting of the horizontal dis-
placement of hydropower dams."

High performance of the SONFIS model, both
on the training and validation datasets, implies
that the SONFIS has successfully modeled a typ-
ical complex nonlinear problem of hydropower
dam displacement. Overall, the SONFIS model
outperforms the five benchmark methods.

The high performance of the proposed method
indicates that the selection, processing, and
coding of the input variables must be carried
out accordingly.
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A. Choudhary, D. Pandey and
S. Bhardwaj (2020) [22]

"This paper is framed to briefly provide the
idea behind different solar radiation estima-
tion models with the methodology used. Soft
computing-based models are mainly analyzed
here."

The developed ANN-based Global Solar Irradi-
ance Estimation Model has better results for
training, testing, validation, and all compared to
the current solar radiation estimation models.

This model may be used for the estimation of
Global Solar Irradiance for other stations also.

M. El Midaoui, M. Qbadou and
K. Mansouri (2022) [23]

"The paper presents routing and scheduling
system based on artificial intelligence to deliver
blood from the blood-banks to hospitals based
on single blood bank and multiple blood banks
with respect of the vehicle capacity used to de-
liver the blood and creating the shortest path.
The next section consists on solution for pre-
dicting the blood needs for each hospital based
on transfusion history using machine learning
and fuzzy logic."

The adoption of fuzzification data to get a clear
idea about demand with linguistic values, train
a model by using transfer learning to predict a
future need in blood components by using his-
torical data.

The combination of fuzzy logic and machine
learning besides genetic algorithms is rarely
used in the resolution of similar matters. Also,
even if this solution appears to be specific to the
health-care and blood delivery sector, this work
can concern further fields like agricultural and
food-processing. It should be noticed that the
model can be improved by considering apply-
ing parallelization for GA and taking into con-
sideration reverse logistics to recover the un-
used/expired blood.

G. Ellina, G. Papaschinopoulos
and B. K. Papadopoulos (2020)
[24]

"Our purpose is to investigate some of the
factors responsible for eutrophication (water
temperature, nitrates, total phosphorus, Sec-
chi depth, chlorophyll-a) using fuzzy logic. In
this paper, we propose a method of evaluating
fuzzy implications constructing triangular fuzzy
numbers for all of the studied factors coming
from statistical data."

Fuzzy logic can be used as a powerful tool in
categorizing environmental status and describ-
ing multifaceted changes. The main advantage
of this tool is the ability to unite many kinds of
perceptions by offering stability between social,
economic and biological impacts.

−

M. Fauziyah, S. Adhisuwignjo,
M. Rifai and D. Dewatama
(2018) [25]

"The aim of this research is to control the tem-
perature of roasting process to be stable. This
paper presents the development of the coffee
roaster machine where the temperature is con-
trolled using fuzzy logic control algorithm."

The Error Steady State gained is 0.52% of the re-
sults and 1.85% of the results using fuzzy logic
controller does not experience an error that is
too large so that the temperature can be prop-
erly maintained.

PLC (Programmable Logic Controller) and HMI
(Human Machine Interaction) were imple-
mented.

C. G. Gay and B. O. Bastien
(2014) [26]

"In this study we approach the problem of cor-
relating global mean temperature with Carbon
emissions using statistical analysis using fuzzy
logic analysis and inference systems, which is a
pioneer method in climate modelling."

The fuzzy model created can relate the change
in mean global temperature with the carbon
emissions. Thanks to it fuzziness allow us to in-
volve variables with high uncertainty, such as
measurements of annually emitted Carbon or
Atmospheric CO2 concentration.

This fuzzy model will be very useful to project
future temperatures based on possible values of
emissions, due to the uncertainty nature of the
problem.
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M. K. Goyal, B. Bharti, J. Quilty,
J. Adamowski and A. Pandey
(2014) [27]

"This paper investigates the abilities of Arti-
ficial Neural Networks (ANN), Least Squares
– Support Vector Regression (LS-SVR), Fuzzy
Logic, and Adaptive Neuro-Fuzzy Inference Sys-
tem (ANFIS) techniques to improve the accu-
racy of daily pan evaporation estimation in sub-
tropical climates."

The Fuzzy Logic and LS-SVR approaches can
be employed successfully in modeling the daily
evaporation process from the available climatic
data. In addition, results showed that the ma-
chine learning models outperform the tradi-
tional HGS and SS empirical methods.

Using only the minimum and maximum tem-
peratures as inputs gives poor estimates for
all machine learning models. Future research
will explore multiple watersheds, include ad-
ditional new state-of-the-art machine learning
methods, employ wavelets as a pre-processing
method, create ensembles of models, and will
also look to develop various forms of uncer-
tainty assessment for model predictions.

M. Gustin, R. S. McLeod and K.
J. Lomas (2019) [28]

"A novel application of semi-parametric Gener-
alized Additive Models (GAMs) was developed
to forecast elevated indoor temperatures."

More complex non-linear models do not neces-
sarily produce better forecasts and that particu-
lar attention should be given to the use of GAMs
when predicting out-of-range.

There will always be limited data at the lower
and upper ranges of the independent variables,
which engenders increasing uncertainty when
forecasting beyond the ranges for which the
models were originally trained, with errors that
are likely to amplify at longer forecasting hori-
zons.

Harsawardana, B. Samodro,
B. Mahesworo, T. Suparyanto,
S. Atmaja and B. Pardamean
(2020) [11]

"In this study, we proposed a temperature
control system based on fuzzy logic for cof-
fee roaster machine. The system controls the
temperature in accordance with the demanded
roasting level."

A prototype was developed which has thermal
camera was mounted inside the roasting cham-
ber to monitor the coffee beans temperature
uniformity. Inside the chamber, there is a stir-
ring mechanism with Pulse Width Modulation
(PWM) motor to stir the coffee beans.

There are no discussions on the real results from
the prototype.

A. M. Imammuddien, S.
Wirayoga and M. D. Muliono
(2022) [12]

"This study aims to make a detection tool for
roasting maturity levels in coffee beans by uti-
lizing the frequency value obtained from the RC
oscillator. To increase the accuracy of the clas-
sification, a color sensor is added to determine
the color intensity of the coffee beans. The ca-
pacitance value and the value of the color sen-
sor from each roasting classification are entered
into fuzzy logic and are expected to be able to
classify the type of roasting of coffee beans ac-
curately."

The results of testing the system with Soegeno’s
fuzzy logic showed the appropriate results be-
tween the input values from the color sensor
and the oscillator circuit to the results of the
classification of the maturity level of dampit and
kawi coffee beans.

In the defuzzification test, it produced fuzzy
output values from several frequency input val-
ues and color sensors based on the rules on the
fuzzy inference system. Mapping was done in
the defuzzification process by grouping fuzzy
sets into firm sets.

Y. E. Isikdemir, G. Erturk, H.
Ates and M. O. Tas (2022) [13]

"In this study, a fuzzy inference and machine
learning based HVAC control system is pro-
posed that is aware of the condition change and
automatically adjusts the optimal conditions for
the building occupants."

Among the multiple machine learning algo-
rithms, Random Forest yields better perfor-
mance to estimate air quality index. A four-
input, one-output with 81 rules FIS is utilized
for temperature control. According to the sim-
ulation result, there is no overshoot is observed
while the temperature reaches a steady state.

Future work involves build web-based user in-
terface and backend server to communicate the
sensors via MQTT protocols, where the pro-
posed algorithm can be tracked and configured
remotely.
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A. Khosravi, R. N. N. Koury,
L. Machado and J. J. G. Pabon
(2018) [29]

"The main contribution of this study is to de-
veloped machine learning algorithms in order
to predict the hourly solar radiation in two sep-
arate networks. For the first time, in the cur-
rent study, three types of ANFIS model are de-
veloped to predict the time-series hourly solar
radiation."

For this model, MFs were determined as
gaussmf for the inputs and output and the
Mamdani model as FIS structure. The number
of MFs are obtained through a trial and error
process. The best performance was achieved by
considering the four MFs for each input and tar-
get. The SVR model and MLFFNN have the max-
imum efficiency for forecasting the solar radia-
tion.

−

J. Y. Kim (2022) [30] "This study introduces the machine learning
model, random forest, to predict coffee quality."

The random forest model achieved 86.6% and
84.1% accuracy on the train set and the test set,
respectively. It also showed an F1 score of 61.7%
on the test set. Category two defects, growing al-
titude, and bag weight were found to be impor-
tant variables in predicting the quality of coffee.

−

C. E. Lachouri, K. Mansouri
and M. M. Lafifi (2022) [31]

"This paper proposes an adaptive system based
on artificial neural networks technique embed-
ded with fuzzy logic technique calls Adaptive
Neuro Fuzzy Inference System (ANFIS) to pre-
dict air humidity, air temperature, internal ra-
diation, and CO2 concentration while the seeds
grow, in order to produce favorable greenhouse
climate conditions."

ANFIS is an accurate and efficient prediction
method for greenhouse climates. This system
can yield accuracy as high as 98% in all of the
four components when trained with the least
square algorithm and back propagation.

Chances of error in predicting internal climate
values in combination with gaussian and sig-
moidal membership function is just 2%. Accu-
racy with the adoption of the triangular mem-
bership function would be 92% with an average
error chance of 8%.

T. L. Lam (2021) [32] "In order to provide a low-cost and accurate
temperature control solution for reflow systems,
a cost-effective non-contact temperature ap-
proximation and control system is proposed in
this article. The proposed temperature approx-
imation is achieved based on a machine learn-
ing method with multiple-input single-output
strategies to get a relationship between the tem-
peratures near the PCBs and the onboard tem-
perature."

Compared with the result of the PID con-
troller, the FL controller’s overshoot is improved
from 3◦C to 1◦C, and its steady-state error is
improved from ±1 ◦C to ±0.5◦C. Regression
method is combined with RNN and FL to super-
vise the onboard temperatures in real-time, en-
suring a good quality of productions.

The shortcoming of using the proposed method
is that it may need to conduct data collection
and regression for every new product to keep
the high-temperature approximation accuracy.

C. K. Leung, J. D. Elias, S. M.
Minuk, A. R. R. d. Jesus and A.
Cuzzocrea (2020) [33]

"We design and develop an innovative fuzzy
logic-based machine learning algorithm for
supporting predictive analytics on big trans-
portation data to help detect and predict the ex-
pected delay of streetcars (aka trolley cars) in
the Canadian city of Toronto."

Using 5-fold cross validation (in which each fold
used a 75%-25% split for training/test data), the
ensemble of 40 decision trees in the RF regres-
sion led to a 70% reduction in the prediction
error when compared with the mean rule algo-
rithm.

The algorithm augments transit data with
weather information, pre-processes them with
fuzzy-logic based categorization, visualizes and
analyzes the augmented data and their charac-
teristics, mines frequent patterns and interest-
ing association rules, and predicts delays with a
RF.
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S. Li (2019) [34] "This work seeks to obtain an optimum way
from regression of Supervised Learning to pre-
dict body temperature data from a smart pil-
low."

From the comparison of metrics (MSE, MAE,
R-squared) for models, KNN and RF are better
than other models.

For future research, more input features, more
training data, and Deep Learning are deserved
further attention. Only two features in this pa-
per, it is not good enough for RF that needs more
features to optimize results.

J. Liang, X. Liu and K. Liao
(2018) [35]

"In this paper, we compare type-1 FL System
and ANFIS to extract fuzzy parameters of soil.
Moreover, two machine learning algorithms: RF
and ANN with principal component analysis al-
gorithms are applied in the SM classifications."

ANFIS with RF provides the best VWC correct
recognition rate compared to other algorithms.
the lower RMSEs demonstrate ANFIS’s higher
precisions than that of FL System in feature ex-
tractions. In recognitions, though ANFIS’s fea-
tures are corrupted by noise, it still shows a per-
fect correct recognition rate when combining
with RF classification.

Fig. 5 shows the structure of the special five-
layer network interpretation as a general expres-
sions of ANFIS.

D. M. Minhas, R. R. Khalid and
G. Frey (2017) [36]

"In this paper, an evaluation theory of hybrid
model for short-term electricity load forecast-
ing is presented using simple soft-technique of
predicting data. A model that integrates fuzzy
system with neural network database is demon-
strated and eventually compared with a tradi-
tional statistical method of linear regression."

Power load forecasting errors especially for
weekends, which is much higher than that
of weekdays, is reduced using the probabilis-
tic and stochastic natured Hybrid Adaptive
Fuzzy Neural System (HAFNS) method. HAFNS
showed much better forecasting result and er-
rors compared to the simple linear regression.

In this paper, only the day-ahead profile is ex-
ecuted, whose data depends on a week-before
load and temperature profile.

F. Mirzaei, M. Delavar, I. Al-
zoubi and B. Nadjar Arrabi
(2018) [37]

"The purpose of this paper is to develop three
methods including artificial bee colony algo-
rithm (ABC-ANN), regression and adaptive neu-
ral fuzzy inference system (ANFIS) to predict the
environmental indicators for land leveling and
to analysis the sensitivity of these parameters."

Only three parameters of sand per cent, slope
and soil, cut/fill volume had significant effects
on energy consumption. All developed mod-
els had satisfactory performance in predict-
ing aforementioned parameters in various field
conditions. The ANFIS has the most capability
in prediction according to least RMSE and the
highest R2 value.

ANFIS with a hybrid method of the gradient de-
scent and the least-squares method was applied
to find the optimal learning parameters using
various membership functions (MFs). The im-
plementations divulged that Gaussian member-
ship function (gaussmf) and Trapezoidal mem-
bership function (tramf) configurations were
found to denote MSE of 0.0166 and R2 of 0.98
for traction coefficient

A. G. Mohapatra and S. K.
Lenka (2016) [14]

"In this paper, a partial least square regression
(PLSR) and FL based smart decision support
system (DSS) for crop-specific irrigation noti-
fication and control in precision agriculture is
proposed, and this can be implemented in farm
land, green-house and poly-house."

A comparative analysis on PLSR is done for soil
moisture content prediction. It is observed from
the errors that the prediction model produces
exact soil moisture content as per the target
value. Various SMS notifications are also gen-
erated using fuzzy-based model for sending the
SMS notification to the farmer’s handset.

This paper is trying out several membership
function (MFs) for input and output variables.

S. K. Mousavi Mashhadi, H.
Yadollahi and A. Marvian
Mashhad (2016) [38]

"The system designed and manufactured in this
paper measures, displays, and controls the to-
tal dissolved solids (TDS) of water by instal-
lation on domestic and industrial purification
systems."

As evident from Figure 24, performance of the
fuzzy controller is very acceptable in compari-
son with the classical PID controller, which was
manually configured.

In this strategy, triangular membership func-
tions with uniform distribution are used to
make the input values fuzzy.
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H. Neog, P. E. Dutta and N.
Medhi (2022) [39]

"In this paper, we propose a remote Health
Monitoring System for the prediction of health
status of a person as well as detection of the risk
of getting Covid for a particular patient using
IoT and ML technologies."

The paper highlights the main steps, which
can be elaborated as follows: Data preprocess-
ing, feature engineering, model training (LSTM
and KNN achieved the best metrics), SARIMA +
LSTM-Markov to detect the risk of getting Covid,
and finally FL optimization.

−

A. H. Orta, I. Kayabasi and M.
Tunc (2018) [40]

"The purpose of this study is to develop a
methodology to forecast short term wind power
from the minimum number of input and to de-
termine which turbines should be selected for
Numerical Weather Prediction (NWP) models in
the Bandirma power plant."

Using 6 or 4 turbine wind speeds, tempera-
tures and wind directions with NARX model are
the most powerful methods for Bandirma power
plant. ANN models are more successful when
the number of input is small. Furthermore, the
most successful models for small number of in-
puts are regression models.

−

P. Patel, Y. Patel, U. Patel, V. Pa-
tel, N. Patel, P. Oza, et al. (2022)
[15]

"We present a model for an automated watering
system that attempts to reduce both human in-
teraction and water usage."

The system takes soil moisture, weather param-
eters, and crop quality as input. Precipitation
and its probability extracted from a weather API
and crop quality was considered to optimize the
system. DenseNet201 provided the most accu-
rate classification, and all these parameters are
then passed into our fuzzy system controller,
deciding the exact time to irrigate the crop.

This automated system can assist in reducing
water wastage and the need for manual mon-
itoring. The concept may be improved by in-
cluding a GSM module that allows farmers to re-
ceive notifications.

V. K. Patil and V. R. Pawar
(2022) [41]

"We are proposing a system that can automati-
cally identify human emotions with the help of
sensors to be used at entrance gates."

The presented technique integrates the K-
means clustering along with linear regres-
sion. Further, ANN and Fuzzy Classification
paradigms was done to achieve emotion recog-
nition through the Data collected by the IoT
sensors and the dataset. The extensive exper-
imentation for the recognition of the errors in
the methodology through the use of MSE and
RMSE reveals that the methodology achieves
significant improvements in accuracy and reli-
ability in emotion recognition.

FL and ANN methods are used with machine
learning algorithms, which results in fewer er-
rors in prediction. The measures of errors are
given by MSE and RMSE.

B. Petković, D. Petković, B.
Kuzman, M. Milovančević, K.
Wakil, L. S. Ho, et al. (2020)
[42]

"to establish regression models of the refer-
ence evapotranspiration in regard to several in-
put weather parameters. The main aim is to
achieve predictive capable models for the refer-
ence evapotranspiration."

Global radiation has the strongest influence on
the reference evapotranspiration. Moreover, the
combination of daily average temperature and
global radiation is the optimal combination for
the ET0 estimation.

The main goal is minimization of the root mean
square errors (RMSE). Additionally, coefficient
of determination (R2) and Pearson coefficient
(r) were used for a more comprehensive analy-
sis of the ANFIS prediction accuracy.
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M. R. C. Qazani, V. Pour-
mostaghimi, M. Moayyedian
and S. Pedrammehr (2022) [43]

"The main objective of this study is to calculate
the tool–chip contact length using a highly ad-
vanced machine learning method without any
time-consuming and expensive experiments. In
this study, we proposed the ANFIS to predict the
tool–chip contact length for the first time in or-
thogonal cutting using depth of cut, feed-rate,
and cutting speed as inputs of the proposed
model."

The GWO-ANFIS can decrease the mean
square error between the actual and predicted
tool–chip contact length of 15.60%, 3.67%,
89.75%, and 92.17% in comparison with those
of GA-ANFIS, PSO-ANFIS, B-ANFIS, and GP,
respectively. In addition, the fuzzy logic rule
surface of the GWO-ANFIS shows 57.20%,
30.95%, and 11.85% dependency of tool–chip
contact length to cutting speed, feed-rate, and
depth of cut as the inputs of the orthogonal
cutting process, respectively.

−

J. Refonaa and M. Lakshmi
(2021) [44]

"An appropriate and error-reducing evaluation
for rainfall prediction is performed in combina-
tion with the proposed BIRSM model and ANN,
which can be very helpful for agriculture and
food management."

The forecasting effect of FL and BIRSM is ideal.
It can not only understand the extent of rainfall
but also can accurately handle the condition of
no rainfall.

The Mean Square Error (MSE) was chosen for
performance analysis function.

F. Sabrina, S. Sohail, F. Farid, S.
Jahan, F. Ahamed and S. Gor-
don (2022) [10]

"In this paper, we propose a novel artificial
intelligence-based agriculture system that uses
IoT data to monitor the environment and alerts
farmers to take the required actions for main-
taining ideal conditions for crop production."

The experimental results show that the pro-
posed system is interpretable, can detect
anomalous data, and triggers actions accurately
based on crop requirements.

The strength of the proposed system is in its in-
terpretability which makes it easy for farmers to
understand, trust and use it. The use of fuzzy
logic makes the system customisable in terms
of types/number of sensors, type of crop, and
adaptable for any soil types and weather condi-
tions.

S. Sharma, R. K. Agrawal and
M. M. Tripathi (2020) [45]

"A novel method of short-term load forecast-
ing based on the combination of FL with RNN
model has been proposed in this paper. The
proposed approach combines the advantages of
fuzzy logic and neural networks to predict the
next day’s load."

The computed results conclude that the syn-
ergetic use of FL with RNN model is success-
ful in achieving higher accuracy by efficiently
mapping the effect of weather parameters with
a change in load demand. Fuzzy-RNN has per-
formed best with the highest accuracy in load
forecasting amongst the six models considered.

−

A. Shastry, H. A. Sanjay and M.
Hegde (2015) [46]

"This work analyses how yield of a particular
crop is determined by few attributes. In this pa-
per, several ML models are used for predicting
the yield of wheat by considering biomass, ex-
tractable soil water (ESW), radiation and rain as
input parameters."

ANFIS model performs better than Multiple Lin-
Reg and FL models with a lower RMSE value.

All the models are compared based on the RMSE
values.
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J. M. Siqueira, T. A. Paço, J. C.
Silvestre, F. L. Santos, A. O. Fal-
cão and L. S. Pereira (2014) [47]

"The present study aims at developing an intel-
ligent system of automating data analysis and
prediction embedded in a FL algorithm to cap-
ture the relationship between environmental
variables and sap flow measurements (Granier
method)."

The FL algorithm shows to be an effective ap-
proach for system optimization, allowing a less
time consuming process, yet not discarding the
human decision capacity, since it mimetizes the
process. In addition, it provides the opportunity
for earlier reaction to data because it allows for
a real-time treatment possibility.

−

Q. T. T. Tran, K. Davies and L.
Roose (2021) [48]

"This paper proposed a low-cost method to
build the machine learning training dataset for
assessing service transformer health by using FL
method."

The FL workflow validated by SVM demon-
strates that the built-in training data set is effi-
cient, applicable to assess the transformer con-
dition. Additionally, the data generation pro-
posed in this paper has high feature continu-
ity and good scalability that can be used as a
training data for machine learning, deep learn-
ing models.

Figure 2 shows the range of each parameter
corresponding to various conditions. These
map through expert rules to overall transformer
health conditions and recommended actions.

V. Vivekanandhan, S. Sakthivel
and M. Manikandan (2022)
[49]

"This proposed work introduces an ANFIS tech-
nique for analyzing agricultural plant growth
based on soil, water level, temperature, and
moisture conditions."

ANFIS results in an overall better result com-
pared to the other algorithms; higher precision
and recall, higher accuracy, and lower error rate.

−

H. Yuan, M. Tan and Y. Chen
(2014) [9]

"This paper proposes a non-linear regression
model (NRM) for fishing forecast. It employs
cluster analysis and nonlinear regression to help
forecast fishing yield based on marine environ-
mental data."

The comparison result reveals this new NRM
model increases both the accuracy in fish-
ery forecast and the reliability in guiding fish-
ery production and related activities, which is
proved by higher coefficiency of determination
compared to other methods. It can also help
explore and discover the distribution of fishing
grounds.

The model combines fishery domain expert
knowledge, marine environmental factor data
such as water temperature, chlorophyll concen-
tration and sea surface level as base data and
applies cluster analysis that incorporates func-
tion fitting and nonlinear regression for data
analysis and processing.

G. Zhang, S. S. Band, S. Ard-
abili, K. W. Chau and A. Mosavi
(2022) [50]

"In this study, data-driven simulation is used to
model dew point temperature (DPT). The fore-
casting method based on ANFIS is used to esti-
mate this factor at Tabriz, one of the earliest Ira-
nian meteorological stations."

The results reveal that the ANFIS method is ca-
pable of identifying data patterns with a high
degree of accuracy in general. ANFIS model
is very stable for almost all numbers of mem-
bership functions. Moreover, it is efficient re-
garding the computations, it can also be applied
when different and complex parameters are en-
gaged in the processes.

Sugeno FIS was used. For a short number of iter-
ations, both training and testing processes had
high RSME, but as the number of iterations in-
creases, RSME decreased. The number of nu-
merical iterations in the testing procedure for
both MMSE and RSME rose between 50 and
100. These parameters, however, diminished af-
ter around 100 iterations.
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Table C.1: Open Source Libraries

Library Description Link
anfis The Adaptive Neuro-Fuzzy Inference System (ANFIS) library for combining fuzzy logic and

neural networks in machine learning.
https://pypi.org/project/anfis/

matplotlib A comprehensive data visualization library for creating static, animated, and interactive plots
and charts in Python.

https://pypi.org/project/matplotlib/

numpy A fundamental library for numerical computing in Python, supporting large, multi-
dimensional arrays and mathematical functions.

https://pypi.org/project/numpy/

pandas A popular data manipulation library with data structures for efficiently handling structured
data.

https://pypi.org/project/pandas/

plotly A library for creating interactive and visually appealing data visualizations, including various
chart types.

https://pypi.org/project/plotly/

pyspark The Python API for Apache Spark, enabling distributed data processing and big data analysis. https://pypi.org/project/pyspark/
sanfis An extension of ANFIS incorporating self-adaptation mechanisms for improved model perfor-

mance.
https://pypi.org/project/sanfis/

scikeras A library for integrating Keras with scikit-learn, simplifying deep learning model building
within scikit-learn.

https://pypi.org/project/scikeras/

scipy An open-source library for mathematics, science, and engineering, extending NumPy with ad-
ditional modules.

https://pypi.org/project/scipy/

seaborn A data visualization library based on Matplotlib, designed for creating informative and attrac-
tive statistical graphics.

https://pypi.org/project/seaborn/

skfuzzy A fuzzy logic toolkit for scikit-learn, used for modeling uncertainty and decision-making. https://pypi.org/project/scikit-fuzzy/
sklearn Scikit-learn, a machine learning library offering a wide range of tools and algorithms for various

tasks.
https://pypi.org/project/scikit-learn/

statsmodels A Python library for estimating and interpreting statistical models, covering linear and non-
linear models, time series analysis, and more.

https://pypi.org/project/statsmodels/

statistics A library providing mathematical and statistical functions for basic statistical calculations. https://pypi.org/project/statistics/
sweetviz An automated exploratory data analysis (EDA) library, generating visualizations and sum-

maries of dataset characteristics.
https://pypi.org/project/sweetviz/

tensorflow A deep learning framework developed by Google, providing tools and libraries for neural net-
work building and training.

https://pypi.org/project/tensorflow/

xgboost A gradient boosting library widely used for supervised machine learning tasks, known for its
high performance and accuracy.

https://pypi.org/project/xgboost/

https://pypi.org/project/anfis/
https://pypi.org/project/matplotlib/
https://pypi.org/project/numpy/
https://pypi.org/project/pandas/
https://pypi.org/project/plotly/
https://pypi.org/project/pyspark/
https://pypi.org/project/sanfis/
https://pypi.org/project/scikeras/
https://pypi.org/project/scipy/
https://pypi.org/project/seaborn/
https://pypi.org/project/scikit-fuzzy/
https://pypi.org/project/scikit-learn/
https://pypi.org/project/statsmodels/
https://pypi.org/project/statistics/
https://pypi.org/project/sweetviz/
https://pypi.org/project/tensorflow/
https://pypi.org/project/xgboost/
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Figure D.1: Distribution of Features in FD 1
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Figure D.2: Distribution of Features in FD 2
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Figure D.3: Distribution of Features in FD 3
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Figure D.4: Distribution of Features in FD 4
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Figure D.5: Feature Distribution in Outages
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Table E.1: Shapiro-Wilk Test Results for Features in Different FD Machines

Feature FD Product Outage p-value Description
moisture 1 All All Close to 0 Does not follow a normal distribution
moisture 2 All All Close to 0 Does not follow a normal distribution
moisture 3 All All 7.35e-35 Does not follow a normal distribution
moisture 4 All All Close to 0 Does not follow a normal distribution
weight 1 All All Close to 0 Does not follow a normal distribution
weight 2 All All Close to 0 Does not follow a normal distribution
weight 3 All All 8.97e-39 Does not follow a normal distribution
weight 4 All All Close to 0 Does not follow a normal distribution
temperature_1 1 All All Close to 0 Does not follow a normal distribution
temperature_1 2 All All Close to 0 Does not follow a normal distribution
temperature_1 3 All All Close to 0 Does not follow a normal distribution
temperature_1 4 All All Close to 0 Does not follow a normal distribution
time_1 1 All All Close to 0 Does not follow a normal distribution
time_1 2 All All Close to 0 Does not follow a normal distribution
time_1 3 All All Close to 0 Does not follow a normal distribution
time_1 4 All All Close to 0 Does not follow a normal distribution
total_heat 1 All All Close to 0 Does not follow a normal distribution
total_heat 2 All All Close to 0 Does not follow a normal distribution
total_heat 3 All All Close to 0 Does not follow a normal distribution
total_heat 4 All All Close to 0 Does not follow a normal distribution
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Table E.2: Shapiro-Wilk Test Results for Features in FD 1

Feature FD Product Outage p-value Description
moisture 1 1 All 1.04e-22 Does not follow a normal distribution
moisture 1 2 All Close to 0 Does not follow a normal distribution
moisture 1 3 All 1.16e-25 Does not follow a normal distribution
moisture 1 4 All 6.72e-35 Does not follow a normal distribution
moisture 1 5 All 1.37e-41 Does not follow a normal distribution
moisture 1 6 All 1.46e-18 Does not follow a normal distribution
moisture 1 7 All 3.23e-31 Does not follow a normal distribution
moisture 1 8 All 2.16e-28 Does not follow a normal distribution
moisture 1 9 All 6.07e-14 Does not follow a normal distribution
weight 1 1 All 7.66e-28 Does not follow a normal distribution
weight 1 2 All 2.92e-24 Does not follow a normal distribution
weight 1 3 All 9.54e-08 Does not follow a normal distribution
weight 1 4 All 2.21e-23 Does not follow a normal distribution
weight 1 5 All 5.08e-12 Does not follow a normal distribution
weight 1 6 All 3.26e-15 Does not follow a normal distribution
weight 1 7 All 6.69e-33 Does not follow a normal distribution
weight 1 8 All 2.62e-33 Does not follow a normal distribution
weight 1 9 All 1.61e-29 Does not follow a normal distribution
temperature_1 1 1 All 1.15e-32 Does not follow a normal distribution
temperature_1 1 2 All Close to 0 Does not follow a normal distribution
temperature_1 1 3 All 1.70e-39 Does not follow a normal distribution
temperature_1 1 4 All Close to 0 Does not follow a normal distribution
temperature_1 1 5 All Close to 0 Does not follow a normal distribution
temperature_1 1 6 All 2.78e-35 Does not follow a normal distribution
temperature_1 1 7 All Close to 0 Does not follow a normal distribution
temperature_1 1 8 All Close to 0 Does not follow a normal distribution
temperature_1 1 9 All 6.89e-29 Does not follow a normal distribution
time_1 1 1 All Close to 0 Does not follow a normal distribution
time_1 1 2 All Close to 0 Does not follow a normal distribution
time_1 1 3 All Close to 0 Does not follow a normal distribution
time_1 1 4 All Close to 0 Does not follow a normal distribution
time_1 1 5 All Close to 0 Does not follow a normal distribution
time_1 1 6 All Close to 0 Does not follow a normal distribution
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time_1 1 7 All Close to 0 Does not follow a normal distribution
time_1 1 8 All Close to 0 Does not follow a normal distribution
time_1 1 9 All Close to 0 Does not follow a normal distribution
total_heat 1 1 All 4.07e-08 Does not follow a normal distribution
total_heat 1 2 All 6.68e-43 Does not follow a normal distribution
total_heat 1 3 All 5.03e-19 Does not follow a normal distribution
total_heat 1 4 All 4.17e-27 Does not follow a normal distribution
total_heat 1 5 All 6.25e-13 Does not follow a normal distribution
total_heat 1 6 All 4.94e-19 Does not follow a normal distribution
total_heat 1 7 All 4.11e-15 Does not follow a normal distribution
total_heat 1 8 All 2.12e-11 Does not follow a normal distribution
total_heat 1 9 All 1.95e-17 Does not follow a normal distribution
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Table E.3: Shapiro-Wilk Test Results for Features in FD 2

Feature FD Product Outage p-value Description
moisture 2 1 All 5.85e-26 Does not follow a normal distribution
moisture 2 2 All Close to 0 Does not follow a normal distribution
moisture 2 3 All 3.86e-37 Does not follow a normal distribution
moisture 2 4 All Close to 0 Does not follow a normal distribution
moisture 2 5 All Close to 0 Does not follow a normal distribution
moisture 2 6 All 4.58e-28 Does not follow a normal distribution
moisture 2 7 All 6.14e-41 Does not follow a normal distribution
moisture 2 8 All 7.13e-40 Does not follow a normal distribution
moisture 2 9 All 1.43e-21 Does not follow a normal distribution
weight 2 1 All Close to 0 Does not follow a normal distribution
weight 2 2 All 5.76e-31 Does not follow a normal distribution
weight 2 3 All 4.42e-11 Does not follow a normal distribution
weight 2 4 All 2.80e-45 Does not follow a normal distribution
weight 2 5 All 2.53e-13 Does not follow a normal distribution
weight 2 6 All 0.08e-10 Does not follow a normal distribution
weight 2 7 All 9.94e-17 Does not follow a normal distribution
weight 2 8 All 6.52e-13 Does not follow a normal distribution
weight 2 9 All 5.39e-26 Does not follow a normal distribution
temperature_1 2 1 All 3.01e-36 Does not follow a normal distribution
temperature_1 2 2 All Close to 0 Does not follow a normal distribution
temperature_1 2 3 All Close to 0 Does not follow a normal distribution
temperature_1 2 4 All 1.54e-44 Does not follow a normal distribution
temperature_1 2 5 All Close to 0 Does not follow a normal distribution
temperature_1 2 6 All 5.26e-37 Does not follow a normal distribution
temperature_1 2 7 All 1.54e-39 Does not follow a normal distribution
temperature_1 2 8 All Close to 0 Does not follow a normal distribution
temperature_1 2 9 All 2.50e-36 Does not follow a normal distribution
time_1 2 1 All Close to 0 Does not follow a normal distribution
time_1 2 2 All Close to 0 Does not follow a normal distribution
time_1 2 3 All Close to 0 Does not follow a normal distribution
time_1 2 4 All Close to 0 Does not follow a normal distribution
time_1 2 5 All Close to 0 Does not follow a normal distribution
time_1 2 6 All Close to 0 Does not follow a normal distribution
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time_1 2 7 All Close to 0 Does not follow a normal distribution
time_1 2 8 All Close to 0 Does not follow a normal distribution
time_1 2 9 All Close to 0 Does not follow a normal distribution
total_heat 2 1 All 1.13e-05 Does not follow a normal distribution
total_heat 2 2 All 7.47e-10 Does not follow a normal distribution
total_heat 2 3 All 1.15e-06 Does not follow a normal distribution
total_heat 2 4 All 6.97e-32 Does not follow a normal distribution
total_heat 2 5 All 8.87e-20 Does not follow a normal distribution
total_heat 2 6 All 9.83e-14 Does not follow a normal distribution
total_heat 2 7 All 6.98e-29 Does not follow a normal distribution
total_heat 2 8 All 4.49e-23 Does not follow a normal distribution
total_heat 2 9 All 1.56e-19 Does not follow a normal distribution
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Table E.4: Shapiro-Wilk Test Results for Features in FD 3

Feature FD Product Outage p-value Description
moisture 3 1 All 7.88e-20 Does not follow a normal distribution
moisture 3 2 All 7.74e-10 Does not follow a normal distribution
moisture 3 3 All 2.95e-09 Does not follow a normal distribution
moisture 3 4 All 6.34e-17 Does not follow a normal distribution
moisture 3 5 All 7.82e-09 Does not follow a normal distribution
moisture 3 6 All 1.10e-13 Does not follow a normal distribution
moisture 3 7 All 1.12e-13 Does not follow a normal distribution
moisture 3 8 All 1.45e-06 Does not follow a normal distribution
weight 3 1 All Close to 0 Does not follow a normal distribution
weight 3 2 All 4.18e-12 Does not follow a normal distribution
weight 3 3 All 1.14e-08 Does not follow a normal distribution
weight 3 4 All 1.30e-34 Does not follow a normal distribution
weight 3 5 All 2.21e-13 Does not follow a normal distribution
weight 3 6 All 4.75e-19 Does not follow a normal distribution
weight 3 7 All 2.36e-15 Does not follow a normal distribution
weight 3 8 All 3.31e-09 Does not follow a normal distribution
temperature_1 3 1 All Close to 0 Does not follow a normal distribution
temperature_1 3 2 All 3.35e-36 Does not follow a normal distribution
temperature_1 3 3 All 2.45e-40 Does not follow a normal distribution
temperature_1 3 4 All Close to 0 Does not follow a normal distribution
temperature_1 3 5 All 1.09e-42 Does not follow a normal distribution
temperature_1 3 6 All 4.78e-41 Does not follow a normal distribution
temperature_1 3 7 All 3.57e-41 Does not follow a normal distribution
temperature_1 3 8 All 1.01e-34 Does not follow a normal distribution
time_1 3 1 All Close to 0 Does not follow a normal distribution
time_1 3 2 All Close to 0 Does not follow a normal distribution
time_1 3 3 All Close to 0 Does not follow a normal distribution
time_1 3 4 All Close to 0 Does not follow a normal distribution
time_1 3 5 All Close to 0 Does not follow a normal distribution
time_1 3 6 All Close to 0 Does not follow a normal distribution
time_1 3 7 All Close to 0 Does not follow a normal distribution
time_1 3 8 All 4.86e-43 Does not follow a normal distribution
total_heat 3 1 All 2.11e-07 Does not follow a normal distribution
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total_heat 3 2 All 4.69e-06 Does not follow a normal distribution
total_heat 3 3 All 1.58e-23 Does not follow a normal distribution
total_heat 3 4 All 3.56e-23 Does not follow a normal distribution
total_heat 3 5 All 1.62e-26 Does not follow a normal distribution
total_heat 3 6 All 3.23e-10 Does not follow a normal distribution
total_heat 3 7 All 6.68e-20 Does not follow a normal distribution
total_heat 3 8 All 7.43e-16 Does not follow a normal distribution
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Table E.5: Shapiro-Wilk Test Results for Features in FD 4

Feature FD Product Outage p-value Description
moisture 4 1 All 3.17e-23 Does not follow a normal distribution
moisture 4 2 All 9.78e-20 Does not follow a normal distribution
moisture 4 3 All 2.75e-21 Does not follow a normal distribution
moisture 4 4 All 1.14e-24 Does not follow a normal distribution
moisture 4 5 All 9.48e-26 Does not follow a normal distribution
moisture 4 6 All 3.19e-41 Does not follow a normal distribution
moisture 4 7 All 1.56e-15 Does not follow a normal distribution
moisture 4 8 All 2.58e-09 Does not follow a normal distribution
moisture 4 9 All 1.04e-43 Does not follow a normal distribution
moisture 4 10 All 7.60e-19 Does not follow a normal distribution
moisture 4 11 All 5.64e-21 Does not follow a normal distribution
weight 4 1 All 3.16e-31 Does not follow a normal distribution
weight 4 2 All 6.02e-44 Does not follow a normal distribution
weight 4 3 All 1.69e-37 Does not follow a normal distribution
weight 4 4 All 2.80e-45 Does not follow a normal distribution
weight 4 5 All 2.22e-32 Does not follow a normal distribution
weight 4 6 All 2.38e-44 Does not follow a normal distribution
weight 4 7 All 7.39e-14 Does not follow a normal distribution
weight 4 8 All 5.75e-27 Does not follow a normal distribution
weight 4 9 All 4.90e-44 Does not follow a normal distribution
weight 4 10 All 2.47e-37 Does not follow a normal distribution
weight 4 11 All 1.72e-23 Does not follow a normal distribution
temperature_1 4 1 All Close to 0 Does not follow a normal distribution
temperature_1 4 2 All Close to 0 Does not follow a normal distribution
temperature_1 4 3 All Close to 0 Does not follow a normal distribution
temperature_1 4 4 All Close to 0 Does not follow a normal distribution
temperature_1 4 5 All 1.16e-42 Does not follow a normal distribution
temperature_1 4 6 All Close to 0 Does not follow a normal distribution
temperature_1 4 7 All 1.50e-33 Does not follow a normal distribution
temperature_1 4 8 All 3.78e-44 Does not follow a normal distribution
temperature_1 4 9 All Close to 0 Does not follow a normal distribution
temperature_1 4 10 All 1.34e-41 Does not follow a normal distribution
temperature_1 4 11 All 2.80e-45 Does not follow a normal distribution
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time_1 4 1 All Close to 0 Does not follow a normal distribution
time_1 4 2 All Close to 0 Does not follow a normal distribution
time_1 4 3 All Close to 0 Does not follow a normal distribution
time_1 4 4 All Close to 0 Does not follow a normal distribution
time_1 4 5 All Close to 0 Does not follow a normal distribution
time_1 4 6 All Close to 0 Does not follow a normal distribution
time_1 4 7 All Close to 0 Does not follow a normal distribution
time_1 4 8 All Close to 0 Does not follow a normal distribution
time_1 4 9 All Close to 0 Does not follow a normal distribution
time_1 4 10 All Close to 0 Does not follow a normal distribution
time_1 4 11 All Close to 0 Does not follow a normal distribution
total_heat 4 1 All 1.57e-18 Does not follow a normal distribution
total_heat 4 2 All 1.29e-31 Does not follow a normal distribution
total_heat 4 3 All 8.18e-10 Does not follow a normal distribution
total_heat 4 4 All 3.49e-29 Does not follow a normal distribution
total_heat 4 5 All 7.22e-12 Does not follow a normal distribution
total_heat 4 6 All 8.77e-23 Does not follow a normal distribution
total_heat 4 7 All 1.32e-19 Does not follow a normal distribution
total_heat 4 8 All 6.66e-19 Does not follow a normal distribution
total_heat 4 9 All 4.98e-16 Does not follow a normal distribution
total_heat 4 10 All 7.66e-09 Does not follow a normal distribution
total_heat 4 11 All 4.09e-28 Does not follow a normal distribution
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Table F.1: Number of Rows of the Categorized FD Dataset

Freeze Dryer Product ID Number of Rows

FD 1

Product 1 1,164
Product 2 10,275
Product 3 3,203
Product 4 5,946
Product 5 4,949
Product 6 2,048
Product 7 6,053
Product 8 2,431
Product 9 1,080
Outage 4,760

FD 2

Product 1 1,344
Product 2 10,235
Product 3 3,133
Product 4 6,729
Product 5 5,410
Product 6 1,716
Product 7 5,750
Product 8 2,754
Product 9 1,128
Outage 4,217

FD 3

Product 1 7,654
Product 2 2,080
Product 3 2,827
Product 4 5,941
Product 5 1,432
Product 6 4,811
Product 7 1,972
Product 8 1,243
Outage 6,085

FD 4

Product 1 4,346
Product 2 4,013
Product 3 3,683
Product 4 3,518
Product 5 1,626
Product 6 6,521
Product 7 534
Product 8 1,432
Product 9 6,112
Product 10 1,931
Product 11 1,462
Outage 2,875



G
APPENDIX G: INITIAL SET OF

HYPERPARAMETERS FOR THE MACHINE

LEARNING MODELS

127



128

Table G.1: Initial Set of Hyperparameters for the Machine Learning Models

ML Model Hyperparameter Description Initial Value

ElasticNet Regression
alpha Regularization strength 0-1 in steps of 0.01
l1_ratio L1/L2 regularization ratio 0-1 in steps of 0.1

Support Vector Regression
kernel Type of kernel function rbf, poly, sigmoid
C Regularization parameter 0.01, 0.1, 1, 10, 100
epsilon Margin of error tolerance value 0.01, 0.1, 1, 10, 100

Random Forest Regression

n_estimators Number of trees in the forest 100-1000 in steps of 100
max_depth Maximum depth of each tree 3-10 in steps of 1
min_samples_split Minimum number of samples required to split an internal node 3-10 in steps of 1
max_features Maximum number of features to consider for splitting sqrt, log2

XGBoost Regression

n_estimators Number of boosting rounds 100-1000 in steps of 100
max_depth Maximum depth of each tree 3-10 in steps of 1
learning_rate Step size shrinkage to prevent overfitting 0.001, 0.01, 0.1, 0.5, 0.9, 1.0
subsample Fraction of samples used for fitting the trees 0.5-1 in steps of 0.05
colsample_bytree Fraction of features used for fitting the trees 0.5-1 in steps of 0.05
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Figure H.1: FD 1, Product 1

Figure H.2: FD 1, Product 2

Figure H.3: FD 1, Product 3

Figure H.4: FD 1, Product 4
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Figure H.5: FD 1, Product 5

Figure H.6: FD 1, Product 6

Figure H.7: FD 1, Product 7

Figure H.8: FD 1, Product 8

Figure H.9: FD 1, Product 9

Figure H.10: FD 1, Outage

Figure H.11: FD 2, Product 1
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Figure H.12: FD 2, Product 2

Figure H.13: FD 2, Product 3

Figure H.14: FD 2, Product 4

Figure H.15: FD 2, Product 5

Figure H.16: FD 2, Product 6

Figure H.17: FD 2, Product 7

Figure H.18: FD 2, Product 8
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Figure H.19: FD 2, Product 9

Figure H.20: FD 2, Outage

Figure H.21: FD 3, Product 1

Figure H.22: FD 3, Product 2

Figure H.23: FD 3, Product 3

Figure H.24: FD 3, Product 4

Figure H.25: FD 3, Product 5
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Figure H.26: FD 3, Product 6

Figure H.27: FD 3, Product 7

Figure H.28: FD 3, Product 8

Figure H.29: FD 3, Outage

Figure H.30: FD 4, Product 1

Figure H.31: FD 4, Product 2

Figure H.32: FD 4, Product 3
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Figure H.33: FD 4, Product 4

Figure H.34: FD 4, Product 5

Figure H.35: FD 4, Product 6

Figure H.36: FD 4, Product 7

Figure H.37: FD 4, Product 8

Figure H.38: FD 4, Product 9

Figure H.39: FD 4, Product 10
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Figure H.40: FD 4, Product 11

Figure H.41: FD 4, Outage
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Figure I.1: Machine Learning Algorithm Metrics of FD 1
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Figure I.2: Machine Learning Algorithm Metrics of FD 2

Figure I.3: Machine Learning Algorithm Metrics of FD 3
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Figure I.4: Machine Learning Algorithm Metrics of FD 4
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Figure J.1: Metrics Scores Comparison Pre- and Post-AutoML in FD 1
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Figure J.2: Metrics Scores Comparison Pre- and Post-AutoML in FD 2

Figure J.3: Metrics Scores Comparison Pre- and Post-AutoML in FD 3
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Figure J.4: Metrics Scores Comparison Pre- and Post-AutoML in FD 4
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Figure K.1: SHAP Plots of the XGBoost Models
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Table L.1: Metrics Scores of ANFIS Models in All Products

Freeze Product R2 R2 RMSE RMSE MAE MAE
Dryer ID (train) (test) (train) (test) (train) (test)

FD 1

Product 1 0.65 0.69 6.99 6.71 5.24 4.94
Product 2 0.65 0.67 8.39 8.17 6.30 6.21
Product 3 0.61 0.61 8.94 8.84 6.79 6.83
Product 4 0.73 0.74 8.10 8.07 5.96 5.94
Product 5 0.69 0.65 6.90 7.31 5.09 5.29
Product 6 0.66 0.70 8.19 8.02 6.01 6.30
Product 7 0.74 0.75 10.22 9.91 7.91 7.63
Product 8 0.40 0.40 10.43 10.00 8.03 7.74
Product 9 0.58 0.64 10.33 9.99 7.92 7.85
Outage 0.51 0.51 15.90 15.40 12.56 12.29

FD 2

Product 1 0.69 0.78 6.95 5.70 5.70 4.04
Product 2 0.76 0.77 9.17 9.02 6.85 6.66
Product 3 0.68 0.70 9.69 9.14 7.22 6.77
Product 4 0.62 0.64 11.55 11.25 9.06 8.88
Product 5 0.72 0.71 8.12 8.12 6.09 6.18
Product 6 0.71 0.73 11.14 10.25 8.21 7.68
Product 7 0.72 0.73 7.92 8.04 5.99 6.13
Product 8 0.55 0.54 7.71 7.71 6.02 5.99
Product 9 0.85 0.83 9.16 9.28 6.97 6.62
Outage 0.46 0.52 17.94 17.35 13.94 13.26

FD 3

Product 1 0.42 0.48 10.80 10.27 8.33 8.03
Product 2 0.16 0.14 13.01 12.80 9.82 10.17
Product 3 0.33 0.27 5.19 5.18 4.03 3.99
Product 4 0.45 0.49 8.74 8.47 6.14 6.07
Product 5 0.26 0.26 13.44 14.28 10.51 10.94
Product 6 0.32 0.32 7.83 7.61 5.96 5.88
Product 7 0.24 0.19 7.71 6.64 5.45 5.04
Product 8 0.32 0.33 11.93 11.69 9.39 8.84
Outage 0.19 0.19 18.76 18.50 15.19 14.93

FD 4

Product 1 0.66 0.68 9.93 9.71 7.43 7.43
Product 2 0.44 0.37 15.57 15.93 12.42 12.77
Product 3 0.54 0.49 11.80 11.88 9.33 9.57
Product 4 0.56 0.62 12.59 11.34 9.70 8.68
Product 5 0.62 0.57 10.99 11.18 8.11 7.74
Product 6 0.54 0.54 11.21 10.61 8.38 8.01
Product 7 0.63 0.62 15.69 15.20 12.26 11.39
Product 8 0.63 0.60 8.48 8.17 6.42 6.62
Product 9 0.65 0.65 9.19 9.08 7.02 6.81
Product 10 0.33 0.31 12.67 13.48 9.98 10.74
Product 11 0.77 0.80 12.96 11.69 10.05 9.08
Outage 0.46 0.42 17.53 17.80 14.18 14.30
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Figure M.1: Implementation Result in Every FD Machine (Outage)
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