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Insights on human standing balance based on deep learning driven
musculoskeletal simulations

Carlota Trigo La Blanca1

During the first year of human life, the ability to stand and maintain balance is acquired effortlessly, yet there are still gaps in the
understanding of how humans perform those tasks. This thesis aims to enhance the comprehension of human movement control by
training a reinforcement learning policy that controls a musculoskeletal model of the lower limb to perform standing balance with
and without perturbation tasks. A reward function was designed based on the pelvis position error, the stability margin, and the
metabolic cost. The observation space was composed of joint position, velocity, pelvis position, pelvis error, and muscle activations.
Training for standing balance entailed 15 million steps. For the standing balance with perturbation task, a randomized force between
1 and 50 N was applied to the pelvis for 0.1 seconds. Two separate 20-million-step training were conducted, with the perturbation
applied in the anterioposterior and mediolateral directions, respectively. The results align with existing literature, although the
lower limb model does not replicate the expected human response. The model withstands higher anterioposterior perturbations
compared to mediolateral perturbations, using the ankle strategy for both types of perturbations. Overall, the myoLeg model is
able to stand and withstand perturbations using solely information on joint position, velocity, pelvis position, error, and muscle
activation information.

Index Terms—human balance control, deep reinforcement learning, musculoskeletal simulations

I. INTRODUCTION

As humans, the ability to stand is essential. Standing does
not only allow one to initiate other movements, such as
walking or running; it also allows one to perform daily-life
activities that involve using the upper body, such as reaching
for an object. Understanding how standing is performed and
controlled is vital for the development of new solutions for
motor impairment or wearable rehabilitation robotics.

Standing balance can be defined as the strategies used to
maintain an upright posture and to keep the center of mass
(COM) within the base of support (BoS) [1]. This is an
inherently difficult task, given the constant challenge provided
by the effect of gravity and sensory noise [2].

Research has shown that the body controller receives in-
formation from active and passive contributors. The passive
ones involve the intrinsic mechanical properties of muscles
and tendons [3]. The active contributor is formed by sensory
information, coming from the visual, vestibular, and propri-
oceptive systems. The visual system signals translation and
rotation by means of direction-sensitive ganglion cells [4].
The somatosensory system relies on information provided by
receptors in muscles, joints, and skin, which gives an estimate
of joint position and movement. The main receptors providing
this information are muscle spindles and Golgi tendon organs.
The first are sensors for length and velocity in the muscle,
while the latter encode muscle force production. Although it
has been studied that they are mostly sensitive to transient
inputs, studies show that their low-frequency sensitivity could
encode the muscle action being used to maintain balance [5]
[6]. Last, the vestibular system encodes the motion of the head
using sensors present in the otoliths and semicircular canals.
They detect linear and rotational motion, respectively [7] [8].

Using the information from all sensory sources, the body
estimates the position of the COM. It then uses different
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strategies to maintain it within the BoS and thus, keep balance.
There are two main strategies: the ankle and the hip strategy.
The first is performed by applying a torque on the ankle
joint that aims to stabilize the body. It is normally used in
situations of low and slow perturbations, as it is limited by
the ability of the ankle to exert a torque and keep the center
of pressure (CoP) within the BoS. On the other hand, the
hip strategy involves the movement of the trunk forward or
backward by rotating on the hip axis. It is used in higher
amplitude perturbations, and it is limited by the ability to
generate horizontal forces against the ground [9].

So far, there are no noninvasive methods that allow obtain-
ing insight on how balance is achieved in terms of internal
forces and neural controls in the body. This issue, combined
with the extremely limited possibilities of experimenting on
humans lead to the development of modeling approaches.
Musculoskeletal modeling and simulations can be used as a
non-invasive approach, that allows gaining insight into the in-
ternal forces and controllers in the body [10]. A musculoskele-
tal model allows to represent the dynamics of the human body
as if they were controlled by the neural system [11]. It uses a
representation of the body as rigid elements (bones) connected
by joints and actuated by tensile and contractile elements,
muscles [10].

Regarding standing balance, the field has been explored both
through experimental and simulation studies [12]. The optimal
control simulation framework has been thoroughly explored
for this task. In 1991, He et al. investigated the regulation of
posture using a dynamical model of a cat’s leg [13]. Later on,
the work of Kuo et al. explored coordination and the selection
of control strategies in humans [14] [15]. Further, Atkeson
et al. demonstrated how a single optimization criterion can
lead to diverse balance strategies [16]. Shen et al. used
nonlinear predictive control simulations to explore the function
of the arms [17] [18]. Later on, they extended their work by
publishing a study in which they used deep reinforcement
learning (deepRL) driven simulations to reproduce human



2

balance using a 2D model of the human body [19].
There are different frameworks in which musculoskeletal

modeling can be implemented. Physics-based engines present
a very accurate description of the musculoskeletal system.
However, they have limited contact-rich interaction and are
also highly computationally expensive (e.g. OpenSim [20]).
On the other hand, physics engines are more efficient compu-
tationally and they provide contact-rich interactions, however,
their musculoskeletal modeling support is extremely limited.
An example of this engine is MuJoCo [21]. MyoSuite is a
novel simulation framework that merges the most effective
features of two frameworks: It combines the accurate muscu-
loskeletal representation of OpenSim with the efficiency and
contact dynamics of MuJoCo [22]. To achieve a physiolog-
ically accurate representation, the models used in Myosuite
are adapted from OpenSim models to MuJoco models. This
adaptation is performed via the MyoSim pipeline [23], which
simplifies the model but still results in fast, stable, and realistic
simulations.

The computational power of MuJoCo, and thus MyoSuite,
allows for the simulations to be driven by deepRL. In deepRL,
neural networks are used to tackle reinforcement learning
problems, providing accurate neural representations that mimic
the brain [24] [25]. This approach allows to develop controllers
with high-dimensional inputs and outputs, making them more
similar to humans [26]. The integration of deepRL with neu-
romechanical simulations in MyoSuite offers the potential to
achieve human-like behavior as has already been demonstrated
in other studies [27] [28].

So far, the MyoSuite models have been successfully trained
for the upper body, being able to perform extremely complex
tasks [22]. However, the lower body model is still under devel-
opment. The aim of this thesis is to train the MyoLeg model
to perform standing balance with and without perturbations.

II. METHODOLOGY

The Myosuite framework allows tasks to be solved using
deepRL. DeepRL is the computational application of learning
from interaction, which is achieved by using neural networks
(NN). In these types of problems, the model learns what to
do by performing an action and obtaining a reward [29]. For
this thesis, the tasks are defined to be standing balance and
standing balance with perturbation.

There are four main elements in a reinforcement learning
problem: a policy, a reward function, an agent, and an envi-
ronment. The environment is the “world” in which the agent
operates. The agent receives constant feedback on its actions
through the reward function and the state of the environment.
That is achieved through the policy, which maps states to
actions, and the reward received the agent can decide which
action to take next. [29]. Fig 1 shows a diagram of the basic
functioning of deepRL problems.

During training, the optimal policy is found by using
Proximal Policy Optimization (PPO) algorithm. PPO has been
demonstrated to be stable and effective in high-dimensional
and continuous tasks, such as the ones in hand. An Actor-
Critic architecture is used, thus two NNs are trained, one for

Fig. 1: Deep Reinforcement Learning Diagram. Figure adapted
from [30]

the policy (actor-network) and one for the value function (critic
network). Both NN share an architecture formed by 4 layers:
one input, one output, and two hidden layers with 64 neurons
each. The activation function being used is a sigmoid function.

The agent is the myoLeg model (see Fig. 2). This model
was adapted from Rajagopal’s 2015 OpenSim model [31]. The
torso was removed in order to simplify the standing balance
task. The model consists of 20 degrees of freedom (DoF),
which are detailed in Table I. The model includes 80 actuators,
which represent 60 biological muscles.

Fig. 2: MyoLeg model, without the torso.

TABLE I: Degrees of Freedom of the lower limb model

Joint DoF Description

Pelvis 6

Translations in 3D
Rotation
Tilt
List

Hip 3
Flexion/Extension
Adduction/Abduction
Internal/External Rotation

Knee 1 Flexion/Extension

Ankle 2
Dorsiflexion/Plantarflexion
Inversion/Eversion

Toes 1 Flexion/Extension
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After taking an action, the agent receives information about
the state of the environment. In deepRL, the environment can
be fully or partially observable. In this work, the environment
was kept partially observable. For the tasks performed in this
work, the information that the model was receiving was: joint
position, joint velocities, muscle activations, the position of the
pelvis, and error of the pelvis with respect to its target position.
The total size of the observation space was 155, from which 35
observations correspond to joint position, 34 to joint velocity,
80 to muscle activations, 3 to the position of the pelvis and 3
to the error of the pelvis with respect to its target position.

The aim of the agent throughout the training is to maximize
a reward. In this case, the reward is based on the position
error, the metabolic cost of the muscles, and the position
of the center of mass with respect to the base of support.
The mathematical formulation can be seen in Eqn. 1. In this
equation, we, wm, and wc are the weights used for each of
the reward terms. Term rε refers to the Frobenius norm of the
pelvis position error, rmet is the metabolic cost of the muscles,
computed as the sum of activations squared normalized by
the number of muscles. Last, rcom is a binary term, which
represents whether the center of mass is within the base of
support or not.

R = we · rε + wm · rmet + wc · rCOM (1)

where:

rε = −1 · ∥Xtarget −Xcurrent∥F
rmet =

−1

Nmus

∑
a2i

rcom =

{
+1 if COM ∈ BoS

−1 if COM /∈ BoS

The base of support was defined as the polygon formed by
the x and y position of the toes and the calcaneus of both feet.
The position of the center of mass was computed as shown in
Eqn. 2, where X and M represent the position and mass of
the bodies respectively.

XCOM =

∑Nbodies

i=0 Xi ·Mi∑Nbodies

i=0 Mi

(2)

The horizon represents the extent to which the agent con-
siders the reward of its actions. For this task, it was set at
100 steps (1 step is 0.01 seconds) and the reward weights
we, wc, and wm were set to 1. The initial position was
prescribed for all joints and the target position was a range of
values for the pelvis. Both the initial and the target position
were kept constant during training and evaluation. With this
configuration, a 15M step training was run to obtain the
standing balance results.

For the standing balance with perturbation task, the pertur-
bation is a force applied at the pelvis. The force was modeled
to have a random magnitude between 1 and 50 Newtons (N),
applied in between the first 10 and 20 % of the episode. The
perturbation duration is 10 simulation steps (0.1 seconds). The
horizon was set to 200 steps, as the response to a perturbation
in humans lasts approximately 2 seconds [32]. Two 20M steps

training were run, the first with the perturbation applied in
the anterior-posterior (AP) direction and the second with the
perturbation applied in the mediolateral (ML) direction. A
transfer learning approach was applied; therefore, the training
was run on top of the most successful standing balance policy.

The standing balance policy was evaluated over 100
episodes. The standing balance with perturbation policies were
evaluated by testing the behavior over 200 episodes. The
success rate of the policies was calculated as shown in Eqn.
3. In this case, an episode was considered to be successful if
the model didn’t fall in the timespan of 700 steps.

%Success =
successfulEpisodes

totalEpisodes
· 100 (3)

III. RESULTS

This section presents the results obtained from the most
successful policies after training for standing balance and
standing balance with perturbation.

A. Standing Balance Task

A 15-million-step training was performed with the reward
function presented in Eqn. 1. Fig. 3 shows the mean reward
per episode. As can be seen, the reward increases until it
stabilizes at a value of 99. The success rate over 100 episodes
was computed for this policy, and the result was 100%.

Fig. 3: Evolution of the reward over the training steps of the
standing balance policy training.

When performing standing balance, the model is asked to
minimize the error in the pelvis with respect to its target
position. The mean error and 2 SD in the X, Y, and Z axis are
shown in Fig. 4. After the first 100 steps in which the model
changes position, it reaches a stable pose in which the error
oscillates around 0 cm.

In terms of muscle activity, most muscles show no or
very low activation. The activations driving the movement
come from the left vastus intermedius, left extensor digitorium
longus, right gluteus medius, right and left rectus femoris,
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and right and left tibialis anterior. These activations are non-
constant, and submaximal, with neither of them exceeding 0.5.
See Fig. 5 for an overview of all muscle activations.

Fig. 4: Mean pelvis error with 2 SDs for the standing balance
policy. From left to right: error in the x-axis, error in the y-
axis and error in the z-axis.

Fig. 5: Mean muscle activations for the standing balance
task. The left leg is presented on the right, the right leg
is presented on the left. The color map indicates muscle
activation levels, with dark blue representing no activation and
yellow representing maximum activation.

Joint angles and joint torques are displayed in Fig. 7. The
joint angles present a stable pose, which is non-symmetric in
the model. Regarding the torques, those coming from the hip
flexion and rotation, subtalar flexion, and MTP flexion show
small amplitude oscillations around 0 after stabilization of the

pose. Hip adduction, knee flexion, and left ankle flexion torque
also show oscillations, however, they are not centered around
0 meaning that there is some almost constant moment being
applied at those joints.

Last, the position of the center of mass with respect to the
base of support was extracted, this is shown in Fig. 6. With the
exception of the initial change in the position of the feet, the
base of support remains in the same configuration throughout
the whole simulation, with a small movement of the center of
mass.

Fig. 6: Zoomed in view of the movement of the COM within
the BoS for the standing balance policy. The dots represent the
position of the center of mass, turning lighter as the simulation
advances.

B. Standing Balance with Perturbation

Similarly to the standing balance task, the standing balance
with perturbation policies were evaluated over 200 episodes of
700 steps. In this evaluation, the success rate was computed.
For the AP perturbation, it is 96%, while for ML perturbation,
the success rate is 71%. Fig. 8 shows the distribution of the
perturbation magnitude and the step at which the perturbation
is applied. For the AP perturbation, the maximum that can be
sustained without falling is 50.0N, although there is a small
region of magnitudes for which the model still falls. In the ML
direction, the maximum magnitude borderline can be drawn
at 33.5N.

As a general note, to ease visualization and analysis, the
figures for the standing balance with perturbation tasks are
displayed in bins per perturbation magnitude. That is, from 0 to
50 N in increments of 10 N. Note that for the ML perturbation,
plots will only reach the range 30 - 40 N, since the maximum
perturbation that can be withstood is 33.5N. In the upcoming
figures, only the successful episodes are being considered

Figs. 9 and 10 show the mean error in the pelvis and mean
center of mass displacement for both perturbation types. Both
the displacement and the error begin with an oscillation that
then stabilizes, this oscillation is caused by the perturbation
applied. Perturbations up to 40N in the AP direction and up
to 30N in the ML direction have a very small effect on the
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Fig. 7: Mean joint angles and joint torques with 2SD for the standing balance (without perturbation) task. Right leg is shown
in purple and left leg is shown in green.

Fig. 8: Distribution of the perturbation magnitude and step in
which it was applied. On the left are the results for the AP
perturbation, on the right are those of the ML perturbation.
Colored in yellow are the combinations for which the model
falls.

error in the pelvis. In the last perturbation range, the effect
of the perturbation is larger, although it always stabilizes near
0 cm of error. Regarding the displacement of the COM, up
to 10N, it is almost negligible. Perturbations higher than 10N
cause a larger displacement of the com, although the model
can stabilize near the starting position.

The effect of the perturbations on the muscle activations was
analyzed. This is shown in Fig. 12 for the AP perturbation
and Fig. 14 for the ML perturbation. For simplicity, only
the active muscle pairs are shown, as all the other muscles
showed minimal muscle activation. For the AP perturbation,
the muscle activations are kept low throughout the whole
timespan. For perturbations up to 40 N, the muscle activations
remain mostly at the same activation level. However, for
the last perturbation range, there is more variability in the
activation of the muscles. Specifically, the left adductor longus,
right gluteus maximus, and right and left rectus femoris and
tibialis anterior show significant activation changes. Similarly,

Fig. 9: Mean error in the pelvis with 2SD for the standing
balance with perturbation task. AP perturbation is shown in
purple and the ML perturbation in green. From top to bottom:
errors in the x, y, and z-axis. Each column represents a range
of perturbation magnitudes.

in the ML direction, there is not much change in the activity
up to 30N. However, from that point, there is an increase in
the variability level of the activation, while always keeping
the activation submaximal. The most relevant muscles for
this perturbation direction are the left adductor longus, right
gluteus maximus, and right and left rectus femoris and tibialis
anterior.

Figs. 13 and 15 collect the joint angles and torques for
both perturbation directions. In both cases, the joint angles
are more symmetric than in the no-perturbation case, however,
for the ML perturbation the pose remains more symmetric
than for the AP one. For the AP perturbation, similarly to
the muscle activations, perturbations up to 40N have very
small effects on the model, while the last perturbation range
shows big variability both for the angles and torques. Besides,
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Fig. 10: Mean center of mass displacement with 2SD for the
standing balance with perturbation task. AP perturbation is
shown in purple and the ML perturbation in green. From top
to bottom: displacement on the x and y-axis. Each column
represents a range of perturbation magnitudes.

the oscillatory behavior exhibited in the joint angles and
torques of the no-perturbation case is greatly diminished.
Most of the torques converge toward 0 or very small values,
suggesting that those that do not (knee extension and ankle
plantarflexion torques) are the ones driving the movement.
In the ML perturbation, both joint angles and torques show
oscillations, although it is more remarkable for the joint
torques. Both angles and torques show a trend, increasing
the amplitude of the oscillations with the perturbation range.
Besides, similarly to the AP perturbation case, the variability
in the last perturbation range increases both for the angles
and the torques. In terms of joint angles, it is interesting to
see that both hips are externally rotated, which means that the
toes are pointed towards the plane in which the perturbation
is applied. Regarding the torques, as in the AP perturbation,
most of them converge towards 0. The ones that do not do so
are the hip flexion, knee extension, ankle plantarflexion, and
right subtalar torque.

Last, the effect of the perturbation magnitude on the COM
displacement was also studied. Fig. 11 shows the movement
of the center of mass for the AP and ML directions. In both
cases, the behavior is similar, with the displacement of the
COM being higher in the direction of the perturbation. That
is, for the AP perturbation, the displacement is greater in the
Y direction and for the ML perturbation, it is higher in the
X axis. Although it cannot be seen, the center of mass does
not go out of the base of support for any of the successful
episodes.

In order to be able to analyze the possible reasons that
might be making the model fall, separate plots were extracted
and included in Appendix A. Figs. 16 and 17 show the
muscle activation pattern and joint angles and torques for
the AP perturbation direction while Figs. 18 and 19 do so
for the ML perturbation. In terms of muscle activation, in
both perturbation directions, the muscles activated for the

Fig. 11: Zoomed-in view of the movement of the COM for
different perturbation ranges. From left to right, the AP and
ML perturbation respectively

unsuccessful trials are the same as in the successful ones. The
activation patterns are similar for successful and unsuccessful
trials until the 200-step mark, time at which the muscles begin
to activate more. It is relevant to note that for the AP direction,
the mean activations for the unsuccessful episodes are mostly
submaximal (except for the adductor longus), while for the
ML direction, the right tibialis anterior, right gluteus maximus,
left adductor longus, and left gluteus medius reach maximal
activations.

In terms of joint torques, similarly to the muscle activations,
the torques are stable and similar to the successful episodes
approximately until the 200-step mark for both perturbation
types. In the AP direction, after that mark, the joint torques
show that the hip flexion torque, as well as the left hip
adduction and rotation torques, are no longer able to converge
to the stable values. In the ML direction, something similar
happens, but in this case, it is the left hip flexion, right hip
adduction, left hip rotation, and knee flexion torques that are
not able to converge. This lack of stability in the torques, has
an effect on the joint angles for both perturbation directions,
causing them to be highly variable and become asymmetric.

IV. DISCUSSION

The goals of this thesis involve training the myoLeg model
to perform standing balance with and without perturbation
tasks and analyze its performance.

A. Standing Balance Task

As already mentioned, during training, a deepRL agent
aims to maximize the reward obtained. Fig. 3, shows the
reward obtained during the training of the standing balance
policy. This reward keeps increasing during training until it
reaches a maximum value of 99. The stagnation in the reward
generally means that the policy has been fully optimized, and
thus, the agent has finished learning. The reward reaching this
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Fig. 12: Mean muscle activation with 2SD per perturbation range for the AP perturbation. For simplicity, only the active muscle
pairs are presented, all the others showed minimal muscle activation.

Fig. 13: Mean joint angles and torques with 2SD for the standing balance with AP perturbation task. The top two row shows
the joint angles (the first row is the right side, the second row is the left side) and the last two rows show the joint torques
(the third row is the right side, the fourth row is the left side).

threshold indicates that the training was sufficiently long to
converge on a behavior; whether it is successful or not cannot
be exclusively determined by the training reward.

The standing balance policy was evaluated over 100
episodes, giving a success rate of 100%. This means that the
agent successfully kept balance for 600 steps on the episodes,
which was the minimum that was required for the standing
balance task to be deemed accomplished.

The policy is successful in reducing the error in the pelvis
with respect to the target position, especially in terms of
height, in which the standard deviation is almost null and the
error has a mean value of 0.2 mm upon stabilization. There
is, however, an oscillatory behavior present in all three axes,

which is especially significant in the X and Y directions. A
possible explanation for them could be the agent trying to
minimize the error in the pelvis in order to obtain a higher
reward. A possible solution to prevent them could be a term
in the reward function that reduces the movement of the pelvis,
such as a penalty for pelvis acceleration.

The muscle activations obtained from the training are low,
which is consistent with results obtained in other studies in
which low muscle activations are shown to be sufficient to
stand [33]. In humans, the central nervous system keeps most
of the muscles inactive to reduce the energy expenditure of the
task while using a few muscles to modulate the position of the
COM. The two main muscles used for this task in humans are
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Fig. 14: Mean muscle activation with 2SD per perturbation range for the ML perturbation. For simplicity, only the active
muscle pairs are presented, all the others showed minimal muscle activation.

Fig. 15: Mean joint angles and torques with 2SD for the standing balance with ML perturbation task. The top two row shows
the joint angles (the first row is the right side, the second row is the left side) and the last two rows show the joint torques
(the third row is the right side, the fourth row is the left side).

the rectus femoris and tibialis anterior [33]. Given Fig. 5, the
policy shows coherent results, as the activation of the rectus
femoris and tibialis anterior are the most prominent ones. The
other muscles that are active show a smaller activation when
compared to the aforementioned, but they are still influencing
the behavior. It is believed that they remain active to prevent
the model from collapsing, although they may also be having
an effect on the already-mentioned oscillations in the pelvis.

In humans, it is the coordinated action of the ankle, knee,
and hip torque that modulates the position of the center
of mass in order to maintain balance, although, for a quiet
stance, the highest contribution is expected to come from the
ankle moment. The ankle torque obtained as a result of the

simulation shows significantly different results for the right
and left leg, suggesting independent control of each of the
limbs. This could be arising from the non-symmetrical pose
in which the model is standing, as can be seen in the joint
angles. All joint torque shows a constant oscillatory behavior,
meaning that the torque is constantly being modulated. Most
of them oscillate around 0 Nm., however, the left ankle torque,
the knee flexion torque, and the hip adduction torque do not
show that behavior. It is believed that these torques are the
ones that keep the model from collapsing.

In humans, for balance to be achieved the main condition
is to keep the center of mass within the base of support. The
result of this policy shows reasonable human-like behavior in
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these terms, as apart from an initial change of position, the
center of mass remains at the same position with very small
variations, as shown in Fig. 6.

B. Standing Balance with Perturbation Task

For standing balance with perturbation tasks, the success
rate of the policy decreases with respect to the standing
balance without perturbation one. This allowed to conclude
the maximal perturbation that the agent can withstand with this
training. The agent is able to withstand higher perturbations
in the AP than in the ML direction, which is counterintuitive,
given that the base of support is larger in the frontal than in
the sagittal plane.

In the cases in which the policy is successful, the error in
the pelvis position remains small and stable. It is especially
remarkable that the oscillations mentioned in the stable po-
sition for the standing balance task are greatly reduced, and
the mean error remains centered around 0, both for the AP
and the ML perturbations. The displacement of the center of
mass shows a high deviation in the time region in which the
perturbation is applied. However, apart from that, the center of
mass displacement remains centered around 0, showing that
after perturbation, the model is able to return to the stable
position. When analyzing the movement of the center of mass
with respect to the perturbation applied, consistent results are
obtained. For the AP direction, the larger the perturbation,
the larger the movement in the medial plane. For the ML
perturbation, the opposite happens. The larger the perturbation,
the higher the movement in the frontal plane, as it is the
direction in which it is applied.

Response to AP perturbations is believed to be modulated
by ankle dorsiflexors and plantarflexors [34] thus, the response
seen in Fig. 12 in which the tibialis anterior increases its
activation with the perturbation magnitude, is consistent with
the expected behavior. The activation of the rectus femoris,
vastus intermedius, and the vastus medialis muscles can also
be explained, as they are muscles that act in the same plane as
the movement generated by the perturbation. Their role in this
case is the stabilization of the movement, as well as assisting to
keep the center of mass within the base of support. The other
active muscles show very low activation levels, with small
variations with the perturbation applied. The activation of these
muscles is necessary to prevent the model from collapsing.

In the ML direction, the response is normally regulated
by changing the hip loading and activating adductors and
abductors [34], depending on the direction of the perturbation.
In this case, since the perturbation is applied as a push from
right to left, it would be expected to have activation of the
left abductors and right adductors [35]. The model doesn’t
behave as expected, given that it is activating the left adductors
and the right gluteus. However, it is interesting to see that
the activation in the tibialis anterior and rectus femoris is
higher and more variable with perturbation force than in the
aforementioned muscles. These activations are not surprising,
given that it was found in other studies that in humans there are
muscle activations of muscles not belonging to the perturbation
plane [36]. Given the pose of the model, with both hips in

external rotation, it is believed that the tibialis anterior and
rectus femoris govern the response to the ML perturbation
while keeping the other active muscles as stabilizers.

Regarding the episodes for which the model falls, it depends
on the perturbation direction. For the AP direction, the model
only falls in 8 out of the 200 episodes that were run for
evaluation. There is not a clear limit in perturbation magnitude
that makes it fall, as the model can withstand perturbations
above and below these. In the ML direction, the number of
unsuccessful trials is larger (58 out of 200) and in this case,
there is a clear limit from which the model cannot withstand
perturbations.

For both perturbation directions, a pattern was found in
the unsuccessful trials before and after the 200-step mark.
For the unsuccessful ones, the mean muscle activations are
similar in pattern to those of the successful ones, although
higher in magnitude as the perturbation increases. A similar
pattern was found for the joint angles and torques. After 200
steps, the activation levels increase and so do the joint torques,
which diverge greatly from the torques in the successful trials.
This pattern suggests that the model is able to withstand the
perturbation in those 200 steps and that it may be falling from
trying to keep balance from a non-stable position.

To rule out the possibility of the model falling because of
the influence of the metabolic cost term, a separate training
and evaluation step was performed, setting the metabolic cost
term to 0. The result of the evaluation showed that the lack
of minimization in the metabolic cost made the model fall
in 100% of the cases. The response showed maximal muscle
activation in 22 muscles, out of which 13 were on the right
leg. These activations caused extremely high and asymmetrical
torques, that made the model collapse. Overall, this confirms
that the metabolic cost term is necessary for the model to be
able to withstand perturbations.

In order to find an explanation for why the model falls, we
must recall that a transfer learning approach was used, running
the training of standing balance with perturbation on top of
the standing balance without perturbation policy. Although this
policy was 100% successful in keeping balance, it was trained
to be able to perform this task from a stable position. It is
possible that, after applying the perturbation, the model was
not able to return to that stable position with low acceleration
of the center of mass that would keep it from deviating highly
from it. In that case, the model would not be able to stand,
given that it was not trained to learn how to do so.

Limitations to this work arise from the lack of the torso in
the simulations, which may introduce discrepancies with the
results in the literature. Furthermore, the oscillatory behavior
in the pelvis error for the standing balance policy may indicate
that an extra term is needed in the reward. This may also affect
the standing balance with perturbation policies, given that they
were trained on top of the standing balance one.

In terms of future work, addressing the aforementioned
limitations is extremely relevant to the performance of the
myoLeg model in standing balance. The oscillatory behavior
observed in the pelvis can be reduced by adding a corrective
term in the reward that penalizes the pelvis acceleration.
Furthermore, in order to prevent ”early” falls in the standing
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balance with perturbation policies, it is suggested to retrain
the standing balance policy, with more random starting points
in order for it to learn how to return to balance in a non-
stable position. As a suggestion, an additional term could be
added to the reward function, that gives a bonus for the ground
reaction forces being higher than 0, in order to ensure that
both feet stay on the ground and prevent changes of pose.
Additionally, incorporating the torso in the model will allow
for more realistic conclusions as to whether the myoLeg is
able to stand as humans do. The addition of the torso will very
likely require tuning the reward function, as now the model
will have different inertia and mass to balance. Obtaining
balance control for the myoLeg model with the torso will allow
for more accurate and realistic insight into the human control
of balance.

V. CONCLUSION

The goal of this thesis is to train the myoLeg model to per-
form standing balance and standing balance with perturbation
tasks. This is done with the aim of getting more insight into
human balance control.

The myoLeg model was successfully trained to perform
standing balance tasks, with a success rate of 100% over
100 episodes. The error in the pelvis and the displacement
of the center of mass were minimized, though they both show
oscillatory behavior, and the center of mass was continually
kept within the base of support. The muscle activations ob-
tained are low in magnitude and consistent with other studies.
This indicates that minimal muscle activation is sufficient for
standing. The joint torques were not as expected, but they can
be explained given the non-symmetrical pose in which the
model is standing.

Regarding the standing balance with perturbation tasks, the
results were achieved with a success rate of 96% for the AP
direction and 71% for the ML direction. This decrease was ex-
pected and allowed us to conclude the maximum perturbation
magnitude that can be withstood in both directions. The model
is able to withstand higher perturbations in the AP than in the
ML direction, this is counter-intuitive, given that the base of
support is larger in the frontal than in the medial plane. The
observed muscle activations were consistent with the literature
for the AP perturbations, with the ankle dorsiflexors governing.
For the ML perturbation case, the muscle activations were
not as expected, and it is the ankle dorsiflexors along with
the rectus femoris that are governing the response to those
perturbations.

NOTE FROM THE AUTHOR

All information related to the code used for this work can
be found in its GitHub repository.
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APPENDIX A
FIGURES INCLUDING THE FALLEN TRIALS

This appendix includes the mean muscle activations, mean joint angles, and mean joint torques figures used for the analysis
of possible reasons that might be making the model fall. For comparison, the figures include the mean per perturbation range
(only four ranges are shown) and the mean of the unsuccessful episodes. As in the other muscle activation figures, only the
active muscles are shown, as all the other show minimal muscle activations.

Fig. 16: Mean muscle activation with 2SD for AP perturbation including the unsuccessful trials.

Fig. 17: Mean joint angles and torques with 2SD for the standing balance with AP perturbation task including the unsuccessful
trials. The top two row shows the joint angles (the first row is the right side, the second row is the left side) and the last two
rows show the joint torques (the third row is the right side, the fourth row is the left side).
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Fig. 18: Mean muscle activation with 2SD for ML perturbation including the unsuccessful trials.

Fig. 19: Mean joint angles and torques with 2SD for the standing balance with ML perturbation task including the unsuccessful
trials. The top two row shows the joint angles (the first row is the right side, the second row is the left side) and the last two
rows show the joint torques (the third row is the right side, the fourth row is the left side).
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