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Abstract 

Introduction: An urge in the patient blood management and transfusion medicine landscapes to study patient 

outcomes is prevalent in pursuit of relieving transfusion dependency and enhancing patient-centredness. Clinical 

researchers prefer simple models and ease in their interpretability. The incentive by the Sanquin organization is to 

conduct mediation analysis – novel in this field of medicine. Literature offers studies with blood transfusion treated 

in terms of the product use, not yet through the lens of patient outcomes. A raw, patient-level dataset from the 

‘TOMaat' study (a double-randomized multi-centre control trial) from the elective orthopaedic surgery featuring 

533 variables was available for this research. 
 

Methodology: The research examines the role of red blood cell (RBC) transfusion up to Day 14 relative to post-

operative complications up to Day 14. Pre-operative anaemia is the exposure component in the mediation model. 

A blend of prediction and inference tools were utilized in supervised machine learning model development and 

mediation analysis on a sample size of 2426 patients. Partial dependence plots, odds ratios and coefficients yielded 

effect estimates from non-parametric (random forest (RF)) and parametric models (logistic regression (LREG) and 

lasso). The raw dataset was subject to thorough variable selection to reduce the number of input variables from 

533 to 41 and 32. Respectively, this applies to the models with post-operative complication up to Day 14 (Case 

COM) and RBC transfusion up to Day 14 (Case RBC) being the target dependent variables. Lasso led to a further 

reduction of input variables to 11-12 and 8 (COM and RBC, respectively). Due to excessive data missingness (34% 

in COM) and a free text field format (RBC) of event dates, massive data cleaning efforts led to establishing 

pessimistic and optimistic scenarios (COMPES, COMOPT) to sequence the RBC and COM events in time. 
 

Results: All 12 supervised learning models display moderate performance in terms of the AUC (0.63-0.71) with no 

significant difference between the RF, tuned RF, LREG and lasso models (built per each Case RBC, COMPES, and 

COMOPT). Strong confounding variables were consolidated from the inference insights and thoroughly validated with 

the clinical expert leading to 10 strong confounders for the mediation model. RBC transfusion is a statistically 

significant predictor for COMPES based on LREG and lasso; however, opposing results are found for COMOPT. Different 

results may be observed when examining pre-operative anaemia in silo using descriptive statistics (p<0.001 for 

COMPES and COMOPT, chi-squared test) versus in the presence of other covariates resulting in low variable 

importance based on the supervised learning models. Extreme implications due to data missingness were visible 

in mediation analysis since opposing findings were observed for these two scenarios. RBC transfusion mediates 

the relationship between pre-operative anaemia and post-operative complications in the pessimistic scenario 

(ACME of 0.0445, 95% CI of [0.0268; 0.0700]) whereas there is no significant mediation in the optimistic scenario. 
 

Discussion: RBC transfusion was not previously studied as a mediator between pre-operative anaemia and patient 

outcomes in elective orthopaedic surgery. Three key takeaway messages are proposed based on this research: 

[1] The opposing results of mediation analysis lead to a clear prompt for improving the mediation analysis 

model to resolve current bias, or digital maturity in hospitals. It is advised to bring the attention towards 

developing robust data acquisition strategies upstream in the data workflow processes to mitigate risks 

tied to missingness or unstructured data. This advancement can then offer a stronger platform for 

analyzing patient outcomes downstream. Otherwise, inference among key variables is hardly deduced, 

and decision-making tied to transfusion dependency and patient-centredness are very limited.  

[2] Transfusion may be used as a dependent variable for modelling. Nevertheless, careful consideration must 

be given to the choice of input variables that shall not encompass its triggers, such as blood loss or the 

haemoglobin level. Documenting transfusion triggers and patient consent in databases is a pre-requisite 

to avoid modelling flaws. 

[3] The high complexity of transfusion medicine may lead to the need of developing models more complex 

than parametric models. Other advanced analytic (‘black box’) methods may also offer inference insights. 
 

Conclusion: The study offers a roadmap for treating (RBC) transfusion and patient outcomes in supervised learning 

modelling and mediation analysis. Strong confounding components were extracted from the inference outputs and 

validated using clinical insight. RBC transfusion mediates the relationship between pre-operative anaemia and 

post-operative complications up to Day 14 in the pessimistic scenario, yet not in the optimistic scenario. The 

mediation analysis approach shall be improved to deal with prevailing bias. Next to it, the opposing results due to 

extensive missingness of the post-operative complication dates prompt for new project incentives and 

advancements in data acquisition strategies in the PBM landscape. 
 

Keywords: Red blood cell transfusion, post-operative complications, pre-operative anaemia, elective orthopaedic 

surgery, mediation analysis, supervised learning, patient blood management. 



Contents  Master Thesis Report 

 viii 

Contents 

List of Figures xi 

List of Tables xiv 

List of Abbreviations xv 

Established Terminology xvi 

Chapter 1   | Introduction  1 

1.1. The Urgent Need to Tackle the Burden on Healthcare due to Anaemia and Transfusion 

Dependency 1 

1.2. The Four Hypotheses, the Confounding Phenomenon and the Research Gap  2 

1.3. The Anaemia Definition and the Alarming Prevalence 4 

1.4. Allogeneic RBC Transfusions from the Healthcare Quality Perspective 4 

1.5. Transfusion Alternatives, Patient Blood Management and the Current Gaps 5 

1.6. ‘TOMaat’: Transfusion Data Availability from a Randomized Study 7 

1.7. Challenges in Transfusion Data Availability in the Netherlands 7 

1.8. The Intention of the Study 8 

Chapter 2   | Theoretical Background and Literature Review 11 

2.1. Supervised Statistical Learning and Its Applications in Transfusion Medicine and PBM 11 

2.2. Considerations for Choosing a Supervised Statistical Learning Model 12 

2.3. Model Performance and (Cross-)Validation 15 

2.4. Causal Inference and Confounding 16 

2.5. Mediation Analysis 17 

2.6. Summary and Conclusion 17 

Chapter 3   | Methodology and Experimental Setup 19 

3.1. Data Exploration and Data Cleaning 19 



Contents  Master Thesis Report 

 ix 

3.2. Variable Selection 32 

3.3. Univariate Tests and Visualizations in Exploratory Data Analysis 36 

3.4. Choices for Supervised Learning Model Development and (Cross-) Validation 36 

3.5. Choices for the Selection of Strong Confounders 39 

3.6. Mediation Model Setup and Mediation Analysis Execution   39 

Chapter 4   | Results 42 

4.1. Univariate Testing and Exploratory Data Analysis 42 

4.2. Prediction and Inference Results 47 

4.3. Mediation Analysis Results 51 

4.4. Summary of Findings 53 

Chapter 5   | Discussion 54 

5.1. Remarks on Statistical Significance of Input Variables Examined in Univariate Tests versus in a 

Multivariate Model 54 

5.2. Remarks on Strengths of Supervised Learning Models 55 

5.3. Remarks on Limitations and Potential Improvements of Supervised Learning Models 56 

5.4. Remarks on the Opposing Outputs of the Mediation Model as an Implication of Data 

Missingness in the Post-hoc Study 57 

Chapter 6   | Recommendations on Future Work 58 

6.1. Generalizability and the Degree of Innovation 58 

6.2. Recommendations on Treating Transfusion as a Dependent Variable in Model Development 59 

6.3. Tips on Alternative Modelling Setup and Follow-up Data-driven Project Incentives involving 

Transfusion Data and Patient Outcomes 60 

Chapter 7   | Conclusion 63 

References 65 

Appendix A: Exploratory Data Analysis 69 

Appendix B: Model Performance Results 81 



Contents  Master Thesis Report 

 x 

Appendix C: Variable Importance (Supplemental Results) 87 

Appendix D: Mediation Analysis (Supplemental Results) 104 

Appendix E: R Programming (Code Disclosure) 109 

Appendix F: Literature Search Record 126 

 



  Master Thesis Report 

 xi 

List of Figures 

Figure 1-1: The four hypotheses and the detailed version of the mediation analysis model. 2 

Figure 2-1: The trade-off between model flexibility and interpretability for various statistical learning method; 

Excerpted from James et al. (2021). 13 

Figure 2-2: Confusion matrix reflecting a binary dependent variable (a binary classifier): Excerpted from Lever et 

al. (2016). 15 

Figure 2-3: An illustration of confounding: The treatment, 𝐴, and the outcome, 𝑌, share a common cause, 𝐿; 

Excerpted from Hernán and Robins (2020). 16 

Figure 2-4: Mediation analysis model uncorrected (B, 𝑢𝑛𝑐𝑜𝑟𝑟) and corrected (C) for confounding. 17 

Figure 3-1: Bird view on the key methodology steps. 20 

Figure 3-2: Patient flow diagram of the ‘TOMaat’ study. 22 

Figure 3-3: Patient flow diagram of the ‘TOMaat’ study: Detailed version with patient counts to reflect the double 

randomization. 23 

Figure 3-4: Distribution of the occurrence (Day) of the first post-operative RBC transfusion up to Day 14; intra-

operative RBC transfusion is treated separately. 24 

Figure 3-5: Distribution of the occurrence (Day) of the first RBC transfusion up to Day 14 after incorporating intra-

operative RBC transfusion. 25 

Figure 3-6: Treemaps of the occurrence (Day) of the first RBC transfusion administered solely post-operatively 

(left) and upon incorporating the intra-operative RBC transfusion (right). 25 

Figure 3-7: Distribution of the occurrence (Day) of the complications up to Day 14; known occurrences only are 

captured in the plot (count 508, 65.8%). 26 

Figure 3-8: The counts of patients in relation to the number of complications up to Day 14 per patient; all 

complications up to Day 14 are captured. 26 

Figure 3-9: Insight into the extent of missingness for complication dates: Counts of complications up to Day 14 

relative to 15 complication types. 27 

Figure 3-10: Insight into the extent of missingness for complication dates: Proportions of complications up to Day 

14 relative to 15 complication types. 27 

Figure 3-11: Sankey diagrams with proportions of patients who underwent RBC transfusion (if any) and/or post-

operative complication up to Day 14 (if any): Pessimistic (left) and optimistic scenario (right). 31 

Figure 3-12: Consolidation of the variable selection process. 33 

Figure 3-13: Modelling setup of Case RBC, COMPES and COMOPT. 36 

Figure 3-14: Setup and components of the mediation model. 39 

Figure 4-1: Stratification for the RBC transfusion: Case COMPES (left, p<0.001), COMOPT (right, p<0.001). 45 

Figure 4-2: Stratification for pre-operative anaemia: Case COMPES (top left, p=0.002), COMOPT (top right, p=0.052), 

RBC (bottom left, p<0.001). 46 

Figure 4-3: Model performance results: 95% CI’s of the AUC discrimination measures for each Case and model.

 47 

 

Figure A-1: Stratification for the participating hospitals: Case COMPES (top left, p<0.001), COMOPT (top right, 

p<0.001), RBC (bottom left, p<0.001), and LOS (bottom right). 71 

Figure A-2: Stratification for the surgery type (total hip or knee replacement): Case COMPES (top left, p=0.107), 

COMOPT (top right, p=0.265), RBC (bottom left, p<0.001), and LOS (bottom right). 72 

Figure A-3: Stratification for the surgery type (primary or revision): Case COMPES (top left, p=0.162), COMOPT (top 

right, p=0.330), RBC (bottom left, p=0.002), and LOS (bottom right).   

 73 

Figure A-4: Stratification for pre-operative anaemia: Case COMPES (top left, p=0.002), COMOPT (top right, p=0.052), 

RBC (bottom left, p<0.001), and LOS (bottom right). 74 

Figure A-5: Stratification for EPO: Case COMPES (top left, p=0.098), COMOPT (top right, p=0.147), RBC (bottom left, 

p=0.726), and LOS (bottom right). 75 

Figure A-6: Stratification for the intra-operative cell saver: Case COMPES (top left, p=0.100), COMOPT (top right, 

p=0.150), RBC (bottom left, p=0.427), and LOS (bottom right). Only patients with hip replacement could 

qualify for a cell saver. 76 

Figure A-7: Stratification for the intra-operative cell saver collection and reinfusion (numeric format, patients with 

cell saver only): Case COMPES (top left), COMOPT (top right), and RBC (bottom left). Only patients with hip 

replacement could qualify for a cell saver (thus, had non-zero cell saver collection and reinfusion). 77 

Figure A-8: Stratification for the intra-operative cell saver collection and reinfusion (numeric format): Case LOS: 

patients with cell saver only (top), and all patients (bottom). Only patients with hip replacement could qualify 



  Master Thesis Report 

 xii 

for a cell saver (thus, had non-zero cell saver collection and reinfusion).  

 78 

Figure A-9: Stratification for the blood loss (numeric format): Case COMPES, COMOPT, and RBC (top), and LOS 

(bottom, stratified for pre-operative anaemia). 79 

Figure A-10: Stratification for the RBC transfusion: Case COMPES (top left, p<0.001), COMOPT (top right, p<0.001), 

and LOS (bottom right). 80 

 

Figure B-1: ROC curves for Case RBC[RF] (left) and RBC[tuned RF] (right). 81 

Figure B-2: Performance measures relative to cut-off levels for Case RBC[RF] (left) and RBC[tuned RF] (right). 81 

Figure B-3: Out-of-bag error progression for Case RBC[RF] (left) and RBC[tuned RF] (right). 81 

Figure B-4: Calibration plot for Case RBC[RF] (left) and RBC[tuned RF] (right). 81 

Figure B-5: ROC curves for Case RBC[LREG] (left) and RBC[lasso] (right). 82 

Figure B-6: Performance measures relative to cut-off levels for Case RBC[LREG] (left) and RBC[lasso] (right). 82 

Figure B-7: Calibration plot for Case RBC[LREG] (left) and RBC[lasso] (right). 82 

Figure B-8: Convergence of coefficients to zero versus the regularization parameter, log(lambda): RBC[lasso]. 82 

Figure B-9: ROC curves for Case COMPES[RF] (left) and COMPES[tuned RF] (right). 83 

Figure B-10: Performance measures relative to cut-off levels for Case COMPES[RF] (left) and COMPES[tuned RF] 

(right). 83 

Figure B-11: Out-of-bag error progression for Case COMPES[RF] (left) and COMPES[tuned RF] (right). 83 

Figure B-12: Calibration plot for Case COMPES[RF] (left) and COMPES[tuned RF] (right). 83 

Figure B-13: ROC curves for Case COMPES[LREG] (left) and COMPES[lasso] (right). 84 

Figure B-14: Performance measures relative to cut-off levels for Case COMPES[LREG] (left) and COMPES[lasso] 

(right). 84 

Figure B-15: Calibration plot for Case COMPES[LREG] (left) and COMPES[lasso] (right). 84 

Figure B-16: Convergence of coefficients to zero versus the regularization parameter, log(lambda): COMPES[lasso].

 84 

Figure B-17: ROC curves for Case COMOPT[RF] (left) and COMOPT[tuned RF] (right). 85 

Figure B-18: Performance measures relative to cut-off levels for Case COMOPT[RF] (left) and COMOPT[tuned RF] 

(right). 85 

Figure B-19: Out-of-bag error progression for Case COMOPT[RF] (left) and COMOPT[tuned RF] (right). 85 

Figure B-20: Calibration plot for Case COMOPT[RF] (left) and COMOPT[tuned RF] (right). 85 

Figure B-21: ROC curves for Case COMOPT[LREG] (left) and COMOPT[lasso] (right). 86 

Figure B-22: Performance measures relative to cut-off levels for Case COMOPT[LREG] (left) and COMOPT[lasso] 

(right). 86 

Figure B-23: Calibration plot for Case COMOPT[LREG] (left) and COMOPT[lasso] (right). 86 

Figure B-24: Convergence of coefficients to zero versus the regularization parameter, log(lambda): COMOPT[lasso].

 86 

 

Figure C-1: Case RBC[RF]: Variable importance plot for all input variables. 87 

Figure C-2: Case RBC[RF]: Partial dependence plots for pre-operative anaemia (left), and age (right). 87 

Figure C-3: Case RBC[tuned RF]: Variable importance plot for all input variables. 88 

Figure C-4: Case RBC[tuned RF]: Partial dependence plots for pre-operative anaemia (left), and age (right). 88 

Figure C-5: Case RBC[LREG]: Coefficients of all inputs. 90 

Figure C-6: Case RBC[LREG]: Odds ratios of all inputs. 91 

Figure C-7: Case RBC[lasso]: Non-zero coefficients of the inputs. 91 

Figure C-8: Case COMPES[RF]: Variable importance plot for all input variables. 92 

Figure C-9: Case COMPES[RF]: Partial dependence plots for pre-operative anaemia (left), RBC transfusion (middle), 

and age (right). 92 

Figure C-10: Case COMPES[tuned RF]: Variable importance plot for all input variables. 93 

Figure C-11: Case COMPES[tuned RF]: Partial dependence plots for pre-operative anaemia (left), RBC transfusion 

(middle), and age (right). 93 

Figure C-12: Case COMPES[LREG]: Coefficients of all inputs. 95 

Figure C-13: Case COMPES[LREG]: Odds ratios of all inputs. 96 

Figure C-14: Case COMPES[lasso]: Non-zero coefficients of the inputs. 97 

Figure C-15: Case COMOPT[RF]: Variable importance plot for all input variables. 98 

Figure C-16: Case COMOPT[RF]: Partial dependence plots for pre-operative anaemia (left), RBC transfusion 

(middle), and age (right). 98 

Figure C-17: Case COMOPT[tuned RF]: Variable importance plot for all input variables. 99 



  Master Thesis Report 

 xiii 

Figure C-18: Case COMOPT[tuned RF]: Partial dependence plots for pre-operative anaemia (left), RBC transfusion 

(middle), and age (right). 99 

Figure C-19: Case COMOPT[LREG]: Coefficients of all inputs. 101 

Figure C-20: Case COMOPT[LREG]: Odds ratios of all inputs. 102 

Figure C-21: Case COMOPT[lasso]: Non-zero coefficients of the inputs. 103 



  Master Thesis Report 

 xiv 

List of Tables 
Table 1-1: Boundaries of the dependent variables (target patient outcomes) and corresponding Cases. 8 

Table 3-1: Boundaries of the dependent variables (target patient outcomes) and corresponding Cases (excerpt of 

Table 1-1). 21 

Table 3-2: Number of data fields in raw dataset per segment of the clinical path. 23 

Table 3-3: Four patient groups useful for establishing the dependent variables defined up to Day 14. 28 

Table 3-4: Patient counts for the pessimistic scenario. 29 

Table 3-5: Patient counts for the optimistic scenario. 29 

Table 3-6: Metadata overview of input variables after subset selection (NA’s = missing data). 34 

Table 3-7: Variables excluded for LREG and lasso modelling due to sparse data issues. 38 

Table 3-8: Specifications of the components in the mediation model. 40 

Table 3-9: Logistic regression models for the mediation model. 40 

Table 4-1: Target patient outcomes and corresponding Cases (Table 3-1 adjusted upon data preparation). 42 

Table 4-2: Descriptive statistics and EDA results: Insights on associations among selected input variables (key 

patient subgroups) and target patient outcomes (Cases). 43 

Table 4-3: Hyperparameter tuning results for RF models upon 5-fold cross-validation and random search. 47 

Table 4-4: Regularization results for lasso models. 47 

Table 4-5: Variable importance results per Case and model for each input variable, accompanied by validation 

using the clinical insight. 48 

Table 4-6: Strong confounders for pessimistic and optimistic scenarios in accordance with the supervised 

learning (dark green) and clinical perspectives (bright green). 50 

Table 4-7: Statistical importance of RBC transfusion in terms of coefficients, odds ratios and p-values: LREG and 

lasso models. 51 

Table 4-8: Statistical importance of RBC transfusion in terms of odds ratios, odds and ranking (from among 41 

input variables): RF and tuned RF models. 51 

Table 4-9: Effect estimates in terms of the coefficients and odds ratios for each path in the mediation model. 52 

Table 4-10: Mediation analysis results (the Quasi-Bayesian Confidence Intervals method). 52 

 

Table A-1: Descriptive statistics and EDA results: Insights on associations among selected input variables (key 

patient subgroups) and target patient outcomes (Cases). 69 

 

Table D-1: Causal mediation analysis results (pessimistic scenario): Quasi-Bayesian Confidence Intervals Method 

(Inference Conditional on the Covariate Values). 104 

Table D-2: Causal mediation analysis results (pessimistic scenario): Nonparametric Bootstrap Confidence 

Intervals with the Percentile Method, 1000 simulations (Inference Conditional on the Covariate Values). 104 

Table D-3: b- and c’-path (model.y, pessimistic scenario): Coefficients. 105 

Table D-4: b- and c’-path (model.y, pessimistic scenario): Odds ratios. 105 

Table D-5: Causal mediation analysis results (optimistic scenario): Quasi-Bayesian Confidence Intervals Method 

(Inference Conditional on the Covariate Values). 106 

Table D-6: Causal mediation analysis results (optimistic scenario): Nonparametric Bootstrap Confidence Intervals 

with the Percentile Method, 1000 simulations (Inference Conditional on the Covariate Values). 106 

Table D-7: b- and c’-path (model.y, optimistic scenario): Coefficients. 107 

Table D-8: b- and c’-path (model.y, optimistic scenario): Odds ratios. 107 

Table D-9: a-path (model.m): Coefficients. 108 

Table D-10: a-path (model.m): Odds ratios. 108 

 

Table F-1: Search string for literature search. 126 

  



  Master Thesis Report 

 xv 

List of Abbreviations 
Abbreviation Term 

COM post-operative complication up to Day 14 (dependent variable) 

Hb haemoglobin 

LREG logistic regression 

PBM Patient Blood Management 

PDP partial dependence plot 

RBC red blood cells, or red blood cell transfusion up to Day 14 (dependent variable) 

RF random forest 

SME subject matter expert 

  

  

  

  

  

  

 



  Master Thesis Report 

 xvi 

Established Terminology 

At the cross-section of data science and epidemiology, the same terms may represent different 

concepts. Hence, for clarity and consistency across the text, the following terminology is established. 

The use of synonyms is restricted. 

 
Table 1: Established Terminology. 

Term Explanation Synonyms 

data field raw data column in a dataset before data exploration 

some of which can be empty or with a single unique 

value 

column, data 

column, field, data 

field, variable 

variable data column in a dataset after data exploration and 

after data preparation that is considered (and can be 

eventually included) for modelling or intermediate 

steps in data preparation; 

variables can be input or output variables, or 

intermediate variables necessary to establish 

independent or dependent variables 

independent 

variable, input 

variable 

variable that serves as an input variable into a model 

and that has at least two unique values 

predictor, feature, 

variable 

dependent variable the resulting response (outcome) variable with which 

independent variables can be associated to various 

extent; 

in this work, there are two dependent variables for 

supervised machine learning model development 

(RBC transfusion, and post-operative complications) 

outcome variable, 

response, response 

variable,  

output variable 

variable 

importance, 

statistical 

importance (of a 

variable)  

an association between an independent and a 

dependent variable that can be measured as 

statistical significance or effect (given a specific level 

of statistical significance, ) 

association, strong 

association 

statistically 

significant predictor 

(variable) 

an independent variable of statistical significance of a 

specific level of statistical significance, , with 

respect to the dependent variable 

predictor, strongly 

associated predictor 

(variable) 

effect variable importance measure, i.e. measured using 

odds ratios (given a specific level of statistical 

significance, ) 

- 

exposure terms denoting additional model components 

(variables) relevant for the mediation analysis 

method 

- 

mediator 

confounder 



1 | Introduction  Master Thesis Report 

 1 

Chapter 1   |  Introduction  

1.1. The Urgent Need to Tackle the Burden on Healthcare due to Anaemia and 

Transfusion Dependency 
 

Anaemia and transfusion dependency impose a burden on healthcare systems (WHO, 2021). 

Alarmingly, statistics indicate that roughly every fourth person on earth has anaemia (Safiri et al., 2021) 

which is equivalent to more than two billion people. Anaemia is a blood disorder defined as a low level 

of haemoglobin indicating lower capacity of the blood to transport oxygen to the body’s tissues (WHO, 

1968). Anaemia is a “serious global public health problem” because it causes negative impacts on 

people’s health, such as fatigue, weakness, dizziness, or shortness of breath, to name a few (WHO, 

2023). Thus, anaemia may worsen people’s quality of life (WHO, 2023). For anaemic patients in medical 

or surgical settings, transfusion is typically a common treatment option (WHO, 2021). Hence, in the 

context of anaemia, healthcare systems carry a load of dependency on transfusions (WHO, 2021) 

coupled with a resulting burden in terms of logistics, costs, or questionable safety and efficacy. Still, 

there is a clinical need to bring further clarity on the role of red blood cell (RBC) transfusions in medical 

or surgical settings given that a patient receives foreign (=allogeneic) blood from a donor. As an 

example, we may ask this question to trigger patient-centred initiatives in a surgical setting: 

 

Is RBC transfusion harmful in terms of the increased risk for poor post-operative patient outcomes in 

a specific patient group? 

 

Blood health is a term used more and more commonly to emphasize the approach of treasuring a 

patient’s own blood as a liquid organ. Next to it, Patient Blood Management (PBM) is a concept in 

medicine that places importance on cherishing a patient’s own blood (WHO, 2021; Shander et al., 

2022). In this thesis, we adhere to the most recent global definition of PBM, endorsed by 25+ medical 

societies, from the publication by Shander et al. (2022): 

 

“Patient blood management is a patient-centered, systematic, evidence-based approach 

to improve patient outcomes by managing and preserving a patient’s own blood, while 

promoting patient safety and empowerment.” 

 

PBM has a tremendous potential for relieving the burden on healthcare caused by anaemia and 

transfusion dependency, yet there are unmet needs concerning PBM implementation. On one hand, 
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various healthcare establishments across the globe have already implemented and evaluated PBM 

programmes and strategies to tackle transfusion dependency tied to anaemia (WHO, 2021; So-Osman, 

2017). On the other hand, the unmet needs were addressed recently in the World Health Organization’s 

policy brief report titled The Urgent Need to Implement Patient Blood Management (WHO, 2021). 

Executing a data-driven project in conjunction with this thesis serves to respond to this urgent need. 

 

Since 1998, in accordance with the Blood Supply Act (‘Wet inzake Bloedvoorziening’), Sanquin has been 

the only organization in the Netherlands authorized to collect, process and distribute blood from donors 

(Sanquin, 2023a, Sanquin, 2023b). As stated in its 2021 Annual Report, anaemia is currently the 

#1 medical priority for Sanquin Research (Sanquin Blood Supply Foundation, 2021). Sanquin’s staff 

specialized in PBM and epidemiology in transfusion medicine identifies a clinical need for practising 

evidence-based medicine to a greater extent across the PBM landscape. The motive is to determine the 

role of RBC transfusion through executing data-driven projects – by drawing insights from patient 

medical records in medical or surgical settings. A patient-level dataset shall contain the patient history, 

transfusion data and patient outcomes. Also, a key criterion is robust data acquisition. For this project, 

Sanquin provides a patient-level dataset that was collected for the purpose of a double-randomized 

controlled trial in the elective orthopaedic surgery setting in the Netherlands. 

 

In pursuit of tackling the burden due to anaemia and transfusion dependency, the research serves to 

investigate and implement selected, suitable methodologies in line with evidence-based medicine – to 

bring greater granularity to scientific evidence. In this work, the term granularity is equivalent to 

distinguishing the level of detail when insights are drawn from available data. Eventually, the use of the 

actual evidence obtained during this research project is left to the careful consideration of healthcare 

experts, especially, due to the age of the dataset. The data collection occurred during 2004-2009 (So-

Osman et al., 2014a; So-Osman et al., 2014b). 

 

1.2. The Four Hypotheses, the Confounding Phenomenon and the Research Gap  
 

Hypothesis 1: The Transfusion Medicine Unit at Sanquin Blood Bank brings forth a hypothesis that RBC 

transfusion mediates the relationship between pre-operative anaemia and poor post-operative patient 

outcomes. Figure 1-1 below illustrates the hypothesis in a diagram. RBC transfusion follows pre-

operative anaemia (the exposure component) because anaemia is often a trigger (predictor) for RBC 

transfusion. 

 

 
Figure 1-1: The four hypotheses and the detailed version of the mediation analysis model (allogeneic = a 

transfusion recipient accepts foreign blood from a donor; RBC = red blood cell). 

 

A method commonly used in health and social sciences to test for mediation is mediation analysis 

whose implementation Sanquin strongly prefers for this project. 
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In epidemiology, the phenomenon when a variable significantly affects both model components (such 

as the exposure as well as the patient outcomes) is known as confounding (Hernán & Robins, 2020). 

 

On behalf of Sanquin, dr. Cynthia So-Osman is a transfusion specialist dedicated to improving strategies 

in PBM. She is a contributor to the 2021 WHO report and claims that studying mediation and the 

confounding phenomenon in transfusion medicine and PBM is currently a research gap. Dr. Judith 

Rijnhart is an SME in mediation analysis who currently resides with the College of Public Health at the 

University of South Florida. She advises on the complexity of the problematics through introducing a 

total of three pairs of confounders. Subsequently, the model in Figure 1-1 is accompanied by three more 

hypotheses. 

 

Hypothesis 2: There are confounding variables that affect both: 

• Pre-operative anaemia (the exposure), and 

• Post-operative complications (the patient outcomes). 

 

Hypothesis 3: There are confounding variables that affect both: 

• Pre-operative anaemia (the exposure), and 

• Allogeneic RBC transfusion (the mediator). 

 

Hypothesis 4: There are confounding variables that affect both: 

• Allogeneic RBC transfusion (the mediator), and 

• Post-operative complications (the patient outcomes). 

 

Clinical researchers including transfusion professionals desire simple models and ease in their 

interpretability despite high complexity of transfusion medicine. Therefore, it is wise to start with a 

simple mediation model if no previous work is available with the dataset at hand particularly involving 

the desired dependent variables. Next, it is essential to note two considerations to frame the project 

scope: 

 

[1] From among all available confounders, strong confounders (defined further below in this 

section) will be selected only. 

 

[2] Pre-operative anaemia is not approached as a dependent variable in the model because the 

data collection of the dataset at hand (further elaborated in Section 1.6.) was not designed to 

be sufficiently vigorous for this purpose. In the project, this circumstance leads to tackling 

Hypotheses 1 and 4. Hence, Hypotheses 2 and 3 are out of scope. 

 

In regard to the abundance of variables in the raw dataset (Section 1.6. and Section 3.1.1.), the 

execution of this data-driven research project revolves around a combination of two applied statistical 

(learning) methods. 

 

In pursuit of testing Hypothesis 4: The plan is to build interpretable, supervised machine learning 

models of such choice that insights pertaining to variable importance can be retrieved. (i.e. Is a variable 

a statistically significant predictor?) Strong confounders will be identified as the intersection of the 

strong predictors for the two dependent variables: 

• Allogeneic RBC transfusion (the mediator), and 

• Post-operative complications (the patient outcomes) 

A round of validation through integrating the clinical insight will be required for the final selection of 

strong confounders. 

 

In pursuit of testing Hypothesis 1: Mediation analysis will be conducted as the project capstone. Per 

Figure 1-1 shown earlier, the mediator under consideration is allogeneic RBC transfusion in the 
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relationship between pre-operative anaemia and post-operative complications. (Is allogeneic RBC 

transfusion harmful in the given clinical setting?)  

 

The following sections are dedicated to further introducing the reader to the problem context. In other 

words, is testing Hypotheses 1 and 4 the core problem?  

 

1.3. The Anaemia Definition and the Alarming Prevalence 
 

Anaemia is defined as a health condition when a haemoglobin (Hb) level in the blood dropped below a 

threshold, specifically, below 12 g/dl for non-pregnant women, below 11 g/dl for pregnant women, and 

below 13 g/dl for men (WHO, 1968). A normal Hb level is essential for the proper transport of oxygen 

through the cardiovascular system to organs and tissues in the human body (WHO, 2023). In this regard, 

anaemic patients represent a fragile patient group within a patient population because the restricted 

oxygen transport leads to limitations during the regenerative process, for instance, after surgery (in a 

post-operative clinical setting). 

 

Anaemia is not a disease. Anaemia is a health condition, a blood disorder, a symptom, a sign, or a signal 

of something worse ahead. Or it can be one of many symptoms that accompany an already existing 

disease. “Anaemia is often a comorbidity in patients with common noncommunicable diseases”, such 

as diabetes, cardiovascular disease, chronic kidney disease (WHO, 2021). Also, patients with cancer, 

surgical, medical, and obstetric patients, or patients with chronic diseases experience anaemia (WHO, 

2021; Blood and Beyond, 2021). Upon detecting anaemia, adequate treatment to target the core 

deficiency is advised by medical specialists. According to WHO (1968): “Anaemia is considered to be a 

late manifestation of nutritional deficiency, and even mild anaemia is not the earliest sign of such a 

deficiency… the object of therapy is to correct the underlying deficiency rather than merely its 

manifestation.” 

 

Anaemia is a global health issue because it imposes a burden on healthcare systems (WHO, 2021; 

Blood and Beyond, 2021; Safiri et al., 2021). Safiri et al. (2021) estimate the global prevalence of 

anaemia to be 23% equivalent to roughly 1 in 4 people on earth. WHO (2021) reports an alarming 

anaemia prevalence of 1.95-2.36 billion people worldwide out of which 1.24-1.46 billion people have 

iron deficiency anaemia. Estimates indicate that additional 0.98-1.18 billion people (with isolated 

micronutrient deficiency) may progress towards anaemia (WHO, 2021). WHO (2021) also forecasts that 

the statistics of only a few countries are heading towards meeting the Global Nutrition Targets 2025 for 

anaemia set in 2014 one of which is in particular a 50% reduction of anaemia in women of reproductive 

age (WHO, 2014). Although Safiri et al. (2021) report that Western Europe (which implies the 

Netherlands) has one of the lowest anaemia prevalence, approx. 5%, anaemia is currently the #1 

medical priority for Sanquin Research as stated in the 2021 Annual Report (Sanquin Blood Supply 

Foundation, 2021). 

 

Incentives to improve the anaemia statistics and to relieve the burden due to anaemia have been an 

ongoing top priority in healthcare worldwide (WHO, 2021; Blood and Beyond, 2021). WHO (2021) 

responds with urgency to these alarming statistics. 

 

1.4. Allogeneic RBC Transfusions from the Healthcare Quality Perspective 
  

Administering blood transfusions is generally a safe, widely accessible treatment option for a variety of 

diseases and health conditions. In this thesis, particularly, a focus is given to the role of RBC transfusions 

which is an allogeneic intervention (this means that a transfusion recipient accepts foreign blood from 

a donor, as opposed to autologous blood reinfusion during which the patient’s blood is collected for 

example, using a blood salvage device during surgery and later reinfused back into the same patient’s 

body). Besides RBCs, another kind of an allogeneic transfusion intervention is fresh frozen plasma (FFP) 

transfusions. 
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Regarding the current transfusion medicine practices in the Netherlands, healthcare establishments 

including Sanquin follow the Dutch Blood Transfusion Guidelines (de Vries & Haas, 2012). The current 

version has been in place since 2011. The Dutch Blood Transfusion Guidelines specify strict triggers for 

allogeneic RBC transfusions to help correct a low Hb level. Specifically, the so-called ‘4-5-6 rule’ sets 

the thresholds as follows: 4 mmol (6.4 g/dl) for patients aged below 60, 5 mmol (8.1 g/dl) for patients 

aged above 60, and 6 mmol (9.7 g/dl) for patients of high risk. 

 

Patient groups that receive benefits of RBC transfusions are anaemic patients, patients with other blood 

disorders, people with cancer or with other various chronic diseases (WHO, 2021; Blood and Beyond, 

2021). In the peri-operative clinical setting (around the time of surgery), RBC transfusion can be given 

prior to, during and/or after surgery (pre-, intra- and/or post-operatively, respectively) but most often 

during and/or after surgery. 

 

Anaemic patients, when symptomatic, may need treatment, and one of the possible options is to 

administer allogeneic RBC transfusion. Yet, transfusion is coupled with a burden on the healthcare 

system in terms of logistics, costs, or questionable safety and efficacy (Blood and Beyond, 2021). In 

this regard, there are unmet needs accounting for various measures of healthcare quality. Nash et al. 

(2019) define healthcare quality by the six pillars: safety, efficiency, efficacy, equity, timeliness, and 

patient-centredness. For example, in terms of safety, blood transfusions may lead to iron overload or 

immune reactions (Blood and Beyond, 2021) or other adverse outcomes.  

 

1.5. Transfusion Alternatives, Patient Blood Management and the Current Gaps 
 

1.5.1. Transfusion Alternatives 
 

The evidence of adverse outcomes caused by blood transfusions, such as iron overload or immune 

reactions (Blood and Beyond, 2021), led to a shared perspective across medical professionals that 

blood transfusion may be harmful to some patients. The Blood and Beyond initiative (2021) on the 

European level along with WHO (2021) encourages a wide spectrum of stakeholders to further tackle 

the burden on healthcare systems due to transfusion dependency. In this regard, a lot of focus and 

efforts by healthcare establishments were put into transfusion alternatives. Some feasible alternative 

options already exist in current medical practices and some already help reduce the dependency on 

RBC transfusions. The two alternatives within the scope of the available data in this work will be: 

(1) The erythropoietin (EPO) therapy (administered pre-operatively), and 

(2) Autologous blood reinfusion (administered intra- and/or post-operatively) during which the 

patient’s own blood is recycled back into the patient’s body, after being filtered or washed. 

 

Nevertheless, subject matter experts (Blood and Beyond, 2021; Blood and Beyond, 2020) claim that 

there have still been unmet needs in terms of the availability of transfusion alternatives. 

 

1.5.2. What is Patient Blood Management? 
 

The concept of Patient Blood Management (PBM) involves but is not limited to the investigation of 

transfusion alternatives. Considering adverse outcomes of blood transfusions, “our own blood is still 

the best thing to have in our veins” (Frenzel et al., 2008). “The overarching aim of PBM is to improve 

patient outcomes, while saving health care resources and reducing costs.” (WHO, 2021) PBM is a 

paradigm shift for transfusion medicine. Preserving patient’s own blood reduces the demand for 

allogeneic blood components (WHO, 2021; Shander et al., 2020). PBM as a concept first emerged in 

the surgical setting in Australia by Professor James Isbister. In his 2005 publication titled Updates in 

Blood Conservation and Transfusion Alternatives, PBM as a paradigm shift was introduced for the first 

time (Isbister, 2005). Nevertheless, 25+ medical societies have reached a consensus just recently on a 
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global definition of PBM (Shander et al., 2022). The 15 years needed for reaching a consensus on the 

PBM definition accentuate the extraordinary level of complexity of the PBM problematics. 

 

“Patient blood management is a patient-centered, systematic, evidence-based approach 

to improve patient outcomes by managing and preserving a patient’s own blood, while 

promoting patient safety and empowerment.” 

(Shander et al., 2022) 

 

Health authorities emphasize key principles of PBM, the so-called three pillars (WHO, 2021; Isbister, 

2013; Hofmann et al., 2011): 

1. Detection and management of anaemia and iron deficiency, 

2. Minimization of blood loss and optimization of coagulation, and 

3. Leveraging and optimizing the patient-specific physiological tolerance of anaemia. 

 

Next to PBM, the term blood health has been recently used more and more commonly to emphasize 

treasuring a patient’s own blood as a liquid organ (Ozawa, 2023). 

 

1.5.3. Gap in PBM Awareness and Implementation 
 

Under the umbrella of the WHO, subject matter experts from the medical and scientific communities 

have recently published a report titled The Urgent Need to Implement Patient Blood Management (WHO, 

2021). The list of contributors reflects multi-disciplinarity and a wide spectrum of knowledge that spans 

transfusion medicine, haematology, hemovigilance, epidemiology, public health administration, health 

economics, or policy-making, to name a few disciplines. New PBM Implementation Guidelines are 

currently under development (WHO, 2021) to aim at closing the gap in PBM implementation. 

 

Initiatives to redesign healthcare systems with their infrastructures and to redistribute resources 

concerning blood transfusion practices have been underway. Various healthcare establishments across 

the globe have already implemented and reflected on their existing PBM programs and strategies to 

alleviate blood transfusion overuse and the burden of anaemia as a global health issue (WHO, 2021; 

So-Osman, 2017). For example, PBM was successfully implemented in Western Australia yielding cost-

savings reaching millions of dollars over a six-year period (WHO, 2021). 

 

In the WHO report (2021), subject matter experts bring attention to three drivers for PBM 

implementation, the so-called three “E’s”, namely: 

(1) Scientific evidence, 

(2) A strong economic argument, and 

(3) An ethical obligation. 

 

1.5.4. Independent Research involving Blood Product Use together with Patient 

Outcomes 
 

Patient-centredness is one of the six pillars of healthcare quality (Nash et al., 2019), yet patient-

centredness in PBM has been a prevailing gap due to limited studies involving the blood product use 

together with patient outcomes. This gap is transferred to the limited amount of literature on evidence-

based transfusion medicine involving patient outcomes. Thus, new data-driven project incentives 

involving the analysis of patient outcomes in this context are promising to progressively help close the 

gap. 

 

Unfortunately, the current commercial ties concerning the initiative on the European level titled Blood 

and Beyond may hinder independent research. This initiative has recently emerged with a call for multi-

disciplinary action to “rethink blood use in Europe to improve outcomes for patients” (Blood and 

Beyond, 2021). This means, among all, addressing the unmet needs of patients primarily with chronic 
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diseases, solving challenges of transfusion dependency or optimizing blood management (Blood and 

Beyond, 2021).  

 

1.6. ‘TOMaat’: Transfusion Data Availability from a Randomized Study 
 

The patient-level dataset at hand was originally collected for the purpose of a randomized study, 

namely, the ‘Transfusie Op Maat’ study (‘TOMaat’ in short, translated as the ‘Customized Transfusion’ 

study) with data collection performed between 2004 and 2009 (So-Osman et al., 2014a; So-Osman et 

al., 2014b). 

 

Robust data acquisition led by dr. So-Osman, who served in the role of the study coordinator, was 

performed on the target patient group that underwent an elective orthopaedic surgery (a total hip- or a 

total knee-replacement surgery) at four participating hospitals (implying multiple data sources) (So-

Osman et al., 2014a; So-Osman et al., 2014b). “This randomized, multicenter, controlled study was 

registered in the public registry: controlled-trials.com (No. ISRCTN 96327523) and the Dutch Trial 

Register (No. NTR303).” (So-Osman et al., 2014a) 

 

The raw data has a sample size of 2442 records and contains 533 data fields including patient 

characteristics, (allogeneic and autologous) transfusion data, data on post-operative patient outcomes 

(complications) or other intermediate follow-up data (such as lab data).      

 

The research here is approached as a post-hoc, observational study, that is using the RCT dataset as 

observational data. The further reasoning is that the RCT data were used for another purpose than the 

RCT itself, that is for the purpose of prediction modelling, inference, and mediation analysis. It is worth 

noting, nevertheless, that the RCT data collection differs from real-world data (RWD) collection 

tremendously – especially for the quality of scientific evidence. This RCT particularly was a double-

randomized, multi-centre controlled trial (So-Osman et al., 2014a; So-Osman et al., 2014b; So-Osman, 

2012). An RCT means that scientifically and statistically, the data exhibits high quality – a very high level 

of evidence, specifically, level 1b according to the Levels of Evidence by the Centre for Evidence-Based 

Medicine, CEBM (2009). CEBM adopts the RCT definition from A Dictionary of Epidemiology by Last 

(2001): “An epidemiological experiment in which subjects in a population are randomly allocated into 

groups, usually called study and control groups, to receive or not receive a experimental preventive or 

therapeutic procedure, maneuver, or intervention. The results are assessed by rigorous comparison of 

rates of disease, death, recovery, or other appropriate outcome in the study and control groups.“ 

 

1.7. Challenges in Transfusion Data Availability in the Netherlands 
 

It is problematic to find transfusion data integrated from multiple hospitals that were collected by 

organizations in the Netherlands other than Sanquin. It seems the data/database infrastructures and/or 

data acquisition practices have not yet reached maturity due to insufficient funding and/or the lack of 

incentives. 

 

For example, it was mentioned above in Section 1.4. that cancer patients need transfusions as a part of 

their treatment. Cancer is ranked with the highest disease burden in the Netherlands (Hilderink et al., 

2020), hence, noticeably, cancer research is a key driver in healthcare. In pursuit of longitudinal studies 

using cancer data, the Netherlands Comprehensive Cancer Organization (‘Integraal Kankercentrum 

Nederland’, or IKNL) collects cancer patient data from hospitals in the Netherlands and integrates data 

from the Netherlands Cancer Registry (NCR) (IKNL, 2023). However, after several interviews with IKNL 

employees, we found that IKNL neither has (direct) access to transfusion data nor uses transfusion data 

for cancer research. 

 

Dr. So-Osman shared a remark that the discussion topics about transfusion data collection, integration 

and subsequent opportunities for data analytics remain underrepresented. This state of affairs is due to 
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transfusion being considered a supportive treatment on the hospital floor. Therefore, transfusion data 

is not usually stored in data registries. 

 

In addition, Sanquin reported difficulties with finding appropriate funding opportunities over the past 

years for this specific PBM project, which was a reason for postponing this research project until now. 

 

Nonetheless, the above-proposed data from the ‘TOMaat’ study can be disclosed by Sanquin for this 

data-driven project. It was shown upon further consultations with dr. So-Osman that data availability is 

not the core problem for demonstrating the suitability of the proposed methodologies. The reasoning is 

that this RCT dataset at hand is a “complete” patient-level dataset of sufficient sample size and 

satisfactory data missingness. 

 

1.8. The Intention of the Study 
 

1.8.1. Problem Formulation 

 

Within patient-level datasets, there could be hidden insights with opportunities to enhance patient-

centredness across the PBM and the transfusion medicine landscapes. Plus, there are clinical incentives 

for evidence-based medicine to relieve the burden due to transfusion dependency (tied to anaemia) in 

surgical settings. This is the action problem in this thesis. 

 

Particularly, concerning the patients with pre-operative anaemia, the investigation of the problem 

context in this chapter has demonstrated that identifying the role of peri-operative RBC transfusion and 

respective confounding variables is missing granularity (a missing level of detail) in scientific evidence 

for effective PBM implementation. This means that testing Hypotheses 1 and 4 (introduced in Section 

1.2.) is a research gap and the core problem for this thesis. The knowledge problem is to discover 

whether the hypotheses prove true for the studied patient sample from the elective orthopaedic surgery 

setting. 

 

Hypothesis 1: RBC transfusion mediates the relationship between pre-operative anaemia and post-

operative complications. 

 

Hypothesis 4: There are strong confounding variables associated both with: 

• Allogeneic RBC transfusion (the mediator), and 

• Post-operative complications (the patient outcomes). 

 

1.8.2. The Research Aim and the Research Questions 

 

The aim of the research is to apply suitable applied statistical (learning) methods for testing Hypotheses 

1 and 4. We will research what supervised learning methods and what mediation analysis model design 

are appropriate, and if (how) they yield useful results in this context. The execution involves leveraging 

a patient-level dataset from the ‘TOMaat’ study (recalling Section 1.6.). The available data restricts the 

research to the target patient group who underwent elective orthopaedic surgery in the Netherlands (a 

high-income country). 

 

Definitions of the three dependent variables in the scope of the project are provided in Table 1-1. The 

respective research question(s) (RQs) are noted in the Context column. 

 
Table 1-1: Boundaries of the dependent variables (target patient outcomes) and corresponding Cases. 

Context Case Format of the 

dependent variable 

Target patient outcome description 

with its boundaries 

RQ#1, 

RQ#2, 

RBC binary  

(1 = yes, 0 = no) 

The allogeneic RBC transfusion up to Day 14 (if 

any) administered first in time to the patient. 
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Context Case Format of the 

dependent variable 

Target patient outcome description 

with its boundaries 

RQ#4 Can be intra- or post-operative. 

RQ#1, 

RQ#2, 

RQ#3, 

RQ#4 

COM binary  

(1 = yes, 0 = no) 

Post-operative complication up to Day 14 (if any) 

after RBC transfusion (if any). 

RQ#1 LOS numeric (days) Hospital length-of-stay whose timespan may 

exceed Day 14 after surgery for some patients. 

 

After preliminary data exploration, all project stakeholders agreed that allogeneic RBC transfusion and 

post-operative complications will be binary dependent variables. Nevertheless, it is known according to 

consultations with dr. So-Osman (the RCT study coordinator) that some patients may have been 

administered multiple RBC transfusions and some patients may have  experienced more than one post-

operative complication. 

 

Dr. So-Osman further advises to focus on allogeneic RBC transfusions up to Day 14 after surgery and 

post-operative complications up to Day 14 because they are considered more relevant to the clinical 

need. (The timespan of the care pathway in scope has an upper bound of Day 14 after surgery.) This 

pertains to the data acquired during the pre-operative phase or in the inpatient clinical setting (during 

the patient's stay in the hospital) up to Day 14. The reasoning is that during this timeframe, most RBC 

transfusions are administered to the patients, and most post-operative complications occur in this 

elective orthopaedic surgery setting. Furthermore, post-operative complications up to Day 14 are more 

closely tied (correlated) to the length-of-stay (LOS) measure. 

 

Correspondingly, the four RQs are derived based on Hypotheses 1 and 4 and articulated below. 

 

First, we define the key patient subgroups by stratifying the patients based on: 

(1) Pre-operative anaemia, 

(2) Participating hospitals, 

(3) EPO therapy, 

(4) Type of surgery (hip or knee, primary or revision), 

(5) Blood loss, 

(6) Intra-/post-operative autologous reinfusion up to Day 14, 

(7) Intra-/post-operative allogeneic RBC transfusion up to Day 14, 

(8) Reasonable combinations of (1)-(7), as deemed beneficial. 

 

RQ#1: How do the target patient outcomes vary for the key patient subgroups? 

 

Per Table 1-1, the target patient outcomes in conjunction with RQ#1 are: 

• RBC transfusion up to Day 14 (Case RBC), 

• Post-operative complications up to Day 14 (Case COM), and 

• Hospital LOS (Case LOS). 

Due to its clinical and health-economic relevance, the hospital LOS is also considered as a dependent 

variable in RQ#1 although the timespan exceeds Day 14 after surgery for some patients. 

 

In response to Hypothesis 4: 

 

RQ#2:  What variables are the strong confounding predictors for RBC transfusion up to Day 14, and a 

post-operative complication up to Day 14? 

 

RQ#3:  What is the statistical importance of RBC transfusion up to Day 14 acting as the predictor for the 

occurrence of a post-operative complication up to Day 14? 

 

Eventually, in response to Hypothesis 1 and in pursuit of integrating the results of RQ#2: 
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RQ#4:  What role does RBC transfusion up to Day 14 play in the relationship between pre-operative 

anaemia and the occurrence of a post-operative complication up to Day 14?   

 

1.8.3. The Research Scope 

 

The target patient group in this research are elective orthopaedic surgery patients in the Netherlands (a 

high-income country). We will leverage the patient-level dataset originally collected for the purpose of 

the ‘Transfusie Op Maat’ (‘TOMaat’, ‘Customized Transfusion’) study. The RCT was registered on 

controlled-trials.com (No. ISRCTN 96327523) and the Dutch Trial Register (No. NTR303) (So-Osman 

et al., 2014a; So-Osman et al., 2014b). This data contains 2442 records of patients who underwent a 

total hip- or a total knee-replacement surgery at one of four participating hospitals. 

 

The timespan of the care pathway has an upper bound of Day 14 after surgery. This pertains to data 

acquired during the pre-operative phase or in the inpatient clinical setting (during the patient stay in the 

hospital). 
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Chapter 2   |  Theoretical Background 

and Literature Review 

The Background serves to bridge the terminology of data science with epidemiology. We present the 

theory relevant to the core problem that revolves around utilizing a patient-level dataset with many 

measured variables that describe a complex surgical setting of transfusion medicine and PBM. A 

literature review helps investigate and frame an appropriate setup of selected supervised learning 

models and of mediation analysis to obtain effect estimates for two selected variables (pre-operative 

anaemia and RBC transfusion relative to post-operative complications). The chapter consists of a 

presentation of the following concepts: Supervised Statistical Learning and Its Applications in 

Transfusion Medicine and PBM (Section 2.1.), Considerations for Choosing a Supervised Statistical 

Learning Model (Section 2.2.), Model Performance and (Cross-)Validation (Section 2.3.), Causal 

Inference and Confounding (Section 2.4.), and Mediation Analysis (Section 2.5.). Lastly, Section 2.6. is 

dedicated to the summary and conclusion of this theoretical background. 

 

2.1. Supervised Statistical Learning and Its Applications in Transfusion Medicine 

and PBM 
 

“Statistical learning1 refers to a vast set of tools for understanding data.” (James et al., 2021) In the 

case of supervised statistical learning models (in scope of this work), a dependent variable was already 

observed and measured. Model development encompasses one or more independent variables (serving 

as an input for the model, predictors, features, or simply, variables). The independent variables relate 

to a desired dependent variable(s) (also known as a response, outcome, or output variable).2 Depending 

on the format of the dependent variable, two implementations are possible in supervised statistical 

learning model development: classification models for binary dependent variables (in scope of this 

work), and regression models for continuous dependent variables. 

 

 
1 To clarify the accompanying terminology, the term machine learning (ML) substitutable also for artificial 

intelligence (AI) is considered equivalent to statistical learning for some stakeholders. Yet, machine learning 

emerged from the computer science ecosystem whereas statistical learning emerged from statistics. 
2 The use of synonyms for these terms is restricted in this work (recalling the Established Terminology). 
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Particularly for transfusion medicine and/or PBM, the recent literature summarizes promising or already 

implemented use cases of AI and ML (both supervised and unsupervised) (Meier & Tschoellitsch, 2022; 

Dhiman et al., 2023; Šuster et al., 2023; Huang et al., 2018). In a scoping review, Meier and 

Tschoellitsch (2022) list some opportunities for operationalization: prediction of blood loss and 

transfusion, prediction of the outcome of anaemia and transfusion, decision support, prediction of the 

efficacy of pre-operative anaemia of a patient with iron and/or EPO, or the development of an expert 

system for various pathways during PBM. 
 

Many existing prediction models involving blood transfusion as a dependent variable were subject to a 

systematic review by Dhiman et al. (2023). Specifically, seven scientific publications in this review are 

related to the orthopaedic (hip and knee) surgery setting. All of the seven articles establish transfusion 

as a binary RBC transfusion variable (which is consistent with our work) out of which four papers tackle 

the variable solely as post-operative RBC transfusion, one paper as pre-/intra-/post-operative RBC 

transfusion, and two papers as intra-/post-operative RBC transfusion. We further pay attention to these 

two studies (Huang et al., 2018; Rashiq et al., 2004) whose design overlaps with the RBC transfusion 

as a dependent variable in our study to the greatest extent. Huang et al. (2018) developed logistic 

regression and random forest. Rashiq et al. (2004) developed a logistic regression model. 

 

2.2. Considerations for Choosing a Supervised Statistical Learning Model  
 

Clinical researchers ask for simple models and ease in their interpretability despite the high complexity 

of transfusion medicine. A supervised learning model choice arises from the model’s primary purpose: 

prediction, inference, or both (James et al., 2021). Because no previous modelling using supervised 

learning was performed on the ‘TOMaat’ dataset, random forest, logistic regression, and lasso are 

further examined in the face of both prediction and inference. Random forest and logistic regression 

(Section 2.2.3. and Section 2.2.4.) are one of the most commonly used non-parametric and parametric 

models, respectively, in academia (Lundberg et al., 2020). Also our results will then be comparable to 

Huang et al. (2018) and Rashiq et al. (2004) that were introduced in the above section. Lasso (Section 

2.2.5., parametric model) is a suitable addition to modelling in pursuit of the ease in model 

interpretability thanks to a convenient variable selection functionality (James et al., 2021). 

 

2.2.1. Prediction and Inference 

 

In some cases, prediction and inference approaches could go hand in hand (James et al., 2021). 

 

In inference, the modelling focus is targeted to studying the associations between the dependent 

variable and the independent variables (James et al., 2021). Inference is greatly about revealing insights 

of the variable importance in explaining the dependent variable, and, if possible, estimating the 

parameters of the model (James et al., 2021; Hastie et al., 2009). 

 

A predictive approach enriches the research with model validation, evaluating the predictive power and 

the accompanying model performance measures. The function estimate is often known as the black 

box function because one does not necessarily need to know its exact form (James et al., 2021), for 

example, in case of random forest. 
 

2.2.2. The Trade-off between Model Flexibility and Interpretability 

 

Choosing a suitable model involves a bias-variance trade-off. The reducible error element is present 

due to the squared bias of the model and the irreducible error occurs due to natural variability of the 

data. The reducible error can be improved by choosing a more appropriate, more flexible model which 

often comes at the cost of interpretability. The irreducible error caused by the random error does not 

always approach zero either due to unmeasured variables that may still serve well as the model input, 

or due to leaving out some useful measured variables from the model input (James et al., 2021). 
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Figure 2-1 depicts this trade-off. Parametric methods feature advantages over non-parametric 

methods especially because of their ease in interpretability. Yet, choosing a parametric model of a lower 

flexibility may go at the expense of model performance. And, subsequently, higher flexibility (of random 

forest) is a promising model characteristic relating to better model performance. Random forests are 

found as a special case of Bagging (bootstrapping + aggregating). 

 

 
Figure 2-1: The trade-off between model flexibility and interpretability for various statistical learning method; 

Excerpted from James et al. (2021). 

 

2.2.3. Logistic Regression and the Inference Tools 

 

Logistic regression is a parametric model – a generalized linear model (GLM), and a common choice for 

inference in classification modelling. It is designed for binary dependent variables to operate with 

maximum-likelihood parameters, 𝛽0, 𝛽1, … , 𝛽𝑖 (James et al., 2021; Hastie et al., 2009). The next 

equation exhibits the expression of multiple logistic regression (for multiple independent variables): 

log (
𝑝(𝑋)

1−𝑝(𝑋)
) = log(𝑜𝑑𝑑𝑠) = 𝛽0 + 𝛽1𝑋1 + ⋯ + 𝛽𝑖𝑋𝑖. The left-hand side log (

𝑝(𝑋)

1−𝑝(𝑋)
) is known as the log-

odds or logit and has a linear form. 
𝑝(𝑋)

1−𝑝(𝑋)
 is known as the odds and acquires values between 0 and ∞ 

(reflecting on very low and very high probabilities of the outcome, respectively). 

 

Variable selection procedures are essential due to issues arising from sparse data or due to the 

phenomenon of multicollinearity. It is not guaranteed that logistic regression (or lasso) can always be 

implemented on an arbitrary dataset. Multicollinearity occurs in linear models when two or more input 

variables are closely related which is undesired because it causes issues later in estimating individual 

association and effects of variables on the dependent variable (James et al., 2021). Variable selection 

(such as subset selection) is a desired step in the modelling procedure in order to eventually detect only 

the significant variables. Filtered in is eventually only a subset of variables that sufficiently explain the 

joint effect on the dependent variable (Hastie et al., 2009). However, some variables may have non-

linear effects within a linear model fit. They shall preferably not be excluded from the model (Hastie et 

al., 2009). 

 

The inference tools for logistic regression are expressed analytically as standard errors and 𝑍 scores 

(test statistics) for the coefficient estimates. A 𝑍 score for each model input variable is tied to a null 

hypothesis that the coefficient is zero while the others are not – known as the Wald test (Hastie et al., 

2009). A given independent variable is significantly important if the 𝑍 score is significant. A Wald test 

built on a chi-squared test can be used to determine statistical significance of categorical variables. 

 

The odds ratio is a powerful, relational inference tool and serves to express the effect of a given 

independent variable on the dependent variable. An increase or decrease is observed depending on the 

positive or negative sign of the parameter 𝛽, respectively. For example (for binary variables), one can 

deduce for patients who were administered RBC transfusion compared to the patients who were not 
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that there will be an increase in the odds of the post-operative complications by 100 ∗ (𝑒𝛽𝑘=1̂ − 1)% with 

the 95% confidence interval of 100 ∗ (𝑒𝛽𝑘=1̂±2𝑆𝐸𝑘=1̂ − 1)%. 

      

2.2.4. Random Forest and the Inference Tools 

 

Even some non-parametric models, such as random forest may offer useful variable importance outputs 

as a means to yield inference insights. Random forests are one of the most opted black box off-the-shelf 

tree-based algorithms especially for their accurate predictions on new datasets with many covariates 

(Hastie et al., 2009). They can readily accommodate missing data, sparse data, or nonlinear 

relationships (James et al., 2021; Hastie et al., 2009). McAlexander and Mentch (2020) argue that “the 

superior predictive performance of random forests can be harnessed to examine the same kinds of 

relationships in the data that [scientists] typically seek to uncover with conventional parametric models, 

including making inferences about the marginal effect of independent variables”. 

 

Random forest operates on the basis of stratifying or segmenting the variable space into regions (James 

et al., 2021). The random element represents producing multiple trees (as an ensemble method) that 

are combined to nodes and leaves to ultimately yield a single “consensus prediction” (James et al., 

2021). The individual building blocks (simple trees) can be called weak learners for their tendency to 

generally perform poorly on their own. Many of these noisy, but quite unbiased models are “bagged” 

and averaged. Compared to all 𝑖 independent variables for bagging, random forests operate with a 

random sample of ≈ √𝑖 independent variables at each split. This step offers a great advantage called 

decorrelating of the trees. Decorrelating decreases the variability and improve the reliability of the 

averaged tree model. Particularly, on average, 
𝑖−√𝑖

𝑖
 of the splits will not contain the strongest variable; 

hence, other variables will have better opportunities to contribute to the model development and 

output.      

 

Variable importance for random forest is commonly expressed by these two relative measures (with no 

thresholds). Generally, the higher the measure is, the more important the variable is in the model input. 

(The definitions are referenced from James et al. (2021) and Hastie et al. (2009).) 

 

• Mean Decrease in Accuracy measures the loss of accuracy if the variable was removed from the 

model. It is tied to the classification error rate determined as the predictions on the out-of-bag 

samples. The out-of-bag observations are the data points not used to fit a given bagged tree. 

• Mean Decrease in Gini index: The Gini index is a measure specific to classification trees and is 

particularly a measure of node purity (quality of the split). The Gini index acquires values 

between 0 and ∞. A small value represents that the node contains observed data points from a 

single category. To obtain the Mean Decrease in Gini index, first, summed up is the total amount 

of the Gini index decreased by splits over a given independent variable. This sum is then 

averaged over all individual weak learner trees. 

 

Additionally, a partial dependence plot (PDP) is useful for making inferences for random forest despite 

its non-parametric nature, thus, leading to enhancing its interpretability. Molnar (2022) and Friedman 

(2001) explain that: [1] PDPs exhibit the contribution of the independent variable on the predicted 

dependent variable through the marginal effect; [2] the PDP progression for numeric variables can be 

linear, monotonic, or complex; and [3] PDP functions of categorical variables are displayed as bar plots. 

This effect is calculated by “accounting for the (average) effects of the other variables”, not ignoring 

those effects (Hastie et al., 2009). For classification problems, the PDP function is in the logit (log-odds) 

form, on a logarithmic scale (R Documentation, 2023a; Greenwell, 2017; Hastie et al., 2009; Friedman, 

2001). This implies that the random forest function acquires the relationship with log (
𝑝(𝑋)

1−𝑝(𝑋)
) as it is the 

case for logistic regression. Hence, similarly to logistic regression (Section 2.2.2.) the odds ratios can 

be subsequently calculated: log (
𝑝(𝑋)

1−𝑝(𝑋)
) = log(𝑜𝑑𝑑𝑠) = 𝑟𝑎𝑛𝑑𝑜𝑚 𝑓𝑜𝑟𝑒𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡. 
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2.2.5. Lasso and the Inference Tools 

 

Lasso is a parametric modelling approach and can be applied for the purpose of a variable selection 

(shrinkage) to improve the (linear) model performance and interpretability (James et al., 2021). Lasso, 

the Least Absolute Shrinkage and Selection Operator, was first proposed in 1996 and is an alternative 

fitting procedure as coefficients of some input variables are forced to acquire the value of zero (James 

et al., 2021; Tibshirani, 1996). Lasso is a powerful regularization method and may lead to a linear 

(logistic regression) model to be outperformed by its upgraded linear version. (Other common 

regularization methods include ridge regression, stepwise selection, or principal components 

regression (James et al., 2021).) 

 

The inference tools for lasso are coefficient estimates and odds ratios coupled with p-values. 

 

2.3. Model Performance and (Cross-)Validation 
 

(Cross-)Validation encompasses procedures of comparing the model fit to the chosen frame of 

reference. Internal validation (in scope of this project) revolves around splitting the dataset into a train 

and test set or executing a bootstrap method. (External validation would involve evaluating the model 

fit using a new, external dataset.) 

 

For classification models (with binary dependent variables), model performance is commonly evaluated 

as: 

• The discrimination measure displayed by the Receiver Operating Curve (ROC) with the 

accompanying Area Under the Curve (AUC) that acquires values between 0 and 1: According to 

Hosmer and Lemeshow (2000, pp. 160–164), the AUC above 0.7 suggests an acceptable 

model performance, 0.8 and above is considered excellent, 0.5 means no discrimination; 

• The measures deduced from the confusion matrix (Figure 2-2), such as accuracy, sensitivity 

(recall), or specificity. 

 

 
Figure 2-2: Confusion matrix reflecting a binary dependent variable (a binary classifier): Excerpted from Lever et al. 

(2016). TP = true positives, FP = false positives, FN = false negatives, TN = true negatives, FDR = false discovery 

rate. 

Performance measures of regression models are omitted because they are out of scope of this work. 

 

Model performance is an essential accompanying element of uncertainty upon model development in 

pursuit of interpretation and transferring the modelling insights into practice. Model performance 

indicates how well the model reflects the reality. In recent scientific literature, there is no clear 

consensus whether variable importance (such as effect estimates) alone without accompanying model 

performance measures is transferrable to practical applications. Research solely focused on inference 

typically lacks validation procedures because validation can be done using external, artificial data. 
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2.4. Causal Inference and Confounding 
 

Causal inference is an approach different from supervised statistical learning because it places a special 

attention on the effect of a specific variable under investigation (i.e. pre-operative anaemia, RBC 

transfusion) relative to the dependent variable (here, RBC transfusion, post-operative complication). In 

comparison, in supervised learning, variable selection methods, such as lasso, may lead to the 

elimination of that variable under investigation (i.e. pre-operative anaemia, RBC transfusion) from the 

model. This elimination would then represent an insignificant (approximately zero) effect of that 

variable. 

 

Causal inference is founded on the “adage”: correlation does not imply causation; in other words, 

causation does not always occur due to correlation (Hernán & Robins, 2020). The terminology of causal 

inference distinguishes between association and causation (Hernán & Robins, 2020). To offer 

transparency and clarity of the terminology, the consistency of the confounding definition in the field of 

clinical epidemiology and data science is assessed in the paragraphs below. 

 

Accustomed to the field of epidemiology, Hernán and Robins (2020) define confounding as a type of 

systematic bias resulting from the discrepancy between causation and association. Confounding occurs 

when the treatment and outcome share a common cause – this means when the association measure 

generally differs from the effect measure (Hernán & Robins, 2020). This definition describes that the 

presence of a given independent variable tweaks the resulting effect of another independent variable 

due to a common causality relation with the dependent variable. 

 

 
Figure 2-3: An illustration of confounding: The treatment, 𝐴, and the outcome, 𝑌, share a common cause, 𝐿; 

Excerpted from Hernán and Robins (2020). 

 

In comparison, the books An Introduction to Statistical Learning by James et al. (2021) and The 

Elements of Statistical Learning by Hastie et al. (2009) describe confounding still in terms of correlations 

among independent variables. Such correlation may cause variability in the resulting coefficients as well 

as in variable importance depending on the model input choices. Two specific logistic regression 

examples were adapted from these two literature pieces to illustrate confounding: 

 

• On its own (in a single logistic regression model), a given independent variable 𝑋𝑗 results to be 

significantly important and has a positive coefficient. Yet in a multiple logistic regression, this 

means in the presence of other independent variables, 𝑋𝑗 results to be also significantly 

important but with a negative coefficient. Reasoning: 𝑋𝑗 is correlated with another independent 

variable in the multiple logistic regression model input (James et al., 2021). 

• On its own (in a single logistic regression model), a given independent variable 𝑋𝑘  is significant. 

Yet in the presence of other independent variables (in a multiple logistic regression), 𝑋𝑘  is 

insignificant. Reasoning: This phenomenon is caused due the correlation among other 

independent variables present in the model input (Hastie et al., 2009). 

 

Causal inference deals with three main types of systematic bias: confounding, selection and 

measurement, yet, this work is limited to studying confounding. In short, a selection bias results from 

selecting limited data for analysis. And a measurement error naturally occurs as variables cannot be 

measured perfectly. Additional relationships and phenomena are described in the terminology of causal 

inference. For example, in social sciences, Cinelli et al. (2022) reflects on the problem of “bad controls” 

(as opposed to “good controls” – confounders) when an addition of some variables to the parametric 

model results in unintended discrepancies of the effect estimates known as the “omitted variable bias”. 
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2.5. Mediation Analysis 
   

Mediation analysis is a technique to study causal inference with a focus on selected exposure and 

mediator (treatment) variable components (Figure 2-4). Mascha et al. (2013) studied the exposure of 

anaemic patients on the numeric dependent variable length-of-stay. Saager et al. (2013) supplemented 

the work by specifying pre-operative anaemia as the exposure in the context of wound contamination 

(mediator) and infection (outcome). Here, alcohol use was incorporated as a confounder. Later, in donor 

studies, de Groot et al. (2019) completed mediation analysis to investigate the effect of population 

density on blood lipid levels. 

 

 
Figure 2-4: Mediation analysis model uncorrected (B, 𝑢𝑛𝑐𝑜𝑟𝑟) and corrected (C) for confounding. 

 

Mediation analysis serves to decompose the total effect of the exposure on the outcome into two 

components: 

 

[1] An indirect (mediation) effect explained by the mediator composed of the effect 𝑎 and effect 𝑏: 

The product-of-coefficients method is a preferred method for estimating an indirect effect in a 

mediation analysis model with a binary mediator and a binary outcome (Rijnhart et al., 2021). 

[2] A direct effect not explained by the mediator, 𝑐′. 

 

All components of the mediation analysis model can be of a binary, categorical or numeric format. In 

this work, the outcome, exposure and mediator component formats will be binary, and the effects will 

be estimated using odds ratios. In this case, mediation analysis involves logistic regression modelling. 

Next to it, besides odds ratios, other effect measures exist in causal inference. Hernán and Robins 

(2020) indicate that the portfolio of the causal effect measures also encompasses causal risk 

difference, risk ratio, or other summaries. 

 

The total effect follows an expression PNDE*TNIE (or TNDE*PNIE) considering a binary mediator and a 

binary outcome (Rijnhart et al., 2021). ℎ represents the 𝑋𝑀 interaction effect on the outcome. According 

to Rijnhart et al. (2021): “In the absence of 𝑋𝑀 interaction, the ℎ coefficient equals zero and drops out 

of the equations. The CDE, PNDE, and TNDE then all reduce to exp(𝑐′), i.e. the natural direct effect (NDE). 

The PNIE and TNIE then both equal the PNIE… and is termed the natural indirect effect (NIE).” 

 

2.6. Summary and Conclusion 
 

This theoretical background helped frame a suitable experimental setup of logistic regression and 

random forest models in pursuit of tackling the core problem. In an interpretable way, clinicians in 

transfusion medicine and PBM seek to estimate effects of pre-operative anaemia and RBC transfusion 

based on a patient-level dataset with many covariates. Thus, interpretation of supervised learning 

models and mediation analysis are the ultimate capstone for this work. Lasso is a possible variable 

selection method that offers improvement in interpretability of logistic regression by reducing the 

number of input variables. It is essential to pay careful attention to choices in model input because they 
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are key in determining the desired effect estimates. Neglecting correlations among independent 

variables and neglecting the confounding phenomenon may lead to misleading, biased conclusions 

about the effect estimates. Collinearity also shall be treated because it leads to bias. Effect estimates 

for desired independent variables can be then obtained using odds ratios for both supervised modelling 

approaches. 

 

log (
𝑝(𝑋)

1−𝑝(𝑋)
) = log(𝑜𝑑𝑑𝑠) = 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 = 𝛽0 + 𝛽1𝑋1 + ⋯ + 𝛽𝑖𝑋𝑖  

 

log (
𝑝(𝑋)

1−𝑝(𝑋)
) = log(𝑜𝑑𝑑𝑠) = 𝑟𝑎𝑛𝑑𝑜𝑚 𝑓𝑜𝑟𝑒𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡  

 

To enrich the research, the purpose of supervised learning modelling can be both inference and 

prediction. The predictive approach, particularly, offers the information on whether there is a substantial 

penalty in model performance for logistic regression compared to random forest. It is worth to examine 

if random forest as a non-parametric model (significantly) outperforms logistic regression (a parametric 

model) in this setting. Next to it, there is no clear consensus whether choosing a tree-based method, 

such as random forest, results in a substantial compromise on interpretability. Hence, the 

implementation of the random forest model will be further considered as an innovative supplement to 

inference and mediation analysis. 
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Chapter 3   |  Methodology and 

Experimental Setup 

Figure 3-1 on the next page is a bird view on the key methodology steps. This chapter is aligned with it 

in its composition: Massive data exploration and data cleaning efforts (Step 1) are mapped in Section 

3.1. Consolidation of the variable selection process (Step 2) and the preparation of input variables can 

be found in Section 3.2. Procedures of statistical testing for the Exploratory Data Analysis (Step 3) are 

written in Section 3.3. The procedure of model fitting and validation (Steps 4-7) is described in Section 

3.4. The choices for the selection of strong confounders (Step 8) are reflected in Section 3.5. And the 

Mediation Model Setup (Step 9) is mapped in Section 3.6. 

 

Data pre-processing, analysis and modelling were executed in the programming environment of the 

R Statistical Software, version 4.1.2. 

 

3.1. Data Exploration and Data Cleaning 
 

3.1.1. Characteristics of the Raw Dataset 
 

The raw dataset from the ‘TOMaat’ study was provided by Sanquin and its origin was presented earlier 

in Section 1.6. The patient flow diagram in Figure 3-2 is a representation of the clinical setting according 

to So-Osman et al. (2014a; 2014b). Figure 3-3 offers a detailed view. The raw data has a sample size 

of 2442 records and contains 533 data fields including patient characteristics, allogeneic and 

autologous transfusion data, data on post-operative patient outcomes (complications) or other 

intermediate follow-up data (i.e. lab data). The raw data characteristics are summarized in Table 3-2.       

 

Massive data cleaning efforts were performed in order to establish the dependent variables 

representing RBC transfusion (Section 3.1.3.) and post-operative complication up to Day 14 (Section 

3.1.4.). A crucial pre-requisite is the retrieval of dates for these dependent variables according to the 

definitions in Table 3-2. There is a need to sequence the events in time because of the causality 

direction in the proposed model for mediation analysis (Section 1.2.). The following content is dedicated 

to the consolidation of the respective pre-processing tasks. 
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Figure 3-1: Bird view on the key methodology steps. 



3 | Methodology and Experimental Setup  Master Thesis Report 

 21 

An overview of the dependent variables for the four research questions (per the Context column) is 

presented in Table 3-1 below. 
 

Table 3-1: Boundaries of the dependent variables (target patient outcomes) and corresponding Cases (excerpt of 

Table 1-1). 

Context Case Format of the 

dependent variable 

Target patient outcome description 

with its boundaries 

RQ#1, 

RQ#2, 

RQ#4 

RBC binary  

(1 = yes, 0 = no) 

The allogeneic RBC transfusion up to Day 14 (if 

any) administered first in time to the patient. 

Can be intra- or post-operative. 

RQ#1, 

RQ#2, 

RQ#3, 

RQ#4 

COM binary  

(1 = yes, 0 = no) 

Post-operative complication up to Day 14 (if any) 

after RBC transfusion (if any). 

RQ#1 LOS numeric (days) Hospital length-of-stay whose timespan may 

exceed Day 14 after surgery for some patients. 

 

Adequate choices and assumptions accompany the experimental setup and the scenario setup (Section 

3.1.5. and 3.1.6.). 

 

3.1.2. Reasoning on why RBC transfusion is a variable in the ‘TOMaat’ study, 

not a parameter 
 

All patients who entered ‘TOMaat’ gave their informed consent for study participation (So-Osman, 

2014a; So-Osman, 2014b). Patient’s agreement to the potential administration of (RBC) transfusion 

was one of the numerous inclusion criteria. 

 

This patient consent is the key information for treating allogeneic RBC transfusion as a dependent 

variable in this work (not a pre-defined parameter). Hence, we can study the role of RBC transfusion in 

this elective orthopaedic surgery setting using the proposed methods. 

 

According to the clinical insight of dr. So-Osman, there are two strict transfusion triggers pertaining to 

the ‘TOMaat’ study in accordance with the Dutch Blood Transfusion Guidelines (2011). This means that 

during the ‘TOMaat’ study, patients received RBC transfusion as long as at least one of these two triggers 

was reached. 

(1) Specific Hb threshold value according to the ‘4-5-6 rule’ (introduced in Section 1.4.), and 

(2) A large amount of blood loss determined per expert-based decisions (by a surgeon or an 

anaesthesiologist, typically during surgery, thus, in an acute setting). 

 

An important assumption is tied to establishing RBC transfusion as a dependent variable: 

• The Dutch Blood Transfusion Guidelines (2011) were strictly followed. 

 

Further elaboration on this key modelling aspect is provided in the chapter Recommendations on Future 

Work. 
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Figure 3-2: Patient flow diagram of the ‘TOMaat’ study. 

 

 



3 | Methodology and Experimental Setup  Master Thesis Report 

 23 

 

 
Figure 3-3: Patient flow diagram of the ‘TOMaat’ study: Detailed version with patient counts to reflect the double randomization. 

 
Table 3-2: Number of data fields in raw dataset per segment of the clinical path. 

 Pre-operative data Intra-operative data Post-operative data,  

Day 0-14 

Post-operative data,  

2 weeks to 3 months 

Not identified (i.e. 

pre-calculated) 

Number of 

data fields 

125 59 52 (Day 0-1), 

93 (Day 2 up to Day 14) 

74 130 
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3.1.3. Establishing the Dependent Variable: RBC Transfusion up to Day 14 
 

Massive data cleaning efforts were performed to establish the variable representing RBC transfusion 

(RBC_Transfusion). The date of RBC transfusion was stored as a free text field. A patient may have 

been administered more than one RBC transfusion. Hence, in this project, the dependent variable is 

specific to the occurrence of the first RBC transfusion date (Day) per Table 3-2 shown earlier. 

 

The dates were converted to the units of Days where Day 0 is the day of surgery. Two situations occurred 

during assessing the dates of allogeneic RBC transfusion: 

 

[1] Date of post-operative RBC transfusion was known. Subsequently, for each patient and for 

each intra-/post-operative RBC transfusion up to Day 14, a calculation was done: 

 

Day of RBC transfusion = date of RBC transfusion – surgery date 

where Day of RBC transfusion can acquire the values {0, 1, …, 14} 

 

Numerous data inconsistencies were treated by visual inspection and resolved by manual 

correction or exclusion (per Section 3.1.7.). 

 

[2] Date of RBC transfusion was unknown. Subsequently, the patient records were excluded (per 

Section 3.1.7.). 

 

Figure 3-4 represents the distribution of the occurrence of the first post-operative RBC 

transfusion up to Day 14, and distinguishes the patients who were also administered intra-

operative RBC transfusion. According to the treemap in Figure 3-6 (left), approx. ¼ patients 

received their first post-operative RBC transfusion on Day 1. 

 

 
Figure 3-4: Distribution of the occurrence (Day) of the first post-operative RBC transfusion up to Day 14; intra-

operative RBC transfusion is treated separately. 

 

[3] Day 0 was assigned to the patients with intra-operative RBC transfusion. 

 

Figure 3-5 represents the distribution of the occurrence of the first RBC transfusion up to Day 

14 after incorporating the intra-operative RBC transfusion. According to the treemap in Figure 

3-6 (right), approx. ¼ patients received their first RBC transfusion on Day 0 (intra- or post-

operative), and another ¼ patients received their first RBC transfusion on Day 1. The highest 

rates of RBC transfusions are seen on Days 0-3. 
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Figure 3-5: Distribution of the occurrence (Day) of the first RBC transfusion up to Day 14 after incorporating intra-

operative RBC transfusion. 

 

  
Figure 3-6: Treemaps of the occurrence (Day) of the first RBC transfusion administered solely post-operatively (left) 

and upon incorporating the intra-operative RBC transfusion (right).  
 

 

All records with a feasible Day of RBC transfusion acquired 1 for the binary dependent variable, 

0 otherwise. 

 

Errors in data entries were found. 5 patients received their first RBC transfusion later than on Day 14 

which is out of scope of the timeframe (the data field under investigation was already designated to 0 

to 14 Days). These outliers were kept in the dataset, and treated by relabelling the binary dependent 

variable adequately to acquire the value of 0, no longer 1. 

 

Eventually, a total of 257 (10.6%) patients were administered RBC transfusion up to Day 14 out of the 

total sample size of 2426 patients. 

 

3.1.4. Retrieving the Dates of Post-operative Complication up to Day 14 
 

Massive data cleaning efforts were performed to establish the variable representing post-operative 

complication up to Day 14. Again, the dates were converted to the units of Days where Day 0 is the day 

of surgery. A total of 40 auxiliary variables representing 15 types of complications contributed to the 

establishment of this dependent variable. There were 15 binary and 15 date variables representing 

each type of complication, and 10 free text fields denoting details about the complication. A composite 

variable available in the raw dataset could not have been utilized due to the need to retrieve the 

complication dates and to sequence the RBC and COM events in time for the purpose of mediation 

analysis. 

 

An excessive missingness of the complication dates was prevalent. Per the 15 binary fields, 34.2% 

(count 264) of all 772 recorded complications had no accompanying date (per 15 date fields). Figure 
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3-7 displays the distribution of the occurrence of the complications up to Day 14 for which the date was 

known (count 508, 65.8%). The distribution is right-skewed with the highest rates of complications on 

Days 0-4. 

 

 
Figure 3-7: Distribution of the occurrence (Day) of the complications up to Day 14; known occurrences only are 

captured in the plot (count 508, 65.8%). 
 
Some patients experienced more than 1 complication (up to 7 complications per patient). Figure 3-8 

shows this observation. 

 

 
Figure 3-8: The counts of patients in relation to the number of complications up to Day 14 per patient; all 

complications up to Day 14 are captured. 

 

 

Insights into the extent of missingness for complication dates can be found in Figures 3-9 and 3-10. 

Counts and proportions of complications up to Day 14 relative to 15 complication types are displayed. 

Unfortunately, due to high missingness rates, the complication dates cannot be deduced by (advanced) 

imputation methods. 

 

A choice was made to set up two scenarios (pessimistic and optimistic) to deal with this extent of date 

missingness. The process is described further in Section 3.1.5. and 3.1.6. 

 

Errors in data entries were found. The Days of complications up to Day 14 were recorded with values 

larger than 14 for 53 complications. This is out of scope of the desired timeframe. The respective patient 

records were kept in the dataset, yet treated by relabelling the respective binary variables adequately 

to acquire the value of 0, no longer 1, and the dates were erased from the date fields. 
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Figure 3-9: Insight into the extent of missingness for complication dates: Counts of complications up to Day 14 

relative to 15 complication types.  
 

 
Figure 3-10: Insight into the extent of missingness for complication dates: Proportions of complications up to Day 

14 relative to 15 complication types. 
 

 

3.1.5. Placing the Dependent Variables in Time Sequence and Scenario Setup 
 

By default, four patient groups were distinguished for the purpose of assigning the binary format of the 

dependent variable. The procedure is illustrated in Table 3-3. The value of the COM variable is assigned 

per the fifth column if the complication date is known and different from the RBC transfusion date. 

 

Assigning the COM variable for Patient Groups 1-0, 0-1 and 0-0 is trivial. Next, a focus is given to Patient 

Group 1-1 (the patients who had both RBC as well as a post-operative complication) to sequence these 

events adequately. 
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Table 3-3: Four patient groups useful for establishing the dependent variables defined up to Day 14. 

Patient 

group 

A patient 

received 

allogeneic 

RBC 

transfusion 

Value of RBC 

transfusion 

(dependent variable) 

A patient had  

a post-operative 

complication 

(not the dependent 

variable) 

Value of post-transfusion 

complication, COM 

(dependent variable) 

Visual representation* Patient 

count 

1-1 Yes 1 Yes 1 if at least one 

complication occurred 

after RBC transfusion 
 

145 

 
0 if none of the 

complications occurred 

after RBC transfusion 
 

1-0 Yes 1 No 0 

 

112 

0-1 No 0 Yes 1 

 

399 

0-0 No 0 No 0  1770 

* Legends:  = RBC transfusion (dependent variable);  = at least 1 post-operative complication
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48 patient records from 145 records in Patient Group 1-1 had at least 1 missing complication date or 

the same Day of complication as RBC. The procedure of establishing the two scenarios with dependent 

variables COMPES and COMOPT is described as follows:  

 

[1] Date of complication is known. Subsequently, for each relevant patient in Patient Group 1-1 and 

for each post-operative complication up to Day 14: 

 

Day of complication = date of complication – surgery date 

where Day of complication can acquire the values {0, 1, …, 14} 

 

If (Day of complication) > (Day of RBC transfusion), then COM = 1. 

 

If (Day of complication) = (Day of RBC transfusion), then the pessimistic and optimistic 

scenarios apply (Assumption#1). In the field of epidemiology, this case is called 

misclassification. 

 

Pessimistic scenario: Assume COMPES = 1, 

Optimistic scenario: Assume COMOPT = 0. 

 

[2] Date of complication is unknown. Subsequently, patient records were examined by integrating 

the information from an auxiliary file about serious adverse events and clinical insight was 

consolidated in pursuit of retrieving the sequence of events. Then, two scenarios were 

considered (Assumption#3). For each relevant patient in Patient Group 1-1: 

 

Pessimistic scenario: Assume for COMPES that all remaining complications with 

missing dates occurred after RBC transfusion. 

Optimistic scenario: Assume for COMOPT that all remaining complications with missing 

dates occurred before RBC transfusion. 

 

All complications occurred after intra-operative RBC transfusion, if any (Assumption#2, 15 patients). 

 

The scenario setup according to the three principal assumptions for Patient Group 1-1 and the patient 

counts for all other patient groups are consolidated in Tables 3-4 and 3-5. The pessimistic and 

optimistic scenarios, respectively, are distinguished with 112 (4.6%) versus 64 patients (2.6%) who 

experienced both RBC and a post-operative complication up to Day 14. 

 
Table 3-4: Patient counts for the pessimistic scenario. 

Patient group RBC COMPES Patient count Total patient count 

(proportion) 

1-1 1 1 64 + 48 112 (4.6%) 

0 33 145 (6.0%) 

1-0 0 112 

0-1 0 1 399 399 (16.4%) 

0-0 0 1770 1770 (73.0%) 

 
Table 3-5: Patient counts for the optimistic scenario. 

Patient group RBC COMOPT Patient count Total patient count 

(proportion) 

1-1 1 1 64 64 (2.6%) 

0 33 + 48 193 (8.0%) 

1-0 0 112 

0-1 0 1 399 399 (16.4%) 

0-0 0 1770 1770 (73.0%) 
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In Figure 3-11, eventually, two Sankey diagrams represent the two scenarios. The pessimistic scenario 

led to 511 patients with a post-operative complication (21.1%) compared to the optimistic scenario 

with 463 patients with a post-operative complication up to Day 14 (19.1%) out of the 2426 patients in 

total. 

 

3.1.6. Overview on the Exclusion of Patient Records (Listwise Deletion) 
 

Listwise deletion was performed on the patient records due to specific inadequacies leading to the 

exclusion of: 

• 13 records due to the missing value of pre-operative haemoglobin (more in Section 3.2.2.), 

• 1 record due to an unknown date of RBC transfusion, 

• 1 record because the date of post-operative RBC transfusion up to Day 14 preceded the surgery 

date, 

• 1 record because the date of post-operative complication up to Day 14 preceded the surgery 

date. 

 

A total of 16 records were excluded from the raw dataset of 2442 records. The cleaned dataset has 

2426 patient records. 

 

3.1.7. Establishing the Dependent Variable: Hospital length-of-stay 
 

The dependent variable LOS required minimum cleaning efforts because the raw dataset offers this 

variable. The extent of missingness is 17 patient records. This raw variable represents the timespan 

between the admission date at the hospital (1-3 days prior to the surgery date) until the discharge day. 

The dependent variable LOS has a mean of 8.0 days, median of 7 days, min of 1 day, and max of 98 days. 

 

Furthermore, efforts were made to investigate the calculated timespan between the actual surgery 

dates and discharge dates as provided in the raw data. Yet, unfortunately, numerous inconsistencies 

were observed among these calculations. Thus, a choice was made to use the raw LOS variable for the 

purpose of this project (particularly, RQ#1). 

 

An important assumption is tied to the LOS variable: 

• RBC transfusion up to Day 14 was administered during the respective LOS (in the inpatient 

setting), not in the outpatient setting. If the RBC transfusion was administered in the outpatient 

setting, then the RBC transfusion is an infeasible independent (input) variable LOS for those 

patient records. A thorough verification is needed if a follow-up project is considered (i.e. per 

the mediation analysis segment in Section 6.3.). 
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Figure 3-11: Sankey diagrams with proportions of patients who underwent RBC transfusion (if any) and/or post-operative complication up to Day 14 (if any): Pessimistic (left) and 

optimistic scenario (right). 
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3.2. Variable Selection 
 

3.2.1. The Variable Selection Process 
 

The variable selection process is sketched in Figure 3-12 below. Variable selection was accompanied 

with numerous rounds of consultations and verifications with the clinical expert to ensure the 

understanding of the patient flow and of the information contained in data fields. The variable selection 

involved subset selection based on variable feasibility consolidated as 12 choices explained in the 

figure. The threshold for acceptable data missingness was set to 10%. 

 

Eventually, the dataset size for modelling was reduced from 533 data fields to 46 variables out of which 

41 are default input variables for modelling, 4 are dependent variables (RBC_Transfusion, COMPES, 

and COMOPT), and the remaining one is the variable Total_Blood_Loss_during_Surgery not used for 

modelling (used solely in RQ#1). The COM modelling starts with 41 input variables, and Case RBC 

comprises of a default of 32 input variables. Table 3-6 provides further details on the 41 input variables. 

There are 32 binary, 3 categorical, and 6 numeric input variables for the COM Cases. For RBC Case, it is 

28 binary, 3 categorical, and 1 numeric variables. All binary and categorical variables were factorized. 

Later, during model development, 3 additional variables exhibiting sparsity were excluded particularly 

from LREG and lasso models (as reported in Section 3.4.2.). 

 

3.2.2. Preparation of the Input Variables: Adaptation 
 

Data preparation encompassed adaptation of 4 input variables that were established based on existing 

data fields. This procedure pertains to participating hospitals, pre-operative anaemia, and the year of 

surgery. The procedure for the fourth variable RBC_Transfusion that was also established through 

adaptation (grouping) was already presented earlier in Section 3.1.3. 

 

Participating hospitals, Hospital, was subject to pooling of the Hospital2 and Hospital5 because this 

hospital has two different locations. 

 

Pre-operative anaemia, Anaemia_Pre_Op, was determined based on three haemoglobin (Hb) fields 

measured pre-operatively and before the start of the EPO therapy, if any. A consolidation was done of 

the Hb fields VHBINCL (39.4% missingness), VHB0 (0.5% missingness), and VHB1 (0.5% missingness), 

in this sequence. The remaining 13 patient records (0.5%) for which the Hb value was not retrieved 

were excluded using listwise deletion. The Hb values were available in the units of mmol/L so the 

thresholds according to WHO (1968) were converted from g/dL to mmol/L and the binary form was 

derived depending on gender as follows: 

• For men: if Hb falls below 13 g/dL (8.07 mmol/L), pre-operative anaemia = 1, or 0 otherwise; 

• For women: if Hb falls below 12 g/dL (7.45 mmol/L), pre-operative anaemia = 1, or 0 otherwise. 

 

Year of surgery, Surgery_Year, was created by extracting the year from the surgery date field. 

 

3.2.3. Preparation of the Input Variables: Data Imputation Methods 
 

The indicator method deemed feasible for many variables as listed in Table 3-6. The choice of this 

method was validated with the clinical expert, along with a suitable imputed value. 

 

Multiple imputation using KNN was implemented for Surgery_Duration. A use was made of the 

preProcess() function from the caret library, and eventually the predict() function of the RANN 

library. The K argument was set to the square root of the row number (49) of the dataset. 
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Figure 3-12: Consolidation of the variable selection process. 
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Table 3-6: Metadata overview of input variables after subset selection (NA’s = missing data). 
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Variable name 

Case 

RBC 

Case 

COM 

Variable type 

(#categories 

excl. NA’s, or 

units) 

Listing of unique values 

(distribution) 

% 

missingness 

Data imputation 

technique  

(value imputed in 

indicator method) Remark 
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s 
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ti
ve

 d
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v1 Hospital   

categorical: 

nominal (4) 

Hospital1 (401),  

Hospital2 (956), 

Hospital3 (602),  

Hospital4 (467) 

0.00% none adapted 

(pooling) 

v2 Age   

numeric: 

integer 

min 19, med 71, max 93 0.00% none - 

v3 Gender   

binary 1 (male, 738), 

2 (female, 1688) 

0.00% none - 

v4 Hip_or_Knee_1   

binary 1 (975), 0 (1451) 0.00% none - 

v5 Primary_or_Revision_1   

binary 1 (181), 0 (2245) 0.00% none - 

v6 Hip_or_Knee_2   

binary 1 (14), 0 (2412) 99.38% indicator method (0) - 

v7 Osteoarthritis   

binary 1 (2105), 0 (321) 0.87% indicator method (0) - 

v8 Cardiovascular_Disease   

binary 1 (1235), 0 (1191) 2.84% indicator method (0) - 

v9 CVA   

binary 1 (81), 0 (2345) 2.18% indicator method (0) - 

v10 COPD   

binary 1 (196), 0 (2230) 1.81% indicator method (0) - 

v11 Diabetes_Mellitus   

binary 1 (286), 0 (2140) 1.94% indicator method (0) - 

v12 Rheumatoid_Arthritis   

binary 1 (281), 0 (2145) 2.39% indicator method (0) - 

v13 Increased_Risk_Group   

binary 1 (92), 0 (2334) 0.29% indicator method (0) - 

v14 Corticosteroids   

binary 1 (132), 0 (2294) 0.16% indicator method (0) - 

v15 NSAIDs   

binary 1 (768), 0 (1658) 0.29% indicator method (0) - 

v16 Anticoagulation   

binary 1 (486), 0 (1940) 0.16% indicator method (0) - 

v17 Antibiotics   

binary 1 (25), 0 (2401) 0.33% indicator method (0) - 

v18 Insulin   

binary 1 (117), 0 (2309) 0.25% indicator method (0) - 

v19 Antihypertensiva   

binary 1 (1083), 0 (1343) 0.12% indicator method (0) - 

v20 Cardiac_Medication   

binary 1 (364), 0 (2062) 0.25% indicator method (0) - 

v21 Pulmonary_Medication   

binary 1 (205), 0 (2221) 0.29% indicator method (0) - 

v22 Smoking   

binary 1 (331), 0 (2095) 0.37% indicator method (0) - 

v23 EPO   

binary 1 (227), 0 (2199) 0.08% indicator method (0) - 

v24 Anaemia_Pre_Op   

binary 1 (214), 0 (2212) 0.00% none adapted 
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Variable name 

Case 

RBC 

Case 

COM 

Variable type 

(#categories 

excl. NA’s, or 

units) 

Listing of unique values 

(distribution) 

% 

missingness 

Data imputation 

technique  

(value imputed in 

indicator method) Remark 

v25 Surgery_Year   

categorical: 

ordinal (6) 

2004 (66), 2005 (320), 

2006 (454), 2007 (767), 

2008 (809), 2009 (10) 

0.00% none adapted 

In
tr

a
-o

p
e

ra
ti

ve
 d

a
ta

 

v26 Prosthesis_Type   categorical: 

nominal (4) 

1 (976),  

2 (1386),  

3 (16), unclassified (48) 

1.94% indicator method 

(unclassified) 

- 

v27 Minimally_Invasive_in_case 

_of_Total_Hip_Prosthesis 

  

binary 1 (118), 0 (2308) 57.67% indicator method (0) - 

v28 Temperature_Drop_Prevention 
  

binary 1 (2104), 0 (322) 2.39% indicator method (0) - 

v29 Anticoagulant_Standard 
  

binary 1 (1795), 0 (631) 0.00% none - 

v30 Antibiotic_Prophylaxis_Standard 
  

binary 1 (1804), 0 (622) 0.04% indicator method (0) - 

v31 Antifibrinolytic_Blood_Loss 

_Lowering_Medication 

  

binary 1 (7), 0 (2419) 0.00% none - 

v32 Antifibrinolytic_Cyclokapron ( ) ( ) binary 1 (5), 0 (2421) 99.79% indicator method (0) sparse 

v33 Surgery_Duration -  numeric: 

integer 

(minutes) 

min 25, med 90, max 

630 

2.02% multiple imputation 

using KNN 

- 

v34 Colloids - 
 

numeric: 

integer (mL) 

min 0, med 500, max 

3500 

5.40% indicator method (0) - 

v35 Crystalloids - 
 

numeric: 

integer (mL) 

min 0, med 1500, max 

10 000 

1.48% indicator method (0) - 

v36 Cell_Saver - 
 

binary 1 (271), 0 (2155) 39.74% indicator method (0) - 

v37 Cell_Saver_Collection -  numeric: 

integer (mL) 

min 0, med 0, max 7097 91.80% indicator method (0) - 

v38 Cell_Saver_Reinfusion -  numeric: 

integer (mL) 

min 0, med 0, max 2117 91.34% indicator method (0) - 

v39 Other_Transfusions - ( ) binary 1 (5), 0 (2421) 41.30% indicator method (0) sparse 

v40 FFP - ( ) binary 1 (3), 0 (2423) 99.55% indicator method (0) sparse 

In
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a
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-
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ve
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a

ta
 v41 RBC_Transfusion -  binary 1 (257), 0 (2169) 0.00% none adapted 

(grouping) 
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Figure 3-13 is a representation of the final modelling setup (32 input variables for Case RBC, and 

41 input variables for the COM Cases). 

 

 

Figure 3-13: Modelling setup of Case RBC, COMPES and COMOPT. 

 

 

3.3. Univariate Tests and Visualizations in Exploratory Data Analysis 
 

Exploratory data analysis comprised of univariate tests anvisualizations. Univariate tests were 

accomplished with chi-squared tests performed using the chisq.test() function of the stats package. 

The implementation of visualizations in R involved mainly the package ggplot2. 

 

3.4. Choices for Supervised Learning Model Development and (Cross-) Validation 
 

Model development was modularized per Case and model to manage the overall volume of 

programming tasks and to reduce the risk of human error. Each module represents a separate R code 

file. The work was structured to a total of 9 modules (R code files): 1 for RF + 1 for LREG + 1 for lasso 

for each of the three Cases (RBC, COMPES, and COMOPT). For demonstration, Appendix E contains the R 

code of Case RBC (all three types of models). 

 

Reproducibility was ensured by setting the random seed value (1234, same for all modules).  

 

It was confirmed there is no issue due to an imbalanced dataset. This check constituted of a simple 

calculation of the percentage of occurrences (cases) of the three binary dependent variables (10.6% for 

RBC_Transfusion, 21.1% for COMPES and 19.1% for COMOPT). All percentages reach above the 

generally accepted proportions (there is no unequal distribution). 

 

3.4.1. Random Forest (RF) 
 

The random forest (RF) model development encompasses 7 aspects (substeps):  

 

[1] Model validation using the train/test split: To conduct an internal validation of the model, a 

dataset was subject to a train/test split with a split ratio of 0.7. This is equivalent to training the 

model with a trainset size of 1698 patient records, and testing the model on a testset of 728 

records. 

 

[2] Model fit: Random forest model fit was achieved using the function randomForest() from the 

randomForest package. The default parameter mtry (the number of random variables 
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collected at each split) was set to 6 for the RBC Case and 7 for the COM Cases which 

corresponds to the square root of the number of variables after executing the model.matrix() 

operation on the dataset (square root of 42 and 51 variables, respectively). The number of trees 

to grow (ntree) was set to the default of 500 trees. The model was fit on the trainset. The out-

of-bag (OOB) error plot was constructed using the OOB element of the model$err.rate object. 

Predictions were calculated by the conventional function predict() of the stats package. 

 

[3] Model calibration curve: The graph was plot by executing the val.prob() function of the rms 

package. 

 

[4] Model performance measures: The auc(roc()) functions from the pROC library served to 

calculate the AUC. The DeLong method using the function ci.auc() of the same package 

provided the 95% CI of the AUC. The ROC curve was plot using the geom_roc() function from 

the plotROC package. Additional model performance measures (accuracy, sensitivity and 

specificity) per each cutoff value were extracted from a for-loop after running the 

confusionMatrix() function of the caret library. 

 

[5] Variable importance: The values for the variable importance plot were obtained using the 

varImpPlot() function of the randomForest package. And the partial dependence plots 

(PDPs) were constructed using the partial() function of the pdp library coupled with the 

autoplot() function to achieve ggplot-like aesthetics. For the interpretation of PDPs in RQ#3, 

it was assumed that the first data point pertains to the positive cases (patients who were 

administered RBC transfusion) despite the label 0 in the graph. The interpretation of the 

outputs was tested using different mtry parameter values. The Discussion chapter (Section 

5.3.) elaborates more on this observation. 

 

[6] Tuning and cross-validation: The trainControl() function of the caret library was set up to 

execute 5-fold cross-validation, and a random search was chosen as the suitable mode using 

the argument search=’random’. The mtry parameter was set to default (6 for the RBC Case 

and 7 for the COM Cases per substep [2] above). The tuning was done using the train() function 

(also of caret) by passing the trainControl() object to the trControl argument. Accuracy was 

the target metric for this tuning operation with 3 trees to grow and the tuneLength of 15 to 

control the computation time. 

 

[7] Variable importance of the tuned RF model: The variable importance tasks as described above 

(the variable importance plot, the partial dependence plots) were performed in the same 

manner as in substep [5], this time with the tuned RF model. 

 

3.4.2. Further Detection of Sparse Data 
 

Because the parametric models LREG and lasso are sensitive to sparse data, further treatment was 

required prior to fitting the models. Then a total of 3 binary variables that caused sparse data issues 

were removed for the purpose of LREG and lasso model development (reported in Table 3-7, and 

consistent with Table 3-6 introduced earlier). These variables causing sparse data issues were detected 

via visual inspection in an increasing manner (from 3 (0.1%) to 5 (0.2%) occurrences out of 2442 patient 

records). This means that for LREG and lasso, the number of input variables decreased from 41 to 38 

for COM Cases, and from 32 to 31 input variables for the RBC Case. 
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Table 3-7: Variables excluded for LREG and lasso modelling due to sparse data issues. 
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v32 Antifibrinolytic_Cyclokapron   - -   - - binary 5 (0.2%) 

v39 Other_Transfusions - - - - 
  - - binary 5 (0.2%) 

v40 FFP - - - - 
  - - binary 3 (0.1%) 

 

3.4.3. Logistic Regression (LREG) 
 

The logistic regression (LREG) model development encompasses 5 aspects:  

 

[1] Model validation using the train/test split: [Executed in the same manner as for RF, Section 

3.4.1.] 

 

[2] Model fit: Using the glm() function from the stats package, the LREG model was fit on the 

testset. Predictions were calculated by the common function augment() of the broom 

package. 

 

[3] Model calibration curve: [Executed in the same manner as for RF, Section 3.4.1.] 

 

[4] AUC and ROC: [Executed in the same manner as for RF, Section 3.4.1.] 

 

[5] Variable importance: Coefficients, standard errors, z-values and p-values were available 

already by running glm(), or summary(). Odds ratios (as well as p-values) were displayed by 

executing the function odds.ratio() from the questionr package. Wald test was performed on 

the categorical variables (Hospital, Surgery_Year and Prosthesis_Type) using the 

wald.test() function. 

 

3.4.4. Lasso 
 

The lasso model development encompasses 5 aspects: 

 

[1] Model validation using the train/test split: [Executed in the same manner as for RF, Section 

3.4.1.] 

 

[2] Model fit and cross-validation: Lasso using the glmnet() function from the glmnet library was 

fit followed by cross-validation using cv.glmnet() to proceed with tuning of the lambda 

parameter. Conventionally, the optimal lambda was chosen to be within one standard deviation 

of the lowest data point in the graph representing the lambda dependency on GLM deviance. 

Predictions were calculated by the common function predict() of the stats package using the 

best lambda. 

 

[3] Model calibration curve: [Executed in the same manner as for RF, Section 3.4.1.] 

 

[4] AUC and ROC: [Executed in the same manner as for RF, Section 3.4.1.] 

 

[5] Variable importance: The coefficient estimates were obtained using the coef() function applied 

on the cross-validated model. Implementation of calculations of p-values was initiated using 

the fixedLassoInf() function of the selectiveInference package, yet not finalized. The 

Discussion chapter elaborates further on the reasons. 
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3.5. Choices for the Selection of Strong Confounders 
 

The selection of strong confounders in conjunction with RQ#2 in orchestrated in accordance with this 

methodology: 

 

[1] First, the variable importance results are consolidated from all 4 models (RF, tuned RF, LREG, 

and lasso) for all three Cases in this manner: 

• For RF models, the variable of high importance is among the top 7 either based on Mean 

Decrease in Accuracy or Mean Decrease in Gini index. 

• For LREG models, high importance pertains to statistical significance accompanied with 

these codes depending on the level of significance (0.001, 0.01, 0.05, and 0.1). The 

information about the statistical significance is already contained in the R code output after 

running the summary() function (Section 3.4.3.). 

• A Wald test (applicable to LREG models only) is performed for categorical variables 

(Hospital, Surgery_Year and Prosthesis_Type) to evaluate the importance of the 

variable, not a single category. 

• For lasso, the variable of high importance acquires a non-zero coefficient. (In the case of a 

categorical variable, at least one category acquires a non-zero coefficient.) 

 

[2] A next step involves a consolidation of resulting overlaps of high variable importance among 

RF, LREG and lasso models. This summary represents the supervised learning perspective. 

 

[3] Validation of the supervised learning perspective with the clinical insight from a content expert 

is eventually a crucial determinant for finalizing the selection of the strong confounding 

variables. 

 

Recalling Figure 3-11, the resulting set of strong confounders is a subset of the input variables for the 

RBC model (v1, v2, …, v32) because these variables are also input variables for the COM models. 

 

3.6. Mediation Model Setup and Mediation Analysis Execution   
 

In Figure 3-14, the setup of mediation analysis is shown. The effect estimates are denoted appropriately 

according to the mediation model in Mascha et al. (2013). Table 3-8 provides specifications of the 

components in this model. All key components (exposure, mediator, and the outcome variables) are 

binary. The strong confounders will be determined in RQ#2. 

 

  
Figure 3-14: Setup and components of the mediation model. 
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Table 3-8: Specifications of the components in the mediation model. 

Model component Variable Variable name Format of the variable 

Exposure Pre-operative 

anaemia 

Anaemia_Pre_Op binary 

(1 = yes, 0 = no) 

Mediator Allogeneic RBC 

transfusion 

up to Day 14 

RBC_Transfusion binary 

(1 = yes, 0 = no) 

Outcome Post-operative 

complication 

up to Day 14 

COMPES (pessimistic scenario) binary 

(1 = yes, 0 = no) 
COMOPT (optimistic scenario) 

Strong 

confounders 

(covariates) 

[strong confounders determined in RQ#2, Section 4.2.1.] 

 

The intended mediation model is coupled with these assumptions: 

[1] Unmeasured confounders of the exposure-mediator effect. 

[2] Unmeasured confounders of the exposure-outcome effect. 

[3] Unmeasured confounders of the mediator-outcome effect. 

[4] The absence of the mediator-outcome confounders that are affected by the exposure. 

 

Mediation analysis was conducted for the pessimistic and optimistic scenarios (the PES and OPT 

subscripts, respectively). Appendix E contains the R code of the implemented mediation analysis. 

 

[1] Reformatting: For substep [5], it was necessary to disable factorization of Anaemia_Pre_Op and 

RBC_Transfusion by reformatting the variables to the integer class. 

 

[2] Model fit: Using the conventional glm() function from the stats package, three logistic 

regression models (model.m, model.yPES , and model.yOPT) were fit on the entire dataset (sample 

size 2426 records). Input and dependent variables were assigned according to Table 3-9. 
 

Table 3-9: Logistic regression models for the mediation model. 

Model Dependent variable Input variables 

model.m RBC_Transfusion Anaemia_Pre_Op (a-path), 

strong confounders 

model.yPES COMPES Anaemia_Pre_Op, (c’-path), 

RBC_Transfusion (b-path), 

strong confounders 
model.yOPT COMOPT 

 

[3] Variable importance: Coefficients, standard errors, z-values and p-values were available 

already by running glm(), or summary(model.m) and summary(model.y). Odds ratios (as 

well as p-values) were displayed by executing the function odds.ratio() from the questionr 

package. 

 

[4] Effect estimates on the a-, b- and c’-paths: In model.m, the effect estimate for Anaemia_Pre_Op 

is equivalent to the a-path. In model.y, the effect estimates for Anaemia_Pre_Op and 

RBC_Transfusion are equivalent to the c’-path and b-path, respectively. (The effects of these 

components are denoted in this manner in Figure 3-14 above.) Conventionally, corresponding 

p-values determine statistical significance. 

 

[5] Evaluation of mediation (Quasi-Bayesian Confidence Intervals): Mediation was evaluated using 

the function mediate() from the package mediation. The arguments were set as follows: 

model.m = model.m, model.y = model.yPES or model.yOPT (scenario-specific), treat = 

Anaemia_Pre_Op, mediator = RBC_Transfusion, covariates = listing of strong confounders 

per RQ#2. The argument boot was disabled (boot = FALSE). 
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[6] Evaluation of mediation (Nonparametric Bootstrap Confidence Intervals with the Percentile): 

The function mediate() was executed per substep [5] while the argument boot was enabled 

(boot = TRUE). The number of simulations (the sims argument) was set to the default of 1000. 

 

[7] Desired effect estimates: The mediate() function in its output provides these effect estimates: 

average causal mediation effects (ACME, equivalent to the average indirect effect), average 

proportion mediated, average direct effects (ADE), and total effects. Mediation will be evaluated 

using the ACME. 
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Chapter 4   |  Results 

The Results chapter is structured as follows: Section 4.1. Exploratory Data Analysis (RQ#1), Section 

4.2. Prediction and Inference Results composed of Section 4.2.1. The Strong Confounders (RQ#2), and 

Section 4.2.2. Statistical Importance of RBC Transfusion (RQ#3), Section 4.3. Mediation Analysis 

Results (RQ#4), and Section 4.4. Summary of Findings. For the reader to be smoothly guided through 

the series of results, in Table 4-1 we recall the target patient outcomes (equivalent to Cases) for all four 

research questions (RQs). The scenarios established after imputing missing data and after treating 

misclassification cases were shown earlier in Figure 3-11. 

 
Table 4-1: Target patient outcomes and corresponding Cases (Table 3-1 adjusted upon data preparation). 

Context Case Format of the 

dependent variable 

Target patient outcome description 

with its boundaries 

RQ#1, 

RQ#2, 

RQ#4 

RBC binary  

(1 = yes, 0 = no) 

The allogeneic RBC transfusion up to Day 14 (if 

any) administered first in time to the patient. 

Can be intra- or post-operative. 

RQ#1, 

RQ#2, 

RQ#3, 

RQ#4 

COMPES binary  

(1 = yes, 0 = no) 

Post-operative 

complication up to Day 

14 (if any) after RBC 

transfusion (if any). 

Pessimistic scenario. 

COMOPT Optimistic scenario. 

RQ#1 LOS numeric (days) Hospital length-of-stay whose timespan may 

exceed Day 14 after surgery for some patients. 

 

4.1. Univariate Testing and Exploratory Data Analysis 
 

Exploratory Data Analysis (EDA) served to respond to RQ#1: How do the target patient outcomes vary 

for the key patient subgroups? The EDA yielded descriptive statistics and insights for the desired key 

patient subgroups consolidated in Table 4-2 below. For explanation: 

• Statistical significance is accompanied with these codes depending on the level of significance: 

0 `***` 0.001 `**` 0.01 `*` 0.05 `.` 0.1. (For example, variable importance of the statistical 

significance level of 0.001 received three stars, `***`.) 

• Weak correlation represents an overlap between the interquartile (IQR) ranges for numeric 

input variables, or the LOS variable (of the numeric format). 

• Case LOS was analyzed without imputing (17) missing length-of-stay data values; thus, the 

patient records, for which the hospital LOS value was missing, are not reflected in the EDA. 
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Table 4-2: Descriptive statistics and EDA results: Insights on associations among selected input variables (key patient subgroups) and target patient outcomes (Cases). 

(significance codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1; for example, the statistical significance level of 0.001 received three stars, `***`) 
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Key patient subgroup Variable name 

Variable 

type 

Case COMPES Case COMOPT Case RBC Case LOS 

Significant 

associa-

tion 

p-value, or 

corre-

lation 

Significant 

associa-

tion 

p-value, or 

corre-

lation 

Significant 

associa-

tion 

p-value, or 

corre-

lation 

Significant 

associa-

tion 

corre-

lation 
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 Participating hospitals (Hospital1; 

Hospital2; Hospital3; Hospital4) 

Hospital categorical: 

nominal 
*** <0.001 

*** <0.001 
*** <0.001  weak 

Type of surgery (total hip; or total 

knee replacement) 

Hip_or_Knee_1 binary  0.107  0.265 
*** <0.001  weak 

Type of surgery (primary; or 

revision) 

Primary_or 

_Revision_1 

binary  0.162  0.330 
*** 0.002  weak 

Pre-operative anaemia (yes; no) Anaemia_Pre_Op binary 
*** 0.002 . 0.052 

*** <0.001  weak 

EPO therapy (yes; no) EPO binary . 0.098  0.147  0.726  weak 
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p
e

ra
ti

ve
 d

a
ta

 

Cell saver 

device (hip 

replacement 

only) as intra-

operative 

autologous 

reinfusion 

Cell saver device 

(yes; no) 

Cell_Saver binary . 0.100  0.150  0.427  weak 

Collection (mL), 

subset >0 mL 

only 

Cell_Saver 

_Collection 
numeric: 

integer 

 weak  weak  weak  weak 

positive 

Reinfusion (mL), 

subset >0 mL 

only 

Cell_Saver 

_Reinfusion 
numeric: 

integer 

 weak  weak  weak  weak 

positive 

Total blood loss during surgery 

(mL), subset >0 mL only, applies to 

hip replacement patients only 

Total_Blood_Loss 

_during_Surgery 

numeric: 

integer 

 weak  weak  weak  weak 

positive 
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o
r 

p
o

st
-

o
p

e
ra

ti
ve

 d
a

ta
 RBC transfusion (yes; no) RBC_Transfusion binary 

*** <0.001 
*** <0.001 n/a (infeasible)  weak 
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All aggregate results and visualizations that represent the EDA are available in Appendix A. Selected 

visualizations reflecting statistically significant differences among stratified patient subgroups based on 

RBC_Transfusion and Anaemia_Pre_Op are presented on the next pages. 

 

In summary, to respond to RQ#1, the target patient outcomes significantly vary only for a few key patient 

subgroups from among all 10 investigated subgroups. In particular: 

 

[1] Differences of the significance level of 0.001 (p-values below 0.001) were observed for 

categorical input variables among these key patient subgroups: 

• For Case COMPES: RBC_Transfusion, Hospital, Anaemia_Pre_Op; 

• For Case COMOPT: RBC_Transfusion, Hospital; and 

• For Case RBC: Hospital, Anaemia_Pre_Op, type of surgery (Hip_or_Knee_1), type of 

surgery (primary or revision expressed as Primary_or_Revision_1). 

• Interestingly, RBC_Transfusion displays significant associations with post-operative 

complications up to Day 14 for both pessimistic and optimistic scenarios. 

• Next to it, patient groups stratified based on participating hospitals (Hospital) showed 

significant differences among all Cases. 

 

[2] Differences of the significance level of 0.1 (p-values below 0.1) were found for categorical input 

variables of these key patient subgroups: 

• For Case COMPES: EPO, Cell_Saver; 

• For Case COMOPT: Anaemia_Pre_Op; and 

• For Case RBC: none. 

• Interestingly, patient groups stratified based on pre-operative anaemia 

(Anaemia_Pre_Op) eventually showed significant differences among all Cases referring to 

the finding [1] above. 

 

[3] For all numeric input variables in Cases COMPES, COMOPT and RBC, the IQR ranges overlap among 

all stratifications. Thus, these correlations were found as weak. All these distributions exhibit a 

right-skewed characteristic leading to divergences between respective medians and means. 

 

[4] For all numeric input variables in Case LOS, weak positive correlations were detected with 

respect to the Total_Blood_Loss_during_Surgery (numeric format), and the autologous 

blood collection and reinfusion in conjunction with the cell saver intervention 

(Cell_Saver_Collection, and Cell_Saver_Reinfusion, respectively). These trends are 

reflected in Appendix A in scatter plots where the slopes of the fitted curves clearly fall below 

45 degrees. 

 

To conclude RQ#1, it is worth noting three remarks that accompany Table 4-2: 

• The blood loss variable (Total_Blood_Loss_during_Surgery) was inquired for EDA. Yet it 

was evaluated as an infeasible input variable for modelling because it is a trigger of intra-

operative RBC transfusion. The chapter Recommendations on Future Work elaborates on the 

absence of this blood loss variable. 

• A drainage device as a second autologous reinfusion device was available for stratification of 

distinct patient subgroups. The application of this device and corresponding measurements 

were done solely post-operatively (after some patients already underwent RBC or COM); hence, 

the drainage device as an input variable was deemed infeasible for modelling. 

• RBC_Transfusion is the dependent variable for Case RBC: intra-/post-operative allogeneic 

RBC transfusion up to Day 14, thus, cannot serve as an input variable for Case RBC. 
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Figure 4-1: Stratification for the RBC transfusion: Case COMPES (left, p<0.001), COMOPT (right, p<0.001). 
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Figure 4-2: Stratification for pre-operative anaemia: Case COMPES (top left, p=0.002), COMOPT (top right, p=0.052), RBC (bottom left, p<0.001).  
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4.2. Prediction and Inference Results 
 

The behaviour of the setting in elective orthopaedic surgery is described in terms of one non-parametric 

(RF) and two parametric (LREG and lasso) supervised learning models. As reported in Figure 4-3, all 

models (RF, LREG, and lasso) exhibit similar predictive abilities because there are no statistically 

significant differences in the AUC discrimination among all Cases. These findings set the frame of 

reference for the inference results in the upcoming Section 4.2.1. (RQ#2) and Section 4.2.2. (RQ#3). 

 

 
Figure 4-3: Model performance results: 95% CI’s of the AUC discrimination measures for each Case and model. 

 

Overall, the 95% CI’s are wide for all models and Cases suggesting high natural variability in the dataset. 

The model performance of all models is evaluated as moderate. The RBC models have slightly (yet not 

significantly) better predictive power with the AUC’s of 0.69-0.71 with 95% CI reaching from 0.62 to 

0.78. And the COM models yield AUC’s of 0.63-0.69 with 95% CI ranging from 0.60 to 0.74. 

Interestingly, model performance of lasso models slightly, insignificantly improved for the COM Cases, 

yet not for the RBC Case. 

 

Table 4-3 reports on hyperparameter tuning results of RF models upon 5-fold cross-validation and 

random search. The implications of the tuned mtry reaching 1 for Case COMPES. are reviewed in the 

Discussion chapter. Next, Table 4-4 provides regularization results for lasso models. 

 
Table 4-3: Hyperparameter tuning results for RF models upon 5-fold cross-validation and random search. 

Case default parameter mtry parameter mtry after tuning 

RBC 6 2 

COMPES 7 1 

COMOPT 7 4 

 
Table 4-4: Regularization results for lasso models. 

Case Regularization parameter 

lambda 

Number of variables with a 

non-zero coefficient 

Number of input variables 

RBC 0.0196 8 31 

COMPES 0.0263 12 38 
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Case Regularization parameter 

lambda 

Number of variables with a 

non-zero coefficient 

Number of input variables 

COMOPT 0.0259 11 38 

 

To enhance transparency, Appendix B provides additional model validation and model performance 

results, such as the ROC curves, calibration curves, and for RF specifically, the out-of-bag (OOB) error 

progression. Plus, the variability of the accompanying performance measures, namely, sensitivity, 

specificity and accuracy relative to cutoff levels, is also demonstrated graphically in Appendix B. 

Although many figures do not directly contribute to answering RQ#2, they represent auxiliary modelling 

outputs to describe the model behaviour and to demonstrate transparency. 

 

4.2.1. The Strong Confounders: Case RBC and Case COM 
 

This segment serves to respond to RQ#2: What variables are the strong confounding predictors for RBC 

transfusion up to Day 14, and a post-operative complication up to Day 14 in elective orthopaedic 

surgery? 

 

First, we start with Table 4-5 designated to the consolidation of variable importance results for the 

series of models (random forest (RF), logistic regression (LREG), and lasso) in relation to all Cases (RBC, 

COMPES, and COMOPT). Checkmarks with dark green background representing high importance were 

given according to the criteria defined in Section 3.5. Validation using the clinical insight is marked bright 

green. 

 
Table 4-5: Variable importance results per Case and model for each input variable, accompanied by validation using 

the clinical insight. (significance codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1; for example, variable importance 

with the statistical significance level of 0.001 received three stars, `***`) 
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Hospital    ***    **    ***  

Age    **    **    **  

Gender    ***    *    .  

Hip_or_Knee_1    ***    *    **  

Primary_or_Revision_1              

Hip_or_Knee_2    *          

Osteoarthritis              

Cardiovascular_Disease              

CVA    .          

COPD            .  

Diabetes_Mellitus        .      

Rheumatoid_Arthritis              

Increased_Risk_Group    *    **    **  

Corticosteroids            .  

NSAIDs        **    **  

Anticoagulation              

Antibiotics              

Insulin              

Antihypertensiva        *    *  

Cardiac_Medication    *    .    *  
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Pulmonary_Medication              

Smoking              

EPO    **          

Anaemia_Pre_Op    ***          

Surgery_Year        .    .  

In
tr

a
-o

p
e

ra
ti

ve
 d

a
ta

 

Surgery_Duration n/a*       .  

Prosthesis_Type    **          

Minimally_Invasive_ 

in_case_of_Total_Hip_Prosthesis 

       *    *  

Temperature_Drop_Prevention    .        .  

Anticoagulant_Standard              
Antibiotic_Prophylaxis_Standard              

Antifibrinolytic_Blood_Loss_ 

Lowering_Medication 

             

Antifibrinolytic_Cyclokapron        n/a†   n/a† 

Colloids n/a†         

Crystalloids         

Cell_Saver         

Other_Transfusions   n/a†   n/a† 

FFP     

RBC_Transfusion   ***      

† Not an input variable. 

 

Highlights of the variable importance findings per Table 4-5 are summarized below. 

 

[1] Hospital and Age are found to be among the most important variables for all models in all 

Cases. In the LREG models, the statistical significance is 0.01 or even higher, 0.001. 

[2] Surgery_Year is also a highly important variable for all models in all Cases except for 

RBC[LREG]. In the COM[LREG] models, the statistical significance is 0.1. 

[3] Gender, Hip_or_Knee_1, Increased_Risk_Group, and Cardiac_Medication are good 

confounding candidates because they are statistically significant for all LREG models (for both 

scenarios). This corresponds to statistical significance of at least 0.1. 

[4] Cardiovascular_Disease is deemed highly important for all RF models, but not all LREG or 

lasso models. 

[5] Temperature_Drop_Prevention shows statistical significance (0.1) only for the optimistic 

scenario based on the LREG models. 

[6] Anticoagulant_Standard and Antibiotic_Prophylaxis_Standard represent highly 

important variables and confounding candidates only for the pessimistic scenario. 

[7] On the contrary, Anaemia_Pre_Op, EPO, and Prosthesis_Type display high (significant) 

importance in the RBC model (0.01 or even higher, 0.001 for the LREG model), yet, not in the 

COM models. Thus, strong confounding is not claimed for the EPO and Prosthesis_Type 

variables. And the remaining set of 18 variables are considered rather weak confounding 

candidates because they either display high importance for the COM model only, or are not 

highly important for either model. 
 

Table 4-6, a compact format of the previous table, follows with a list of strong confounders for RBC 

transfusion up to Day 14, and post-operative complication up to Day 14 in elective orthopaedic surgery. 

In response to RQ#2, a purely supervised learning perspective (dark green in Table 4-6) yields a variety 
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of strong confounders. The findings are reported based on strong importance in either model. The 

findings per clinical insight are highlighted then in bright green. Several inconsistencies are observed 

between these approaches with further elaboration below. 

 
Table 4-6: Strong confounders for pessimistic and optimistic scenarios in accordance with the supervised 

learning (dark green) and clinical perspectives (bright green). 
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Hospital        
Age        

Gender        

Hip_or_Knee_1        

Primary_or_Revision_1        

Cardiovascular_Disease        

Diabetes_Mellitus        

Increased_Risk_Group        
Cardiac_Medication        

EPO        

Surgery_Year        
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Prosthesis_Type        

Temperature_Drop_Prevention        

Anticoagulant_Standard        

Antibiotic_Prophylaxis_Standard        

 

Eventually, upon incorporating clinical insight from the content expert to the above findings, 10 

plausible strong confounders were selected. They will serve as covariates for the mediation model in 

RQ#4. These confounders apply both to pessimistic and optimistic scenarios. Three confounders were 

not anticipated if this final selection of strong confounders is compared to the results from the 

supervised learning perspective. Overall, the selection of strong confounders was done from a total of 

31 input variables both for RBC and COM models (this count excludes Anaemia_Pre_Op). 

 

• Hospital   (anticipated) 

• Age    (anticipated) 

• Gender   (anticipated) 

• Hip_or_Knee_1  (anticipated) 

• Primary_or_Revision_1 (not anticipated) 

• Cardiovascular_Disease (anticipated) 

• Diabetes_Mellitus  (not anticipated) 

• Increased_Risk_Group (anticipated) 

• EPO    (not anticipated) 

• Surgery_Year   (anticipated) 

 

Appendix C provides supplemental output with further details about variable importance (in terms of 

the Mean Decrease in Accuracy or the Mean Decrease in Gini index for RF, and in terms of coefficients 

and odds ratios for LREG or lasso).  
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4.2.2. Statistical Importance of RBC Transfusion: Case COM 
 

This segment is dedicated to RQ#3: What is the statistical importance of RBC transfusion up to Day 14 

acting as the predictor for the occurrence of a post-operative complication up to Day 14? Besides results 

per Table 4-6, further granularity on the statistical importance results particularly for 

RBC_Transfusion is provided in Table 4-7 (LREG and lasso) and Table 4-8 (RF) where the 

corresponding odds ratios, coefficients, or variable importance ranking are reported. 

 

LREG reflects RBC_Transfusion as a statistically significant predictor in Case COMPES (coefficient 

4.979, odds ratio 3.891, p-value <0.001). Yet, Case COMOPT yields no statistical significance of 

RBC_Transfusion. Results of the lasso models report the coefficients of 0.650 and 0.000 for Cases 

COMPES and COMOPT, respectively. 

 

Per RF models and the pessimistic scenario, the odds ratios of RBC_Transfusion are 1.891 and 18.38 

for the COMPES[RF] and COMPES[tuned RF], respectively. In terms of the ranking of the Mean Decrease in 

Accuracy, RBC_Transfusion scores 1st to 2nd. In terms of the Mean Decrease in Gini index, RBC 

transfusion is positioned in the 5th and 7th place. In the optimistic scenario, the odds ratios are 1.225 

and 1.271 for the COMOPT[RF] and COMOPT[tuned RF], respectively. The ranking of the Mean Decrease in 

Accuracy is 26th and 30th, and the ranking of the Mean Decrease in Gini index is 21st and 18th. 

 
Table 4-7: Statistical importance of RBC transfusion in terms of coefficients, odds ratios and p-values: LREG and 

lasso models. 

Scenario Case Coefficient Odds ratio 

(RBC /  

no RBC) 

p-value 

pessimistic COMPES[LREG] 4.979 3.891 <0.001 

COMPES[lasso] 0.650 [not implemented] 

optimistic COMOPT[LREG] -0.254 1.443 0.799 

COMOPT[lasso] 0.000 [not implemented] 

 
Table 4-8: Statistical importance of RBC transfusion in terms of odds ratios, odds and ranking (from among 41 

input variables): RF and tuned RF models. 

Scenario Case Odds ratio  

 

Odds log(Odds) MeanDecrease 

Accuracy ranking 

MeanDecrease 

Gini ranking 

pessimistic COMPES[RF]  1.891 2.814, 

1.488 

0.738, 

0.598 

2 7 

COMPES 

[tuned RF] 

18.38 84.98, 

4.624 

0.988, 

0.822 

1 5 

optimistic COMOPT[RF] 1.225 2.927,  

2.389 

0.745, 

0.705 

26 21 

COMOPT 

[tuned RF] 

1.271 3.265,  

2.569 

0.766, 

0.720 

30 18 

 

4.3. Mediation Analysis Results 
 

As a capstone in this project, we respond to RQ#4: What role does RBC transfusion up to Day 14 play in 

the relationship between pre-operative anaemia and the occurrence of a post-operative complication up 

to Day 14?  

 

First, the results of the effect estimates in terms of coefficients and the odds ratios for each component 

of the mediation analysis model are consolidated in Table 4-9. Accounting for the pessimistic and 

optimistic scenarios, the notation of these results complements the notation established in Figure 3-

14, Section 3.6. Statistically significant effects (with a significance level of 0.001) were detected on the 
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a-path and, for the pessimistic scenario, on the b-path. The other effects were deemed statistically 

insignificant. 

 
Table 4-9: Effect estimates in terms of the coefficients and odds ratios for each path in the mediation model. 

Scenario Variable Model 

component 

Effect 

estimate 

notation 

Coefficient Odds ratio  p-value 

- Pre-operative 

anaemia 

Exposure 𝑎  1.685 5.391 <0.001 

pessimistic Pre-operative 

anaemia 

Exposure 𝑐𝑃𝐸𝑆
′    -0.016 0.984 0.930 

RBC transfusion Mediator 𝑏𝑃𝐸𝑆  1.078 2.940 <0.001 

optimistic Pre-operative 

anaemia 

Exposure 𝑐𝑂𝑃𝑇
′   0.033 1.033 0.864 

RBC transfusion Mediator 𝑏𝑂𝑃𝑇  0.141 1.152 0.403 

 

The 95% CI’s and further details upon the model fit are available in Appendix D. 

 

Next, Table 4-10 reveals the accompanying mediation results including the average causal mediation 

effects (ACME), average direct effects (ADE), and total effects (TE) for the Quasi-Bayesian Confidence 

Intervals method. (The results of the second method, Nonparametric Bootstrap Confidence Intervals 

with the Percentile with 1000 simulations, are presented in Appendix D. This second method yields very 

similar results as anticipated.) 

 
Table 4-10: Mediation analysis results (the Quasi-Bayesian Confidence Intervals method). 

Scenario 

Average causal mediation 

effect, ACME (indirect effect) Average direct effect, ADE 

Total effect, TE = ACME + 

ADE 

Estimate 95% CI Estimate 95% CI Estimate 95% CI 

pessimistic 0.0445 [0.0268; 

0.0700] 

-0.0013 [-0.054; 

0.06] 

0.0432 [-0.011; 

0.11] 

optimistic 0.0050 [-0.0072; 

0.0200] 

0.0046 [-0.046; 

0.06] 

0.0096 [-0.038; -

0.07] 

 

We conclude opposing results about mediation for the two scenarios: 

 

[1] For the pessimistic scenario, the RBC transfusion mediates the relationship between pre-

operative anaemia and the post-operative complications up to Day 14. This mediated 

relationship is enumerated with the ACME of 0.0445 with the 95% CI of [0.0268; 0.0700]. The 

accompanying ADE is -0.0013 (95% CI of [-0.054; 0.06]) and the TE is 0.0432 (95% CI of [-

0.011; 0.11]). 

[2] For the optimistic scenario, the RBC transfusion does not mediate the relationship between 

pre-operative anaemia and the post-operative complications up to Day 14. The ACME is 0.0050 

with the 95% CI of [-0.0072; 0.0200]. The accompanying ADE is 0.0046 (95% CI of [-0.046; 

0.06]) and the TE is 0.0096 (95% CI of [-0.038; -0.07]). 

 

Furthermore, it is observed for the pessimistic scenario that the direct effects and indirect effects 

(ACME) have different signs. Thus, the mediation model is inconsistent (the proportion mediated 

available in Appendix D does not have a meaningful interpretation). 
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4.4. Summary of Findings 
 

Clinical researchers including transfusion professionals desire simple models and ease in their 

interpretability despite the high complexity of transfusion medicine. In pursuit of determining the role 

of RBC transfusion relative to post-operative complications and in pursuit of describing a multi-centre 

setting in elective orthopaedic surgery in a simplified way, selected variable selection methods (subset 

selection, and lasso) were conducted during supervised learning model development. Variable 

importance was then captured, and mediation analysis was performed. 

 

In the parametric (LREG and lasso) and non-parametric, ‘black box’ (RF) modelling, a reduction of the 

number of variables was achieved, particularly, from 32 input variables (default) to 8 variables per lasso 

for the RBC model. For the COM models, the reduction is counted from 41 input variables to 12 and 11 

variables per lasso (pessimistic and optimistic scenarios, respectively). Although lasso models yielded 

slightly, insignificantly better performance for the COM models, the performance of all implemented 

models is in fact statistically comparable in terms of their AUC because the AUC’s 95% CI’s overlap. 

Overall, the model performance was evaluated as moderate or poor given that all CI’s range 

approximately between 0.58 to 0.78. It was observed that model calibration plots reveal 

inconsistencies which may be caused due to nonlinearity of the dataset. 

 

In summary, we respond to Hypothesis 4: There are strong confounding variables associated both with: 

• Allogeneic RBC transfusion (the mediator), and 

• Post-operative complications (the patient outcomes). 

 

10 strong confounding variables were eventually identified upon incorporating the clinical insight from 

the content expert in transfusion medicine – namely: hospital, age, gender, type of surgery (hip or knee, 

and primary vs revision), cardiovascular disease, diabetes mellitus, increased risk group, EPO, and the 

surgery year. The incorporation was done after a proposal of variables concluded to be of high 

importance per a supervised learning perspective as follows: Strong confounding among COM[RF] and 

RBC[RF] models is equivalent to the top 7 ranking in the variable importance for random forest models. 

The confounding was determined to be strong among COM[LREG] and RBC[LREG] models if at least 

0.1 significance level was observed. Strong confounders based on lasso models had non-zero 

coefficients both for the COM[lasso] and RBC[lasso] models. 

 

The COM[LREG] models already provided answers to the statistical significance of RBC transfusion. RBC 

transfusion was deemed statistically significant at the significance level of 0.001 in the pessimistic 

scenario. RBC transfusion was not a significant predictor in the optimistic scenario. These findings of 

the COM[LREG] models were consistent with the effects on the b-path seen in the mediation model. 

This auxiliary observation complements the current series of results. 

 

A capstone is to respond to Hypothesis 1: RBC transfusion mediates the relationship between pre-

operative anaemia and post-operative complications. Mediation analysis revealed that RBC transfusion 

mediates the relationship between pre-operative anaemia and post-operative complications up to Day 

14 in the pessimistic scenario, yet not in the optimistic scenario. Mediation for the pessimistic scenario 

was enumerated in terms of the average causal mediation effect (ACME) of 0.0445 (with the 95% CI of 

[0.0268; 0.0700]) that is deemed statistically significant. The accompanying average direct effect (ADE) 

is -0.0013 (95% CI of [-0.054; 0.06]) and the total effect is 0.0432 (95% CI of [-0.011; 0.11]). 
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Chapter 5   |  Discussion 

The Discussion chapter walks the reader through the reflections on each research question. Section 5.1. 

revolves around the findings to RQ#1 and the comparison of these insights to RQ#2. Strengths and 

suggestions for improvements of supervised learning that are tied to RQ#2 and RQ#3 are present in 

Section 5.2. and 5.3., respectively. In Section 5.4., we discuss the opposing results of the mediation 

model per RQ#4. 

 

5.1. Remarks on Statistical Significance of Input Variables Examined in Univariate 

Tests versus in a Multivariate Model 
 

Different findings are observed when examining some variables in univariate tests (in silo using the chi-

squared test and descriptive statistics per RQ#1 in Section 4.1.) versus in the presence of other 

covariates (RQ#2 in Section 4.2.1.). This phenomenon is detected for these six key input variables:  

• Pre-operative anaemia was deemed significant after a chi-squared test yet low variable 

importance was observed based on all three types of supervised learning models in both COM 

Cases (both the pessimistic and optimistic scenarios). 

• RBC transfusion was deemed significant for both COM Cases in univariate setting; however, 

none of the supervised learning models revealed statistical significance and high variable 

importance for Case COMOPT. 

• The type of surgery – hip or knee, was found insignificant in both COM Cases, yet logistic 

regression models reveal statistical significance for this variable. 

• The type of surgery – primary or revision, was found significant in Case RBC, yet none of the 

supervised learning models say so. 

• EPO is significant for Case COMPES and Case RBC in univariate testing, yet the opposite is found 

per logistic regression. 

• The cell saver variable is seen significant for Case COMPES after univariate testing; however, this 

variable is not significant after exploring it using the supervised learning models. 

 

The inconsistencies in statistical significance of an input variable suggest making careful considerations 

when analyzing input variables in silo (univariate setting) versus multivariate models. Results of 

univariate tests are not indicative of the logistic regression model outputs. Hence, the variable selection 

process for supervised learning models shall not depend entirely on the results of univariate tests. 
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Interestingly, the hospital variable exhibits statistical significance both in univariate testing and 

multivariate supervised learning models. This observation represents significant differences among the 

hospital in terms of the influence on administration of RBC transfusion and the occurrence of post-

operative complications. This observation can be somewhat tied to the type of a hospital – academic 

(Hospital1) or non-academic (Hospital2,3,4). Nevertheless, in future studies it is more useful to stratify 

data into subsets so that the hospital variable is eventually deemed insignificant. We claim that this 

modelling choice may lead to extracting valuable evidence and insights about specific aspects of the 

hospital floor operations (by including adequately measured variables) rather than general information 

on a hospital level. 

 

5.2. Remarks on Strengths of Supervised Learning Models 
 

We argue that our research exhibits extensive efforts of developing three types of prediction models 

(random forest, logistic regression, and lasso) including model validation, calibration, a demonstration 

of variability of performance measures and variable importance. (The results of RQ#2 are found in 

Section 4.2.1., and Section 6.3. further elaborates on promising follow-up projects.) In Section 2.1., we 

indicated in a literature review that many existing prediction models involving blood transfusion as a 

dependent variable were subject to a careful assessment by Dhiman et al. (2023). In this very recent 

systematic review, Dhiman et al. (2023) depict various flaws and high risk of prediction bias of these 

predictive modelling studies in transfusion medicine. According to Dhiman et al. (2023), some 

publications on the prediction models have unreported validation procedures, and most validated 

models considerably violate handling of predictors, the variable selection process, the sample size 

considerations, or validation methods. 

 

A variety of these issues in this research project was prevented. We further compare our efforts with 

Huang et al. (2018) and Rashiq et al. (2004) referenced in the above mentioned systematic review by 

Dhiman et al. (2023). These two studies can be compared with our research because the dependent 

variable was established also as intra-/post-operative RBC transfusion. Both studies performed internal 

validation as it is the case in our research. Huang et al. (2018) performed cross-validation, and Rashiq 

et al. (2004) used a train/test split. We used both of these methods. Huang et al. (2018) flourished from 

quite a large sample size of 15 187 patient records out of which 2867 patients (18.9%) received RBC 

transfusion. Rashiq et al. (2004) had only 884 patient records at hand out of which 239 (27%) patients 

who received RBC transfusion. Our sample (2426 records out of which 257 patients (10.6%) received 

RBC) was of a reasonably large sample size with minimal excluded patient records, and lies in between 

the two sample sizes indicated above. 

 

Furthermore, Huang et al. (2018) and Rashiq et al. (2004) report the AUC of 0.84 (95% CI of [0.81; 

0.87]) and 0.76 (unreported 95% CI), respectively, for their logistic regression models. The 

performance of our logistic regression models for Case RBC are significantly lower, 0.71 (95% CI of 

[0.65; 0.77]) than that reported by Huang et al. (2018). It is infeasible to claim a comparison with Rashiq 

et al. (2004) due to the unreported 95% CI. Then, Huang et al. (2018) report the AUC of 0.77 (95% CI 

of [0.74; 0.79]) for random forest. In our research, the 95% CI of AUC for both random forest models of 

Case RBC overlap. So we claim a comparable model performance here. Unlike in Huang et al. (2018), it 

was shown in our research that random forest does not significantly outperform logistic regression. The 

same finding is seen in the publication by Christodoulou et al. (2019) who conducted a systematic 

review to compare the performance of clinical prediction models, especially, with a focus on logistic 

regression models. 

 

Clinical researchers (Dhiman et al., 2023) express flaws tied to handling of input variables in predictive 

modelling involving blood transfusion. It is important to note that our research offers a great extent of 

transparency into the variable selection process that may help relieve some of this skepticism. 
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To discuss the variable importance findings of the RBC models, we again account for Huang et al. (2018) 

and Rashiq et al. (2004). For example, Huang et al. (2018) detected statistical significance at the level 

of 0.001 in their logistic regression model for gender, pre-operative Hb, the length of surgery, the 

tranexamic acid use, the drain use, and intra-operative blood loss. Rashiq et al. (2004) identified 

statistical significance at the level of 0.001 in their logistic regression model for type of surgery (primary 

vs revision), the categorical Hb variable, and the categorical weight variable. We find an overlap to these 

studies with gender and type of surgery. 

 

Finally, we argue that the prediction models involving post-operative complications (as the selected 

patient outcome, here Cases COM) offers an opportunity in patient outcomes research, patient-centred 

care and in PBM. Unfortunately, we do not report a comparison of our findings to a scientific publication 

especially due to the specificity of our established dependent variable that encompasses 15 different 

types of post-operative complications in elective orthopaedic surgery. Still, numerous literature sources 

involving patient outcomes research and blood transfusion in the surgical setting are available. For 

illustration, Bramley et al. (2021) present an umbrella review of systematic reviews concerning the risk 

factors for post-operative mental complication of delirium. From among the 10 publications related to 

trauma and orthopaedic surgery, they report that intra-operative blood transfusion appears among the 

risk factors. Future work may be accompanied with a thorough review of these and other publications 

(systematic reviews) to expand on this discussion topic and to further explore this field. There is room 

to reflect on a variety of patient outcome variables in many kinds of surgical settings. 

 

5.3. Remarks on Limitations and Potential Improvements of Supervised Learning 

Models 
 

It is imperative to state that this work is solely the first effort of supervised learning model development 

using the ‘TOMaat’ dataset. Hence, there is indeed room for many modelling improvements which can 

lead to underlining the strengths mentioned in the above section. 

 

Multicollinearity was not entirely treated. This problem was detected by troubleshooting the 

implementation of inference for lasso leaving it with an unreported measure of uncertainty for variable 

importance (recalling Table 4-7). There are existing tools to obtain these model outputs, such as the 

fixedLassoInf() function of the selectiveInference package (R Documentation, 2023b). Collinearity 

causes reduction in accuracy of the effect estimates and rapid increase in standard errors (James et al., 

2021). This means that the power of the hypothesis test (of detecting a non-zero coefficient) is reduced 

due to collinearity (James et al., 2021). To determine strong associations among categorical or binary 

input variables, collinearity can be spotted using the Spearman rank correlation coefficient (for ordinal) 

or the chi-square test (for nominal variables). Variance inflation factors may serve as an alternative. 

 

Tuning and cross-validation offers room for further investigation. Random search settings led to limited 

results due to controlling the computation time. For example, recalling Table 4-8, the odds ratio for 

COMPES[tuned RF] was quite high, 18.38. The random search did not yield the option to test mtry of 2. 

Instead, this time accuracy was optimized to yield mtry of 1. This means high variability was imposed 

on the model implying a high value of the odds ratio. 

 

Uncertainty measures, such as p-values for RF models may complement future work. It is advised to 

investigate methods to calculate CI’s of odds ratios and validate the odds using alternative functions or 

other ‘black box’ models. 

 

This work presents many binary input variables, yet, it is worth noting that random forest tends to be 

biased towards binary variables in inference outputs (James et al., 2021). The inconsistent findings 

from the PDPs of the RF models (Appendix C) may pertain to this aspect, the high natural variability, or 

the nonlinear character of the dataset. Surprisingly, the PDPs favour the presence of Anaemia_Pre_Op 

as well as RBC_Transfusion in terms of the lower odds values for the binary category containing ones. 
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Instead, the binary category containing ones is expected to receive higher odds (as it is the finding of 

the LREG models). Unfortunately, these results oppose the clinical findings. 

 

Additionally, the variable selection process on the raw data led to leaving unstructured data or many 

free text fields untapped. Free text fields potentially store valuable information that may enhance the 

model’s predictive and inference ability. However, retrieving data from free text fields is undesirable 

because it is highly error-prone as well as time-consuming considering common data science tools and 

practices in workplaces. Future variable selection process on the ‘TOMaat’ dataset may involve more 

extensive efforts in grouping of variables based on keywords in free text fields. 

 

Calibration curves (found in Appendix B) need further attention. Due to their offset, the prediction rates 

neither explicitly represent the probabilities for the occurrence of a post-operative complication (the 

COM models), nor the probabilities for being administered RBC transfusion (the RBC models). Thus, in 

this situation, clinicians are advised to continue considering prediction models for clinical use, yet, while 

choosing a cutoff level other than the intuitive default of 0.5. Appendix B further guides the reader in 

choosing the suitable cutoff and a possible series of model performance measures. 

 

5.4. Remarks on the Opposing Outputs of the Mediation Model as an Implication of 

Data Missingness in the Post-hoc Study 
 

RBC transfusion was not previously studied as a mediator between pre-operative anaemia and patient 

(surgical) outcomes. Literature for comparing the current results is absent (as demonstrated in 

Appendix E). This argument is supported by the clinical insight from the SME, dr. So-Osman. Numerous 

recommendations and tips for future work are proposed in the next chapter, Section 6.3. 

 

Mediation analysis revealed that RBC transfusion mediates the relationship between pre-operative 

anaemia and post-operative complications up to Day 14 in the pessimistic scenario, yet not in the 

optimistic scenario. The opposing results of mediation analysis lead to a clear prompt for assessing 

digital maturity of hospitals with the intention to analyze new patient-level datasets. Or alternative 

modelling approaches may be explored (i.e. per point 1, segment Patient outcomes in Section 6.3.). 

 

In this post-hoc project, massive data preparation efforts took place to establish dependent variables 

(post-operative complications up to Day 14, and intra-/post-operative RBC transfusion up to Day). To 

correctly detect the time sequence of the key events – whether RBC transfusion (administered first to 

the patient) occurred before or after the complication, the RBC transfusion dates were retrieved from a 

free text field. And not to compromise on the data missingness of the complication dates by making 

inappropriate assumptions that would alter the problem setting, two COM scenarios for the binary 

complication variable were established by accounting for extreme cases (0 for optimistic, 1 for 

pessimistic). Moving forward, instead of post-hoc projects, it would be more favourable to frame project 

incentives and to set expectations of data quality right from the start. 

 

Monitoring of patient outcomes and drawing insights from patient-level datasets has recently become 

a priority and urgency for transfusion medicine and PBM. For the future, it is advised to foster the digital 

maturity of hospitals and other healthcare establishments that are involved in digital transformation 

and in developing robust data collection strategies. The risks are tied to infeasible missingness or 

unstructured data. This advancement (monitoring shifts, timestamps, logs) can then offer a stronger 

platform for analyzing patient outcomes downstream. Otherwise, inference among key variables are 

hardly deduced, and data-driven decision-making and solutions tied to transfusion dependency and 

patient-centredness are very limited. Generally, in healthcare settings, the digital maturity may include 

database design, standardization of data collection practices, and even extensive communication and 

discussion with the vendors of electronic health record (EHR) systems. A scale-up of data collection 

strategies and enhancements of digital maturity may potentially also go hand in hand with the new PBM 

Implementation Guidelines are currently under development by WHO. 
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Chapter 6   |  Recommendations on 

Future Work 

We are convinced that the methodology of this study suggests quite an innovative roadmap for data 

analysis involving patient outcomes across the transfusion medicine and PBM landscapes. Section 6.1. 

discusses generalizability and the degree of innovation. Section 6.2. presents key takeaway messages 

on how to treat (RBC) transfusion as a dependent variable in modelling. And the content of Section 6.3. 

serves to touch upon potential future work involving patient outcomes research and transfusion data 

using the ‘TOMaat’ dataset or other datasets. 

 

6.1. Generalizability and the Degree of Innovation 
 

The research output has tremendous potential in terms of the degree of innovation. According to dr. So-

Osman, the Unit Transfusion Medicine at Sanquin Blood Bank: “The results are going to be very relevant 

for the transfusion medicine and PBM communities. Transfusion professionals throughout the world will 

benefit from the results of this project, and Sanquin also (of course).” A greater level of detail (greater 

granularity) could empower both the patients and the current clinical practice. We argue that the 

methodologies applied in this study may find applications in other (peri-operative) clinical settings in 

the future. For example, Blood and Beyond (2021; 2020) reports that most RBCs are rather used in 

medical indications (67%) than surgical (33%). Hence, there is a great potential to target medical areas, 

such as solid cancers, gastrointestinal disease, kidney disease, cardiovascular disease, or various blood 

diseases (Blood and Beyond, 2021). Yet, robust data acquisition on a desired patient group is indeed a 

key prerequisite for fruitful data analysis and modelling. 

 

New insights could help shed light on the dynamics among many variables from the (anaemic) patient 

medical record and the role of RBC transfusions in the peri-operative setting. The potential new findings 

may even help further facilitate ongoing debates about decision-making in healthcare among global 

multi-disciplinary teams, transfusion medicine experts, and PBM communities. The debates may lead 

to improving decision-making strategies in PBM (pertaining both to the decisions made by the patient 

or by the clinician). Subsequently, based on the top-down management framework for healthcare 

planning and control (Hans, 2015; Hans et al., 2011), further granularity in scientific evidence may 

foster medical planning and resource capacity planning to better target the right care to the right patient 
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– to provide more cost-effective, personalized care. For example, a simulation study (such as health 

economic modelling) may be later conducted using the methodologies in this research on what kind of 

design is needed in a particular clinical setting for PBM to be cost-effective and worth implementing. Or 

a data-driven project may be done in the future on estimating the burden on a clinical setting due to 

anaemia and blood transfusion overuse by varying a patient case mix. 

 

6.2. Recommendations on Treating Transfusion as a Dependent Variable in Model 

Development 
 

In the future, transfusion may be used as a dependent variable for modelling. Nevertheless, careful 

consideration must be given to the selection of input variables that shall not encompass transfusion 

triggers. A reader may have noticed that in this study, the intra-operative blood loss variable is absent 

among the input variables although it is present and sufficiently measured in the ‘TOMaat’ dataset. This 

modelling choice was done because blood loss is one of the two transfusion triggers of our clinical 

setting (introduced in Section 3.1.2.). The same consideration goes for the transfusion-related Hb level 

(per the ‘4-5-6 rule’). This Hb variable (if any) shall be omitted from model inputs. (This Hb variable was 

in fact not available (not measured) in the ‘TOMaat’ dataset.) 

 

In essence, transfusion as a clinical intervention involves elements of independence – choice. In other 

words, someone eventually decides if transfusion is administered, ideally by evaluating if a transfusion 

trigger(s) was met. If transfusion were to be treated as a dependent variable in developing a feasible 

model, its triggers cannot be explicitly contained among the input variables. Thus, emerging data 

analysts in the transfusion medicine and PBM landscapes are encouraged in careful discernment, and 

shall pay close attention to transfusion triggers relevant to the clinical setting in scope of their study. 

Ideally, to prevent faulty assumptions, careful documentation of transfusion triggers in datasets can be 

an essential pre-requisite to avoid modelling flaws; otherwise, errors would give rise to infeasible 

models and misleading planning strategies thereof. 

 

Transfusion triggers often pertain to a specific country. The ‘TOMaat’ dataset reflects a clinical setting 

in the Netherlands where strict transfusion triggers are in place per the national guidelines – the Dutch 

Blood Transfusion Guidelines (de Vries & Haas, 2012). Here, transfusion is administered to patients 

depending on meeting pre-established thresholds (recalling the ‘4-5-6 rule’ and the blood loss trigger, 

Section 3.1.2.). In this work, we assumed that the Dutch Blood Transfusion Guidelines with the 

established transfusion triggers were strictly followed. 

 

However, in practice it is sometimes seen that there is a lot of variability in transfusion triggers 

(Stanworth, 2023) which may lead to limitations in data analysis or to completely disregarding existing, 

promising patient-level datasets if traceability is missing. Dr. Stanworth (2023) has also recently 

appealed to rethink of how we do studies in transfusion medicine and to respond to the question ’Who 

really needs transfusion?’. We claim that proper handling of predictors (to predict transfusion, or to 

predict patient outcomes) is one of the first steps towards patient-centred care in transfusion medicine 

and PBM. Recalling the articles per discussion points in Section 5.2., the study of Rashiq et al. (2004) 

was situated in Canada, and the research by Huang et al. (2018) was situated in China. Rashiq et al. 

(2004) reports that up to 12 hours before the administration of transfusion, the Hb measurements were 

collected. 80% of transfusion cases were triggered by meeting the Hb threshold (between 71 and 89 

g/dL) and surgeon-specific triggers displayed low variability. Nevertheless, it is questionable to see the 

Hb variable among input variables of the multivariate logistic regression model. Then, we encourage a 

reader to think critically about Huang et al. (2018) because in the modelling steps of this publications, 

no clear, explicit elaboration on the specific transfusion triggers in the variable selection process was 

detected. Another questionable aspect in the two publications is that the information about the patient 

consent for receiving allogeneic RBC transfusion was not found. 
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Furthermore, datasets shall also contain the information if an informed consent for the administration 

of transfusion was given by a patient. Subsequently, if the patient characteristics met a transfusion 

trigger, transfusion follows. Traceability in databases on patient consent is also a key pre-requisite in 

similar studies. This allows to only subset records of those patients who gave their consent for the 

administration of transfusion. For example, if the information about the patient’s informed consent to 

receive transfusion is not available, or if the patient participated in decision-making prior to the 

administration of transfusion, the application of similar methods may lead to strong misleading 

conclusions about the behaviour of a specific patient group in a given clinical setting. Otherwise, 

transfusion would be rather considered a parameter (equivalent to the respective transfusion triggers) 

if the information, whether a patient agreed beforehand to be administered transfusion, is missing. 

 

6.3. Tips on Alternative Modelling Setup and Follow-up Data-driven Project 

Incentives involving Transfusion Data and Patient Outcomes 
 

Although clinicians prefer simple models and easy interpretability, the high complexity of transfusion 

medicine may lead to the need of developing other more complex solutions to deal with uncertainty of 

the system behaviour. This project completion opens the door for tips on new project incentives 

involving data on blood products and patient outcomes (in various clinical settings). 

 

Sanquin requests suggestions on follow-up projects involving the ‘TOMaat’ or other datasets. Future 

work and improvements may encompass many new, data-driven projects, namely, concerning: 

 

[1] The mediation analysis model: 

o Addition of two pairs of confounders (Hypothesis 2 and 3 per Section 1.2., and the 

assumptions per Section 3.6.). This improvement can lead to obtaining unbiased estimates 

noting that the current series of results remain biased. Next to it, SMEs in mediation 

analysis are advised to double-check the candidacy of the age and gender variables (under 

consideration) that in fact both contribute to the established transfusion triggers. Please 

refer to Section 6.2. above for details concerning transfusion triggers in modelling. 

o Addition of other model components (i.e. moderators) that can improve estimations of 

variable effects in mediation analysis. 

o Comparing outputs of models involving different sets of confounders (i.e. not only strong 

confounders). 

o Dealing with multicollinearity in the current logistic regression models (referring to Section 

5.3.). Per publications by Hernán and Robins (2020) and by Rijnhart et al. (2021), no 

explicit guidance or recommendations on dealing with or preventing collinearity in 

mediation analysis were found. Collinearity in the context of mediation analysis is known 

and described by Beasley (2013). 

o Reversing the causality (RBC transfusion follows a complication). 

o Exploring opportunities to utilize inference outputs from lasso for mediation analysis. This 

approach would favour a great reduction of the number of input variables. 

 

[2] Patient outcomes: 

o Excluding patient records with a missing date of complications (as an additional step to 

listwise deletion (Section 3.1.6.)). This exclusion is especially important in Patient group 1-

1 that applies to the patients who experienced RBC transfusion followed by a complication. 

Now that we have the knowledge that the pessimistic and optimistic scenarios yield 

opposing results, this enhancement in data exclusion will reduce the study to a single 

scenario. (The ‘TOMaat’ dataset suffers from data missingness in the Patient group 1-1 for 

48 patients from among 145 patients which is equivalent to 33% missingness in this 

Patient group.) 

o Systematic literature reviews to further explore the field of patient outcomes research 

involving blood transfusion with accompanying (country-specific) guidelines (i.e. by 
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expanding on the discussion topics per Chapter 5). There is room to reflect on a variety of 

patient outcome variables in many kinds of surgical settings besides elective orthopaedic 

surgery. 

o Exploring complications based on severity or selecting key complication types: From 

among all types of complications (i.e. infectious, pneumonia, cardiac, respiratory, or mental 

health to name a few), there is no focus on any particular type of complications in this work. 

Yet, to note, So-Osman et al. (2014a; 2014b) distinguish between thromboembolic (TE) 

and non-thromboembolic (non-TE) complications. Additionally, classification into several 

levels of severity was discussed during project initiation; however, due to the age of the 

data, data collection practices did not yet revolve around grouping complications based on 

severity as opposed to today’s common practices in hospitals. 

o Studying the numeric LOS variable as the patient outcome variable (perhaps, also relative 

to the health-economic aspect). 

o Proceeding to longitudinal studies by analyzing the post-operative complications up to 

3 months after surgery. 

o Health-economic analysis (i.e. budget impact analysis). The ‘TOMaat’ dataset offers the 

Quality of Life, QoL, measures. 

o Exploring opportunities using other datasets to study other patient outcomes (i.e. 

readmission). 

 

[3] The RBC transfusion variable: 

o Establishing RBC transfusion as a numeric variable to study RBC as the blood product use. 

o Reducing the complexity and variability of the dataset by selecting patient subgroups (into 

separate models) based on specific transfusion triggers. 

o Finding new opportunities for standardization (storing data about transfusion triggers, 

patient consent) on the national or international level. 

 

[4] Supervised machine learning models: 

o Dealing with multicollinearity in the existing lasso models. 

o Exploring multi-class classification models (i.e. what is the probability that a patient will 

have both transfusion and the patient outcome, independent of the time sequence). 

o Building generalized additive models to deal with high natural variability of the dataset. 

Non-linear alternatives of parametric models are available as extensions of linear models, 

namely, polynomial regression, step functions, regression or smoothing splines, local 

regression, and generalized additive models (James et al., 2021). 

o Improving the model performance with other black-box models (i.e. deep learning) and 

drawing insights from their PDPs. “Partial dependence functions can be used to help 

interpret models produced by any “black box” prediction method, such as neural 

networks… When there is a large number of predictor variables, it is very useful to have a 

measure of relevance.” (Friedman, 2001) 

 

[5] Variable selection: 

o Extracting information from free text fields or other variables excluded in this study. 

o Studying variable selection methods and comparing the resulting inference results and 

model uncertainty measures. 

 

[6] Software engineering: 

o Mitigating technical/human errors by blending validation activities and other software 

engineering practices into a workplace. 

 

A series of themes for follow-up projects were proposed. Through their execution (under the umbrella 

of Sanquin, and perhaps also partnering hospitals), clinical researchers may sequentially get acquainted 

with the increasing complexity of modelling needs. 
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It is vital to recall that WHO (2021) being a key, international health authority urges to implement PBM 

across healthcare systems to tackle the burden tied to transfusion dependency. In this regard, we 

encourage Sanquin and other healthcare establishments to take action in patient outcomes research 

and in supporting the design of decision support solutions involving transfusion data for clinical use. We 

see opportunities for improving and utilizing digital maturity in hospitals by giving appropriate attention 

to the data quality and data collection efforts which will thoroughly represent transfusion interventions 

and the accompanying healthcare operations. Although it may take some time to yield useful results 

based on existing datasets, we advise health authorities to continue paying attention to the field of PBM 

and making strategic decisions, especially, in the matter of funding and human resources. This may 

involve building multidisciplinary teams with significant contribution of dataset content experts (i.e. 

clinical/transfusion specialists) and with professionals committed to patient-centredness. Besides 

smaller, local initiatives, a great importance while striving for change and scale-up goes to government 

authorities and patient advocacy groups. 
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Chapter 7   |  Conclusion 

“The need for robust methods seems to be intimately mixed up with the need for simple models.” 

 (James Box, 1979) 
 

Our study offers key steps to an innovative roadmap to model a complex surgical setting involving (RBC) 

transfusion, patient outcomes, pre-operative anaemia and selected (30+) variables from a patient-level 

dataset (‘TOMaat’), here, gathered in the elective orthopaedic surgical setting. The roadmap is 

represented by the framework of this research if similar methodology was implemented to other 

patient-level datasets. Clinical researchers favour simple models and ease in their interpretability 

despite the high complexity of transfusion medicine. Studying RBC transfusion as a mediator in 

mediation analysis – the method requested by the Sanquin Blood Bank, is novel in this field of medicine.  

 

The central challenge lied in investigating Hypotheses 1 and 4 (Section 1.2.) which, respectively, pertain 

to the mediating role of RBC transfusion (RBC) in the relationship between pre-operative anaemia and 

post-operative complications up to Day 14 (COM), and strong confounding variables in relation to RBC 

transfusion and these complications. First, to simplify this complex realm, the study employs massive 

data preparation efforts and variable selection methods during the development of multiple supervised 

learning models (random forest, logistic regression, and lasso). Two scenarios were established due to 

extensive data missingness (33%) of the patient outcome dates. The model performance is deemed 

moderate or poor with overlapping confidence intervals for the AUC metrics indicating similar 

performance of all models. The RBC models exhibit AUC’s between 0.69 and 0.71, and the COM models 

between 0.63 and 0.69. Their 95% CI’s range between 0.58 and 0.78. 
 

The research confirms Hypothesis 4 – there are strong confounders of RBC transfusion and post-

operative complications up to Day 14. 10 strong confounding variables were identified from inference 

results of supervised learning models, substantiated by clinical insights from a transfusion medicine 

expert – namely: hospital, age, gender, type of surgery (hip or knee, and primary vs revision), 

cardiovascular disease, diabetes mellitus, increased risk group, EPO, and the surgery year. 

 

Next to it, supervised learning models reveal the statistical significance of RBC transfusion, particularly, 

in the pessimistic scenario. This means for this scenario that RBC transfusion was found to be a strong 

predictor for the occurrence of post-operative complications up to Day 14. In contrary, in the optimistic 

scenario, there is no statistical significance of RBC transfusion relative to this patient outcome variable. 



6 | Conclusion  Master Thesis Report 

 64 

Interestingly, variable significance differs when analyzed individually (in silo) versus in the presence of 

other covariates, as seen with pre-operative anaemia and other variables. 
 

In response to Hypothesis 1, mediation analysis yielded opposing results for the two scenarios. RBC 

transfusion mediates the relationship between pre-operative anaemia and post-operative 

complications up to Day 14 in the pessimistic scenario (with the ACME of 0.0445 and the 95% CI of 

[0.0268; 0.0700]), yet does not mediate this relationship in the optimistic scenario. Improving the 

mediation model with additional components is encouraged to reduce the current bias. 
 

Overall, this study sheds light on the dynamics of RBC transfusion, pre-operative anaemia, confounding 

variables, and their role in post-operative complications up to Day 14. The importance of reporting 

uncertainty measures of multiple models, and the importance of having incorporated the insights of a 

transfusion expert are apparent. Numerous suggestions for future work (i.e. through multidisciplinary 

partnerships between Sanquin and hospitals) were proposed and discussed. Especially the new insights 

of how to treat RBC transfusion in modelling, standardization of its triggers, or documenting informed 

consents by patients may contribute to the advancement of patient-centred care, PBM and evidence-

based medicine in the future while striving for relieving the burden due to transfusion dependency. 



References  Master Thesis Report 

 65 

References  
Alfons, A., Ateş, N. Y., & Groenen, P. J. F. (2021). A Robust Bootstrap Test for Mediation Analysis. 

Organizational Research Methods, 109442812199909. 

https://doi.org/10.1177/1094428121999096 

Beasley, T. M. (2013). Tests of Mediation: Paradoxical Decline in Statistical Power as a Function of 

Mediator Collinearity. The Journal of Experimental Education, 82(3), 283–306. 

https://doi.org/10.1080/00220973.2013.813360 

Blood and Beyond. (2020). Rethinking blood use in Europe to improve outcomes for patients - 

infographic. In Blood and Beyond. Celgene Corporation. 

https://www.bloodandbeyond.com/wp-

content/uploads/Blood_and_Beyond_Infographic_Update_November_2020.pdf 

Blood and Beyond. (2021). Rethinking blood use in Europe to improve outcomes for patients. In Blood 

and Beyond. Celgene Corporation. https://www.bloodandbeyond.com/wp-

content/uploads/Blood_and_Beyond_Rethinking_blood_use_in_Europe_Updated_November

_2020.pdf 

Box, G. E. P. (1979). Robustness in the Strategy of Scientific Model Building. Robustness in Statistics, 

201–236. https://doi.org/10.1016/b978-0-12-438150-6.50018-2 

Bramley, P., McArthur, K., Blayney, A., & McCullagh, I. (2021). Risk factors for postoperative delirium: 

An umbrella review of systematic reviews. International Journal of Surgery, 93, 106063. 

https://doi.org/10.1016/j.ijsu.2021.106063 

Centre for Evidence-Based Medicine. (2009, March). Levels of Evidence. University of Oxford. 

https://www.cebm.ox.ac.uk/resources/levels-of-evidence/oxford-centre-for-evidence-based-

medicine-levels-of-evidence-march-2009 

Christodoulou, E., Ma, J., Collins, G. S., Steyerberg, E. W., Verbakel, J. Y., & Van Calster, B. (2019). A 

systematic review shows no performance benefit of machine learning over logistic regression 

for clinical prediction models. Journal of Clinical Epidemiology, 110, 12–22. 

https://doi.org/10.1016/j.jclinepi.2019.02.004 

Cinelli, C., Forney, A., & Pearl, J. (2022). A Crash Course in Good and Bad Controls. Sociological 

Methods & Research, 004912412210995. https://doi.org/10.1177/00491241221099552 

de Groot, R., Hoenink, J. C., Mackenbach, J. D., den Braver, N. R., Pinho, M. G. M., Brassinga, D., 

Prinsze, F. J., Timmer, T. C., de Kort, W. L. A. M., Brug, J., van den Hurk, K., & Lakerveld, J. 

(2019). The association between population density and blood lipid levels in Dutch blood 

donors. International Journal of Health Geographics, 18(1). https://doi.org/10.1186/s12942-

019-0167-y 

de Vries, R., & Haas, F. (2012). English Translation of the Dutch Blood Transfusion Guideline 2011. 

Clinical Chemistry, 58(8), 1266–1267. https://doi.org/10.1373/clinchem.2012.189209 

Dhiman, P., Ma, J., Gibbs, V. N., Alexandros Rampotas, Kamal, H., Arshad, S. S., Kirtley, S., Doree, C., 

Murphy, M., Collins, G. S., & Antony JR. Palmer. (2023). Systematic review highlights high risk 

of bias of clinical prediction models for blood transfusion in patients undergoing elective 

surgery. Journal of Clinical Epidemiology, 159, 10–30. 

https://doi.org/10.1016/j.jclinepi.2023.05.002 

Frenzel, T., Van Aken, H., & Westphal, M. (2008). Our own blood is still the best thing to have in our 

veins. Current Opinion in Anaesthesiology, 21(5), 657–663. 

https://doi.org/10.1097/aco.0b013e3283103e84 

Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. The Annals of 

Statistics, 29(5), 1189–1232. https://doi.org/10.1214/aos/1013203451 

Greenland, S., & Morgenstern, H. (2001). Confounding in Health Research. Annual Review of Public 

Health, 22(1), 189–212. https://doi.org/10.1146/annurev.publhealth.22.1.189 

Greenwell, B. M. (2017). pdp: An R Package for Constructing Partial Dependence Plots. The R Journal, 

9(1), 421. https://doi.org/10.32614/rj-2017-016 



References  Master Thesis Report 

 66 

Hans, E. W. (2015). Is it better now doctor? Inaugural lecture given upon acceptance of the Chair of 

Operations Management in Health Care at the Faculty of Behavioural, Management and Social 

Sciences, University of Twente. 

Hans, E. W., Van Houdenhoven, M., & Hulshof, P. J. H. (2011). A framework for health care planning 

and control. In Handbook of Health Care Systems Scheduling (pp. 303-320). Springer.  

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: data mining, 

inference, and prediction (2nd ed.). Springer. 

Heerkens, H., & van Winden, A. (2017). Solving Managerial Problems Systematically. Noordhoff 

Uitgevers bv. 

Hernán M., & Robins, J. M. (2021). Causal inference: What If. CRC Press. 

Hilderink, H. B. M., Plasmans, M. H. D., Poos, M. J. J. C., Eysink, P. E. D., & Gijsen, R. (2020). Dutch 

DALYs, current and future burden of disease in the Netherlands. Archives of Public Health, 

78(1). https://doi.org/10.1186/s13690-020-00461-8 

Hofmann, A., Farmer, S., & Shander, A. (2011). Five Drivers Shifting the Paradigm from Product‐

Focused Transfusion Practice to Patient Blood Management. The Oncologist, 16(S3), 3–11. 

https://doi.org/10.1634/theoncologist.2011-s3-3 

Hosmer, D. W., & Lemeshow, S. (2000). Applied Logistic Regression. John Wiley & Sons, Inc. 

https://doi.org/10.1002/0471722146 

Huang, Z., Huang, C., Xie, J., Ma, J., Cao, G., Huang, Q., Shen, B., Byers Kraus, V., & Pei, F. (2018). 

Analysis of a large data set to identify predictors of blood transfusion in primary total hip and 

knee arthroplasty. Transfusion, 58(8), 1855–1862. https://doi.org/10.1111/trf.14783 

IKNL. (2023). About IKNL. Netherlands Comprehensive Cancer Organisation (IKNL). 

https://iknl.nl/en/about-iknl 

Isbister, J. (2005). Why Should Health Professionals be Concerned about Blood Management and 

Blood Conservation? Updates in Blood Conservation and Transfusion Alternatives, 2(Dec:3-7). 

Isbister, J. P. (2013). The three-pillar matrix of patient blood management – An overview. Best 

Practice & Research Clinical Anaesthesiology, 27(1), 69–84. 

https://doi.org/10.1016/j.bpa.2013.02.002 

James, G. M., Witten, D., Hastie, T. J., & Tibshirani, R. (2021). An introduction to statistical learning: 

with applications in R (2nd ed.). Springer. 

Last, J. M. (2001). A dictionary of epidemiology (4th ed.). Oxford University Press. 

Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., Katz, R., Himmelfarb, J., 

Bansal, N., & Lee, S.-I. (2020). From local explanations to global understanding with 

explainable AI for trees. Nature Machine Intelligence, 2(1), 56–67. 

https://doi.org/10.1038/s42256-019-0138-9 

Mascha, E. J., Dalton, J. E., Kurz, A., & Saager, L. (2013). Understanding the Mechanism: Mediation 

Analysis in Randomized and Nonrandomized Studies. Anesthesia & Analgesia, 117(4), 980–

994. https://doi.org/10.1213/ane.0b013e3182a44cb9 

McAlexander, R. J., & Mentch, L. (2020). Predictive inference with random forests: A new perspective 

on classical analyses. Research & Politics, 7(1), 205316802090548. 

https://doi.org/10.1177/2053168020905487 

Meier, J. M., & Tschoellitsch, T. (2022). Artificial Intelligence and Machine Learning in Patient Blood 

Management: A Scoping Review. Anesthesia & Analgesia, 135(3), 524–531. 

https://doi.org/10.1213/ane.0000000000006047 

Molnar, C. (2022). Interpretable Machine Learning: A Guide for Making Black Box Models Explainable | 

Partial Dependence Plot (PDP). In christophm.github.io (2nd ed.). 

https://christophm.github.io/interpretable-ml-book/pdp.html 

Morabia, A. (2010). History of the modern epidemiological concept of confounding. Journal of 

Epidemiology & Community Health, 65(4), 297–300. 

https://doi.org/10.1136/jech.2010.112565 

Nash, D. B., Joshi, M., Ransom, E. R., & Ransom, S. B. (2019). The healthcare quality book: Vision, 

strategy, and tools (4th ed.). Health Administration Press, Chicago, Illinois, United States. 



References  Master Thesis Report 

 67 

Ozawa, S. (2023, January 1). What’s Happening Globally in Patient Blood Management? A Sit Down 

with Sherri Ozawa. Let’s Talk Patient Blood Management (podcast series). 

R Documentation. (2023a). partial: Partial Dependence Functions. Retrieved May 15, 2023, from 

https://www.rdocumentation.org/packages/pdp/versions/0.8.1/topics/partial 

R Documentation. (2023b). R: Inference for the lasso, with a fixed lambda. Search.r-Project.org. 

Retrieved May 15, 2023, from https://search.r-

project.org/CRAN/refmans/selectiveInference/html/fixedLassoInf.html 

Rashiq, S., Shah, M., Chow, A. K., O’Connor, P. J., & Finegan, B. A. (2004). Predicting Allogeneic Blood 

Transfusion Use in Total Joint Arthroplasty. Anesthesia & Analgesia, 99(4), 1239–1244. 

https://doi.org/10.1213/01.ane.0000132928.45858.92 

Richiardi, L., Bellocco, R., & Zugna, D. (2013). Mediation analysis in epidemiology: methods, 

interpretation and bias. International Journal of Epidemiology, 42(5), 1511–1519. 

https://doi.org/10.1093/ije/dyt127 

Rijnhart, J. J. M. (2021). Comparison of Methods for Statistical Mediation Analysis within 

Epidemiological Research [Doctoral thesis]. 

https://www.globalacademicpress.com/ebooks/judith_rijnhart/index.html#p=1 

Rijnhart, J. J. M., Valente, M. J., Smyth, H. L., & MacKinnon, D. P. (2021). Statistical Mediation Analysis 

for Models with a Binary Mediator and a Binary Outcome: the Differences Between Causal and 

Traditional Mediation Analysis. Prevention Science. https://doi.org/10.1007/s11121-021-

01308-6 

Saager, L., Turan, A., Reynolds, L. F., Dalton, J. E., Mascha, E. J., & Kurz, A. (2013). The Association 

Between Preoperative Anemia and 30-Day Mortality and Morbidity in Noncardiac Surgical 

Patients. Anesthesia & Analgesia, 117(4), 909–915. 

https://doi.org/10.1213/ane.0b013e31828b347d 

Safiri, S., Kolahi, A.-A., Noori, M., Nejadghaderi, S. A., Karamzad, N., Bragazzi, N. L., Sullman, M. J. M., 

Abdollahi, M., Collins, G. S., Kaufman, J. S., & Grieger, J. A. (2021). Burden of anemia and its 

underlying causes in 204 countries and territories, 1990–2019: results from the Global 

Burden of Disease Study 2019. Journal of Hematology & Oncology, 14(1). 

https://doi.org/10.1186/s13045-021-01202-2 

Sanquin Blood Supply Foundation. (2021). Highlights 2021. Sanquin Annual Reports. 

https://www.sanquin.nl/binaries/content/assets/sanquinnl/over-sanquin/pers--

actueel/jaarverslagen/highlights-2021-stichting-sanquin_uk.pdf 

Sanquin. (2023a). The Story of Sanquin. Retrieved January 11, 2023, from 

https://www.sanquin.nl/en/about-sanquin/the-story-of-sanquin 

Sanquin. (2023b). Wordt gedoneerd bloed en plasma commercieel ingezet? Sanquin. Retrieved March 

1, 2023, from https://www.sanquin.nl/over-sanquin/dossiers/wordt-gedoneerd-bloed-en-

plasma-commercieel-ingezet 

Schuster, N. A., Rijnhart, J. J. M., Bosman, L. C., Twisk, J. W. R., Klausch, T., & Heymans, M. W. (2023). 

Misspecification of confounder-exposure and confounder-outcome associations leads to bias 

in effect estimates. BMC Medical Research Methodology, 23(1). 

https://doi.org/10.1186/s12874-022-01817-0 

Shander, A., Goobie, S. M., Warner, M. A., Aapro, M., Bisbe, E., Perez-Calatayud, A. A., Callum, J., 

Cushing, M. M., Dyer, W. B., Erhard, J., Faraoni, D., Farmer, S., Fedorova, T., Frank, S. M., 

Froessler, B., Gombotz, H., Gross, I., Guinn, N. R., Haas, T., & Hamdorf, J. (2020). The 

Essential Role of Patient Blood Management in a Pandemic: A Call for Action. Anesthesia and 

Analgesia. https://doi.org/10.1213/ANE.0000000000004844 

Shander, A., Hardy, J.-F., Ozawa, S., Farmer, S. L., Hofmann, A., Frank, S. M., Kor, D. J., Faraoni, D., 

Freedman, J., & Collaborators. (2022). A Global Definition of Patient Blood Management. 

Anesthesia and Analgesia. https://doi.org/10.1213/ANE.0000000000005873 

So-Osman, C. (2012). Patient Blood Management in Elective Orthopaedic Surgery [Doctoral thesis]. 

https://scholarlypublications.universiteitleiden.nl/handle/1887/20071 

So-Osman, C., Nelissen, R. G. H. H., Koopman-van Gemert, A. W. M. M., Kluyver, E., Pöll, R. G., 

Onstenk, R., Van Hilten, J. A., Jansen-Werkhoven, T. M., van den Hout, W. B., Brand, R., & 



References  Master Thesis Report 

 68 

Brand, A. (2014a). Patient Blood Management in Elective Total Hip- and Knee-replacement 

Surgery (Part 1). Anesthesiology, 120(4), 839–851. 

https://doi.org/10.1097/aln.0000000000000134 

So-Osman, C., Nelissen, R. G. H. H., Koopman-van Gemert, A. W. M. M., Kluyver, E., Pöll, R. G., 

Onstenk, R., Van Hilten, J. A., Jansen-Werkhoven, T. M., van den Hout, W. B., Brand, R., & 

Brand, A. (2014b). Patient Blood Management in Elective Total Hip- and Knee-replacement 

Surgery (Part 2). Anesthesiology, 120(4), 852–860. 

https://doi.org/10.1097/aln.0000000000000135 

So-Osman, C., van der Wal, D. E., & Allard, S. (2017). Patient Blood Management initiatives on a global 

level: the results of an International Society of Blood Transfusion Survey. ISBT Science Series, 

12(3), 327–335. https://doi.org/10.1111/voxs.12356 

Stanworth, S. J. (2023). Speech at the NVB-TRIP Symposium, Ede, the Netherlands. 

Šuster, S., Baldwin, T., & Verspoor, K. (2023). Analysis of predictive performance and reliability of 

classifiers for quality assessment of medical evidence revealed important variation by medical 

area. Journal of Clinical Epidemiology. https://doi.org/10.1016/j.jclinepi.2023.04.006 

Tibshirani, R. (1996). Regression Shrinkage and Selection Via the Lasso. Journal of the Royal 

Statistical Society: Series B (Methodological), 58(1), 267–288. 

https://doi.org/10.1111/j.2517-6161.1996.tb02080.x 

Weinberg, C. R. (1993). Toward a Clearer Definition of Confounding. American Journal of 

Epidemiology, 137(1), 1–8. https://doi.org/10.1093/oxfordjournals.aje.a116591 

WHO. (2014). Global nutrition targets 2025: anaemia policy brief (WHO/NMH/NHD/14.4). Geneva: 

World Health Organization. 

https://apps.who.int/nutrition/publications/globaltargets2025_policybrief_anaemia/en/ 

WHO. (2021). The urgent need to implement patient blood management: policy brief. World Health 

Organization. https://apps.who.int/iris/handle/10665/346655 

License: CC BY-NC-SA 3.0 IGO 

WHO. (2023). Anaemia. World Health Organisation. Retrieved January 11, 2023, from 

https://www.who.int/health-topics/anaemia#tab=tab_1 

WHO Scientific Group on Nutritional Anaemias & World Health Organization. (1968). Nutritional 

anaemias : report of a WHO scientific group [meeting held in Geneva from 13 to 17 March 

1967]. World Health Organization. https://apps.who.int/iris/handle/10665/40707 

 



Appendix  Master Thesis Report 

 69 

Appendix A: Exploratory Data Analysis 

The (graphical) content in this appendix serves as a supplement to RQ#1. The sequence of key patient groups in Table A-1 is consistent with Table 4-2: 
 

Table A-1: Descriptive statistics and EDA results: Insights on associations among selected input variables (key patient subgroups) and target patient outcomes (Cases). For 

binary or categorical variables, the descriptive statistics are counts and proportions (at least 1 COM / all COM, or at least 1 RBC / all RBC). For numeric variables, the descriptive 

statistics are mean, median and interquartile range (IQR). 

Key patient subgroup no case Case COMPES Case COMOPT Case RBC Case LOS 

Descrip-

tive 

statistics 

Descriptive statistics 

(at least 1 COM) 

p-value, 

or corre-

lation 

Descriptive statistics 

(at least 1 COM) 

p-value, 

or corre-

lation 

Descriptive statistics 

(at least 1 RBC) 

p-value, 

or corre-

lation 

Descriptive 

statistics 

corre-

lation 

Participating hospitals (Hospital1; 

Hospital2; Hospital3; Hospital4) 

401; 

956; 

602; 

467 

127 (31.7%);  

166 (17.4%); 

84 (14.0%);  

134 (28.7%) 

<0.001 117 (29.2%);  

142 (14.9%); 

80 (13.3%);  

124 (26.6%) 

<0.001 54 (13.5%);  

122 (12.8%); 

29 (4.8%);  

52 (11.1%) 

<0.001 [median 8,  

mean 9.0,  

IQR (7;10)]; 

[median 6,  

mean 7.8,  

IQR (5;8)]; 

[median 6,  

mean 6.8,  

IQR (5;8)]; 

[median 8, 

mean 9.4, 

IQR (7;10)] 

weak 

Type of surgery (total hip; or total 

knee replacement) 

975; 

1451 

189 (19.4%);  

322 (22.2%) 

0.107 175 (17.9%);  

288 (19.8%) 

0.265 57 (5.8%);  

200 (13.8%) 

<0.001 [median 7,  

mean 7.9,  

IQR (6;9)]; 

[median 7,  

mean 8.1,  

IQR (6;9)] 

weak 

Type of surgery (primary; or revision) 2245;  

181 

465 (20.7%);  

46 (25.4%) 

0.162 423 (18.8%); 40 

(22.1%) 

0.330 225 (10.0%);  

32 (17.7%) 

0.002 [median 7,  

mean 7.9,  

IQR (6;9)]; 

[median 8,  

mean 10.0,  

IQR (6;10)] 

weak 

Pre-operative anaemia (yes; no) 214; 

2212 

63 (29.4%);  

448 (20.3%) 

0.002 52 (24.3%);  

411 (18.6%) 

0.052 60 (28.0%);  

197 (8.9%) 

<0.001 [median 8,  

mean 9.5,  

IQR (6;10)]; 

[median 7,  

weak 



Appendix  Master Thesis Report 

 70 

Key patient subgroup no case Case COMPES Case COMOPT Case RBC Case LOS 

Descrip-

tive 

statistics 

Descriptive statistics 

(at least 1 COM) 

p-value, 

or corre-

lation 

Descriptive statistics 

(at least 1 COM) 

p-value, 

or corre-

lation 

Descriptive statistics 

(at least 1 RBC) 

p-value, 

or corre-

lation 

Descriptive 

statistics 

corre-

lation 

mean 7.9,  

IQR (5;9)] 

EPO therapy (yes; no) 227; 

2199 

58 (25.6%);  

453 (20.6%) 

0.098 52 (22.9%);  

411 (18.7%) 

0.147 22 (9.7%);  

235 (10.7%) 

0.726 [median 8,  

mean 9,  

IQR (6;10)]; 

[median 7,  

mean 8.0,  

IQR (6;9)] 

weak 

Cell saver device 

(hip replacement 

only) as intra-

operative 

autologous 

reinfusion up to Day 

14 

Cell saver 

device (yes; 

no) 

271, 

2155 

68 (25.1%),  

443 (20.6%) 

0.100 61 (22.5%),  

402 (18.7%) 

0.150 33 (12.2%),  

224 (10.4%) 

0.427 [median 8,  

mean 9.0,  

IQR (6;10)]; 

[median 7,  

mean 7.9,  

IQR (6;9)] 

weak 

Collection 

(mL), 

numeric, 

subset >0 

mL only 

[median 

200, mean 

322,  

IQR 

(0;478)] 

at least 1 COM 

[median 160, mean 

419, IQR (0;476)]; 

no COM [median 200, 

mean 290, IQR 

(0;473)] 

weak at least 1 COM [median 

150, mean 411,  

IQR (0;450)]; 

no COM [median 210, 

mean 297, IQR (0;498)] 

weak at least 1 RBC [median 

300, mean 595,  

IQR (0;600)]; 

no RBC [median 198, 

mean 285, IQR (0;448)] 

weak slightly positive 

Reinfusion 

(mL), 

numeric, 

subset >0 

mL only 

[median 

60, mean 

121,  

IQR 

(0;195)] 

at least 1 COM 

[median 50, mean 

171, IQR (0;200)]; 

no COM [median 70, 

mean 105, IQR 

(0;180)] 

weak at least 1 COM [median 

50, mean 177,  

IQR (0;200)]; 

no COM [median 73, 

mean 105, IQR (0;180)] 

weak at least 1 RBC [median 

75, mean 229,  

IQR (0;230)]; 

no RBC [median 60, 

mean 106, IQR (0;180)] 

weak slightly positive 

Total blood loss during surgery (mL), 

numeric, subset >0 mL only, applies 

to hip replacement patients only 

[median 

350, mean 

450, IQR 

(200;550)

] 

at least 1 COM 

[median 400, mean 

568, IQR (250;600)]; 

no COM [median 350, 

mean 416, IQR 

(200;500)] 

weak at least 1 COM [median 

400, mean 554, IQR 

(250;600)]; 

no COM [median 350, 

mean 423, IQR 

(200;510)] 

weak at least 1 RBC [median 

600, mean 816, IQR 

(355;948)]; 

no RBC [median 335, 

mean 394, IQR 

(200;500)]† 

weak slightly positive 

RBC transfusion (yes; no) 257; 

2169 

112 (43.6%);  

399 (18.4%) 

<0.001 64 (24.9%);  

399 (18.4%) 

<0.001 n/a (infeasible*) [median 9,  

mean 12.2,  

IQR (7;13.25)]; 

[median 7,  

mean 7.6,  

IQR (5;9)] 

weak 
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Figure A-1: Stratification for the participating hospitals: Case COMPES (top left, p<0.001), COMOPT (top right, p<0.001), RBC (bottom left, p<0.001), and LOS (bottom right). 
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Figure A-2: Stratification for the surgery type (total hip or knee replacement): Case COMPES (top left, p=0.107), COMOPT (top right, p=0.265), RBC (bottom left, p<0.001), and LOS 

(bottom right).  
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Figure A-3: Stratification for the surgery type (primary or revision): Case COMPES (top left, p=0.162), COMOPT (top right, p=0.330), RBC (bottom left, p=0.002), and LOS (bottom 

right).



Appendix  Master Thesis Report 

 74 

  

  
Figure A-4: Stratification for pre-operative anaemia: Case COMPES (top left, p=0.002), COMOPT (top right, p=0.052), RBC (bottom left, p<0.001), and LOS (bottom right). 
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Figure A-5: Stratification for EPO: Case COMPES (top left, p=0.098), COMOPT (top right, p=0.147), RBC (bottom left, p=0.726), and LOS (bottom right). 
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Figure A-6: Stratification for the intra-operative cell saver: Case COMPES (top left, p=0.100), COMOPT (top right, p=0.150), RBC (bottom left, p=0.427), and LOS (bottom right). Only 

patients with hip replacement could qualify for a cell saver. 
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Figure A-7: Stratification for the intra-operative cell saver collection and reinfusion (numeric format, patients with cell saver only): Case COMPES (top left), COMOPT (top right), and 

RBC (bottom left). Only patients with hip replacement could qualify for a cell saver (thus, had non-zero cell saver collection and reinfusion). 
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Figure A-8: Stratification for the intra-operative cell saver collection and reinfusion (numeric format): Case LOS: patients with cell saver only (top), and all patients (bottom). Only 

patients with hip replacement could qualify for a cell saver (thus, had non-zero cell saver collection and reinfusion).
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Figure A-9: Stratification for the blood loss (numeric format): Case COMPES, COMOPT, and RBC (top), and LOS (bottom, stratified for pre-operative anaemia). 
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Figure A-10: Stratification for the RBC transfusion: Case COMPES (top left, p<0.001), COMOPT (top right, p<0.001), and LOS (bottom right). 
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Appendix B: Model Performance Results 

 
Figure B-1: ROC curves for Case RBC[RF] (left) and RBC[tuned RF] (right). 

 

Figure B-2: Performance measures relative to cut-off levels for Case RBC[RF] (left) and RBC[tuned RF] (right). 

 

Figure B-3: Out-of-bag error progression for Case RBC[RF] (left) and RBC[tuned RF] (right). 

  
Figure B-4: Calibration plot for Case RBC[RF] (left) and RBC[tuned RF] (right).  
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Figure B-5: ROC curves for Case RBC[LREG] (left) and RBC[lasso] (right). 

 

Figure B-6: Performance measures relative to cut-off levels for Case RBC[LREG] (left) and RBC[lasso] (right). 

 

Figure B-7: Calibration plot for Case RBC[LREG] (left) and RBC[lasso] (right). 

  

Figure B-8: Convergence of coefficients to zero versus the regularization parameter, log(lambda): RBC[lasso].  
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Figure B-9: ROC curves for Case COMPES[RF] (left) and COMPES[tuned RF] (right). 

 

Figure B-10: Performance measures relative to cut-off levels for Case COMPES[RF] (left) and COMPES[tuned RF] 

(right). 

 

Figure B-11: Out-of-bag error progression for Case COMPES[RF] (left) and COMPES[tuned RF] (right). 

  
Figure B-12: Calibration plot for Case COMPES[RF] (left) and COMPES[tuned RF] (right).  
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Figure B-13: ROC curves for Case COMPES[LREG] (left) and COMPES[lasso] (right). 

 

Figure B-14: Performance measures relative to cut-off levels for Case COMPES[LREG] (left) and COMPES[lasso] 

(right). 

 

Figure B-15: Calibration plot for Case COMPES[LREG] (left) and COMPES[lasso] (right). 

  

Figure B-16: Convergence of coefficients to zero versus the regularization parameter, log(lambda): COMPES[lasso].  



Appendix  Master Thesis Report 

 85 

 
Figure B-17: ROC curves for Case COMOPT[RF] (left) and COMOPT[tuned RF] (right). 

 

Figure B-18: Performance measures relative to cut-off levels for Case COMOPT[RF] (left) and COMOPT[tuned RF] 

(right). 

 

Figure B-19: Out-of-bag error progression for Case COMOPT[RF] (left) and COMOPT[tuned RF] (right). 

  
Figure B-20: Calibration plot for Case COMOPT[RF] (left) and COMOPT[tuned RF] (right).  
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Figure B-21: ROC curves for Case COMOPT[LREG] (left) and COMOPT[lasso] (right). 

 

Figure B-22: Performance measures relative to cut-off levels for Case COMOPT[LREG] (left) and COMOPT[lasso] 

(right). 

 
Figure B-23: Calibration plot for Case COMOPT[LREG] (left) and COMOPT[lasso] (right). 

  
Figure B-24: Convergence of coefficients to zero versus the regularization parameter, log(lambda): COMOPT[lasso].  
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Appendix C: Variable Importance (Supplemental 

Results) 

 

Figure C-1: Case RBC[RF]: Variable importance plot for all input variables. 

  
Figure C-2: Case RBC[RF]: Partial dependence plots for pre-operative anaemia (left), and age (right). 
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Figure C-3: Case RBC[tuned RF]: Variable importance plot for all input variables. 

   
Figure C-4: Case RBC[tuned RF]: Partial dependence plots for pre-operative anaemia (left), and age (right). 

 

  



Appendix  Master Thesis Report 

 89 

Table C-1: LREG[RBC]: p-values and the corresponding statistical significance of all inputs. 

Model input component p-value Level of statistical significance,  

(Intercept)                                          <0.001 0.001 

HospitalHospital2                                    0.940 
 

HospitalHospital3                                    <0.001 0.001 

HospitalHospital4                                    0.638 
 

Age                                                  0.008 0.01 

Gender2                                              <0.001 0.001 

Hip_or_Knee_11                                       <0.001 0.001 

Revision_11                                          0.261 
 

Hip_or_Knee_21                                       0.015 0.05 

Osteoarthritis1                                      0.851 
 

Cardiovascular_Disease1                              0.576 
 

CVA1                                                 0.077 0.1 

COPD1                                                0.107 
 

Diabetes_Mellitus1                                   0.902 
 

Rheumatoid_Arthritis1                                0.386 
 

Increased_Risk_Group1                                0.038 0.05 

Corticosteroids1                                     0.206 
 

NSAIDs1                                              0.499 
 

Anticoagulation1                                     0.151 
 

Antibiotics1                                         0.980 
 

Insulin1                                             0.942 
 

Antihypertensiva1                                    0.244 
 

Cardiac_Medication1                                  0.041 0.05 

Pulmonary_Medication1                                0.273 
 

Smoking1                                             0.768 
 

EPO1                                                 0.007 0.01 

Anaemia_Pre_Op1                                      <0.001 0.001 

Surgery_Year2005                                     0.777 
 

Surgery_Year2006                                     0.298 
 

Surgery_Year2007                                     0.633 
 

Surgery_Year2008                                     0.173 
 

Surgery_Year2009                                     0.954 
 

Prosthesis_Type2                                     0.044 0.05 

Prosthesis_Type3                                     0.198 
 

Prosthesis_Typeunknown                               0.018 0.05 

Minimally_Invasive_in_case_of_Total_Hip_Prosthesis1  0.710 
 

Temperature_Drop_Prevention1                         0.093 0.1 

Anticoagulant_Standard1                              0.657 
 

Antibiotic_Prophylaxis_Standard1                     0.548 
 

Antifibrinolytic_Blood_Loss_Lowering_Medication1     0.989 
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Figure C-5: Case RBC[LREG]: Coefficients of all inputs. 
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Figure C-6: Case RBC[LREG]: Odds ratios of all inputs. 

 
Figure C-7: Case RBC[lasso]: Non-zero coefficients of the inputs.  
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Figure C-8: Case COMPES[RF]: Variable importance plot for all input variables. 

   
Figure C-9: Case COMPES[RF]: Partial dependence plots for pre-operative anaemia (left), RBC transfusion (middle), 

and age (right). 
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Figure C-10: Case COMPES[tuned RF]: Variable importance plot for all input variables. 

   
Figure C-11: Case COMPES[tuned RF]: Partial dependence plots for pre-operative anaemia (left), RBC transfusion 

(middle), and age (right). 
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Table C-2: Case COMPES[LREG]: p-values and the corresponding statistical significance of all inputs. 

Model input component p-value Level of statistical significance,  

(Intercept) 0.002 0.01 

HospitalHospital2 0.009 0.01 

HospitalHospital3 0.063 0.1 

HospitalHospital4 0.287  
Age 0.002 0.01 

Gender2 0.022 0.05 

Hip_or_Knee_11 0.012 0.05 

Revision_11 0.397  
Hip_or_Knee_21 0.205  

Osteoarthritis1 0.938  
Cardiovascular_Disease1 0.570  

CVA1 0.531  
COPD1 0.103  

Diabetes_Mellitus1 0.092 0.1 

Rheumatoid_Arthritis1 0.963  
Increased_Risk_Group1 0.009 0.01 

Corticosteroids1 0.279  
NSAIDs1 0.001 0.01 

Anticoagulation1 0.639  
Antibiotics1 0.415  

Insulin1 0.127  
Antihypertensiva1 0.014 0.05 

Cardiac_Medication1 0.072 0.1 

Pulmonary_Medication1 0.880  
Smoking1 0.206  

EPO1 0.507  
Anaemia_Pre_Op1 0.873  
Surgery_Year2005 0.101  
Surgery_Year2006 0.242  
Surgery_Year2007 0.967  
Surgery_Year2008 0.944  
Surgery_Year2009 0.319  

Surgery_Duration 0.142  
Prosthesis_Type2 0.055 0.1 

Prosthesis_Type3 0.221  
Prosthesis_Typeunknown 0.509  

Minimally_Invasive_in_case_of_Total_Hip_Prosthesis1 0.038 0.05 

Temperature_Drop_Prevention1 0.101  
Anticoagulant_Standard1 0.109  

Antibiotic_Prophylaxis_Standard1 0.459  
Antifibrinolytic_Blood_Loss_Lowering_Medication1 0.971  

Colloids 0.181  

Crystalloids 0.788  

Cell_Saver1 0.345  

Cell_Saver_Collection 0.575  

Cell_Saver_Reinfusion 0.488  

RBC_Transfusion1 <0.001 0.001 
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Figure C-12: Case COMPES[LREG]: Coefficients of all inputs. 
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Figure C-13: Case COMPES[LREG]: Odds ratios of all inputs. 
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Figure C-14: Case COMPES[lasso]: Non-zero coefficients of the inputs. 
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Figure C-15: Case COMOPT[RF]: Variable importance plot for all input variables. 

   
Figure C-16: Case COMOPT[RF]: Partial dependence plots for pre-operative anaemia (left), RBC transfusion 

(middle), and age (right). 
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Figure C-17: Case COMOPT[tuned RF]: Variable importance plot for all input variables. 

   
Figure C-18: Case COMOPT[tuned RF]: Partial dependence plots for pre-operative anaemia (left), RBC transfusion 

(middle), and age (right). 
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Table C-3: Case COMOPT[LREG]: p-values and the corresponding statistical significance of all inputs. 

Model input component p-value Level of statistical significance,  

(Intercept) 0.001 0.01 

HospitalHospital2 0.003 0.01 

HospitalHospital3 0.050 0.05 

HospitalHospital4 0.333  
Age 0.005 0.01 

Gender2 0.070 0.1 

Hip_or_Knee_11 0.005 0.01 

Revision_11 0.664  
Hip_or_Knee_21 0.401  

Osteoarthritis1 0.885  
Cardiovascular_Disease1 0.607  

CVA1 0.488  
COPD1 0.083 0.1 

Diabetes_Mellitus1 0.531  
Rheumatoid_Arthritis1 0.897  

Increased_Risk_Group1 0.004 0.01 

Corticosteroids1 0.082 0.1 

NSAIDs1 0.009 0.01 

Anticoagulation1 0.399  
Antibiotics1 0.375  

Insulin1 0.198  
Antihypertensiva1 0.044 0.05 

Cardiac_Medication1 0.030 0.05 

Pulmonary_Medication1 0.414  
Smoking1 0.187  

EPO1 0.859  
Anaemia_Pre_Op1 0.952  
Surgery_Year2005 0.072 0.1 

Surgery_Year2006 0.138  
Surgery_Year2007 0.592  
Surgery_Year2008 0.540  
Surgery_Year2009 0.151  

Surgery_Duration 0.088 0.1 

Prosthesis_Type2 0.089 0.1 

Prosthesis_Type3 0.336  
Prosthesis_Typeunknown 0.515  

Minimally_Invasive_in_case_of_Total_Hip_Prosthesis1 0.028 0.05 

Temperature_Drop_Prevention1 0.054 0.1 

Anticoagulant_Standard1 0.192  
Antibiotic_Prophylaxis_Standard1 0.608  

Antifibrinolytic_Blood_Loss_Lowering_Medication1 0.971  

Colloids 0.260  

Crystalloids 0.513  

Cell_Saver1 0.363  

Cell_Saver_Collection 0.864  

Cell_Saver_Reinfusion 0.311  

RBC_Transfusion1 0.799  
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Figure C-19: Case COMOPT[LREG]: Coefficients of all inputs. 
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Figure C-20: Case COMOPT[LREG]: Odds ratios of all inputs. 
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Figure C-21: Case COMOPT[lasso]: Non-zero coefficients of the inputs. 
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Appendix D: Mediation Analysis (Supplemental 

Results) 
 

Tables D-1 and D-2 below represent the effect estimates with their 95% CI’s and p-values for the 

pessimistic scenario. They were exported from the output of the R programming code (specifically, line 

#238 and #257 of the Programming segment #4 in Appendix E). Notable are the Total Effect, the 

average ACME, and the average ADE (in green). In Section 4.3., we utilize these three measures for 

answering RQ#4. 

 

The ACME measures exhibit statistical significance at the level of 0.001. 

 

 
Table D-1: Causal mediation analysis results (pessimistic scenario): Quasi-Bayesian Confidence Intervals Method 

(Inference Conditional on the Covariate Values). 

                          Estimate   95% CI Lower  95% CI Upper  p-value   Significance* 

ACME (control)                0.045         0.027            0.07    <0.001  0.001 

ACME (treated)                0.044        0.026            0.07    <0.001  0.001 

ADE (control)              -0.001       -0.051            0.06     0.93     

ADE (treated)              -0.002       -0.057            0.06     0.93     

Total Effect                 0.043       -0.011            0.11     0.15     

Prop. Mediated (control)    0.944       -9.371         11.05    0.15     

Prop. Mediated (treated)    0.949       -8.145            9.88     0.15     

ACME (average)                0.045         0.027            0.07    <0.001  0.001 

ADE (average)              -0.001       -0.054            0.06     0.93     

Prop. Mediated (average)    0.947       -8.788         10.55     0.15     

* The last column pertains to the level of statistical significance. 

 
Table D-2: Causal mediation analysis results (pessimistic scenario): Nonparametric Bootstrap Confidence 

Intervals with the Percentile Method, 1000 simulations (Inference Conditional on the Covariate Values). 

                        Estimate  95% CI Lower  95% CI Upper  p-value   Significance* 

ACME (control)                0.047        0.027            0.07   <0.001  0.001 

ACME (treated)                0.047        0.027            0.07   <0.001  0.001 

ADE (control)              -0.002      -0.055            0.05     0.91     

ADE (treated)              -0.003      -0.063            0.06     0.91     

Total Effect                 0.044      -0.016            0.10     0.16     

Prop. Mediated (control)    1.060      -7.316         11.06     0.16     

Prop. Mediated (treated)    1.054      -6.424         10.20     0.16     

ACME (average)               0.047        0.027            0.07   <0.001  0.001 

ADE (average)              -0.003      -0.059            0.05     0.91     

Prop. Mediated (average)    1.057      -6.870         10.63     0.16     

* The last column pertains to the level of statistical significance. 
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Tables D-3 and D-4 contain the coefficients and odds ratios with their p-values of the model.y (logistic 

regression) developed during the mediation analysis procedure (line #196 and #210 of the 

Programming segment #4 in Appendix E). These values apply to the pessimistic scenario. The b-path 

and c’-path are marked in green. Further, more detailed variable selection may be performed in a 

follow-up study because only six confounding variables exhibit statistical significance at the level of at 

least 0.1. This observation suggests exclusion of the statistically insignificant confounders that don’t 

significantly contribute to the logistic regression model fit. 

 

RBC_Transfusion (equivalent to the b-path) exhibits statistical significance at the level of 0.001. Pre-

operative anaemia (c’-path) exhibits no statistical significance at the level of at least 0.1. 

 
 

Table D-3: b- and c’-path (model.y, pessimistic scenario): Coefficients. 

                            Estimate   Std. Error   z value  p-value     Significance 

## (Intercept)               -2.423     0.483    -5.017  <0.001  0.001 

## Anaemia_Pre_Op (c’-path)        -0.016     0.184    -0.088  0.930     

## RBC_Transfusion (b-path)          1.078    0.152      7.099  <0.001  0.001 

## HospitalHospital2        -1.008     0.153    -6.597  <0.001  0.001 

## HospitalHospital3        -0.732     0.186    -3.940  <0.001  0.001 

## HospitalHospital4        -0.053     0.168    -0.318  0.751     

## Age                        0.023     0.005      4.391  <0.001  0.001 

## Gender2                   -0.199     0.117    -1.703  0.089  0.1   

## Hip_or_Knee_11           -0.119     0.111    -1.075  0.282     

## Primary_or_Revision_11            0.111     0.193      0.577  0.564     

## Cardiovascular_Disease1  0.140     0.113      1.239  0.215     

## Diabetes_Mellitus1         0.307     0.157      1.956  0.051  0.1   

## Increased_Risk_Group1      0.872     0.248      3.513  <0.001  0.001 

## EPO1                        0.274     0.184      1.491  0.136     

## Surgery_Year2005           0.462     0.349      1.323  0.186     

## Surgery_Year2006           0.186     0.349      0.534  0.593     

## Surgery_Year2007         -0.381     0.348    -1.095  0.273     

## Surgery_Year2008         -0.402     0.348    -1.155  0.248     

## Surgery_Year2009          0.391     0.799      0.490  0.624     

* The last column pertains to the level of statistical significance. 

 
Table D-4: b- and c’-path (model.y, pessimistic scenario): Odds ratios. 

                                 OR      2.5 %   97.5 %          p-value     Significance 

## (Intercept)               0.089   0.034   0.224  <0.001  0.001 

## Anaemia_Pre_Op (c’-path)       0.984   0.682   1.406  0.930     

## RBC_Transfusion (b-path)         2.940   2.181   3.959  <0.001  0.001 

## HospitalHospital2        0.365   0.270   0.492  <0.001  0.001 

## HospitalHospital3        0.481   0.334   0.692  <0.001  0.001 

## HospitalHospital4        0.948   0.682   1.319  0.751     

## Age                       1.023   1.013   1.034  <0.001  0.001 

## Gender2                   0.820   0.653   1.032  0.089  0.1   

## Hip_or_Knee_11           0.888   0.714   1.102  0.282     

## Primary_or_Revision_11           1.118   0.759   1.618  0.564     

## Cardiovascular_Disease1  1.150   0.922   1.436  0.215     

## Diabetes_Mellitus1       1.360   0.995   1.843  0.051  0.1   

## Increased_Risk_Group1    2.392   1.461   3.875  <0.001  0.001 

## EPO1                      1.316   0.912   1.878  0.136     

## Surgery_Year2005         1.588   0.821   3.259  0.186     

## Surgery_Year2006         1.205   0.624   2.471  0.593     

## Surgery_Year2007         0.683   0.354   1.398  0.273     

## Surgery_Year2008         0.669   0.347   1.369  0.248     

## Surgery_Year2009         1.479   0.269   6.701  0.624     

* The last column pertains to the level of statistical significance.  



Appendix  Master Thesis Report 

 106 

Tables D-5 and D-6 below represent the effect estimates with their 95% CI’s and p-values for the 

optimistic scenario. They were exported from the output of the R programming code (specifically, line 

#326 and #345 of the Programming segment #4 in Appendix E). We utilize three measures, namely, 

the Total Effect, the average ACME, and the average ADE (marked in green) for answering RQ#4 in 

Section 4.3. 

 

Compared to the pessimistic scenario, none of the measures exhibit statistical significance at the level 

of at least 0.1. 

 

 
Table D-5: Causal mediation analysis results (optimistic scenario): Quasi-Bayesian Confidence Intervals Method 

(Inference Conditional on the Covariate Values). 

                            Estimate  95% CI Lower  95% CI Upper  p-value   Significance* 

## ACME (control)             0.005       -0.007          0.02     0.39 

## ACME (treated)             0.005       -0.008          0.02     0.39 

## ADE (control)             0.005       -0.045          0.06     0.89 

## ADE (treated)             0.005       -0.047          0.06     0.89 

## Total Effect                0.010       -0.038          0.07     0.75 

## Prop. Mediated (control)   0.071       -3.643          3.63     0.81 

## Prop. Mediated (treated)   0.078       -3.440          3.55     0.81 

## ACME (average)             0.005       -0.007          0.02     0.39 

## ADE (average)             0.008       -0.046          0.06     0.89 

## Prop. Mediated (average)   0.074       -3.519          3.59     0.81 

* The last column pertains to the level of statistical significance. 

 
Table D-6: Causal mediation analysis results (optimistic scenario): Nonparametric Bootstrap Confidence Intervals 

with the Percentile Method, 1000 simulations (Inference Conditional on the Covariate Values).  

                            Estimate  95% CI Lower  95% CI Upper  p-value   Significance* 

## ACME (control)             0.005       -0.007          0.02     0.41 

## ACME (treated)             0.005       -0.007          0.02     0.41 

## ADE (control)             0.005       -0.046          0.06     0.86 

## ADE (treated)             0.005       -0.047          0.06     0.86 

## Total Effect                0.010       -0.041          0.07     0.72 

## Prop. Mediated (control)   0.516       -3.599          4.29     0.82 

## Prop. Mediated (treated)   0.524       -3.421          4.18     0.82 

## ACME (average)             0.005       -0.007          0.02     0.41 

## ADE (average)             0.005       -0.046         0.06     0.86 

## Prop. Mediated (average)   0.520       -3.511          4.23     0.82 

* The last column pertains to the level of statistical significance. 
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In Tables D-7 and D-8, the coefficients and odds ratios are presented with their p-values of the model.y 

(logistic regression) developed during the mediation analysis procedure (line #288 and #302 of the 

Programming segment #4 in Appendix E). These values apply to the optimistic scenario. The b-path 

and c’-path are marked in green. 

 

Compared to the pessimistic scenario, neither RBC_Transfusion (equivalent to the b-path), nor pre-

operative anaemia (c’-path) exhibit statistical significance at the level of at least 0.1. 
 

 

Table D-7: b- and c’-path (model.y, optimistic scenario): Coefficients. 

                            Coefficient Estimate  Std. Error   z value  p-value   Significance* 

## (Intercept)               -2.470     0.505    -4.896  <0.001  0.001 

## Anaemia_Pre_Op (c’-path)      0.033     0.190      0.171  0.864     

## RBC_Transfusion (b-path)   0.141     0.169      0.837  0.403     

## HospitalHospital2        -1.044     0.155    -6.717  <0.001  0.001 

## HospitalHospital3        -0.774     0.187    -4.128  <0.001  0.001 

## HospitalHospital4        -0.071     0.169    -0.420  0.674     

## Age                         0.022     0.005      4.209  <0.001  0.001 

## Gender2                   -0.161     0.118    -1.365  0.172     

## Hip_or_Knee_11           -0.158     0.112    -1.403  0.161     

## Primary_or_Revision_11            0.119     0.197      0.603  0.547     

## Cardiovascular_Disease1    0.131     0.115      1.143  0.253     

## Diabetes_Mellitus1         0.158     0.163      0.965  0.334     

## Increased_Risk_Group1      0.947     0.249      3.804  <0.001  0.001 

## EPO1                        0.209     0.188      1.114  0.265     

## Surgery_Year2005           0.531     0.375      1.415  0.157     

## Surgery_Year2006           0.269     0.375      0.717  0.474     

## Surgery_Year2007         -0.197     0.373    -0.527  0.598     

## Surgery_Year2008         -0.267     0.374    -0.714  0.475     

## Surgery_Year2009           0.597     0.797      0.749  0.454     

* The last column pertains to the level of statistical significance. 

 
Table D-8: b- and c’-path (model.y, optimistic scenario): Odds ratios. 

                                 OR      2.5 %  97.5 %  p-value   Significance* 

## (Intercept)               0.085   0.030  0.221  <0.001  0.001 

## Anaemia_Pre_Op (c’-path)       1.033   0.707  1.491  0.864     

## RBC_Transfusion (b-path)         1.152   0.822  1.596  0.403     

## HospitalHospital2        0.352   0.259  0.477  <0.001  0.001 

## HospitalHospital3        0.461   0.319  0.666  <0.001  0.001 

## HospitalHospital4        0.931   0.669  1.299  0.674     

## Age                       1.023   1.012  1.034  <0.001  0.001 

## Gender2                   0.851   0.676  1.074  0.172     

## Hip_or_Knee_11           0.854   0.685  1.064  0.161     

## Primary_or_Revision_11           1.126   0.758  1.640  0.547     

## Cardiovascular_Disease1  1.140   0.911  1.430  0.253     

## Diabetes_Mellitus1       1.171   0.845  1.604  0.334     

## Increased_Risk_Group1    2.578   1.569  4.174  <0.001  0.001 

## EPO1                      1.233   0.847  1.772  0.265     

## Surgery_Year2005         1.701   0.846  3.733  0.157     

## Surgery_Year2006         1.308   0.651  2.870  0.474     

## Surgery_Year2007        0.821   0.410  1.797  0.598     

## Surgery_Year2008         0.766   0.382  1.677  0.475     

## Surgery_Year2009         1.817   0.334  8.273  0.454     

* The last column pertains to the level of statistical significance. 
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In Tables D-9 and D-10, the coefficients and odds ratios are presented with their p-values of the 

model.m (logistic regression) developed during the mediation analysis procedure (line #151 and 

#165 of the Programming segment #4 in Appendix E). The a-path is marked in green. 

 

Pre-operative anaemia (on the a-path) exhibits statistical significance at the level of 0.001. 

 

 
Table D-9: a-path (model.m): Coefficients. 

##                            Estimate   Std. Error   z value  p-value       Significance* 

## (Intercept)               -4.245     0.636    -6.673  <0.001  0.001 

## Anaemia_Pre_Op (a-path)          1.685     0.202      8.357   <0.001  0.001 

## HospitalHospital2        -0.174     0.198    -0.876  0.381     

## HospitalHospital3        -1.095     0.275    -3.988  <0.001  0.001 

## HospitalHospital4        -0.142     0.237    -0.602  0.547     

## Age                         0.032     0.007      4.402  <0.001  0.001 

## Gender2                     0.825     0.178      4.644  <0.001  0.001 

## Hip_or_Knee_11           -1.008     0.164    -6.134  <0.001  0.001 

## Primary_or_Revision_11            0.434     0.230      1.887  0.059  0.1   

## Cardiovascular_Disease1    0.079     0.150      0.524  0.600     

## Diabetes_Mellitus1         0.133     0.215      0.620  0.535     

## Increased_Risk_Group1      0.832     0.282      2.950  0.003  0.01  

## EPO1                      -0.942     0.270    -3.490  <0.001  0.001 

## Surgery_Year2005         -0.188     0.397    -0.473  0.636     

## Surgery_Year2006         -0.478     0.399    -1.197  0.231     

## Surgery_Year2007         -0.408     0.388    -1.051  0.293     

## Surgery_Year2008         -0.705     0.393    -1.794  0.073  0.1   

## Surgery_Year2009         -1.131     1.195    -0.946  0.344     

* The last column pertains to the level of statistical significance. 

 
Table D-10: a-path (model.m): Odds ratios. 

##                                  OR       2.5 %   97.5 %         p-value       Significance*    

## (Intercept)               0.014   0.004   0.048  <0.001  0.001 

## Anaemia_Pre_Op (a-path)        5.391   3.625   7.998  <0.001  0.001 

## HospitalHospital2        0.840   0.572   1.247  0.381     

## HospitalHospital3        0.335   0.194   0.570  <0.001  0.001 

## HospitalHospital4        0.867   0.546   1.381  0.547     

## Age                       1.033   1.018   1.048  <0.001  0.001 

## Gender2                   2.281   1.625   3.264  <0.001  0.001 

## Hip_or_Knee_11           0.365   0.263   0.500  <0.001  0.001 

## Primary_or_Revision_11           1.544   0.969   2.396  0.059  0.1   

## Cardiovascular_Disease1  1.082   0.806   1.453  0.600     

## Diabetes_Mellitus1       1.142   0.740   1.720  0.535     

## Increased_Risk_Group1    2.297   1.301   3.944  0.003  0.01  

## EPO1                      0.390   0.224   0.648  <0.001  0.001 

## Surgery_Year2005         0.829   0.393   1.887  0.636     

## Surgery_Year2006         0.620   0.293   1.417  0.231     

## Surgery_Year2007         0.665   0.322   1.492  0.293     

## Surgery_Year2008         0.494   0.236   1.118  0.073  0.1   

## Surgery_Year2009         0.323   0.015   2.441  0.344     

* The last column pertains to the level of statistical significance. 
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Appendix E: R Programming (Code Disclosure) 
 

Appendix E contains a series of sample R code of modelling implementation for Case RBC. Sequentially, 

presented is the R code of random forest (segment #1), logistic regression (segment #2) and lasso 

(segment #3) model development. 

 

Then this appendix is completed by revealing the R code of mediation analysis (segment #4). 

 

The code was executed in the R Statistical Software, version 4.1.2. The code implemented for data 

preparation purposes and variable selection purposes is not published in this report. Omitted is also the 

R code implemented for Cases COMPES and COMOPT because it was executed in the same manner as for 

Case RBC. 

 
 

Programming segment #1: The R code of Random Forest, Case RBC[RF], is presented below. 
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Programming segment #2: The R code of Logistic Regression, Case RBC[LREG], is presented below. 
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Programming segment #3: The R code of Lasso, Case RBC[lasso], is presented below. 
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Programming segment #4: The R code of Mediation Analysis is presented below. 
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Appendix F: Literature Search Record 
The following procedure of a literature search across multiple databases supports the argument that 

RBC transfusion was not previously studied as a mediator between pre-operative anaemia and patient 

(surgical) outcomes. Literature for comparing the results of this study (RQ#4) is absent. 

 

The search was conducted across publications in the English language. No filters were applied on the 

document type. 

 
Table F-1: Search string for literature search. 

Prompt Search string Database* Fields 

searched 

Number of 

articles 

Sorted 

based on 

1 ( "red blood cell transfusion*" OR "RBC 

transfusion*" ) AND ( "patient outcome*" 

OR "surgical outcome*" ) AND ( "pre-

operative anemia" OR "pre-operative 

anaemia" OR "preoperative anemia" OR 

"preoperative anaemia" ) AND ( 

"mediation" OR “mediator” ) 

Scopus Article 

title, 

Abstract, 

Keywords 

0 - 

2 Web of 

Science 

Abstract 0 - 

3 Web of 

Science 

All fields 0 - 

4 PubMed All fields 0 - 

 


