UNIVERSITY OF TWENTE

FINAL PROJECT

Monitoring Service-level
Agreements for Logistics Service

Providers
Supervisors:
Author: Dr. Luis FERREIRA PIRES
Tim KERKHOVEN Leon R. DE VRIES, MSc

Dr.Ir. Vadim ZAYTSEV

September 21, 2023

Contents

1 Introduction

1.1
1.2
1.3
14
1.5

Motivation
Problem Statement
Objectives e
Approach
Structure of the Report

2 Background

2.1
2.2
2.3
2.4

SErvices e e e
SLA Definition
Concepts & Components
SLA Life Cycle

3 State of Practice

3.1
3.2
3.3
3.4
3.5
3.6

Running Example o
SLA . . e
2
Interviews e
Literature e
Discussion e

4 SLA Language Context

4.1
4.2
4.3
4.4

Language Requirements
Related Work

5 SLA Specification Language

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

Structure/metamodelo
Tooling
SLACommon
SLACore e
SLAActor e
SLARole e
SLAInterface
SLAEXpr e
Code Generation

SLA Monitoring

6.1 Requirements
6.2 Related Work
6.3 Approach
Monitoring System Design
7.1 Architecture
7.2 Components.
7.3 Prototype
Verification

8.1 Tests Coverage
82 Test Setup.

8.3 Requirements Assessment

Conclusions

38
38
39
41

42
42
47
50

51
51
92
o4

57

Chapter 1

Introduction

This thesis investigates the possibility of automating the monitoring of Service-
Level Agreements (SLAs) for business service providers, using logistics service
providers our main example. This chapter provides the motivation and problems
that drive the project, its objectives, the approach to reach those objectives, as
well as the structure of the thesis.

1.1 Motivation

Logistics service providers provide services to support the transport of goods. As
a late transport of goods could, for example, hold up an entire factory, reliability
of the service is important. Therefore many service providers use Service-Level
Agreements (SLAs), which define a commitment between a service provider and
a client about particular aspects of the provided service. The commitments are
often about timing requirements of the service provision, e.g., the time it should
take before a shipping container is put on a sea ship after it reaches the service
provider’s inland terminal. An SLA can also be used to determine which party is
responsible when additional costs are incurred, such as the fine when a container
is left too long at a port.

Currently, these SLAs are checked manually using data exports, which
requires a large time investment. As this is generally done at the end of the
month, there is no real-time monitoring to check whether the service provision
is within the boundaries of the SLA. For example, a planner cannot easily see if
a container should be on a train tomorrow or if the next day is still within the
bounds of the agreement. Therefore, it is much preferred if the monitoring of
SLAs could be done automatically and in real-time by an automated system,
with a way for users of the system to be aware if the actions they take violate an
SLA or not. This would enable upfront identification of some problems, instead
of the current analysis afterwards, which could improve the quality of service
delivered.

For example, Cofano Software Solutions is a company that offers end-to-end
logistics solutions [1]. They develop Stack, which is a cloud application that
helps sea and inland terminals plan shipping container transports and provides
functionality for managing their terminals [2]. The system is built around the
transport of shipping containers. A complete usage generally consists of several

separate parts, which together model a single use of the container, e.g., picking
up a container from a sea ship, moving it to the container terminal, putting it
on a truck, moving it to a customer, unloading, moving it back to the container
terminal, ventilating it, and putting it in depot. Cofano’s Stack will be used as
a case study for this project.

Logistics service providers are not the only ones providing a mix of physical
and digital services. In principle, many providers of business services could
benefit from a generalised way of automating SLA monitoring.

1.2 Problem Statement

Two problems were identified in Section 1.1: the cost of manual SLA monitoring
and the lack of real-time SLA monitoring with decision support for business
services, with the former having the larger current impact and being the main
focus of this thesis. An automated SLA monitoring system is suggested as a
solution to this problem. To perform automated monitoring of SLAs, however, a
specification of the SLA is required, as the system needs to be able to interpret
SLAs. A proper SLA specification, in turn, requires a decent understanding of
services and SLAs.

1.3 Objectives

To solve the main problems stated in Section 1.2, an automated SLA monitoring
system is required. The aim of this thesis is to demonstrate how automated SLA
monitoring can be applied for the specific use case of logistics service providers,
and, through generalisation, for the general use case of business services. It is
assumed for this solution that the required data is available, i.e. the business
service is supported by an IT service. This is shown through a proof of concept
application implemented for the example use case of Cofano, upon which a
general purpose solution is built.
To reach this aim, to following main request question was defined:

Research Question 1. How to develop a system to automatically monitor
SLAs and provide real-time decision support?

This question can essentially be split in two parts: how to describe SLAs,
and how to monitor them. Two further questions were constructed:

Research Question 2. What should be the constraints of an SLA specification
language?

Research Question 2.1. What SLA specification languages already exist?

Research Question 2.2. How can an SLA specification language be used by a
monitoring system?

Research Question 3. What should an SLA monitoring system look like?
Research Question 3.1. What SLA monitoring solutions already exist?

Research Question 3.2. What should SLA monitoring look like to provide
real-time decision support?

Research Question 3.3. What should an architecture for an SLA monitoring
system look like to provide both normal reporting and real-time decision support?

1.4 Approach

To answer our research questions we first needed background information about
services and SLAs. For services, this was done by finding influential sources in
order to learn about their definition. This was followed by a similar process to
learn about SLAs, looking again at the definition, but also at their life cycle and
contents.

Once sufficient knowledge on services and SLAs was gathered, a way to
specify SLAs was devised. This was done by first identifying requirements for
an SLA specification language. A literature study was then performed to find
existing SLA specification languages, which were then compared to each other
and analysed with respect to the identified requirements. Using the results of
the comparison, an SLA specification was designed. This entire process is based
on Wieringa’s design cycle [3].

Finally, the automated SLA monitoring system was designed, again using
Wieringa’s design cycle [3]. First off, monitoring to provide real-time decision
support was properly defined: what should this accomplish? Then, requirements
for the system were identified based on the goals of the system. Next, a literature
study was performed to identify existing SLA monitoring solutions. These were
analysed with respect to the requirements, to find if any of them are suitable.
Then, a new system was designed, based on suitable other systems. A prototype
of this system was implemented, and both it and the SLA specification were
verified.

1.5 Structure of the Report

This thesis first provides a background for SLAs in Chapter 2. It then shows
the state of practice in Chapter 3. Afterwards it discusses the requirements and
context of the SLA specification language in Chapter 4, followed by the design
and implementation of the language in Chapter 5. Chapter 6 then discusses
the requirements and context of the SLA monitoring system, the design and
prototype of which is described in Chapter 7. The verification of the system is
discussed in Chapter 8. Finally, the conclusions of this thesis are presented in
Chapter 9.

Chapter 2

Background

This chapter provides some background information for SLAs. It will first
give a definition for services and SLAs. Then an overview of the concepts and
components of SLAs is provided. Finally, it will describe the SLA life cycle.

2.1 Services

Nardi et al. identifies that a “service” can be seen from various perspectives,
each emphasising different aspects [4]. They claim that although the notion of a
service seems intuitive, it is far from trivial. It is, in fact, a case of systematic
polysemy, where a word has multiple related meanings. For example, depending
on context, “service” could mean both service offering and service delivery.

This research will use the following very loose definition of a service: a
commitment to do something between parties. The reasons for using such a poor
definition is that for this research the nature of the service is not important,
and constricting it might provide issues later on. Nardi et al. also shows that
defining a service is a rather complex matter.

The life cycle of a service can be described as three main phases: the service
offer, the service negotiation, and the service delivery [4]. In the service offer, the
services are presented to target customers, and important aspects are described
and published. The service negotiation is about establishing an agreement
between a customer and a provider about their responsibilities. Finally, in the
service delivery phase, the agreed upon commitments are fulfilled.

2.2 SLA Definition

Verma provides the following description of an SLA: “A service level agreement
(SLA) is a formal definition of the relationship that exists between a service
provider and its customer” [5]. Sprenkels and Pras, Maarouf et al. provide
similar definitions, with Sprenkels and Pras also describing bilateral SLAs among
pairs of organisations, in which case each organisation provides a service to the
other [6], [7]. An SLA defines not only what is expected of the service provider,
but also what is expected of the customer. The service provider and customer
can also come from the same organisation, with one department providing a
service to another, as described by Beaumont [8]. Finally, Karten emphasises the

potential of SLAs to clarify responsibilities, strengthen communication, reduce
conflict, and build trust [9].

In this paper the following definition of an SLA will be used: “A binding
agreement between a service provider and one or more other parties over a
provided service”.

2.3 Concepts & Components

According to Paschke and Schnappinger-Gerull, an SLA contains technical,
organisational, and legal information, with the most common components being

[10], [11]:

Involved parties Role references within the SLA, can be either signatory
parties or supporting parties.

Contract validity period Specifies how long the SLA is valid and enforceable.

Service definitions Specifies the service functionality, components, and ob-
servable parameters.

Service Level Objectives Quality of service guarantees that must be met
by a specific obliged party. They can have validity periods, qualifying
conditions on external factors such as time of day, as well as the conditions
that a party must meet.

Action guarantees A commitment that a particular activity is performed by
an obliged party if a given precondition is met. This includes compensations,
rewards, recovery, and management actions.

These components are similar, but not exactly the same as the most common
SLA components identified by Verma [5], [6], [12]:

Description of the service to be provided. Including the type of service
and any qualifications of the type of service to be provided.

Expected performance of the service. Specifically describing its reliability
and responsiveness. Reliability includes availability requirements and
responsiveness includes how soon actions related to the service provision
should be performed in the normal course of operations, which should also
be defined in the SLA. Metrics used should be objective and measurable.

Procedure for handling problems with the service. This includes all in-
formation necessary to resolve possible problems. It typically also describes
a time frame for the response and problem resolution.

Process for monitoring and reporting the service level. Describes who
performs monitoring, what (types of) statistics are collected, how often
they are collected, and how they may be accessed.

Consequences for a party not meeting its obligations. Depends on the
nature of the relationship between the parties. Typical options include
reimbursement, fines, or the ability to terminate the relationship.

Escape clauses and constraints. Describes under which conditions the SLA
does not apply, or when it would be considered unreasonable to meet the
requirements set in the SLA. Often contains constraints on the customer
behaviour, i.e. conditions under which the service provider may void the
SLA.

Creation Phase Rrciation Removal Phase
Phase
DSISCO.VEI‘ SLA Establish Monitor Terminate Enforce
ervice Definition SLA SLA SLA Penalty
Provider

Figure 2.1: SLA life cycle shown by Lu et al. [13].

SLA Template SLA SLA
Development Advertisement Matchmaking

Figure 2.2: SLA life cycle proposed by Kritikos et al. [11].

Not all components are present in every SLA, but a suitable SLA should
provide an overview of the different items that can go wrong with the provided
service and the measures to cover those situations [5]. Karten even advocates
starting with a limited-scope SLA that grows over time [9].

2.4 SLA Life Cycle

To better understand SLAs, their life cycle, which is related to the life cycle of a
service, should be considered. Sprenkels and Pras, Maarouf et al. all identify
three high level phases: the creation phase, the operational phase, and the
removal phase (see Figure 2.1) [6], [7], [13]. These three phases are expanded
into six more detailed phases by Maarouf et al. [7]. This division into phases
helps structure the modelling of SLAs into separate parts.

Kritikos et al. proposes a different, more detailed life cycle, which is shown in
Figure 2.2. Tt clearly shows multiple transitions between states that go backwards
or skip parts of it. Although no higher level phases are shown, the states of
this life cycle can be categorised in the same three high level phases shown in
Figure 2.1. Both life cycles are further described below.

2.4.1 Creation Phase

Figure 2.2 starts the creation phase of an SLA with the development of an SLA
template, describing the service, which is then used to advertise the service and
match with potential clients. These SLA Advertisement and SLA Matchmaking
steps correspond with the purpose of the Discover Service Provider step from
Figure 2.1. Once a client and service provider decide to collaborate, the service
terms of the agreement have to be identified and negotiated, which corresponds
to the SLA Definition step from from Figure 2.1 and the Negotiation step from
Figure 2.2. The final step of the create phase of Figure 2.1 is Establish SLA. In
this step, the SLA template is filled in to form a specific agreement, and both
parties commit to it [14]. In the corresponding step, Agreement € Deployment
from Figure 2.2 the SLA template from its first step is used instead. Both steps
include the deployment and configuration of the services and monitoring as
agreed upon in the SLA.

As this project does not consider automated negotiation and service deploy-
ment, several steps from the proposed life cycle by Kritikos et al. are not relevant
here. In particular, SLA Advertisement, and SLA Matchmaking describe mostly
automated processes where SLA templates from service providers are used to
show their services’ capabilities, and are matched with the desired functionality
of the client. The same goes for the first step of Figure 2.1.

The parts that are most important to this project are the creation of the
SLA template and specific SLA, and the configuration of monitoring. The SLA
representation is important, as the monitoring specification has to be derived
from it. For this project it is assumed that a specific SLA has been created,
agreed upon, and deployed.

2.4.2 Operational phase

Once an SLA has been established and the service provisioning has started,
monitoring for SLA violations begins. This is done in step Monitor SLA in
Figure 2.1 and step Monitoring & Assessment in Figure 2.2. There are some
concerns with the monitoring, such as which party should be in charge of the
monitoring process, and how can fairness be assured [7]. Given the nature of this
project, the party in charge in the case of this monitoring system is the service
provider. Other options include a trusted third party, or a trusted module on
the client side [7], with the former being the best overall option. Fairness can
in part be guaranteed because both parties can independently obtain parts of
the monitoring information. Other information comes from the service provider,
but since the services we are considering are mostly physical, this information
can generally be confirmed afterwards, either from another party involved or
from the results of the provided service. As the monitoring is done on the side
of the service provider, a certain level of trust is required, however. It might be
worth it to create a way for the client to independently access the monitoring
information of their SLAs as well.

Violations are “un-fulfillments” of the agreement, which are defined in Eu-
ropean law as defective performance (lower service level than agreed), late
performance (service provided with delay), and no performance (service not
provided) [7].

There are three broad provisioning categories based on the violation definition:
“All-or-Nothing”, “Partial”, and “Weighted Partial” [7]. In “All-or-Nothing”
provisioning, all SLOs must be satisfied, because a single violation leads to
complete failure and re-negotiation of the SLA. If only some SLOs are mandatory,
“Partial” provisioning only requires those to be met for successful service delivery.
In “Weighted Partial” provisioning, the SLOs are assigned a weight, and a
certain threshold must be met instead. While violations in the latter two
provisioning categories do not need to cause re-negotiation, they may still have
other repercussions, such as fines.

During the operational phase it might also be possible for the client to change
certain parameters of the SLA. This should be defined in the SLA itself, and all
changes need to be mapped to the service and monitoring system [6].

This phase is the main focus of this project: the actual monitoring of SLAs.

2.4.3 Removal phase

There are generally two scenarios that might cause SLA termination: normal
time-out, or violation of contract terms [7]. Violations do not necessarily cause
termination of the SLA, but when they do, penalties might apply as agreed upon
in the SLA. When an SLA is in its removal phase, monitoring should be stopped
and any remaining configuration should be cleaned up.

Figures 2.1 and 2.2 take a slightly different approach to this phase: Lu et
al. differentiates between the termination (Terminate SLA) and enforcement
(Enforce Penalty) steps of this process, whereas Kritikos et al. shows those
together as the Settlement step, followed by an Archive step [7], [11], [13]. The
archiving step follows from a statutory period where the SLA must be kept as a
legal document describing how services where provided [11].

While the removal phase is not directly related to the core of this project, it
could be important to support proper archiving and clear information for use in
a penalty enforcement step.

10

Chapter 3

State of Practice

To get a better understanding of the current state of practice, we looked at
examples from logistics service providers and try to generalise to business service
providers. Several sources were used to get an overview of the state of practice
of logistics service providers: an SLA example of a logistics service provider, a
Request For Information (RFI) example of a different logistics service provider,
two interviews with domain experts, and a brief literature study. This chapter
describes the results of our investigation and discusses them.

3.1 Running Example

This section introduces a running example to have a consistent scenario to
relate the sources to. The example chosen for this is the import and export of
goods through a port. Specifically as seen through the viewpoint of a container
terminal.

First of is the import scenario, which is illustrated in Figure 3.1. In this case,
the following service is provided: a full container will be transported from the
port it arrives in to a location of the customer, where it can be unloaded. The
empty container will then be transported to a depot, where its carrier can reuse
it. In this process, the following steps are taken:

(1) The service provider receives an order for the service, including required
documents

(2) The service provider receives a notice of the estimated time of arrival

(3) The service provider plans the transports for the provided service

(4) The ship carrying the container arrives at the port and is unloaded

(5) The service provider receives documentation for the release of the container

(6) A barge is used to transport the container from the port to the container
terminal, where the container is weighed

(7) A truck is used to transport the container to the customer’s location

(8) The container is unloaded

(9) The truck returns the empty container to the container terminal

10) The empty container is transported to a depot via barge

The export scenario is quite similar and provides the following service, as
illustrated in Figure 3.2: an empty container is transported to the customer’s

11

Seaport Terminal Customer Terminal Depot

®:9-0-0:0

Weighing

L4OPAO DALIIDY e =
BUIUUD] J = = ==

VLA 140d 903909} = = = = = = =

Figure 3.1: Visualisation of an import scenario: a full container is picked up
from a sea terminal and returned empty to a depot.

Depot Terminal Customer Terminal Seaport
1

00990

1
Weighing

Cleaning

Ventilation

buruunyd g3
AIPLO 202909
UL pIP 1104

Figure 3.2: Visualisation of an export scenario: an empty container is transported
to a customer for loading, then moved to a port.

location, where it can be loaded. The full container will then be transported to
the port from where it will be exported. In this process, the following steps are

taken:

(1) The service provider receives an order for the service, including required
documents and deadline for delivering the container to the port

(2) The service provider plans the transports for the provided service

(3) A barge is used to transport an empty container from a depot to the
container terminal, where the container is cleaned

(4) A truck is used to transport the empty container to the customer

(5) The container is loaded

(6) The truck transports the container to the container terminal, where the
container is weighed and ventilated

(7) A barge transports the container to the port before the deadline

3.2 SLA

We obtained a recent but expired example SLA from a logistics service provider
in the Netherlands that has amongst other things a container terminal and
warehouses, and provides transport and storage services with a specialisation
in dangerous goods. Besides the SLA, four process flows were provided by
them from other SLAs, these are discussed below along the process flows in the

example SLA.

12

The document states that it contains operation information regarding the
transport of containers for the customer, within the various modalities that are
available at the service provider. Agreements for three provided services are
described in the SLA:

(1) Barge transport
(2) Truck transport
(3) Inland terminal activities, including a depot agreement

In this SLA, these services are used to describe the import and export of
containers for the customer.

Four parties are involved in the SLA: a client, a debtor, a carrier, and a
contractor. The document contains information about the transport of container
for the client, on behalf of the debtor, carried out by the carrier and the
contractor.

The document contains several sections, solving various problems and clari-
fying responsibilities and procedures, that are described below:

Process flows The SLA describes two main scenarios, the import and export
of goods, which are similar to the examples given in Section 3.1. The
provided services (barge transport, truck transport, and terminal activities)
are combined to achieve this. Process flows are flowcharts used to clarify
and agree upon several things at once:

Which steps the process consists of

Which party is responsible for each step in the process

The timings of each step in the process on a timeline

Deadlines for certain actions

Alternatives in the process, such as multiple options for the mode of

transport

e The demurrage period, i.e., the time a container is positioned at a
seaport before it is picked up (see Figure 3.3)

e The detention period, i.e., the time a container is in the hinterland
till its return to the agreed terminal or port (see Figure 3.3)

e Which optional activities can be performed on the terminal, and how

much time they will take

The process flows also specify for each party whether days are counted in
workdays or calendar days.

Demurrage and detention While the process flows clarify which periods are
counted for demurrage and detention, the free period can differ depending
on the carrier and type of container. The free period is a number of days
for the combined demurrage and detention. When it is exceeded, fees will
be charged. To ensure no confusion about these free periods occurs, the
SLA lists the free period per carrier per container type.

Transport details and activities There are several additional details and

activities described in the SLA. These provide more information about
the process flows and procedures used, as well as assurance that certain
procedures will be followed.
First off, the SLA prescribes how the contractor should secure and handle
cargo. It also prescribes the procedure for the client for expediting container
transports with trucks, followed by a list of exceptions that use a truck by
default.

13

The process flows show optional activities performed by the carrier on the
terminal. Each of these is described in the SLA, and where needed, proce-
dures and agreements are provided. In the import example (Section 3.1)
these activities would be performed between step 6 and 7. An overview of
prices for transports and activities is provided as well.

The SLA also provides an indication of the unloading capacity, and the
factors upon which it depends.

Finally, the procedure for monitoring demurrage, detention, and other
periods by the client and debtor is prescribed.

Communication An SLA should clarify how parties can be contacted, as

discussed in Section 2.3. This SLA does that by giving general contact and
business information of most of the parties, specific contact information of
these parties per department and/or function, as well as contact information
for specific purposes. Finally, it also lists delivery addresses.
The SLA also specifies a set of KPIs for both import and export processes.
Per KPI it specifies when and with whom it will be shared. This has
several purposes, for example the debtor shares import forecasts every
month which can be used by the carrier to plan, and the carrier shares
lists of transported containers with the debtor for invoicing purposes.

Claims and conditions The SLA describes how claims with liability to the
carrier and contractor will be handled with their insurer. It also specifies
which insurer and type of insurance are used.

Finally the SLA links to externally defined conditions for the services
provided.

3.3 RFI

A request for information (RFI) is a common business process with the purpose
of collection information about the capabilities of suppliers. [15] This RFI was
used by a company that provides global bulk chemical forwarding services, with
a fleet of over 2000 tank containers, to obtain information from Cofano Software
Solutions about their software. Part of the document states their requirements
for information they need to monitoring their services. This gives a good insight
into the metrics that need to be tracked for their SLAs, both internal and
external.

Several metrics are mentioned specifically in the RFI. These are listed below,
along with examples of their possible uses:

(1) By tracking on time and delayed orders, agreements can be made about
a minimum percentage of on time order fulfilment. By also tracking the
cause of the delays in order, the responsible parties can be held accountable
when a threshold is exceeded.

(2) By tracking the utilisation of equipment, agreements can be made about a
minimum percentage of equipment use. By agreeing upon a certain amount
of orders, the equipment owner can plan for more optimal equipment
utilisation.

(3) By tracking equipment that is damaged, in repair, or total loss, you can
for example make agreements about the maximum time it should take to
repair equipment after is damaged.

14

3.4 Interviews

Two domain experts were interviewed to get an indication of the current state of
practice, and to gauge interest in and get input for an SLA monitoring system.
The first domain expert is both a senior business engineer at a warehousing and
logistics company, as well as terminal manager of a container terminal. The
second domain expert is a product and implementation manager at Cofano
Software Solutions, with previous experience as a planner for a large interna-
tional transport and warehousing company, and as a key user for a transport
management tool.

Several observations about the state of practice of SLAs by logistics service
providers can be made from the interviews. The agreements in an SLA are used
to provide clarity for all people and/or parties involved about their particular
responsibilities. These clarified responsibilities can than be used to resolve
conflicts. While some operational components are very common, others vary
depending on the specific logistics services provided. The format of the SLAs
also differs, some utilising mostly text, others leveraging flow diagrams such
as in the example SLA in Section 3.2. Agreements describe both chronological
events, as well as (statistics of) data over a period, such as the percentage of
tank containers in use, or the number of delayed shipments. They can be about
a single container, or a larger set of containers, such as all containers within a
period. In general, logistics service providers use templates to create new SLAs,
and they often describe a chronological chain of events on a timeline starting
from the first event.

Some types of agreements, based on time windows commonly used in the
import and export processes, were specifically mentioned during the interviews.
They are described below and visualised in Figure 3.3, which shows the import
scenario from Section 3.1 annotated with the different time windows.

(1) Demurrage, i.e., the time a container is positioned at a seaport

(2) Detention, i.e., the time a container is in the hinterland till its return to
the agreed terminal or port

(3) Container dwell time, i.e., the time a container spends at a terminal

) Truck turnaround time, i.e., the total time a truck spends on the terminal

area

(5) Delivery/pickup window, i.e., the time window in which products should
be delivered or picked up

(6) Lead time, i.e., the total time between placement of an order and its
completion

(7) The amount of time required between placing an order and providing the
required information, and the start of the fulfilment of the order

Besides agreements about the physical processes, agreements are also made
about the provision of information to prevent scenarios such as a container being
physically delivered to a terminal while no record of that container can be found
in the supporting systems. Interviewees also warned that certain agreements,
such as delivery windows or turnaround times, must take the mode of transport
into account, and that calendar days and working days are both used in SLAs.
Day boundaries are also an important issue, as the period 23:50 till 00:10 spans
two days, while 07:00 till 23:00 is in one day.

15

Seaport Terminal Customer Terminal Depot

@+ @000

42pL0 20D)d /211) PDI] 14DIG
uwYnS 1408 /26D44NUWIP 14DIG

U0 UIIP 14DIS /2bDLINUWID PUST
pot4ad 29.4f 26DLINUDD PUL

W) PUNOIDULNY YONL] 63 1]oMP 140G
WYY PUNOIDULNG YONL) PUL

iy jpmp pui

mopum uz019p 14038

quawpfinf pua/owy poay pugy
mopuwm fiua01)op pusy

W) PUNOIDULNY YONA] 63 1]oMP 14DIS
WYY PUNOIDULNG YONL) PULH

iy 1jpmp pui

UONUIIIP PUF

poriad 29.4f UOWUIIIP PUL

Figure 3.3: Visualisation of different time periods in the transportation process
of imported goods.

With regards to the time investment for the service provider, or the person(s)
responsible for creating/monitoring SLAs, it depends on the level of automation
and the number of metrics that are monitored. One of the interviewees regarded
the process of creating and monitoring SLAs as very time intensive. Both
interviewees showed interest in using an automated monitoring system for SLAs.

Finally, the interviews yielded some insights in ways monitoring data are
inspected. According to the interviews, it is important to show more than a
pass/fail as there are often multiple sides to the data. Using a drill down interface
would provide easily accessible additional details to get a better picture of what
the pass/fail statistics mean. Another perceived benefit is the option to warn or
inform people about possible SLA violations. For example, a planner could be
warned when a container is planned to arrive overdue according to the SLA.

3.5 Literature

To get more information on SLAs we performed a brief literature review. The
review focuses on the contents of SLAs in the logistics sector, as well as indications
of useful agreements.

First of, Soomro and Song states that the use of SLAs is crucial for a business
to provide services to customers successfully. [16] They can solve the problems
of quality of service evaluation during development and deployment. Soomro
and Song also claims that existing specifications and structures for SLAs do not
fully meet the requirements for businesses.

Second, Metzger et al. identified the following key issues in air transport
orders: [17]

(1) Late shows
(2) No shows
(3) Data delays

16

Late shows occur when a delay arises between the scheduled and actual times of
arrival of cargo. No shows might occur because of late cancellations, or freight
that is not actually available. Data delays occur when physical and digital
processes are misaligned, such as when necessary data are provided only after
they are required.

While this is not directly related to the examples shown in Section 3.1, they
might still be relevant. The described issues are also present with other modes
of transport, though their impact might be lesser. For instance, both the late
shows and no shows are present in the metrics found in the RFI (see Section 3.3),
and the data delays are present in deadlines the the example SLA’s process flows
(see Section 3.2).

Third, both Gutiérrez et al. and Marquezan et al. describe the use of frame
SLAs and specific SLAs in logistics. [18], [19] Frame SLAs are described as long
term SLAs that additionally offer aggregation SLOs over a longer duration. The
aggregation SLOs can offer longer term agreements, such as a maximum number
of transport orders. They argue that the combination should be better able to
provide agreements for both the long and short term.

Fourth, Moini et al. indicates that container dwell time can have a considerable
impact in a terminal’s capacity and revenue earned from demurrage fees. [20]
Container dwell time is the time a container spends at a terminal (visualised in
Figure 3.3). According to Moini et al., reducing it might be one of the least costly
options increase a terminal’s capacity. Because of this, including agreements to
reduce container dwell time in SLAs is a plausible option.

Finally, Fazi and Roodbergen shows that demurrage and detention fees in
combination with inland terminals can a practical option for reducing congestion
in seaports, and that these fees are widely used by shipping lines. [21] Because
of this, including agreements about demurrage and detention in SLAs, in order
to clarify the accountable parties, is a logical step.

Both the container dwell time, and demurrage and detention are also men-
tioned explicitly in the interviews as being present in SLAs. The latter can also
be prominently found in the example SLA provided.

3.6 Discussion

The sources used in this research all indicate that SLAs are widely used by
logistics service providers, both externally and internally. Every logistics service
provider has SLAs tailored to their specific situation, but many aspects are
common in these SLAs. The literature showed that the use of SLAs by others
businesses is also widespread. Though many different services are described in
SLAs, we assume that many agreements are similarly structured. A language
describing SLAs should take these abstract aspects into account and ensure that
they can describe all required scenarios.

The interviews indicate that the form of the SLAs should also be taken into
account in the implementation of the system, as different service providers have
different preferences, e.g., text and flow charts. The example SLA, for instance,
contains a very detailed flow chart, with a less complete textual description. This
is also something that should be kept in mind for the representation of SLAs.

From the interviews it seems there is time saving potential in an integrated
environment to design and monitor SLAs. Both interviewees showed significant

17

interest in such a system, indicating that there is a practical need for it. The
literature supports our problem statement, claiming that the existing solutions
are insufficient for businesses. This indicates that other business service providers
might be in a similar position, where an SLA design and monitoring system
would be desirable.

In the case of the logistics sector, many of the agreements in SLAs seem
to be focused around the specific timing of actions. We assume this is a more
generally applicable, and a generic way of describing these scenarios, amongst
others, would be needed to provide a way to describe SLAs for them.

These findings of the state of practice in the logistics sector, and to a lesser
degree other businesses, should be used to define the requirements of an SLA
monitoring solution that addresses the problems found.

18

Chapter 4

SLA Language Context

This chapter describes the requirements and environment for the SLA domain
specific language used in the monitoring system. It first derives requirements for
such a language from the earlier chapters, then looks at related work and how
they relate to the requirements. Next, an approach to designing an SLA domain
specific language is given, followed by a discussion about the chosen tools for
the creation of the DSL.

4.1 Language Requirements

Chapters 2 and 3 discuss the components and life cycle of SLAs, and the state-
of-practice in logistics of SLAs, respectively. Using this information, we first
look at which general parts of an SLA have to be modelled. We then define the
requirements for an SLA DSL for automated monitoring for physical business
services, by generalising from Chapter 3. These requirements are ordered using
the MoSCoW prioritisation method.

4.1.1 SLA Parts

SLAs contain technical, organisational, and legal components, as shown in
Section 2.3. Because this system is aimed at business services, some manual
work is acceptable. Therefore, not all components of an SLA may need to be
included in a DSL aimed at automated monitoring. Legal components are hard
to enforce in an automated system, as the system does not have access to many
aspects required to monitor this [10]. Therefore these components will not be
modelled for monitoring. It could be possible instead to let legal components be
added without having them be monitored.

Many organisational components describe aspects that are relevant in an SLA,
but not directly relevant for monitoring, such as liability, and level of escalation,
but also how monitoring results are reported to the involved parties, and how
the SLA can be adjusted [10]. Other aspects are required and should therefore
be modelled, most notably the involved parties, and the contract validity.

The most important components for the automated monitoring of SLAs are
the technical components. These include service descriptions, their expected
performance, and the metrics used to measure that performance. These compo-

19

nents combined describe what the system should be monitoring, and hence must
be modelled.

Chapter 3 indicates that, from a monitoring perspective, the ability to
accurately monitor the service provision is most valuable, as this is a time-
consuming task. While not required for a monitoring system, there could be a
benefit of being able to model legal and the discussed organisational components,
which might further reduce the time required from a user. For example, being
able to model other components related to the monitoring of the service provision,
such as the consequences of breaking an agreement, would facilitate the definition
of SLAs, as the information regarding an agreement is kept together.

4.1.2 Requirements Specification

Technical components are required for a monitoring system, as they describe
what should be monitored. To be able to monitor at all, the system must be
able to communicate with services to obtain the relevant metrics. Therefore,
the DSL must define some way to perform this communication, for instance by
describing interfaces, inputs, and outputs. As a technical description of services
is not easy to work with, the DSL should take into account the type of users and
make sure it is usable by them. Besides describing how to communicate with a
service, it should clarify what exactly is being agreed upon. For the scope of
this thesis, a textual description should be enough for this.

The monitoring process should also be able to define the actual agreements
that will be monitored. In Chapter 3, we showed that in the logistics sector,
for example, the timing of certain actions needs to be represented. Assuming
that this is generally necessary in other domains, the DSL must be able to
reason about time, e.g., by using some form of temporal logic. In addition,
there must also be a way to describe obligations and permissions, e.g., by using
some form of deontic logic. This would allow the DSL to reason about actions
that must, might or may not be taken. Together, this should allow components
of the monitoring system to reason about most types of agreements. Another
observation made, is about frame SLAs, i.e. long term SLAs that offer the ability
to concurrently have long-term and short-term agreements. While this could be
a valuable extension to an SLA monitoring system, this is considered to be out
of scope for the purposes of this thesis, to simplify the system.

Some organisational components of an SLA must also be modelled, more
specifically, the involved parties and contract validity that are required for
the monitoring system. Other organisational components are not required for
monitoring, but could still be present in the model. The reporting of monitoring
results, for example, is not relevant for the monitoring process, but modelling it
in the DSL could facilitate SLA construction. Components such as liability and
level of escalation, however, could also easily be described in another language or
outside of the system. Legal components are similar, as they are also not required
for SLA monitoring. In order to keep the scope of the project manageable, these
have not been included in the DSL.

Finally, an SLA should contain contact information for the involved parties
and their actors. Additionally, the role of each party should be defined, both for
clarification, as well as reusability.

The requirements for the DSL are systematically described below:

20

Must have

DSL Requirement 1. The SLA specification language must be able to al-
low the description of how to communicate with services, e.g., their interfaces,
inputs, and outputs.

DSL Requirement 2. The SLA specification language must be able to allow
the description of agreements about a service.

DSL Requirement 3. The SLA specification language must be able to allow
the description of temporal conditions in its agreements.

DSL Requirement 4. The SLA specification language must be able to allow
the description of obligations and permissions in its agreements.

DSL Requirement 5. The SLA specification language must be able to al-
low the description of required organisational components, such as the involved
parties, and the contract validity.

Should have

DSL Requirement 6. The SLA specification language should not require
technical knowledge of the service to use, with the exception of specifying the
interface.

DSL Requirement 7. The SLA specification language should be able to allow
the description of how to communicate the monitoring results.

DSL Requirement 8. The SLA specification language should be able to allow
the definition of actors.

DSL Requirement 9. The SLA specification language should be able to allow
the reuse of the contact information of actors.

DSL Requirement 10. The SLA specification language should be able to
allow the description of the role of actors in an SLA.

Could have

DSL Requirement 11. The SLA specification language could allow the import
of a standardised technical service description to facilitate DSL Requirement 1.

DSL Requirement 12. The SLA specification language could allow the de-
scription of organisational components not needed for monitoring, such as lia-
bility, or level of escalation.

Won’t have

DSL Requirement 13. The SLA specification language will not support the
description of complex SLA structures, such as multi-tiered SLAs.

DSL Requirement 14. The SLA specification language will not support the
modelling of legal components.

21

4.2 Related Work

Several techniques for the modelling of SLAs can be found in literature, the
most prominent are: CC-Pi [22], SLAng [23], SLA* [24][25], WSLA [26], WS-
Agreement [27], and using a model-driven Domain Specific Language (DSL) such
as in Oberortner et al. [28].

WS-Agreement is a widespread Web Services protocol for establishing agree-
ments between two parties, such as between a service provider and consumer.
It uses an extensible XML language for specifying the nature of the agreement,
and agreement templates to facilitate discovery of compatible agreement parties
[27], [29]. It provides a high-level account of SLA and SLA template content,
but it lacks formal semantics and does not allow the specification of fine-grained
content [24]. Missing features can be added by extending the WS-Agreement,
which is required for it to become a fully-fledged language [29].

WSLA is a framework for specifying and monitoring SLAs for Web Services.
It consists of a flexible and extensible language based on XML Schema and a
runtime architecture comprising several SLA monitoring services, which may be
outsourced to third parties to ensure a maximum of objectivity [26]. However,
WSLA is considered as overly constrained and it lacks flexibility [24].

Both WS-Agreement and WSLA are built for web-service scenarios, while the
SLAs in this thesis we aim to support business services for logistics operations.
The web services SLAs focus heavily on server performance, resource allocation,
network traffic, etc, while our business services aim to support sea container
logistics and the physical and digital processes around it. Both WS-Agreement
and WSLA are flexible enough, however, that they could be extended for these
situations. In addition, WS-Agreement has the problem that particular WS-
Agreement notations, created by extensions, can be noninteroperable with other
WS-Agreement notations [29].

SLAng is a language for defining SLAs supporting the needs of end-to-end
quality of service (QoS) [23]. SLAng is specified in OMG’s MetaObject Facility
(MOF) and has a greater degree of language-independence with mappings to
both XML and HUTN. It also places greater emphasis on semantics, providing
formal notions of SLA compatibility, monitorability, and constrained service
behaviour. A downside, however, is that it targets web services and provides
only a limited set of domain-specific QoS constraints [24].

CC-Pi is a simple model of contracts for QoS and SLAs that also offers
mechanisms for resource allocation and for joining different SLA requirements,
combining two basic programming paradigms: name-passing calculi and concur-
rent constraint programming [22]. It is more generic than the options above,
offering a theoretical framework for mapping SLAs to service constraints. CC-Pi
is tightly coupled to the mechanics of negotiation, but does not address certain
common constructs such as actor details or service interfaces [24].

SLA* is a domain-independent syntax for machine-readable SLAs and SLA
templates. It is designed to be independent of underlying technologies, is
decoupled from particular notions of service and modes of expression, and can
be extended without sacrificing formality or semantics [24]. It does have the
downside of not being easily human-understandable [29].

Finally, there is the option of defining a DSL for this purpose using metamod-
elling such as the one described by Oberortner et al. [28]. This approach has the
benefit of yielding a DSL that is purpose-built for the project. A downside of

22

this approach is that it requires a metamodel of an SLA to be used as abstract
syntax. To solve this, the model could use the previous options as inspiration
for the metamodel, adjusted for the requirements and scope of this thesis.

4.3 Tools

Two popular options exist for Model-Driven DSL development: Eclipse Modelling
Framework (EMF), and JetBrains Meta Programming System (MPS) [30], [31].
This section provides a brief comparison between the two, and a discussion about
which solution we decided to use in our project.

4.3.1 Eclipse Modelling Framework

EMEF is an open source framework using the Eclipse IDE and its extensive plugin
system. To develop a DSL with it, a combination of those plugins should be
used. A common option is to use Xtext for DSL construction, with OCL to
specify constraints and ATL or QVT for transformations [32]-[35]. EMF with
Xtext has been around for a while and is widely used in academia and industry.

Using the above combination of plugins results in a traditional tool chain:
using a parser to transform text into an abstract syntax tree (AST) using a
defined grammar, checking constraints, and transforming the AST into the
desired output format.

4.3.2 JetBrains Meta Programming System

MPS is an open source IDE for language development, with most features built
in, supported by a plugin system. The main benefit of MPS is the projectional
editor: your language directly manipulates the AST instead of having to be
parsed first. This works by showing the user a projection of the AST, and limiting
input to valid values only. It also supports composable languages: languages can
be easily extended and combined within MPS.

4.3.3 Comparison

There are some important similarities between EMF with Xtext and MPS: both
are open source and both provide an IDE for the created DSL. The main benefits
of the EMF approach are:

Maturity This system has been around much longer, and with that comes
better support and available resources.

Traditional approach Uses a traditional approach to Model-Driven DSL de-
sign, again leading to better support and available resources.

Visual model design Model can be designed visually using plugins.

Plugins The whole process can be customised by choosing plugins that fit the
user.

The main benefits of MPS are:

Projectional editing Both the design of the DSL and the resulting DSL use
projectional editing, i.e., directly manipulating an AST through its pro-
jection. This removes the ambiguity of languages, as nodes are chosen
explicitly. This creates the option for more complex languages.

23

No grammar and parser Projectional editing also removes the need for a
grammar and parser, simplifying that part of the language design.

Extendability and composability A DSL made with MPS is intrinsically
extensible and composable, without having to design specifically for that.

Language evolution A language version is stored with with every file, allowing
the system to automatically migrate old files to a new version of the
language. Migrations are also automatically generated.

Everything in one system Instead of customising the entire process, a com-
plete package for DSL design is provided, allowing for a streamlined and
stable experience, optionally somewhat customisable through limited plug-
ins.

Especially the benefits of projectional editing, extendability, and language
evolution have driven the choice for the MPS system. The projectional editing
both simplifies the design process and allows for easier use of non-textual language
elements. Intrinsic extendability makes it easier to build a generic language that
can be extended for specific use cases. Finally, the built-in language evolution
benefits provide a way to easily update older files to support new functionality,
which can be beneficial in business use cases.

4.4 Design Approach

To design a model-based DSL to specify SLAs, a metamodel (or structure, as
MPS calls it) was required first. This was done by starting with the abstract
syntax of SLA* and modifying it for our purpose. It was then extended to
support deontic and temporal logic, in accordance with DSL Requirements 3
and 4. Care was taken to separate technical and business levels of the language,
to keep it usable for non-technical users. The structure was updated as required
in iterations of the language.

After defining the structure, several other elements of the language had to be
implemented: an editor, constraint, and a type system. First, a minimal viable
editor was made, making sure a simple syntax exists for every concept. Second,
a minimal constraint set and type system were implemented, which determined
the constraints and type restrictions on the language. These components were
updated when needed in iterations of the language.

Finally, the language was tested by using it to define different SLAs, based
on the running example of Section 3.1, verifying that it covers the requirements.

24

Chapter 5

SLA Specification Language

This chapter describes the SLA specification language and the design choices
made while defining it. The chapter first provides a top-level overview of the
language structure, and describes the overall design choices. We also describe
three important aspects of the tooling used to create the DSL: the editor, type
system, and constraints. Then, all parts of the DSL are described in more detail,
with an overview of their metamodel and an example. Finally, the generation of
the artefacts that are used by the monitoring system is discussed.

5.1 Structure/metamodel

This section briefly explains the structure of our language and then describes the
choice of starting point for the DSL, followed by a discussion of the problems
encountered with the chosen approach. Finally, an overview of the DSL structure
and design choices is provided.

With MPS, the language design uses aspects, such as the structure, editor,
and type system. The structure aspect of a DSL is equivalent to the metamodel
of a DSL in Model Driven Engineering, since it describes the concepts and
relations supported by the language. The others define the concrete syntax and
type system of a language, and are discussed in Section 5.2. We used MPS to
develop our language.

Two main options exist for structuring a DSL: starting from scratch or using
an existing model as a starting point. The second option is preferred as it
prevents redoing existing work. Building on an existing model also decreases the
chance of creating an unsound or incomplete model. The model chosen to built
upon was discussed previously in Section 4.2, namely SLA*’s abstract syntax.
This model features a well defined and seemingly complete abstract syntax for
SLAs, especially when compared to the other options.

Some problems were found with SLA*’s abstract syntax with respect to
our research. This model was not designed with projectional editing in mind,
and thus uses unique names for referencing instead of using direct references
that are supported by and preferred in MPS. It also lacks some clarity in the
explanations of parts of the abstract syntax, and does not offer clear insight into
its design decisions. Finally, some parts of the syntax might be more abstract
than required for the DSL structure in MPS and the scope of this project.

25

SLACommon

<
SLAActor SLACore SLAExpression SLAInterface - SLARole

Figure 5.1: Top-level overview of the languages in the DSL, showing usage
(dotted arrows) and extension (solid arrows).

Because of these problems we could not use the model in its original form,
but adapted it to be used in the structure of the DSL. First, the core of the
model was implemented in MPS as faithfully as possible with respect to SLA*.
Second, the model was adapted to use direct references. Finally, to separate
concerns, the language was split up into separate sub-languages, leveraging the
intrinsic composition and extension properties of MPS:

SLACommon Common concepts and interfaces used in the other languages.

SLACore The main body of the SLA, describes the SLA itself, its sections,
individual agreements, and roles in the SLA.

SLAActor Actors, either individuals or organisations, and information related
to them.

SLARole Coupling of actors to the roles they have in an SLA.

SLAInterface Describes the services which the SLA is about, and the interfaces
used to communicate with them.

SLAExpr A typed expression language used to define agreements. It uses the
SLAInterface language to express which states and actions should or should
not occur.

Figure 5.1 shows a top-level overview of the language in terms of the sub-
languages, and the usage and extension relations between them.

5.2 Tooling

This section describes the tooling used to make the DSL. Specifically, it describes
three aspects of MPS and how they were applied: the editor, type system, and
constraints.

5.2.1 Editor

In MPS, the language editor is the mechanism to facilitate the generation of
ASTs and enables the use of compact representations. They define the concrete
syntax of a language, also called a projection in MPS. The purpose of this is to
give the user an easier way to use the language than directly manipulating the
AST. Figure 5.2 shows the difference in concrete syntax between an example of
SLAActor with a simple editor and the editor. The latter of which is close to
directly manipulating the AST.

26

individual Jane Doe {

contact information :
contact info {

phone number
phone number Mobile {
phone number : (+31)678912345

}
email address :
email address Main {
email address : j.doe@consultancy-bureau.com

Jane Doe
Expensive consultant for Logistics Company

}
addresses :

Phone numbers : address Consultancy Bureau {

Mobile : (+31)678912345
Email addresses :
Main : j.doe@consultancy-bureau.com
Addresses :
Consultancy Bureau :
Example street 12
9999 YZ, Test City
The Netherlands

address lines :
address line {
text : Example street 12

H
address line {
text : 9999 YZ, Test City

}
address line {
text : The Netherlands

(a) SLAActor example with editor

}
}
description :
paragraph {
text : Expensive consultant for Logistics Company

(b) SLAActor example with default editor

Figure 5.2: The difference between the default editor, similar to direct AST
manipulation, and a simple editor

This paper uses a minimal editor configuration with the intent of showing a
workable proof-of-concept. It is based on a simple form concept, showing the
fields that need to be filled in and presenting everything in a somewhat compact
manner.

Another benefit of MPS is the ability to define multiple editors for the AST. In
the case of our DSL, it allows us to define a technical and textual representation of
the DSL. The technical representation uses a more mathematical or programming
style of displaying the DSL, while the textual representation is more oriented
towards business users. The textual representation could also hide information
that is not relevant for a business user. A simple example of the difference can
be seen in Figure 5.3.

By using the editor aspect of MPS as described, DSL Requirement 6 is
fulfilled.

5.2.2 Type system

To work with the typed expressions of SLAExpr, type restrictions should be in
place. In MPS, this is done by configuring a type system. The type system we

27

test :
description
variables:
var one : number = 42
var two : number = 10
var three : boolean = false
var test = one equals two
var duration : duration = P30D

test :

description

variables:
let number one be 42
let pumber two be 10
let boolean three be false
let test be one equals two
let duratien duration be P30D

guarantees: guarantees:
one > two = ¥ three if one greater than two then finally in duration three
duration
(a) Technical representation (b) Textual representation

Figure 5.3: Same part of an AST shown with different concrete syntaxes

SLACommon /

Paragraph 0.n 1

«interface» «interface» «interface»
+ text: string descriptionv IDescribedConcept Document INamedConcept

Figure 5.4: Metamodel of SLACommon, with concepts outside of the boundaries
being part of MPS

created uses the types defined in the structure for two things: typing variables
and type checking of expressions. The variables are both used in the expressions
as well as the inputs of outputs of interfaces.

5.2.3 Constraints

By default, MPS does not restrict scoping for its languages, which means that
any applicable concept instance can be referred to from everywhere. To fix this,
and some minor other issues, constraints can be used. MPS constraints can
either be on properties, i.e., to validate a property on a concept instance, or on
references. The latter is used to constrain the scope that can be referenced. It is
used on the SLA language, for instance, to prevent linking to roles defined in
another SLA, and to set proper scoping for variable references.

5.3 SLACommon

SLACommon is used to define common concepts, data types, and interfaces that
are used in the other languages. Its purpose is to prevent duplication of concepts
and unnecessary dependencies, as well as having a single place to define new
data types. Figure 5.4 shows the structure of SLACommon.

The most important concepts of the language are the interfaces IDescribed-
Concept and Document. The former adds a description to a concept in a similar
way that MPS’s interface INamedConcept add a name to a concept. The latter
is an interface used to indicate that a document can be generated from that
concept. Part of SLACommon was based on SLA*, but it grew during the DSL
development as more shared elements were required.

While this language does not specifically fulfil any requirements, it supports
the other languages in doing so.

28

5.4 SLACore

SLACore is the core of our DSL, describing an SLA, its structure, its individual
agreements, and its roles. Figure 5.5 shows the structure of SLACore. This is
mostly directly based on SLA* adapted to introduce direct references where
possible, and simplified to both reduce the complexity and limit the scope of
the language. A new addition is the option to group agreements in concerns,
allowing more flexibility when describing an SLA.

The most important concepts of SLACore are SLA and Agreement. SLA
is a root concept, i.e., the root node of an AST that contains the basic SLA
information. It is the core of the DSL, and brings everything else together.
Agreement defines the guarantees of the SLA, including responsible parties. An
example of SLACore is shown in Figure 5.6.

This language fulfils parts of DSL Requirements 2 and 5, with the other parts
being fulfilled by the other sub-languages. With further extension it could also
fulfil DSL Requirement 12.

5.5 SLAActor

SLAActor describes the actors of an SLA, which can be either individuals or
organisations. It is based on similar concepts in SLA*, but altered to fit the
language better. Some terms were also changed to better convey the intended
meaning: actor was chosen over party, and operative was replaced by individual
to differentiate it from organisations. It also allows basic contact information of
the actors to be represented, as this is often present in SLAs.

There are four important concepts in SLAActor: Actor, Individual, Organisa-
tion, and ActorReference. Actor is an abstract concept that represents any actor
in the SLA, and it is extended by both Organisation and Individual. Individual
represents a single person, either as a standalone definition, or as part of an
organisation. Organisation represents an organisation, which can include any
number of individuals. Finally, ActorReference is used to refer to any defined
Actor.

Figure 5.7 shows the structure of SLAActor, and Figure 5.8 shows and
example of the definition of an organisation.

This language fulfils parts of DSL Requirements 5, 8 and 9, with other
sub-languages fulfilling the other parts.

5.6 SLARole

SLARole describes the function of actors within an SLA. This concept was
present in a simpler form in SLA*, but it is used here to be able to decouple an
actor from the role it takes within an SLA. This also makes it easier to create
SLA templates, as it is possible, for instance, to create a provider and client role,
and add the corresponding parties to these roles later.

Figure 5.9 shows the structure of SLARole. All concepts shown here are
equally important: Role defines the role itself, and can optionally reference actors
that fulfil its role, RoleList is a list of defined roles, which could, for example,
be used to define default roles, RoleAssignment is a way to assign actors to an
already defined role in an SLA, and RoleReference is used to reference a role,

29

SLARole/

0..n| RoleAssignment

SLACommon /
«interface» L+ 0.n Role
IDescribedConcept :
«interface» E 2 ? 0.n[RoleReference
Document g 4
: I I3
o | % s|$ 0..n «interface»
: < % INamedConcept
T ° B A
SLACore/ : ; :
E 1 1 [X : responsibleRoles i
' <<root>> |
SLA i :
=
1 concems |0._n H H
1_|+ agreedAt: ZonedDateTime ! o c :
| + effectiveFrom: ZonedDateTime H =N oncern [S
1_|+ effectiveUntil: ZonedDateTime : H
|+ version: SemVer ! 1 1
+ template: boolean 1 subConcerns %) H
. = H
1 & H
ol 2 A1 [X : g !
S| o © -] H > '
S| = = @ H 2 '
Bl & § K : 3| :
i 8 5 : Se1 i
é o) @ (4 0.1 Agreement T 0 . Priority
ol D . Tttt ..
§ B SLATemplateReference >
5 —
8| 2 : [S X priorty
+ version: SemVer
8 »
SLAlnterface / 2 2 SLAExpression/
§]
S g
InterfaceDeclaration 2 0..n | VariableDeclaration
0.n
ServiceDescriptionReference 1.n Expression
0.n

Figure 5.5: Metamodel of SLACore, including dependencies on other languages
and MPS

30

SLA Running Example Scenario

template : false

version : 0.1.0

from t 2023-04-01

until 2023-10-01
signed on : Date on which the

Description :
Example SLA for running example

Roles :

Provider

Planning contact

Terminal contact

BI contact

Customer

Add to role Customer :
Example Company

€< e 3>

Service Descriptions :
LC Transport

Interfaces :
€< e 3>

Import :
Agreements for import orders
agreemen
Transport :
Agreements for import transport

Figure 5.6: Example of the concrete syntax of SLACore

SLACommon /

«interface» «interface» «interface»
INamedConcept IDescribedConcept Document

Iy A

SLAActor / | ' : Lo
EmailAddress PhoneNumber ActorReference
i |+ emailAddress: EmailString + phoneNumber: string
: H H 1
E phoneNumbers |0..n : :
E emailAddresses E E .
! 1 1 L 2
©
Address | 0.n 1 Contactinfo 0.1 1| Actor »
\ 4 N g <
addresses contactinformation 1
[X ?
1n AddressLine <<root>> 1 0.nl <<root>>
3) Organisation > Individual
addressLines + text: string agents

Figure 5.7: Metamodel of SLAActor, including dependencies on other languages
and MPS

31

Organisation Logistics Company

Description :
An example logistics company, providing transport
of containers from a seaport to a customer.

Contact information :
Phone numbers :
Primary : (+31)012345678
Secondary : (+31)023456789
Email addresses :
Info : info@logistics-company.com
Addresses :
Office :
Some street 42A
1234 AB, Example City
The Netherlands
Terminal :
Another street &
1243 BA, Example City
The Netherlands

People :
Jan de Vries
Planning Coordimator

Phone numbers :

Office 1 (+31)034567891

Mobile : (+31)645678912
Email addresses :

Main : jan.devries@logistics-company.com
Addresses :

€< e 3>

Figure 5.8: Example of the concrete syntax of SLAActor

for example, when assigning the responsibility for an agreement in the SLA.
Figure 5.10 shows an example of the concrete syntax of a RoleList.

This language fulfils DSL Requirement 10, and could support the fulfilment
of DSL Requirement 7 by specifying which roles to send reports to.

5.7 SLAInterface

SLAInterface is used to describe the services which the SLAs are about, and how
to interact with them. Its concepts are mostly directly based on SLA*, with
adaptations similar to SLACore. The language also allows a textual description
to be defined for the services, which was a requirement. Figure 5.11 shows the
structure of SLAInterface.

SLAInterface has five main concepts: InterfaceDeclaration, Endpoint, Inter-
face, Operation, and ServiceDescription. An InterfaceDeclaration is the central
concept of the language, containing both a number of Endpoints and an Inter-
face. Every Endpoint declares a location and protocol used to interface with
the service. The Interface defines a set of Operations, each of which refers to
an Endpoint, and defines which inputs can be supplied and which outputs are
expected. Finally, the ServiceDescription is a list of InterfaceDeclarations that
can be defined as a standalone document, allowing easy reuse of the defined
InterfaceDeclarations.

An example of SLAInterface is shown in Figure 5.12.

This language fulfils DSL Requirement 1. With further extension it could
also partially fulfil DSL Requirement 11.

32

SLACommon / SLAActor /

«interface» «interface» ActorReference
Document INamedConcept
A A 0..n 1.n

' ; actors ®

| 1 S

| 1 3

. ! ©

SLARole/ : :

: N X (A
<<root>> 1 0..n Role P 1| RoleAssignment
RoleList <«

roles role
A
1 RoleReference
role

Figure 5.9: Metamodel of SLARole, including dependencies on other languages
and MPS

Roles Default Roles :
Provider : Logistics Company
Planning contact : Jan de Vries
Terminal contact : John Doe
BI contact : Jane Doe
Customer : << ... >>

Figure 5.10: Example of the concrete syntax of SLARole’s RoleList

33

SLAActor

«interface» provider - Role
INamedConcept

SLAInterface /
o 1

: Interface 1 1_|InterfaceDeclaration|0..n 1 <<root>>
interface interfaceDecIarationsv ServiceDescription H
[‘-90 1 Y
: 2 i g g l
: £ ! 3 ? i
' e : 5 a8 1
H 2 H o] '
. s H 1.n 2 H
H ' 4 '
: 0.n L Endpoint] :
' Operation 1 0.1_] - - 1 '
— 2| * location: string ServiceDescriptionReference :
endpoint + protocol: string '
1 ¢ :
1% 2 '
gl 2 :
5 E H
c 3 !
SLAExpression/ SLACommon / '
0..n 0..n E
TypedVariableDeclaration «interface» H

<_._._._

Document

Figure 5.11: Metamodel of SLAInterface, including dependencies on other
languages and MPS

LC Transport service description
Order information
provider : Provider
endpoints : Import order info { HTTP) : https://app.logistics-company.example/orderInfoImport
Task info (HTTP) : https://app.logistics-company.example/taskInfo
interface : Transport information en Import order info
inputs : var orderNumber : maybe < number > = <no value>
outputs : var portPickup : maybe ¢ date-time > = <no value>
var terminalBargeDropoff : maybe < date-time > = <no value>
var terminalTruckPickup : maybe < date-time > = <no value>
var customerArrival : maybe < date-time > = <no value>
var customerDeparture : maybe < date-time > = <no value>
var terminalTruckDropoff : maybe < date-time > = <no value>
var terminalBargePickup : maybe < date-time > = <no value>
var depotDropoff : maybe < date-time > = <no value>
Task information om Task info
inputs : var orderNumber : maybe < number > = <no value>
outputs : var weight : maybe < number > = <no value>

Figure 5.12: Example of SLAInterface

34

«interface» «interface»

IType INamedConcept
A)
SLAExpression /
Type
VariableDeclaration 1
= <
1 variableDeclaration

1
VariableDeclarationReference

type

[A

value

TypedVariableDeclaration
0.1
> Expression 1<}
o 1
o T o
[
é- % §' firstOperand é-
gl 8| £ secondOperand £
&
91 91 @1 [20K X 1
TernaryExpression BinaryExpression UnaryExpression Constant

Figure 5.13: Metamodel of SLAExpr, including dependencies on other languages
and MPS

5.8 SLAExpr

SLAExpr is a typed expression language defined to logically describe the agree-
ments of the SLA. We started defining this language based on SLA*, but changed
to be more aligned with logic expressions. This choice was made because of
the projectional editing capabilities of MPS. Because of this, both a technical,
mathematical projection, as well as a descriptive, textual projection can now
be used to edit the agreements. This also allows the language to be based on
mathematical expressions, which is beneficial for the monitoring system.

The language itself is based around three main groups of concepts: types,
variables, and expressions, corresponding to the three concepts, Type, Vari-
ableDeclaration, and Expression, respectively.

The types are used for the type system discussed in Section 5.2.2. A type
concept exists for every available type in the language, and they all extend Type.

Variables are used as a way to store an expression result as a shorthand in
the agreements, as well for the inputs and outputs of SLAInterface’s Opera-
tions. Their types can be both implicit using type inference, or explicit using
Typed VariableDeclations.

Expressions are used to define constraints for the agreements. They are
grouped by the number of operands in the structure, as shown in Figure 5.13. To
be able to properly express the constraints as required, operators from temporal
logic and deontic logic are used to reason about time, permission, and obligation.

Figure 5.13 shows its structure, and Figure 5.14 shows an example of a simple
agreement using SLAExpr.

This language fulfils DSL Requirements 3 and 4, and DSL Requirement 2
together with SLACore.

35

Tasks :
Agreements for import tasks
Weighing :
All containers must be weighed on the terminal
variables:
var was weighed : boelean = weight is present
var has left terminal : boolean = terminalTruckPickup is present
guarantees:
has left terminal —» was weighed

Figure 5.14: Example of SLAExpr

SLA generation_example
template : false
version : 0.1.3
from : Date from which the SLA is in effect
until
signed on : Date o

concern_example :
This is a description
agreement_example :
€< Luw 3>
variables:
let test be false
guarantees:
if test them 5 greater than or equals 4.995

Figure 5.15: Simple SLA example

5.9 Code Generation

To be able to use the specified SLA in the monitoring system, some form of
export of a monitoring specification is required. As XML is well suited to tree
structures and has convenient support for both generation and parsing, we chose
to use XML for this.

The easiest way to generate the monitoring specification with MPS is to
transform the model to a Java-based generator using native support from MPS.
The Java generator then uses a external library to generate the XML files. A
simple example of the input and output of the generator is shown in Figure 5.15
and Listing 5.1.

Most of the SLA is already in a tree structure or can be easily converted.
Two main problems existed for the generation, related to names and references.
The former problem is because there is no restriction of the uniqueness of names
in the SLA specification. This can be solved, however, by generating a unique
name for each node, and storing both that and the actual name in the XML
document. The latter problem is how to reference from one branch of the SLA
specification tree to another, such as with variables declaration. This could also
be solved by generating unique identifiers for the monitoring system, and using
the MPS referencing system to ensure all identifiers point to the right node of
the tree.

36

SRV S

10
11
12
13

14
15
16
17

<?zml version="1.0" encoding="UTF-8" standalone="yes"?>
<sla name="generation_example" version="0.1.3">
<concern name="concern_example'">
<agreement name="agreement_example">
<guarantee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
— xsi:type="binaryExpression" type="ImplicationExpression">
<firstOperand xsi:type="variableReference" reference="testl"
< type="VariableReference"/>
<secondOperand xsi:type="binaryExpression"
— type="GreaterThanOrEqualExpression">
<firstOperand xsi:type="constant" type="IntegerConstant" value="5"/>
<secondOperand xsi:type="constant" type="FloatConstant" value="4.995"/>
</secondOperand>
</guarantee>
<variable identifier="testl" name="test" type="any">
<value xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
< xsi:type="constant" type="BooleanConstant" value="false"/>
</variable>
</agreement>
</concern>
</sla>

Listing 5.1: Generator output for Figure 5.15

37

Chapter 6

SLA Monitoring

This chapter describes the requirements for an SLA monitoring system, existing
solutions, and an approach for this thesis’ system. It first derives requirements
for such a system from previous chapters and literature, then inspects related
work and how they hold up to these requirements. Finally, an approach is given
for designing a system based on the requirements and related work, as well as
implementing a prototype for it.

6.1 Requirements

This section discusses the requirements that we have identified for an automated
SLA monitoring system for logistics business services, and summarises the
requirements in the MoSCoW prioritisation style.

We started with requirements from the interviews (see Chapter 3): the system
should be able to give near real-time information, as well as reports over a period
of time. The former aims to quickly provide users with information about the
impact of their actions on the agreements of an SLA and should be able to detect
violations right after they occur. This could both allow for the prevention of
actual violations because of the delay between planning and physical events, and
quick response to prevent further penalties in case of violations. The latter is
a more traditional usage of SLLA monitoring, often done through reports and
dashboards.

Another point to be taken into account is the type of SLA specifications
that are supported by the system. A specification language for SLAs has been
defined in Chapter 5. The monitoring system must therefore be compatible with
at least this monitoring specification.

Attention should also be paid to the maintainability of the system. This can
partly be done through its architecture, by designing the system with modular
components.

Related to this is the dependence between components. Having the monitoring
configuration mostly decoupled from the SLAs would allow greater flexibility
with the SLA modelling solution. It should also allow for easier extensibility, for
instance, to integrate with another SLA specification later on.

Finally, the way monitoring results are accessible and explained should also
be considered. Facilitating access and understanding of these results is a critical

38

requirement of the system, as these results should be understood by humans,
not just machines.

Must have

Requirement 1. The SLA monitoring system must be able to perform periodic
monitoring, e.g., by generating a monthly report.

Requirement 2. The SLA monitoring system must be able to perform event-
based monitoring, e.g., by checking whether a new transport planning violates
the SLA, and being able to respond to such events immediately.

Requirement 3. The SLA monitoring system must be able to use monitoring
specifications derived from the SLA specification language defined in Chapter 5.

Should have
Requirement 4. The SLA monitoring system should be extendable.

Requirement 5. The SLA monitoring system should have a modular design
to improve maintainability.

Requirement 6. The SLA monitoring system should be decoupled from the
SLA specification.

Requirement 7. The SLA monitoring system should be able to generate re-
ports that clearly show in a human-understandable manner which agreements
where violated, and what the inputs for this agreement were.

Could have

Requirement 8. The SLA monitoring system could be able to provide detailed
human-understandable reports, showing not just the agreements that were vio-
lated and its inputs, but also explaining what the violation is.

6.2 Related Work

Several techniques for monitoring SLAs can be found in literature, often focusing
on a specific aspect of the process. We compared twelve different techniques
using the criteria from Section 6.1, based on work by Miiller et al. [29]. A
summary of this analysis can be found in Table 6.1. We indicate the type
of SLA specification supported by each technique and whether it is human
understandable (H-U), whether information is coupled to the SLA specification,
how the results can be accessed, how violations are explained and whether they
are human understandable (H-U), whether violations are detected near real-time,
and whether its components are modular. N/A indicates that no clear answer
could be given.

The supported SLAs fall into two categories: domain-specific [36], [37], [39],
[41] and general-purpose [26], [29], [38], [40], [42]-[47]. The former does not
consider a general-purpose structure or notation, and might not be suited for
realistic scenarios. Therefore, they are also poorly suited for use in this project.
The latter does consider a general-purpose structure or notation, with many of

39

Table 6.1: Analysis of monitoring techniques in literature, based on Miiller et al.
H-U means human understandable, and N/A means no clear answer could be

found.
Supported Monitor Monitoring ~ Explanation of Real-time Architecture
SLAs config. results violations detection elements
WSLA [26] Sjtn;fillj—purp()h'ﬂ Coupled API Partial, not H-U Yes Separated
Comuzzi et al. [36] Domain-specific ~ Decoupled ~API None Yes Separated
Michlmayr et al. [37] Domain-specific ~ Coupled lQuery None Yes Separated
anguage
- . . General-purpose, .) . Single
Raimondi et al. [38] ot H-U Decoupled Log None Yes component
. . . . Formal .
Sahai et al. [39] Domain-specific ~ Coupled model Partial, not H-U Yes Separated
Palacios et al. [40) Soctn Eilj_ purpose, Coupled N/A None N/A N/A
Di Penta et al. [41] Domain-specific ~ Coupled N/A None N/A N/A
SLA@SOI [42], [43] fgglf{’%p“’po“’ Decoupled ~ API Partial, not H-U Yes Separated
TRUSTCOM [44] Sgglgilj purpose, Coupled APL Partial, not H-U Yes Separated
Mahbub and General-purpose, .
Spanoudakis [45], [46] not H-U Coupled N/A Full, not H-U Yes Separated
Comuzzi and General-purpose, . . -
Spanoudakis [47] ot H-U Decoupled API None Yes Separated
SALMonADA [29] General-purpose, Decoupled Formal Full, H-U Yes Separated
H-U document

them supporting WS-Agreement [29], [40], [45]-[47], one using WSLA ([26]), and
one using SLA* [42], [43]. None of these are easily understandable by humans,
which SALMonADA [29] claims to be.

Two categories were also identified for the monitor configuration: coupled
[26], [37], [39]-[41], [44]-][46] and uncoupled [29], [36], [38], [42], [43], [47]. All
techniques automatically configure the monitoring component, so the difference
here is in the coupling between the configuration and the SLAs. When they are
coupled, any changes to the SLA specification could result in required changes
to the monitor. In a decoupled system, the SLA is translated into another
document that is used to configure the monitor.

For accessing the monitoring results, five different methods were identified,
with some approaches not describing any [40], [41], [45], [46]. The most common
approach is through an API [26], [36], [42]—[44], [47], which has the downside
of not being standardised, so that it is harder to be modified over time. The
same goes for using a log file [38]. A possibly more flexible solution is the use of
a query language [37], but this requires the system to be able to deal with this
language. Other proposed options are a formal model [39] or a formal document
[29].

To explain the accessed results, most techniques offer no solution [36]-[38],
[40], [41], [47]. Others either explain violations only partially [26], [39], [42]-
[44], or fully [45], [46], but not in a human-understandable fashion, with one
exception, namely SALMonADA [29], which claims to fully explain the violations
in a human-understandable format.

Most techniques showed how to use them for near real-time detection of
violations, with some [40], [41] being unclear.

Finally, most of the techniques included an architecture, except for two [40],
[41]. One of the others [38] included an architecture where monitoring and

40

analysis were conducted in one component, with the rest separating these tasks
[26], [29], [36], [37], [39], [42]-[47].

Two solutions for SLA monitoring in Table 6.1 stand out: SLA@QSOI and
SALMonADA. The former provides the basis of the SLA modelling solution
with SLA* (see Section 5.1), and supports most of the desired functionality,
with only not being understandable by humans being a problem. Similarly to
SLA* though, its scope is again much larger than needed. The latter solution
also supports most of the desired functionality, including human-understandable
violation explanations and a more limited scope. A downside, however, is the
use of WS-Agreement as a model for SLAs, which was not one of the preferred
specification techniques.

6.3 Approach

Three things were done to show what the proposed SLA monitoring system looks
like. First, a high level design was made based on SALMonADA’s design. The
design has a similar architecture with similar components, but was adjusted to
fit this thesis. Second, a prototype was implemented to verify the system. As
the scope of this system is a proof of concept, only parts required for verification
were implemented. Finally, the system was verified using test scenarios based on
Section 3.1.

41

Chapter 7

Monitoring System Design

This chapter describes the design of the SLA monitoring system, and a prototype
to test the core functionality. It first shows the general architecture and an
overview of the core components, followed by the interaction designs for three
major scenarios. Then, it describes the major components of the system. Finally,
it describes the proof-of-concept prototype used for verification.

7.1 Architecture

We first describe a conceptual reference model of the system, showing a high-
level overview of the relevant components and agents. The model is shown in
Figure 7.1. The model also includes the SLA Specification System as discussed
in Chapters 4 and 5 to show how they interact. The following components are
presented:

Client The client is the user of the system. They want to use the system to
obtain monitoring results.

SLA Builder The SLA Builder is used by the client to specify the monitoring
requirements of an SLA. It produces a Monitoring Specification that can be
registered in the SLA Monitoring System to perform monitoring according
to the specification.

Monitor The Monitor is responsible for collecting the monitoring data, accord-
ing to the Monitoring Specification.

Analyser The Analyser is responsible for analysing the collected data for
compliance with the SLA and creates an Analysis Result, a machine-
readable report of the analysis.

Explainer The Explainer is responsible for transforming the Analysis Result
to a human-understandable result. It produces a report that can be
interpreted by the client, showing the results of the analysis.

Figure 7.2 shows an architectural model of the SLA Monitoring System,
containing the main components. Compared to the conceptual model, it adds
the Orchestrator, which provides the external interfaces and manages the flow
of the system, keeping the other components decoupled from each other. It also
shows the interfaces provided by each component.

42

Client

Figure 7.1: Conceptual reference model of the SLA monitoring system

Service

retrieveData

{l «service» {l
receiveEvent 5 «services Analyser
Monitor

Client

«service» {l
Explainer

startMonitorin,

| Sarlonfold &—
stopMonitorin:

| stopMonitoring 7|

getReport ~
&

query C «controllers»
Orchestrator {l

notify)_
—0

Figure 7.2: Architectural model of the SLA monitoring system

43

<<service>> <<controller>> <<service>>
SlaBuilder Orchestrator Monitor

exportSla

startMonitoring

A 4

startMonitoring o ,

parseSla
storeSla

confirmationResponse
R LR e P P PP, L

Figure 7.3: Sequence diagram for starting the monitoring of an SLA.

7.1.1 Interaction Design

Sequence diagrams were designed for three common scenarios of the monitoring
system: starting the monitoring of a new SLA, requesting a monitoring report,
and responding to a monitoring event.

Start Monitoring

For the first scenario, starting the monitoring of an SLA (see Figure 7.3), we
assume that an SLA has been constructed using the DSL described earlier. The
user first exports the monitoring specification and uploads it the the orchestrator
component. The orchestrator then passes the specification to the monitor
component, which start by parsing the monitoring specification and storing the
result. This process also registers it as an active SLA if its validity is correct. A
confirmation is then returned to the user.

Get Report

The second scenario, obtaining a report (see Figure 7.4), starts with a request
from the user or client to the orchestrator. The orchestrator then tells the monitor
to obtain the required data. The monitor fetches the SLA and determines which
operations are required to obtain all the data. It then performs all the required
operations and stores them.

The orchestrator then requests analysis by the analyser, which starts by
fetching the monitoring data and SLA. It then uses its expression solver to check
every agreement in the SLA. The result of this analysis is again stored and an
identifier is returned to the orchestrator.

The orchestrator then tells the explainer to process the analysis result into
a report. The explainer first fetches the analysis result and the SLA, and uses
these to create a report. This report is stored and an identifier is returned to
the orchestrator, which fetches the report and returns it to the user.

44

<<controller>> <<service>> Service <<service>> <<service>>
Orchestrator Monitor Analyser Explainer
! getReport :

getData

:] getSla

:] determineOperations

loop,

[for each operation]
retrieveData

storeMonitoringData
monitoringDatald

analyseData

:] getMonitoringData

:] getSla

1000 /| | {for each agreement]
:] analyseData

storeAnalysisResult

(R

analysisResultid

explainResult

:] getAnalysisResult
:] getSla

:] explainResult

3 :] storeReport

reportld

[|

Figure 7.4: Sequence diagram for obtaining a report from the monitoring system.

45

<<controller>>
Orchestrator

<<service>>
Monitor

<<service>> <<service>>
Analyser Explainer

i | s

receiveEvent

: :] getSla
:] determineOperations
loop, : [for each operation]
: retrieveData
data
:] storeMonitoringData
notify
analyseResults
:] getMonitoringData
:] getSla
:] determineAgreements
1000 /| | ffor each agreement]
:] analyseData
:] storeAnalysisResult
analysisResultld
.. AnaysisResuid .
L
explainResults
:] getAnalysisResult
:] getSla
: :] explainResults
: :] storeNotification
notificationld
H : [Crommmmmmmmmmmmoeneey 7rmTmTT oo
H : H :] getNotification
H 1 notify
: notify :

Figure 7.5: Sequence diagram of an event-based monitoring situation.

Monitoring Event

The third scenario, responding to a monitoring event (see Figure 7.5), starts
with a situation where the service wants real-time decision support. To obtain
this, it sends an event to the monitor, which checks it with the relevant SLA
and determines which other information is required to perform the analysis. It
then retrieves all the required data from the service and stores it along with the
event, then notifies the orchestrator that analysis is requested.

The orchestrator then tells the analyser to check the results for violations. The
only difference with the previous scenario is that it only checks the agreements
that depend on the data indicated by the event. It again stores the result and
returns an identifier to the orchestrator.

The orchestrator then calls the explainer to process the analysis results. The
explainer also does this similarly to the previous scenario, but creates a summary
of violations instead of a full report. The results are stored and passed to the
orchestrator as before.

Finally, the orchestrator fetches the results and sends a notification to the

46

service, which in turn can inform the user if desired.

7.1.2 Domain

The system uses a shared domain to ensure all components use the same data
structure. It consists of classes based on the SLA DSL’s metamodel, with the
addition of classes for intermediate data used by the system’s components to
communicate with each other.

7.2 Components

This section describes the major components of the system: the orchestrator,
monitor, analyser, and explainer.

7.2.1 Orchestrator

The orchestrator component has two main responsibilities: it manages the
execution flow of the system, and provides external interfaces. By having
the all components communicate through the orchestrator, they can remain
decoupled, and can be easily swapped with other components compatible with the
orchestrator’s interfaces. As the component also provides the external interfaces,
all client communication is also through the orchestrator.

The orchestrator provides an interface for the client to start and stop moni-
toring. For the former, the client has to provide monitoring specification. The
orchestrator then calls on the monitor service to actually perform the desired
actions. The other interfaces provided are for obtaining a monitoring report
and querying the monitoring system. These are also passed on to the monitor
service. Finally, it can call an external notify interface, which can be used for
event-based monitoring to notify an external system of a violation.

A design for this component is shown in Figure 7.6.

7.2.2 Monitor

The monitor component also has two main responsibilities: managing the moni-
toring specifications and retrieving monitoring data from external services. For
the former, a sub component takes care of storing and retrieving the specifica-
tions, and the removal of expired ones. The latter is done by using interface
details from the monitoring specification to call the correct external interfaces.
It also looks up the correct calls to make for event-based monitoring, based
on the monitoring specification and the requested details. This data is then
transformed into an intermediate format more suitable for internal use. A design
for this component is shown in Figure 7.7.

7.2.3 Analyser

The analyser has only one responsibility: to check the provided monitoring data
for SLA violations. It does this by using an expression solver for the agreements
in the SLA with the provided data. The result of the solver is provided to the
orchestrator as a simple machine-readable report. The design of this component
is similar to Figure 7.7 and therefore not shown separately.

47

ExplainerController

+ explainResult

1

ExplainedResultRepository

*

OrchestratorService

+ startMonitoring

+ stopMonitoring
+ report
+query

*

ClientController

+ startMonitoring
+ stopMonitoring
+ report

+query

+ notify

+ overview

+ details

+ notify
+ overview
+ details

<<Interface>>
ReadRepository

+get

SlaRepository

1

AnalyserController

+ analyseData

* 1

MonitorController

+ startMonitoring
+ stopMonitoring
+ getData

+ notify

Figure 7.6: Conceptual class diagram of the Orchestrator component

48

ServiceController

+ retrieveData
receiveEvent

+

<<Interface>>
Repository

SlaRepository

""""""""" l>+get

+ getAll
+ save
1 + update
+ delete

A\

*

MonitoringService

N MonitoringDataRepository

+ receiveEvent

+ startMonitoring * 1
+ stopMonitoring

1

Slalmporter

+ parseSla

+ getData

*

+ notify

* 1

OrchestratorController

+ startMonitoring
+ stopMonitoring
+ getData

+ notify

Figure 7.7: Conceptual class diagram of the Monitor component

49

7.2.4 Explainer

The explainer also has only one main responsibility: creating a human under-
standable report from the analysis result. To do this, it uses the original text used
in the SLA and simple natural language structures to explain the violations. It
can generate both full reports, as well as notifications for event-based monitoring.
The design of this component is similar to Figure 7.7 and therefore not shown
separately.

7.3 Prototype

To show the viability of the monitoring system of this thesis, a proof-of-concept
prototype was made. The prototype reduces the scope of the system in the
several ways.

First, the system focuses only on the functionality required to evaluate
the test scenarios described in Chapter 8. This means that it only features
partial support for several steps, such as the SLA builder, expression solver, and
monitoring specification. It also only features a minimal user interaction, and
the explainer component is quite limited.

Second, the prototype is not made to enterprise standards, and lacks the
strict decoupling as described in Section 7.1. It is still loosely decoupled, and
should be fine for a proof-of-concept application.

Finally, the external communication part of the monitor component is replaced
with a function that reliably provides the test data required for the test scenarios.

50

Chapter 8

Verification

This chapter discusses how we validated the prototypes using testing. It discusses
the test coverage, the testing setup including the scenarios and tests, and the
fulfilment of the requirements.

8.1 Tests Coverage

To verify the DSL and the monitoring system prototype, they were tested in
several ways. We identified the following functionality of the system that should
be verified:

(1) Creating an SLA with the DSL

(2) Exporting a monitoring specification from the SLA builder

(3) Importing a monitoring specification into the monitoring system

(4) Generating a monitoring report, which consists of the following steps:

(a) Retrieving data from the service
(b) Analysing this data to find violations
(c) Process the analysis results into a readable report

(5) Responding to a monitoring event, which consists of the following steps:

(a) Determine what other data is required to check the requested data
(b) Retrieve all required data from the service

(c¢) Analyse the data to find violations

(d) Process the analysis results into a readable notification

Items (1) to (3) together make up the start of monitoring an SLA, and their
their sequence diagram is shown in Figure 7.3. Item (4) encompasses the steps
required to generate a monitoring report, which can also be seen in Figure 7.4.
Item (5) encompasses the steps required to respond to a monitoring event, which
can also be seen in Figure 7.5. Because of the limitations of the prototype (see
Section 7.3), the retrieval of data (Items (4)a and (5)b) is not supported and
could not be tested. All parts besides Items (4)a and (5)b have been tested, and
together should verify the functionality of the system.

o1

8.2 Test Setup

Three types of tests were performed to verify the system: scenario tests, integra-
tion tests, and unit tests. This section first describes the scenarios used, and
then for the points above describes which tests were performed to verify each of
them.

8.2.1 Scenarios

Scenarios were used in two ways during the testing process, either as functional
structures to test all aspects of a component, or as reflection of a real-world
SLA monitoring situation. Scenarios of the first type were created for all of
the sub-languages of the SLA DSL. They were not based on actual SLAs and
focused purely on testing every aspect of the language. Two scenarios of the
second type were also constructed. They do not test each individual step of the
language, but they do validate the interaction between all components in the
architecture. The scenarios are based on the running example of Section 3.1, one
for import and one for export orders. The SLA used for the export scenario can
be seen in Listing 8.1. The scenarios’ SLAs define the following for a fictitious
logistics service:

(1) Contract validity period

(2) Involved parties, both as roles and the corresponding actors

(3) A mock technical service description, as this is not functional in the
prototype

(4) Agreements, including a description, the responsible parties, local variables,
and the conditions of the agreement

(a) The import scenario contains agreements about:

i. Demurrage (see Figure 3.3)
ii. Weighing requirement (as shown in Figure 3.1)
iii. The time between placing the order and picking up the container
iv. Delivery of port information by the customer
(b) The export scenario contains agreements about:
i. The time within which the container must be delivered to the
customer for loading
ii. The mode of transport used
iii. The time between an order and it being planned
iv. The container dwell time
v. The time between loading the container at the customer and
delivering it to the port

8.2.2 Tests

This section describes the functionality described in Section 8.1 was tested.

Item (1) The creation of SLAs with the DSL was tested by performing manual
scenario tests. These tests were first performed with scenarios of the first
type as described above. This verifies that all aspects of the language work
and can be used to construct SLAs. In a later phase, the scenarios based

52

SLA second Scenario
template : false

version 1 1.0.9

from : 2023-07-01
until 1 2024-01-01
signed on : 2023-06-09

Description :
Second scenario test SLA.
Tests order timing.

Roles :

Provider

Planning contact

Terminal contact

BI contact

Customer

Add to role Customer :
Example Company

< ... >

Service Descriptions :
LC Transport Export

Interfaces :
Export :

Agreements for export orders

nts ...

Timing :
Agreements for the timing of orders
Planned within 1 day :
A container is planned for the customer within one day after the order is made
responsible roles:
Provider
variables:
var isPlanned = plannedOn is present
var planned = get plannedon
var diff = planned - get createdOn
var timePassed = now - get createdon
guarantees:
(not isPlanned and timePassed less than P1D) or (isPlanned and diff less than P1D)
Container at customer within 2 weeks :
A container is delivered at the customer within 2 weeks
responsible roles:
Provider
variables:
var created = get createdOn
var hasEta = customerEta is present
var eta = get customerfta
guarantees:
hasEta = { eta - created) less than or equals P14D
Express container uses truck :
If container is required within 1 week, use a truck
responsible roles:
Provider
variables:
var created = get createdon
var hasEta = customerfta is present
var eta = get customertta
guarantees:
(hastta and eta - created less than or equals P7D) = (depotTerminal or else TRUCK) equals TRUCK
Dwell time within 2 days :
The container should be at the terminal for at most 2 days
responsible roles:
Provider
variables:
var hasEta = terminalEta is present
var hasktd = terminalEtd is present
var eta = get terminalfta
var etd = get terminalEtd
var hasAta = terminalAta is present
var hasAtd = terminalAtd is present
var ata = get terminalAta
var atd = get terminalAtd
guarantees:
(hastta and hasttd) = (etd - eta less than or equals P2D)
(hasAta and hasAtd) = (atd - ata less than or equals P2D)
Container delivered to seaport within 1 week of stuffing :
The container has to be delivered to a seaport within 1 week of loading it at the customer
responsible roles:
Provider
variables:
var hasetd = customerEtd is present
var etd = get customerftd
var haskEta = seaportfta is present
var eta = get seaportfta
guarantees:
(hasttd and hasEta) — eta - etd less than or equals P7D

Listing 8.1: SLA used for the export scenario, specified using our DSL.

53

on the running example were also used to create the SLAs used for the
other tests.

Item (2) The exporting of SLAs was tested by manual integration testing. This
was done by taking the SLAs created by the previous step, and manually
verifying all information was correctly exported. In a later phase, the SLAs
based on the running example’s scenarios were also exported and verified,
then used for the other tests.

Item (3) The importing of SLAs was also tested by manual integration testing.
This was done by taking the exported SLAs of the previous step, and
manually verifying all information was correctly exported. In a later phase,
the exported SLAs based on the running example’s scenarios were also
imported and verified, then used for the other tests.

Item (4) The generation of monitoring reports was tested by scenario testing,
supported by unit testing. The scenarios based on the running example
were used, in combination with test data, to verify if correct reports were
generated. The test data used tries to cover all options for a guarantee, for
example see Table 8.1 for the test data used for the first guarantee of the
export scenario (Listing 8.2). In some cases, a simplification was made to
reduce the number of test cases, for example, in the dwell time guarantee of
the export example, where the presence of the estimated and actual times
where not tested separately. To further support this, the analysis step and
reporting step were unit tested. The unit tests for the analysis step verify
that every expression is correctly analysed, aiming for full branch coverage.
An example these unit tests can be seen in Table 8.2. For the reporting
step, the results of the generation of simple reports were verified with unit
tests. These tests together verify the individual parts, as well as the whole
process, with the exclusion of not implemented functionality as a result of
the prototype’s scope restriction.

Item (5) The response to monitoring events was tested by scenario testing,
supported by unit testing. The scenarios based on the running example
were used, in combination with test data, to verify correct notifications were
generated. This is supported by the same unit tests as the previous step,
verifying the underlying blocks. Further checks were performed to verify
whether the correct operations could be determined to retrieve additional
required data. These tests together verify the individual parts, as well as
the whole process, with the exclusion of not implemented functionality as
a result of the prototype’s scope restriction.

8.3 Requirements Assessment

In Section 8.2 we discussed how we verified the functionality of all the “must
have” requirements (Requirements 1 to 3). Therefore we conclude that our
design satisfies these requirements.

The design of the monitoring system is mostly platform-agnostic, although it
should be easily extendable, satisfying Requirement 4. Because the components
in the design are decoupled and communicate only through their interfaces
through the orchestrator, the design also satisfies Requirement 5. Although
the monitoring system does not use an SLA specification written in our DSL
as a direct input, the monitoring specification we generate is based directly on

54

Table 8.1: Example of test data used for scenario testing. This data was used to
test the first agreement of the export scenario, also shown in Listing 8.2. Each
row represents one of the test cases, with createdOn and plannedOn as inputs,
and diff and timePassed as calculated variables.

createdOn plannedOn diff timePassed Result
2023-10-01 12:00:00 2023-10-01 20:00:00 8 hours true
2023-10-01 12:00:00 2023-10-02 12:00:00 24 hours false
Now - 12 hours 12 hours true
Now - 36 hours 36 hours false

Planned within 1 day :
A container is planned for the customer within one day after the order is made
responsible roles:
Provider
variables:
var isPlanned = plannedOn is present
var planned = get plannedOn
var diff = planned - get createdoOn
var timePassed = now - get createdon
guarantees:
(not isPlanned and timePassed less than P1D) or (isPlanned and diff less than P1D)

Listing 8.2: First agreement of Listing 8.1, which checks whether an order is
planned within one day. It uses two interface variables: plannedOn and createdOn.
Its expression checks whether it is either not planned and less than a day has
passed, or it is planned and the difference between createdOn and plannedOn is
less than one day.

Table 8.2: Test data used in unit testing to verify the equivalence expression
solver of the analyser component. The table shows both inputs and the result,
with remarks in parentheses where needed.

Left Operand Right Operand Result
false true false
true true true
12 4 false
12 12 true
12 12 (different variable) true
7.5 2.5 false
7.5 7.5 true
“Hello ” “world!” false
“Hello ” “Hello ” true
“Hello ” 12 false
12 12.0 false (different type)
1 day 2 days false

1 day 1 day true

2 days 1 day false

2 days 2 days true

55

our DSL. While other SLA specifications theoretically could generate a similar
artefact, in practice it would be wiser to generate either a more easily accessible
monitoring specification, or use a pivot model that could more easily work with
other SLA specifications. With this, Requirement 6 is satisfied, but more work
should be done to decrease the dependency on the SLA DSL.

Herewith we showed that the reporting functionality was verified, satisfying
Requirement 7. The reporting functionality does not generate proper explana-
tions however, and more work would be required to make it do so. Therefore
Requirement 8 is not satisfied yet.

56

Chapter 9

Conclusions

In this thesis, we designed a DSL to specify SLAs for the purposes of monitoring,
and designed a system that can automatically monitor an SLA and provide
real-time decision support. Many providers of business services could benefit
from such a system, as a lot of time is spent manually monitoring for violations.
We have proposed a design for it, and have shown that such a system can work.

We started by obtaining information about the structure and contents of SLAs,
and looking into existing SLA specification languages. Using this information,
we defined requirements for an SLA specification language, and designed a DSL.
We then verified that our DSL can be used for SLA monitoring, and we can
therefore state that Research Question 2 is answered by this thesis.

To answer Research Question 3, we looked at existing solution for SLA
monitoring systems, and designed a system based on those findings. We verified
that providing real-time decision support based on SLA monitoring can be done,
and described the architecture and designs required for it.

Having verified the designs for both the SLA specification language and
monitoring system, we can conclude that this thesis also answered Research
Question 1, and thereby all the research questions.

There are several major limitations to the current monitoring system. All
components of the system are a proof-of-concept, and would need further work
to become products for commercial use. The DSL, while functional, has two
major problems. First, it requires some understanding of formal logic to be used.
Second, when reading the DSL, it is unclear which operators have precedence,
as parentheses are optional and the tree structure of an expression is not visible
without manual interaction. Furthermore, the designs of the monitoring system
are mostly at the conceptual level, and need to be improved upon.

Several things could be done to improve upon this thesis and make this a
fully usable solution.

First, the DSL needs some improvements. The language in its current form is
probably too mathematical to be used in practice. More research could be done
improve its usability and clarity. It could also be extended to include features
such as multi-tiered SLAs.

Second, the monitoring system could be extended. Currently, only a minimal
prototype has been implemented. To be able to properly use the solution, a full
implementation is required. This involves adding a monitor and orchestrator
component, extending the explainer component, and updating the analyser

57

component to accommodate the changes.

Finally, if a full implementation is made, the monitoring solution could be
verified further. The performance and scalability of the prototype needs to be
evaluated, and the suitability of the system in practice needs to be tested.

58

Bibliography

[10]

[11]

Cofano Software Solutions. “Cofano Software Solutions LinkedIn about
page.” (), [Online]. Available: https://www.linkedin . com/company/
cofano-software-solutions-bv/about/ (visited on 04/10/2020).

——, “Terminal operating system.” (2019), [Online]. Available: https:
//www . cofano.nl/nl/logistiek/terminals/terminal - operating-

system/ (visited on 04/10/2020).

R. J. Wieringa, Design Science Methodology for Information Systems
and Software Engineering. Springer, 2014, 1SBN: 978-3-662-43838-1. DOI:
10.1007/978-3-662-43839-8.

J. C. Nardi, R. de Almeida Falbo, J. P. A. Almeida, et al., “A commitment-
based reference ontology for services,” Inf. Syst., vol. 54, pp. 263-288, 2015.
DOI: 10.1016/j.is.2015.01.012.

D. C. Verma, “Service level agreements on IP networks,” Proc. IEEFE,
vol. 92, no. 9, pp. 1382-1388, 2004. DOI: 10.1109/JPROC.2004.832969.

R. Sprenkels and A. Pras, Service Level Agreements : Internet NG De-
liverable D2.7, R. Sprenkels, Ed. Enschede: Centre for Telematics and
Information Technology (CTIT), 2001.

A. Maarouf, A. Marzouk, and A. Haqiq, “Practical modeling of the SLA
life cycle in cloud computing,” in 15th International Conference on Intelli-
gent Systems Design and Applications, ISDA 2015, Marrakech, Morocco,
December 14-16, 2015, A. Abraham, A. M. Alimi, A. Haqiq, et al., Eds.,
IEEE, 2015, pp. 52-58. DOI: 10.1109/ISDA.2015.7489170.

N. B. Beaumont, “An overview of service level agreements,” in Qutsourcing
and Offshoring in the 21st Century: A Socio-Economic Perspective, 2006,
pp- 302-325. DOI: 10.4018/978-1-59140-875-8.ch014.

N. Karten, “With service level agreements, less is more,” Inf. Syst. Manag.,
vol. 21, no. 4, pp. 43—44, 2004. DOI: 10.1201/1078/44705.21.4.20040901/
84186.5.

A. Paschke and E. Schnappinger-Gerull, “A categorization scheme for
SLA metrics,” in Service Oriented Electronic Commerce: Proceedings zur
Konferenz im Rahmen der Multikonferenz Wirtschaftsinformatik, 20.-22.
Februar 2006 in Passau, Deutschland, M. Schoop, C. Huemer, M. Rebstock,
and M. Bichler, Eds., ser. LNI, vol. P-80, GI, 2006, pp. 25—40.

K. Kritikos, B. Pernici, P. Plebani, et al., “A survey on service quality
description,” ACM Comput. Surv., vol. 46, no. 1, 1:1-1:58, 2013. DOI:
10.1145/2522968.2522969.

59

https://www.linkedin.com/company/cofano-software-solutions-bv/about/
https://www.linkedin.com/company/cofano-software-solutions-bv/about/
https://www.cofano.nl/nl/logistiek/terminals/terminal-operating-system/
https://www.cofano.nl/nl/logistiek/terminals/terminal-operating-system/
https://www.cofano.nl/nl/logistiek/terminals/terminal-operating-system/
https://doi.org/10.1007/978-3-662-43839-8
https://doi.org/10.1016/j.is.2015.01.012
https://doi.org/10.1109/JPROC.2004.832969
https://doi.org/10.1109/ISDA.2015.7489170
https://doi.org/10.4018/978-1-59140-875-8.ch014
https://doi.org/10.1201/1078/44705.21.4.20040901/84186.5
https://doi.org/10.1201/1078/44705.21.4.20040901/84186.5
https://doi.org/10.1145/2522968.2522969

[14]

[15]

[16]

[17]

[18]

W. Maurer, R. T. Matlus, and N. Frey, “A guide to successful SLA
development and management,” Gartner Group, Strategic Analysis Report,
Oct. 16, 2000.

K. Lu, R. Yahyapour, P. Wieder, et al., “Fault-tolerant service level agree-
ment lifecycle management in clouds using actor system,” Future Gener.
Comput. Syst., vol. 54, pp. 247-259, 2016. DOI: 10.1016/j.future.2015.
03.016.

L. Wu and R. Buyya, “Service level agreement (SLA) in utility computing
systems,” CoRR, vol. abs/1010.2881, 2010. arXiv: 1010.2881.

w»”

Wikipedia contributors. “’request for information — Wikipedia, the free
encyclopedia.” (2022), [Online]. Available: https://en.wikipedia.org/
w/index .php?title=Request_for_information&oldid=1091954681
(visited on 10/13/2022).

A. Soomro and W. Song, “Developing and managing SLAs for business
applications in information systems,” in Emerging Trends and Applications
in Information Communication Technologies, B. S. Chowdhry, F. K. Shaikh,
D. M. A. Hussain, and M. A. Ugqaili, Eds., Springer, 2012, pp. 489-500,
ISBN: 978-3-642-28962-0. DOI: 10.1007/978-3-642-28962-0_46.

A. Metzger, R. Franklin, and Y. Engel, “Predictive monitoring of hetero-
geneous service-oriented business networks: The transport and logistics
case,” in 2012 Annual SRII Global Conference, San Jose, CA, USA, July
24-27, 2012, IEEE Computer Society, 2012, pp. 313-322. DOI: 10.1109/
SRII.2012.42.

A. M. Gutiérrez, C. C. Marquezan, M. Resinas, A. Metzger, A. R. Cortés,
and K. Pohl, “Extending ws-agreement to support automated conformity
check on transport and logistics service agreements,” in Service-Oriented
Computing - 11th International Conference, ICSOC 2013, Berlin, Germany,
December 2-5, 2013, Proceedings, S. Basu, C. Pautasso, L. Zhang, and
X. Fu, Eds., ser. Lecture Notes in Computer Science, vol. 8274, Springer,
2013, pp. 567-574. DOI: 10.1007/978-3-642-45005-1\ _47. [Online].
Available: https://doi.org/10.1007/978-3-642-45005-1%5C_47.

C. C. Marquezan, A. Metzger, R. Franklin, and K. Pohl, “Runtime man-
agement of multi-level slas for transport and logistics services,” in Service-
Oriented Computing - 12th International Conference, ICSOC 201}, Paris,
France, November 3-6, 201/. Proceedings, X. Franch, A. K. Ghose, G. A.
Lewis, and S. Bhiri, Eds., ser. Lecture Notes in Computer Science, vol. 8831,
Springer, 2014, pp. 560-574. DOI: 10.1007/978-3-662-45391-9\ _49.
[Online]. Available: https://doi.org/10.1007/978-3-662-45391-
9%5C_49.

N. Moini, M. Boile, S. Theofanis, and W. Laventhal, “Estimating the deter-

minant factors of container dwell times at seaports,” Maritime Economics
and Logistics, vol. 14, no. 2, pp. 162-177, 2012. pOI: 10.1057/mel.2012.3.

S. Fazi and K. J. Roodbergen, “Effects of demurrage and detention regimes
on dry-port-based inland container transport,” Transportation Research
Part C: Emerging Technologies, vol. 89, pp. 1-18, Apr. 1, 2018, 1SSN:
0968-090X. DOI: 10.1016/j.trc.2018.01.012.

60

https://doi.org/10.1016/j.future.2015.03.016
https://doi.org/10.1016/j.future.2015.03.016
https://arxiv.org/abs/1010.2881
https://en.wikipedia.org/w/index.php?title=Request_for_information&oldid=1091954681
https://en.wikipedia.org/w/index.php?title=Request_for_information&oldid=1091954681
https://doi.org/10.1007/978-3-642-28962-0_46
https://doi.org/10.1109/SRII.2012.42
https://doi.org/10.1109/SRII.2012.42
https://doi.org/10.1007/978-3-642-45005-1_47
https://doi.org/10.1007/978-3-642-45005-1%5C_47
https://doi.org/10.1007/978-3-662-45391-9_49
https://doi.org/10.1007/978-3-662-45391-9%5C_49
https://doi.org/10.1007/978-3-662-45391-9%5C_49
https://doi.org/10.1057/mel.2012.3
https://doi.org/10.1016/j.trc.2018.01.012

[22]

[24]

[27]

[28]

[31]

[32]

[33]

M. G. Buscemi and U. Montanari, “Cc-pi: A constraint-based language
for specifying service level agreements,” in Programming Languages and
Systems, 16th European Symposium on Programming, ESOP 2007, Held as
Part of the Joint European Conferences on Theory and Practics of Software,
ETAPS 2007, Braga, Portugal, March 24 - April 1, 2007, Proceedings,
R. De Nicola, Ed., ser. Lecture Notes in Computer Science, vol. 4421,
Springer, 2007, pp. 18-32. DOI: 10.1007/978-3-540-71316-6_3.

D. D. Lamanna, J. Skene, and W. Emmerich, “Slang: A language for
defining service level agreements,” in 9th IEEE International Workshop on
Future Trends of Distributed Computing Systems (FTDCS 2003), 28-30
May 2003, San Juan, Puerto Rico, Proceedings, IEEE Computer Society,
2003, p- 100. por: 10.1109/FTDCS.2003.1204317.

K. T. Kearney, F. Torelli, and C. Kotsokalis, “Slax: An abstract syntax
for service level agreements,” in Proceedings of the 2010 11th IEEE/ACM
International Conference on Grid Computing, Brussels, Belgium, October
25-29, 2010, IEEE Computer Society, 2010, pp. 217-224. po1: 10.1109/
GRID.2010.5697973.

K. T. Kearney and F. Torelli, “The SLA model,” in Service Level Agree-
ments for Cloud Computing, P. Wieder, J. M. Butler, W. Theilmann,
and R. Yahyapour, Eds., New York, NY: Springer, 2011, pp. 43-67, ISBN:
978-1-4614-1614-2. DOI: 10.1007/978-1-4614-1614-2_4.

A. Keller and H. Ludwig, “The WSLA framework: Specifying and moni-
toring service level agreements for web services,” J. Netw. Syst. Manag.,
vol. 11, no. 1, pp. 57-81, 2003. DOI: 10.1023/A:1022445108617.

A. Alain, C. Karl, D. Asit, et al., “Web services agreement specification
(WS-agreement),” Global Grid Forum, Oct. 10, 2011. [Online]. Available:
http://www.ogf.org/documents/GFD.192.pdf (visited on 01/13/2021).

E. Oberortner, U. Zdun, and S. Dustdar, “Tailoring a model-driven quality-
of-service DSL for various stakeholders,” in ICSE Workshop on Modeling
in Software Engineering, MiSE 2009, Vancouwver, BC, Canada, May 17-18,
2009, IEEE Computer Society, 2009, pp. 20-25. DOI: 10.1109/MISE.2009.
5069892. [Online]. Available: https://doi.org/10.1109/MISE. 2009 .
5069892.

C. Miiller, M. Oriol, X. Franch, et al., “Comprehensive explanation of

SLA violations at runtime,” IEEE Trans. Serv. Comput., vol. 7, no. 2,
pp. 168-183, 2014. DOL: 10.1109/TSC.2013.45.

Eclipse Foundation. “Eclipse Modeling Framework (EMF).” (), [Online].
Available: https ://www . eclipse . org/modeling /emf/ (visited on
10/26/2022).

JetBrains. “MPS: The Domain-Specific Language Creator.” (), [Online].
Available: https://www.jetbrains.com/mps/ (visited on 10/26/2022).
Eclipse Foundation. “Xtext - Language Engineering Made Easy!” (),
[Online]. Available: https : //www . eclipse . org/Xtext/ (visited on
10/26/2022).

——, “Eclipse OCL (Object Constraint Language).” (), [Online]. Available:

https://projects.eclipse.org/projects/modeling.mdt.ocl (visited
on 10/26/2022).

61

https://doi.org/10.1007/978-3-540-71316-6_3
https://doi.org/10.1109/FTDCS.2003.1204317
https://doi.org/10.1109/GRID.2010.5697973
https://doi.org/10.1109/GRID.2010.5697973
https://doi.org/10.1007/978-1-4614-1614-2_4
https://doi.org/10.1023/A:1022445108617
http://www.ogf.org/documents/GFD.192.pdf
https://doi.org/10.1109/MISE.2009.5069892
https://doi.org/10.1109/MISE.2009.5069892
https://doi.org/10.1109/MISE.2009.5069892
https://doi.org/10.1109/MISE.2009.5069892
https://doi.org/10.1109/TSC.2013.45
https://www.eclipse.org/modeling/emf/
https://www.jetbrains.com/mps/
https://www.eclipse.org/Xtext/
https://projects.eclipse.org/projects/modeling.mdt.ocl

[39]

[42]

——, “ATL - a model transformation technology.” (), [Online]. Available:
https://wuw.eclipse.org/atl/ (visited on 10/26/2022).

Object Management Group, Meta Object Facility (MOF') 2.0 Query / View
/ Transformation Specification, Version 1.3, Jun. 2016. [Online]. Available:
ttp://www.omg.org/spec/QVT/1.3 (visited on 10/26/2022).

M. Comuzzi, C. Kotsokalis, G. Spanoudakis, and R. Yahyapour, “Estab-
lishing and monitoring slas in complex service based systems,” in IFEFE
International Conference on Web Services, ICWS 2009, Los Angeles, CA,
USA, 6-10 July 2009, IEEE Computer Society, 2009, pp. 783-790. DOI:
10.1109/ICWS.2009.47.

A. Michlmayr, F. Rosenberg, P. Leitner, and S. Dustdar, “Comprehensive
qos monitoring of web services and event-based sla violation detection,” in
Proceedings of the 4th International Workshop on Middleware for Service
Oriented Computing, Association for Computing Machinery, 2009, pp. 1-6.
DOI: 10.1145/1657755.1657756.

F. Raimondi, J. Skene, and W. Emmerich, “Efficient online monitoring of
web-service slas,” in Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2008, Atlanta, Geor-
gia, USA, November 9-14, 2008, M. J. Harrold and G. C. Murphy, Eds.,
ACM, 2008, pp. 170-180. por1: 10.1145/1453101.1453125.

A. Sahai, V. Machiraju, M. Sayal, A. P. A. van Moorsel, and F. Casati, “Au-
tomated SLA monitoring for web services,” in Management Technologies for
E-Commerce and E-Business Applications, 13th IFIP/IEEE International
Workshop on Distributed Systems: Operations and Management, DSOM
2002, Montreal, Canada, October 21-23, 2002, Proceedings, M. Feridun,
P. G. Kropf, and G. Babin, Eds., ser. Lecture Notes in Computer Science,
vol. 2506, Springer, 2002, pp. 28-41. DOI: 10.1007/3-540-36110-3_6.

M. Palacios, J. Garcia-Fanjul, J. Tuya, and C. de la Riva, “A proactive
approach to test service level agreements,” in The Fifth International
Conference on Software Engineering Advances, ICSEA 2010, 22-27 August
2010, Nice, France, J. G. Hall, H. Kaindl, L. Lavazza, G. Buchgeher,
and O. Takaki, Eds., IEEE Computer Society, 2010, pp. 453-458. DOI:
10.1109/ICSEA.2010.77.

M. Di Penta, G. Canfora, G. Esposito, V. Mazza, and M. Bruno, “Search-
based testing of service level agreements,” in Genetic and Evolutionary
Computation Conference, GECCO 2007, Proceedings, London, England,
UK, July 7-11, 2007, H. Lipson, Ed., ACM, 2007, pp. 1090-1097. DOTI:
10.1145/1276958.1277174.

M. A. R. Gonzalez, P. Chronz, K. Lu, et al., “G-SLAM — the anatomy
of the generic SLA manager,” in Service Level Agreements for Cloud
Computing, P. Wieder, J. M. Butler, W. Theilmann, and R. Yahyapour,
Eds., New York, NY: Springer, 2011, pp. 167-186, 1SBN: 978-1-4614-1614-2.
DOI: 10.1007/978-1-4614-1614-2_11.

62

https://www.eclipse.org/atl/
ttp://www.omg.org/spec/QVT/1.3
https://doi.org/10.1109/ICWS.2009.47
https://doi.org/10.1145/1657755.1657756
https://doi.org/10.1145/1453101.1453125
https://doi.org/10.1007/3-540-36110-3_6
https://doi.org/10.1109/ICSEA.2010.77
https://doi.org/10.1145/1276958.1277174
https://doi.org/10.1007/978-1-4614-1614-2_11

[43]

[46]

[47]

J. Happe, W. Theilmann, A. Edmonds, and K. T. Kearney, “A reference
architecture for multi-level SLA management,” in Service Level Agreements
for Cloud Computing, P. Wieder, J. M. Butler, W. Theilmann, and R.
Yahyapour, Eds., New York, NY: Springer, 2011, pp. 13-26, 1SBN: 978-1-
4614-1614-2. por: 10.1007/978-1-4614-1614-2_2.

“The TrustCoM project. deliverable 64: Final TrustCoM reference imple-
mentation and associated tools and user manual,” Jun. 2007.

K. Mahbub and G. Spanoudakis, “Monitoring WS-Agreement s: An event
calculus-based approach,” in Test and Analysis of Web Services, L. Baresi
and E. D. Nitto, Eds., Springer, 2007, pp. 265-306. DOI: 10.1007/978-3-
540-72912-9_10.

G. Spanoudakis and K. Mahbub, “Non-intrusive monitoring of service-
based systems,” Int. J. Cooperative Inf. Syst., vol. 15, no. 3, pp. 325-358,
2006. DOI: 10.1142/50218843006001384.

M. Comuzzi and G. Spanoudakis, “Dynamic set-up of monitoring infras-
tructures for service based systems,” in Proceedings of the 2010 ACM
Symposium on Applied Computing (SAC), Sierre, Switzerland, March 22-
26, 2010, S. Y. Shin, S. Ossowski, M. Schumacher, M. J. Palakal, and C.
Hung, Eds., ACM, 2010, pp. 2414-2421. DOL: 10.1145/1774088.1774591.

63

https://doi.org/10.1007/978-1-4614-1614-2_2
https://doi.org/10.1007/978-3-540-72912-9_10
https://doi.org/10.1007/978-3-540-72912-9_10
https://doi.org/10.1142/S0218843006001384
https://doi.org/10.1145/1774088.1774591

	Introduction
	Motivation
	Problem Statement
	Objectives
	Approach
	Structure of the Report

	Background
	Services
	SLA Definition
	Concepts & Components
	SLA Life Cycle

	State of Practice
	Running Example
	SLA
	RFI
	Interviews
	Literature
	Discussion

	SLA Language Context
	Language Requirements
	Related Work
	Tools
	Design Approach

	SLA Specification Language
	Structure/metamodel
	Tooling
	SLACommon
	SLACore
	SLAActor
	SLARole
	SLAInterface
	SLAExpr
	Code Generation

	SLA Monitoring
	Requirements
	Related Work
	Approach

	Monitoring System Design
	Architecture
	Components
	Prototype

	Verification
	Tests Coverage
	Test Setup
	Requirements Assessment

	Conclusions

