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Abstract—In this paper, a methodology for developing a
human walking model individualized by radar measurements was
proposed. Fundamental parameters encompassed in the model
are the gait parameters and physical dimension parameters.
Empirical validation of the proposed methodology is undertaken,
involving the acquisition of data using a 77-GHz FMCW radar.
The data is collected from three distinct individuals walking
five diverse trajectories with respect to the radar. Moreover, the
gait parameter estimation accuracy is evaluated for the different
walking trajectories of the target. The studied gait parameters are
speed, step length and step frequency. These could be estimated
with a mean error up to 0.077 m/s, 9.3 cm, and 0.128 Hz for all
trajectories, respectively. Nevertheless, these errors diminish to
0.022 m/s, 2.2 cm and 0.03 Hz, respectively when the targets walk
in a straight trajectory aligned with the radar beam. Moreover,
the feasibility of estimating body part dimensions directly from
the radar data is investigated. It was found that only the total
human height could be directly estimated using the employed
hardware. Except for the tallest participant of 2.01 m, the height
could be estimated with a mean absolute error up to 10.9 cm.
Enhanced hardware configurations or the integration of machine
learning techniques may improve the accuracy of body part
dimension estimations.

Index Terms—human gait, FMCW radar, Doppler signatures,
walking model

I. INTRODUCTION

Human gait is a distinctive motion pattern that reflects
unique characteristics of an individual. As a fundamental
aspect of human locomotion, gait serves as a signature of the
movement style and the physical condition of the person. The
development of an accurate individualized model of human
walking, capable of capturing these distinct signatures, holds
great value for a variety of applications.

Significant applications where the gait model finds utility
lie in healthcare and sports, specifically in gait monitoring for
diagnostic and rehabilitative purposes. Medical professionals
can analyze the gait model and its associated parameters to
gain insights into medical conditions. As an example, several
studies have demonstrated that self-selected gait speed and step
length serve as reliable markers for diagnosing Parkinson’s
disease [1]–[3]. On top of that, progression or degression in
the human motor system and other change in gait features
can be analyzed when comparing models captured at different
time instances. Another field of application is found within
computer animation. The use of gait models in computer
animation makes virtual characters more realistic. Human gait
representation is crucial for creating lifelike and appealing

characters in animated films, video games, and virtual reality
(VR) experiences. The integration of an individualized gait
model into animation enables persons to incorporate their own
unique walking style into their virtual twins. Furthermore, hav-
ing an accurate model on the past motion of a person may be
used to predict the future motion. This prediction can be used
in for example smart home systems. By utilizing gait models,
smart home systems can employ predictive gait modelling to
anticipate the needs of residents, such as adjusting lighting or
room temperature based on their anticipated movements.

Gait measurements have been obtained through various
sensing methods, such as making use of vision-based sen-
sors [4] [5]. However, the use of vision-based sensors raises
concerns about privacy, and their performance can be easily
affected by varying light conditions, such as low target il-
lumination due to darkness or smoke. Alternatives utilizing
laser optics, as demonstrated in [6] using lidar devices, can
generate high-resolution point clouds for gait analysis but
come with a higher cost. Another approach involves the use of
motion sensors that make contact with the body, e.g. utilizing
accelerometers and gyroscopes [7]. These motion sensor-based
methods exhibit high measurement accuracies. Nevertheless,
one major drawback of wearables lies in the inconvenience
of wearing the devices, as individuals may forget or feel
uncomfortable with wearing them.

In contrast, radar-based measurements offer several advan-
tages. Radar-based systems are low-cost, accurate, privacy-
insensitive and contactless, making them suitable for gait
monitoring applications. Consequently, there are plenty of
studies that use radar for human gait measurements, e.g. [8]–
[13]. These works have successfully extracted gait parameters
such as step time, step length, cadence and walking speed
using monostatic radars. In the cited studies, the gait param-
eters were determined by exploiting the range and Doppler
information over time. The measurements were done with the
target walking either on a treadmill, or on a straight trajectory
walking inbound or outbound with respect to the radar. The
Doppler signature is well-expressed in these cases, since
high Doppler shifts can be measured. In a realistic scenario,
however, the target is unlikely to always follow a path aligned
with the radar beam. When the location and orientation of the
human relative to the radar changes, the Doppler signatures
are affected as well. Hence, the gait estimation performance
is expected to deteriorate. This has not been investigated in
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earlier work before. Therefore, in contrast to existing work on
gait measurements with radar, the angular dependency on the
accuracy of gait parameter estimation is studied in this work.

In addition to accurately determining gait parameters, an
essential aspect in creating a lifelike human walking model
involves estimating the size of body parts. Several studies exist
in which the human body pose and/or keypoints are estimated,
applying different methods [14]. In [15] and [16], ellipses are
fitted on a 2D input image made by a camera. These ellipses
represent the body parts, scaled and rotated dependent on size
and location of the human. In [17], a depth camera is used
to generate a dense point cloud for body pose and shape
estimation using a mathematical method. The aforementioned
techniques are not feasible for radar, because here detected
data points in space are rather sparse compared to an image.
The sparse nature of the spatial radar scatterers presents a
difficulty when it comes to estimating the size of body parts.
To realize pose estimation from radar point clouds, machine
learning (ML) was utilized in [18]–[20]. Using this technology,
locations of human keypoints could be estimated within a
certain error margin. However, a huge amount of data and time
is required to train a reliable neural network (NN). On top of
that, training the NN requires a large variety of training data
containing lots of different people and environments in order
to make the estimation more versatile. Another rather simple
method to deduce the human height from radar measurements
has been presented before in both [21] and [22]. The gait
parameter was substituted into a formula from [23] which was
determined based on experimental data, in order to estimate
the physical height of the human body. Thus, the presented
method is highly dependent on the accuracy of the gait
parameter estimation. Notably, the validation of the method
in the former paper was limited to a single individual and
was solely evaluated through simulations rather than empirical
measurements. The method was tested using measurements on
multiple targets in the latter paper, and the experiments had
shown the formula can not be used directly for accurate body
height estimation. Furthermore, in [22] a ML technique called
random forest for regression was used to determine the height
using gait parameters, resulting in slightly lower errors than
the earlier method. In the current research, the feasibility of
estimating the human body dimensions directly from the post-
processed radar data is studied. The determination of the body
height parameter is conducted without utilizing any ML tech-
nique. This omits the need for large datasets, time and costs
accompanied by it. Furthermore, the body height is estimated
independently, without any direct empirical reliance on the
gait parameters. Therefore, the estimation is less generalized
compared to earlier work using typical relations between gait
parameters and height. Also, the body dimension estimation
performance will be evaluated for different aspect angles.
The contributions of this work are threefold:

1) Study of the angular dependency on gait parameter
estimation accuracy when utilizing a monostatic radar.

2) Study the feasibility of estimating body part dimensions
from processed radar data and present a method of

estimating the target’s height directly from the radar
data. The height estimation capability is evaluated under
different target trajectories with respect to the radar.

3) Present a novel pipeline for generating an individualized
spatio-temporal human walking model from monostatic
radar measurements.

The remainder of this paper is organized as follows. In the
next section, the related background information is discussed.
Section III gives a description of the presented pipeline. In
section V, results are presented and discussed, as well as the
limitations of this work. Finally, conclusions are drawn and
recommendations for future work are made in section VI.

II. THEORETICAL BACKGROUND

In radars, electromagnetic (EM) waves are emitted by
an antenna, which are potentially reflected by objects in
the environment. After reception of the reflected signal,
the range, velocity and angle of the objects can be deter-
mined. The time needed for the wave to travel from the
transceiver to an object at distance r and back is given
by τ = 2r/c0, with c0 the speed of light. Current highly
accurate millimeter wave (mmWave) sensing devices employ
frequency-modulated continuous-wave (FMCW) signals with
multiple-input multiple-output (MIMO) technology [24]–[26].
An FMCW radar continuously transmits signals called chirps.
The signal frequency of a chirp increases linearly over time
with slope S. The chirp is characterized by the start frequency
fc, the bandwidth B and the chirp duration TC (chirp cycle
time).

A. Range estimation

Before being able to estimate the radar parameters (range,
velocity, angle), the transmitter (TX) and receiver (RX) signals
are mixed in a quadrature mixer and low-pass filtered. The out-
put is an intermediate frequency (IF) signal, which is digitized
by an analog-to-digital converter (ADC). The instantaneous
frequency of the IF signal (also called beat frequency) is equal
to the difference of the instantaneous frequencies of the two
inputs of the mixer:

fIF = fTX(t)− fRX(t) = Sτ =
S2r

c0
. (1)

This frequency is not a function of time and stays constant,
as can be seen in Fig. 1.

When multiple objects are present at distinct distances from
the radar, the range fast-Fourier transform (FFT) can be taken
over the chirp samples (i.e. fast time) to separate them. When
the chirp signal is transformed to the frequency domain, for
every detected object a peak is visible in the spectrum. The
frequency axis, obtained when the IF signal is sampled Ns

times with a sampling frequency of Fs by the ADC, is directly
related to the range information:

rk = k
c0Fs

2SNs
= k

c0

2ST̃c

= k
c0

2B̃
, (2)
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Fig. 1: IF signal derivation from the transmitted and received
chirp signals. (From [25]).

with 0 ≤ k < Ns. T̃c = Ns/Fs is the length of the sampled
IF signal in time, also known as the ADC sampling window
length. B̃ = ST̃c is the sweep bandwidth of the chirp signal.

The FMCW radar entails a resolution under which objects
can not be differentiated anymore. The range resolution,
which represents the minimum distance required to distinguish
between two objects, can be determined by the following
expression:

rres =
c0

2B̃
. (3)

A limit exists on FMCW radar range, called the maximum
unambiguous range. Above this limit, the time duration for the
EM wave to fulfil a roundtrip is longer than the chirp duration.
The radar cannot ascertain whether the echo originates from
the most recently transmitted chirp or the preceding one. This
situation arises when the range exceeds a certain value of

rmax =
c0T̃C

2
. (4)

Note the dynamic range of Equation 2 is between zero and
rmax and does not include negative values. This is because
the complex IF signal has a one-sided positive frequency
spectrum with no power on the negative side of the spectrum.
Therefore, the frequencies Fs/2 < fIF ≤ Fs which are
aliased towards the negative frequencies (between −Fs/2 and
0) can be interpreted as the positive frequencies above the
Nyquist sampling frequency. Thus, the spectrum is extended
to Fs.

B. Velocity estimation

To determine the velocity v of an object, it is necessary
to transmit at least two chirps. A sequence of equally-spaced
chirps is called a chirp frame. The range-FFT may have peaks
in the same location, but with different phases. Depending on
the phase difference between two chirps ∆ϕ = 4πvTc/λ, the
velocity can be determined because the phase changes linearly
due to equal spacing of the chirps in the frame:

v =
λ∆ϕ

4πTC
. (5)

Here, λ is the wavelength of the chirp signal. By performing
the Doppler-FFT over the chirps (i.e. slow-time), the velocities
of different objects can be determined. For two objects at
the same distance but different velocities, the phase between
the received chirps will vary, enabling the differentiation and
separation of the two objects. For a set of Nc chirps spaced
by Tc, the velocity is given by

vl = ωl
λ

4πTc
= l

λ

2NcTc
= l

λ

2Tf
, (6)

with discrete-time angular frequency ωl = 2πl/Nc and index
−Nc/2 ≤ l < Nc/2. Tf = NcTc is the frame duration time.

Analogous to the range resolution, the velocity resolution
is also constrained. The velocity resolution is given by

vres =
λ

2Tf
=

λ

2NcTC
, (7)

Furthermore, a detectable velocity range exists. This is given
by

− λ

4TC
≤ v <

λ

4TC
. (8)

A positive velocity means the object is moving away from
the radar, and a negative velocity indicates the object is
approaching the radar.

C. Angle estimation

When the radar antenna consists of at least two elements,
it becomes feasible to perform direction of arrival (DOA)
estimation. Due to the distinct locations of these elements,
the measured distances from the same reflected signal exhibit
slight differences. These differences arise from the time delay
∆τ = d sin (θ)/c0 associated with the DOA angle θ, where d
represents the antenna spacing. Therefore, the received phase
depends on the element location in space. The phase difference
between two elements is denoted as ∆ϕ. It is assumed the
DOA is equal to the direction of departure (DOD), i.e. the
antenna aperture dimensions are small with respect to the
distance to the reflecting object. In other words, a far-field
assumption is made here, with the measured target residing at a
distance larger than the Fraunhofer distance dFraun = 2D2/λ,
in which D is the maximum target dimension [27]. The DOA
can be computed as

θ = sin−1

(
λ∆ϕ

2πd

)
. (9)

The angular resolution at boresight view with half wavelength
antenna spacing is given by

θres = 2/NR (10)

in unit radians. NR is the number of receive antennas here.
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1) TDM MIMO radar: As shown in Equation 10, the
angular resolution depends on the number of receive antennas.
By increasing this number, the angular resolution is enhanced
accordingly. This improvement can be effectively achieved by
employing MIMO with NT transmit antennas. When utilizing
an NT ×NR MIMO array antenna, a virtual array of NT ×NR

antennas can be synthesized, increasing angular resolution.
For instance, in Fig. 2 the array has four RX elements with
spacing d and two TX elements with spacing 4d. Due to the
difference in travel distances of the signal from each transmit
element, which is affected by the angle θ as 4d sin (θ), eight
distinct channels are created, each with a unique time of flight.
Therefore, the MIMO array can be treated as an eight-element
uniform linear array (ULA).

Fig. 2: Angle estimation using MIMO radar. (From [25]).

The multiple transmit antennas are transmitting the chirp
signal sequentially using time-division multiplexing (TDM).
Within one frame, each TX transmits Nc chirps. The chirp
time duration is extended by a factor NT , leading to an
increased chirp time of Tc,TDM = TcNT . The improved
angular resolution comes at the expense of reduced maximum
velocity because the chirp time increases for the same frame
duration. Alternatively, the velocity resolution is deteriorated
if the chirp time is kept constant, resulting in a higher frame
duration.

2) MVDR beamforming: When the DOA is estimated by
taking the FFT over the spatial samples, the resolution is
constrained by the number of elements. To overcome this lim-
itation and achieve higher resolution, various methods can be
employed including beamforming methods, subspace methods
and parametric methods [28]. In this work, a beamforming
method is adopted because it is sufficiently accurate for the
intended purpose while having a relatively low computa-
tional complexity. Hence, only this method will be explained
hereafter. A beamformer is a spatial filter which combines
weighted element outputs linearly using a weight vector w.
For an array with M elements, the weighted signal is given
by

y(n) =

M∑
m=1

w∗
mxm(n) = wHx(n). (11)

With NC time samples, the antenna observation signal of
element m is given by xm(n) with n = 1, . . . , NC . This signal
represents the slow-time signal (i.e. signal consisting of chirp
samples in a frame), which is assumed to be narrowband.

The narrowband assumption holds if the product of the signal
bandwidth Bs and the maximal travel time ∆T between two
array elements for an impinging plane wave Bs∆T << 1. In
the system being utilized, this condition is met as the obtained
IF signal, which is fed to the ADC, is narrowband. When all
M elements are included, the observation signal is written as
a vector x(n). The power spectrum for angle θ is computed
by

P (θ) =
1

N

N∑
n=1

|y(n)|2 = wH(θ)R̂xw(θ). (12)

The beampattern displays a prominent peak in the spatial
power spectrum, indicating the angular location where the
highest power is concentrated. This corresponds to the di-
rection from which most of the reflected power originates
due to the presence of an object at that specific angle. The
conventional beamformer, also known as the delay-and-sum
beamformer, combines the output of each element coherently
to obtain an enhanced signal. The downside of this method is
the limited resolution when the number of antenna elements is
small. The resolution of the minimum variance distortionless
response (MVDR) beamformer is less limited by the number
of elements, creating a sharp peak at the target DOA [29]. This
method was chosen because it has a higher spatial resolution
than a conventional beamformer. On top of that, contrary
to e.g. the MUSIC algorithm, the number of sources (i.e.
scattering directions) does not have to be known and can vary
arbitrarily. The MVDR beamformer is based on the following
constrained optimization problem:

min wH(θ)R̂xw(θ) (13)

subject to wH(θ)a(θ) = 1, (14)

with a(θ) the steering vector and R̂x the sample correlation
matrix. The output power is minimized (first function), while
ensuring that the signals from the desired direction θ remain
undistorted (second function). So, power from all other direc-
tions is minimized while the beamformer concentrates only in
one direction.

The sample correlation matrix is as follows:

R̂x =
1

N

N∑
n=1

x(n)x(n)H . (15)

The solution of the optimization problem in Equations 13
and 14 gives an expression for the weight vector:

wMVDR(θ) =
R̂−1

x a(θ)

aH(θ)R̂−1
x a(θ)

(16)

The power function is then obtained by substituting Equa-
tion 16 into Equation 12:

PMVDR(θ) =
1

aH(θ)R̂−1
x a(θ)

(17)

It is important to note that a matrix inversion of the sample
correlation matrix is carried out, so this matrix needs to be
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full rank. In other words, the number of temporal samples
must be larger than the number of elements (N > M). The
power function is computed for every range value, such that
a range-azimuth plot is created.

D. Signal model

1) Wavefield description: Due to the far-field assumption,
it is known the wave impinging on the antenna from every
scattering point is a plane wave. The plane wave propagating
and the coordinate system with respect to the array antenna
can be seen in Fig. 3. θ is the azimuth angle, which is the
angle between the x-axis and the orthogonal projection of the
signal vector on the x-y plane. ϕ denotes the elevation angle,
which is the angle between the signal vector and the z-axis.
The Cartesian coordinates of an arbitrary antenna element are
given by r = [x, y, z]. The spatial frequency of the incoming
wave is

k = − ω

c0

cos (θ) sin (ϕ)sin (θ) sin (ϕ)
cos (ϕ)

 . (18)

The spatial frequency is related to the temporal frequency
through ||k||2 = ω2/c20. The steering vector for a wave coming
in on an array of M elements is given by

a(θ, ϕ) =

 e−jk·r1

...
e−jk·rM

 . (19)

This expression for the steering vector can be substituted
into Equation 17 to find the power function of the MVDR
beamformer.

Fig. 3: Coordinate system for impinging plane wave on
antenna elements. (From [28]).

2) Backscattering: The FMCW emits a chirp of finite
length. The signal propagates to the target and its energy is
reflected by the target in K scattering points. Then, the signal
is received by the radar again. If the operating frequency
f0 is high enough (i.e. the wavelength small compared to
target dimensions), the scattering behaviour can be modelled
as a summation of the different scattering responses [30].
The signal model employed in this context [31] provides

the received baseband signal, which can be mathematically
represented as

s(t) =

K∑
k=1

ρk exp

(
j2πf0

2Rk(t)

c0

)
=

K∑
k=1

ρk exp (jΦk(t)),

(20)
with ρk the reflectivity function, Rk the scalar range between
the radar and the scattering point and Φk the phase of the
baseband signal of the scattering point k. The reflectivity
function contains factors like path loss, antenna gain, radar
cross section (RCS), transmit power and other losses like
atmospheric loss and system loss [32]. So, the target is
regarded as a number of point scatterers moving in space
over time. Each scatterer induces a phase delay proportional
to the range and a frequency shift proportional to the scatterer
velocity. The phase of the signal reflected by scatterer k is

Φk(t) = 4πf0Rk(t)/c0. (21)

The Doppler frequency shift induced by a single point
scatterer moving over distance, varying the scalar range Rk

over time, is obtained by taking the time derivative of the
phase:

fD,k = − 1

2π

dΦk(t)

dt
= −2f

c0

d

dt
Rk(t) = −2f

c0
vk(t) = − 2

λ
vk(t),

(22)
in which vk(t) = dRk(t)

dt is the radial velocity of the point
k in the moving object [33]. So, if the range with respect to
the radar stays constant over time, no Doppler shift will be
visible. Contrary, if the object is moving directly towards or
away from the radar, the highest Doppler shift is visible since
the range changes the most over time. A positive Doppler shift
means the target is moving towards the radar, and a negative
Doppler shift indicates the target moves away from the radar.

The unit vector of the radar line of sight (LOS) direction is
given by

n = R0/||R0|| = [cos (θ) sin (ϕ), sin (θ) sin (ϕ), cos (ϕ)]T ,
(23)

with R0 the distance vector from the target to the radar, θ
and ϕ the azimuth and elevation angles in the radar coordinate
system, respectively. || · || denotes the Euclidean norm. When
the object is moving in space over a distance r towards a
direction given by the unit vector nm, the observed micro-
Doppler shift induced by the movement given in Equation 22
can also be written as

fD,k = −2f

c0

(
d

dt
r(t)nm

)T

· n. (24)

So, when the directions of n and nm are either equal or equal
with opposite sign, the observed Doppler shift is maximum.
When the movement unit vector is perpendicular to the radar
LOS direction, the observed Doppler shift is minimum.

A distinct object is characterized by multiple scattering
points. The different velocities of different moving objects
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result in different Doppler signatures, which can be used to
distinguish between them. For example, the lower legs of
a human body have a higher Doppler shift than the torso,
as they move with greater velocity in the direction of the
radar. However, the separation of velocity profiles for different
body parts presents a challenge [34]. This difficulty arises due
to the received signal being a superposition of signals from
multiple body parts, each with different Doppler shifts and
RCSs. Additionally, multipath fading can introduce additional
components to the received signal, making the task even more
complex. Adding to the challenge, the radar can only measure
the radial velocity, making it unable to directly measure the
instantaneous velocity of individual body parts, as illustrated
by Equation 24.

III. PROPOSED PIPELINE

The overall pipeline describing the methodology is illus-
trated in Fig. 4. The FMCW radar acquires measurements
from the human subject. Subsequently, the acquired signal
undergoes post-processing, where various radar processing
techniques are employed, as elaborated in the succeeding
paragraphs. After post-processing, the extracted parameters are
the human height dimension and the gait parameters. These
parameters are then used to individualize the spatio-temporal
walking model. In the present study, only the human height
dimension is estimated; nevertheless, the proposed pipeline
remains applicable when estimating dimensions of multiple
human body parts, such as leg lengths, torso length and width,
and so on.

A. Post-processing pipeline

Post-processing is a crucial part within the overall pipeline.
Following the radar measurement, the raw radar data under-
goes post-processing to extract valuable information. This in-
volves a series of steps, as depicted in Fig. 5. In the subsequent
paragraphs, each block of the post-processing pipeline will be
explained in detail.

1) Radar data representation: The output data from the
ADC is initially recorded in a binary format during the
measurement process. After parsing, the data is represented
comprehensibly in three dimensions. This three-dimensional
representation takes the form of a cube, as depicted in Fig.
6. The first dimension entails the Ns samples of each chirp
IF signal, or fast-time. The second dimension involves the
Nc chirps in one frame, referred to as slow-time. Lastly, the
third dimension represents the NR ×NT virtual receivers. As
previously mentioned in Section II, the three dimensions can
be converted to range, Doppler and angle, respectively.

2) Static clutter removal: The radar system may encounter
undesired echoes, referred to as clutter, which arise from
contributions of objects other than the target. To ensure that
only the behavior of the target is prominently visible in the
acquired data, it is crucial to minimize the effects of clutter.
Static clutter from direct reflections from surfaces or objects
such as walls and furniture have zero velocity and are therefore
described by a DC component in the Doppler-FFT plot. A

straightforward yet effective approach to eliminate this DC
component is by subtracting the average value from the signal
values [34]. The average signal value over slow-time in a
single frame is computed and subtracted from the received
signal in the frame. The number of chirps is given by Nc and
the signal is given by y[n]. The computation of the averaged
signal is as follows:

ŷ(n) = y(n)− 1

Nc

Nc∑
n=1

y(n). (25)

3) Range-azimuth estimation: Following static clutter re-
moval, the resulting signal mainly consists of contributions
from the non-static target of interest. The next step is to
estimate the range r between the radar and the target. This
is done by taking the FFT over the fast-time samples. The
result is a range spectrum in which the peaks correspond
to the principal wave reflections. Exploiting the signals of
the antenna elements in the horizontal plane (x-y plane), the
azimuth angle θ with respect to the radar can be estimated
using the theory described in Section II-C. After doing this
for every range value, a range-azimuth plot is created. An
example of a range-azimuth plot is shown in Fig. 7. This
plot characterizes the range and azimuth DOA of the reflected
waves. Subsequently, the spherical coordinates are converted
into Cartesian coordinates to obtain the locations in the x-y
plane (top view) for each frame:

x = r cos (θ) (26)
y = r sin (θ) (27)

The center location of the target in the x-y plane is computed
by taking the mean location of the detected target points.

4) Target detection: When the range and azimuth angle
of an object with respect to the radar are determined, its
location can be estimated as described above. The location
is expressed from a top view perspective (i.e. range-azimuth
plot). The range-azimuth plot contains the targets, but is
also likely to be surrounded by clutter and noise which are
time- and position-variant. To effectively distinguish the target
within this dynamic environment, a detector with a variable
threshold is required, adapted to the background noise. The
detector which is used is the constant false alarm rate (CFAR)
detector. It is designed to maintain a predefined false alarm
rate, ensuring that detections above a certain threshold are
labelled as part of potential targets. A false alarm occurs when
an object is erroneously detected as a target when it is, in fact,
clutter or noise. This method is the most common algorithm
for target detection, and it can be readily applied to the range-
azimuth (or range-elevation) plot. Hence, it will be used in this
work. In a cell-averaging constant false alarm rate (CA-CFAR)
detector the noise level is estimated using the samples of Ncells

reference cells surrounding the cell under test (CUT) [35] [36].
The one-dimensional CA-CFAR detector can be seen in Fig.
8. The noise level is the average value of the reference cells.
The scaling factor B is determined using a desired probability
of false alarm PFA:
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Fig. 6: Radar cube. (From [25]).
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Fig. 7: Range-azimuth plot.

B = Ncells(P
−1/Ncells

FA − 1) (28)

The CUT is surrounded by a designated number of guard
cells. These cells are intentionally excluded from the averaging
process to ensure that the noise level remains uninfluenced
by the presence of the target. Without the inclusion of guard
cells, the computed noise level would include some of the
target power as well because the target is usually spread over
multiple cells. Instead of one dimension, the reference cells
and guard cells are taken in two dimensions within this study.
The guard cells encircle the CUT, while the reference cells
surround the guard cells once more. This two-dimensional
arrangement allows for an effective estimation of the noise
level while minimizing the impact of the target’s signal on the
computation.

5) Clustering: The process of identifying potential target
cells is followed by clustering these cells to group together
points belonging to the same object, enabling the differenti-
ation of multiple objects while marking outliers. To achieve
this, the density-based spatial clustering of applications and
noise (DBSCAN) algorithm is utilized [38]. This algorithm is
employed due to its ability to mitigate the presence of non-
static clutter induced by multipath reflections, which could
not be omitted before by the clutter removal. The clustering

Fig. 8: CA-CFAR architecture. (From [37]).

process relies on two input parameters, namely the neighbour
search radius (ϵ) and the minimum number of points to identify
a core point (MinPts). The algorithm starts with an arbitrary
point p and finds all points within reach with respect to
ϵ and MinPts. If the minimum number of points is not
found within the search radius, p is a noise point (outlier).
However, if the condition is met, p is a core point and a cluster
is established. The algorithm iterates over the neighbouring
points and retrieves all core points and border points belonging
to the detected cluster. The algorithm repeats the search for
all points (detected cells) until every point is labelled either
as part of a cluster or as an outlier.

The detected and clustered points in the range-azimuth plot
of Fig. 7 are highlighted in Fig. 9. The main cluster depicted in
green at the center represents the target’s location, containing
P detected points, each characterized by unique values for r
and θ. The smaller cluster on the right (colored in blue with red
outliers) corresponds to clutter and is neglected automatically
by the algorithm as it does not contain relevant information
on the target of interest. This is done knowing only a single
target resides in the room, corresponding to the bigger cluster.

After applying the DBSCAN algorithm to the points de-
tected by CFAR, it is utilized once again on the center
locations of the target. The center locations were obtained by
taking the mean in both the x and y direction (i.e. dimensions
of x-y plane shown in Fig. 3), representing the trajectory
samples over the time frames. The clustering operation of
the center locations makes sure (non-static) clutter is not part
of the target trajectory and can be ignored. Furthermore, if
a situation occurs in which multiple targets are present in
the scene, these targets can be separated when they are not
in proximity of each other. Nevertheless, this research only
focuses on single targets, hence this situation is not taken into
account.

6) Trajectory filtering: From the previous steps, the tra-
jectory samples (center locations) of the target are obtained.
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Fig. 9: Detected and clustered points in the range-azimuth plot
of Fig. 7.

However, these samples may not all be accurately representing
the torso location of the human due to measurement uncer-
tainty. To make the temporal estimates more robust, filtering
is applied to the system state xn, which contains both the
location (xn, yn) and velocity (ẋn, ẏn) of the target in two
dimensions:

xn =
[
xn ẋn yn ẏn

]T
(29)

First, the future target position is predicted using Newton’s
motion equations, relying on knowledge of the current state.
The applied model assumes the velocity between two adjacent
samples in the trajectory to be constant. This motion model
is applicable because it is presumed the human walks with
approximately the same gait speed during the whole trajectory.
Nonetheless, the actual motion might deviate from the model,
leading to a dynamic model uncertainty known as process
noise. So, a prediction algorithm is required which takes
into account both the measurement noise and the process
noise. Both the measurement noise and the process noise are
assumed to be independent zero-mean Gaussian white noise.
The algorithm used to do this is the linear Kalman filter [39]–
[41]. This filter consists of two parts.

The first part is the time update, in which the human location
for the next frame is predicted by looking forward in time.
This is done by using the state extrapolation equation, with
the motion equations embedded in the state transition matrix
F:

x̂−
n+1 = Fx̂n, (30)

with x̂n the estimated system state vector at time step n and
x̂−
n+1 the predicted system state vector for time step n + 1.

Also, the uncertainty of the prediction is provided using the
covariance extrapolation equation:

P−
n+1 = FPnF

T +Q, (31)

with Pn the covariance matrix of the state estimation at time
step n, P−

n+1 the predicted covariance matrix of the next state
estimation and Q = E{wnw

T
n } the process noise matrix,

with w the process noise vector. If no previous iterations are
available, an initial estimate of both x̂0 and P0 has to be made.
This initial estimate of the location and velocity is based on
the non-filtered samples. The initial location guess is taken
to be the first sample of the non-filtered trajectory. The initial
velocity guess is based on the first five non-filtered samples of
the trajectory. To get this initial velocity estimate, the covered
distance after five samples is divided by the elapsed time while
covering this distance.

The second part of the Kalman filter is the measurement
update, which combines this prediction with the actual mea-
surement to correct its location. The first step is to compute
the Kalman gain Kn from the previously predicted covariance
matrix and the observation matrix H:

Kn = P−
nH

T
n

(
HnP

−
nH

T
n +Rn

)−1
, (32)

in which Rn = E{vnv
T
n } is the measurement error co-

variance matrix, with v the measurement noise vector. The
observation matrix relates the measurement vector zn to the
state vector, i.e. zn = Hxn. The next step of the measurement
update is updating the estimate with the measurement:

x̂n = x−
n +K(zn −Hnx̂

−
n ). (33)

Finally, the third and last step of the measurement update is
updating the measurement uncertainty matrix

Pn = (I−KnHn)P
−
n . (34)

After both the time and measurement are updated, the process
is repeated iteratively in order to predict and update the
system state vectors for all time samples. By performing
these iterations, both the measurement and process noise are
reduced.

7) Gait feature time-frequency representation: The subse-
quent step involves performing the Doppler-FFT such that for
multiple time instants, the Doppler spectrum is generated. Due
to target tracking, the range bins in which the target resides
are known. Consequently, relevant range bins are selected to
analyze the Doppler frequency of the body. The advantage of
having knowledge of the target’s range bins is that the Doppler
signatures of objects in other range bins are not visible in
the Doppler spectrum. This results in a more pure Doppler
spectrum in which the main contribution comes from the target
of interest. To illustrate the change of (Doppler) frequency
over time, the spectrogram is frequently used as a method
of visualization. It is computed using the short-time Fourier
transform (STFT). The STFT is a moving window Fourier
transform [42], in which the Fourier transform is taken over the
samples inside the window which consists of a short segment
of a longer time signal. The spectrogram is expressed as

P (fD, t) = |STFT{y(t)}|2 (35)

=

∣∣∣∣∫ y(τ)w(τ − t) exp (−j2πfDτ)dτ

∣∣∣∣2 ,
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in which y(t) is the analyzed signal and w(t) the sliding
window [31]. The time-frequency representation is generated
for the slow-time signal y(t) for every relevant range bin. This
window is taken to be a Hamming window of length 256 with
an overlap length of 194 and a FFT length of 256 as well.
As the body size exceeds the range resolution, it occupies
multiple range bins. Therefore, the spectrograms of multiple
range bins wherein the body potentially resides are summed
to obtain the overall spectrogram of the body. The drawback
of the STFT is the limited resolution trade-off. A shorter time
window creates a better time resolution, but results in a worse
frequency resolution and vice versa.

Upon computing the spectrogram, the subsequent task is to
extract a gait feature from it. Each body part exhibits a distinct
micro-Doppler signature. As previously mentioned in Section
II-D, separating Doppler profiles of different body parts within
the spectrogram is challenging. Despite this, extracting the
Doppler signature of the torso is relatively straightforward.
This is primarily due to the torso’s higher RCS compared to
other body parts (e.g., limbs), resulting in the highest power
Doppler frequency component representation. Additionally,
the radar’s approximate location is at torso height, causing
the majority of the power to be directed towards the torso,
given the directional antenna’s orientation. To obtain the
radial velocity (or Doppler frequency) of the torso from the
measurements, the weighted mean of the spectrogram is taken
[34]. The power-weighted average frequency for time sample
t is given by

ftorso(t) =

∑N
k=1 fD(k) · P (k, t)∑N

k=1 P (k, t)
, (36)

in which N is the size of the FFT during the STFT operation.
So, k represents the kth frequency component.

8) Elevation estimation: Analogous to the range-azimuth
estimation, a range-elevation plot can be generated as well.
Instead of using array elements in the horizontal direction, this
is done using a vertically orientated ULA in the z-direction. As
for the range-azimuth points, CFAR detection is executed on
the range-elevation plot. The z-coordinate of a detected point
with range r and elevation angle ϕ in a coordinate system with
the radar in the origin is given by

z = r cos (ϕ). (37)

B. Individualized walking model

The spatio-temporal walking model used in the pipeline is
the well-known global human walking model presented by
Boulic et al. [23]. This kinematic model is based on exper-
imental biomechanical data. The model describes the spatio-
temporal motions of 12 human body parts, depending on a
normalized gait velocity vg . The gait speed sg is normalized
by the leg length Lleg , which is the distance from the floor
to the thigh in a static pose. The model assumes the walking
motion is periodic, with phases having either double support
of both legs or single support of one of the legs. One full gait
cycle, also called a stride, is illustrated in Fig. 10. The cycle

is expressed by the relative time is a value between zero and
one and is given by

trel,l ≡ tfg + ϕg (mod 1) (38)

and
trel,r ≡ tfg + ϕg + 0.5 (mod 1), (39)

for the left limbs and the right limbs, respectively. Here, t is
the time instant, fg the step frequency and ϕg the cycle phase.
The phase is a value between zero and one, hence the modulo
1 included in the formula. Note the relative time of the limbs
on the right side of the body has an offset of 0.5 compared to
the left side, corresponding to half a gait cycle.

Fig. 10: Human walking gait cycle. (From [31]).

Positions of the body parts are computed relative to a human
reference point. This is a point in the human body which
has a certain translation and rotation with respect to the radar
position. Translations and rotations of body parts are described
as a function of the velocity and the relative cycle time.
The rotations and translations with respect to the body can
be seen in Fig. 11. Translations include vertical TV , lateral
TL and horizontal TH translations of the body around the
human reference point. Rotations include forward/backward
ϕFB , left/right ϕLR and torsion ϕTO rotations of the body
around the human reference point. The whole body also has a
certain thorax angle ϕT , representing the direction in which the
human is moving. Furthermore, rotations of joints on the left
and right side of the body are described. These joint rotations
include flexing at the hip with angle ϕH , knee with angle ϕK ,
ankle with angle ϕA, shoulder with angle ϕS and elbow with
angle ϕE . For example, the rotation of the shoulder in degrees
is given by

ϕS(trel, vg) = −3− 9.88vg (0.5 + cos (2πtrel)) . (40)

For all expressions of the rotations and translations of the body
joints, the reader is referred to the original paper by Boulic
et al. The human walking model was realized from scratch in
MATLAB using the described expressions. An image of the
skeleton of a walking human representing the model can be
seen in Fig. 12, in which the 12 body parts are visible. The
body parts are listed in Table I, together with their default
length. Note the head is modelled as a sphere. The default
dimensions are based on the anthropometric data described
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in [43]. These sizes can be scaled using parameters extracted
from the radar measurement data. In this work, this is done
using the total human height as a scalar.

Fig. 11: Human with twelve body parts and its rotations and
translations. (From [31]).

Fig. 12: Human model figure.

The general walking model is individualized using the gait
parameters, the height parameter and the cycle phase. These
are determined as described below.

1) Gait parameter estimation: Biomechanical walking pa-
rameters are extracted using information from both the esti-
mated target trajectory and the micro-Doppler signature of the
torso. The two gait parameters which are estimated and fed to

TABLE I: Default model dimensions.

Human element Length [m]
Head 0.30
Torso 0.55
Upper legs 0.40
Lower legs 0.43
Feet 0.25
Upper arms 0.32
Lower arms 0.25

the walking model are the normalized gait speed and the step
frequency (convertible to cadence). Note the step length can
be computed from these two parameters.

As explained before in the post-processing pipeline, the
Kalman-filtered trajectory is expressed by the system state
vector xn for every frame. The system state vector contains
the velocity in both the x and y direction. The gait velocity
for frame n is derived from these values as

sg,n =
√

ẋ2
n + ẏ2n. (41)

Before it is fed to the model, the gait velocity needs to
be normalized to a leg length of one meter such that the
expressions in provided by the model are correct:

vg =
1

Lleg
sg. (42)

The step frequency is directly determined using the torso
Doppler signature obtained from the spectrogram. First, the
moving average is subtracted from this signal such that the DC
component is removed. Then, by taking the FFT of the result-
ing waveform, the step frequency is obtained by determining
the highest peak in the frequency spectrum. Subsequently, the
step length is readily computed using

lg =
vg
fg

. (43)

The walking model assumes a continuous motion. There-
fore, not all combinations of the step frequency and velocity
are realistic. If the parameters do not match to a certain extent,
an unlifelike step length is computed and skidding of the feet
will occur.

2) Human height estimation: The next step is to estimate
the human body height from the radar data. To achieve this, the
detected points in the range-elevation plot are used. A detected
point with range r and elevation ϕ with respect to the radar
is converted to the height h in Cartesian coordinates using

h = z + hr = r cos (ϕ) + hr, (44)

with hr the radar height with respect to the floor. After
this conversion, an arbitrary number of scattering points are
expressed within a certain height range. These points also
include multipath reflections via the floor, the ceiling and the
wall. These contributions are not of interest because these
are not direct reflections from the human body to the radar.
Therefore, these contributions will be omitted before making
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a height estimate. This is done by specifying upper and
lower limits for both the range and the elevation angle, with
r ∈ [Rl, Ru] and ϕ ∈ [Φl,Φu]. These bounds are based on
the estimated ranges of the scattering points in the x-y plane,
obtained from the horizontal radar. For P detected points in
range-azimuth, a range vector rp,az ∈ RP×1 and azimuth
angle vector θp ∈ RP×1 can be constructed which describe
the detected points. The limits for the points in range-elevation
are then given by

Rl = min{rp,az} − 0.1, (45)

Ru = max{
√
r2p,az + (2.6− hr)2}, (46)

Φl = 90◦ − sin−1(−hr/Ru), (47)

Φu = 90◦ − sin−1((2.6− hr)/Ru). (48)

The factor of 0.1 m in equation 45 is included to account for
the distance between the two radars and for possible errors in
range estimation. The maximum height which can be estimated
is approximately 2.6 m, as shown in equation 46. This value is
chosen because people are generally shorter than this length.

Due to the target’s motion, the measured DOA ϕ of the
backscattered EM waves exhibits fluctuations. These angle
variations arise from phase changes caused by the target’s
movement [44] [27]. As previously discussed, the target com-
prises multiple scattering points, each with changing aspect an-
gles, leading to fluctuations in the relative amplitude and phase
of the received echoes at the radar receiver. Consequently, the
amplitude and phase of the signals received by the antenna
also experience fluctuations. As a result, the signal power of
some scatterers may be too low to be detected by CFAR,
and the estimated DOAs may contain glint noise components,
resulting in inconsistent values across different frames. Due to
these uncertainties, it is not always expected that the maximum
value of the height corresponds to the actual human height.
In some frames, the maximum value may be too high, while
in others, it may be too low. To obtain a reliable estimate,
the height is determined based on the maximum height values
from multiple frames. Firstly, the height maximum of each
frame is calculated. Subsequently, a moving average of these
maxima over 10 frames is computed. The highest value of
this moving average is taken as the estimate of the human
height. The default dimensions in Table I are then scaled using
the estimated human height to achieve a more accurate model
representing the target’s true physical dimensions.

3) Cycle phase estimation: The final component of the
methodology involves estimating the cycle phase ϕg , which
attains values between zero and one. This parameter is de-
termined through a method based on [45]. At this stage of
the pipeline, a model can be constructed with an arbitrary
value of trel by selecting different values of ϕg , as indicated
by equation 38. The model encompasses the trajectory, gait
parameters, and human size parameters. Utilizing the model,
the observed Doppler frequency can be computed over time
using equation 22, given that the body parts’ movements
in 3D space are known with respect to the radar. These

movements are described by the generated spatio-temporal
model, enabling to determine the expressions for the micro-
Doppler signatures of all body parts. The scattering point of
a body part is taken to be in its center. Subsequently, the
Doppler frequency of the torso, as simulated by the model
fD,sim(t), is fitted to the Doppler frequency of the torso
obtained from measurements fD,meas(t). A fit function is
generated, computing the mean squared absolute error between
the measured and simulated Doppler frequencies over time
with T time samples. Then, the best value for ϕg is selected
corresponding to the minimum value of the fit function. This
is described mathematically as

ϕg,fit = argmin
1

T

∑
|fD,meas(t)− fD,sim(t, ϕg)|2. (49)

IV. MEASUREMENT APPROACH

A. Measurement scenario

Measurements were conducted to evaluate the performance
of the presented pipeline. The measurement scenario is illus-
trated in Fig. 13. In the actual setup shown in Fig. 14, the
trajectories were marked on the floor using tape, with blue
tape indicating distances of 0.5 m. The radar was positioned
on a table at a height of 1 meter. Three volunteers participated
in the experiment, walking along five different predetermined
trajectories. Each trajectory had a distinct angle with respect
to the antenna beam. The volunteers moved outward with
respect to the radar and repeated this motion five times for each
angle, walking at their self-chosen pace, step length, and step
frequency. Upon reaching the end point, the target remained
stationary until the radar measurement was completed. The
walking angles indicated in Fig. 13 refer to the angles with
respect to the y-axis, representing the broadside beam direction
of the radar. However, the aspect angle varies depending on
the human’s location in relation to the radar. The aspect angle
denotes the angle between the vector from the radar to the
target and the vector in the direction of the target’s movement.
For each trajectory, the aspect angles are depicted as a function
of the covered distance in Fig. 15.

B. Equipment and experimental setup

The measurements were performed using two Texas
Instruments (TI) mmWave radars (two IWR1443 with
IWR1443BOOST EVM board) [46]. Each MIMO radar con-
sists of 2 TX elements and 4 RX elements, realizing two
virtual ULAs, each of 8 elements. One boards is solely used
for azimuth estimation, while the other is solely used for
elevation estimation. Both boards operate simultaneously, with
the total available bandwidth divided over the two boards.
The radar boards are aligned and connected rigidly using two
metal plates, as depicted in Fig. 16. The vertical displacement
between the antennas of the two boards is 7.2 cm. Having two
boards, from which one is 90◦ tilted with respect to the other,
allows the target to be measured in both azimuth and elevation
with a good angular resolution. This comes at the cost of an
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Fig. 13: Measurement scenario.

Fig. 14: Realized setup.

increase in hardware and an increase of captured data which
needs to be stored.

The chirp emitted by the TI radar board and its configuration
parameters is visualized in Fig. 17. The chirp is configured
using the programmed parameters in Table II. The chirp
configuration results in the properties listed in Table III.
Several design choices were considered while configuring the
chirp. The range resolution should be maximized, such that the
human body scatterer locations can be localized as accurate as
possible. Therefore, the sweep bandwidth should be as high
as possible. In order to realize this, the available bandwidth
should be divided efficiently over the two boards. The two
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Fig. 16: Radar boards setup.

radars used different start frequencies to prevent interference.
The frequency separation (500 MHz) is high enough to not
interfere with each other. Using Equation 1, the computed
range corresponding to the intermediate frequency between the
two radar boards is over 3 km, which is much higher than the
maximum unambiguous range. On top of that, such a high IF
will be low-pass filtered after the quadrature mixer. Therefore,
the radars do not interfere with each other. The resulting
sweep bandwidth is 3001.6 MHz, creating a range resolution
of approximately 5 cm with a maximum unambiguous range of
over 10 m. The maximum range is considered sufficient since
the application is indoor, and the dimensions of the room in
which measurements were performed are smaller than 10 m.

A trade-off had to be made between the number of antenna
elements and the velocity parameters. The aim is to measure
the torso velocity of a walking person. Therefore, the maxi-
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mum unambiguous velocity should not be too low, otherwise
the velocity of a fast-walking person cannot be measured. The
chosen chirp parameter results in a maximum unambiguous
velocity of approximately 3.2 m/s. This is enough to capture
the macro-Doppler gait velocity with micro-Doppler velocity
variations of the torso. It is desired to have a virtual array
which is as large as possible, such that the angular resolution is
as good as possible. However, the number of feasible elements
is limited by the velocity parameters due to TDM. Two virtual
ULAs are realized, of which one array is horizontally orien-
tated and the other is vertically orientated, enabling estimation
of the azimuth and elevation angles, respectively. Each board
uses four RX elements and two TX elements, creating a virtual
ULA of eight elements.

The measurement trajectory distance is around 3.5 m, so a
measurement time of 7 seconds was chosen. This is enough to
capture the entire motion on every repetition. The periodicity
is 0.1 seconds, so 70 frames were recorded.

Fig. 17: Chirp diagram and chirps parameters (From [47]).

TABLE II: Programmed chirp parameters.

Parameter Value

Start frequency Radar 1: 77.00 GHz
Radar 2: 77.50 GHz

Frequency slope 23.45 MHz/µs
ADC sampling rate 2 Ms/s
Number of ADC samples 256
Number of chirp loops 255
Idle time 7 µs
ADC valid start time 6.4 µs
Ramp end time 140 µs
Frame periodicity 100 ms
Number of frames 70
Number of RX antennas per radar 4
Number of TX antennas per radar 2

Synchronous triggering of the two radar boards is crucial,
such that the frames of data are aligned. The two radar boards
are controlled by a Cmod S7 FPGA board [48]. In order to
trigger a frame on the IWR1443, the FPGA gives a pulse
to a specific pin. The active frame time matches the frame
periodicity of the chirp configuration, and the active trigger
time is chosen to be at least 25 ns, as indicated in the user’s
guide of the device [46]. The trigger moment of the two
boards should match exactly, such that no synchronization
errors occur. Therefore, the physical length of trigger signal
wiring is taken to be equal for both. The two radar boards
are each connected to a PC using several provided cables.

TABLE III: Calculated chirp parameters.

Parameter Value
Maximum unambiguous range 10.235 m
Range resolution 0.050 m
Maximum unambiguous velocity 3.243 m/s
Velocity resolution 0.025 m/s
Azimuth angular resolution 14.3◦

Elevation angular resolution 14.3◦

Sampling window length (chirp time) 128 µs
Maximum beat frequency 1.6 MHz
Radar cube size 2040 kB
Valid sweep bandwidth 3001.6 MHz

End frequency Radar 1: 80.28 GHz
Radar 2: 80.78 GHz

Capturing and saving measurement data is done using TI’s
mmWave Studio software.

C. Groundtruth capturing

A groundtruth of the gait parameters is required to validate
the measurements. The groundtruth data of the step length
was created by fastening an erasable marker on the shoe of
the volunteer, leaving a dot on the ground after every step.
After walking the designated trajectories, the stride lengths
(i.e. distance between consecutive dots) were measured
using a measuring tape. To measure the distance, the dots
were projected onto the straight white trajectory line, and
the distance from the starting point towards the projected
point was measured. By measuring in this manner, the step
width is omitted from the measurement, and the distance
solely consists of the step length. The marked dots have a
certain mean and standard deviation (SD) with respect to the
initial location of the individual (starting point of trajectory).
Consequently, the step lengths can be described by a mean
and standard deviation. Moreover, the groundtruth of the step
frequency was captured using the inertial measurement unit
(IMU) of a smartphone, which was attached to the ankle of
the volunteer. The smartphone device is an OnePlus 8T, which
contains a Bosch BMI260 series IMU [49], using a sampling
rate of 200 S/s. The IMU measures the linear acceleration
of the ankle, from which its frequency corresponds to the
step frequency. Again, there is a certain variability and mean
over the five repetitions in which the step frequency will be
expressed. The ground truth velocity was computed by taking
the product of the frequency and the step length (Eq. 43).
For the step lengths the mean and variability is known, but
no information was saved on which dot belongs to which
repetition. Therefore, the standard deviations of the ground
truth velocities could not be computed. Thus, the gait velocity
will only be expressed by a mean value.

The groundtruth properties of the three volunteers are listed
in Table IV. The distribution of the parameter values is
assumed to be normal. Person 1 has a similar step length
compared to person 2, but with a slightly lower total standard
deviation. Person 3 has a significantly longer step length.
Furthermore, person 1 and person 3 have comparable mean
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TABLE IV: Ground truth parameters of the volunteers.

Person Trajectory Velocity mean [m/s] Step frequency
mean ± SD [Hz]

Step length
mean ± SD [cm]

1 1 0.779 1.462 ± 0.061 53.300 ± 4.735
2 0.840 1.464 ± 0.020 57.380 ± 2.693
3 0.885 1.520 ± 0.022 58.187 ± 1.620
4 0.832 1.498 ± 0.023 55.510 ± 2.150
5 0.816 1.554 ± 0.025 52.520 ± 2.356
Average of 5
trajectories 0.830 1.501 ± 0.046 53.380 ± 3.603

2 1 0.990 1.917 ± 0.049 51.627 ± 3.729
2 1.029 1.946 ± 0.024 52.857 ± 3.480
3 1.074 1.965 ± 0.025 54.643 ± 4.277
4 1.036 1.922 ± 0.024 53.910 ± 4.708
5 1.018 1.905 ± 0.019 53.443 ± 2.605
Average of 5
trajectories 1.029 1.931 ± 0.035 53.296 ± 5.303

3 1 0.984 1.432 ± 0.070 68.710 ± 2.950
2 1.030 1.511 ± 0.052 68.175 ± 4.274
3 1.050 1.579 ± 0.026 66.520 ± 2.148
4 1.074 1.613 ± 0.035 66.600 ± 2.137
5 1.129 1.630 ± 0.030 69.245 ± 3.329
Average of 5
trajectories 1.056 1.558 ± 0.082 67.850 ± 4.227

step frequencies, with person 3 having almost double the total
standard deviation in step frequency. Person 2 walks with a
higher cadence compared to the others. The average speeds
of person 2 and person 3 are similar, while person 1 walks
slower. The groundtruth heights of the volunteers are 1.82 m,
1.61 m and 2.01 m, respectively.

V. RESULTS AND DISCUSSION

A. Experimental pipeline validation

First, a validation process is conducted to ensure the
functionality of various crucial components within the
proposed pipeline. These components are the trajectory
estimation, step frequency estimation, height estimation and
the estimation of the cycle phase.

1) Trajectory estimation: Fig. 18 illustrates five instances
of localization samples before and after Kalman filtering
for various walking angles. The observed positions of the
trajectories are prone to errors, but the implementation of
the Kalman filter reduces these errors, resulting in continuous
trajectories without abrupt outliers. It should be noted that only
a fraction of the initial trajectory was extracted, excluding the
acceleration and deceleration phases. The resultant trajectories
align closely with the expected walking paths (indicated by
striped lines), validating the goal of the approach. The filtered
trajectory still has a certain deviation from the straight line.
Note that the participants do not precisely follow the striped
line either, since it was an indicative line to follow rather than
a strict trajectory. It is impossible to walk straightly without
having minor deviations from the line.

2) Step frequency estimation: For the frequency estimation,
the initial step involved computing the spectrogram of the ex-
tracted trajectory, from which the step frequency was then es-
timated by examining this Doppler signature. Fig. 19 displays
the spectrograms for various measurements taken at different
angles, along with the corresponding Fourier transforms of
the Doppler signatures. Also, a spectrogram without clutter
removal is added and shown in Fig. 19a. The spectrograms
with clutter removal show low backscattering at zero Doppler
frequency even though there were multiple cluttering objects
in the room, such as tables and lab equipment. This means the
static clutter removal works, and it is further supported by the
influential zero-Doppler component evident in Fig. 19a, which
impacts the weighted mean.

An observable sinusoidal pattern is evident in the spectro-
grams depicted in Figs. 19b and 19d. This oscillating behavior
represents the cyclic micro-Doppler gait movement, wherein
the body undergoes slight back-and-forth motion, thereby
introducing an additional Doppler shift on top of the macro-
Doppler shift resulting from the individual’s coarse velocity.
The step frequency, as depicted in Figs. 19c and 19e as
the main frequency component, corresponds to the micro-
Doppler frequency of the torso. Notably, when the aspect
angle between the radar and the target is low (approaching
0◦), a distinct Doppler signature is observed due to the
high radial velocity detected by the radar. However, with an
increase in aspect angle, both the radial velocity component
and the Doppler frequency decrease. As shown in Figs. 19f,
19h, and 19j, the spectrograms indicate a weighted mean
approaching the zero Doppler line when the aspect angle
approaches 90◦. Nevertheless, the micro-Doppler frequency
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Fig. 18: Examples of measured trajectories and filtered trajectories of person 1. (a) Trajectory 1, (b) Trajectory 2, (c) Trajectory
3, (d) Trajectory 4 and (e) Trajectory 5.

swing remains present due to the radar beam never being
continuously perpendicular to the movement normal vector. As
such, the step frequency can still be derived from the frequency
spectra displayed in Figs. 19g, 19i, and 19k. As the angle
approaches 90◦ (lower plots), the prominence of the stride
frequency becomes more pronounced, and the step frequency
becomes less noticeable. The stride frequency, which is half
the step frequency, characterizes the frequency of an entire gait
cycle involving a step with the right leg and a step with the
left leg. The frequency of movement in the lateral plane is half
that of the movement frequency observed in the sagittal plane.
Consequently, the spectrogram exhibits lateral plane motion in
contrast to the previous sagittal plane motion.

3) Height estimation: The computation of the heights of
detected points in the range-elevation plot was carried out
following the previously described methodology. Given that
the volunteers exhibit varying body heights, it is expected that
the heights of detected points would also vary accordingly. In
Fig. 20, histograms depicting the body heights of three indi-
viduals walking in trajectory 1 are presented. The histograms
correspond to human height dimensions of 1.82 m, 1.61 m,
and 2.01 m for the three persons, respectively. The lower part
of the histogram does not display any detected points for all
three individuals. This absence of detection is likely attributed
to the fact that the feet have a low RCS and may move out
of the range limits set for detection due to their continuous
motion during walking. Moreover, the limited field of view

(FOV) of the radar in the elevation plane results in lower
received power from the feet. Another property for all three
graphs which stands out is the high backscattering at the radar
height, which is approximately 1.07 m. This is due to the high
RCS of the torso and the antenna gain being the highest at an
elevation angle of 90◦.

The height points corresponding to person 1 are presented
in Fig. 21 as a function of the frame number, where low
frame numbers indicate the beginning of the trajectory and
high frame numbers indicate the end of the trajectory. Fig.
21a displays the outcome for trajectory 1, wherein the human
walks with an aspect angle of 0◦ in front of the radar. At
the start and the end of the trajectory, the number of detected
points on head height is lower compared to the middle part.
The difference in detected points can be attributed to the
limited FOV at the beginning of the trajectory, leading to
decreased backscattering when the target is in close proximity
to the radar. For the end of the trajectory, the low amount of
detected points on head height can be attributed to the lower
backscattering power due to increased path loss. For trajectory
5 (Fig. 21b), the first and last parts of the trajectory show no
detected points at all. The cause of this is again the limited
FOV, but now in the horizontal plane. At the start and end of
the target’s trajectory, the azimuth angle θ for the vertically
orientated array is too high (or too low) to be able to realize
sufficient backscattered power for a successful detection.
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Fig. 19: Spectrograms (a) without and (b,d,f,h,j) with static clutter removal of torso Doppler signatures of person 1. Fourier
transforms of weighted mean of corresponding spectrograms are depicted in (c,e,g,i,k). The figures correspond to measurements
for incrementing angles of 0◦, 22.5◦, 45◦, 67.5◦ and 90◦, respectively.
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(a) (b) (c)

Fig. 20: Examples of histograms of heights aggregated over all
frames for (a) person 1, (b) person 2 and (c) person 3 walking
on trajectory 1.

(a)

10 20 30 40 50 60 70

Frame number

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

z
 [

m
]

Estimated height: 1.79 meter

Moving average of top values

(b)

Fig. 21: Detected points of person 1 and the corresponding
estimated height versus the frames for (a) trajectory 1 and (b)
trajectory 5.

4) Cycle phase estimation: The cycle phase is estimated
after computing the mean squared error between the simulated
and measured Doppler frequencies of the human torso. The
best fit and the measured Doppler frequency are shown in
Fig. 22 for trajectory 1, trajectory 3 and trajectory 5, with
measurements performed on person 1. Across all three trajec-
tories, the measured Doppler frequency exhibits a consistent
temporal behavior when compared to the Doppler frequency
obtained from the fitted simulation. This confirms the ve-
locity, step frequency and cycle phase estimations give a
well-approximated simulated Doppler signature. The achieved
accuracy is considered sufficient for estimating the cycle phase
utilizing the model-fed gait parameters. This claim is based on
the observation that the shapes of the frequency components

of both the simulated and measured Doppler curves remain
consistent across all presented results.

B. Experimental results of performance

1) Gait parameter estimation: The gait parameters were
estimated by applying the proposed algorithm on the exper-
imental data. The computed values were compared to the
ground truth data of the corresponding trajectory, ranging from
number 1 to 5. The resulting estimation errors for velocity, step
frequency and step length are presented in Figs. 23, 24 and
25, respectively.

Fig. 23 shows that the velocity was assessed with an overall
error margin of less than 0.17 m/s for all single repetitions
(red circles). The accuracy of the velocity estimation is not
evidently dependent on the angle. The estimation for persons
1 and 2 was carried out with an overall maximum error of
0.12 m/s. So, person 3 displayed a relatively higher error with
more spread compared to other participants. This is due to the
fact that person 3 has a taller body with longer legs, resulting
in long step lengths. Consequently, this individual was unable
to fit as many steps within a single trajectory as the others
before hitting the wall due to the confined space. As a result,
this person had to end the walk earlier, thus covered a shorter
distance. Due to the reduced covered distance, the accuracy
of velocity estimation was lowered since the performance of
the Kalman filter is dependent upon the number of available
samples. In order words, the distance between acceleration
(start of the trajectory) and deceleration (end of the trajectory)
is shorter for person 3. Observed over five repetitions, the
velocity is estimated with an error lower than 0.077 m/s for
all angles for the three volunteers.

The depicted results in Fig. 24 generally show an increase
in the error of step frequency estimation as the angle relative
to the radar increases. This trend is observed across all three
individuals. For person 1 and 2, the step frequency at angle
0◦, 22.5◦ and 45◦ could be estimated with an error of less
than 0.066 Hz. However, for the last two trajectories which
have higher aspect angles, the step frequency error increases.
This is in line with the results shown in Fig. 19, because
here it is visible that the step frequency component is harder
to derive for higher aspect angles as well. Extreme values
of errors for person 1 and 2 go up to 0.175 Hz and 0.204
Hz, respectively. This shows that for some repetitions, the
spectrogram is changed in such a way that the step frequency
is hard to extract. Nevertheless, the mean error can be reduced
by taking the mean over the five repetitions (blue asterisks),
since the extreme outliers are averaged out. The step frequency
error of person 3 is below 0.063 Hz at an angle of 0◦ or 22.5◦

and increases towards a maximum of 0.177 Hz for higher
aspect angles. Overall, the error shows similar behaviour as a
function of the angle compared to person 1 and 2. However, a
remarkable outlier is visible at the second trajectory (22.5◦).
This error was caused by an inaccurate trajectory estimate
in the x-y plane. Therefore, the selected range bins of the
spectrogram were not the range bins where the target actually
resided. Thus, a part of the spectrogram was generated for
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Fig. 22: Measured and best fit simulated Doppler frequency for (a) trajectory 1, (b) trajectory 3 and (c) trajectory 5.
Measurements performed on person 1.

0 22.5 45 67.5 90

angle [deg]

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

E
rr

o
r 

[m
/s

]

Velocity Person 1

Mean error over 5 repetitions

Error of single repetitions

(a)

0 22.5 45 67.5 90

angle [deg]

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

E
rr

o
r 

[m
/s

]

Velocity Person 2

Mean error over 5 repetitions

Error of single repetitions

(b)

0 22.5 45 67.5 90

angle [deg]

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

E
rr

o
r 

[m
/s

]

Velocity Person 3

Mean error over 5 repetitions

Error of single repetitions

(c)

Fig. 23: Velocity estimation error values compared to ground truth for (a) person 1, (b) person 2 and (c) person 3.

range bins without any human Doppler signatures, and the
estimated step frequency is inaccurate.

As described in the methodology in section III, the step
length was determined from the radar data by dividing the
gait velocity by the step frequency. Consequently, errors which
appear in these parameters will propagate through to the
estimated step length parameter as well. This effect is visible
in the data shown in Fig. 25. When evaluating the step
length error for the first three trajectories for person 1 and 2,
respectively, the step length error is below 6.2 cm and 5.2 cm
for all repetitions. For the last two walking angles, the errors
in step frequency are relatively high and these errors reappear
in the step length error as well. For these two walking angles,
person 1 and 2 have a maximum error of 9.4 cm and 9.7 cm,
respectively. Moreover, for person 3, the step length errors
are higher compared to the other two individuals. The cause
of this is the relatively high error in both velocity and step
frequency, which again influences the step length estimation.
Only for the angle of 0◦ the error is low because the velocity
and step frequency errors are small here as well. The mean
error of the step length for all three individuals averages out
the outlying errors, making the mean error approach zero. The
mean step length errors are maximally 5.0 cm, 4.3 cm and 9.3
cm, respectively.

Thus, to make the gait estimation more accurate, outliers
with higher errors can be averaged out if the trajectory is
long enough. In order to show this effect, the gait parameters
are estimated over the five measurements instead of over one
measurement. The results are listed in table V. The errors listed
in this table were also plotted in Figs. 23, 24 and 25.

2) Human height estimation: The height of the participants
was estimated using the described method. The results are
shown in Fig. 26. For person 1, the height is estimated
relatively accurately compared to the other persons, especially
at low aspect angles. For this specific individual, most of
the estimated heights have an absolute error below 8.2 cm.
Nevertheless, there are a number of extreme cases (4 out of
25) in which the errors are higher than 14 cm. One possible
explanation for occuring errors is the limited resolution in
both range and angle. The range resolution is 5 cm, while the
angular resolution is 14.3◦. The resolution in the Cartesian
plane depends on the resolution of the polar plane. This
follows from equation 37. With increasing range, the area
of range-angle cells in the Cartesian plane increase. Thus,
resolution is reduced since more points in the plane are
assigned to a single combination of r and ϕ. On top of that, the
target is moving, so the scattering points are not stationary. So,
the elevation angles of the scattering points on top of the head

19



0 22.5 45 67.5 90

angle [deg]

-0.1

0

0.1

0.2

0.3

E
rr

o
r 

[H
z
]

Step frequency Person 1

Mean error over 5 repetitions

Error of single repetitions

(a)

0 22.5 45 67.5 90

angle [deg]

-0.1

0

0.1

0.2

0.3

E
rr

o
r 

[H
z
]

Step frequency Person 2

Mean error over 5 repetitions

Error of single repetitions

(b)

0 22.5 45 67.5 90

angle [deg]

-0.1

0

0.1

0.2

0.3

E
rr

o
r 

[H
z
]

Step frequency Person 3

Mean error over 5 repetitions

Error of single repetitions

(c)

Fig. 24: Step frequency estimation error values compared to ground truth for (a) person 1, (b) person 2 and (c) person 3.

0 22.5 45 67.5 90

angle [deg]

-0.2

-0.1

0

0.1

E
rr

o
r 

[m
]

Step length Person 1

Mean error over 5 repetitions

Error of single repetitions

(a)

0 22.5 45 67.5 90

angle [deg]

-0.2

-0.1

0

0.1

E
rr

o
r 

[m
]

Step length Person 2

Mean error over 5 repetitions

Error of single repetitions

(b)

0 22.5 45 67.5 90

angle [deg]

-0.2

-0.1

0

0.1

E
rr

o
r 

[m
]

Step length Person 3

Mean error over 5 repetitions

Error of single repetitions

(c)

Fig. 25: Step length estimation error values compared to ground truth for (a) person 1, (b) person 2 and (c) person 3.

TABLE V: Mean gait parameter estimation for different angles and persons and errors with respect to ground truth.

Person Trajectory Gait speed
estimation [m/s]

Gait speed
error [m/s]

Step frequency
estimation [Hz]

Step frequency
error [Hz]

Step length
estimation [m]

Step length
error [m]

1 1 0.7990 0.0196 1.4921 0.0298 0.5364 0.0034
2 0.8172 -0.0230 1.4936 0.0294 0.5469 -0.0269
3 0.8427 -0.0419 1.5122 -0.0081 0.5572 -0.0247
4 0.8200 -0.0116 1.6226 0.1245 0.5049 -0.0502
5 0.7872 -0.0290 1.6387 0.0847 0.4804 -0.0448

2 1 0.9897 -0.0097 1.9171 0.0088 0.5087 -0.0076
2 1.0287 0.0056 1.9462 -0.0223 0.5377 0.0091
3 1.0739 -0.0446 1.9653 0.0168 0.5196 -0.0269
4 1.0361 -0.0149 1.9218 -0.0301 0.5404 0.0013
5 1.0179 -0.0518 1.9047 0.0634 0.4917 -0.0428

3 1 0.9619 -0.0222 1.4459 0.0137 0.6651 -0.0220
2 0.9528 -0.0771 1.5383 0.0276 0.6230 -0.0588
3 0.9761 -0.0742 1.7070 0.1280 0.5724 -0.0928
4 1.0379 -0.0366 1.7210 0.1138 0.6013 -0.0647
5 1.1170 -0.0117 1.7231 0.0931 0.6493 -0.0432
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Fig. 26: Height estimations for (a) person 1, (b) person 2 and (c) person 3.

are not constant over time. Angular noise is introduced due to
the changing phases of the echoes arriving at the receiver.

For person 2, the height is generally overestimated, espe-
cially at low aspect angles. The errors are maximally 15.9,
8.1, 6.9, 3.4 and 2.8 cm for the five angle values, respectively.
So, there is an evident decline in height estimation error when
the angle gets higher. The amount of points detected at and
above head height is higher for low aspect angles. A possible
explanation for this might be the increased backscattering
power due to a higher RCS because of the shape of the head.
Then, the CFAR detector detects more points around the actual
scattering center. Compared to the other two persons, person
2 has a lower incident angle, which enhances this effect.

The height estimation of person 3 is always underestimated,
with errors appearing to be even more than 20 cm for multiple
measurement repetitions. There are a number of possible
reasons for having such high error values. To start with, the
FOV of the vertically-orientated radar is limited to a 3dB-
beamwidth of ±28 in the elevation plane [46]. So, the received
power from high elevation angles corresponding to the location
of the head is relatively low compared to the power received
from boresight. Moreover, the RCS of the top of the head is
low due to its shape. Incoming waves will be reflected to many
different directions other than the direction where the radar
is located due to diffuse reflection. Also, the backscattering
from the head is low due to a high angle of incidence on the
head. Contrary, the torso has a low angle of incidence and a
smoother surface, in which the waves are reflected specularly
to the radar.

The mean absolute error (MAE) of the height estimation
is shown in Fig. 27. Evidently, the overall height estimation
accuracy of person 3 is the worst. As explained before, this
volunteer is too tall for the system to make an accurate height
estimate for a number of reasons. Person 1 and person 2 show
similar accuracy in MAE. However, for person 1 the error is
higher for high angles, while for person 2 the error is higher
for low aspect angles. Overall, the MAE for persons 1 and 2
stays below 10.9 cm.
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Fig. 27: Mean absolute error of height estimation.

C. Comparison with current state-of-the-art

To evaluate the outcome of this research, it is compared to
previous (state-of-the-art) papers. The performance of the gait
parameter estimation algorithm in this work is compared to a
number of references is listed in Table VI. The listed parame-
ters are the mean parameters taken over a certain measurement
time (and covered distance) which were reported in the rel-
evant work. The current work has errors in gait parameters
which are in the same order of magnitude as previous work.
It outperforms previous work on velocity parameter estimation
when the target is walking in a straight trajectory towards the
radar. The step length and step frequency errors in [8] are
relatively low compared to other work, including this research.
This is because the measurement scenario differs a lot from
the scenario from the others; the target was walking on a
treadmill for two consecutive minutes. Therefore, a lot of data
is captured because the walk takes a long time. If the mean gait
parameters are then computed, errors will be averaged out over
an extensive time and the results approach the ground truth
values. In other works, the walking distance varied between
5.2 and 10 m, which is much shorter, resulting in less accurate
estimates. In the current research, the walking distance was
short as well (approximately 3 m without acceleration and
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deceleration phases). The error values in the table are based
on 5 repetitions, so the total walking distance is about 15 m.
No previous work exists in which the gait parameter estimation
performance is analyzed as a function of the aspect angle. So,
the error for high aspect angles in this research can not be
compared to similar outcomes of previous work. Nevertheless,
it can be noted the velocity and step frequency for trajectories
with high aspect angles is deteriorated with respect to low
aspect angles. However, the gait parameters could be estimated
with similar accuracy compared to results in earlier work for
an aspect angle of 0◦.

Previous work on body dimension estimation or human
keypoint estimation mainly rely on the use of ML techniques.
The performance of the gait parameter estimation algorithm
in this work is compared to a number of references listed in
Table VII. A NN is a much more powerful tool compared to
the technique used in this work. It has lower height estimation
errors compared to the approach presented here. However, it
takes a lot of training data comprising different persons and
environments. The method presented here can be applied to
arbitrary radar data, but requires refinement. Its performance
can be improved if both the FOV and the resolution of
the radar are increased. Moreover, the method based on the
empirical formula stated in [22] is far from accurate and should
not be used.

D. Limitations

This study has several limitations. The first limitation is
the number of participants, repetitions and trajectories. If
measurements had been performed on a larger amount of
people with more repetitions, more data would be available.
This would have a positive effect on the reliability of the
research. Now, conclusions have to be drawn based on only
three participants performing three repetitions for five different
trajectories. Additional participants and trajectories would be
useful to verify the pipeline with more supportive data. Greater
participant variability would lead to a wider range of step
lengths, gait speeds, and body dimension parameters being
introduced. In addition, the current work was limited to
measuring one participant in the room. However, in realistic
scenario’s, multiple people could be present in the room.
Furthermore, if large amounts of data had been captured, this
could have been used to develop and train a NN which could
capture the dimensions of multiple human body part. It should
be stated that an attempt had been made to infer human key
points from radar data using the open-source model proposed
in [20]. However, the model was only trained on two persons
in a fixed environment and the input requires being a point
cloud. Hence, with the data from the current work, no accurate
key point estimations could be made.

Secondly, the room in which the measurements were per-
formed had limited space. Therefore, only a short trajectory
could be measured. On one side, this is realistic since rooms
where the system can potentially be deployed do not always
have to be big. On the other side, the gait estimation accuracy
is limited because the gait is measured for only a short

period of time. A more reliable estimate could be made if
the individual is measured for a long period. This has been
confirmed by earlier work.

Thirdly, the hardware used is limiting the ability to esti-
mate the human body dimensions. The radars used were two
separate FMCW radars, both having a virtual ULA of eight
elements. The radars work independently and are only able
to estimate the angle in one plane (i.e. either azimuth plane
or elevation plane). If a more sophisticated virtual array with
more elements had been used, a two-dimensional virtual array
could be realized. For example, if the resources would allow,
this virtual array could have been 8× 8 elements (comparable
to the one used in [19]) instead of two arrays of 8× 1. Then,
the location of the every detected point could be estimated
in both azimuth and elevation because beamforming can be
realized for θ and ϕ instead of only for either one of the two.
Then, a point cloud could have been realized, from which
the dimensions of more human body parts can be potentially
estimated instead of just the height.

Another limitation is the method of computing the step
length from the radar data and the velocity from the
groundtruth data. This was both done by using the relation in
Eq. 43. Consequently, the computed gait parameter is depen-
dent on the other two gait parameters. Therefore, inaccuracies
inherent in the previously obtained parameters propagate into
the computed parameter itself. This decreases the precision
of the estimated step length and reduces the reliability of the
established ground truth velocity.

Moreover, the method of measuring the ground truth step
length does not enable to link the marked dots to a specific
repetition. The step lengths were measured only after the five
consecutive repetitions were performed. Therefore, the dots
were not marked with the repetition number and could not
be retraced. The step lengths could only be expressed using
a mean value with a certain variation, instead of the absolute
values between the marked steps.

VI. CONCLUSION

This research proposes a novel pipeline for developing
an individualized human gait model utilizing a monostatic
FMCW radar. The methodology was validated and essential
components of the pipeline were verified. Furthermore, the
study explored the gait parameter estimation error under
varying target locations and orientations concerning the
radar. Leveraging experimental data from three individuals
walking in five different trajectories, the study successfully
estimated three gait parameters. However, it was observed
that the accuracy of gait parameter estimation diminishes
with an increase of the aspect angle of the target. This is
because the Doppler signature is less expressed for higher
aspect angles due to the radar beam and the vector of the
movement direction approaching orthogonality. Furthermore,
single repetitions exhibited higher parameter errors compared
to the average over five repetitions. Consequently, enhancing
the trajectory length or increasing the number of repetitions
would be advantageous to improve parameter estimation
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TABLE VI: Comparison of gait parameter estimation in this work to previous work.

Reference Scenario Hardware Extracted gait
parameters

Mean reported
velocity error

Mean reported
step length error

Mean reported step
frequency error

[8]

Walking on treadmill
for two consecutive
mintues with radar at
knee height

two CW
radars (24 GHz)
with one radar
at the front and one
in the back

11 parameters among
which step time,
cadence and
step length

- up to 0.80 cm up to 6.33e-4

[9]

Walking back and forth
twice in a 10m-long
hallway with radar at
chest height

single FMCW
radar (77 GHz)

Gait speed, step length,
step count, step time up to 0.0435 m/s up to 4.82 cm -

[10]

Walking straightly for
5.2 m towards radar with
one radar on ground and
one at torso height

two pulse-Doppler
radars (5.8 GHz)

Foot velocity, torso
velocity, step time

from foot radar:
0.144 m/s
from torso radar:
0.092 m/s

-

from foot radar:
0.000 Hz
from torso radar:
0.124 Hz

[11]
Walking back and forth 7 m
in a straight line in front of
two types of radars

one pulse-Doppler
radar (10 GHz) and
one FMCW
radar (24 GHz)

Gait speed

Pulse-Doppler:
0.14 m/s
FMCW:
0.06 m/s

- -

[12]
Walking back and forth 6 m
dirctly to radar at torso
height

one FMCW radar
(77 GHz) Step time - - Up to 0.140 Hz

This work

Walking for 3.5 m for
five times in different
trajectories with respect to
radar at torso height

two co-located
FMCW radars
(77 GHz)

Step frequency, gait
velocity, step length

Straight trajectory
towards radar:
up to 0.022 m/s
Maximum for all
trajectories:
0.077 m/s

Straight trajectory
towards radar:
up to 2.2 cm
Maximum for all
trajectories:
up to 9.3 cm

Straight trajectory
towards radar:
up to 0.030 Hz
Maximum for all
trajectories:
up to 0.128 Hz

TABLE VII: Comparison of human height parameter estimation in this work to previous work.

Reference Hardware Goal Technique utilized Mean absolute error

[18] One FMCW radar,
12 virtual elements

Classify gait patterns and
estimate 3D keypoint coordinates

convolutional neural network (CNN), trained
with walking data of 74 persons,
3 minutes per person

Head keypoint:
7.10 cm

[19] One FMCW radar,
64 virtual elements

Infer human skeletons from
RF signals

CNN, trained with 12 hours
of activity data in 22 envionments

Head keypoint:
4.8 cm

[20]
Two FMCW radars,
both 12 virtual
elements

Skeletal pose estimation
NN, trained with 2 persons
performing different actions in the
same environment

Overall: 1.8 cm

[22] Not mentioned Motion classification and height
estimation of pedestrians

Either empirical formula
or random forest

Height:
Empirical formula 19.4 cm
Random forest 6.3 cm

This work

Two co-located
FMCW radars,
both 8 virtual
elements

Human height estimation Maximum height values over frames Height: up to 10.9 cm
for persons 1 and 2

performance. Compared to previous work employing similar
scenarios, this work has similar accuracy in velocity,
step length and step frequency. Additionally, the research
examined the feasibility of estimating body part dimensions
from processed radar data. Using the hardware employed
in this study, the only dimensional parameter that could be
estimated was the total human height. The sparse nature and
the noise of the detected points with noise make it hard to
determine the height accurately. The performance of body
part dimension estimation could be potentially enhanced by
increasing the number of antenna elements, the FOV, and the
resolution in range and angle. Nevertheless, this improvement
is constrained by the limited available resources (time,
frequency, and space) that must be carefully considered.
Compared to earlier work on human keypoint estimation,
ML techniques have shown to be more accurate than the
technique used in this work.

Several questions arise from this research, warranting future

investigations. First of all, the body part sizes in the model
were scaled based on a single parameter, namely the human
height. For future research, a method should be developed to
extract dimensions for each individual body part. Then, the
physical dimensions of the body parts in the gait model are
more representative because they all will be independently
determined instead of having a certain ratio between them.
Utilizing a NN may be effective, given the promising results
showcased in Table VII. Furthermore, future efforts could be
directed towards creating a more sophisticated walking model.
The current model used in this study, presented in [23], was
derived from experimental data, thereby limiting its level of
individualization in terms of flexing of joints. Nevertheless,
gait is a complex and distinctive human characteristic, with
joint rotational properties that may vary significantly from
person to person. Some individuals might not exhibit the
typical gait due to physical disabilities, resulting in deviating
motions. It would be valuable to have a gait model which is
individualized according to the exact movement of the target,
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instead of having some generalized properties. Another aspect
of the research which demands future investigation is the
hardware and its deployment. The radar setup used in this
study limits the performance of the system in terms of height
estimation. Future research could analyze the influence of the
size of the virtual array and investigate the effects of different
radar deployment heights and tilt angles. This analysis may
lead to improvements in the overall system performance.
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of Parkinson’s disease compared with healthy controls: A systematic
review and meta-analysis,” Scientific reports, vol. 11, no. 1, pp. 1–13,
2021.

[2] L. di Biase, A. Di Santo, M. L. Caminiti, A. De Liso, S. A. Shah,
L. Ricci, and V. Di Lazzaro, “Gait Analysis in Parkinson’s Disease: An
Overview of the Most Accurate Markers for Diagnosis and Symptoms
Monitoring,” Sensors, vol. 20, no. 12, 2020. [Online]. Available:
https://www.mdpi.com/1424-8220/20/12/3529

[3] J. Welzel, D. Wendtland, E. Warmerdam, R. Romijnders, M. Elshehabi,
J. Geritz, D. Berg, C. Hansen, and W. Maetzler, “Step Length Is
a Promising Progression Marker in Parkinson’s Disease,” Sensors,
vol. 21, no. 7, 2021. [Online]. Available: https://www.mdpi.com/1424-
8220/21/7/2292

[4] T. B. Moeslund, A. Hilton, and V. Krüger, “A survey of advances in
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