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Abstract
Sparse Neural Networks (SNNs) have proven themselves to
be an effective method for both the reduction of computa-
tional costs and the improvement of performance in Neural
Networks (NNs). Sparse-to-sparse (STS) training methods
have managed to supersede pruning methods by allowing
an optimal topology to be found during training. Dynamic
Sparse Training (DST) methods like SET have managed to
quadratically reduce the number of parameters, with no de-
crease in accuracy while shortcut connections have demon-
strated their ability to enable deeper and better-performing
networks such as in ResNets and DenseNets. Recent works
have investigated sparsity for shortcut connections and have
demonstrated both improvements in performance and re-
duction in parameter counts over purely sparse sequential
models. In this thesis, we introduce Sparse Parameterized
Shortcut Connections (SPaS), which combines the princi-
ples of sparsity and shortcut connections, and a training
schema, SPaSET, that enables SPaS networks to be trained
dynamically. We apply SPaS to two typical deep learning
architectures, i.e. Multi Layer Perceptrons (MLPs) and Con-
volutional Neural Networks (CNNs), and evaluate these on
computer vision and numerical classification tasks. SPaS
improves information flow within networks and enables fea-
ture reuse. SPaS enables MLPs to be compressed over 25x
without significantly compromising performance, up from
compression rates of 5x on plain MLPs. In CNNs we find
that SPaS improves performance over high-density regions
for similar computational costs, providing up to 5% and 2%
increases over the validation set compared to plain CNNs
and DenseNet respectively.

1 Introduction
Artificial Neural Networks (ANNs) have managed to become
one of the most successful machine learning methods by
achieving state-of-the-art results over a broad range of ap-
plication domains. Nevertheless, ANNs can grow to a level
of parameters that exceed the capacity of commodity hard-
ware, reaching as high as 175 billion parameters in GPT-3 [5]
or even 1 trillion as speculated in GPT-4 [3]. Consequently,
there is a need to develop methods to compress these state-
of-the-art ANN models, while retaining their optimal perfor-
mance. In this context, sparsification presents a promising
approach to parameter reduction.

In 1989, it was demonstrated that densely trained ANNs
can be pruned to a significant extent without compromising
their performance [22]. In fact, it was observed that prun-
ing ANNs can actually enhance their performance while
reducing the amount parameters up to a factor of four. This
spawned a class of methods called dense-to-sparse (DTS)
training, which entails iteratively training and pruning a net-
work. In 2018, the Lottery Ticket Hypothesis was introduced
by Frankle et al. [10], which states that randomly-initialized
networks contain subnetworks (winning tickets) that, when
trained in isolation, can compete with the performance of
the original network.
Despite the efficacy of DTS training, it presents certain

limitations. Specifically, the largest trainable sparse model is
confined by the size of the largest trainable dense model, lim-
iting the potential size of sparse models. Additionally, while
the final sparse model results in computational gains at the
inferencing stage, little to no computational gains are made
at the training stage. To address these limitations, sparse-to-
sparse (STS) training was proposed by Mocanu et al. [31].
In STS, contrary to DTS, networks are already sparse at ini-
tialization. These initial methods, however, are based on a
static topology, which greatly limits the network’s express-
ibility, as determining the optimal topology before training
is not trivial. As a result, static STS methods exhibit weaker
performance in comparison to their dense counterparts. To
alleviate this problem, Sparse Evolutionary Training (SET)
was introduced by Mocanu et al. [30, 32], which enables
the discovery of an optimal sparse connectivity pattern dur-
ing the training (In-Time Over-Parameterization [28]). SET
employs a random regrow strategy and prunes weights by
magnitude, similar to synaptic shrinking which occurs in
biological brains [6, 8]. The incorporation of dynamically
changing topologies has later also been studied by [24–26].
In particular, Dettmers and Zettlemoyer [7] and Evci et al.
[9] introduce gradient regrow strategies, which enhance con-
vergence over random regrow strategies.

As networks become highly sparse they can easily suffer
from layer-collapse, whereby an entire layer is prematurely
pruned rendering a network untrainable [43], and impeded
back propagation. A commonly used method for improving
gradient flow in networks is to introduce shortcut connec-
tions. A shortcut connection links non-consecutive layers
to one another. Shortcut connections are often employed
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in an information-passing capacity, whereby residual infor-
mation is fed forward without mutation. Such shortcut con-
nections have enabled architectures like ResNets [13] and
DenseNets [16] to reach layer-depths of up to 1000 layers.
[18] and [41] investigate the effects of shortcut connections
in finding sparse masks and demonstrate improved perfor-
mance among high sparsity regimes and improved connec-
tivity patterns, these methods additionally alleviate the risk
of layer-collapse. While previous works have investigated
sparsity and shortcut connections, there is a lack of attention
in the literature on both dynamic sparse masks for shortcut
connections and sparse shortcut connections with increased
depth.

In this paper, we introduce Sparse Parameterized Shortcut
Connections: SPaS1. SPaS combines the advantages of spar-
sity and shortcut connections. Specifically, we apply SPaS
to Multilayer Perceptrons (MLPs) and Convolutional Neu-
ral Networks (CNNs), denoted by SPaS-MLP and SPaS-CNN
respectively.We additionally introduce an evolutionary train-
ing algorithm, SPaSET, which allows us to find optimal sparse
masks for both sequential and shortcut connections during
training. We aim to answer the following research questions:

• RQ1. What role do sparse shortcut connections play in
the performance of ANNs?

• RQ2. Can we use the principles of Dynamic Sparse
Training to find optimal sparse masks for shortcut con-
nections?

• RQ3. To what extent can SPaS allow us to create even
sparser networks?

In this thesis, we answer the aforementioned research
questions and aim to contribute the following:

• We introduce the SPaS architecture and its application
to MLPs and CNNs. We show that SPaS can improve
performance in MLPs and CNNs over their non-SPaS
counterparts, providing up to 5% improvement over
the validation data of various datasets.

• We introduce SPaSET, an evolutionary training al-
gorithm enabling DST in SPaS networks, allowing
sparse masks for both sequential and shortcut layers
to be found during training. SPaSET enables SPaS-
MLPs to maintain performance longer by improv-
ing gradient flow in high-sparsity regimes. Moreover,
SPaSET improves performance in SPaS-CNNs among
low-sparsity regimes. SPaSET provides up to 20% in-
creased performance over SPaS networks with static
sparse masks on CIFAR-10 and CIFAR-100 in high-
sparsity regimes.

1Our implementation of SPaS will be available in the near future on
https://github.com/MaukWM/SPaS

• We find that SPaS enables MLPs to be compressed up
to 25x and 75x on numerical classification and com-
puter vision tasks respectively. This is up from com-
pression rates of 5x on plain MLPs while remaining
competitive with plain dense and sparse MLPs.

1.1 Outline
In Section 2 we go through the various related works. We
begin by elaborating on the concept of shortcut connections,
after which we go in-depth on STS training methods. Finally,
we take a look at other sparse architectures which incorpo-
rate shortcut connections. Section 3 discusses the necessary
mathematical background. We first give the mathematical
description of an MLP, after which we give a modified defi-
nition for sparse MLPs and introduce notation for shortcut
connections. In Section 4 we expound on our proposed ar-
chitecture by building on top of the mathematical basis from
Section 3. We first introduce the concept of SPaS for MLP
and CNN architectures, after which topological initialization
and the evolutionary rules are explained. In Section 5 we
explain the experimental setup that was used for the numer-
ical results which are presented in Section 6. We explain
our implementation, evaluation metrics, and training setup.
In Section 6 the numerical results of the experiments are
shown and explained. In Section 7 we present our conclu-
sions drawn from the numerical results and also provide a
discussion on the approach and its limitations. In Section 8
we discuss possible research directions which build on this
thesis’ work.

2 Related Work
In this section, we first introduce work performed in the area
of shortcut connections, after which we go into sparse-to-
sparse training methods. Finally, we look at related work that
combines sparse-to-sparse training methods and shortcut
connections.

2.1 Shortcut connections
Shortcut connections have been studied for a long time. One
of the earliest practices in the training of MLPs is to add a
linear connection from the network input to the output [37,
46]. Shortcut connections are often employed to tackle the
exploding/vanishing gradient problem. For example, in a
paper by Lee et al. (2015) [23], intermediate layers have been
connected to auxiliary classifiers in convolutional networks.
Another example is the GoogLeNet architecture with its
Inception modules, which works with a concatenation of
outputs on layers [42].
It is important to make a clear distinction between two

types of shortcut connections, namely, residual and non-
residual shortcut connections. The term residual, according
to the Cambridge dictionary, is defined as "remaining after
most of something is gone". A residual shortcut connection
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is a connection whereby the output of a previous layer (the
remainder) is fed forward to subsequent layers after the orig-
inal output has already been mutated by sequential layers
("after something has gone"), these connections are inher-
ently parameter-free, which stands in contrast to SPaS, where
our shortcut connections are always parameterized. More
explicitly, these layers can be seen as having the identity
function applied to them, this leads to residual connections
also being called identity connections at times (or identity
shortcuts as in ResNet [13]).
ResNets only allow residual connections up to one layer

ahead. DenseNets, introduced by Huang et al. in 2017 [16],
attempts to maximize information flow between layers by
connecting all layers directly with one another: each layer
connects to every subsequent layer in a residual, feed-
forward fashion. In contrast to SPaS, shortcut connections
in DenseNets are always residual. Similarly to SPaS-CNN,
DenseNet always places such layers in blocks interspaced by
transition layers. One important distinction, however, is that
SPaS-CNN combines feature-maps through summation as op-
posed to concatenation. From this distinction, another differ-
ence emerges: concatenation enables DenseNets to naturally
grow its feature-map size within blocks, while summation
results in the SPaS-CNN architecture keeping feature-map
size fixed within blocks. Due to this fact, DenseNet blocks
warrant transition layers to apply a feature-map size reduc-
tion, while SPaS-CNN blocks warrant transition layers to
perform feature-map size growth.

When a connection is non-residual it means that the con-
nection does not simply pass residual information as is: the
residual information is mutated with parameters, which is
why we can also refer to non-residual connections as param-
eterized connections. Highway Networks by Srivastava et al.
(2015) [39, 40] enable both residual and non-residual connec-
tions through the use of gates (as inspired by LSTMs [15]),
these gates are data-dependent and have parameters. When
the gates are "closed", layers in highway networks represent
non-residual functions, when "open" they represent resid-
ual connections. While Highway Networks have the ability
to learn which layers should be (non-)residual, in SPaS, all
layers are consistently non-residual.
Shortcut connections are often referred to as skip con-

nections, they both represent the same concept, and the
terminology is used interchangeably in this thesis.

2.2 Sparse-to-sparse training
Sparse-to-sparse (STS) training was initially introduced by
Mocanu et al. (2016) [31] by sparsifying a Restricted Boltz-
mann machine and keeping its sparsity static. Static STS
training has also been investigated on other NN struc-
tures [2, 35]. A disadvantage of static STS training is the
fact that network topologies must be designed before train-
ing. These topologies are often unable to model the data
distribution well and can have connectivity patterns that

impede backpropagation, leading to a worse performance
when compared to dense counterparts.

Alternatively, one can find a suitable topology for static
STS training by first training a dense model and pruning
it, as in the Lottery Ticket Hypothesis [10]. This, however,
defeats the purpose of STS training as it requires a dense
model to be trained first.
In dynamic STS training, it is not a requirement that the

initial network topology is able tomodel the data distribution,
as dynamic STS training allows for the network topology to
be mutated during training. There are two classes of methods
when considering dynamic STS training.

The first are methods based on random regrowth. Ran-
dom regrowth relies on selectively pruning and randomly
regrowing connections in a network. Over time, as more evo-
lutionary steps are executed, the network performs in-time
over-parameterization [28] and will be able to find a topology
suitable for modeling the data distribution.
One of the first random regrow methods introduced was

Sparse evolutionary training (SET) in a paper by Mocanu
et al. (2018) [32]. This method initializes a network with
a sparse topology. After initializing the network, SET per-
forms standard training procedures and weight updates. At
the end of each epoch, however, an evolutionary step is done.
First, the network is pruned by removing a fraction 𝜉 of the
smallest magnitude weights. After the pruning step weights
are randomly added in the same amount as the ones previ-
ously removed. The sparsity of the network remains static
throughout training.
SET has been shown to efficiently replace MLP’s fully

connected layers with sparse layers, resulting in a quadratic
reduction of the number of parameters in MLP layers, at no
expense of accuracy.

Other random regrowth methods include Dynamic Sparse
Reparameterization [33] for CNNswith dynamic sparsity lev-
els per layer. Selfish RNN (2021) [27] is a specialized training
method for RNNs that outperforms its dense counterparts.
Furthermore, there are methods based on gradient re-

growth. Dettmers and Zettlemoyer [7] and Evci et al. [9] intro-
duce the idea of using momentum and gradient information
for selecting weights for regrowth. By identifying weights
that would reduce the error efficiently, pruned weights can
be redistributed more effectively than in random regrowth
schemes. One downside, however, is the fact that these meth-
ods are not as scalable as random regrowth because of the
necessity to calculate gradients for non-existent weights,
leaving overhead equalling the scaling of a dense network.
Jayakumar et al. [19] introduces Top-KAST which improves
RigL by only considering a subset of gradients from non-
existent connections.
These STS methods are all designed for fully sequential

networks, where SPaSET is an evolutionary algorithm de-
signed to support networks with both sequential and short-
cut connections. SPaSET additionally gives control over the
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ratio 𝑅 of sequential and shortcut connections during train-
ing through two different flavors of random regrowth that
either fixes or unfixes the ratio 𝑅.

2.3 Sparse networks with shortcut connections
There has been some work on training sparse networks with
shortcut connections. Jaiswal et al. [18] proposes a sparse
mask training toolkit (ToST), whereby the training of a static
sparse mask is explored by injecting the sparse mask with
"Ghost" Skip Connections (GSk) that are gradually phased
out during training, resulting in the final network being
unchanged from its original architecture. SPaS differs from
ToST by keeping its skip connections in the final architecture.
Additionally, GSk are residual and their connectivity pattern
does not evolve throughout training, whereas this is the case
in SPaS. Skip connections in SPaS are also able to connect to
deeper subsequent layers than ToST.
This paper also shows that ReLU [1] can result in a very

sparse layer activation that can block gradient flow. To miti-
gate this issue they temporally replace ReLU with Swish [36]
and Mish [29] through its "Ghost" Soft Neurons, which leads
to more stable gradient flow [45].
Subramaniam and Sharma [41] propose N2NSkip which,

similarly to SPaS, adds sparse parameterized shortcut connec-
tions to CNNs. These N2NSkip connections are pruned prior
to training and their sparse mask is kept static throughout
training, whereas SPaSET enables SPaS networks to evolve
the sparse masks of shortcut connections. N2NSkip main-
tains an equal amount of sequential and shortcut connec-
tions while SPaS introduces a novel ratio parameter 𝑅 that
allows SPaS networks to be initialized with a specified ratio
of sequential-shortcut connections and enables this ratio to
evolve throughout training.
N2NSkip shows improvements over ResNet50 and

VGG19 [38] architectures with 23M and 143M parameters
respectively. They find, especially at high compression rates
of 20x and 50x, that N2NSkip connections consistently pro-
duce a significantly lower test error on both CIFAR-10 and
CIFAR-100 when compared to counterparts with residual
skip connections, demonstrating the effectiveness of param-
eterizing conventionally residual skip connections.
They also perform a connectivity analysis by calculat-

ing the heat diffusion signature of the networks. They find
that for both pruning methods, ResNet50 and VGG19 with
N2NSkip connections have superior overall connectivity
when compared to the baseline models.

3 Background
In this sectionwe state themathematical definition of a dense
network, also known as a Multilayer Perceptron (MLP) [44],
its sparse counterpart, and shortcut connections. These defi-
nitions are built upon further in Section 4where the proposed
architecture is defined.

3.1 Dense MLP definition
Given a dataset of 𝑁 data points, denoted by
𝐷 = {(x(𝑖 ) , y(𝑖 ) )}𝑁𝑖=1, let a dense MLP (D-MLP) be de-
fined as:

ŷ = 𝑓 (x;𝜃 ) (1)

Where 𝜃 is the set of parameters (weights and biases)
associated with the D-MLP. Each layer in the network pa-
rameters 𝜃 can be decomposed into W𝑙 and b𝑙 which are
dense matrices:

W𝑙 ∈ R𝑛
𝑙−1×𝑛𝑙 , b𝑙 ∈ R𝑛

𝑙 (2)

Where 𝑛𝑙−1 and 𝑛𝑙 represent the amount of neurons in
layers 𝑙 − 1 and 𝑙 respectively.

A sequential k-layered network is a composition of multi-
variate functions, defined as:

𝑓 = 𝑓𝑘 ◦ 𝑓𝑘−1 ◦ ... ◦ 𝑓2 ◦ 𝑓1 (3)

Where each function 𝑓𝑙 describes the forward pass of layer
𝑙 , defined as:

𝑓𝑙 (𝑥) = 𝑎(x(𝑙−1)W𝑙 + b𝑙 ) (4)

Where 𝑎 is the activation function and x(𝑙−1) is the output
of the previous layer.
When training an MLP we seek to optimize 𝜃 through

the minimization of a loss function 𝐿, for example, Mean
Squared Error (MSE):

𝐿(y, ŷ) = 1
𝑁

𝑁∑︁
𝑖=1

(y(𝑖 ) − ŷ(𝑖 ) )2 (5)

𝜃 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜃

[𝐿(y, 𝑓 (x;𝜃 ))] (6)

3.2 Sparse MLP definition
For a sparse MLP (S-MLP), the goal is to reparameterize the
dense 𝜃 into a sparse 𝜃𝑆 , where 𝑆 represents the sparsity of
the network. A S-MLP can then be described as:

ŷ = 𝑓 (x;𝜃𝑆 ) (7)

This definition can then be used to describe both D-MLPs
(𝑆 = 0) and S-MLPs (0 < 𝑆 < 1).

The sparsity of the network is calculated as follows:

𝑆 = 1 − ||𝜃 | |0
| |𝜃 | | , (8)

where | |𝜃 | |0 refers to the 𝑙0 norm of 𝜃 (count of non-zero
parameters) and | |𝜃 | | refers to the count of possible parame-
ters.
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3.3 Shortcut connections
Many breakthroughs in deep learning have been attributed to
the use of deeper networks [13, 17, 38]. One major obstacle in
deep networks however is the vanishing/exploding gradients
problem [4, 11]. This problem can be addressed by explicitly
letting layers fit a residual mapping [13, 16]. In an MLP, we
can describe a forward pass 𝑓𝑙 with a residual connection as:

𝑓𝑙 (x) = 𝑎(x𝑙−1W𝑙 + b𝑙 ) + x𝑙−1, (9)

where the addition of x𝑙−1 outside the activation function
𝑎 entails the passing of the output from the previous layer
(the residue) to the next.

In a CNN, more specifically a ResNet, we can describe a
layer with a residual mapping as:

x𝑙 = 𝐻𝑙 (x𝑙−1) + x𝑙−1, (10)

where x𝑙 is the output of the 𝑙𝑡ℎ layer and 𝐻𝑙 (·) is a non-
linear transformation.
Departing from ResNets where the residual connections

only skip over 1 layer, we define a layer in a DenseNet as:

x𝑙 = 𝐻𝑙 ( [x0, x1, ..., x𝑙−1]), (11)

where [x0, x1, ..., x𝑙−1] refers to the concatenation of
feature-maps produced in layers 0, ..., 𝑙 − 1.

Moving to skip connections that permit parameterization,
a layer in a Highway Network is defined as:

x𝑙 = 𝐻𝑙 (x𝑙−1) ·𝑇𝑙 (x𝑙−1) + x𝑙−1 ·𝐶𝑙 (x𝑙−1), (12)

where𝑇𝑙 (·) and𝐶𝑙 (·) are the transform gate and carry gate
respectively. The transform gate determines to what degree
the input will be mutated and the carry gate determines to
what degree the previous output must be carried over.

4 Methodology
In this section, we propose the architecture of Sparse
Parameterized Shortcut Connections (SPaS), which is built
upon the mathematical foundation from Section 3. ToST [18]
and N2NSkip [41] investigate sparse skip connections solely
in the context of CNN architectures while SPaS is a general
concept that can work in synergy with various ANN archi-
tectures. In this thesis, we demonstrate the effectiveness of
SPaS in combination with two widely used neural network
types, i.e., MLPs and CNNs, by introducing SPaS-MLPs and
SPaS-CNNs. We introduce the SPaS-MLP and SPaS-CNN ar-
chitecture, after which we explain the initialization of sparse
masks. Also departing fromN2NSkip and ToST, we introduce
an evolutionary algorithm, SPaSET, that enables the sparse
mask of SPaS to evolve throughout training, fully enabling
DST in SPaS networks.

4.1 Sparse Parameterized Skip Connections
In this thesis, we propose Sparse Parameterized Shortcut
Connections (SPaS). In a SPaS network, we make the distinc-
tion between sequential and skip layers, wherein sequential
layers are always connected to their neighbouring subse-
quent layer and, departing from N2NSkip and ToST, skip lay-
ers can be connected to any non-neighbouring subsequent
layer as opposed to skipping up to 1 layer. Additionally, as
the name implies, the connections are parameterized, mean-
ing each skip layer has its own associated set of weights and
biases that can mutate residual information from previous
layers and regulate gradient flow by learning the relative
importance of each gradient signal. Additionally, this param-
eterization gives SPaSET a simple metric for determining
which shortcut connections to prune as residual connec-
tions don’t have a magnitude with which to determine their
relative importance.
Each SPaS network has an associated ratio of sequential

and skip connections, which we define as 𝑅.

𝑅 =
| |𝜃𝐷=1 | |0
| |𝜃 | |0

(13)

Where | |𝜃𝐷=1 | |0 refers to the number of active sequential
parameters and | |𝜃 | |0 to the number of all active parameters.
Here we introduce a new notation 𝜃𝐷 , where 𝐷 refers to
the amount of layers that a parameter traverses. We use
this notation to concisely refer to the set of parameters in
sequential and shortcut layers. We use 𝜃𝐷=1 to refer to the
set of parameters over all sequential layers and 𝜃𝐷>1 to refer
to the set of parameters over all shortcut layers.
A SPaS network where 𝑅 = 1 represents a network built

exclusively using sequential connections, making it identical
to its non-SPaS counterpart: a SPaS-CNN and SPaS-MLP
with 𝑅 = 1 are functionally identical to their S-CNN and S-
MLP counterparts respectively. A SPaS network with 𝑅 = 0
represents a network built exclusively with skip connections.
While the SPaS architecture offers the possibility of net-

works with 𝑅 = 0, such a network is accompanied by un-
necessary overhead. The layer following the input layer of
a network will never be connected to the input and, in a
similar vein, the penultimate layer will remain disconnected
from the output layer. This results in computational dead
ends, both in forward and backpropagation.
By allowing 𝑅 to vary, we depart from N2NSkip, where

all networks have fixed ratios of 𝑅 = 0.5.

4.1.1 SPaS-MLP To move from S-MLP to SPaS-MLP, we
need to incorporate the newly defined ratio parameter 𝑅. We
extend the S-MLP definition from Equation 7 and we define
a SPaS-MLP as follows:

ŷ = 𝑓 (x;𝜃𝑆,𝑅), (14)
we can use this extended definition to represent both S-

MLPs and SPaS-MLPs. We can describe an S-MLP as:
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(a) 𝑓 (x;𝜃𝑆=1,𝑅=1 ) (b) 𝑓 (x;𝜃𝑆=0.5,𝑅=1 ) (c) 𝑓 (x;𝜃𝑆=0.5,𝑅=0.66 )

Figure 1. Example network architectures for various types of MLPs with their associated mathematical definitions. The solid lines are sequential
connections and the dashed lines are shortcut connections. (a) shows a fully dense MLP (D-MLP). (b) shows a 50% sparse MLP (S-MLP). (c) shows
a 50% sparse parameterized shortcut MLP (SPaS-MLP), where 66% of the connections are sequential.

Figure 2. A SPaS-CNN consisting of two 4-layer SPaS blocks. Within a SPaS block, each forward connection consists of its own set of weights and
biases. Within a SPaS block, the results from multiple layers are combined by performing a summation over all the outputs while keeping the
feature-map size consistent. SPaS blocks are interspaced by transition layers which perform downsampling and doubles the number of channels.

𝑓 (x;𝜃𝑆 ) = 𝑓 (x;𝜃𝑆,𝑅=1). (15)

Figure 1 shows a high-level overview of the architectures
of D-MLP, S-MLP, and SPaS-MLP with their associated
mathematical definition.

We use 𝜃𝑘,𝑙
𝑆,𝑅

to describe the parameters connecting layer
𝑘 to layer 𝑙 . 𝜃𝑘,𝑙

𝑆,𝑅
can be decomposed into sparse matrices:

W𝑘 ∈ R𝑛𝑘×𝑛𝑙 , b𝑘 ∈ R𝑛𝑙 , (16)

where𝑛𝑘 and𝑛𝑙 represent the number of neurons in layers
𝑘 and 𝑙 respectively.

The forward pass of a SPaS-MLP is similarly defined as
in Equation 3. In a SPaS-MLP, each function 𝑓𝑙 is defined as
follows:

𝑓𝑙 (𝑥) = 𝑎((
𝑙∑︁

𝑘=1
x(𝑘−1)W𝑘 + b𝑘 )), (17)

whereW𝑘 and b𝑘 represent the weights and biases utilized
in a forward pass from layer𝑘 to layer 𝑙 and𝑎 is the activation
function. Important to note is that biases are not shared
between layers: neurons in SPaS-MLP have multiple biases
associated with them, and each set of biases 𝑏𝑘 is used in the
forward pass to a different subsequent layer.

4.1.2 SPaS-CNN Our proposed SPaS-CNN improves and
enhances the typical DenseNet architecture by parameteriz-
ing its shortcut connections, enabling the relative gradient
signal strength of reused features to be learned. Similar to
DenseNet, the SPaS-CNN architecture consists of blocks in-
terspaced by transition layers. A crucial difference, however,
between blocks in DenseNet and SPaS-CNN, is the fact that
SPaS-CNN combines results from previous layers through
summation of their outputs, keeping the number of channels
fixed, while DenseNet performs a concatenation, resulting in
the number of channels to grow. DenseNet and SPaS-CNN
both have complete access to all unaltered preceding out-
puts, but SPaS-CNN additionally has a unique layer for each
preceding output that can mutate the features separately.
This allows SPaS-CNN to more selectively pick out features
from previous outputs, whereas DenseNet needs to share its
weights over increasing amounts of features as dense block
depth increases since a DenseNet typically gains more and
more input channels than output channels as dense blocks
become deeper.

SPaS Blocks. We describe the connectivity of a layer in a
SPaS Block as follows:

x𝑙 = 𝐻0,𝑙 (x0) + 𝐻1,𝑙 (x1) + ... + 𝐻𝑙−1,𝑙 (x𝑙−1), (18)
where we define each 𝐻𝑘,𝑙 as the function for layer 𝑘 to 𝑙 .

Each preceding output is transformed by its own function
with a unique set of parameters. Note that the outputs are
summed, resulting in a fixed feature-map size within blocks.



SPaS: Sparse Parameterized Shortcut Connections for Dynamic Sparse-to-Sparse Training

Algorithm 1 Sparse Parameterized Shortcut Evolutionary Training (SPaSET) pseudocode
1: Set S, R; ⊲ Network Topology Hyperparameters
2: Set 𝜉 ; ⊲ Network Evolution Hyperparameters
3: Initialize network topology (Equations 20 and 21);
4: Initialize training parameters;
5: for each training epoch e do
6: Perform standard training procedure and weight updates;
7: Remove a fraction 𝜉 of the smallest magnitude weights;
8: if R is fixed then
9: Randomly regrow new sequential connections in the same amount as the ones previously removed ;
10: Randomly regrow new shortcut connections in the same amount as the ones previously removed ;
11: else
12: Randomly regrow an equal amount of sequential and shortcut connections until global-sparsity 𝑆 is satisfied.
13:

A SPaS block consists of 𝑘 layers, which we will refer to as a
block depth parameter. DenseNets also use 𝑘 to describe the
depth of a dense block, but theymore specifically refer to 𝑘 as
a growth factor, since dense blocks grow their feature-maps.

Transition layers. SPaS blocks are interspaced by transi-
tion layers. These transition layers perform two functions.
First, feature-map size typically must increase with the depth
of a CNN to ensure good performance. Since feature-map
size does not grow within SPaS blocks this is performed in
transition layers. This is done through a 1𝑥1 convolutional
layer that doubles the number of channels. Second, we are
unable to downsample feature-maps within SPaS blocks, thus
this action is performed by transition layers. This is done by
a 2𝑥2 average pooling layer.

4.2 Sparsity initialization
Before we define how a sparse mask is initialized in a SPaS
network we must also clarify how sparsity is calculated in
a SPaS network. We do not calculate the sparsity of a SPaS
network against the maximum amount of parameters in a
SPaS network (| |𝜃 | |), but against the max amount of parame-
ters in its exclusively sequential counterpart (| |𝜃𝐷=1 | |). This
means that any sparsity parameter 𝑆 for a network with
SPaS would equal the number of parameters in the same net-
work without SPaS. More specifically, we extend the sparsity
calculation from Equation 8 to explicitly state this fact:

𝑆 = 1 − ||𝜃 | |0
| |𝜃𝐷=1 | |

, (19)

With this clarified, we can now explain how we initialize a
sparse mask for a SPaS network. Unless we have the rare case
where | |𝜃𝐷=1 | | = | |𝜃𝐷>1 | |, we must make a clear distinction
in the initialization of sequential and shortcut connections
and define separate probability functions for both.

Since sparsity is calculated against an exclusively sequen-
tial network (| |𝜃𝐷=1 | |), we calculate the probability of a se-
quential connection in a SPaS network as:

𝑝 (W𝑙−1,𝑙
𝑖 𝑗

) = (1 − 𝑆) · 𝑅, (20)

where we mutate the base probability 1 − 𝑆 with the novel
ratio parameter 𝑅. We calculate the probability of a shortcut
connection in a SPaS network as:

𝑝 (W𝑘,𝑙
𝑖 𝑗
) = | |𝜃𝐷=1 | |

| |𝜃𝐷>1 | |
· (1 − 𝑆) · (1 − 𝑅), (21)

where we normalize the base probability (1 − 𝑆) against the
ratio of | |𝜃𝐷=1 | | with | |𝜃𝐷>1 | | and mutate that with (1 − 𝑅).

4.3 Sparse Parameterized Shortcut Evolutionary
Training (SPaSET)

We propose SPaSET (Sparse Parameterized Shortcut
Evolutionary Training), based on SET, in which the evo-
lutionary rules support SPaS. Pseudocode of SPaSET can be
found in Algorithm 1. While SET and SPaSET both keep
their global sparsity parameter 𝑆 fixed throughout training,
there is an important difference in the fact that SET addition-
ally fixes layer-sparsity while SPaSET allows layer-sparsity
to change throughout training. SPaS networks support two
modes of 𝑅: fixed and unfixed. When 𝑅 is fixed, the ratio of
sequential-shortcut is restricted to the initialized ratio during
evolutionary steps.When𝑅 is unfixed, the ratio of sequential-
shortcut connections is allowed to change in evolutionary
steps. SPaSET departs from both N2NSkip and ToST, where
the ratio 𝑅 is always fixed (though ToST phases out its short-
cut layers through gated parameters during training) and
the sparse masks in shortcut layers are static.
Pruning. For pruning we implemented a bottom-k prun-
ing strategy: Removing a fraction of the smallest magnitude
weights. There is a slight departure from SET here: SET
prunes an equal amount of positive and negative weights
while SPaSET is unrestricted by this rule and can prune any
number of positive or negative weights.
Regrowing. We apply random regrow by regrowing the
exact amount of connections as was removed during the
pruning stage until the global-sparsity parameter 𝑆 is satis-
fied. Depending on whether 𝑅 is fixed there are two different
regrowth strategies: If 𝑅 is fixed we regrow the exact amount
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of sequential and shortcut connections as was removed dur-
ing the pruning stage. If 𝑅 is unfixed we regrow an equal
amount of sequential and shortcut connections.
Modified SET (SET*). The modifications from SET to
SPaSET are also applied to our implementation of SET, which
we will refer to as SET* from hereon out. SET* differs from
SET by lifting the requirement of pruning equal amounts of
positive and negative parameters and by loosening the fixed
layer-sparsity requirement to a fixed global-sparsity.

5 Experimental Setup
In this section, we explain the experimental setup. We first
present the datasets used, after which we explain the evalua-
tion metrics. Finally, we go into detail on the models used
for our experiments and the training scheme.

5.1 Datasets
Computer vision. We perform our experiments on the
CIFAR-10 and CIFAR-100 datasets [21]. The CIFAR-10 dataset
consists of 10 classes distributed over 60000 32x32 colour
images, with 6000 images per class. The dataset consists of
five training batches and one test batch, each consisting of
10000 images (1000 images per class). CIFAR-100 is similar
to CIFAR-10, except that it has 100 classes distributed over
600 images. We use the prefixes C10- and C100- to indicate
datasets models were trained on: C10-MLP and C100-MLP
are MLPs trained on CIFAR-10 and CIFAR-100 respectively.

Numerical classification.We perform experiments on a
subset of numerical classification tasks from Tabular Bench-
mark [12]. All datasets are binary classification problems.
Datasets are prepared with an 80-20 train-test split. See Ta-
ble 1 for a list of datasets used.

dataset_name n_samples n_features
electricity 38474 7
pol 10082 26
house_16H 13488 16
MagicTelescope (MT) 13376 10
Bioresponse (BR) 3434 419
MiniBooNE 72998 50
Higgs 940160 24
jannis 57580 54

Table 1. Selection of numerical classification datasets from Tabular
Benchmark [12] used in validation of SPaS-MLP.

5.2 Models
All models were constructed using the PyTorch [34] library.
Sparsity masks for sequential and shortcut layers were im-
plemented with binary masks. We provide a framework
that allows SPaS-MLP and SPaS-CNN networks with vari-
ous depths/widths to be initialized with a specified ratio 𝑅
and sparsity 𝑆 (or parameter budget). We provide a training
framework that allows networks to be trained statically or

with SET*/SPaSET and control over evolutionary parame-
ters such as the pruning rate 𝜉 , (un)fixed 𝑅, and evolution
interval. Our implementation will be accessible in the near
future on https://github.com/MaukWM/SPaS.
ReLU can result in very sparse activations[1, 18], which

can, in turn, decrease trainability by blocking gradient flow.
This can be especially problematic in networks that are al-
ready sparse, such as SPaS. To mitigate this issue we decided
to use Mish as the activation function for all non-final layers.
All models were trained for 100 epochs, with a four-epoch
early-stopping policy. The models are trained with the Adam
optimizer [20] and a learning rate of 0.005. It needs to be
noted that while Adam provides an adaptive learning rate
that can improve convergence among dense models, the
smaller learning rates later in the training process can hin-
der the search space exploration of good connectivity by
reducing the ability of new connections to be competitive
with old ones, resulting in new connections to be pruned
more quickly. [45] shows that optimizers such as Adam and
RMSProp [14] can, at times, have poor performance when
used with L2 regularization or data augmentation in sparse
networks. L1-Regularization is added with a coefficient of
5𝑒−5. Cross entropy is used as a loss function. The models
are trained with a batch size of 128. For a quick overview
of the MLP and CNN models used in the computer vision
experiments and their maximum parameter counts, we refer
to Table 2.

Model | |𝜃𝐷=1 | | | |𝜃𝐷>1 | | | |𝜃 | |
D/S-MLP 328k - 328k
SPaS-MLP 328k 657k 985k
D/S-CNN 149k - 149k
DenseNet 276k - 276k
SPaS-CNN 149k 145k 295k

(a) CIFAR-10

Model | |𝜃𝐷=1 | | | |𝜃𝐷>1 | | | |𝜃 | |
D/S-MLP 337k - 337k
SPaS-MLP 337k 952k 1.3M
D/S-CNN 155k - 155k
DenseNet 298k - 298k
SPaS-CNN 155k 145k 301k

(b) CIFAR-100

Table 2. Models used in the experiments on CIFAR-10/100 and
their maximum parameter counts. D/S-MLP and D/S-CNN refer to
dense/sparse MLPs/CNNs. | |𝜃𝐷=1 | | refers to the count of possible pa-
rameters in all sequential layers. | |𝜃𝐷>1 | | refers to the count of possible
parameters in all shortcut layers. | |𝜃 | | refers to the count of possible
parameters in all layers.

5.2.1 MLP All MLP models are constructed with three
hidden layers of 100 neurons. We experimented on a dense
MLP (D-MLP), a sparse MLP (S-MLP), and an MLP with

https://github.com/MaukWM/SPaS


SPaS: Sparse Parameterized Shortcut Connections for Dynamic Sparse-to-Sparse Training

SPaS (SPaS-MLP). Each SPaS-MLP network is initialized with
𝑅 = 0.5 which is kept fixed throughout training.

5.2.2 CNN We perform experiments on three different
types of convolutional networks. A CNN with SPaS (SPaS-
CNN) with 𝑅 = 0.5, a plain CNN with exclusively sequential
connections whose architecture can be described as a SPaS-
CNN with 𝑅 = 1, and finally a DenseNet.

The DenseNet consists of 3 dense blocks with growth fac-
tor 𝑘 = 4. After the dense blocks, we have a classification
layer that performs 4𝑥4 global average pooling with a stride
of 4, followed by a forward layer with softmax. Important to
note is that we depart slightly from the original DenseNet
implementation by leaving out the bottleneck layers, which
are used to improve computational efficiency by reducing the
number of input feature-maps. We decided against adding
these layers as we wanted the SPaS-CNN and DenseNet
architectures to be as similar as possible. The SPaS-CNN
architecture does not include bottleneck layers as SPaS-CNN
would not benefit from any feature-map size reduction deliv-
ered by bottleneck layers as feature-map size does not grow.
For a high-level architecture overview of the DenseNet, we
refer to Table 6b in Appendix A.
In the (SPaS-)CNN, we define each 𝐻𝑙 (·) as a composite

function of batch normalization (BN), followed by a Mish
activation function [29] and finally a 3x3 convolution (Conv).
We chose a 3x3 kernel as it is also the typical choice in
DenseNet architectures. In the transition layers, we add BN,
followed by Mish before the 1𝑥1 convolutional layer that
doubles the size of the feature-maps and the 2𝑥2 average
pooling layer that downsamples the input. The SPaS-CNN
consists of 3 SPaS blocks with depth 𝑘 = 3. After the SPaS
blocks, we have a classification layer that performs 4𝑥4 global
average pooling with a stride of 4, followed by a forward
layer with softmax. For a high-level architecture overview of
the CNN and SPaS-CNN, we refer to Table 6a in Appendix A.

5.3 Compression
Compression rates of S-MLP and SPaS-MLP are in relation
to the number of parameters in their D-MLP counterparts
and are inversely proportional to network density: an S-MLP
and SPaS-MLP with a compression rate of 5x have the same
amount of parameters at 0.20 density (or 0.80 sparsity). Sim-
ilarly, a compression rate of 0.5x refers to a network with
a density of 2.0. Compression rates <1x are only applicable
to SPaS-MLPs that contain more active parameters than are
possible in their D-MLP counterparts. Compression rates in
SPaS-CNNs are calculated differently than in MLPs: com-
pression is not in comparison to its dense counterparts but
to the architecture’s own parameter count: a SPaS-CNN at 5x
compression has more parameters than the same S-CNN at
5x compression as the max parameter count in SPaS-CNNs is
larger than in S-CNNs. By doing this, we actually stray from
how we propose sparsity is calculated in SPaS networks,

as described in Section 4.2. We refer to the discussion in
Section 7.1 as to why this is done.

5.4 Evaluation Metrics
For numerical classification tasks, we compare SPaS-MLPs
with MLPs in both static and dynamic sparsity regimes.
We evaluate the performance of a model by looking at the
model’s accuracy on the test set against compression rates
of up to 75x.
For the computer vision tasks, we compare SPaS-MLPs

with MLPs and we compare SPaS-CNNs with CNNs and
DenseNets in both static and dynamic sparsity regimes up
to compression rates of 75x. As in numerical classification,
we evaluate the (SPaS-)MLPs by looking at the validation
accuracy against compression rates. However, compression
rates between CNNs, DenseNets, and SPaS-CNNs are not
directly comparable, thus we compare by inferencing FLOPs
(I-FLOPs).

5.5 Ablation Studies
To investigate the efficacy of SPaS, it is imperative to in-
vestigate the impact that varying levels of 𝑅 can have on
the performance of the models, which is why we perform
an additional ablation study for SPaS-MLP and SPaS-CNN
over 𝑅 in various sparsity regimes. These ablation studies
are performed on the same model architectures and training
regimes as described in the previous sections.

6 Results
In this section, we gather the results from the experiments.
We present our findings on SPaS for MLPs and CNNs over
static and dynamic sparsity on numerical classification tasks
selected from Tabular Benchmark [12] and the CIFAR10/100
datasets.
SPaS enables even sparser MLPs. In Table 3 and Fig-

ures 3b, 4 we observe that S-MLPs are unable to achieve
non-random results beyond compression rates of 5x on both
numerical classification and computer vision tasks, whilst
SPaS-MLPs are still able to learn up to compression rates of
75x. The performance dropoff in S-MLPs is very sudden and
is most likely caused by impeded backpropagation whereby
the sparsity becomes too excessive for the model. SPaS-MLP
can model the data with much fewer parameters and, while
SPaS does not necessarily increase the expressive capabil-
ities of the network, it enables gradients to be propagated
between all layers, including direct propagation between
the input and output. This enhanced connectivity relieves
backpropagation concerns inherently present in S-MLPs.

SPaS onMLPs is comparable to other approaches and
improves performance on CIFAR100 and MiniBooNE.
In Table 5 and Figures 4, 7 we observe on numerical classi-
fication tasks that SPaS-MLP has comparable performance
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(a) CNNs

(b) MLPs

Figure 3. Validation accuracy (%) with standard error by inferencing FLOPs (I-FLOPs) for MLPs and CNNs on CIFAR10/100, where the models are
prefixed as C10 and C100 respectively. The left column contains models dynamically trained with SET*/SPaSET, and the right column contains
statically trained models. A tabular representation of these results can also be found in Tables 3 and 4. In both static and dynamic sparsity regimes,
SPaS-CNN is able to outperform both plain CNNs and DenseNets on CIFAR10/100 for equal or fewer I-FLOPs.

and in some cases outperforms its D-MLP/S-MLP counter-
parts: SPaS-MLP is only outperformed by its counterparts on
the CIFAR-10, Higgs, and jannis dataset by ∼1%, while SPaS-
MLP outperforms its counterparts by ∼25% on MiniBooNE.
In Table 3 and Figure 3b, we find that S-MLP and SPaS-MLP
provide significant improvements in performance over its
D-MLP counterpart on CIFAR-10/100. On CIFAR-10, the S-
MLP consistently outperforms the best SPaS-MLP by ∼1%
in both static and dynamic sparsity regimes. On CIFAR-100,
SPaS-MLP consistently outperforms S-MLP, achieving a ∼5%

higher accuracy at a compression rate of 5x and maintaining
its superiority even at compression rates of up to 25x.
Interesting to note is that making SPaS-MLP fully dense

is detrimental to its performance in computer vision tasks,
resulting in a performance decrease of ∼7% over its D-MLP
counterpart. The fully dense SPaS-MLPs for CIFAR-10/100
have over 3x the parameters of their D-MLP counterparts
(more than the ∼1.7x numerical classification tasks), the
network does not overfit so the decrease in performance is
most likely explained by an oversaturation of parameters
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Figure 4. Average IQM of the validation accuracy (%) for the numerical classification datasets as described in Table 1 by compression rate
(from 1x to 75x). A breakdown of the average IQM into its subcomponents can be found in Figure 7 in Appendix C. In both static and dynamic
sparsity regimes, SPaS-MLP maintains a higher average performance over all compression rates. SPaSET additionally enables SPaS-MLP to uphold
performance up to higher compression rates in comparison to a static sparsity regime.

Dataset CIFAR-10 CIFAR-100
MLP SPaS-MLP MLP SPaS-MLP

Sparsity Mode Compression IQM I-FLOPS IQM I-FLOPS IQM I-FLOPS IQM I-FLOPS
N/A Fully Dense 47.44 (1x) 1x 40.01 (0.33x) 3.82x 18.04 (1x) 1x 12.86 (0.26x) 3.82x

(3.3e5) (3.3e5) (3.4e5) (3.4e5)
Static 2x 49.84 0.50x 48.94 0.50x 20.29 0.50x 21.46 0.50x

5x 50.60 0.20x 49.35 0.20x - 0.20x 20.97 0.20x
12.5x - 0.08x 47.01 0.08x - 0.08x 18.39 0.08x
25x - 0.04x 42.72 0.04x - 0.04x 14.78 0.04x
75x - 0.01x 28.68 0.01x - 0.01x 6.52 0.01x

SET*/SPaSET 2x 49.70 0.50x 46.08 0.50x 19.20 0.50x 22.98 0.50x
5x 50.78 0.20x 49.18 0.20x - 0.20x 24.56 0.20x

12.5x - 0.08x 49.51 0.08x - 0.08x 24.00 0.08x
25x - 0.04x 49.78 0.04x - 0.04x 23.39 0.04x
75x - 0.01x 49.33 0.01x - 0.01x 18.77 0.01x

Table 3. Validation accuracy (%) on the CIFAR10/100 dataset for the MLPs. Performances highlighted in bold were the best performing for that
compression rate and dataset. Results with a - did not achieve a non-random performance. Fully dense models have the compression rate added
in (parenthesis). We observe that MLPs in the 2x-5x compression range are the best-performing models on CIFAR10 while SPaS-MLPs are the
best-performing on CIFAR100 in that same compression range. As the density regime approaches >5x, MLPs are unable to achieve a non-random
performance, while SPaS-MLP is still able to achieve results.

and gradients, impeding its ability to properly model the
data.
SPaS improves performance in CNNs. In Tables 4, 5

and Figure 3a we observe that SPaS-CNN can achieve higher
accuracies than its D-CNN/S-CNN counterparts. On CIFAR-
10 and CIFAR-100, the best performing SPaS-CNN mod-
els achieve 77.75% and 46.83% accuracy respectively, while
D/S-CNN achieves up to 75.49% and 41.79%, giving SPaS-
CNN +2.26% and +5.04% performance boost on CIFAR-10/100
over D/S-CNNs. SPaS-CNN even improves performance over
DenseNets, where the best-performing DenseNets achieve

75.86% and 45.47% on CIFAR-10/100 respectively, giving
SPaS-CNN a +1.89% and +1.36% increased performance over
DenseNets. SPaS-CNN is able to achieve these improved re-
sults over CNNs and DenseNets at less or equal to the same
amount of I-FLOPs.
SPaS-CNN does not outperform CNNs or DenseNets be-

yond compression rates of 5x: after 5x compression, the
validation accuracy per I-FLOP count is less than either the
CNN or the DenseNet, this is most noticeable in CIFAR-100.
The main advantage that SPaS-CNNs provide over plain

CNNs is the fact that SPaS enables feature reuse. The
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CIFAR10 CIFAR100
CNN DenseNet SPaS-CNN CNN DenseNet SPaS-CNN

Sparsity Mode Compression IQM I-FLOPS IQM I-FLOPS IQM I-FLOPS IQM I-FLOPS IQM I-FLOPS IQM I-FLOPS
N/A 1x 75.49 1x 74.67 1.35x 77.00 1.87x 38.89 1x 44.49 1.35x 44.33 1.87x

(1.2e7) (1.2e7) (1.2e7) (1.2e7) (1.2e7) (1.2e7)
Static 2x 74.28 0.49x 74.21 0.68x 76.39 0.94x 40.33 0.49x 43.29 0.68x 44.94 0.94x

5x 71.32 0.19x 69.96 0.27x 75.15 0.37x 37.05 0.19x 39.21 0.27x 42.34 0.37x
12.5x 60.53 0.08x 63.90 0.11x 67.47 0.14x 29.29 0.08x 30.70 0.11x 33.30 0.14x
25x 46.35 0.04x 50.69 0.05x 57.55 0.07x 18.22 0.04x 23.22 0.05x 21.61 0.07x
75x 15.66 0.01x 24.44 0.02x 25.40 0.02x 1.31 0.01x 5.63 0.02x 5.81 0.02x

SET*/SPaSET 2x 74.35 0.49x 75.86 0.68x 77.75 0.94x 41.79 0.49x 44.48 0.68x 46.81 0.94x
5x 75.35 0.19x 75.50 0.27x 76.55 0.37x 41.60 0.19x 45.47 0.27x 46.83 0.37x

12.5x 73.85 0.08x 74.82 0.11x 76.16 0.14x 37.28 0.08x 42.20 0.11x 43.59 0.14x
25x 68.24 0.04x 69.25 0.05x 72.92 0.07x 30.07 0.04x 35.57 0.05x 36.52 0.07x
75x 38.47 0.01x 34.80 0.02x 43.16 0.02x 9.33 0.01x 19.08 0.02x 24.97 0.02x

Table 4. Validation accuracy (%) IQM on CIFAR-10/100 for the CNN, DenseNet and SPaS-CNN. Performances highlighted in bold were the best
performing for that compression rate and dataset. Results with a - did not achieve a non-random performance. For each model, the left column
shows the IQM of the validation accuracy, and the right column shows the FLOP counts for a single inference (I-FLOPS). In CNNs, we observe that
SPaS improves performance among all compression rates in both dynamic and static sparsity regimes. In particular, we observe that SPaS-CNN
trained with SPaSET outperforms both S-CNN and DenseNet on CIFAR-10 and CIFAR-100 by at least ∼2%.

DenseNet architecture also provides feature reuse, but SPaS
even provides a performance boost over DenseNets. While
DenseNet offers comprehensive feature reuse through the
copying and concatenation of all previous features, SPaS-
CNN, through parameterization of its skip connections, en-
ables the network to mutate features from previous layers.
This allows SPaS-CNN to perform more selective feature
reuse and gives the network the ability to learn the relative
importance of gradient signals from reused features.
It is of note that SPaS-CNN contains more trainable

weights than its CNN and DenseNet counterparts, so we
performed additional experiments with parameter budgets.
In line with the experiments by compression, we find that
SPaS improves performance among higher-density regions,
but as the parameter budget shrinks, SPaS networks are un-
able to outperform either CNNs or DenseNets. For the results
of the parameter budget experiment, we refer to Appendix B.
The ratio parameter R can have a significant im-

pact on performance in low-density regimes. In Figure 5
we observe that in high-density regimes for SPaS-CNN, the
value of R does not significantly impact performance, but R
values in the range of [0.5-0.8] provided the best-performing
models. In low-density regimes, the value of R becomes more
impactful, whereby the choice of 𝑅 can give as much as a
30% difference in performance. We find that lower ratios are
preferred in low-density regimes, in the range of [0.8-1.0]. As
the parameter budget becomes increasingly constrained and
kernels become increasingly sparse, there is an increased risk
of dead kernels, becoming unable to properly learn features
and backpropagate. Additionally, lower ratios (more skip
connections) at these constrained parameter budgets need
to spread its parameters over more kernels, as there are typi-
cally more available kernels in skip layers than sequential
layers.

MLP CNN DenseNet
Dataset Δ𝐼𝑄𝑀 Δ𝑀𝑎𝑥 Δ𝐼𝑄𝑀 Δ𝑀𝑎𝑥 Δ𝐼𝑄𝑀 Δ𝑀𝑎𝑥

CIFAR-10 -1.00 -1.25 +2.26 +1.34 +1.89 +1.45
CIFAR-100 +4.27 +4.31 +5.04 +4.84 +1.36 +0.59
electricity +0.30 +1.49 - - - -
pol +0.73 +0.24 - - - -
house_16H +0.62 -0.48 - - - -
MT +0.63 +0.21 - - - -
BR +0.35 -1.10 - - - -
MiniBooNE +24.54 +4.88 - - - -
Higgs -1.19 -1.51 - - - -
jannis -0.96 -1.28 - - - -

Table 5. Performance benefit of SPaS-MLP over MLP, and SPaS-CNN
over CNN and DenseNet. Selected models are the best performing
for that dataset. Performance differences are obtained by subtracting
the validation accuracy of the baseline model from the SPaS model.
We calculate two metrics of performance difference: the interquar-
tile mean (IQM) and the individual best-performing model (Max).
A positive Δ indicates an advantage for SPaS over its counterpart.
Results highlighted in bold indicate that SPaS has a larger benefit
in performance for that metric. While SPaS does not always deliver
higher performance in MLPs, SPaS consistently improves performance
in CNNs. Additionally, in almost all cases, we observe that Δ IQM > Δ
Max, indicating that SPaS brings more benefits to consistently finding
high-performing models than finding a singular high-performing
model.

In Figure 6 we observe that SPaS-MLPs with both dynamic
and static masks have higher performance as ratios decrease
in low-density regimes, specifically, density regimes of [0.01-
0.001]. In the most extreme density regime, the choice of 𝑅
can result in differences of ∼10% in performance. Density
regimes of [0.25-0.05] give a clear advantage to models with
more sequential connections.
SPaS and SPaSET improve model stability over its

counterparts. In Table 5 we observe that the performance
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(a) CIFAR-10 (b) CIFAR-100

Figure 5. Ablation on sequential-skip ratios for SPaS-CNNs on CIFAR-10/100. The ratio of sequential-skip connections (range [0.5-1.0]) is on
the x-axis and the IQM of the Validation Accuracy (%) is on the y-axis. Experiments are performed with parameter budgets in the range of
[2000-50000]. We observe that the highest density regime (50000 parameters) is somewhat agnostic to the choice of ratio R, but optimal performance
is achieved with ratios in the range of [0.5-0.8]. In the lowest density regime (2000 parameters), we find the inverse: ratios of 0.9 and 1.0 provide
the best performance on CIFAR-10/100 respectively.

benefits of SPaS are more prominently visible in the vali-
dation accuracy’s IQM than the individual best-performing
models. This indicates that the performance benefits of SPaS
and SPaSET are more apparent in model stability. SPaS in
combination with SPaSET is more consistently able to find
optimal sparse masks for both sequential and skip layers
compared to models without SPaS. This improved stability
most likely stems from the improved flow of gradients pro-
vided by SPaS and SPaSET’s ability to find these optimal
sparse masks.
SPaSET enables SPaS networks to maintain perfor-

mance in high sparsity regimes. In Tables 3, 4 and Fig-
ures 3, 4 we find that SPaS networks trained with SPaSET pro-
vide a large improvement over SPaS networks trained with
static sparse masks. SPaSET provides a slight boost in accu-
racy among high-density regimes, but as low-density regimes
are approached the performance difference between static
and SPaSET-trained networks becomes even more apparent.
In CNNs, at compression rates of 75x, SPaSET provides up to
∼20% higher validation accuracy on both CIFAR10/100 over
its static counterparts. In MLPs, SPaSET boosts performance
by ∼20% and ∼12% on CIFAR10 and CIFAR100 respectively.
In numerical classification, we observe a ∼20% boost at 25x
compression.

7 Discussion & Conclusion
In this thesis, we proposed a novel architecture that combines
the principles of sparsity and shortcut connections called
SPaS, and an evolutionary training algorithm that enables
sparse masks for sequential and shortcut connections to be
discovered during training, called SPaSET.

We introduced the SPaS architecture for MLPs and CNNs
and, to answerRQ1. (What role do sparse shortcut connections
play in the performance of ANNs?), we find that the skip con-
nections in SPaS provide our models with improved gradient
propagation across layers and enable feature reuse, deliver-
ing both improved model stability and higher performances.
Both SPaS-MLP and SPaS-CNN deliver 4∼5% increased per-
formance on CIFAR-100 over a plain MLP and CNN. SPaS-
CNN even improves performance over DenseNets by 1∼2%.
SPaS-MLP only provides a slight improvement in perfor-
mance over its D/S-MLPs counterparts on most of the nu-
merical classification tasks but is able to deliver a significant
performance boost of over 24% over the MiniBooNE dataset.
To answer RQ2. (Can we use the principles of Dynamic

Sparse Training to find optimal sparse masks for shortcut con-
nections?), we introduced SPaSET. SPaSET applies the prin-
ciples of Dynamic Sparse Training (DST) to shortcut connec-
tions, delivering us a training scheme that enables optimal
sparse mask for both sequential and shortcut connections
to be discovered during training in SPaS networks. SPaSET
improves model performance by up to 20% over static sparse
masks in high sparsity regimes on both computer vision and
numerical classification tasks.

To answerRQ3. (To what extent can SPaS allow us to create
even sparser networks?), we found that SPaS enables MLPs to
be compressed up to 25x in numerical classification and 75x
in computer vision over 5x on plain MLPs while remaining
competitive with plain dense and sparseMLPs. As sparsity in-
creases and the network becomes more constrained, connec-
tions and neurons can become isolated. This can potentially
result in dead ends and restricted backpropagation. Addition-
ally, as the network becomes more compressed, more and
more of the parameter budget must be expended to guarantee
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(a) Static (b) SPaSET

Figure 6. Ablation on sequential-skip ratios for SPaS-MLPs on CIFAR-10. The ratio of sequential-skip connections (range [0.0-0.9]) is on the
x-axis and the average (5 runs) Validation Accuracy (%) is on the y-axis. Experiments are performed with densities in the range of [0.25-0.001].
We observe that, in both static and dynamic contexts, low-density regimes ([0.01-0.001]) enjoy improved performance from lower values of 𝑅,
while high-density regimes ([0.25-0.10]) benefit from higher values of 𝑅.

propagation from input to output. In an MLP, propagating
over multiple layers necessitates multiple connections, while
a SPaS-MLP can do the same with just a single connection.

SPaS additionally introduces the novel sequential-shortcut
ratio parameter 𝑅. We find that the tuning of 𝑅 can have a
significant impact on the performance of both SPaS-MLP
and SPaS-CNN in varying sparsity regimes. On CIFAR10/100,
this difference is most significant in low-sparsity regimes,
resulting in differences of 10% and 30% in MLPs and CNNs
respectively.

7.1 Limitations
Binary masks. The sparse masks for both sequential and
skip connections were implemented with binary masks.
These binary masks result in the computational overhead
growing exponentially with layer depth: As layer depth
grows the amount of possible skip connections grows expo-
nentially with each additional layer. This fact greatly limits
the possible depth of SPaS networks we can perform experi-
ments on.
Limited model sizes. Due to the computational overhead
from the use of binary masks the sizes of our models were
very limited as larger models would quickly run into mem-
ory restrictions. This has resulted in the CNNs being limited
up to 300k parameters. DenseNets are usually employed
with millions of parameters which can give performances
of 93-95% on CIFAR-10 and 72-80% on CIFAR-100, whereas
our limited DenseNets go up to 75% and 45% on CIFAR-10
and CIFAR-100 respectively. Future experiments with more
computationally efficient masks, larger memory capacity,
or truly sparse implementations would allow us to make a
better comparison between the CNN, DenseNet, and SPaS-
CNN.

Comparing CNN architectures. One issue that arose dur-
ing experimentation was the question of how to make a
fair comparison between CNN models. SPaS in MLPs al-
lowed these models to still be compared one-to-one with
the proposed sparsity calculation as a metric (namely, calcu-
lating sparsity by the SPaS networks’ plain dense counter-
part). With this metric, the amount of I-FLOPs for an 80%
sparse S-MLP and SPaS-MLP are identical. The various CNN
architectures featured in this thesis, however, have more
complex features in their architectures, such as SPaS/dense
blocks (and their associated growth rate), transition layers,
and channel/kernel sizes. As a result, the proposed sparsity
metric proved unsuitable for making one-to-one compar-
isons between different CNN architectures. Consequently,
we opted to calculate sparsity relative to each model’s own
architecture. To facilitate comparisons between our CNN
models, we used I-FLOPs as the measure of computational
cost as opposed to compression rates as we did with MLPs.

8 Future work
Truly sparse. As the implementation was done with binary
masks, the scale of experiments was severely limited. To
investigate the efficacy of SPaS in very deep networks, ex-
periments with a truly sparse implementation are required.
Investigating connectivity. It would be interesting to in-
vestigate the connectivity of SPaS vs. non-SPaS networks us-
ingmetrics from graph theory (e.g. heat diffusion) to evaluate
whether SPaS (and SPaSET) result in improved connectivity
patterns. We have also not investigated what the resulting
topologies of the best-performing models look like. It would
be interesting to investigate what topological features result
in more parameter-efficient models.
Unfixed R. In this thesis all experiments were performed
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with a fixed 𝑅, disallowing the ratio of sequential-shortcut to
change throughout training. Future work needs to determine
what effect a fixed or unfixed 𝑅 has on stability, performance,
and the final connectivity pattern. Experiments with unfixed
𝑅 could additionally lead to insights on how to tune 𝑅 for var-
ious model architectures or indicate to what capacity SPaS
models can self-tune 𝑅.
ERK sparse initialization We perform a uniform initial-
ization of weights in SPaS networks. Typically, Erdős–Rényi
random graphs (ERK) are used to initialize sparse topologies.
Future work can seek how to extend ERK initialization to
also apply to SPaS networks.
Kernel sizes in SPaS-CNN.We chose 3x3 kernels for our
SPaS-CNN as it is also the typical choice of kernel size in
DenseNets. Since SPaS-CNN has many fundamental differ-
ences in architecture, it would be wise to investigate how
the choice of kernel size can impact performance in varying
sparsity regimes and values of 𝑅.
Different SPaS Block Architectures. Our proposed imple-
mentation of SPaS in CNNs is not the only way to implement
parameterized shortcut connections in CNNs. We could for
example make the connections in SPaS Blocks partly residual,
as inspired by ResNets:

x𝑙 = 𝐻0,𝑙 (x0) + 𝐻1,𝑙 (x1) + ... + 𝐻𝑙−1,𝑙 (x𝑙−1) + x𝑙−1, (22)

or "densely" residual, not just feeding residual information
from the previous layer but all previous layers:

x𝑙 = 𝐻0,𝑙 (x0)+x0+𝐻1,𝑙 (x1)+x1+...+𝐻𝑙−1,𝑙 (x𝑙−1)+x𝑙−1. (23)

We could also concatenate the results from SPaS Blocks
into a growing feature map (as opposed to performing sum-
mation, keeping feature map size fixed within blocks). Such
an implementation would more closely resemble a DenseNet:

x𝑙 = 𝐻𝑙 ( [𝐻0,𝑙 (x0), 𝐻1,𝑙 (x1), ..., 𝐻𝑙−1,𝑙 (x𝑙−1)]), (24)
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A CNN Architectures

Layers Output Size CNN/SPaS-CNN
Convolution 32x32x8 3 x 3 conv, stride 1
Pooling 16x16x8 3x3 max pool, stride 2

SPaS Block (1) 16x16x8 [3 x 3 conv] x 3

Transition Block (1) 16x16x16 1x1 conv
8x8x16 2x2 avg pool, stride 2

SPaS Block (2) 8x8x16 [3 x 3 conv] x 3

Transition Block (2) 8x8x32 1x1 conv
4x4x32 2x2 avg pool, stride 2

SPaS Block (3) 4x4x32 [3 x 3 conv] x 3

Classification Layer 1x1x32 4x4 global average pool, stride 4
10/100 linear, softmax
(a) CNN/SPaS-CNN

Layers Output Size DenseNet
Convolution 32x32x8 3 x 3 conv, stride 1
Pooling 16x16x8 3x3 max pool, stride 2

Dense Block (1) 16x16x40 [3 x 3 conv] x 4

Transition Block (1) 16x16x20 1x1 conv
8x8x20 2x2 avg pool, stride 2

Dense Block (2) 8x8x100 [3 x 3 conv] x 4

Transition Block (2) 8x8x50 1x1 conv
4x4x50 2x2 avg pool, stride 2

Dense Block (3) 4x4x250 [3 x 3 conv] x 4

Classification Layer 1x1x250 4x4 global average pool, stride 4
10/100 linear, softmax
(b) DenseNet

Table 6. High-level overview of the CNN, SPaS-CNN, and
DenseNet architectures for the experiments on CIFAR-10 and
CIFAR-100
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B Parameter budget experiments

MLP SPaS-MLP CNN DenseNet SPaS-CNN
Sparsity Mode |𝜃 | Mean Max Mean Max Mean Max Mean Max Mean Max

Static 1k - - 14.02±1.89 16.18 - - - - - -
2k - - 20.95±1.62 22.77 14.06±6.33 24.35 11.53±3.36 17.53 - -
5k - - 31.35±1.32 32.55 41.53±11.25 51.03 37.46±6.53 43.83 31.17±8.80 40.49
15k - - 42.98±0.95 43.88 67.07±1.56 69.22 52.78±13.00 62.20 61.16±2.67 64.28
50k 49.60±0.48 50.11 48.97±0.37 49.38 74.57±1.41 76.13 70.53±0.96 71.87 73.52±1.82 75.71

SET*/SPaSET 1k - - 36.09±0.63 36.79 - - - - - -
2k - - 45.99±0.90 46.92 46.21±18.7 61.17 40.17±18.05 58.36 14.97±11.1 34.73
5k - - 48.60±0.40 49.20 65.63±5.39 70.28 39.58±22.71 64.38 63.96±11.6 70.23
15k - - 49.52±0.68 50.20 73.51±1.85 75.39 73.85±1.46 74.79 75.16±1.03 76.00
50k 42.38±18.05 51.08 49.74±0.56 50.33 74.90±2.27 77.35 76.24±1.36 77.66 77.36±0.56 78.21

N/A Fully dense 47.89±0.88 49.26 39.82±0.94 41.17 73.73±1.66 75.22 73.26±7.02 77.49 78.06±0.72 78.64
Table 7. Experimental results of networks with static/dynamic sparsity and a fully dense baseline on CIFAR-10 by parameter budget |𝜃 |.
Performances highlighted in bold were the best performing for that parameter budget. Results with a - did not achieve a non-random
performance. For each model, the left column indicates the mean performance of the five experiments (with standard deviation), and
the right column is the validation accuracy of the best-performing model from those five experiments. We observe that SPaS-CNN
outperforms its counterparts down to 15k parameters. SPaS-MLP is able to uphold non-random performance down to 1k parameters as
opposed to 50k in plain MLPs.

MLP SPaS-MLP CNN DenseNet SPaS-CNN
Sparsity Mode |𝜃 | Mean Max Mean Max Mean Max Mean Max Mean Max

Static 1k - - - - - - - - - -
2k - - 3.17±0.33 3.65 2.23±1.64 4.15 - - - -
5k - - 7.19±0.40 7.73 15.87±2.48 18.62 10.48±2.56 13.45 7.88±2.93 13.03
15k - - 15.19±0.66 15.79 30.46±0.68 30.96 18.19±11.36 27.19 22.59±7.06 28.51
50k - - 20.05±0.64 20.58 39.05±1.75 40.70 38.66±0.41 39.27 40.31±0.64 41.13

SET*/SPaSET 1k - - - - - - - - - -
2k - - 10.51±0.65 11.55 - - - - - -
5k - - 19.35±0.17 19.63 26.26±2.14 29.17 27.94±1.78 30.22 27.90±2.28 30.31
15k - - 23.12±0.40 23.67 38.30±1.45 40.16 36.68±3.38 39.71 41.31±1.10 42.66
50k - - 24.25±0.37 24.58 44.21±0.61 45.09 45.35±1.12 46.64 47.23±0.68 48.00

N/A Fully dense 18.31±0.63 19.19 13.12±0.57 13.77 38.70±2.5 41.19 43.11±2.00 45.76 46.31±0.97 47.64
Table 8. Experimental results of networks with static/dynamic sparsity and a fully dense baseline on CIFAR-100 by parameter budget |𝜃 |.
Performances highlighted in bold were the best performing for that parameter budget. Results with a - did not achieve a non-random
performance. For each model, the left column indicates the mean performance of the five experiments (with standard deviation), and
the right column is the validation accuracy of the best-performing model from those five experiments. We observe that SPaS-CNN
outperforms its counterparts down to 15k parameters. SPaS-MLP is able to uphold non-random performance down to 2k parameters
while plain MLPs are unable to achieve a non-random performance with as much as 50k parameters.

MLP SPaS-MLP
Sparsity Mode |𝜃 | Mean Max Mean Max

Static 1k - - 53.27±0.43 53.87
2k - - 65.30±2.08 67.70
5k 56.93±8.85 72.76 71.20±0.24 71.38
15k 72.77±0.27 73.11 71.78±0.35 72.23

SET*/SPaSET 1k - - 66.08±2.74 69.59
2k - - 68.99±1.40 69.96
5k - - 71.12±0.35 71.55
15k 72.94±0.35 73.41 71.69±0.29 72.07

N/A Fully dense 72.83±0.43 73.15 71.08±1.04 72.11
Table 9. Experimental results of MLP and SPaS-MLP with static/dynamic sparsity and a fully dense baseline on the Higgs dataset by
parameter budget |𝜃 |. Performances highlighted in bold were the best performing for that parameter budget. Results with a - did not
achieve a non-random performance. For each model, the left column indicates the mean performance of the five experiments (with
standard deviation), and the right column is the validation accuracy of the best-performing model from those five experiments. We
observe that SPaS-MLP is able to uphold a non-random performance down to 1k parameters as opposed to 5k with plain MLPs.
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Figure 7. Results from Figure 4 isolated into the results of the individual datasets. Validation accuracy (%) IQM with standard error on
the y-axis by compression rate (1x to 75x) on the x-axis.


