
1

Faculty of Electrical Engineering,
Mathematics & Computer Science

Radiation resilience evaluation
of a Flash-based FPGA
with a soft RISC-V Core

Kevin Böhmer
M.Sc. Thesis - Embedded Systems

September 2023

Supervisors:
dr. ir. M. Ottavi

B. Endres Forlin

Computer Architecture for Embedded Systems
Faculty of Electrical Engineering,

Mathematics and Computer Science
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

Acknowledgements

I am grateful for the guidance, mentorship, and support I have received through-
out the process of completing my thesis. This academic journey has been made
possible with the invaluable contributions of several individuals, and I would like to
express my appreciation to each of them.

I want to thank Dr. Ir. M. Ottavi for being willing to supervise this thesis. Thank
you for your insightful expertise, advice and the opportunity to work under your guid-
ance. I want to thank Bruno Endres Forlin for his role as my daily supervisor. Bruno,
your patience in answering my numerous questions and your support have been
invaluable throughout this process. Both Bruno and Marco introduced me to the
academic world and guided me in the publication of an academic paper, an achieve-
ment of which I am incredibly proud.

I would like to extend my gratitude to Prof. Dr. Ir. A.B.J. Kokkeler and Dr. Ir.
N. Alachiotis for their roles as members of my graduation committee. Thank you for
your willingness to serve as evaluators through the trajectory of my thesis.

The graduation committee consists of the following members:

• Dr. Ir. M. Ottavi (University of Twente & University of Rome Tor Vergata)

• Dr. Ir. N. Alachiotis (University of Twente)

• Prof. Dr. Ir. A.B.J. Kokkeler (University of Twente)

• B. Endres Forlin (University of Twente)

Lastly, I extend my appreciation to you, the reader, for dedicating your time to
read my thesis.

iii

IV ACKNOWLEDGEMENTS

Abstract

Highly reliable and customizable micro-processors are critical enablers for future
intelligent space platforms. From an architectural point of view, the RISC-V architec-
ture is the current best option for adaptability, with its modular ISA and a multitude
of contributors. To implement such a processor at a low price range, companies are
looking at reprogrammable Field-Programmable Gate Arrays (FPGAs), which can
extend the mission lifetime. SRAM FPGAs are known to be susceptible to low Lin-
ear Energy Transfer Single-Event Upsets (SEUs) in the configuration memory, Flash
FPGAs on the other hand, are in general immune to such errors.

This thesis performs for the first time characterization of the open-core NE-
ORV32, a lightweight yet representative RISC-V SoC, and provides insights into the
tradeoffs of protection mechanisms against neutron-induced SEUs when this core
is implemented in a Flash-based FPGA. The Unmodified core is compared against
an ECC-protected version and a register-level Triple Modular Redundancy (TMR)
with an Error Correction Code (ECC) version. All versions execute the CoreMark
benchmark.

The Unmodified NEORV32 instances mainly experienced exceptions arising from
Single Event Upsets (SEUs) that affected stored pointers in the data memory. These
altered pointers, when employed as addresses, resulted in Load and Store excep-
tions, stemming from the pointers now residing outside the valid memory range. The
incorporation of ECC swiftly mitigated these disparities and reduced Store and Load
exceptions to zero. Introducing TMR on the Flip-Flop level further advanced the out-
come by eliminating all exceptions, including those tied to Illegal instructions. These
Illegal instructions are likely the fallout of SEUs influencing control logic, culminating
in Single-Event Functional Interrupts (SEFIs).

v

VI ABSTRACT

Contents

Acknowledgements iii

Abstract v

List of acronyms xi

1 Introduction 1
1.1 Motivation . 3
1.2 Research goal . 4
1.3 Report organization . 4

2 Background 5
2.1 Single Event Effects . 5

2.1.1 SEE causes . 5
2.1.2 Physical origins of SEU . 7
2.1.3 Effects of SEEs . 8
2.1.4 Architecturally Correct Execution (ACE) 10
2.1.5 Architectural Vulnerability Factor (AVF) 12
2.1.6 Metrics . 13

2.2 Redundancy techniques . 14
2.2.1 Physical Redundancy . 14
2.2.2 Temporal Redundancy . 15
2.2.3 Information Redundancy . 15

2.3 RISC-V and FPGA Integration for Single Event Effects Mitigation . . . 21
2.3.1 RISC-V Instruction Set Architecture 21

3 Related Work 23

4 NEORV32 27
4.1 NEORV32 Processor & CPU . 27
4.2 RISC-V Standard Extensions Configurability 28
4.3 Pipeline . 29

vii

VIII CONTENTS

4.4 Memory Access . 29
4.5 Execution safety . 31
4.6 Wishbone interface . 32

5 NEORV32 Implementation 35
5.1 Target Device . 35
5.2 Unmitiaged NEORV32 implementation 36

5.2.1 Memory access . 36
5.2.2 AHBL-Wishbone Bridge . 38

5.3 Fault-tolerant enhancements . 41
5.3.1 Design of Hsiao Encoder & Decoder 41
5.3.2 ECC Implementation . 42
5.3.3 TMR implementation . 43
5.3.4 FPGA resource usage . 44
5.3.5 Power Estimation using Microsemi’s Smart Power Tool 48

5.4 Testing of the Fault-Tolerant adjustments 50

6 Neutron Beam Experiment 53
6.1 Experimental setup . 53
6.2 Software . 54
6.3 Error Model . 55
6.4 Characterization Results . 56

7 Discussion 61
7.1 Implications of findings . 61

7.1.1 Unmodified . 61
7.1.2 ECC-enhanced . 63
7.1.3 ECC+TMR . 64

7.2 Program analysis . 65
7.2.1 Affected functions . 65
7.2.2 Vulnerability Factor . 66
7.2.3 CoreMark Linked List Algorithm 67
7.2.4 Analysis of the crash traces . 69

7.3 Summary . 71

8 Simulation 73
8.1 Simulation setup . 73
8.2 Fault injection strategy . 74
8.3 Manual injected faults for PC value 0x600012cc 76
8.4 Manual injected faults for PC value 0x60001676 76

CONTENTS IX

8.5 Summary . 78

9 Conclusions and recommendations 81
9.1 Future work . 83

References 85

Appendices

A 91
A.1 Assembly functions . 91
A.2 Top-level design in Libero SoC . 95
A.3 FPGA resources . 96
A.4 Parity check matrices . 97

X CONTENTS

List of acronyms

ACE Architecturally Correct Execution

AI Artificial Intelligence

ALU Arithmetic Logic Unit

ASIC Application-Specific Integrated Circuits

AVF Architectural Vulnerability Factor

BRAM Block RAM

CNN Convolutional Neural Networks

COTS Commercial Off-The-Shelf

CRC Cyclic Redundancy Check

DMA Direct Memory Access

DMEM Data Memory

DFF D-type Flip-Flop

DMR Dual Modular Redundancy

DUE Detected Unrecoverable Error

ECC Error-Correction Code

EDC Error-Detecting Code

ESA Eureopean Space Agency

FDD First-Level Dynamically Dead

FIT Failure in Time

FPGA Field-Programmable Gate Array

PWM Pulse-Width Modulation

HPM Hardware Performance Monitors

IC Integrated Circuit

IP Intellectual Property

xi

XII LIST OF ACRONYMS

ISA Instruction Set Architecture

LET Linear Energy Transfer

LUT Lookup Table

LSB Least Significant Bit

MBU Multiple Bit Upset

MEBF Mean Execution Between Failures

MSS Microcontroller Subsystem

MTBF Mean Time Between Failure

MTTF Mean Time to Failure

MWBF Mean Workload Between Failures

NMR N-Modular Redundancy

PC Program Counter

PVF Program Vulnerability Factor

RTL Register Transfer Level

SDC Silent Data Corruption

SEB Single Event Burnout

SECDED Single-Error Correcting and Double-Error Detecting

SEC Single Error Correcting

SED Single Error Detecting

SEE Single Event Upset

SEFI Single Event Functional Interrupt

SEGR Single Event Gate Rupture

SEL Single Event Latchup

SEMBU Single Event Multiple Bit Upset

SER Soft Error Rate

SET Single Event Transient

SEU Single Event Upset

SPI Serial Peripheral Interface

SRAM Static RAM

SoC System on Chip

TDD Transitively Dynamically Dead

XIII

TMR Triple Modular Redundancy

TRL Technology Readiness Level

VCD Value-Change Dump

WDT Watchdog timer

eNVM Embedded Non-Volatile Memory

XIV LIST OF ACRONYMS

Chapter 1

Introduction

In recent years, there is an increasing interest in Artificial Intelligence (AI) by the
entire aerospace community [1]. For example, the communication delay between
Mars and Earth could range from 6.5 to 44 minutes, to enable such a mission, in-
dividual space entities need autonomous decision-making abilities. Nevertheless,
the majority of tasks performed by processors within space data systems primarily
involve non-demanding control and housekeeping operations. Consequently, facili-
tating more resource-intensive tasks, such as running AI algorithms on embedded
systems in space, necessitates a fundamental shift in the design of space-grade pro-
cessors. This transformation is particularly crucial given that processors on satellites
frequently operate under stringent power constraints.

The aerospace industry has highlighted the limitations of existing space-grade
computing systems. Full rad-hard processors, which have hardening in both sil-
icon process and microarchitecture, typically lag more than a decade behind their
commercial counterparts in terms of performance, because of their niched-size mar-
ket. Unfortunately, this gap is widening every year [2]. These architectures are built
upon the Sparc V8 Instruction Set Architecture (ISA), which was initially introduced
in 1992. Despite the decline of SPARC processors in terrestrial applications, they
continue to be a prominent choice for ongoing and upcoming missions in the space
sector, although these systems heavily depend on outdated architectures. In addi-
tion to the inadequate computing power for AI tasks, this persistence has also led to
challenges in sourcing developers with expertise in these specific technologies.

Given these circumstances, opting for an architecture that provides a flourishing
software environment and ISA extensions, like RISC-V, can become highly benefi-
cial. Embracing the RISC-V architecture offers a multitude of benefits to the space
sector. The Eureopean Space Agency (ESA) believes that the utilization of RISC-V
presents the opportunity to leverage an expanded and robust software ecosystem
in the years to come [2]. This prospect holds particular importance for essential
functions such as the maintenance of the software toolchain. Furthermore, the in-

1

2 CHAPTER 1. INTRODUCTION

troduction Of RISC-V in space will contribute to providing a range of alternatives to
proprietary solutions. Open standards allow designers to access multiple Intellectual
Property (IP) sources or even create their own, resulting in a diverse ecosystem of
innovation and competition. This is of particular significance as concerns continue to
mount regarding monopolistic positions within the embedded market [3], [4], as well
as the potential impact of sanctions and the desire for greater independence in the
product chain. In addition, the RISC-V ISA is divided into different standard exten-
sions, each targeting specific functionalities, covering low-end to high-performance
applications, such as AI. RISC-V’s modular design enables engineers to tailor the
processor’s architecture to meet these requirements more effectively.

To effectively assess the suitability of a RISC-V processor for space applica-
tions, a dedicated target platform is essential, which can take the form of either an
Application-Specific Integrated Circuits (ASIC) or Field-Programmable Gate Array
(FPGA). The advantages of employing an FPGA include its cost-effectiveness and
the ability to be reprogrammed. With satellite operational lifetimes extending well
over a decade, exceeding the validity of existing telecom standards, the demand
for in-flight re-programmability becomes increasingly critical [5]. If software-based
solutions are not viable, Repgrogammable FPGAs (RFPGA) could arise as the only
method to address this need. The objective of the Heinrich Hertz (H2Sat), launched
in 2018, is to validate new hardware, software and communication technologies in
space, aimed at addressing the ever-evolving landscape of telecommunication stan-
dards [6]. The transponder of this satellite, integrated with an in-flight reconfigurable
FPGA-based module, will possess the capability to receive updates while in-flight,
allowing for adaptations to new telecommunication standards as they are introduced.

Utilizing Commercial Off-The-Shelf (COTS) electronic components offer an at-
tractive advantage over their Radiation Tolerant or Hardened counterparts, primarily
in terms of performance enhancement [7]. In fact, the adoption of COTS devices
is often advocated as the optimal approach to meet the escalating performance
demands of space applications [8]. However, it is important to acknowledge that
COTS devices are more susceptible to external disturbances, such as radiation, ow-
ing to their lower power consumption and faster switching characteristics. In the
challenging space environment, electronics are subjected to diverse forms of radi-
ation, containing high-energy particles. One particular concern is the occurrence
of Single Event Upsets (SEUs), wherein ionizing radiation impacts a memory cell,
inducing a change within it. This alteration can lead to bit-flips. One of the most
effective strategies for mitigating these effects involves introducing redundancy at
the Register Transfer Level (RTL).

FPGAs come in two primary types: SRAM-based and Flash-based, each of-
fering unique benefits. SRAM-based FPGAs employ Static RAM (SRAM) cells for

1.1. MOTIVATION 3

configuration, enabling high performance and rapid reconfigurability. However, they
are susceptible to SEUs that can induce bit flips in the configuration memory, lead-
ing to malfunctions and unpredictable behaviour. In contrast, Flash-based FPGAs
are notably well-suited for space applications due to their immunity to configura-
tion memory upsets and low power consumption. Despite this advantage, certain
components within Flash-based FPGAs, like Block RAMs (BRAMs) and D-type Flip-
Flops, remain vulnerable to SEUs. Thus, incorporating redundancy into the design
becomes necessary even for Flash-based FPGAs.

Future space could benefit from these new developments, provided that research
is done to satisfy the stringent requirements in space, especially in terms of fault tol-
erance and assessing of Technology Readiness Level (TRL) for COTS devices. The
process of testing and certifying novel cores and platforms before their deployment
in space is a crucial step in ensuring the success and safety of space missions.
Subjecting cores and platforms to simulated space environments on Earth helps
to uncover any vulnerabilities and assess the TRL. A powerful approach to repli-
cating the space environment involves the usage of beam experiments. Through
such experiments, the cross-section of devices can be estimated under conditions
that closely resemble the space environment, achieved by exposing the device to
accelerated particle fluxes.

1.1 Motivation

In the ever-evolving landscape of the space sector, the imperative to embrace COTS
devices for space applications has grown exponentially. Building upon the chal-
lenges and opportunities outlined in the introduction, this research addresses a
critical research gap in the domain of space-grade processors. While substantial
progress has been made in the domain of soft cores implemented in SRAM-based
FPGAs, a significant research gap exists in the utilization of Flash-based FPGAs,
despite their immunity to configuration memory upsets and lower power consump-
tion.

In light of these considerations, this research attempts to delve into two corre-
sponding domains. Firstly, it seeks to deepen our comprehension of the behavioural
dynamics of Flash-based FPGAs when subjected to neutron radiation. This aims
to unlock insights into the resilience and adaptability of Flash-based FPGAs in the
hostile space environment.

Concurrently, this study undertakes the task of exploring the viability of integrat-
ing open-source RISC-V cores into a Flash-based FPGA. By doing so, the research
tries to match the complexity of fault-tolerant enhancements with the cutting-edge
capabilities of RISC-V architecture.

4 CHAPTER 1. INTRODUCTION

The main driving force behind this thesis is to contribute to the new era of space.
By investigating the complex behaviours of Flash-based FPGAs when exposed to
radiation and aligning them with the reliability of RISC-V cores, this study aims to
make a substantial contribution to the progress of aerospace technology.

1.2 Research goal

The previous section has highlighted the importance of fault-tolerant processors. To
investigate this issue, this thesis aims to achieve the following research goals:

Investigate different trade-offs between area, power, performance, and resilience
for errors in different techniques of fault tolerance in a soft processor implemented
on a Flash-based FPGA, and perform a radiation test to measure the performance
of the redundancy techniques.

This goal can be achieved by answering the following research questions:

RQ1: How do different fault tolerance techniques impact the trade-off between area,
power, and performance in a soft processor implementation on a Flash-based
FPGA?

RQ2: What is the resilience performance of different fault tolerance techniques in
the presence of errors, particularly radiation-induced faults, in a soft processor
implemented on a Flash-based FPGA?

1.3 Report organization

This thesis aims to provide a comprehensive analysis of the radiation resilience of
Flash-based FPGA with a soft RISC-V core through the exploration of eight key
chapters. The remainder of this report is organized as follows. In chapter 2, the
groundwork is provided by providing an overview of the necessary background. In
Chapter 3, the related work about radiation tests of FPGAs and Asics is presented.
In chapter 4, the chosen soft-core and its architecture are presented.

The implementation of this softcore on the chosen FPGA is explored in chapter 5.
The setup for the radiation beam experiment and the results of this experiment are
shown in Chapter 6. Chapter 7 provides a discussion of the conducted experiment.
In chapter 8 the possible exception causes presented in the Discussion are validated
through an RTL simulator. Lastly, in Chapter 9, conclusions and recommendations
are given.

Chapter 2

Background

The current Integrated Circuit (IC) technology is vulnerable to Single Event Upset
(SEE) caused by particle strikes. These SEEs can influence the functionality of
a chip or the computational results, therefore there is a need for fault-tolerant in
mission-critical applications, like avionics, space or medical applications. This chap-
ter gives an overview of different forms of SEEs. In addition, this chapter will present
common redundancy techniques to mitigate the errors caused by SEEs. Lastly, the
RISC-V ISA will be introduced as the target platform.

2.1 Single Event Effects

The effects of subatomic radiation particles on ICs are frequently referred to as Sin-
gle Event Upsets (SEEs). These SEEs can lead to randomly appearing glitches in
electronic errors resulting in annoying system responses or catastrophic system fail-
ures. Due to the IC devices with higher density and smaller feature sizes, these de-
vices are more vulnerable to SEEs. Smaller feature sizes, result in faster processing
and also require a smaller quantity of electrical charge. Because the charges have
been decreased, these charges can be generated in the IC device by the passage
of cosmic rays or alpha particles.

2.1.1 SEE causes

Satellites in geosynchronous orbit and corresponding regions outside Earth’s radi-
ation belts experience upsets due to heavy ions from either cosmic rays or solar
flares [9]. The cosmic ray heavy ion flux has approximately 100 particles/cm2 per
day. For very sensitive devices this can result in daily upsets. Cosmic rays consist of
mostly protons, but also alpha particles and heavy ions, they mainly originated out-
side the solar system. The solar particles come from the sun and are high-energy
protons and heavy ions.

5

6 CHAPTER 2. BACKGROUND

Upsets can also occur within the proton radiation belts. The Van Allen belts
are two vast regions of intense radiation that encircle the Eart. It is named after
the scientist James Van Allen who discovered the belts in 1958. These belts con-
sist of charged particles, primarily electrons and protons. These are trapped by
the magnetic field of the Earth, they surround our planet like concentric doughnut-
shaped zones. The inner belt is closer to the Earth, while the outer belt is further
from Earth, reaching into a region where satellites orbit. The outer belt consists
mainly of high-energy electrons and is located 13,000 to 60,000 kilometres from sea
level. The lower belt lies 1,000 km to 12,000 km above Earth and consists mainly
of high-energy protons. The outer belt affects satellites and the lower belt affects
high-altitude aircraft.

The cosmic rays in space and those reaching Earth’s atmosphere are similar
in their origin and general characteristics, but there are some differences between
them. When cosmic rays interact with Earth’s atmosphere, several factors come
into play that influence their behaviour and composition. The atmosphere provides
shielding, it reduces the intensity and energy of cosmic rays reaching the surface
compared to those in space. The intensity and energy spectrum of cosmic rays
varies with altitude. At a higher level in the atmosphere, there is less atmospheric
shielding, therefore the cosmic ray flux is generally higher at higher altitudes. Be-
cause cosmic rays penetrate the atmosphere, there is a chain of nuclear reactions
that produce high-energy neutrons and protons. At 12,000 kilometres feet altitude
and 45 degrees latitude, there are 6000 neutrons per square centimetre. High-
energy cosmic rays and solar particles react with the upper atmosphere generating
high-energy protons and neutrons that shower to the ground. Neutrons are partic-
ularly troublesome because they are able to penetrate a concrete wall. This effect
depends on both the latitude and altitude.

The problems of radiation were already discovered in 1962. During the period
from 1962 to 1970, the initial satellite electronics showed unreliability, requiring the
incorporation of significant redundancy [10]. The major satellite problem was differ-
ential satellite charging in the solar wind, which resulted in noise and arcing between
satellite modules. Furthermore, data transmission to Earth suffered from high levels
of noise, making it difficult to distinguish electronic soft failures from transmission
errors. To address this, these transmissions were divided into smaller data streams
accompanied by parity checks and handshaking procedures.

There are more sources of radiation besides cosmic rays, solar particles and the
Van Allen belts. Package material of a chip can obtain radioactive isotopes which
decay, causing alpha particles right on the device. By carefully selecting the materi-
als, this cause can be greatly reduced. Besides space and avionics, there also exist
radiation damage sources on Earth. For instance, nuclear reactors need sensors

2.1. SINGLE EVENT EFFECTS 7

and control circuits. Particle accelerators also need electronics for controlling and
detector devices. In 1978, the cause of the errors in Intel’s 2107 series 16Kb DRAM
was found. The problem of trace radioactivity in the memory packaging materials
was discovered. A new factory was built on the Green River in Colorado due to the
large increase in demand for LSI ceramic packaging in the 1970s. However, this
factory was built downstream from the tailings of an old uranium mine. The ceramic
LSI packaging was contaminated due to the factory’s utilization of water containing
a significant amount of radioactive elements [10].

2.1.2 Physical origins of SEU

SEUs can be caused by charge deposition or by charge collection. Firstly charge
deposition will be explained. There are two main ways in which ionizing radiation
causes charge release in a semiconductor device: direction ionization caused by
the particle itself, and ionization caused by secondary particles generated through
nuclear reactions between the particle and the semiconductor device. Both mecha-
nisms result in the malfunctioning of the integrated circuits.

Direct Ionization: When an energetically charged particle moves through semi-
conductor material it frees electrons along its path as it loses energy. The particle
is at rest when all its energy is lost. The total path length of the travelled particle is
referred to as the particle’s range. The Linear Energy Transfer (LET) describes the
energy loss per unit path length of a particle as it passes through the material [11].
LET has units of MeV/cm2/mg because the energy loss per distance (MeV/cm) is
normalized by the density of the target material (mg/cm3). Therefore the LET can be
used for different targets. A LET of 97 MeV/cm2/mg corresponds to a charge dispo-
sition of 1 pC/um. Direction ionization is the primary charge deposition mechanism
for upsets by heavy ions. Lighter particles such as protons do not usually produce
enough charge by direct ionization to cause upsets in memory circuits. However,
because SEE devices are becoming more susceptible, upsets by protons may oc-
cur.

Indirect ionization: Protons and neutrons can both produce significant upset
rates due to indirect mechanisms. A high-energy proton or neutron can cause sev-
eral nuclear reactions when it enters the semiconductor lattice. These reaction prod-
ucts can deposit energy along their path by direct ionization because these particles
are much heavier than the original proton or neutron.

SEUs can also be caused by charge deposition. Usually, the most sensitive
region is the reverse-biased p/n junction. These regions can very efficiently collect
the particle-induced charge through drift processes, resulting in a transient current
at the junction. This current spike has two components: a short component that

8 CHAPTER 2. BACKGROUND

Figure 2.1: Flip-flop circuit with a sensitive junction highlighted. The right picture
shows the sensitive junction hit with a single heavy ion. Source: Pe-
tersen et al. [12]

.

lasts for hundreds of picoseconds after the ion strike and a delayed component that
may last hundreds of nanoseconds [9]. Figure 2.1 shows an SRAM cell in a valid
logic hold state on the left. On the right, the reverse-biased drain N1 is hit with an ion
strike. The inverter which is formed by P1 and N1, with input node B held low, and
output node A is pulled to VDD by P1. The inverter formed by P2 and N2 has input
node A forced high, therefore output node B is pulled low by N2. If an ion strikes
and enough charge is collected at the drain of N1, which lowers the potential below
the threshold of P2 and N2, the logic stored in the SRAM cell may flip.

When a charged particle, like an ion from radiation, interacts with the floating
gate transistor of a Flash cell, it needs a significantly higher amount of energy to
actually change the stored charge in the floating gate. This is because the charge is
stored in the form of trapped electrons, which are very well insulated.

2.1.3 Effects of SEEs

SEEs happen in space, in avionics and even on Earth. When it comes to avionics
systems, the main focus is on the neutrons generated by high-energy particles as
they penetrate the atmosphere. While approximately 20% of atmospheric particles
are protons, their impact is comparable in nature [9]. These SEEs can manifest in
the following ways:

1. SEU: A change in the state of the the memory. The susceptibility depends on
the type of memory, SRAM is more susceptible than Flash memory.

2.1. SINGLE EVENT EFFECTS 9

2. Single Event Multiple Bit Upset (SEMBU): a single particle strike, that causes
multiple changes in memory. An SEU with multiple bits changed.

3. Single Event Functional Interrupt (SEFI): unexpected output results that are
produced by SEUs originated in the device, for instance, SEUs in the configu-
ration memory of an FPGA [13].

4. Single Event Transient (SET): A voltage pulse in combinational logic which
can result in erroneous results if captured by a memory cell at the correct
moment.

5. Single Event Latchup (SEL): a short circuit which disrupts the functioning of
the IC, it could lead to permanent destruction.

6. Single Event Burnout (SEB): A destructive burnout of the drain-source in a
power MOSFET.

7. Single Event Gate Rupture (SEGR) caused by high-energy particles dam-
aging the gate oxide of MOS transistors, leading to malfunction or permanent
failure.

SEL, SEB and SEGR are destructive forms of SEEs, which means they involve
the physical destruction or irreversible changes in the device’s component. On the
other hand, Non-Destructive Single Event Effects refer to temporary or transient
disruptions in the regular operation of an electronic device. SEUs, SEMBUs and
SETs are forms of non-destructive SEEs and will be the focus of this thesis. An
example of a particle hitting a memory cell can be seen in figure 2.2. A particle
has hit a 16-bit word and depending on the technology this can result in a SEU or
SEMBU.

Figure 2.2: Example of a 16-bit memory array hit by an ionizing particle

10 CHAPTER 2. BACKGROUND

Figure 2.3: A SET in a combinational logic cell resulting in a SEU

If a particle hits a sensitive node of a logic gate cell it produces a SET [14]. This
SET can propagate through the logic data path and be captured by a flip-flop or latch.
The duration of the SET pulse is important since it must be sufficiently long to ensure
its capture and precisely timed to be captured at the correct moment. Once the SET
is stored within a memory cell, it transforms into a Single Event Upset (SEU). An
illustration of this concept can be seen in Figure 2.3. Consider a NAND gate with
both inputs set to 1, a situation that ordinarily produces an output of 0. However, an
unexpected scenario unfolds when a high-energy neutron particle collides with the
NAND gate. This collision generates a short voltage peak at the output of the gate.
Notably, the connected D-type Flip-Flop (DFF) records this voltage wave, resulting
in the transformation of what was originally a SET into a SEU.

Detected errors are called Detected Unrecoverable Error (DUE), and undetected
errors are called Silent Data Corruption (SDC). Not every faulty bit will result in a
visible as shown in figure 2.4. A faulty bit which is never read is not classified as an
error, because it does not have any effect on the outcome of the system. When a
faulty bit is read and there is error detection and correction, the bit can be corrected
and the faulty is not classified as an error. When the faulty bit can only be detected,
the question needs to be answered if it has any effect on the program outcome.
When it has no effect, it will be classified as a false DUE, otherwise as a true DUE.
When there is no error detection and it does not affect the program outcome the
faulty bit is classified as no error, because it is never detected. When it changes the
program outcome and is not detected, the classification SDC is used.

2.1.4 Architecturally Correct Execution (ACE)

Not all faults in a microarchitectural structure affect the final outcome of a program.
For instance, a single-bit fault in the branch predictor will not affect the sequence or
results of any committed instructions. The AVF is defined as the probability that a
fault in that particular structure will result in an error [16]. So the AVF of the branch
predictor is 0%. In contrast, the AVF of the program counter is effectively 100%.

2.1. SINGLE EVENT EFFECTS 11

Figure 2.4: Possible outcomes of a faulty bit in a microprocessor. Source: Mukher-
jee et al. [15]

The AVFs can also be calculated for storage cells. An error in a storage cell
that causes a visible error in the final output of the program in the absence of error
correction techniques is an ACE bit [16]. The remaining processor state bits are
called un-ACE bits. A fault in an un-ACE bit will not cause a visible error. The AVF
for a single-bit storage cell is simply the fraction of the time that it holds ACE bits.

The AVF of a branch predictor is 0% because the branch predictor is always
un-ACE bits. All the bits in the PC are always ACE bits, resulting in an AVF of
100%. Processor bits that do not affect the committed instruction path are called
microarchitectural un-ACE bits, examples of these are:

1. Idle or Invalid State: there exist instances in a microarchitecture when a sta-
tus bit is idle or does not contain any valid information. Such data and status
bits are un-ACE bits.

2. Mispeculated state: a microprocessor can perform different forms of specula-
tive operations. When these speculative operations are found to be incorrect,
the bits of these incorrectly speculated operations can be classified as un-ACE
bits.

3. Predictor Structures: A modern microprocessor can have many predictor
structures. A fault in these structures will cause a misprediction. This will
affect the performance, but the execution remains correct, therefore these bits
can be classified as un-ACE bits.

4. Ex-ACE State: are ACE bits that become un-ACE bits after their last use. This

12 CHAPTER 2. BACKGROUND

classification contains architecturally dead values, for instance, registers, as
well as architecturally invisible states.

Architectural un-ACE bits affect correct-path instruction execution, however, it
does not change the output of the system. There are five sources of architectural
un-ACE bits [16].

• NOP instructions: most instruction sets have NOP instructions. These NOP
instructions are used for instance for aligning instructions to address bound-
aries or filling VLIW-style instruction templates. The only ACE bit of a NOP
instruction is the bits distinguishing the NOP instruction from a non-NOP in-
struction.

• Performance-enhancing instructions non-opcode bits are un-ACE bits, be-
cause a fault there may cause the wrong data to be prefetched or may cause
an invalid address, in both cases the prefetch will be ignored.

• Predicated-false instructions are instructions which will not be committed
and discarded. Clearly, all these bits are un-ACE Bits.

• Dynamically dead instructions are those whose results are not used. Transitively
Dynamically Dead (TDD) instructions are instructions whose results are not
read by other instructions. First-Level Dynamically Dead (FDD) instructions
are instructions whose results are only read by other TDD or FDD instruc-
tions. Suppose, instruction A writes to register X1. After this write, instruction
B writes to the same register, but X1 was not read, so the output of instruction
A is not used. Therefore instruction A is a FDD instruction. FDD and TDD
instructions can be counted as ACE bits.

• logical masking there exist bits that do not influence the output. For instance
an OR operation on specific bits with 1’s.

2.1.5 Architectural Vulnerability Factor (AVF)

Mukherjee et al. introduced the concept of Architectural Vulnerability Factor (AVF)
and ACE analysis [16]. The AVF of a processor is the probability that a fault in
this structure will result in a visible error in the program output. It is based on the
concept of Architecturally Correct Execution (ACE) bits and un-ACE bits. ACE bits
are needed for correct operation, while un-ACE bits are not. The definition of AVF
can be found in Equation (2.1).

2.1. SINGLE EVENT EFFECTS 13

AV FH =

∑N
n=0(ACE m-bits in H at cycle n)

BR ×N
(2.1)

The Program Vulnerability Factor (PVF) is a metric that measures the vulnerabil-
ity of an architectural resource to errors [17]. The PVF is given in Equation (2.2) [17].
The difference between PVF and AVF is that PVF focuses on instructions, whereas
AVF focuses on clock cycles.

PV FR =

∑I
i=0(ACE a-bits in R at instruction i)

BR × I
(2.2)

Fang et al. extended the PVF metric and created a dynamic model for predicting
whether a particular fault will cause a crash. By performing fault injection they found
that the majority of crashes are caused by illegal memory addressing [18]. They
observed four types of exceptions resulting in crashes: Segmentation fault, Abort,
Misaligned memory access and Arithmetic errors. They discovered that segmenta-
tion faults are the predominant source of crashes with a 99% average frequency and
a 96% minimum frequency.

2.1.6 Metrics

Both SDC and DUE rates are typically expressed in Failure in Time (FIT). One FIT
specifies one failure in 109 hours, which is a billion hours. FIT rates are additive,
so the FIT rate of a system can be computed by summing all the FIT rates of the
components. This sum is often referred to as Soft Error Rate (SER). The Mean Time
to Failure (MTTF) is often more intuitive but is not additive. MTTF is the average
time before the system fails and is inversely related to FIT. A FIT rate of 10,000 is
equivalent to an MTTF of: 109/(10, 000 ∗ 24 ∗ 365) = 11.42 years.

The cross-section (σ) is the standard metric to evaluate the sensitivity to radiation
of a device [19]. To understand this metric, it is important to first understand flux and
fluence. Flux and fluence are used to describe the radiation environment or the
particle beam used for testing. Flux is the rate of particles or energy across or onto
a given area. The neutron flux (φ) is the number of incident particles per unit area
and per unit time (n/(cm−2s−1)).

Fluence is a measure of the quantity of light or radiation falling on a surface,
expressed in terms of either particles or energy per unit area. The neutron fluence
is defined as the neutron flux integrated of a particular time period, this results in a
unit of n/cm−2 (neutrons per centimetre squared).

The cross-section (σ) is the standard metric to evaluate the sensitivity to radia-
tion of a device [19]. The cross-section represents the radiation-sensitive area of
the device. By performing a beam experiment the cross-section can be derived by

14 CHAPTER 2. BACKGROUND

dividing the number of errors by the total particle fluence. The fluence is the number
of particles hitting the device per unit area. The cross-section is calculated with the
following formula:

σ =
number of errors

fluence
The Mean Time Between Failure (MTBF) of a system, is defined as the average
time between two radiation-induced failures on the system continuously executing a
given task. The MTBF is defined as follows:

MTBF =
1

σ ∗ flux

A more reliable system has a higher MTBF, which means the system can run for
a longer time before experiencing a radiation-induced error. However, this metric
does not take into account the workload. Therefore, the authors of [20] propose
two new metrics. The Mean Execution Between Failures (MEBF), is the number of
successful executions of an application between two radiation-induced failures. This
value can be computed by dividing the MTBF, with the execution time t:

MEBF =
MEBF

t

The author of [20] also proposes the Mean Workload Between Failures (MWBF). Ev-
ery system is characterized by a workload w, which is the amount of data that needs
to be processed for one execution. The MEBF can be even further generalized by
multiplying with the workload.

MWBF = MEBF ∗ w

2.2 Redundancy techniques

There are two radiation-hardening techniques: at a physical or a logical level. The
key to detecting and correcting errors is redundancy, a processor without redun-
dancy cannot detect any errors. Therefore the question becomes what kind of re-
dundancy should be used. There are three classes of redundancy: physical, tem-
poral, and information [21].

2.2.1 Physical Redundancy

Physical (or spatial) redundancy is commonly used for providing error detection. The
simplest form of physical redundancy is Dual Modular Redundancy (DMR). With
DMR, the module is duplicated and a comparator is added, when the output of the

2.2. REDUNDANCY TECHNIQUES 15

Table 2.1: Single bit majority voting for TMR
Input Output
000 0
001 0
011 1
111 1

modules mismatch an error has occurred. A Triple Modular Redundancy (TMR) sys-
tem can be created by three modules and a voter. For a single error fault, TMR adds
error recovery. A general redundancy scheme is N-Modular Redundancy (NMR),
which for odd values of N greater than three provides better detection and protec-
tion than TMR. In table 2.1 an example of a single-bit majority voting for TMR is
shown.

Physical redundancy can be implemented at various granularities. At a coarse
level, the entire processor or core can be replicated. For a more finer grain, the
ALU or a register can be triplicated. For a finer grain, TMR can be applied on a
flip-flop level. The primary cost of physical redundancy is the hardware cost and
power and energy consumption. TMR uses three times more hardware compared
to an unprotected system.

2.2.2 Temporal Redundancy

Temporal redundancy can be achieved by performing an operation twice or more
after each other and comparing the result afterwards. Therefore, the total time
is doubled, but the hardware remains the same in contrast to the physical redun-
dancy. However, the energy consumption is doubled, because twice as much work
is performed. This redundancy can be implemented in both hardware and software.
Pipelining can be used to reduce the latency, however, the throughput will still be
penalized. Note that this strategy only protects the pipeline against SETs. De Sio et
al. propose a software solution for replicating data and computations to cope with
SEUs affecting the memory where the binary is stored [22].

2.2.3 Information Redundancy

The idea of information redundancy is adding redundant bits to a dataword to detect
when an error has occurred. Error-Correction Code (ECC) detect and can some-
times correct single or multiple-bit errors. Single Error Correcting (SEC) codes
can detect and correct one single-bit in a n-bit codeword. An Error-Detecting Code
(EDC) checks the data and the parity bits for errors. There also exist Single-Error

16 CHAPTER 2. BACKGROUND

Correcting and Double-Error Detecting (SECDED) codes which can detect and cor-
rect a single bit and are able to detect double-bit errors. The codeword bits n are
constructed by adding parity bits p to the dataword bits m.

n = m+ k

The distance between any two codewords is called the Hamming Distance (HD).
The Hamming Distance is denoted as dist(x, y) and is equal to the number of places
where they differ. For instance:

dist(1001, 1000) = 1, dist(1100, 1010) = 2

The hamming weight of a vector x = x1x2...xn is the number of x(i) ̸= 0 and is
defined as wt(u). For instance:

wt(1000) = 1, wt(1011) = 3

The minimum distance of codeword, is the minimal Hamming distance between
its codewords. The distance of a codeword can be computed with the Hamming
weight:

dist(x, y) = wt(x− y)

The minimum Hamming Distance of a block code is equal to the minimum Ham-
ming weight among all non-zero codewords. Figure 2.5 shows two different Ham-
ming Distances for the same codeword. Figure 2.5 (a) shows a Hamming Distance
of 2, every axis represents a single bit in the three-bit codeword. With a Hamming
Distance of 2, there are three valid codewords. These codewords both share a Ham-
ming Distance of 2. Figure 2.5 (b) shows a Hamming Distance of 3, now there are
only 2 valid options, namely 000 and 111.

The minimum distance tells something about the error detection and correction
ability. A minimum Hamming Distance of 2, belongs to a Single Error Detecting
(SED) code, for instance, Parity encoding. With this code, an error can be detected,
but cannot be corrected, because the position of the invalid bit is unknown. With a
Hamming Distance of 3 a SEC, code can be realized, which can correct a single-bit
error. An example of a SEC code already discussed is TMR. With TMR a single bit is
replicated, and this is also shown in Figure 2.5 (b). There are only 2 valid words with
a codeword of 3 bits. Another famous SEC code is the Hamming encoding. With a
minimum distance of 4, a SECDED code can be achieved, for instance, Extended
Hamming.

2.2. REDUNDANCY TECHNIQUES 17

000

100

001

110

101

111

011
010

000

100

001

110

101

111

011
010

(a) Hamming Distance = 2 (b) Hamming Distance = 3

Figure 2.5: Hamming Distance 2 (a) and 3 (b) for a 3-bit codeword. The codewords
marked with green are valid codewords.

Parity encoding

The simplest and most common form of EDC is parity. Parity adds one parity bit to
a data word to convert it to a codeword. The parity bit indicates whether the amount
of 1’s is even or odd. When the number of 1’s is even, the parity bit is 0, otherwise
the parity bit is 1. Parity has a Hamming Distance of 2, resulting in single-bit error
detection. An illustration of HD=2 with an example can be seen in Figure 2.5 (a)).
Consider a valid codeword ’110’. If a Single Event Upset (SEU) occurs, affecting the
first bit, it results in ’010’. If the SEU affects the second and third bits, we get ’100’
and ’111’ as possible outcomes. Importantly, these altered codewords are invalid,
this invalidity allows the fault detection.

While parity-based EDC can detect single-bit errors, it cannot correct them. For
instance, ’010’ can be connected to three valid codewords, making it impossible to
determine which one it was originally.

Hamming

The Hamming code was invented by Richard W. Hamming in 1950 to address er-
rors caused by punched card readers. This code is considered perfect because it
achieves the highest possible efficiency for codes of their block length and minimum
distance, which is three. Unlike simple parity codes, Hamming codes have the abil-
ity to not only detect but also correct errors. The extended Hamming code, on the
other hand, incorporates an additional parity bit, resulting in a Hamming Distance
of four. This expanded capability allows the decoder to differentiate between sce-
narios where only one bit has been corrupted and cases where two bits have been
corrupted. Consequently, extended Hamming codes are known as SECDED codes.

18 CHAPTER 2. BACKGROUND

Table 2.2: Hamming (7,4) Code: Parity coverage of the transmitted bits
Bit number 1 2 3 4 5 6 7
Transmitted bit p1 p2 d1 p3 d2 d3 d4
p1 T F T F T F T
p2 F T T F F T T
p3 F F F T T T T

Table 2.3: Hamming (7,4) Code: Parity coverage of the data bits
d1 d2 d3 d4

p1 T T F T
p2 T F T T
p3 F T T T

Hamming (7,4) Encoding & Decoding example

This example shows the encoding and decoding of Hamming (7,4). This Hamming
encoding can detect and correct every single-bit error. Table 2.2 shows for every
parity bit which transmitted bits are covered. For instance, parity bit p1 provides an
even parity bit for the transmitted bits: 1 (p1), 3 (p3), 5 (d2) and 7 (d4). Every data bit
(d1,d2,d3,d4) is covered by 2 parity bits. Table 2.3 is created by removing the parity
bits column from table 2.2. The parity-check matrix H is defined as table 2.2:

H =

1 0 1 0 1 0 1

0 1 1 0 0 1 1

0 0 0 1 1 1 1

The code generator matrix G is constructed as follows, rows 1, 2 and 4 of the

matrix G correspond to the contents of Table 2.3. This table is placed at those rows
because p1 is transmitted as b1, p2 is transmitted as b2 and p4 is transmitted as b4.
The remaining rows map the data to their position in encoded form. Therefore rows:
3,5,6 and 7 form the identity matrix. This results in the following matrix:

G =

1 1 0 1

1 0 1 1

1 0 0 0

0 1 1 1

0 1 0 0

0 0 1 0

0 0 0 1

Suppose we want to transmit the message (p) ”1001”. The bits for the transmis-

sion codeword (x) can be computed by multiplying the generator matrix G with the

2.2. REDUNDANCY TECHNIQUES 19

message (p):

x = G× p =

1 1 0 1

1 0 1 1

1 0 0 0

0 1 1 1

0 1 0 0

0 0 1 0

0 0 0 1

×

1

0

0

1

 =

2

2

1

1

0

0

1

=

0

0

1

1

0

0

1

Modulo 2 is taken of the product of G and p to determine the transmitted code-
word x. This means that ”0011001” would be transmitted instead of ”1001”.

When no errors occur during the transmissions the received codeword (r) is iden-
tical to the transmitted codeword x.

r = x

The receiver multiples the parity-check matrix H with the received codeword r
to compute the syndrome vector (s). This syndrome vector indicates whether an
error has occurred. When an error has occurred this syndrome vector also indicates
which codeword bit is wrong.

s = H × r =

1 0 1 0 1 0 1

0 1 1 0 0 1 1

0 0 0 1 1 1 1

×

0

0

1

1

0

0

1

=

22
2

 =

00
0

In this case, the syndrome vector is a null vector, which means no error has
occurred during the transmission. The data bits at positions (3,5,6 and 7) of the
received codeword correspond to the original message ”1001”.

Suppose there is a single-bit error at b2, the received codeword therefore be-
comes: ”0111001” instead of ”0011001”:

20 CHAPTER 2. BACKGROUND

r = x+ e5 =

0

0

1

1

0

0

1

=

0

1

0

0

0

0

0

=

0

1

1

1

0

0

1

S = H ×R =

1 0 1 0 1 0 1

0 1 1 0 0 1 1

0 0 0 1 1 1 1

×

0

1

1

1

0

0

1

=

23
2

 =

01
0

The syndrome vector is non-zero, which means that there was an error. The
value of the syndrome is the bit place where the error is, namely 2.

Hamming codes can also be used for detecting dual-bit errors, by adding one
overall parity bit as can be seen in Figure 2.6. In this figure a fourth parity bit has
been added, resulting in an extended Hamming (8,4) presentation. To decode this
code, first, the overall parity bit needs to be checked. If the parity bit indicates an
error, the single error correction will indicate the error location.

p1

p3p2

d1 d2

d3

d4

p1

p3p2

d1 d2

d3

d4

p4

(A) (B)

Figure 2.6: Venn diagram of the four data bits d1 to d4 and the parity bits p1 to p3

2.3. RISC-V AND FPGA INTEGRATION FOR SINGLE EVENT EFFECTS MITIGATION 21

Hsiao

M. Y. Hsiao optimized the Hamming SEC-DED codes in 1970 [23]. The Hsiao SEC-
DED code is an error correction code that introduces specific conditions for con-
structing the parity-check matrix.

The conditions of the H matrix for a SECDED code are:

1. There are no columns that contain only 0’s.

2. Each column is distinct from every other column.

3. Each column contains an odd quantity of 1’s.

4. The total count of 1’s is minimized.

5. Each row in the H-matrix should have a number of 1’s that is equal to or as
close as possible to the average number, which is calculated as the total num-
ber of 1’s in H divided by the number of rows.

The advantage of Hsiao over Hamming is that the number of 1’s in the parity-
check matrix is minimized resulting in faster calculations. Another advantage is
when the odd-weight column-vectors are close to the average number of 1’s in a row,
therefore the amount of logic gate levels can be reduced, resulting in less delay. G.
Tshagharyan et al. [24] demonstrated that Hsiao is more effective in terms of logic
levels and area for larger word sizes.

2.3 RISC-V and FPGA Integration for Single Event Ef-
fects Mitigation

In addition to implementing redundancy techniques to mitigate SEEs, another crit-
ical aspect of ensuring the reliability and robustness of digital systems lies in the
choice of the processor architecture and hardware platform. This consideration be-
comes particularly important when targeting Field-Programmable Gate Arrays (FP-
GAs), which offer flexibility and reconfigurability for various applications.

2.3.1 RISC-V Instruction Set Architecture

The RISC-V processor is an open-source instruction set architecture (ISA) designed
for computer processors. This instruction set is based on the Reduce Instruction Set
Computer (RISC) principles, which prioritize simplicity, efficiency, and modularity in
processor design. The key concept of a RISC processor is that each instruction
performs only one function, for instance, copying a value from memory to a register.

22 CHAPTER 2. BACKGROUND

Compared to a complex instruction set architecture (CISC), a RISC processor might
require more instructions in order to compute a particular task, but due to the simpler
instructions these instructions can be executed at a higher speed.

The RISC-V project was created at the University of California, Berkeley, in 2010.
In contrast to other academic designs, which are typically optimized for simplicity for
teaching purposes, the designers of RISC-V intended it to be used in real-world
processors.

One of the key advantages of RISC-V is its open standard, therefore anyone is
able to access, use, modify and contribute to its specifications without any licensing
fees or restrictions. This openness resulted in a vibrant community of developers,
researchers, and companies actively contributing to the architecture’s evolution. The
RISC-V Foundation, a non-profit organization, manages and promotes the RISC-
V ISA. Its mission is to drive the adoption of RISC-V by facilitating collaboration,
providing education and support, and managing the architecture’s specifications.
Numerous companies, ranging from established semiconductor manufacturers and
emerging startups, have embraced RISC-V and developed compatible processors
and related technologies.

Chapter 3

Related Work

This chapter shows the related work about neutron radiation testing of FPGAs with
softcores and ASICs. Neutron beam experiments of custom RISC-V soft-cores and
COTS SoCs have been performed thoroughly in the literature.

The work of Wilson et al. [25] compares the neutron soft-error reliability of an
unmitigated and TMR version of a Taiga RISC-v soft processor on a Xilinx SRAM-
based FPGA. The TMR version showed a 33x reduction in the neutron cross section
for a cost of around 5.6x resource utilization. The authors introduce two experimen-
tal designs on the Xilinx Kintex Ultrascale KU040 FPGA. One design contained 20
unmitigated processors and the other contained 20 TMR processors. The Dhyr-
stone benchmark was run during the neutron radiation tests. After every iteration,
the checksum and iteration count were reported as the CPU status over a JTAG
interface. These values were compared to a golden for correctness. The BYU BL-
TMR tool was used to triplicate the Taiga processor.

Besides RISC-V there also exist literature about the LEON3. Keller et al. [26]
compares a variety of mitigation techniques of the LEON3 soft processor with fault
injection and neutron radiation testing. They show that fault injection can be a good
way to estimate the cross-section of a design before going to a radiation test. They
have tested 5 mitigation variants: an unmitigated version, TMR without scrubbing,
TMR with BRAM scrubbing, TMR with CRAM scrubbing and TMR with BRAM &
CRAM scrubbing. For the fault injection, the TMR & CRAM scrubbing resulted in
a 27.28x improvement, by adding BRAM scrubbing the improvement was even in-
creased to 51.30x. The numbers of the neutron radiation tests are closely related,
the TMR & CRAM scrubbing resulted in a 26.94x improvement and the fully mit-
igated variant has an improvement of 48.85. During the test, the Dhyrstone 2.1
benchmark was run in a continuous loop. Fine-grain TMR was applied, which means
that all flip-flops are triplicated.

In addition to utilizing SRAM-FPGAs for radiation tests, flash-based FPGAs have
been used. Santos et al. [27] tested their own developed low-cost Riscv CPU Hard-

23

24 CHAPTER 3. RELATED WORK

ened Risc-V (HARV). HARV has some basic hardening features to provide an alter-
native with competitive silicon and power overheads. It is a single-cycle processor
and applies ECC on all internal registers and data, increasing the width by 7 bits.
TMR is applied on the Arithmetic Logic Unit (ALU) and control unit. CoreMark was
used as a benchmark during the radiation test. The design was implemented on
the Microchip M2S010 SmartFusion2 Flash-FPGA. The authors have tested four
configurations: without hardening, only hardening the processor, only hardening the
memory, and hardening the processor and the memory. The latter one executed the
CoreMark benchmark without errors in all 221 CoreMark executions. Each execu-
tion took 12 minutes to compute. The non-protected variant has a success rate of
73.08.

Besides FPGAs, ASICs also have been tested with neutron radiation. Dos San-
tos et al. investigate the error rate of a commercial RISC-V ASIC to a neutron
beam [28]. They tested the GAP8 platform from GreenWaves, it has a cluster of
8 RISC-V cores. They show that code with more synchronization actions between
the main core and the cluster of cores and more memory operations, for instance,
FIR, have a higher DEU rate. They show that in computations for Convolutional
Neural Networks (CNN) the error rate can be 3.2x higher than the average error
rate. In addition, the majority of the errors (96.12%) on the CNN do not generate
misclassifications.

Canizzaro et al. [29] evaluate the SEU susceptibility of two commercial RISC-V
processors, the Microchip PolarFire SoC and the SiFive HiFive Unmatched, in the
presence of neutron radiation. Both devices are compared with the flight-proven Xil-
inx Zynq-7020 system-on-chip, which has an ARM Cortex-A9 processor integrated.
The ARM Cortex-A9 architecture, released in 2008, has been used in flight-proven
devices such as the CHREC Space Processor (CSP) and the SHREC Space Pro-
cessor (SSP). Bot CSP and SSP have performed missions in the ISS successfully.
Both systems are not radiation-hardened but are fault-tolerant devices that use rad-
hard power management and a watchdog subsystem. Both the RISC-V SoCs have
parity detection for the L1 caches and SECDED and ECC available for their L2
caches. The DDR memory ECC capabilities were not enabled by the platform
vendors. The ARM Cortex-A9 provide parity detection for its L1 and L2 caches,
which was enabled for both memories. The ECC on the DDR memory is avail-
able but like the RISC-V boards not enabled. The EEMBC CoreMark and SHREC
SpaceBench benchmarks were used to evaluate the presence of data and execu-
tion errors. CoreMark is a synthetic benchmark developed by the Microprocessor
Benchmark Consortium (EEMBC) used to evaluate single-core performance. Orig-
inally, it was designed to be an improvement of the popular Dhrystone benchmark.
The authors did not use CoreMark for performance but only counted the successful

25

execution of the benchmark. SHREC was developed by Dr Tyler Lovelly and is a
suite of nine kernel benchmarks, containing matrix multiplication, addition, convolu-
tion and transposition. The datatype selection is configurable and provides parallel
processing support. All the benchmarks ran on the Linux operating system, which
was booted from an SD card. The PolarFire and the Unmatched had no errors in
99.70% and 99.59% of the operations. The Zynq had only 65.23% error-free opera-
tions. The PolarFire, Unmachted, and Zynq experience data errors in 0.02%, 0.03%,
and 16.10% of the operations. These results and the radiation data of the following
cross sections were found for PolarFire, Unmatched and Zynq: 8.033 ∗ 10−12cm2,
8.342 ∗ 10−12cm2, and 3.759 ∗ 10−9cm2. The cross-section of the Zynq is much larger
compared to the RISC-V platforms, therefore the commercial RISC-V devices have
much lower SEU susceptibility compared to the flight-proven Zynq platform.

The related work in table 3.1 provides a comprehensive overview of the key ele-
ments discussed in this section. This table summarizes the tested cores, platforms,
enhancements, tests and evaluations from the various research works.

Table 3.1: Schematic summary of the related work for radiation experiments with
FPGAs and ASICs

Core &
Platform

Redun-
dancy

Test Communication Benchmark

TMR ECC
Neut-
ron

Sim-
ulation

Uart Jtag Other
Core-
Mark

Dhry-
stone

Other

Taiga on
Xilinx Kintex
Ultrascale
KU040

X X X X

LEON3 on
Xilinx KC705

X X X X X X

HARV on
Microsemi
M2S010

X X X X X

GreenWaves
GAP8

X X X

Microchip
PolarFire
SoC &
SiFive HiFive

X X X X X

26 CHAPTER 3. RELATED WORK

Chapter 4

NEORV32

The NEORV32 processor is an upcoming customizable System on Chip (SoC) built
around the RISC-V-compatible NEORV32 CPU [30]. This open-source RISC-V pro-
cessor was released in 2020 and is written in platform-independent VHDL. Platform-
independent code does not use any vendor-specific primitives, attributes, macros,
or libraries. The goal of NEORV32 is to offer a RISC-V core with execution safety
in mind. There are many open-source RISC-V implementations available, and most
of them focus on performance or area. Because safety features play a crucial role
in ensuring reliable options, particularly in demanding and harsh environments, the
NEORV32 has been chosen as the core. Besides safety, it also focuses on docu-
mentation, platform independence, portability, RISC-V compatibility, extensibility &
customisation, and ease of use.

4.1 NEORV32 Processor & CPU

The NEORV32 CPU is a 32-bit RISC-V processor based on the rv32i instruction set
architecture (ISA). It is designed to be fully compatible with the RISC-V architecture
and has successfully passed the official architecture tests, ensuring its compliance
and reliability. The NEORV32 CPU offers a rich set of customization options, allow-
ing the user to tailor its functionality to their specific needs. These options include
adding privileged architecture, ISA extensions and custom options for design goals.
One of the key design goals of the NEORV32 CPU is to support Full Virtualiza-
tion capabilities for the CPU and SoC, which increases security. The CPU carries
an official RISC-V open-source architecture ID for recognition within the RISC-V
ecosystem [31].

NEORV32 Processor (SoC) is a complete microcontroller-like processor system
with high configurability. It is built upon the NEORV32 CPU architecture. The proces-
sor system offers optional serial interfaces, including UARTs, TWI, and SPI, allowing

27

28 CHAPTER 4. NEORV32

Figure 4.1: Overview of the NEORV32 Processor. Source: S. Nolting [30]

for versatile communication capabilities. In addition, it provides optional timers and
counters, such as the Watchdog timer (WDT) and MTIME. To enhance its function-
ality, the NEORV32 Processor incorporates optional features like general-purpose
IO and Pulse-Width Modulation (PWM). These features empower users to interface
with external devices and control various peripherals. Furthermore, the processor
system allows for optional caches for the data memory, instruction memory, and
bootloader memory. For integration with external memory systems and custom con-
nectivity, the NEORV32 Processor supports an optional external memory interface,
namely Wishbone. Additionally, it provides a stream link interface (AXI4-Stream) to
accommodate specialized data streaming needs. An optional execute-in-place (XIP)
module is also available, enabling the execution of instructions directly from external
memory, thereby improving performance. To facilitate debugging and troubleshoot-
ing processes, the NEORV32 Processor features an on-chip debugger that is fully
compatible with OpenOCD and gdb. An overview of the CPU and SoC can be seen
in figure 4.1.

4.2 RISC-V Standard Extensions Configurability

With the Application-Specific Processor Configuration, the SoC can be tailored to
application-specific requirements. These configuration options are specified through
generics within the top-level entity. By leveraging this flexibility, the SoC can be op-

4.3. PIPELINE 29

timized for performance, size, area, and clock speed. Firstly, the B extension intro-
duces additional instructions to support bit-manipulation operations. Compressed
instructions (C) are available to reduce program size, thereby optimizing memory
utilization. The Embedded (E) extension minimizes the register file size from 32
entries to 16, enabling a more compact design. The hardware-based integer multi-
plication and division (M) extension, offers dedicated hardware support rather than
relying on software-based emulation. Moreover, the user-mode (U) extension adds
a second less-privileged operation mode. Furthermore, the following Z extensions
are available to enable: Zifencei, Zmull, Zxcfu, Zicond, Zfinx, Zinctr, PMP, Zihpm,
Sdext, and Sdtrig. The Zicsr extension, which enables access to Control and Status
Registers (CSRs), is enabled by default. Besides these extensions, NEORV32 also
offer two microarchitecture features, the FAST MUL EN feature implements a faster
multiplier by using DSP blocks and FAST SHIFT EN implements faster pull-parallel
barrel shifters by using more area.

4.3 Pipeline

The CPU’s architecture is a pipelined multi-cycle approach. Each instruction is ex-
ecuted through a series of consecutive micro-operations. To enhance performance,
the CPU separates its front-end (instruction fetch) and back-end (instruction execu-
tion) using a FIFO known as an instruction prefetch buffer. This allows the front-
end to fetch a new instruction while the back-end is still processing the previously
fetched instruction. An overview of the NEORV32 CPU can be seen in figure 4.1.
The CPU’s microarchitecture lies between a traditional pipeline design, where each
stage requires exactly one processing cycle (unless stalled), and a classical multi-
cycle design, where each instruction is executed in a series of consecutive micro-
operations. This combination results in an increased instruction execution compared
to a pure multi-cycle approach because the fetch and execution operations can be
overlapped. The hardware footprint is still reduced due to the multi-cycle concept.
It is important to note that the CPU does not perform any speculative or out-of-
order operations. Therefore, the CPU is not susceptible to security issues caused
by speculative execution, such as Spectre or Meltdown [32].

4.4 Memory Access

The CPU has a unified 32-bit address space, where all memory addresses, includ-
ing those for peripheral devices, are mapped. The instruction fetch interface and
the data access interfaces are multiplied by a simple switch, into a single processor-

30 CHAPTER 4. NEORV32

Figure 4.2: Overview of the NEORV32 CPU. Source: S. Nolting [30]

Figure 4.3: Processor-internal bus architecture. Source: S. Nolting [30]

internal bus, via a bus multiplexer. This bus multiplexer prioritizes data access. Ad-
ditionally, this bus multiplex also multiplexes between peripherals like Direct Memory
Access (DMA) and Serial Peripheral Interface (SPI). The bus multiplexer prioritizes
the instruction fetch and data access above the peripherals. An overview of this bus
is shown in 4.3. Because both the instruction fetch and data access have access
to the same identical address space, this processor can be classified as a modified
von-Neumann architecture.

The default NEORV32 linker script uses all the available RAM for several sec-
tions, some of these sections can be empty. At the beginning of the RAM, the
constant data (.data) is stored. This section is used for explicitly initialized global
variables, which are initialized by the executable. The dynamic data (.bss) section
is placed after the constant data which contains uninitialized data without explicit

4.5. EXECUTION SAFETY 31

Figure 4.4: Default RAM layout of NEORV32. Source: S. Nolting [30]

initialization, this section is cleared by the start-up code. After the dynamic data the
heap (.heap) is placed, this location is dynamic and grows to the end of the RAM.
The heap is used for functions like malloc() and free(). This section is not initialized.
The stack starts at the end of the RAM and grows backwards. See figure 4.4 for an
overview of the used memory layout.

4.5 Execution safety

The NEORV32 has a special focus on execution safety to provide defined and pre-
dictable behaviour at any time. Therefore, the CPU ensures that all memory access
is acknowledged and no illegal or malformed instructions are executed. When an
unexpected situation occurs, the software is notified via a hardware exception. The
Bus Keeper is a crucial component of the processor’s internal bus system, responsi-
ble for ensuring proper bus operations while maintaining execution safety. It closely
monitors every bus transaction initiated by the CPU. If a device being accessed re-
sponds with an error condition or fails to respond within a specific access time frame,
a corresponding bus access fault exception is triggered. The following exceptions
can be raised by the bus keeper:

1. TRAP CODE I ACCESS: error during instruction fetch bus access

2. TRAP CODE S ACCES: error during data store bus access

3. TRAP CODE L ACCESS: error during data load bus access

By default, the access time frame is set to 15 clock cycles. The Bus Keeper’s
control register can be used to retrieve further details of the exception. There is
a flag that indicates an actual bus access fault has occurred. This flag is cleared
when a read or write occurs to the control register. There is an additional bit which
indicates the type of bus fault. A 0 indicates a device error, and a 1 indicates a
timeout error. In addition to these 3 exceptions, there are other exceptions, which
are shown in Table 4.1. The NEORV32 supports all traps specified by the RISC-V.

32 CHAPTER 4. NEORV32

Table 4.1: List of NEORV32 Exceptions
Prio. mcause Cause mepc mtval
1 0x00000000 instruction address misaligned I-PC 0
2 0x00000001 instruction access bus fault I-PC 0
3 0x00000002 illegal instruction PC CMD
4 0x0000000B environment call from M-mode PC 0
5 0x00000008 environment call from U-mode PC 0
6 0x00000003 software breakpoint / trigger firing PC PC
7 0x00000006 store address misaligned PC ADR
8 0x00000004 load address misaligned PC ADR
9 0x00000007 store access bus fault PC ADR
10 0x00000005 load access bus fault PC ADR

4.6 Wishbone interface

To communicate with external memories, the NEORV32 processor utilizes a Wish-
bone interface. Figure 4.5 depicts a timing diagram for a Wishbone read transaction
from the master’s perspective. The read operation spans two clock cycles. In the
second clock cycle, the read operation begins. The address for the read is set during
this cycle, along with the wb sel o signal that indicates the specific bytes the master
expects to receive data from. Throughout the read transaction, the wb cyc o signal
remains asserted, indicating an ongoing transaction. The wb stb o signal is also as-
serted during the entire transaction, indicating a valid data transfer cycle. To signify
that it is a read transfer, the wb we o signal remains low throughout the transaction.
In the third clock cycle, the wb ack i signal is set high to confirm the completion of
the read transaction. The requested data is available on the wb dat i signal. After
the third clock cycle, some signals return to a low state, indicating the end of the
transaction, while others may become undefined.

Figure 4.6 illustrates a write transaction using the Wishbone interface. This write
operation spans two clock cycles and initiates in the second clock cycle. To an-
nounce a write transaction, the wb we o signal is asserted. In the third clock cycle,
the slave acknowledges this write request by asserting the wb ack i signal. It is
crucial that the data, address, and sel signal remain stable during this write request
to ensure proper data transfer. After the third clock cycle, in the fourth clock cy-
cle, some signals are set to a low state, indicating the end of the transaction, while
others may become undefined. When the wb err i signal is asserted, it means that
an error has occurred. The specific nature of the error can vary depending on the
implementation and context. It could indicate an invalid operation, a data corruption
issue, or any other error condition that has been defined for the particular system.

4.6. WISHBONE INTERFACE 33

Figure 4.5: Wishbone read transaction Figure 4.6: Wishbone write transaction

The error signal is typically used to inform the master that the requested transaction
could not be completed successfully. In the case of NEORV32, a bus exception will
be raised.

34 CHAPTER 4. NEORV32

Chapter 5

NEORV32 Implementation

This chapter describes the implementation of the NEORV32 on the Microsemi Smart-
Fusion2 FPGA. The first section provides details about the target device. The sec-
ond section will explain how the eNVM memory is connected to the Wishbone output
of the NEORV32. The next section explains the implementation of the fault tolerance
enhancements. Additionally, it provides the FPGA resource usage and it shows a
power estimation of these enhancements. The fourth section discusses the testing
of the implemented fault-tolerant adjustments. The complete overview of this design
created in Libero SoC 2022.3 can be seen in A in Figure A.1.

5.1 Target Device

The Microsemi SmartFusion 2 SoC FPGA combines a flash-based FPGA fabric and
a microcontroller subsystem (MSS) on a single chip. The MSS provides an ARM
Cortex-M3 processor, Embedded Non-Volatile Memory (eNVM), embedded SRAM,
and a high-performance interface [33]. For this research, the M2S010 variant of the
SmartFusion 2 product line was used. This FPGA provides 256 KB of eNVM and 64
KB of embedded SRAM in the Microcontroller Subsystem (MSS). The FPGA fabric
has 12K logic elements, 22 Math blocks (18x18), 2 PLLs and CCCs and 400K bits
of RAM. The Trenz SMF2000 board, which can be seen in figure 5.1, includes this
FPGA on a PCB with communication interfaces.

The FIT rate of the flash FPGA configuration memory is zero, therefore this FPGA
is immune to SEUs in the configuration memory [34]. In addition during the testing
of flip-flops, LSRAM blocks, and uSRAM blocks, no multiple-bit upsets were de-
tected within any word. There are two reasons for this, one is the physical distance
between adjacent bits in the 65 nm manufacturing node and the other reason is
due to the interleaving of logical bits in the physical implementation of the memory
blocks. High energy particles cause multiple-bit upsets, only cause single-bit upsets

35

36 CHAPTER 5. NEORV32 IMPLEMENTATION

Figure 5.1: SMF2000 FPGA Module with Microsemi SmartFusion2

to logical words [35]. This makes this FPGA suitable for safety-critical and mission-
critical systems. In the provided diagram, labelled as Figure 5.2, the floorplan of
the M2S050 device is depicted. Although this particular device is not the intended
target, it belongs to the same family and gives an idea of how the fabric is con-
structed. The diagram reveals that the LSRAM and uSRAM blocks, along with the
math blocks, are situated within the FPGA fabric.

5.2 Unmitiaged NEORV32 implementation

This section explains how the NEORV32 is implemented on the SmartFusion 2
FPGA. In the first subsection, the memory access is explained. The second subsec-
tion explains the bridge interface between the NEORV32 Wishbone and the AHBL-
Lite eNVM interface. The NEORV32 CPU is configured as RV32IMCZihpm, which
means that a 32-bit architecture is used together with Integer instructions (I), Multi-
ply and divide instructions (M), Compressed instructions (C) and Hardware perfor-
mance counters (Zihpm).

5.2.1 Memory access

The data memory was implemented in VHDL with the provided VHDL file by NE-
ORV32. By default, the address of the data address was set to 0x80000000. The
data size of the Data Memory (DMEM) was 16kB and has a word length of 32
bits. The synthesis tool recognised the RAM implementation and implemented this
memory block as BRAMs. Because BRAMs use SRAM technology, this memory
is susceptible to SEUs. The data memory is implemented in VHDL as 4 blocks of
one byte because RISC-V supports the writing of half-words and bytes to memory.
When only one byte is written, there is only one write to one block and the other 3

5.2. UNMITIAGED NEORV32 IMPLEMENTATION 37

Figure 5.2: Floor plan of M2S050 device and the location of each functional block.
Source: Rezzak et al. [36]

blocks remain unchanged.
The main goal of this thesis is to test the RISC-V architecture in a radiation-

filled setting. The choice to save instructions in eNVM is important for reaching this
goal. When instructions are stored in eNVM, which can withstand SEUs, the testing
becomes more reliable. The other option is storing instructions in SRAM, but this
can lead to SEUs causing many Illegal Instructions, which might be the main reason
for errors. Opting for the more robust eNVM memory means the focus can be on
assessing the architecture, not just the vulnerability of the instruction memory. In
a similar study, Douglas et al. discovered that in the first radiation test using the
same board, the instruction memory was the weakest point of the SoC [27]. For the
second radiation test, they have decided to use the eNVM instruction memory.

During the execution, there are no writes to the memory, so the eNVM will act
as a read-only memory. Because the Microsemi eNVM memory has an address
of 0x60000000 in the MSS, the choice was made to use this address in NEORV32
as well, therefore no address mapping was necessary. The SmartFusion2 eNVM is
a component of the MSS [37]. It is accessed through the eNVM Controller, which
operates as a slave to the MSS AHB Switch Matrix, shown in figure 5.3. The Masters
of the AHB Switch Matrix, specifically the MSS Cortex-M3 and a Fabric Master, have
the ability to read from and write to the eNVM. The Fabric Master can access the
Switch Matrix via one of the two Fabric Interface Controllers (FICs): FIC 0 and FIC 1
located in the MSS.

38 CHAPTER 5. NEORV32 IMPLEMENTATION

Figure 5.3: SmartFusion 2 FPGA Architecture

These FIC blocks provide an interface from the MSS AHB-Lite (AHBL) bus to
user masters or user slaves in the FPGA fabric. Each FIC block performs an AHBL
to AHBL or AHBL to APB3 bridging between the AHB Bus Matrix and AHBL or
APB3 bus in the FPGA fabric. There are two bus interfaces for the FIC, the first one
provides a master in the FPGA fabric and a slave in the MSS. The other options
provide a slave in the FPGA fabric and a master in the MSS. The bus interfaces to
the FPGA fabric are 32-bit AHBL or 32-bit APB.

As described earlier, the NEORV32 provides the Whisbone as an external bus
interface. In addition, it also provides a wrapper which converts this bus interface
to an AXI4Lite. Because the NEORV32 and the FIC do not provide the same bus
interfaces, a bridge is necessary. The choice was made to use the Wishbone bus
interface of the NEORV32 and the AHBLite of the FIC, because these busses are
very similar, resulting in a simple Wishbone-to-AHBL bridge. A complete overview
of the system can be seen in Figure 5.4. Everything is implemented in the FPGA
fabric except the block marked in red which is located in the MSS.

5.2.2 AHBL-Wishbone Bridge

Table 5.1 displays the input and output signals for the Wishbone and AHB Lite bus
interfaces. Some signals share the same encoding, allowing for a direct connection

5.2. UNMITIAGED NEORV32 IMPLEMENTATION 39

RV32IMCZihpm
Internal bus

External bus interface)
(Wishbone)

Wishbone-to-AHBL-bridge

DMEM
[0x80000000]

eNVM Memory (MSS)
IMEM [0x60000000]

TXRX

NEORV32 SoC

Microcontroller
Subsystem (MSS)

RX

Figure 5.4: NEORV32 Configuration

between the corresponding signals of the two bus interfaces. For example, HWRITE
and we i have compatible encodings and can be connected directly. Similarly, data i
can be assigned to HWDATA, we i can be assigned to HWRITE, and HRESP can
be assigned to err o because they have the same length and encoding, requiring no
conversion.

The Wishbone STALL signal is not implemented in the bridge, as devices are
not required to respond immediately to a bus response but within a specified time
window.

According to the AMBA AHB protocol, transfers within a burst must be aligned to
the address boundary equal to the size of the transfer for AHB-Lite [38]. Specifically,
for a 32-bit transfer, HADDR[1:0] needs to be set to ”00”. Halfword transfers must
be aligned to halfword boundaries, so HADDR[0] is set to ”0”. In the case of a
word transfer, the bridge removes the two most significant bits of addr i and adds
two zeros at the end, assigning the resulting value to HADDR. For a 16-bit transfer,
one MSB is removed, and a zero is added. For an 8-bit transfer, addr i is directly
assigned to HADDR.

The stb i signal is delayed by one clock cycle and stored in stb i dl. This delayed
signal is used to determine the values of ack o and HTRANS. Since bursts are not
supported, the bridge does not implement the busy and sequential transfer types.
Therefore, HTRANS can be either idle or nonsequential. The bridge sets HTRANS
to nonsequential when HREADY and stb i are asserted, and stb i dl is 0. Otherwise,
if there is no transfer, HTRANS is set to IDLE. A new transfer is indicated when
stb i dl is 0 and stb i is 1.

40 CHAPTER 5. NEORV32 IMPLEMENTATION

Table 5.1: Mapping of the signals in the AHBL-Wishbone bridge

AHB Lite input Wishbone output Mapping
Function
AHB Lite input

HADDR Addr i
Mapping by

appending zeros
Address

HWRITE We i
No conversion

needed
Read/Write Transfer

HTRANS[1:0]
HREADY, stb i,

stb i dl
Special mapping

needed
Transfer type

HSIZE[2:0] Sel i
Special mapping

needed
Transfer size

HBURST[2:0] 000
No burst mode

supported

Number of transfers
and adress

incrementation

HPROT[3:0] 0000
Protection control

bus not used
Protection control

HWDATA[31:0] data i
No conversion

needed
Data

Wishbone input AHB Lite output Mapping
Function
Wishbone input

Ack o
HREADY, stb i,

stb i dl
Logic AND operation

of these 3 signals
Acknowledgement

data o HRDATA No conversion needed Data
Err o HRESP No conversion needed Error occurred

The transfer size is specified by HSIZE. This can be deduced from the sel o
signal, which indicates the used bytes. When sel o is ”1111”, it represents a 32-bit
word read or write, corresponding to ”010” in the AHB protocol. Both ”0011” and
”0011” are mapped to ”001” since they indicate a 16-bit transfer. Lastly, ”0001”,
”0010”, ”0100”, and ”1000” all specify an 8-bit transfer, which maps to ”000” in the
AHB protocol.

The NEORV32 Wishbone interface currently does not support burst transfers,
so HBURST is always set to ”000”. The protection control signals are not used,
therefore HPROT is forced to ”0000”.

The ack o signal is the logical AND operation of HREADY, stb i, and stb i dl.
The transfer is considered finished when HREADY is set high. However, since this
cannot happen on the first cycle, the delayed stb i is also checked.

5.3. FAULT-TOLERANT ENHANCEMENTS 41

5.3 Fault-tolerant enhancements

In order to evaluate the NEORV32 processor core, three different platforms were im-
plemented: Unmodified NEORV32 processor, ECC-enhanced, and synthesis-level
TMR with ECC-enhancements (TMR+ECC). All configurations are based on the
RV32IMCZihpm implementation and use the eNVM for storing instructions. This
section explains the ECC and TMR implementation, concluding with the resource
usage by all implemented variants.

5.3.1 Design of Hsiao Encoder & Decoder

Because the register file and data memory are implemented as BRAMs, redundancy
is needed to mitigate the errors caused by SEEs. Because applying DMR and TMR
on memory elements is very costly in terms of hardware, information redundancy
was used. The register file and data memory in the system were protected using
Hsiao ECC. The encoder and decoder are written in Verilog.

The encoder takes a 32-bit input enc in and produces a 39-bit output enc out.
The encoding process is performed in an always block, which is a combinational
logic block that generates the encoded output based on the input. The enc out is
initially assigned the 39-bit value of enc in. Following that, the individual bits of
the enc out are calculated for error detection using bitwise operations. Each bit of
the enc out is computed by performing a bitwise AND between the enc out and
a specific 39-bit mask. The resulting bits are then XORed together to obtain the
parity bits. The specific 39-bit masks used for error detection are hardcoded in
the module. These masks are applied to the enc out to calculate the parity bits.
The XOR operation of each mask with the corresponding bits of enc out generates
the parity bits for b32...b38 of enc out. The encoded output enc out contains the
original 32 bits of data and an additional 7 parity bits that facilitate error detection
and correction during decoding.

The decoder takes a 39-bit input dec in, and produces a 32-bit output dec out.
Additionally, it provides outputs for the syndrome, dec syndrome out, and the error
status dec errorout. The syndrome calculation is performed using bitwise AND op-
erations between the input dec in and specific 39-bit masks. The resulting bits are
then XORed together to obtain the syndrome bits. The correct output calculation is
done by comparing the syndrome bits to specific values and XORing the correspond-
ing input bits with the syndrome comparison result. Each bit of the output dec out

is calculated independently based on the syndrome bits and the corresponding in-
put bits. The error status is determined by checking for a single error and a double
error. The single error signal bit is calculated by taking the logical XOR of all the

42 CHAPTER 5. NEORV32 IMPLEMENTATION

syndrome bits. When this signal is high, there was a single error detected and cor-
rected. There is a dual error detected when the singe error signal is low and the
OR operation of dec syndrome out is high. The single-bit error detection signal is
wired to dec errorout[0] and the dual error detection to dec errorout[1].

5.3.2 ECC Implementation

To accommodate the (39,32) Hsiao encoding, the register file length was extended
to 39 bits. When a read request occurs, both the memory addresses of operands
a and b are read each time. Therefore, two decoders are necessary to handle the
read operations. On the other hand, when writing, only a single encoder is required.

The RISC-V ISA supports writing bytes, half-words, and words. Therefore, ap-
plying ECC to the entire word length becomes more complex. In such a case, every
write request for a byte or half-word would require a read request for the remaining
non-written portion because it is needed for calculating the ECC bits. One solution
to this problem is to extend writes with an additional clock cycle for reading, but this
approach would lower performance. Alternatively, all write requests can be buffered
in a cache before being written to the memory. However, this method requires more
logic and is complicated to implement. For this study, the decision was made to
apply ECC on each individual byte, which simplifies the implementation but requires
four encoders and decoders. Hsiao (13,8) encoding was used for the data mem-
ory. An overview of the ECC implementation can be seen in Figure 5.5, there are
6 decoders and 5 encoders used. The parity check matrixes for the Hsiao (13,8)
encoding can be found in Appendix A in Table A.4. The Hsiao (39,32) matrix can be
found in Table A.5.

To prevent error accumulation inside the data memory, periodic scrubbing was
applied. Every scrubbing operation reads all the words inside the memory one by
one and writes back the corrected value. Because of the hardware decoder and
encoder, there are only 2 assembly instructions necessary for performing the scrub-
bing. The lw loads a word from memory and the sw stores the word back to the
memory. For simplicity, in this implementation, every word is written back to mem-
ory even though there was no error correction.

It is possible that the scrubber may encounter the reading of uninitialized mem-
ory. This uninitialized memory is highly likely to contain incorrect ECC bits. Because
we are interested in the number of detections, it is crucial that these instances of
uninitialized memory are not accounted for. Therefore, prior to activating the scrub-
ber during each iteration, the entire data memory is initialized with a value of 0.
The encoded representation of 0 is also 0, making the initialization to 0 effective
approach. The register file is smaller and data is written more frequently, therefore

5.3. FAULT-TOLERANT ENHANCEMENTS 43

Memory blockHsiao (13,8) Encoder

Hsiao (13,8) Encoder

Hsiao (13,8) Encoder

Hsiao (13,8) Encoder

Hsiao (13,8) Decoder

Hsiao (13,8) Decoder

Hsiao (13,8) Decoder

Hsiao (13,8) Decoder

NEORV32
CPU

Bus
Interface

Memory block

Memory block

Memory block

Main memory

Hsiao (39,32)
Encoder

rs2Hsiao (39,32)
Decoder

rs1
Hsiao (39,32)

Decoder

Memory
block

Register File

Figure 5.5: Overview of the ECC implementation

no scrubbing was used for the register file.
To provide observability, custom hardware-performance counters were integrated

to track the ECC correction occurrences. A total of four counters were implemented,
with two dedicated to counting single errors and dual errors separately within the
DMEM. Additionally, the Register file also features two counters four counting the
single errors and dual errors.

5.3.3 TMR implementation

Initially, the approach was to triplicate the entire NEORV32 processor to achieve fault
tolerance. However, it was found that the number of 4-input lookup tables (4LUTs)
required for this exceeded the available resources on the FPGA. As a result, the
TMR option in the Synplify synthesis tool was utilized as an alternative solution.
This option performs triplication at the flip-flop level by triplicating every flip-flop in
the design.

Synplify, developed by Synplicity and acquired by Synopsis in 2008, is a synthe-
sis tool for producing high-performance and cost-effective FPGA designs. It sup-
ports a variety of FPGA vendors, including Microsemi FPGAs. Synplify created
specific features for Microsemi FPGAs and Radiation-Hardened FPGAs. It offers a
feature that automatically infers either C-C (combinational cell), TMR (Triple Modu-

44 CHAPTER 5. NEORV32 IMPLEMENTATION

Table 5.2: MS2S010 Resource usage
4LUT DFF uSRAM 1K LSRAM 18K

Unmodified 6239 3014 3 8
ECC-enhanced 7086 3478 4 16
TMR+ECC 11666 8643 4 16

lar Redundancy), or TMR CC (a combination of C-C and TMR) implementations in
place of regular flip-flops [39]. This inference occurs during synthesis, eliminating
the need for post-processing the netlist for flip-flop substitutions. The C-C imple-
mentation utilizes combinational cells with feedback to provide storage functionality,
while the TMR setting applies triplication at the register level, with each register be-
ing implemented using three flip-flops or latches. TMR CC is a combination of both
implementations, where voting registers are composed of combinational cells with
feedback. In the case of the NEORV32 CPU and the AHBL-Wishbone bridge, the
TMR setting was chosen as a trade-off between protection and overheads.

Figure 5.6 provides an example of the TMR setting in the hierarchical netlist level.
The flip-flop fifo.r pnt is implemented as a Sequential Logic Element (SLE), which
consists of one DFF (Data Flip-Flop) and one LE (Logic Element). These LEs are
triplicated, and all the outputs are marked in red. Additionally, TMR utilizes a single
4-input lookup table (4LUT) for implementing the voter per flip-flop. In Figure 5.6, the
voter is implemented using the CFG4 macro, while CFG1, CFG2, CFG3, and CFG4
are post-layout 1-input, 2-input, 3-input and 4-input LUTs used for implementing
various combinational logic functions. The TMR table, as shown in Table 2.1, is
stored in this CFG4.

5.3.4 FPGA resource usage

Table 5.2 shows the resource usage for the 3 different variants. The synthesis was
performed with Libero SoC V2022.3. The TMR+ECC version needed the High Effort
Layout option to be enabled in order to create a successful design.

BRAMs usage

The data memory size has been configured as 16KB, with a data width of 32 bits,
enabling it to store 4069 entries. In the unmodified variant, the memory system uti-
lizes 8 blocks of LSRAM 18K. Each LSRAM block is configured as 4KX4 4KX4 [40],
which means it is a dual-port RAM with 4K entries of 4 bits on each port. The
DMEM consists of 4 arrays of 8 bits, and during synthesis, each array is mapped to
2 LSRAM blocks configured as 4KX4 4KX4. As a result, the memory effectively pro-

5.3. FAULT-TOLERANT ENHANCEMENTS 45

Figure 5.6: Example of Synplify TMR setting on hierarchical netlist level

46 CHAPTER 5. NEORV32 IMPLEMENTATION

vides 4K entries of 32 bits, as expected. This mapping ensures efficient utilization of
the BRAMs, with all bits being utilized. Although there are alternative configurations
possible, such as 4 blocks of 512x32, the synthesis tool chooses the current map-
ping due to the definition of byte-addressable banks. All memories are implemented
as dual-port RAM.

The ECC-enhanced and the TMR+ECC both share the same LSRAM block us-
age because they use the same ECC implementation. This LSRAM block is doubled
compared to the unmodified version because each of the 4 arrays stores now 13 bits
instead of 8. These are mapped to 4KX4 4KX4 blocks, and these ECC bits cannot
fit in one block, a second additional block is necessary, resulting in an increase of 2
blocks per bank. For 4 banks this results in an increase of 8 BRAM blocks. Notably,
not all bits of the BRAMs are utilized, and a more efficient option could have been
10 blocks of 2Kx8. However, the synthesis tool does not identify this option due to
the defined bank configuration.

The register file and TX FIFO of the UART module are mapped to uSRAM blocks.
In the unmodified variant, the register file is stored in 2 uSRAM blocks configured
as 64x18. The register file consists of 32 entries with a data size of 32 bits. The
synthesis tool prioritizes larger block mappings, selecting 64x18 over 64x16, which
would also fit the requirements. Additionally, the TX FIFO of the UART module
meets the necessary threshold for mapping to uRAM and is therefore mapped to
a 128X9 uSRAM block. In the ECC-enhanced and TMR+ECC versions, an extra
uSRAM block is required for the register file due to the extension of its data width to
39 bits.

Logic usage

The original NEORV32 architecture utilizes 6239 4LUTs and 3014 flip-flops as spec-
ified in Table 5.2. Among these resources, the NEORV32 processor consumes 98%
of the Fabric 4LUTs and 96% of the Fabric DFFs, see Table 5.3. Additionally, the
bridge requires 94 4LUTs and 1 flip flop, indicating a small resource footprint. The
top-level, responsible for interfacing with the MSS, uses 128 Fabric 4LUTs and 105
Fabric DFFs. Furthermore, the design involves the utilization of interface 4LUTs and
DFFs, primarily for interfacing with BRAMs. This is evident in Table A.1 in the Ap-
pendix A, where various blocks such as the CPU, DMEM, and UART0 use interface
logic and BRAMs. DMEM consumes the most interface logic but also instantiates
the most BRAM blocks.

Upon implementing the ECC, there is a noticeable increase of 13.6% in 4LUT
utilization and 15.4% in DFFs, see Table 5.2. Table 5.4 illustrates that the ECC pro-
cessor uses 6228 Fabric 4LUTs and 2652 Fabric DFFs, representing an increase

5.3. FAULT-TOLERANT ENHANCEMENTS 47

Table 5.3: Resource usage Unmitigated NEORV32
Module Name Fabric 4LUT Fabric DFF Interface 4LUT Interface DFF
Primitives 2 0 0 0
WB2AHBL O 9 1 0 0
Neorv32 Processor 5704 2512 396 396
Top sb 0 128 105 0 0
Total 5843 2618 396 396

Table 5.4: Resource usage ECC NEORV32
Module Name Fabric 4LUT Fabric DFF Interface 4LUT Interface DFF
Primitives 2 0 0 0
WB2AHBL O 8 1 0 0
Neorv32 Processor 6228 2652 720 720
Top sb 0 128 105 0 0
Total 6366 2758 720 720

of 524 4LUTs and 140 DFFs. This increase is mainly attributed to the usage of
encoders and decoders. A closer look at Table A.2 in Appendix A reveals that the in-
terface logic for the CPU has grown by 1.5 times, driven by the adoption of 3 BRAMs
for the register file in the ECC version (versus 2 BRAMs in the original). Similarly, the
interface logic for the DMEM has doubled due to the doubled BRAM usage as dis-
cussed earlier. However, the UART module’s resource usage remains unchanged
as ECC is not applied to this block. Additionally, there are minor deviations in fab-
ric resource usage across other blocks due to a different design and therefore a
different place and route.

In the ECC-enhanced variant with TMR added, the 4LUTs experience a substan-
tial 61.5% increase, while the DFFs surge by 148.5%, as indicated by the data in
Table 5.2. Although a typical TMR solution involves a 200% increase, not all DFFs
are triplicated in this case, because interface DFFs are not triplicated by the Syn-
plify tool. This could be due to physical placement in memory blocks or strict timing
constraints that do not allow for the additional voter propagation time. As shown in
Table 5.5, the NEORV32 processor now utilizes 7814 Fabric DFFs, representing an
almost expected triplication. Fabric 4LUTs have increased by 73.5%. TMR is also
applied to the Wishbone-AHBL bridge, evident in the tripling of the single fabric flip-
flop in the TMR design compared to the original design. The resource usage of the
subparts of the ECC+TMR version can be seen in Table 5.5 in Appendix A.

In summary, the addition of ECC and TMR to the NEORV32 architecture impacts
resource utilization significantly, with notable increases in both 4LUTs and DFFs.
However, some DFFs remain non-triplicated, likely due to tool limitations or strict

48 CHAPTER 5. NEORV32 IMPLEMENTATION

Table 5.5: Resource usage ECC NEORV32
Module Name Fabric 4LUT Fabric DFF Interface 4LUT Interface DFF
Primitives 2 0 0 0
WB2AHBL O 9 3 0 0
Neorv32 Processor 10806 7814 720 720
Top sb 0 129 106 0 0
Total 10946 7923 720 720

timing constraints, resulting in a slightly different increase than expected for TMR.

5.3.5 Power Estimation using Microsemi’s Smart Power Tool

In this section, the focus is on power consumption in the Active mode, which is the
most relevant aspect of this analysis. Microsemi’s Smart Power tool within the Libero
environment was employed for power estimation. The tool has support for the Value-
Change Dump (VCD) format generated by well-known simulators like ModelSim. It
leverages switching activity over time to assess average power consumption. One
encountered challenge was the size of VCD files, as they tend to become quite large,
mainly because they must encompass all signals in the circuit after post layout for
the most accurate power estimation. Consequently, the decision was made to use
the default prediction settings provided by the tool. These default settings make
certain assumptions about how frequently signals switch and the likelihood of such
switching events. The outcomes of this predictive approach are detailed in Table
5.6.

Static power represents power consumption even when the circuitry is not ac-
tively switching. The data in Table 5.6 reveals that all configurations exhibit identical
levels of static power. However, distinctions exist in dynamic power usage. Notably,
the component that consumes the most dynamic power is the Built-in Blocks. These
Built-in Blocks are integral parts of the MSS, such as the eNVM. It is worth noting
that this part remains consistent across all configurations, as there are no alter-
ations in the MSS between variants. Types like I/O, Core Static, Banks Static, and
VPP Static contribute to dynamic power consumption and remain constant across
all three configurations. Differences in I/O power are negligible. The key variations
are observed in Nets, Gates, and Memory.

When comparing the ECC-Enhanced and ECC+TMR configurations, both utilise
the same amount of memory, therefore their memory consumption is identical. How-
ever, compared to the Unmodified variant, both ECC-Enhanced and ECC+TMR con-
figurations show nearly a doubling of memory consumption, corresponding to the
increased number of hardware memory blocks. In particular, the ECC-Enhanced

5.3. FAULT-TOLERANT ENHANCEMENTS 49

Table 5.6: Estimated power consumption of the different configurations
Unmodified ECC-Enhanced ECC+TMR

Power
(mW)

Percen-
tage

Power
(mW)

Percen-
tage

Power
(mW)

Percen-
tage

Dynamic Power 69.941 86.4% 72.529 86.8% 82.120 88.1%
Type Net 3.681 4.5% 3.942 4.7% 10.330 11.1%
Type Gate 8.854 10.9% 9.246 11.1% 12.449 13.4%
Type I/O 0.363 0.4% 0.359 0.4% 0.359 0.4%
Type Memory 2.122 2.6% 4.061 4.9% 4.061 4.4%
Type Core Static 8.262 10.2% 8.262 9.9% 8.262 8.9%
Type Banks Static 2.161 2.7% 2.161 2.6% 2.161 2.3%
Type VPP Static 0.625 0.8% 0.625 0.7% 0.625 0.7%
Type Built-in Blocks 54.921 67.8% 54.921 65.7% 54.921 58.9%
Static Power 11.048 13.6% 11.048 13.2% 11.048 11.9%
Total Power 80.989 100.0% 83.577 100.0% 93.168% 100.0%

configuration experienced a 7.09% increase in Net usage and a 4.43% increase in
Gate usage compared to the Unmodified variant. Furthermore, when comparing
the ECC+TMR version to the ECC-Enhanced, there is a significant difference of
162.05% in Net power consumption. There is also an increase of 34.64% in Gate
usage due to the replication of flip-flops, resulting in a greater number of intercon-
nections.

In conclusion, the ECC variant exhibits a mere 3.2% increase in overall power
consumption, which is a slight increase. This marginal rise can largely be attributed
to power-hungry components like the built-in blocks, whose power usage remains
consistent across all configurations. However, only considering the power con-
sumption of Nets and Gates does reveal a slight uptick in these power consump-
tions. While each of these components may individually have a relatively small im-
pact, their cumulative effect becomes evident when assessing the ECC variant as a
whole. In contrast, the ECC+TMR configuration demonstrates a considerably higher
increase in power consumption, with a substantial 15.04% rise when compared to
the unmodified version. This increase becomes particularly prominent when we con-
sider only the additional blocks introduced, resulting in a striking 162.05% difference
in Net power consumption and a significant 34.64% increase in Gates. These find-
ings emphasize the need for careful consideration of specific components’ power
implications when implementing enhancements such as ECC+TMR, especially for
space applications where power can be scarce.

50 CHAPTER 5. NEORV32 IMPLEMENTATION

data_enc
Encoder DecoderIn

error_injection_i

dec_in
XOR

d_oerr_osyndrome_o

Figure 5.7: Schematic overview of the Encoder & Decoder Testbench

5.4 Testing of the Fault-Tolerant adjustments

The Hsiao(13,8) encoder and decoder, as well as the Hsiao(39,32) encoder and
decoder, were manually tested using ModelSim. The test bench schematic, shown
in Figure 5.7, instantiates both the decoder and encoder and connects the encoder’s
output to the decoder’s input. In the absence of any fault injection, the output should
match the input, and no errors should be detected. The test module includes an error
injection signal in addition to the input signal. An XOR operation is performed on the
encoder’s output and the error inject i signal. The result of this XOR operation is
forwarded to the decoder for decoding.

The purpose of this test bench is to evaluate the encoder and decoder’s function-
ality and resilience against errors. By injecting errors using the error inject i signal,
the test bench can assess how well the decoder handles and corrects these errors,
if applicable. The XOR operation simulates potential errors in the transmitted data,
and the decoder’s output can be compared to the original input to verify error correc-
tion capabilities. Throughout the testing process, various test vectors may be used
to assess different scenarios and potential edge cases.

A specific manual test case, shown in Figure 5.8, provides an example of this
evaluation. Initially, when both the input and error inject signal are set to 0, the
encoded value and error signal should also be 0, as expected. At 100ps, the input
value is set to 0 with a single-bit flip in the Least Significant Bit (LSB) position.
Although the encoded data remains 0, the error signal correctly indicates a single-
bit error, confirming the decoder’s error detection capability. The decimal value of
the syndrome (13) indicates that the error occurred at position 13, which aligns with
the actual injected error. At 200ps, a double-bit error is injected with the input value
still set to 0. The error signal indicates a double-bit error, showcasing the decoder’s
ability to detect multiple errors. Subsequently, at 300ps, 400ps, and 500ps, tests are
performed with non-zero input values without error injection, with a single-bit error,
and with a double-bit error injection, respectively.

5.4. TESTING OF THE FAULT-TOLERANT ADJUSTMENTS 51

Figure 5.8: ModelSim simulation of the Hsiao(13,8) encoder and decoder with fault
injection

Besides the ModelSim simulations, the ECC on the data memory has been em-
ulated. A single-bit flip was introduced at the output of every encoder of the data
memory in VHDL. Therefore all the data that is written to the memory will include a
single bit error. This was tested with a small C program which sets up the Hardware
Performance Monitorss (HPMs) and a while loop that writes the values 1 to 100 to an
array of 100 items. After this writing, the data is read. As expected the HPM counter
of the ECC DMEM single error had stored value 100. By removing the single-bit flip,
the counter was 0.

The byte addressable bug was found with this emulation. By changing the data
type of the array from int32 t to int16 t and without a single-bit flip, the ECC HPM
showed errors.

52 CHAPTER 5. NEORV32 IMPLEMENTATION

Chapter 6

Neutron Beam Experiment

In order to study the impact of Single Event Effects (SEEs) on the NEORV32 System-
on-Chip (SoC) implementation, we subjected the Device Under Test (DUT) to a high-
energy neutron beam. Our experiments were conducted at the ChipIR beamline,
located at Rutherford Appleton Laboratories in the United Kingdom. This facility ac-
curately replicates the energy spectrum of atmospheric neutrons [41], making it a
suitable approximation for simulating SEUs (SEUs) caused by protons. To evalu-
ate the NEORV32 designs, we utilized two Trenz SMF2000 boards that contained
SmartFusion2 [34] devices. Both boards were positioned in line with the neutron
beam, and we accounted for the variation in distance from the source when calcu-
lating the total fluence.

6.1 Experimental setup

The experimental setup consisted of two Trenz SMF2000, which can be seen in
figure 6.1. Both devices were programmed with the same bitstream, therefore the
fluence of each experiment was doubled. The UART receive (Rx) and transmit (Tx)
pins of the UART module within the FPGA fabric were routed to the external PMOD
connector. This connecter was connected to the Digilent Pmod USB UART module,
which converts this UART signal to a USB output. This module was connected to
the Raspberry Pi through a USB cable.

The Raspberry Pi acts as a host computer and was responsible for processing
the UART data and determining when a power reset was necessary. This Rasp-
berry Pi was connected to a Lindy IPower Switch via an ethernet cable. This switch
provides power to the 2 DUTs via a USB connection. The Raspberry Pi was able
to enable and disable the power of individual FPGAs by sending commands to the
IPower Switch when there was a hang or an exception. Because the configuration
memory and the program memory were stored in Flash, reprogramming the FPGA

53

54 CHAPTER 6. NEUTRON BEAM EXPERIMENT

Local network IP

Raspberry Pi

Digilent Pmod
 USB UART USB Cable

Digilent Pmod
 USB UART

SmartFusion2
USB Power

Lindy IPower
Switch

Beam Line

Figure 6.1: Diagram of the experimental setup

after a power reset is not necessary, assuming that the eNVM memory is immune
to SEUs.

6.2 Software

The software layer consisted of bare metal code, comprising the UART peripheral
communication, scrubbing routine, and the initialization of the HPMs. In this context,
an execution or run refers to the execution of CoreMark, which involves multiple
iterations.

Regarding UART communication, the transmission involved sending a burst of
four characters. At the beginning of each execution, a unique identifier was sent
twice to indicate the start of an execution. If an incorrect CRC (Cyclic Redundancy
Check) was encountered during the computation of the list, matrix, or state, a spe-
cific value was sent. In cases where the CoreMark execution finished too quickly,
which is not possible without an illegal jump, a predefined value was printed. In the
event of errors such as mismatched CRC or excessively fast execution time, a dis-
tinct value was printed twice to indicate the execution has errors and the following
prints contain the following information. Subsequently, the CRC values for the list,
matrix, and state computations were printed, followed by the final CRC. The number
of errors was then printed. Afterwards, the ECC counters were printed.

Finally, two specific prints were sent to indicate the end of the execution. Since
only bytes were printed without any accompanying text, it is important to associate

6.3. ERROR MODEL 55

each print with its corresponding statement for parsing the correct result.
The CoreMark benchmark was used as workload. To guarantee that the bench-

mark utilizes most of the resources of the device, the CoreMark data size was
increased from 2K to 12K. 20 computations needed 1 minute and 44 seconds to
compute. Initialization and outputting only take a small amount of time, therefore
increasing the iterations is not necessary.

The exception trap handler was changed to output the mcause, mepc, and mtval

registers, in order to find the cause and origin of an exception. The mcause contains
the machine-level exception codes. These codes are shown in Table 4.1. When a
trap is taken, mepc contains the virtual address of the instruction that encountered
the exception. The mtval CSR provides additional information on why a trap was
entered.

6.3 Error Model

The possible outputs of the experiment consist of:

1. Match: when the CRC output matches with the expected value.

2. SDC: indicates a difference between the CRC output and expected value. The
program has finished but with an incorrect output.

3. DUE: The program does not finish correctly, either via a crash that triggers a
hang or because of a detected exception.

4. ECC corrections: the number of single-bit corrections and double-bit detec-
tions provided by the ECC unit in the DMEM or register file. Either by the
scrubber software, or normal data access.

The ECC SEC-DED is represented as a single category, but in reality, we had sep-
arate counters for single and double-bit errors and for the DMEM and register file.

For the calculation of the average cross section and the 95% confidence inter-
vals, the methodology by Quinn [42] is used. Including confidence intervals in all
experimental data is crucial as they offer valuable context to comprehend the uncer-
tainty in the performed measurements. The radiation effects community convention-
ally follows this practice and uses two-sigma or 95% confidence intervals [19]. For
counting statistics the Poisson distribution is used. If there are 50 or more events,
the Poisson distribution can be approximated with the Normal distribution with the
following formula:

σ =
2 ∗

√
events

fluence
For this experiment, the Poisson distribution was used to calculate the DUE and SDC
cross-sections of the experiments, because all errors were below 50. The normal

56 CHAPTER 6. NEUTRON BEAM EXPERIMENT

Table 6.1: Overview of the errors counted during the beam experiment
Execution time
(HH:MM:SS)

Mismatch Timeout Exception

Unmodified 11:48:41 5 1 31
ECC-enhanced 10:30:50 0 0 3
ECC+TMR 5:01:15 0 0 0

distribution was used to calculate the cross-section of the LSRAM. The SDC and
DUE cross-sections are calculated for every experiment. The formula for computing
the cross-section is:

σ =
number of errors

fluence
The number of errors (N) is the sum of exceptions and timeouts for the DUE cross-
section calculation. The SDC cross-section calculation only uses the number of
mismatches. When the number of errors is 0, a value of 1 is used because a division
with 0 is not possible.

The fluence was calculated by a Python script which receives the start and end
time of the experiment. It also receives the timestamps when the beam was off.
Lastly, it needs the flux of the beam, which is a constant value. This script produces
fluence. Because two boards were tested at the same time, this fluence needs to be
multiplied by 2 to get the total fluence. The boards were not angled, so the fluence
does not need to be compensated for that

6.4 Characterization Results

The 2 boards run for a cumulative time of 27 hours for all 3 configurations. The
unmodified and ECC-enhanced both received the most beam time because they
were likely to receive the most errors. The classification of the counted errors can
be seen in Table 6.1. Table 6.2 shows the counted errors, lower and upper limits and
the amount of fluence used for the cross-section calculation.

Unmodified NEORV32 The unmodified implementation had a total run time of
11 hours and 49 minutes, counting both boards. During the test, the DUT suffered
1 timeout, 5 SDCs and a total of 31 exceptions. The found cross-section for this
configuration is 1.96 ∗ 10−10cm2 for DUE and 3.06 ∗ 10−11cm2 for SDC, see Table
6.3. Table 6.4 shows which exceptions occurred and in which C function of the
benchmark.

ECC-enhanced: The SEC-DED implementation resulted in a clear reduction in
the number of errors present in the ECC version. There were no SDCs found. How-
ever, there were still 3 DUEs caused by exceptions, see table 6.4. There was an

6.4. CHARACTERIZATION RESULTS 57

Table 6.2: Upper and lower limits for the cross-section calculation

N
95% Lower
Limit

95% upper
limit

Fluence
Total
Fluence

Unprotected DUE 32 21.8 45.1 8.16E+10 1.63E+11
Unprotected SDC 5 1.6 11.7 8.16E+10 1.63E+11
ECC-enhanced DUE 3 0.6 8.8 8.25E+10 1.65E+11
ECC-enhanced SDC 0 0 3.7 8.25E+10 1.65E+11
ECC+TMR DUE 0 0 3.7 3.96E+10 7.94E+10
ECC+TMR SDC 0 0 3.7 3.96E+10 7.94E+10

access fault resulting from the bus getting timeout on the instruction fetch, which
may be caused by an error in the bus connecting to the eNVM. The illegal instruc-
tion could represent a malformed instruction or in this case an unintended privilege
access violation. Despite no DUEs being encountered, the cross-section represents
a worst-case scenario, where it is assumed that the following particle would cause
an event [42]. Table 6.3 shows the cross-sections for this configuration, which is
1.82 ∗ 10−11cm2 for DUE and 6.06 ∗ 10−12cm2 for SDC, which is a reduction of 10.7x
and 5x respectively.

DMEM: The cross-section of the 12kB LSRAM was calculated by evaluating the
total of both ECC-protected configurations. The user memory accumulated a signifi-
cant amount of single-bit errors. No double-bit errors were detected in both configu-
rations. The cross-section for a single-bit error is 1.23∗10−13cm2. This is comparable
to the cross-section found in a characterization study performed on different Smart-
Fusion2 models [34], they found a cross-section of 2.53 ∗ 10−14cm2 for a single bit in
the LSRAM memory. When we divide the found cross-section by the used memory,
which is 12K, we get a cross-section of 9.85 ∗ 10−13cm2. This found cross-section
is a factor 39x bigger than the cross-section found in the characterization study of
Dsilva [34].

ECC+TMR: The TMR version ran for a total of 5 hours and did not have any
mismatches timeouts or exceptions. The cross-section again represents a worst-
case scenario for this configuration. Since this version received a smaller total of
fluence, it can be seen in Figure 6.2 that the ECC+TMR has a higher cross-section
than the ECC-enhanced. The cross-section for the DUE and SDC is 1.26 ∗ 10−11cm2

with an upper limit of 3.40 ∗ 10−11

There were no faults detected for the ECC+TMR solution. This result is in line
with the results from the SoC hardening configuration in both the processor and the
memory from HARV [27]. Applying ECC to the data memory resulted in a large re-
duction in errors, this also aligns with the finding of HARV [27].

58 CHAPTER 6. NEUTRON BEAM EXPERIMENT

Table 6.3: Cross Sections of the tested devices and the 12kB of LSRAM with ECC
coverage.

Number
of Errors

Fluence
(n/cm2)

Cross Section
(cm2)

95%
Confidence

LSRAM 12kB 2948 2.44E+11 1.21E-08 ±4.44E-10

Unprotected DUE 32 1.63E+11 1.96E-10
+8.02E-11
-6.25E-11

Unprotected SDC 5 1.63E+11 3.06E-11
+4.10E-11
-2.08E-11

ECC-enhanced DUE 3 1.65E+11 1.82E-11
+3.51E-11
-1.45E-11

ECC-enhanced SDC 0 1.65E+11 6.06E-12 +1.64E-11
ECC+TMR DUE 0 7.94E+10 1.26E-11 +3.40E-11
ECC+TMR SDC 0 7.94E+10 1.26E-11 +3.40E-11

Fang et al. extended the PVF metric and created a dynamic model for predicting
whether a particular fault will cause a crash. By performing fault injection they found
that the majority of crashes are caused by illegal memory addressing [18]. They
observed four types of exceptions resulting in crashes: Segmentation fault, Abort,
Misaligned memory access and Arithmetic errors. They discovered that segmenta-
tion faults are the predominant source of crashes with a 99% average frequency and
a 96% minimum frequency. This is in line with the exceptions found in the Unmod-
ified variant because Table 6.4 shows that the majority of the exceptions are Load
or Store Access Faults or Load Address Misaligned, which can all be classified as
Segmentation faults.

6.4. CHARACTERIZATION RESULTS 59

Table 6.4: Causes of exceptions, separated by the function of origin according to
mpec register.

Implementation Coremark Function Exception
Occurrences
in function

Unmodified

core bench list()

Load Access Fault 10
Store Access Fault 1
Load Address Misaligned 2
Illegal instruction 1

core bench state() Load Access Fault 1

cmp complex()

Load Access Fault 13
Store Access Fault 1
Load Address Misaligned 1
Illegal instruction 1

ECC-Enhanced
matrix test() Illegal instruction 2
core state transition() Instruction Access Fault 1

Unmodified ECC-enhanced ECC+TMR
0

0.5

1

1.5

2

2.5

3

C
ro

ss
 S

ec
tio

n
[c

m
2
]

10-10

DUE
SDC

Figure 6.2: Measured cross section for the 3 different configurations of NEORV32

60 CHAPTER 6. NEUTRON BEAM EXPERIMENT

Chapter 7

Discussion

This discussion section offers a comprehensive analysis and interpretation of the
results derived from the beam experiment. Within this section, we delve into the
implications of the findings, while also delving into potential explanations for the ob-
served exceptions. Furthermore, we extend our investigation to the assembly level,
aiming to strengthen the proposed potential explanations with a detailed assembly-
level analysis.

7.1 Implications of findings

This section discusses the findings of the beam experiment in Chapter 6 for every
tested variant.

7.1.1 Unmodified

The Unmodified variant of the system, as shown in Table 6.1, showed 5 mismatches,
a single timeout, and 31 exceptions. These mismatches are likely caused by SEUs
inside the vulnerable 12kB SRAM data memory, which lacks any protection. When
an SEU affects a memory location that stores a value used for computation, it can
lead to a mismatch later in the program execution. However, the data memory not
only stores values but also pointers. In the event of an SEU on a pointer, it can result
in an exception during program execution.

Among the exceptions encountered, there were 24 load access faults and 2 store
access faults. The exception handler reported load and store addresses outside
the defined RAM memory space, with the upper address being 0x80003FFF. An
interesting case was the load store access fault caused by a load from the memory
location 0x804006d8. By replacing the ’4’ from this address with a ’0’, it becomes a
valid address within the BSS section. This occurrence of ’4’ in the address could be
caused by a bit SEU at bit b23, flipping a bit from zero to one.

61

62 CHAPTER 7. DISCUSSION

Table 7.1 provides an overview of all the requested memory locations at the in-
structions that caused Load Access Faults or Store Access Faults in the unmodified
configuration. Among the 24 Load Access Faults, 20 memory addresses could be
corrected by flipping one positive bit to 0, which may be caused by SEUs.

Moreover, three other memory locations could be made valid by correcting two
bits. While Multiple Bit Upsets (MBUs) are considered unlikely to occur, as sug-
gested by Microsemi’s documentation on Igloo radiation test results [35], a more
plausible explanation for these cases is the accumulation of two SEUs on the same
word. This lower likelihood of SEUs occurring in the same word may explain why
we only found three instances of such occurrences. However, there was one mem-
ory location, 0x30372e34, that could not be easily traced back to a valid memory
location, needing further investigation.

Regarding the two Store Access Faults, one of them could be traced back to
a single-bit flip, but the other memory address that caused an exception, a store at
address 0, is unusual. Since it is a zero value, it is unlikely to be a legitimate memory
location such as 0x80000000. The occurrence of a value of 0 could potentially be
attributed to a SEU affecting a pointer. This SEU might alter the pointer to point to
a valid address range within memory that has not been utilized yet. Consequently,
the value retrieved from this location could be 0 due to the lack of prior utilization.
Further investigation is needed to determine the cause of this exception.

In addition to the previously mentioned events, there were also two instances
of illegal instructions encountered. At the memory address 0x60001340 a zero in-
struction was fetched. At address 0x60001628 the word 81000208 was fetched. Both
these addresses are valid program memory locations; however, no valid instruction
was fetched.

Moreover, 3 Load Addresses Misaligned Exceptions were found. A Load Adress
Misaligned exception is raised when the processor attempts to read data from a
memory location, but the address used for the load operation is not aligned properly
with the data size being read. The address for byte loads and stores must be a
multiple of 1 byte, addresses of halfwords must be aligned with a multiple of 2 bytes
and for words, the addresses need to be a multiple of 4. The memory addresses of
these encountered exceptions are not valid addresses, they are not in the memory
region of the instruction or data memory, therefore these instructions can be classi-
fied as undefined bits. If these addresses matched the proper load size instruction,
they would have become a Load Access Fault exception.

Lastly, a single timeout was encountered. When a timeout is encountered, the
device does not present the results in the given timeframe. It is difficult to explain
how a timeout could be caused. Because when for instance the program counter
is affected by an SEU, a valid program instruction is fetched or an instruction fetch

7.1. IMPLICATIONS OF FINDINGS 63

Table 7.1: The load and store addressed which causes an exception for the unmod-
ified NEORV32 configuration

Load
Access
Fault

Possible
valid
Address

Classification Load
Access
Fault

Possible
valid
Address

Classification
Sin-
gle

Dual ?
Sin-
gle

Dual ?

804006d8 800006d8 X 8004096c 8000096c X
900007f8 800007f8 X 80004680 80000680 X
8020096c 8000096c X 804002dc 800002dc X
880004e0 800004e0 X 801007b0 800007b0 X
8005206f 8000006f X 800206a4 800006a4 X
800107a8 800007a8 X 80109383 80001383 X
840008dc 800008dc X 80040398 80000398 X
80200928 80000928 X 8000404f 8000004f X
808005b0 808005b0 X 80080778 80000778 X
a0000354 80000354 X 8200045c 8000045c X
30372e34 ? X 800102dc 800002dc X
801008c8 800008c8 X 80408900 80000900 X
Store
Access
Fault

Possible
valid
Address

Classification Store
Access
Fault

Possible
valid
Address

Classification
Sin-
gle

Dual ?
Sin-
gle

Dual ?

00000000 ? X 80400598 80000598 X

is done outside the program memory, which will be very likely to raise an Illegal
instruction or Instruction Address Misaligned exception. SEUs might induce pipeline
stalls or affect the content of crucial registers. Resulting in disruption of instructions
and data handling contributing to executing delays and an eventual timeout. A SEFI
is often associated with an upset in a control bit or register.

In conclusion, the mismatches and exceptions observed in the unmodified variant
are likely the result of SEUs occurring in the vulnerable SRAM data memory, which
lacks protection. The majority of Load and Store Access Faults can be attributed
to pointers stored in the data memory, which were affected by SEUs, resulting in
illegal pointers. On the contrary, the mismatches were likely caused by SEUs in
memory locations that stored values. A comprehensive analysis is required to fully
understand the cause of all exceptions and the single timeout.

7.1.2 ECC-enhanced

The addition of the ECC on the data memory and the register file, reduced the total
mismatches to 0. It is expected that the ECC-enhanced version should have fewer

64 CHAPTER 7. DISCUSSION

mismatches because the amount of SDCs on the data memory is reduced heavily.
Besides the expected reduction of mismatches, we also expect a reduction of Load
and Store Access Faults, because we claimed in the previous section that these are
caused by an SEU striking a pointer. With the ECC and scrubber, the chance of a
single SEU or multiple SEUs is very low. This is also what we see in the results,
there were no mismatches found and there were no Load and Store Access Faults
anymore.

However, it does not mean that mismatches will never occur with this config-
uration in a similar radiation environment. Memory is not fully tolerant, because
accumulation of errors is still possible. Due to the scrubber, the time window where
2 SEUs need to happen to cause an MBU is reduced drastically. In addition, SDCs
are still possible in the ALU; therefore, a wrong computation output could be written
to memory, which can result in a later mismatch.

Although instances of timeouts were not detected, the situation introduces some
complexities. The variant incorporating ECC was subjected to a shorter duration
of radiation exposure in comparison to the Unmodified variant. In addition, the oc-
currence of just one timeout in the Unmodified variant does not provide a sufficient
basis for a strong comparison.

Two Illegal Instructions were caused by executing a zero instruction, which is
not a valid RISC-V instruction. The Program Counter (PC) of the instructions that
caused the trap were 0x0001BF40 and x60001BFA, the first PC is not pointing to a
valid instruction and therefore uninitialized data was fetched. The upper bound of
the instruction memory is 0x6000352E. However, the second instruction is valid and
stores an addition. Lastly, the Instruction Access Fault was caused at 0x60000928.
This instruction is raised when the slave does not respond in time, which could be
attributed to a SEFI.

7.1.3 ECC+TMR

The ECC+TMR implementation did not have any mismatches, timeouts or excep-
tions during the execution. Although these results look very promising, it does not
mean that this device with the used architecture can be classified as fully fault-
tolerant. Fault tolerance refers to a system’s ability to continue functioning properly
even in the presence of faults or failures. There are several reasons why a device
could pass the beam test without errors. The beam test may not have covered all
possible failure scenarios. One failure scenario could be the accumulation of mul-
tiple SEUs. This can happen inside the data memory, which will likely result in a
mismatch. However, it can also happen at the flip-flop level, when the state of 2 flip-
flops inside a single ECC+TMR solution is flipped, the ECC+TMR voter will provide

7.2. PROGRAM ANALYSIS 65

the wrong output. This will only cause a problem if the value of the voter is read after
the accumulation of 2 errors and is not overwritten. As described not all storage bits
result in a malfunction of the system, the non-ACE bits. One or two SEUs occur at
one bit of the program counter, the ECC+TMR solution will fail when the timing is
right. Although MBUs have not been detected before for the target device, there is
still a probability that it can happen.

7.2 Program analysis

In the preceding section, a hypothesis was presented that the emergence of Load
Access Fault and Store Access Fault exceptions can be attributed to store pointers
in memory that have been influenced by SEU. Similarly, it was suggested that the
origins of Illegal Instruction and Instruction Access Fault exceptions likely stem from
SEUs affecting the control logic. In the current section, we concentrate solely on
elaborating the hypothesis about Access Fault Exceptions. Given that the occur-
rence of these exceptions was exclusive to the unmodified NEORV32 configuration,
this section only applies to this specific setup.

7.2.1 Affected functions

Table 6.4 lists the functions where the exception occurred. The core bench list

function contains code for the linked list benchmark. This function has the purpose
of identifying multiple data items within a list. It arranges the list in sorted order,
conducts Cyclic Redundancy Check (CRC) operations on the data present in the list,
and further manages the removal or reinsertion of items within the list. Importantly,
at the end of the function’s execution, the list is restored to its initial state. The
function core bench list has been reported to encounter 14 exceptions, as outlined
in Table 6.4.

The cmp complex function plays a crucial role in the core bench list function by
performing comparisons on data items within list cells. This function, described in
Listing 7.3, appears to be a straightforward function with just three lines of code, yet
it is remarkable for the frequency of exceptions it encounters. This function causes
the most exceptions of all functions, namely 16 exceptions, several factors contribute
to this phenomenon, needing exploration.

The core bench state function implements the state machine benchmark. This
state machine tests types of string input and tries to determine whether the input is
a number or something else. core state transition implements the actual state
machine and is called by the core bench state function. The unmodified variant

66 CHAPTER 7. DISCUSSION

had one exception in core bench state. The ECC-enhanced configuration had a
single instruction Access Fault in the core state transition.

The matrix test function performs the matrix manipulation. It adds a constant
value to all elements of a matrix. Furthermore, the matrix is multiplied with a con-
stant, followed by a vector multiplication. After this, the matrix is multiplied by a
different matrix. Finally, a constant is added to all elements of a matrix, after this
step the matrix is back to its original contents. Only the ECC-enhanced had excep-
tions in this function, namely 2 Illegal Instructions.

The matrix test and core state transition will not be used in this section be-
cause they were caused by Illegal Instructions by the ECC-enhanced. This section
only focuses on Load and Store faults. The Illegal instruction of the unmodified
NEORV32 will also not be investigated. Therefore this subsection focuses on the
core bench list, cmp complex and core bench state. We refer to these exceptions
as data memory exceptions or Segmentation Faults.

The function core bench list has 13 data memory exceptions, cmp complex has
15 exceptions and core bench state has a single data memory exception. Because
cmp complex is a helper function of the core bench list, 28 data memory excep-
tions occurred in the linked list benchmark. A single exception occurred in the state
benchmark. The matrix benchmark does not have any data memory exceptions.

Two key observations arise from these results. Firstly, it is noteworthy that nearly
all the exceptions in the unmodified version are attributed to Segmentation Faults.
Secondly, it is remarkable that the vast majority of these exceptions are raised within
the list benchmark. This subsection delves deeper into the exploration of these two
findings.

7.2.2 Vulnerability Factor

Section 2.1.4 in the background introduced the concept of ACE bits, AVF and PVF.
The equations for AVF and PVF consider the number of ACE bits over a specified
period of time. To illustrate this, let us analyze the PVF calculation for a single regis-
ter in the context of two programs, each featuring a single store and load operation.
In this scenario, both programs have an initial store operation at instruction 1. Pro-
gram A continues with a load at instruction 5, while Program B performs a load at
instruction 10, and in between NOP instructions. The PVFs for both programs can
be computed as follows:

ProgA =

∑I
i=0(ACE a-bits in R at instruction i)

BR × I
=

(5− 1) ∗ 32
32 ∗ 5

= 0.8

7.2. PROGRAM ANALYSIS 67

ProgB =

∑I
i=0(ACE a-bits in R at instruction i)

BR × I
=

(10− 1) ∗ 32
32 ∗ 10

= 0.9

From this basic example, we can deduce that data stored for a longer duration in
a register or in memory shows a higher vulnerability factor.

In order to say something about the vulnerability of instruction at a specific PC or
C function, the presence of jumps and loops needs to be taken into consideration.
These branches introduce a dynamic aspect to instruction execution, where cer-
tain addresses are executed multiple times, consequently boosting the probability of
triggering exceptions.

7.2.3 CoreMark Linked List Algorithm

One of the CoreMarks benchmarks is the linked list operations. CoreMark uses C
structures for creating the linked list, which is shown in Listing 7.1. For this experi-
ment, dynamic memory allocation was not used, so calls such as malloc and alloc

were not used. The application controls the memory for this list directly. The linked
list will be initialized such that 1

4
of the list pointers point to sequential areas in mem-

ory, and the other 3
4

of the pointers are distributed in a non-sequential manner. In
this way a list is emulated that had many adds and removes, disrupting the order of
the list and is followed by a series of adds, emulating sequential memory locations.

Listing 7.1: CoreMark linked list structure
typedef struct l i s t d a t a s {

ee s16 data16 ;
ee s16 idx ;

} l i s t d a t a ;

typedef struct l i s t h e a d s {
struct l i s t h e a d s * next ;
struct l i s t d a t a s * i n f o ;

} l i s t h e a d ;

The linked list benchmark consists of the following:

1. Multiple find operations. The result of each find will be part of the output CRC
chain.

2. Sorting the list based on the data16 value. The CRC is derived from a part of
the sorted data16 items.

3. Sorting the list based on the idx value. This will revert the list back to the
original state, therefore no initialization is needed for further iterations. The

68 CHAPTER 7. DISCUSSION

CRC of the data16 for part of the list will be calculated again and part of the
output chain.

The calculation of the number of list items utilized for the benchmark is important
for the analysis and can be seen in Listing 7.2. Given a memory size of 12kB for our
experiment, each benchmark utilizes one-third of this memory, resulting in a block
size (blksize) of 4kB. Considering that the size of the list data s structure is 32
bits, the per-item size (per item) amounts to 48 bits.

Consequently, the amount of list items is 4000 ∗ 8/48 − 2 = 664.67, leading to a
list size of 664 items, which is used for the benchmark.

Listing 7.2: CoreMark list size calculation
ee u32 per i tem = 16 + sizeof (struct l i s t d a t a s) ;
ee u32 s ize = (b l k s i z e / per i tem) − 2;

For this analysis it is important to know how much of the data memory actually
contains linked list pointers, this percentage is calculated as follows:

mempointer =
Nitems ∗ sizepointer

sizemem

∗ 100% =
664 ∗ 16
12000 ∗ 8

∗ 100% = 11.1%

11.1% of main memory contains pointers for the linked list benchmark.
The core bench list function is the main function of the linked list benchmark

and encountered 16 exceptions. One primary factor is the frequency of function
calls. As an integral part of the sorting algorithm, cmp complex is invoked repeatedly
during comparisons. This repetitive nature increases the probability of encountering
exceptions. It is a numbers game: the more a function is called, the higher the odds
of encountering an exceptional case.

In contrast, cmp complex is a small function with only three lines of code, see
Listing 7.3. Table 6.4 reveals that the function cmp complex for the unmodified vari-
ant had 14 load Exceptions and 1 store exception. Smaller functions have a lower
probability of causing exceptions due to their reduced complexity. The objdump of
the compiled binary shows that the function calc func was inlined in cmp complex.
Listing A.1 in the appendix shows the compiled assembly code for this instruction.
This function contains 127 lines of assembly.

Listing 7.3: CoreMark cmp complex()
/ * Funct ion : cmp complex

Compare the data i tem i n a l i s t c e l l .
Can be used by mergesort .

* /
ee s32

7.2. PROGRAM ANALYSIS 69

cmp complex (l i s t d a t a *a , l i s t d a t a *b , c o r e r e s u l t s * res){
ee s16 val1 = ca l c func (&(a−>data16) , res) ;
ee s16 val2 = ca l c func (&(b−>data16) , res) ;
return va l1 − val2 ;

}

One other interesting observation is the fact that the function cmp idx, shown
in Listing 7.4, is very similar to cmp complex, but does not have any single excep-
tions. The reason for this is timing. When a list is sorted, every item in the linked
list is accessed. For every item, the comparison functions are called. Because
cmp complex is called before cmp idx, cmp complex will raise an exception when
one pointer in memory was affected by an SDC. Because cmp idx is directly called
after cmp complex, the time window of an SEU affecting a pointer causing an excep-
tion in cmp idx is small, therefore we did not detect any exceptions in cmp idx during
our beam experiment.

Listing 7.4: CoreMark cmp idx()
/ * Funct ion : cmp idx

Compare the idx i tem i n a l i s t c e l l , and regen the data .
Can be used by mergesort .

* /
ee s32
cmp idx (l i s t d a t a *a , l i s t d a t a *b , c o r e r e s u l t s * res)
{

i f (res == NULL)
{

a−>data16 = (a−>data16 & 0 x f f 00) |
(0 x00 f f & (a−>data16 >> 8)) ;

b−>data16 = (b−>data16 & 0 x f f 00) |
(0 x00 f f & (b−>data16 >> 8)) ;

}
return a−> i dx − b−> i dx ;

}

7.2.4 Analysis of the crash traces

Table 7.2 lists all relevant instructions affecting a particular exception. When an
exception is caused by a load from an address stored in a register, the instructions
before affecting this register are shown as well. Relevant instructions for these traces
only consisted of load, store and move operations.

70 CHAPTER 7. DISCUSSION

Table 7.2: Load and store traces of possible affected registers causing an exception
Adress Instruction Adress Instruction
600012cc: lh s1,0(s2) 60001676: lw a1,4(s0)
60001280: mv s2,a1 6000166c: mv s0,a5

6000165e: lw a5,0(a5)
60001538: lh a3,0(a7) 6000165a: mv a5,s0
60001530: lw a7,4(s0) 60001630: lw s0,56(sp)
6000144c: mv s0,a4
6000143e: lh a4,2(a4) 60001330: sh s1,0(s2)
6000143c: lw a4,4(a5) 60001280: mv s2,a1
60001438: lw a5,0(a5)
60001434: mv a5,s0 6000168e: sw a5,0(s3)
60001414: lw s0,36(a0) 60001630: lw s0,56(sp)*

60001652: li s3,0*
6000165e: lw a5,0(a5)
6000165a: mv a5,s0 60000ba2: lbu a1,0(a6)
60001630: lw s0,56(sp) 60000b9c: sw a6,12(sp)
6000126c: lh s1,0(a0)

This subsection will explain every trace. Note that only the trace of instruc-
tions or given of the affected function. The following traces: 0x600012cc, 60001538,
0x6000165e, 0x6000126c, and 0x60001330 end at load or move from the function
argument register, which means that the pointer has been passed to this function.
The table shows 8 traces because multiple exceptions occurred at the same PC.

The exception at 0x60001676 was triggered due to an invalid address used in
the lw instruction. By analyzing the assembly, we verify that the address for the
load operation is stored in register s0. To identify the root cause, we trace back
to the instruction at address 0x6000166c. This instruction transfers the contents of
register a5 to s0. Now an investigation is needed for register a5. This brings us to
the instruction at address 0x6000165e, where a memory load is executed with both
source and destination addresses set to the value of a5.

Two plausible explanations for the exception can be derived. In the first scenario,
register a5 initially held a valid pointer, and an external event, such as an SEU,
affected the memory location pointed to by a5, leading to the exception. Alternatively,
the second scenario declares that the pointer stored in a5 was erroneous. In this
case, instruction 0x6000165a is relevant, which copies the contents of s0 to a5.

Continuing at address 0x60001630, where a load operation from the stack pointer
to s0 is observed. Considering the assumption that s0 might contain an invalid

7.3. SUMMARY 71

pointer, two potential explanations arise. The first is that an SEU impacted the
memory location at address 56(sp), causing the exception-inducing behaviour. The
second explanation involves the possibility of the stack pointer (sp) being affected
by a SEU, leading to the exception.

The exceptions detected at address 0x600012cc can be attributed to the s2

register, which held an erroneous address. This address originated from the a1 reg-
ister, a function argument. The exception might have resulted from a wrong pointer
passed to the function or an SEU the a1 or s2 registers. A straightforward expla-
nation applies to the exception at PC 0x6000126c. The core bench list function
takes a list pointer and an ID as inputs. The most likely scenario involves an invalid
list pointer stored in a0.

A similar pattern emerges for the exception at 0x60001330, where a store ex-
ception arose. The address in s2 was erroneous, obtained from function argument
a1. Moving to the exception at address 0x60000ba2, a load exception occurred us-
ing the address stored in a6. This address was loaded from memory with the stack
pointer.

Address 0x6000168e presents a more complex case due to jumps and branches.
The content of s3 might have been fetched from memory via the stack pointer or
could still be 0. The former scenario, where the value was obtained from memory, is
more likely.

The most extensive trace, found at address 0x60001538, contains multiple loads
and stores. In summary, a common thread among these traces is the involvement
of pointers loaded from memory. The source alternates between function argument
registers and memory-loaded pointers via the stack pointer.

7.3 Summary

The frequent occurrence of exceptions within the linked list benchmark is not coinci-
dental but rather a predictable outcome. This phenomenon can be attributed to the
benchmark’s heavy reliance on pointers stored in the main memory. The linked list
benchmark involves a sorting operation on the list, leading to the access of every
list item. Consequently, any SEU affecting one of these pointers is highly likely to
trigger an exception. In cases where the SEU impacts the least significant bits of a
pointer, the memory location might still remain valid. However, the probability of an
exception being raised upon accessing the affected structure is significantly high.

Subsection 7.2.1 introduced the concept of PVF and ACE bits. Since the list is
initialized during the initial phase, and subsequent iterations of the CoreMark bench-
mark employ this same pre-initialized list, any SEU on these pointers consistently
leads to an exception or mismatch. As a result, all these pointer bits are appropri-

72 CHAPTER 7. DISCUSSION

ately classified as ACE bits. Notably, this observation aligns seamlessly with the
findings presented in section 7.2.3.

The previous section showed that load and store exceptions mainly occurred due
to memory operations based on pointer values stored in the main memory. These
pointers occasionally stemmed from function arguments or, alternately, the stack
pointer itself, employed for retrieving the pointer from memory.

In essence, the convergence of these insights underscores the critical role played
by ACE bits, which account for approximately 11.1% of the memory. This insight is
substantiated by the analysis presented in section 7.2.3, offering a comprehensive
understanding of the exceptions arising during Coremark benchmark execution.

Chapter 8

Simulation

In the previous chapter, various factors and scenarios that could potentially trigger
exceptions within the unmodified NEORV32 processor were discussed. This chapter
serves as a direct extension of the discussions in Chapter 7 by conducting specific
manual fault injections to validate the potential causes of these exceptions.

The focus of the chapter remains on simulating exceptions of the two instruc-
tions with the most exceptions, specifically those occurring at PC 0x600012cc and
0x60001676. These exceptions garnered attention due to their notably high fre-
quency of occurrence, with 10 and 7 instances, respectively.

8.1 Simulation setup

The simulation of the NEORV32 processor and the MSS was carried out using
QuestaSim, a popular commercial RTL simulator tool. Chapter 7 Discussion showed
different reasons how a particular exception could be caused. One way to validate
these reasonings is by performing a simulation. Simulation provides full access to
all signals of the entire processor. However, a disadvantage of simulation is that it
requires a long time to run [43].

The script for setting up the QuestaSim simulator was automatically generated by
the Libero tool when a test diagram was provided. The used test design is straight-
forward and can be seen in Figure 8.1. The top 0 block is the top-level design, which
is shown in Appendix A in Figure A.1 in more detail.

The RESET GEN C0 0 IP block from Microsemi is a straightforward reset gener-
ator. This generator is configured to operate with an active-low signal and introduces
a delay of 1000 ns. Additionally, custom ports are utilized to connect the RX input, as
well as the LED0, LED1, and TX output pins. These custom ports facilitate access
and monitoring of signals during the simulation process.

During the beam experiment, one CoreMark execution was run with a configu-

73

74 CHAPTER 8. SIMULATION

top_0

top

DEVRST_N

UART_RX

LED0

LED1

UART_TX

LED1

RESET_GEN_C0_0

RESET_GEN_C0

RESET

RX
TX

LED0

Figure 8.1: Libero top-level design of the testbench

ration of 12KBytes of memory and 20 iterations, which required approximately 1.5
minutes to complete. However, during the simulation phase, we encountered a sig-
nificant increase in computation time. The CoreMark source code was recompiled
with a reduced memory allocation of 2KBytes and set to a single iteration. This simu-
lation was carried out using the ModelSim simulator, and it consumed approximately
20 hours for a single run.

The simulations were executed on an Intel Xeon Gold 6126 CPU, operating at
a clock frequency of 2.60 GHz, in both QuestaSim and ModelSim environments.
The act of recompiling the program introduced variations in instruction placement
compared to the original binary, making it more challenging to directly compare the
results between the simulation and the beam experiment.

While QuestaSim improved the simulation times slightly, it was still impractical to
conduct a comprehensive fault-injection campaign within the available time frame.
Consequently, the decision was made to manually reproduce the exceptions by in-
jecting faults at the right place and time to validate the findings of Chapter 7: Dis-
cussion. For these manual fault injections, the same binary was used as during the
beam experiment.

8.2 Fault injection strategy

In order to inject manual faults, the simulation needs to be stopped at a specific PC.
The command shown in Listing 8.1 demonstrates how the simulator can be stopped
before executing the instruction stored at address 0x60001630.

Listing 8.1: Command to pause simulator at PC 0x60001630

$ when {sim : / t e s t t o p / top 0 / neorv32 ProcessorTop Minimal 0 /
neorv32 ins t / neorv32 cpu ins t / n e o r v 3 2 c p u c o n t r o l i n s t /
execute engine . next pc = 60001630} {Stop}

8.2. FAULT INJECTION STRATEGY 75

This approach uses the next pc register, which holds the PC of the next instruc-
tion to be executed. By strategically stopping the simulation at the desired PC value,
faults can be introduced before the intended instruction is executed.

To facilitate fault injection experiments, checkpoints were used to manage the
simulator state. This technique allows the simulation to be stored at specific PC
points, subsequently inject manual faults, evaluate the outcomes, and, if needed,
restore the simulator to the checkpoint for further fault injections at different bit posi-
tions or registers.

The Questasim and ModelSim simulator provides the ”force” command which
can be used to alter signal values [44]. The ”freeze” command option, sets the
signal to a particular fixed value until the end of the simulation, this can be used for
instance to simulate a stuck-at error. Additionally, the ”deposit” option releases the
signal immediately after it is altered by the RTL model. The ”deposit” option is used
for injecting manual faults, because this emulates for instance a storage cell hit by a
high-energy particle, changing the current value.

The current signal value can be read with the examine command or GUI. The
command shown in Listing 8.2 shows how the value of the eleventh register in the
register file can be set to ’80100898’.

Listing 8.2: Command set the value of register x11 to 80100898
$ fo rce −depos i t sim : / t e s t t o p / top 0 /
neorv32 ProcessorTop Minimal 0 / neorv32 ins t / neorv32 cpu ins t /
n e o r v 3 2 c p u r e g f i l e i n s t / r e g f i l e (11) 80100898 0

Furthermore, the objdump of a program lists the used registers in ABI convention,
for instance, a0 or s1. Table 8.1 lists the index of each register in the register file,
this is used to determine which registers need to be manipulated for a manual fault
injection.

Table 8.1: The register utilization guidelines for RISC-V [45]
Reg ABI Reg ABI Reg ABI Reg ABI
x0 zero x8 s0/fp x16 a6 x24 s8
x1 ra x9 s1 x17 a7 x25 s9
x2 sp x10 a0 x18 s2 x26 s10
x3 gp x11 a1 x19 s3 x27 s11
x4 tp x12 a2 x20 s4 x28 t3
x5 t0 x13 a3 x21 s5 x29 t4
x6 t1 x14 a4 x22 s6 x30 t5
x7 t2 x15 a5 x23 s7 x31 t6

76 CHAPTER 8. SIMULATION

During the simulation, the trap ctrl.cause register is an important signal to mon-
itor, because this register shows the exception if an exception occurs. By default,
NEORV32 initializes this register to the lowest-priority exception: the Machine Timer
Interrupt (MTI), with a value of ’0x47’. When an exception arises, this trap cause
register reflects the specific cause, as shown in Chapter 4: NEORV32 Table 4.1.

8.3 Manual injected faults for PC value 0x600012cc

The relevant stack trace for the root causes of the exceptions can be found in Table
7.2. In this example, a SEU will be introduced just before the PC value 0x600012cc.
Figure 8.2 shows the current execution state of the PC. Additionally, it shows the
content of register x18 (s2) and the trap cause, which, in this case, is due to correc-
tion execution 0x47. At the cursor location, an SEU upset has occurred in register
x18, altering bit b20 from 0 to 1. This register holds a value pointing to an illegal
memory location in the data memory, resulting in a Load Access Fault in the future.
Following the 0x600012c8 instruction, the 0x600012cc instruction is executed, caus-
ing the trap cause register to change to 0x5, indicating the expected outcome of a
Load Access Fault.

Figure 8.2: Simulation demonstrating a manual fault injected leading to a Load Ac-
cess Store Fault exception at PC 0x600012CC, by injecting a fault in reg-
ister x18.

An alternative failure scenario could occur at PC value 0x60001280, where the
contents of register a1 (x11) are copied into register s2 (x18). Before the execu-
tion of 0x60001280, a manual fault was introduced into register x11. The outcome
of this simulation is depicted in Figure 8.3. Notably, there was a time difference of
102700 ns between the fault injection and the emergence of the exception, which
correlates to 1027 clock cycles. Throughout this duration, register x18 retained its
value.

8.4 Manual injected faults for PC value 0x60001676

The last example which will be investigated with QuestaSim are the exceptions
caused at address 0x60001676. The load instruction on this address generated

8.4. MANUAL INJECTED FAULTS FOR PC VALUE 0X60001676 77

Figure 8.3: Simulation demonstrating a manual fault injected leading to a Load Ac-
cess Store Fault exception at PC 0x600012CC, by injecting a fault in reg-
ister x11.

7 Load Access Faults in total. The trace in Table 7.2 shows 4 relevant instruc-
tions before the execution of 0x60001676, namely: 6000166c(move), 6000165e(load),
6000165a(move) and 60001630(load). The first encounter of the address 0x60001676,
did not include the instruction at 0x60001630, which could also possibly be the cause
of the exception of 0x60001676. This instruction was skipped due to a jump at
0x6000164e to address 0x600014ae.

Therefore manual faults will be injected before the execution of address
0x6000165a. This instruction copies the value of s0 to a5(x15). Suppose the
s0 (x8) register value has been affected by SEU, this SEU could have happened
in the data memory or in the register file itself. A fault has been injected before the
execution of instruction 0x60001658. A manual SEU was introduced at b14, resulting
in a new register value of ’0x80002530’. With the introduced SEU, this pointer is still
in the address range of the data memory. The simulation for this manual injected
fault can be seen in Figure 8.4.

After the execution of instruction 0x6000165e, it can be seen that register s0 is
copied to register a5. At the end of instruction 0x6000165e, register a5 contains the
new data. At instruction 0x6000165e the value which the pointer of a5 is pointing
to is stored in a5 at address 0x6000165e. The simulation in Figure 8.4 shows that
’0x2E302B2C’ is fetched from memory. At the next relevant instruction, this register
is copied to s0. At instruction 60001676, the value in s0 is used to fetch the data
at the memory s0+4, and of course, this results in a load Access Fault, because
’0x2E302B2C’ is clearly not in the valid address range.

Figure 8.4: Simulation demonstrating a manual fault injected leading to a Load Ac-
cess Store Fault exception at PC 0x60001658, by injecting a fault in reg-
ister x8.

The previous example showed how this exception could be caused by a SEU

78 CHAPTER 8. SIMULATION

affecting the register value contents, however not every change to the contents of
register s0 results in the same behaviour. Figure 8.5 shows the simulation case for
an SEU at position b6, resulting in the new pointer value ’0x80000570’. This simula-
tion shows that this pointer is used to fetch the valid pointer ’0x800004A0’, because
this is a valid pointer, there is no exception caused during instruction 0x60001676.

After many subsequent simulated instructions, it was observed that no excep-
tions were raised. Unfortunately, due to the substantial resource demands of the
simulation, it was not possible to simulate a full CoreMark run. The address in ques-
tion belongs to the core bench list() function, which contains tasks like searching,
sorting, or removing and reinserting items within a list.

The hexadecimal difference between the original pointer and the new pointer is
0x40, equivalent to 64 bytes. Depending on the memory map, an increase of 0x40
in the address could point to the next item in the list or some other item.

If the skipped list items during this process do not contain the value being searched
for, for example during a find operation, there may be no observable difference in
the output. However, it is important to note that during a sorting operation, every list
item typically needs to be accessed, which could potentially result in a mismatch in
the output due to the altered memory access caused by the injected fault.

Figure 8.5: Simulation demonstrating a manual fault injected leading still to a suc-
cessful execution at PC 0x60001658, by injecting a fault in register x8.

Another interesting simulation can be seen in Figure 8.6, where a SEU is intro-
duced at bit b12, altering the pointer value to ’0x80001530’. This new pointer is a
valid address and points to the value ’0x00CEE00CD’. However, this value is used
as a pointer, but because bit b0 is 1, this pointer is unsuitable for fetching complete
words. Consequently, this injected fault results in a Load Address Misaligned ex-
ception, which can be seen in in simulation in figure 8.6, because the Trap cause
register becomes ’0x4’.

8.5 Summary

These findings validate several theories presented in Chapter 7: Discussion. Nev-
ertheless, they also emphasize the critical role of bit position in understanding and
mitigating exceptions. Identifying all sources of a specific exception can be challeng-

8.5. SUMMARY 79

Figure 8.6: Simulation demonstrating a manual fault injected leading to a Load Ad-
dress Misaligned exception at PC 0x60001658, by injecting a fault in
register x8.

ing, particularly in scenarios involving multiple relevant instructions beforehand. For
instance, in the case of 0x60001676, where a value from memory serves as a pointer
for another load, SEU in a relevant register may result in exceptions at various other
PCs. Furthermore, an SEU affecting a different bit can lead to a distinct exception
or even no exception at all.

Another significant observation from our simulations is the substantial variation
in the time elapsed between the fault injection and the triggering of an exception.
Essentially, the longer a value remains stored in a register, the more vulnerable the
register becomes. However, it is worth noting that most exceptions likely originate
from SEUs within the data memory.

These simulations exclusively focused on SEUs within the register file. Expand-
ing the scope to include the data memory would not significantly alter the results. To
shift the focus to the data memory, the ”force” command would need to be applied to
the data memory instead of the register file. However, this aspect was disregarded
due to the challenges associated with pinpointing the precise instruction address
and memory address for data retrieval. In summary, these findings underscore the
significance of bit positions and timing, highlighting the complex nature of exception
sources.

80 CHAPTER 8. SIMULATION

Chapter 9

Conclusions and recommendations

The primary objective of this thesis was to comprehensively explore and evaluate
diverse trade-offs among different fault tolerance techniques in the context of a soft
RISC-V processor realized on a Flash-based FPGA. This investigation contains cru-
cial factors, including area utilization, performance metrics and resilience to errors.
In addition, an important part of this research involved conducting a radiation test to
assess the efficiency and robustness of the various redundancy techniques imple-
mented.

The first research question (RQ1) led us to delve into the various fault toler-
ance mechanisms available and their implications for the resource utilization, energy
consumption, and computational speed of the FPGA-based soft RISC-V processor.
Both research questions have been answered by a study comparing three different
configurations of the NEORV32 processor: Unmodified, ECC-enhanced, and TMR.
Chapter 5: NEORV32 Implementation addresses this question. When integrating
ECC, including both an encoder and a decoder, approximately 14% more Flip-Flops
and Lookup Tables (LUTs) are utilized. Additionally, the inclusion of extra ECC bits
also results in a larger SRAM memory usage. Regarding the estimated power of the
ECC version, a 4.43% increase in Gate usage and a 7.09% increase in Net usage
are observed. Notably, the total estimated power consumption sees only a slight
3.2% increase. However, because ECC is part of the critical path in the register file,
it does limit the maximum achievable clock speed. Nevertheless, the target of 10
MHz can still be met. The primary drawback of implementing TMR is the increased
hardware cost, primarily due to the triplication of Flip-Flops. The number of Lookup
Tables (LUTs) increases by 61.5%, while the DFFs grow by 148.5%. In terms of es-
timated power consumption, TMR+ECC results in a 162.05% increase in Net power
consumption and an estimated increase of 34.64% for the Gate usage. Compared
to the unmodified version, the total estimated power consumption only increases by
15.04%.

The second research question (RQ2) evaluates the resilience performance of

81

82 CHAPTER 9. CONCLUSIONS AND RECOMMENDATIONS

different fault tolerance techniques in the presence of errors, particularly radiation-
induced faults, in a soft processor implemented on a Flash-based FPGA. This re-
search question has mainly been answered in Chapter 6: Neutron Beam Experi-
ment. In the Unmodified configuration, numerous Load Access Faults and Store
Access Faults were observed, which were attributed to SEUs affecting pointers
stored in data memory. These errors resulted in illegal pointers and subsequent
exceptions during program execution. Additionally, mismatches were attributed to
SEUs in memory locations storing values, leading to incorrect computation results.
These findings underscored the vulnerability of the default NEORV32 processor to
radiation-induced errors. With the ECC-enhanced configuration, the addition of ECC
on the data memory and register file significantly reduced the occurrence of mis-
matches, Load Access Faults, and Store Access Faults. This outcome aligned with
the expectations, as ECC enhanced the error detection and correction capabilities
of the processor. However, it was highlighted that while the ECC-enhanced con-
figuration demonstrated improved resilience, it still remained susceptible to certain
error scenarios, such as Multiple Bit Upset (MBU) orSEUs affecting the ALU, which
could lead to incorrect computation results. The TMR configuration demonstrated
the most robust behaviour among the tested configurations. It successfully elimi-
nated mismatches, timeouts, and exceptions during execution. However, it is im-
portant to note that the TMR configuration’s performance in the beam test does not
necessarily translate to complete fault tolerance, as certain failure scenarios may
not have been covered by the test conditions.

These findings of the experiment highlight the importance of error mitigation tech-
niques such as ECC and TMR in improving the reliability and resilience of a soft
processor under a neutron beam. Given the utilization of high-energy neutron parti-
cles, the obtained results hold direct relevance primarily to domains such as avionics
and low-orbit satellites, including environments like the Van Allen belt. While this re-
search utilised neutron radiation, the SEEs that were caused by neutron radiation
are not bounded solely to high-energy neutron particles. High-energy proton par-
ticles, common in space environments and cosmic rays, also induce similar SEEs.
Consequently, high-energy neutron particles can serve as an approximation to faults
in space. These findings demonstrate a meaningful insight into the performance
and applicability of fault tolerance techniques implemented on a flash-based FPGA
in scenarios characterized by similar conditions.

The choice of the most suitable redundancy technique depends on the specific
situation. When an absolute error-free operation is crucial and any exceptions are
unacceptable, employing both TMR and ECC is the best option. However, in sce-
narios involving non-critical systems where the occurrence of exceptions is of lesser
importance, relying solely on ECC could prove sufficient and efficient because the

9.1. FUTURE WORK 83

area and power costs are low.
The recognition of these findings was underscored by the acceptance of this

work as a paper titled ”Neutron Radiation Tests of the NEORV32 RISC-V SoC on
Flash-Based FPGAs” at the 36th IEEE International Symposium on Defect and Fault
Tolerance in VLSI and Nanotechnology Systems.

9.1 Future work

This section provides recommendations for further research. From the radiation
experiments, various types of errors were detected, including mismatches, excep-
tions, and timeouts. Mismatches belong to SDC and can occur when a memory cell
is impacted by a high-energy particle. On the other hand, SETs have the ability to
propagate through logic and be captured by a memory cell at the right time. In this
experiment, SETs may be detected as SDC, but it is challenging to determine how
often SDCs are specifically generated by SETs. As described in the background,
SETs are short transient pulses. The clock frequency of the device plays a crucial
role in this context, as a higher clock frequency leads to smaller single cycles, result-
ing in an increased likelihood of a SET being captured by a memory cell. Therefore,
it is reasonable to hypothesize that a higher clock frequency may result in more er-
rors caused by SETs. Consequently, a valuable addition to this research would be to
conduct tests with different clock frequencies and compare the results. This would
help to determine whether a higher clock frequency indeed leads to an increase in
errors caused by SETs and whether the classification of these errors as SDCs oc-
curs in the same ratio. By exploring the impact of clock frequency on error rates
and error classifications, insights will be provided about the behaviour of SETs and
their influence on system reliability. This information can be used to improve error
mitigation strategies and design more robust systems capable of withstanding the
effects of SETs, particularly in critical applications where the consequences of data
corruption can be severe.

The tested configurations in this research are likely vulnerable for SETs. This
downside could be covered by a lockstep configuration. In a lockstep processor, two
or more identical processor cores operate in synchronization, executing the same
set of instructions simultaneously. This synchronized execution allows for real-time
comparison of outputs, ensuring consistency and fault detection. While a lockstep
processor may demand more hardware and potentially longer fault recovery time
compared to TMR, it can offer additional protection through its broader error detec-
tion capabilities and resilience to common-mode failures.

ASICs and Flash-based FPGAs are similar digital hardware solutions. They both
work similarly during beam experiments. The memory in a Flash-based FPGA,

84 CHAPTER 9. CONCLUSIONS AND RECOMMENDATIONS

which is used for configuration and is based on flash technology, is safe from errors
caused by radiation. This makes it behave like an ASIC in such experiments. It
would be valuable yet expensive to research and compare a Flash-based FPGA
with an ASIC manufactured using the same technology, looking at the contrasts
between them.

Bibliography

[1] D. Girimonte and D. Izzo, “Artificial intelligence for space applications,” 2007.
[Online]. Available: https://api.semanticscholar.org/CorpusID:109246556

[2] G. Furano, S. Di Mascio, A. Menicucci, and C. Monteleone, “A european
roadmap to leverage risc-v in space applications,” in 2022 IEEE Aerospace
Conference (AERO), 2022, pp. 1–7.

[3] S. Di Mascio, A. Menicucci, G. Furano, C. Monteleone, and M. Ottavi, “The
case for risc-v in space,” in Applications in Electronics Pervading Industry, En-
vironment and Society, 2019, international Conference on Applications in Elec-
tronics Pervading Industry, Environment and Society, APPLEPIES 2018, AP-
PLEPIES 2018 ; Conference date: 26-09-2018 Through 27-09-2018.

[4] S. Di Mascio, A. Menicucci, E. Gill, G. Furano, and C. Monteleone, “Leveraging
the openness and modularity of risc-v in space,” Journal of Aerospace
Information Systems, vol. 16, no. 11, pp. 454–472, 2019. [Online]. Available:
https://doi.org/10.2514/1.I010735

[5] [Online]. Available: https://www.esa.int/Enabling Support/Space Engineering
Technology/Microelectronics/The use of reprogrammable FPGAs in space

[6] N. Montealegre, D. Merodio, A. Fernández, and P. Armbruster, “In-flight re-
configurable fpga-based space systems,” in 2015 NASA/ESA Conference on
Adaptive Hardware and Systems (AHS), 2015, pp. 1–8.

[7] M. Pignol, “Cots-based applications in space avionics,” in 2010 Design, Au-
tomation Test in Europe Conference Exhibition (DATE 2010), 2010, pp. 1213–
1219.

[8] S. Esposito, C. Albanese, M. Alderighi, F. Casini, L. Giganti, M. L. Esposti,
C. Monteleone, and M. Violante, “Cots-based high-performance computing for
space applications,” IEEE Transactions on Nuclear Science, vol. 62, no. 6, pp.
2687–2694, 2015.

85

https://api.semanticscholar.org/CorpusID:109246556
https://doi.org/10.2514/1.I010735
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Microelectronics/The_use_of_reprogrammable_FPGAs_in_space
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Microelectronics/The_use_of_reprogrammable_FPGAs_in_space

86 BIBLIOGRAPHY

[9] E. Petersen, Foundations of Single Event Analysis and Prediction, 2011, pp.
13–76.

[10] J. F. Ziegler, H. W. Curtis, H. P. Muhlfeld, C. J. Montrose, B. Chin, M. Nicewicz,
C. A. Russell, W. Y. Wang, L. B. Freeman, P. Hosier, L. E. LaFave, J. L. Walsh,
J. M. Orro, G. J. Unger, J. M. Ross, T. J. O’Gorman, B. Messina, T. D. Sullivan,
A. J. Sykes, H. Yourke, T. A. Enger, V. Tolat, T. S. Scott, A. H. Taber, R. J. Suss-
man, W. A. Klein, and C. W. Wahaus, “Ibm experiments in soft fails in computer
electronics (1978–1994),” IBM Journal of Research and Development, vol. 40,
no. 1, pp. 3–18, 1996.

[11] P. Dodd and L. Massengill, “Basic mechanisms and modeling of single-event
upset in digital microelectronics,” IEEE Transactions on Nuclear Science,
vol. 50, no. 3, pp. 583–602, 2003.

[12] E. L. Petersen, “Radiation induced soft fails in space electronics,” IEEE Trans-
actions on Nuclear Science, vol. 30, no. 2, pp. 1638–1641, 1983.

[13] M. Ceschia, M. Violante, M. Reorda, A. Paccagnella, P. Bernardi, M. Rebau-
dengo, D. Bortolato, M. Bellato, P. Zambolin, and A. Candelori, “Identification
and classification of single-event upsets in the configuration memory of sram-
based fpgas,” IEEE Transactions on Nuclear Science, vol. 50, no. 6, pp. 2088–
2094, 2003.

[14] L. Sterpone and B. Du, “Analysis and mitigation of single event effects on flash-
based fpgas,” in 2014 19th IEEE European Test Symposium (ETS), 2014, pp.
1–6.

[15] S. S. Mukherjee, J. Emer, and S. K. Reinhardt, “The soft error problem:
An architectural perspective,” in Proceedings of the 11th International
Symposium on High-Performance Computer Architecture, ser. HPCA ’05.
USA: IEEE Computer Society, 2005, p. 243–247. [Online]. Available:
https://doi.org/10.1109/HPCA.2005.37

[16] S. Mukherjee, C. Weaver, J. Emer, S. Reinhardt, and T. Austin, “A system-
atic methodology to compute the architectural vulnerability factors for a high-
performance microprocessor,” in Proceedings. 36th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, 2003. MICRO-36., 2003, pp. 29–40.

[17] V. Sridharan and D. R. Kaeli, “Eliminating microarchitectural dependency from
architectural vulnerability,” in 2009 IEEE 15th International Symposium on High
Performance Computer Architecture, 2009, pp. 117–128.

https://doi.org/10.1109/HPCA.2005.37

BIBLIOGRAPHY 87

[18] B. Fang, Q. Lu, K. Pattabiraman, M. Ripeanu, and S. Gurumurthi, “epvf: An
enhanced program vulnerability factor methodology for cross-layer resilience
analysis,” in 2016 46th Annual IEEE/IFIP International Conference on Depend-
able Systems and Networks (DSN), 2016, pp. 168–179.

[19] L. A. Tambara, P. Rech, E. Chielle, and F. L. Kastensmidt, “Analyzing the failure
impact of using hard- and soft-cores in all programmable soc under neutron-
induced upsets,” in 2015 15th European Conference on Radiation and Its Ef-
fects on Components and Systems (RADECS), 2015, pp. 1–5.

[20] P. Rech, L. Pilla, P. Navaux, and L. Carro, “Impact of gpus parallelism man-
agement on safety-critical and hpc applications reliability,” in 2014 44th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks,
2014, pp. 455–466.

[21] D. J. Sorin, Error Detection. Cham: Springer International Publishing, 2009,
pp. 19–59.

[22] C. De Sio, S. Azimi, A. Portaluri, and L. Sterpone, “Seu evaluation of hardened-
by-replication software in risc- v soft processor,” in 2021 IEEE International
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Sys-
tems (DFT), 2021, pp. 1–6.

[23] R. W. Hamming, “Error detecting and error correcting codes,” The Bell System
Technical Journal, vol. 29, no. 2, pp. 147–160, 1950.

[24] G. Tshagharyan, G. Harutyunyan, S. Shoukourian, and Y. Zorian, “Experimen-
tal study on hamming and hsiao codes in the context of embedded applica-
tions,” in 2017 IEEE East-West Design Test Symposium (EWDTS), 2017, pp.
1–4.

[25] A. E. Wilson and M. Wirthlin, “Neutron radiation testing of fault tolerant risc-v
soft processor on xilinx sram-based fpgas,” in 2019 IEEE Space Computing
Conference (SCC), 2019, pp. 25–32.

[26] A. M. Keller and M. J. Wirthlin, “Benefits of complementary seu mitigation for
the leon3 soft processor on sram-based fpgas,” IEEE Transactions on Nuclear
Science, vol. 64, no. 1, pp. 519–528, 2017.

[27] D. A. Santos, L. M. Luza, M. Kastriotou, C. Cazzaniga, C. A. Zeferino, D. R.
Melo, and L. Dilillo, “Characterization of a risc-v system-on-chip under neutron
radiation,” in 16th International Conference on Design Technology of Integrated
Systems in Nanoscale Era (DTIS), 2021.

88 BIBLIOGRAPHY

[28] F. F. Dos Santos, A. Kritikakou, and O. Sentieys, “Experimental evaluation of
neutron-induced errors on a multicore risc-v platform,” in 2022 IEEE 28th Inter-
national Symposium on On-Line Testing and Robust System Design (IOLTS),
2022, pp. 1–7.

[29] M. J. Cannizzaro and A. D. George, “Evaluation of risc-v silicon under neutron
radiation,” in 2023 IEEE Aerospace Conference, 2023, pp. 1–9.

[30] S. Nolting and ..., “The neorv32 risc-v processor,” https://github.com/stnolting/
neorv32, 2022.

[31] “Open-Source RISC-V Architecture IDs,” https://github.com/riscv/
riscv-isa-manual/blob/latex/marchid.md, [Online; accessed 13-June-2023].

[32] T. M. Conte, E. P. DeBenedictis, A. Mendelson, and D. Milojičić, “Rebooting
computers to avoid meltdown and spectre,” Computer, vol. 51, no. 4, pp. 74–
77, 2018.

[33] IGLOO2 FPGA and SmartFusion2 SoC FPGA, Microsemi, 8 2018, dS01289.

[34] D. Dsilva, J.-J. Wang, N. Rezzak, and N. Jat, “Neutron see testing of the 65nm
smartfusion2 flash-based fpga,” in 2015 IEEE Radiation Effects Data Workshop
(REDW), 2015, pp. 1–5.

[35] IGLOO2 and SmartFusion2 65nm Commercial Flash FPGAs: Interim summary
of radiation test results, Microsemi corp., October 2014.

[36] N. Rezzak, j.-j. Wang, D. Dsilva, C. Huang, and S. Varela, “Single event effects
characterization in 65 nm flash-based fpga-soc,” 01 2014.

[37] UG0498: SmartFusion2 and IGLOO2 Embedded Nonvolatile Memory (eNVM)
Simulation User Guide, Microsemi, 7 2018, revision 3.

[38] AMBA AHB Protocol Specification, ARM, 9 2021.

[39] Using Synplify to Design in Microsemi Radiation-Hardened FPGAs, Microsemi,
5 2012, application Note AC139. Rev 1.

[40] SmartFusion2 and IGLOO2 Macro Library Guide, Microsemi, 10 2019, revision
10.0.

[41] C. Cazzaniga and C. D. Frost, “Progress of the scientific commissioning of a fast
neutron beamline for chip irradiation,” Journal of Physics: Conference Series,
vol. 1021, no. 1, p. 012037, may 2018.

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32
https://github.com/riscv/riscv-isa-manual/blob/latex/marchid.md
https://github.com/riscv/riscv-isa-manual/blob/latex/marchid.md

BIBLIOGRAPHY 89

[42] H. Quinn, “Challenges in testing complex systems,” IEEE Transactions on Nu-
clear Science, vol. 61, no. 2, pp. 766–786, 2014.

[43] D. Asciolla, L. Dilillo, D. Santos, D. Melo, A. Menicucci, and M. Ottavi, “Char-
acterization of a risc-v microcontroller through fault injection,” in Applications in
Electronics Pervading Industry, Environment and Society - APPLEPIES 2019,
ser. Lecture Notes in Electrical Engineering, S. Saponara and A. De Gloria,
Eds. SpringerOpen, 2020, pp. 91–101, international Conference on Appli-
cations in Electronics Pervading Industry, Environment and Society, ApplePies
2019 ; Conference date: 11-09-2019 Through 13-09-2019.

[44] I. Tuzov, J.-C. Ruiz, and D. de Andrés, “Accurately simulating the effects of faults
in vhdl models described at the implementation-level,” in 2017 13th European
Dependable Computing Conference (EDCC), 2017, pp. 10–17.

[45] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanović, “The risc-v instruction
set manual, volume i: User-level isa, version 2.0,” EECS Department,
University of California, Berkeley, Tech. Rep. UCB/EECS-2014-54, May
2014. [Online]. Available: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/
EECS-2014-54.html

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html

90 BIBLIOGRAPHY

Appendix A

A.1 Assembly functions

Listing A.1: Assembly CoreMark cmp complex()
60001268 <cmp complex>
60001268: addi sp , sp , −32
6000126a : sw s1 ,20 (sp)
6000126c : l h s1 , 0 (a0)
60001270: sw s0 ,24 (sp)
60001272: sw s2 ,16 (sp)
60001274: s r a i a5 , s1 ,0 x7
60001278: sw s4 , 8 (sp)
6000127a : sw ra ,28 (sp)
6000127c : sw s3 ,12 (sp)
6000127e : andi a5 , a5 ,1
60001280: mv s2 , a1
60001282: mv s0 , a2
60001284: andi s4 , s1 ,127
60001288: bnez a5,600012cc <cmp complex+0x64>
6000128a : s r a i a1 , s1 ,0 x3
6000128e : andi a1 , a1 ,15
60001290: s l l i a3 , a1 ,0 x4
60001294: andi a4 , s1 ,7
60001298: lhu a5 ,56 (a2)
6000129c : mv s3 , a0
6000129e : or a1 , a1 , a3
600012a0 : beqz a4,60001352 <cmp complex+0xea>
600012a2 : l i a3 ,1
600012a4 : beq a4 , a3,600013c6 <cmp complex+0x15e>
600012a8 : s l l i a0 , s1 ,0 x10

91

92 APPENDIX A.

600012ac : s r l i a0 , a0 ,0 x10
600012ae : mv s4 , s1
600012b0 : mv a1 , a5
600012b2 : andi s4 , s4 ,127
600012b6 : andi s1 , s1 ,−256
600012ba : j a l 60000c9c <crcu16>
600012bc : or s1 , s4 , s1
600012c0 : sh a0 ,56 (s0)
600012c4 : o r i s1 , s1 ,128
600012c8 : sh s1 , 0 (s3)
600012cc : l h s1 , 0 (s2)
600012d0 : s r a i a5 , s1 ,0 x7
600012d4 : andi a5 , a5 ,1
600012d6 : andi s3 , s1 ,127
600012da : bnez a5,60001334 <cmp complex+0xcc>
600012dc : s r a i a1 , s1 ,0 x3
600012e0 : andi a1 , a1 ,15
600012e2 : s l l i a3 , a1 ,0 x4
600012e6 : andi a4 , s1 ,7
600012ea : lhu a5 ,56 (s0)
600012ee : or a1 , a1 , a3
600012 f0 : beqz a4,6000138c <cmp complex+0x124>
600012 f2 : l i a3 ,1
600012 f4 : bne a4 , a3,60001348 <cmp complex+0xe0>
600012 f8 : mv a2 , a5
600012 fa : addi a0 , s0 ,40
600012 fe : j a l ra ,60001d9a <core bench matr ix>
60001302: lhu a5 ,60 (s0)
60001306: s l l i s3 , a0 ,0 x10
6000130a : s r a i s3 , s3 ,0 x10
6000130e : bnez a5,600013e8 <cmp complex+0x180>
60001310: lhu a5 ,56 (s0)
60001314: sh a0 ,60 (s0)
60001318: mv a1 , a5
6000131a : andi s3 , s3 ,127
6000131e : andi s1 , s1 ,−256
60001322: j a l 60000c9c <crcu16>
60001324: or s1 , s3 , s1
60001328: sh a0 ,56 (s0)

A.1. ASSEMBLY FUNCTIONS 93

6000132c : o r i s1 , s1 ,128
60001330: sh s1 , 0 (s2)
60001334: lw ra ,28 (sp)
60001336: lw s0 ,24 (sp)
60001338: sub a0 , s4 , s3
6000133c : lw s1 ,20 (sp)
6000133e : lw s2 ,16 (sp)
60001340: lw s3 ,12 (sp)
60001342: lw s4 , 8 (sp)
60001344: addi sp , sp ,32
60001346: r e t
60001348: s l l i a0 , s1 ,0 x10
6000134c : s r l i a0 , a0 ,0 x10
6000134e : mv s3 , s1
60001350: j 60001318 <cmp complex+0xb0>
60001352: l i a3 ,34
60001356: mv a4 , a1
60001358: bge a1 , a3,60001360 <cmp complex+0xf8>
6000135c : l i a4 ,34
60001360: l h a3 , 2 (s0)
60001364: l h a2 , 0 (s0)
60001368: lw a1 ,20 (s0)
6000136a : lw a0 ,24 (s0)
6000136c : zext . b a4 , a4
60001370: j a l ra ,60000b08 <core bench sta te>

60001374: lhu a5 ,62 (s0)
60001378: s l l i s4 , a0 ,0 x10
6000137c : s r a i s4 , s4 ,0 x10
60001380: bnez a5,600013ee <cmp complex+0x186>
60001382: lhu a5 ,56 (s0)
60001386: sh a0 ,62 (s0)
6000138a : j 600012b0 <cmp complex+0x48>
6000138c : l i a3 ,34
60001390: mv a4 , a1
60001392: bge a1 , a3,6000139a <cmp complex+0x132>
60001396: l i a4 ,34
6000139a : l h a3 , 2 (s0)
6000139e : l h a2 , 0 (s0)
600013a2 : lw a1 ,20 (s0)

94 APPENDIX A.

600013a4 : lw a0 ,24 (s0)
600013a6 : zext . b a4 , a4
600013aa : j a l ra ,60000b08 <core bench sta te>

600013ae : lhu a5 ,62 (s0)
600013b2 : s l l i s3 , a0 ,0 x10
600013b6 : s r a i s3 , s3 ,0 x10
600013ba : bnez a5,600013e8 <cmp complex+0x180>
600013bc : lhu a5 ,56 (s0)
600013c0 : sh a0 ,62 (s0)
600013c4 : j 60001318 <cmp complex+0xb0>
600013c6 : mv a2 , a5
600013c8 : addi a0 , s0 ,40
600013cc : j a l ra ,60001d9a <core bench matr ix>
600013d0 : lhu a5 ,60 (s0)
600013d4 : s l l i s4 , a0 ,0 x10
600013d8 : s r a i s4 , s4 ,0 x10
600013dc : bnez a5,600013ee <cmp complex+0x186>
600013de : lhu a5 ,56 (s0)
600013e2 : sh a0 ,60 (s0)
600013e6 : j 600012b0 <cmp complex+0x48>
600013e8 : lhu a5 ,56 (s0)
600013ec : j 60001318 <cmp complex+0xb0>
600013ee : lhu a5 ,56 (s0)
600013 f2 : j 600012b0 <cmp complex+0x48>

A.2. TOP-LEVEL DESIGN IN LIBERO SOC 95

A.2 Top-level design in Libero SoC

D
E

V
R

S
T

_N

U
A

R
T

_R
X

O
R

2_
0

O
R

2

Y
BA

W
B

2A
H

B
L_

0

W
B

2A
H

B
L

hc
lk

hr
es

et
n

hr
es

p

hr
ea

dy

hw
rit

e

ac
k_

o

er
r_

o

cy
c_

i

st
b_

i

w
e_

i

hr
da

ta
[3

1:
0]

ha
dd

r[
31

:0
]

hs
iz

e[
2:

0]

hb
ur

st
[2

:0
]

hw
da

ta
[3

1:
0]

ht
ra

ns
[1

:0
]

da
ta

_o
[3

1:
0]

da
ta

_i
[3

1:
0]

ad
dr

_i
[3

1:
0]

se
l_

i[3
:0

]

to
p_

sb
_0

to
p_

sb

P
O

W
E

R
_O

N
_R

E
S

E
T

_N
F

A
B

_R
E

S
E

T
_N

H
P

M
S

_R
E

A
D

Y
H

P
M

S
_F

IC
_0

_U
S

E
R

_M
A

S
T

E
R

_H
W

R
IT

E
_M

0

H
P

M
S

_F
IC

_0
_U

S
E

R
_M

A
S

T
E

R
_H

M
A

S
T

LO
C

K
_M

0
H

P
M

S
_F

IC
_0

_U
S

E
R

_M
A

S
T

E
R

_H
R

E
A

D
Y

_M
0

D
E

V
R

S
T

_N

H
P

M
S

_F
IC

_0
_U

S
E

R
_M

A
S

T
E

R
_H

A
D

D
R

_M
0[

31
:0

]

H
P

M
S

_F
IC

_0
_U

S
E

R
_M

A
S

T
E

R
_H

T
R

A
N

S
_M

0[
1:

0]

H
P

M
S

_F
IC

_0
_U

S
E

R
_M

A
S

T
E

R
_H

S
IZ

E
_M

0[
2:

0]

H
P

M
S

_F
IC

_0
_U

S
E

R
_M

A
S

T
E

R
_H

B
U

R
S

T
_M

0[
2:

0]

H
P

M
S

_F
IC

_0
_U

S
E

R
_M

A
S

T
E

R
_H

P
R

O
T

_M
0[

3:
0]

H
P

M
S

_F
IC

_0
_U

S
E

R
_M

A
S

T
E

R
_H

W
D

A
T

A
_M

0[
31

:0
]

H
P

M
S

_F
IC

_0
_U

S
E

R
_M

A
S

T
E

R
_H

R
D

A
T

A
_M

0[
31

:0
]

H
P

M
S

_F
IC

_0
_U

S
E

R
_M

A
S

T
E

R
_H

R
E

S
P

_M
0[

1:
0]

H
P

M
S

_F
IC

_0
_U

S
E

R
_M

A
S

T
E

R
_H

R
E

S
P

_M
0[

1]

H
P

M
S

_F
IC

_0
_U

S
E

R
_M

A
S

T
E

R
_H

R
E

S
P

_M
0[

0]

H
P

M
S

_F
IC

_0
_U

S
E

R
_M

A
S

T
E

R

F
IC

_0
_P

IN
S

F
IC

_0
_C

LK

to
p_

sb
_H

P
M

S
_0

_P
IN

S

IN
IT

_P
IN

S

IN
IT

_D
O

N
E

ne
or

v3
2_

P
ro

ce
ss

or
T

op
_M

in
im

al
_0

ne
or

v3
2_

P
ro

ce
ss

or
T

op
_M

in
im

al

cl
k_

i

rs
tn

_i

w
b_

w
e_

o

w
b_

st
b_

o

w
b_

cy
c_

o

w
b_

ac
k_

i

w
b_

er
r_

i

ua
rt

_t
xd

_o

ua
rt

_r
xd

_i

w
b_

ta
g_

o[
2:

0]

w
b_

ad
r_

o[
31

:0
]

w
b_

da
t_

i[3
1:

0]

w
b_

da
t_

o[
31

:0
]

w
b_

se
l_

o[
3:

0]

gp
io

_o
[1

:0
]

gp
io

_o
[1

]

gp
io

_o
[0

]

UART_TX

LED0

LED1

D
E

V
R

S
T

_N

LE
D

0

LE
D

1

OR2_0_Y

U
A

R
T

_R
X

U
A

R
T

_T
X

W
B

2A
H

B
L_

0_
ac

k_
o

W
B

2A
H

B
L_

0_
da

ta
_o

W
B

2A
H

B
L_

0_
er

r_
o

W
B

2A
H

B
L_

0_
ha

dd
r

W
B

2A
H

B
L_

0_
hb

ur
st

W
B

2A
H

B
L_

0_
hs

iz
e

W
B

2A
H

B
L_

0_
ht

ra
ns

W
B

2A
H

B
L_

0_
hw

da
ta

W
B

2A
H

B
L_

0_
hw

rit
e

ne
or

v3
2_

P
ro

ce
ss

or
T

op
_M

in
im

al
_0

_w
b_

ad
r_

o

ne
or

v3
2_

P
ro

ce
ss

or
T

op
_M

in
im

al
_0

_w
b_

cy
c_

o

ne
or

v3
2_

P
ro

ce
ss

or
T

op
_M

in
im

al
_0

_w
b_

da
t_

o

ne
or

v3
2_

P
ro

ce
ss

or
T

op
_M

in
im

al
_0

_w
b_

se
l_

o

ne
or

v3
2_

P
ro

ce
ss

or
T

op
_M

in
im

al
_0

_w
b_

st
b_

o

ne
or

v3
2_

P
ro

ce
ss

or
T

op
_M

in
im

al
_0

_w
b_

w
e_

o

to
p_

sb
_0

_F
IC

_0
_C

LK

to
p_

sb
_0

_H
P

M
S

_F
IC

_0
_U

S
E

R
_M

A
S

T
E

R
_H

R
D

A
T

A
_M

0

to
p_

sb
_0

_H
P

M
S

_F
IC

_0
_U

S
E

R
_M

A
S

T
E

R
_H

R
E

A
D

Y
_M

0

to
p_

sb
_0

_H
P

M
S

_F
IC

_0
_U

S
E

R
_M

A
S

T
E

R
_H

R
E

S
P

_M
00

to
0

to
p_

sb
_0

_H
P

M
S

_F
IC

_0
_U

S
E

R
_M

A
S

T
E

R
_H

R
E

S
P

_M
01

to
1

to
p_

sb
_0

_I
N

IT
_D

O
N

E

Figure A.1: Top level design created in Libero SoC

96 APPENDIX A.

A.3 FPGA resources

Table A.1: Resource usage of the Unmitigated NEORV32 Processor subcompo-
nents

Module Name Fabric 4LUT Fabric DFF Interface 4LUT Interface DFF
Primitives 67 25 0 0
Buskeeper 31 13 0 0
Busswitch 58 8 0 0
CPU 5014 2001 72 72
GPIO 10 5 0 0
DMEM 73 42 288 288
MTIME 258 166 0 0
Sysinfo 16 7 0 0
UART0 128 131 36 36
Wishbone 51 114 0 0
Total 5704 2512 396 396

Table A.2: Resource usage of the ECC-Enhanced NEORV32 subcomponents
Module Name Fabric 4LUT Fabric DFF Interface 4LUT Interface DFF
Primitives 80 25 0 0
Buskeeper 22 13 0 0
Busswitch 55 8 0 0
CPU 5352 2113 108 108
GPIO 9 5 0 0
DMEM 247 70 576 576
MTIME 256 166 0 0
Sysinfo 24 7 0 0
UART0 125 131 36 36
Wishbone 58 114 0 0
Total 6288 2652 720 720

A.4. PARITY CHECK MATRICES 97

Table A.3: Resource usage of the TMR-ECC NEORV32 Processor subcomponents
Module Name Fabric 4LUT Fabric DFF Interface 4LUT Interface DFF
Primitives 95 75 0 0
Buskeeper 38 39 0 0
Busswitch 67 24 0 0
CPU 9197 6333 108 108
GPIO 16 15 0 0
DMEM 256 74 576 576
MTIME 485 498 0 0
Sysinfo 31 21 0 0
UART0 317 393 36 36
Wishbone 304 342 0 0
Total 10806 7814 720 720

A.4 Parity check matrices

Table A.4: Partiy Check Matrix of Hsiao (13,8) code
syndrome[i] c4 c3 c2 c1 c0 d7 d6 d5 d4 d3 d2 d1 d0 sum

0 1 1 1 1 1 1 6
1 1 1 1 1 1 1 6
2 1 1 1 1 1 1 6
3 1 1 1 1 1 1 6
4 1 1 1 1 1 5

1 1 1 1 1 3 3 3 3 3 3 3 3 29

98 APPENDIX A.

Ta
bl

e
A

.5
:

P
ar

ity
C

he
ck

M
at

rix
of

H
si

ao
(3

9,
32

)c
od

e
S

yn
dr

om
e[

i]
c6

c5
c4

c3
c2

c1
c0

d3
1

d3
0

d2
9

d2
8

d2
7

d2
6

d2
5

d2
4

d2
3

d2
2

d2
1

d2
0

d1
9

d1
8

d1
7

d1
6

d1
5

d1
4

d1
3

d1
2

d1
1

d1
0

d9
d8

d7
d6

d5
d4

d3
d2

d1
d0

su
m

0
1

1
1

1
1

1
1

1
1

1
1

1
1

1
14

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

15
2

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
15

3
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

15
4

1
1

1
1

1
1

1
1

1
1

1
1

1
1

14
5

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
15

6
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

14
1

1
1

1
1

1
1

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

10
2

	Acknowledgements
	Abstract
	List of acronyms
	Introduction
	Motivation
	Research goal
	Report organization

	Background
	Single Event Effects
	SEE causes
	Physical origins of SEU
	Effects of SEEs
	Architecturally Correct Execution (ACE)
	Architectural Vulnerability Factor (AVF)
	Metrics

	Redundancy techniques
	Physical Redundancy
	Temporal Redundancy
	Information Redundancy

	RISC-V and FPGA Integration for Single Event Effects Mitigation
	RISC-V Instruction Set Architecture

	Related Work
	NEORV32
	NEORV32 Processor & CPU
	RISC-V Standard Extensions Configurability
	Pipeline
	Memory Access
	Execution safety
	Wishbone interface

	NEORV32 Implementation
	Target Device
	Unmitiaged NEORV32 implementation
	Memory access
	AHBL-Wishbone Bridge

	Fault-tolerant enhancements
	Design of Hsiao Encoder & Decoder
	ECC Implementation
	TMR implementation
	FPGA resource usage
	Power Estimation using Microsemi's Smart Power Tool

	Testing of the Fault-Tolerant adjustments

	Neutron Beam Experiment
	Experimental setup
	Software
	Error Model
	Characterization Results

	Discussion
	Implications of findings
	Unmodified
	ECC-enhanced
	ECC+TMR

	Program analysis
	Affected functions
	Vulnerability Factor
	CoreMark Linked List Algorithm
	Analysis of the crash traces

	Summary

	Simulation
	Simulation setup
	Fault injection strategy
	Manual injected faults for PC value 0x600012cc
	Manual injected faults for PC value 0x60001676
	Summary

	Conclusions and recommendations
	Future work

	References
	
	Assembly functions
	Top-level design in Libero SoC
	FPGA resources
	Parity check matrices

