MSc Computer Science
Final Project

Mapping Hardware
Descriptions to Bittide
Synchronized Multiprocessors
for Instruction Level
Parallelism

Daan Middelkoop

Supervisors:

Dr. ir. S.H. Gerez

Prof. dr. ir. A.B.J. Kokkeler
ir. H.H. Folmer

September, 2023

Department of Computer Science
Faculty of Electrical Engineering,
Mathematics and Computer Science,
University of Twente

UNIVERSITY OF TWENTE.



Contents

1 Introduction 5
2 Background 6
2.1 Parallelism . . . . . . .. 6

2.2 FPGA’sand YOsys . . . . . . . . e 6

3 Research Question 8
4 Literature Review 9
4.1 Similar Architectures . . . . . . . . . ... 9
4.1.1 Rawmachine . . . . . . . . . .. ... 9

4.1.2  VLIW architectures . . . . . . . .. . ... .. .. ... ... ..., 10

4.2 Compilers . . . . . . e 10
4.3 Languages . . . . . ..o 11

4.4 Scheduling . . . . . . ... 11
4.4.1 Heterogeneous earliest finish time . . . . . . . ... ... ... .... 12

4.4.2  Critical path on a processor . . . . . . . . . ... ... ..., 12

4.4.3 Task duplication . . . . . ... ... 13

4.4.4 Other algorithms . . . . . .. ... ... .o 13

4.5 Evaluation . . . . . . . ... 13

5 Bittide 15
5.1 Network . . . . . . . . e 15
5.2 Multiple nodes . . . . . . .. 16
5.3 Fixed delay in communication . . . . . . . ... ... Lo 16
5.4 Network initialization . . . . . . . . ... ... . ... ... 16
5.5 Gearboxing . . . . . . ... 16

6 Hardware on bittide 18
6.1 Mapping . . . . . . . . e 18
6.2 Pipelining . . . . . .. 18
6.3 Instruction mapping . . . . . . . . ... 19
6.4 Branching . . . . . .. . . 19

7 Design choices 21
7.1 Hardware description . . . . . . . . . . ... 21
7.2 RISC-V . e 21
7.3 Network layout . . . . . . . .. . 21
7.4 Compiler (Mapping and Scheduling) . . . ... ... ... ... ... . ... 22
7.5 Simulator . . . ... 22
7.6 Benchmarks . . . . . . . . ... 22

8 Implementation 24
8.1 Generating the DAG . . . . . . . . .. ... ... 24
8.2 Scheduling the DAG . . . . . . . . . . ... 26
8.3 Simulator . . . . .. .. 27
8.4 Benchmarks . . . . . . . . . ... 28



9 Result & Evaluation

9.1 Higher level Implementation . . . . . . .. .. .. ... 0.
9.1.1 Benchmarks . . . . . . . . ... ...
9.1.2 Unlimited communication . . . . . ... ... ... ... .......
9.1.3 Limit to either communicate or calculate . . . . . . . . ... .. ...
9.1.4 Limited to 2 receive, 2 send, and one instruction in parallel per cycle
9.1.5 Scaling bittide network . . . . . .. ... oL oo

10 Conclusion

11 Future work
11.1 Functional languages . . . . . . . . . . . ...
11.2 Bittide . . . . . . o
11.3 Inter-operability . . . . . . . . ..
11.4 RISC-V . . o
11.5 Analysis . . . . . . oL

A Benchmarks
A1 Conway’s Game of Life . . . . . . . ... ... ...
A.2 Matrix Multiplication . . . . . . .. ... ... ...
A.3 Prime number generation . . . . . ... Lo

B Initial Implementation
B.1 Instruction generation . . . . . . . .. ... .. o
B.2 Scheduler . . . . . ..
B.3 Results. . . . . . .



Abstract

Efforts to enhance computational speed have been ongoing since the inception of
processors. This research explores a way to program multiprocessors using HDL (Hard-
ware Description Languages). A mapping has been created between HDL and synchro-
nized multiprocessors, specifically bittide synchronized multiprocessors. The bittide
network is a new approach to synchronize multiprocessors to allow for instruction-level
parallelism. The central research question is Can the bittide network be programmed
using hardware description languages (HDL) in a way that exploits the available paral-
lelism? HDLs provide inherent fine-grained parallelism as the components in circuits
lay physically next to each other and operate simultaneously. The bittide network
provides the ability for instruction-level parallelism needed to exploit this fine-grained
parallelism. In this research, an approach is successfully demonstrated which maps
hardware to a DAG (Directed Acyclic Graph) of RISC-V instructions, which is then
scheduled over a bittide network of RISC-V cores. A simulator has been implemented
capable of simulating this network which was used to verify the correctness of the
mapping. The mapping was able to find a high degree of parallelism in simple pro-
grams. 16x16 matrix multiplication requiring 8705 cycles on a single core could be
executed in 95 cycles on a (slightly unrealistic) fully connected network of 100 RISC-V
cores, meaning a 91x speedup.



1 Introduction

Researchers have been looking to increase computation speed since the first processor was
developed. Throughout history many ideas have been thought of that increase the compu-
tation speed of processors. These generally fall into one of two categories, namely spatial
and temporal solutions, in other words, either do more things at the same time (you need
more physical hardware that is active at the same time) or use the same hardware more effi-
ciently over time to increase computation speed. These systems must remain synchronized
in order to achieve correct computation. Modern processors often have multiple cores that
run completely independently and synchronization happens through various constructs,
like locks and atomic operations, with significant overhead. Another possibility is to have
all cores running on the same clock so the system behaves in a deterministic manner and
these synchronisation constructs are not necessary.

As applications continue to demand greater performance, finding efficient and effective
ways to maintain synchronisation is crucial. The bittide network [12] is a novel system
designed to address this problem by offering a decentralized approach to synchronisation.
Traditional hardware has a single central clock generator that provides a clock signal to
the hardware. Bittide eliminates the need for physical clock distribution and provides
applications with a perfectly synchronized logical clock. Instead of the physical clocks
being perfectly synchronized, the system behaves as if this is the case on a logical level.
How this is achieved is explained in Chapter 5.

Despite the promising features of the bittide network, there is still a lack of research
on how to use this synchronized multiprocessor architecture efficiently. At the time of
writing no solution exists which is capable of mapping algorithms to run on the bittide
network. This research aims to bridge this gap by exploring the possibility of programming
the bittide network using HDL (Hardware Description Languages) to exploit the available
parallelism. This is possible due to the inherent nature of hardware, where different com-
ponents are physically spread out in space and might thus expose more parallelism than
traditional programming languages. The main research question guiding this study is: Can
the bittide network be programmed using hardware description languages (HDL) in a way
that exploits the available parallelism?

This research identifies a possible mapping between HDLs and the bittide network,
determines appropriate benchmarks for measuring the exploited parallelism, and assesses
whether this approach scales well as the size of the bittide network increases. The findings
from this research could potentially open up new avenues for using HDLs in distributed
systems, offering a new way to tackle the complex problem of multiprocessing.

Concretely this thesis explores the following:

e A mapping of HDLs to a graph of instructions (Chapter 6 and 8.1)
o A scheduler to run this graph on a bittide network of RISC-V cores (Chapter 8.2)

e A simulator capable of simulating a bittide network of RISC-V cores to verify the
correctness of the mapping and scheduling (Chapter 8.3)

This thesis is structured as follows: In Chapter 2, background will be provided on
parallelism. In Chapter 3 the research question and sub-questions of this thesis are for-
mulated. In Chapter 4, we look into similar research and build a theoretical basis for our
approach. In Chapter 5, the bittide network is explained in detail. Chapter 6 discusses
the mapping from hardware to the bittide network. In Chapters 7 and 8, we explain our
design choices and implementation, and in Chapter 9, we show and discuss our results.



2 Background

2.1 Parallelism

One of the inventions to increase parallelism within processors was the superscalar proces-
sor. Within superscalar CPUs, there are multiple functional units capable of executing an
instruction, which are all connected to the same register bank. This allows the CPU to
execute multiple instructions simultaneously if there is no dependency conflict. Within this
CPU there is extra hardware that looks ahead in the instruction stream to find instructions
whose dependencies are already resolved and can thus already be executed. These instruc-
tions are then already executed by the extra functional units. The CPU also performs
optimizations to increase the number of instructions that can be executed in parallel, such
as dynamically reordering instructions. All of the synchronization between the functional
units happens in hardware and is mostly taken care of by the shared clock. As a result,
the programmer/compiler does not have to be aware of this process at all, although the
compiler might try to generate instructions that can be executed in parallel as much as
possible. These superscalar CPUs are an example of ILP (instruction-level parallelism)
which is a form of fine-grained parallelism.

Another improvement was the multi-core processor. By introducing multiple indepen-
dent cores (with their own register banks and functional units) entire execution paths can
be executed in parallel. Since these execution paths are independent and cores might
arbitrarily stall for many reasons, these cores will not run in sync, and thus, necessary
synchronization has to be applied which can be quite costly time-wise. Due to this syn-
chronization and extra communication overhead, it is infeasible to use instruction-level
parallelism on this system. Instead, Thread level parallelism is used which is a form of
coarse-grain parallelism. The design of these threads and which code runs in which thread
often ends up falling on the programmer, which is a complicated task.

To execute a program faster, as much of the parallelism within this program should
be exploited as possible. If this is done at a finer level, more of the parallelism might be
exposed which can then be exploited. Therefore it is advantageous to look for ways to
increase the exploitation of fine-grained parallelism.

A recent competitor for fine-grained parallelism is Google’s bittide synchronisation [12].
This is an abstraction over hardware to achieve a network in which there is a fixed cycle
delay from node to node within the network. This could be a network between two pro-
cessors on a die, or between processors in different machines and can be seen as more of
a generalization of systems like the RAW machine [13]. These nodes do not even strictly
have to be processors, as long as they operate on a cycle basis. These bittide nodes have
only one way of communicating information and that is via the bittide network which
keeps them synchronized. Thus each bittide node has its own registers, memory, and other
resources required to operate. However, due to the synchronous nature of this communi-
cation network, very fine-grained parallelism can be achieved because there is no overhead
for synchronization. This bittide network requires a special compiler as the behavior of
each of the nodes within the network has to be synchronized with the others ahead of time.
This requires an extra form of spatial scheduling next to temporal scheduling. The details
of the bittide network are further explained in Chapter 5.

2.2 FPGA’s and Yosys

These days there exist open-source FPGAs (Field Programmable Gate Arrays) and open-
source tooling to program those FPGAs. FPGAs are integrated circuits that can be con-



figured after manufacturing. This is usually done using hardware description languages.
Yosys [20] is one of the open-source tools that can synthesize HDLs to configure FPGAs.
On top of being able to synthesize for FPGAs, Yosys is also capable of transforming HDLs
into graph representations and optimizing/altering these graphs. For example, changing
Verilog process definitions into multiplexers and registers. Furthermore, Yosys can change
the HDL into LUT (Lookup Table) implementations. All of these representations can be
extracted from Yosys in the form of an easy-to-use Json format. These points are con-
venient when taking HDL as a starting point for any project since it saves the trouble
of having to write your own VHDL/Verilog interpreter. In this thesis, the outputs Yosys
provides are used as a starting point for both implementations found in Chapter 8.



3 Research Question

The goal of this thesis is to investigate a new approach to programming synchronous mul-
tiprocessors, particularly the bittide network. This problem is two-fold. While numerous
attempts have been made to program multiprocessors with conventional imperative lan-
guages, this thesis seeks to determine if a mapping between hardware descriptions and
multiprocessors is possible. Furthermore, the specific multiprocessor will be a bittide net-
work of RISC-V cores which is so new that at the time of writing no solution to program a
bittide network exists. Given the synchronous nature of the bittide network, it is possible
that the inherently parallel structure and well-defined dependencies of hardware descrip-
tions can be mapped onto it.
The main research question and several sub-questions are:

e Can the bittide network be programmed using hardware description languages (HDL)
in a way that exploits the available parallelism?
— Does a mapping between HDLs and the bittide network exist?
— What are appropriate benchmarks to measure the exploited parallelism?

— Is the approach able to exploit the available parallelism found in hardware
descriptions?

Does the approach scale well when the size of the bittide network increases?

By addressing these sub-questions, insight should be gained into the feasibility of the
approach to use HDLs to program the bittide network or even similar multiprocessing
models.



4 Literature Review

4.1 Similar Architectures
4.1.1 Raw machine

Although the method that the bittide network uses to achieve synchronized processing to
allow more parallelism is new, the resulting platform is not. Multiple architectures exist
with similar behavior. The RAW machine [13] is a machine with a grid of processing units,
each with its own register bank and some memory, connected using a synchronous network.
This network can carry a word of data in one clock cycle to a neighbor processing unit.
The entire architecture is driven by the same clock and thus runs synchronously. This ar-
chitecture allows for ILP over multiple processors because data can be transferred between
processors quickly and synchronously (most times) thus not requiring expensive synchro-
nization mechanisms. However, in contrast to superscalar processors, dedicated compilers
must be built for such architectures. This is because each processor and the network nodes
require their own instruction streams that are built together instead of having a single
instruction stream in which the hardware itself finds parallelism opportunities. In the case
of the RAW machine, a dedicated compiler called RawCC has been developed that can ex-
ploit the fine-grained parallelism that this platform provides. RawCC can compile C code
to run on the RAW machine. There are many obstacles that the compiler has to overcome
to be able to do this. Because each part of a C program can alter arbitrary memory, the
compiler tries to statically infer memory locations and map this memory to the processor
that is operating on it. When multiple processors operate on it, the data is exchanged via
the network via statically scheduled instructions, thus not requiring routing information.
Sometimes the data can not be statically inferred and a dynamic asynchronous strategy is
used to route the data to the processors requiring it. This requires a lot more overhead so
it is important that the compiler can statically interfere as much as possible. The compiler
also has to deal with branches in the program, making sure that every processor is aware
of which branch the program is in. A lot of these problems are due to the nature of the C
language and might be fixed by using a more appropriate language.

RawPP

Bpc
BEiB
BiBb
BEb

FIGURE 1: A RAW microprocessor is a mesh of tiles, each with a processor and a
switch. The processor contains instruction memory, data memory, registers, ALU,
and configurable logic (CL). The switch contains its own instruction memory. [13]

The RAW machine hardware side exposes a platform that is similar to a bittide network
of CPUs. Both systems allow sharing data with neighbors in a fixed amount of clock cycles
and can route this data on demand to different nodes (the paths that data follow can differ
per cycle). Both systems can scale indefinitely without suffering clock speed penalties.
There are a few key differences between the two platforms. The RAW architecture is



limited to a grid of nodes, limiting the connectivity of each node. The Bittide network is
less limited as it can handle arbitrary layouts and distances between the nodes in exchange
for a latency penalty. A last key difference is that the RAW machine is still managed by
a single clock signal generated somewhere on the chip. Because of the decentralized clock
behavior of the bittide network, it has no trouble with getting its clock signal to each node.
The bittide network can even operate over multiple chips.

4.1.2 VLIW architectures

Another approach that was made was a VLIW (Very large instruction word) architecture
[10]. This is an earlier attempt at instruction-level parallelism. The proposed architecture
consists of clusters which each have their own registers, memory, and a few functional units
for integer / floating point operations. The clusters are connected by busses which can
transfer scalar values. There is a single instruction stream that controls the behavior of all
of the clusters. these are very large instructions that instruct each of the functional units
of each of the clusters at the same time. The behavior of this architecture is very similar
to the bittide network and the RAW machine. This architecture seems less scalable due
to the single instruction stream which has to reach all of the clusters. However, compiling
to this architecture seems very similar to the bittide network. There are nodes that do
processing and that can communicate scalar values in constant time with their neighbors,
all while having a synchronized clock. There does seem to be an interesting difference with
this architecture in comparison to both bittide and the RAW architecture, and that is
branching. Due to the nature of a single instruction stream, every processor on this archi-
tecture always branches at the same time. There is a single program counter. It does seem
to be possible to simulate individual branching by generating extra instructions, thus it is
unclear whether this makes a difference in the complexity of compiling for this architec-
ture. The paper also proposes a compiler for this architecture. A lot of the compiler again
focuses on the problems associated with references that were seen with the RAW compiler
as well, indicating that allowing this behavior is a bad match for such architectures.

There are many more VLIW architectures out there and different approaches for gen-
erating instruction streams. The concept they all share is that since it is only a single
instruction stream, the executions on the different cores can not diverge like the Raw ma-
chine and thus the need for synchronization is not there. Another approach to a VLIW
architecture is ReVAMP [6] in which they construct an in-memory computation architec-
ture for general purpose computing. This machine is based on the 3-input majority function
with one of the inputs inverted which can be used to compute any Boolean function. The
paper describes a method to generate instructions from a Majority Inverted Graph. This
is a directed acyclic graph that can be used to represent logic not unlike combinatorial
logic in hardware descriptions. In the proposed architecture the program counter can not
be manipulated, thus this machine is not capable of looping or branching.

4.2 Compilers

The instruction level parallelism available in traditional instruction streams is very limited
[19] and the available parallelism can often be fully exploited by superscalar processors.
Superscalar processors work by taking the instruction stream and looking ahead for in-
structions that can already be executed. This means that instructions very far into the
stream are often not considered, for example after branches. There is another project
called TRIPS [16] that tries to solve this problem by better understanding the instruction
stream sent to it and thus looking much further ahead in the stream. This is done using an

10



approach called EDGE (Explicit Data Graph Execution) which tries to identify complete
blocks of instructions with their own data and moves all of these instructions together with
their data to separate cores for execution. Both the RAW and VLIW architecture come
with their own compilers. Not only because the kind of instructions generated need to
be very different but also because they employ techniques to extract more parallelism out
of the program to justify the amount of parallelism the architectures can handle. Instead
of identifying the parallelism at run-time, this is the responsibility of the compiler. The
exact parallelism exploited is already determined after compiling the program. This does
mean that the compiler must be fully aware of the underlying architecture and programs
will only work on the exact architectures they are compiled for. It seems that to allow for
more parallelism this must be considered a lot earlier already than in the final instruction
stream. The aforementioned strategies focus on the formed instruction blocks and streams
as a last step of compilation to improve parallelism. Another avenue is the compilation
process before the translation to instructions has been made so that loops and other high-
level concepts remain intact. One of these approaches is described in [9] where instead
of instructions, the program is first translated into their new programming model called
Asynchronous Graph Programming. Here the entire program is described as a directed
graph of single assignment semantics, tracking dependencies and thus exposing parallelism
more elegantly.

4.3 Languages

Parallelism can also be expressed at the source level. It is common for programs to make
calls to threading libraries such as pthreads [2] as a form of explicit source-level parallelism.
Of course, this assumes thread-level parallelism implemented by the programmer, while this
research focuses on instruction-level parallelism. It is important to select a language that is
appropriate for the job. As we have seen with the RAW machine which is quite similar to
bittide, the C language has quite a few problems to deal with due to the ability to arbitrarily
change any memory location from any place in the program. This even required the RAW
machine to implement a hardware solution (the dynamic routing nodes) and the entire
program can no longer be run synchronously since this causes arbitrary delays. Within
this research, we are exploring the mapping between hardware descriptions and the bittide
network. Hardware descriptions or languages similar to that (Clash [5] for example) are
pure and do not suffer from all the problems that pointers cause within these systems. In
[8] a new functional language called NOVA is proposed, which through the use of higher-
order functions can express parallelism. All the calculations are functions from fixed inputs
and thus you only have to route the inputs to the right nodes and this can always be done
statically. This looks similar to the approach of the TRIPS architecture in which they try
to collect blocks of instructions that rely on some input data but nothing else to execute.
Hardware descriptions follow this same pattern and could therefore be a good fit for such
a parallel system.

4.4 Scheduling

Imperative languages are quite easily transformed into a single instruction stream. But
we want to capture the available parallelism at compile time. To generate programs for
the bittide network, a schedule must be generated for each of the processors within this
network. One way to do this is to start by capturing all of the dependencies within a pro-
gram into a dependency graph. Generating the perfect instruction schedule for completely
synchronized systems falls within the category of NP-Hard problems [11]. In asynchronous

11



situations, you have to cut the problem up into pieces and generate an efficient schedule
for each piece. Then assume that the synchronization overhead between these pieces does
not affect performance too much. However, with a completely synchronous system, you
have the option to not cut the problem up into pieces to find more efficient schedules. This
means you now have to schedule the entire program all at once. Luckily scheduling research
has advanced a lot and there have been many solutions proposed for this scheduling case.
The scheduling problem at hand is that we have a set of tasks (instructions) and a set of
cores on which these tasks can be executed. Then there is a communication delay between
these cores which must be taken into account. The execution time for communication is
not homogeneous and the execution time for tasks does not have to be. What we know
is that the system is synchronous and therefore deterministic thus the execution times
for tasks are constant. One of the popular algorithms for this problem is Heterogeneous
earliest finish time, which belongs to the class of list-based scheduling algorithms.

4.4.1 Heterogeneous earliest finish time

The HEFT algorithm [18] is a heuristic that minimizes the total execution time of a task
set. It consists of two phases. First the task prioritization phase. In this phase, each task
within the task set is assigned a priority. This priority is determined by the distance of the
task in the graph to its furthest leaf node. Thus the task that has the most generations of
children coming after it gets the highest priority. Then it sorts the tasks by priority, from
highest priority to lowest. Next is the processor selection phase, in which the tasks will
be taken in order of their priority and tried on each processor. The processor on which
the task finishes earliest (this includes communication time for the data to be transferred
to this processor) is then selected and the task will be permanently scheduled on this
processor, continuing with the next task until all tasks are scheduled. This algorithm is
very fast and generally performs reasonably well. This algorithm does not consider its
children when selecting a processing core, thus sometimes resulting in very obviously bad
schedules. Since the algorithm is already so fast, alterations have been made that consider
the children of a task as well during processor selection, or even altering the order in which
tasks will be scheduled, resulting in often significantly better schedules. This improvement
is proposed in [7]. Another sibling algorithm of HEFT is Predicted Earliest Finish Time
(PEFT) as described in [4]. This algorithm improves HEFT by implementing an optimistic
cost table to enable look-ahead scheduling while maintaining the same time complexity.

4.4.2 Critical path on a processor

CPOP (Critical path on a processor) is another algorithm originally proposed in [18]. This
algorithm finds the critical path of the directed acyclic graph, that is the longest path from
an entry node (node without dependencies) to an exit node (node that other nodes do not
depend on) in the graph. The minimum length of the produced schedule is bound by the
length of the critical path. The algorithm then proceeds to schedule each of the nodes
in this critical path to the same processor, eliminating communication delays in this path
and thus minimizing its length. Nodes that are not in this path will be selected from a
priority queue that prioritizes the node with the longest distance from an entry node plus
the longest distance from an exit node. The selected node will be placed on a processor
that minimizes its completion time.

12



4.4.3 Task duplication

Another scheduling approach is based on task duplication. The algorithm proposed in [3|
considers the possibility of duplicating nodes in case the communication overhead is larger
than the computation cost. This algorithm again considers the critical path but also tries
to schedule other nodes on which the critical path depends efficiently, possibly duplicating
them.

4.4.4 Other algorithms

There exist many other scheduling algorithms. Each of them works differently. In [17] var-
ious scheduling algorithms are compared. These algorithms employ different heuristics and
techniques including genetic algorithms, Monte Carlo simulations, and various heuristics
similar to HEFT.

4.5 Evaluation

Evaluation of the approaches in this thesis is not straightforward. Real-world applications
have years of micro-optimisations behind them making it difficult to outperform them with-
out applying every possible optimization as well, which due to a lack of time is infeasible
for this thesis. Thus evaluation has to be done on a more theoretical basis. Many papers
concerning parallelism focus on the speed-up of certain applications when parallelism is
applied. In the RAW paper, a collection of benchmarks has been run on the MIPS proces-
sor (a sequential processor without any parallelism) versus the RAW platform. Then the
speedup in cycles is measured and compared to arrive at a performance increase/decrease.
Although a benchmark against the state of the art would be more beneficial, this still
provides valuable data on the exploited parallelism and could indicate similar performance
gains when applying similar strategies to the state of the art. As there are many different
task loads, each exposing different amounts of parallelism, it is also important to consider a
broad task set in these benchmarks. Both the RAW paper and the VLIW paper considered
matrix multiplication and other matrix-based algorithms as some of their benchmarks as
there is a lot of parallelism to be exploited. In [15] and [14], again multiple of the bench-
marks are matrix based. Other algorithms like sorting or prime number generation could
also provide interesting results. In [7]| the proposed graph scheduling algorithms are eval-
uated using various shapes of directed acyclic graphs. These are hypothetical graphs of
what calculations could look like and could be applicable bench-marking, because for eval-
uation it does not matter what the computed results mean, as long as the computations are
representative of real-world applications, and each different graph in that paper represents
a different kind of calculation.

In [13] results are provided for matrix multiplication and Conway’s Game of Life when
run on the RAW machine in comparison when compiled for the MIPS processor (a processor
without any parallelism). The results for this can be found in Table 1. In Chapter 9 these
results will be compared against the implementation created in this thesis.

TABLE 1: Speed up on the RAW platform with the number of cores = N

MIPS cycles | N=4 | N=8 | N=16 | N=32
Matrix multiplication | 2.01M 3.6 6.64 | 12.20 | 23.19
Conways Game of life | 2.44M 3.0 6.64 | 12.66 | 23.86

13



Unfortunately for the VLIW architecture in [10] they present results for an ideal ma-
chine, thus they provide no information on the number of cores. Furthermore, the size of
the matrices for multiplication is not specified, and can thus not be reproduced.

14



5 Bittide

Nodel Node2
CPU >
A
Fifo
Fifo
¥
-« CPU

FIGURE 2: A bittide connection between two nodes

5.1 Network

The bittide network [12] describes a communication protocol that can connect different
nodes in the network in such a way that they can perform synchronous computations
together. The network forms a basis for a synchronized logical clock, meaning that all
the nodes in the network can run in lockstep with one another. Thus if each node was a
processor, all processors could step together to the next state, without one running faster
than the other. This is achieved by the way the nodes communicate within the network.
The core of this mechanism is formed by the elastic buffers in the network. The elastic
buffer is a FIFO (first in first out) buffer that shrinks or extends depending on the speed at
which items are added /removed. If there is a connection between two nodes in the network
then there will be an elastic buffer on both nodes unique to this connection, an example
of this can be seen in Figure 2. Each clock cycle the nodes are responsible for sending a
data packet over their links towards the FIFO buffer on the other side and they must also
consume a data packet from the FIFO buffer on their side. The result is that in each clock
cycle the nodes exchange information. This can be information relevant to the currently
running programs or not, the only important thing for the bittide network is that data is
exchanged every cycle. The packets are for data communication as well as synchronization.
This data can be anything but for the rest of the thesis, it is assumed that this is a scalar
number of fixed bit length, which can be relevant for the program but is mostly zeros.
because each node always consumes a packet from a FIFO buffer and a packet is added
to the buffer by the other node, the FIFO size should remain constant. However, this is
only true if the nodes run at the same clock frequency. If one node has a faster frequency
and thus consumes more packets from its buffer and produces more packets for the other
buffer, the buffer occupancies diverge. And the variation in the occupancy of the elastic
buffers is exactly what is used to synchronize the system. If a buffer slowly drains empty,
the node is running faster than it should. And if a buffer slowly fills, the node does not run
fast enough and must process more packets. Thus the execution speed of a node can be
adjusted when this happens. The total amount of packets in the system remains constant,
since each time a processor consumes a packet it also must produce one and visa versa.
Because of this property, we can use the buffer occupancy of a link to directly control the

15



frequency of the corresponding node. If a buffer empties this must mean that the other
side fills up, thus one must slow down and the other must speed up.

5.2 Multiple nodes

Previously the case was discussed for two nodes with a single connection between them,
however, this concept can be scaled up to multiple nodes. For example, a node might have
two neighbors. This means that for both neighbors it has an elastic buffer and each cycle
it must consume a packet from both elastic buffers, but it must also produce a packet over
both links each cycle. for the control of the speed, both buffer occupancies must be taken
into account. When both are empty the node must slow down, if both are full it must
speed up and if one is full and the other empty, it must do nothing. In the last case, it
is up to the other two nodes to slow down/speed up. Here you can see that via a shared
neighbor node, the other two nodes are getting synchronized as well.

5.3 Fixed delay in communication

Even though the clock speeds of nodes might converge, an important observation is that
these clocks do not have to run perfectly synchronously with each other. As long as
the buffers do not empty or overflow, a logical level of synchronization has been reached
already. By strictly communicating with other nodes using the network, we have access to
a synchronized layer on top of this network. If the system started with 5 packets in all of
the elastic buffers, there is a known communication delay of exactly 5 cycles between each
node and this delay remains constant for the entire duration of the program. Even if an
elastic buffer has a lower occupancy than 5, this means that this node is relatively "ahead"
of the rest, which makes sense because it processed more packets already, but the current
packet it is processing still was produced when the cycle counter of the other node was 5
less than this nodes counter now.

5.4 Network initialization

As the total amount of packets in the network stays constant during operation, the elastic
buffers must contain some initial packets when starting. Since the buffer occupancy is
directly proportional to the communication delay between nodes it makes sense to want
to start with a minimum buffer occupancy, however, data is not exchanged over the link
instantly, and there is a small propagation delay. Nodes physically further apart need
more packets in their buffer to compensate for more propagation delay. Furthermore,
nodes might have an irregular frequency (Certainly when the system starts and has not
converged yet), and a larger buffer occupancy provides some leeway in these situations so
that the entire system does not stall.

5.5 Gearboxing

Since all of the nodes in the bittide network have to be synchronized the entire network
can only go as fast as the slowest node. To combat this issue a few exceptions can be made
to the rules explained above. If one node is capable of running twice as fast as the other,
it is possible to create a proportional frequency link between them. If the faster node only
produces and consumes a packet every two of its cycles, then it can run twice as fast as the
bittide network operates. Its frequency would synchronize to twice the frequency that the
rest of the system is running on since it has to run twice as fast to consume and produce
a packet. Using this principle the bittide network could operate under various interesting

16



conditions. For example, multiple processors on the same chip could operate using a high-
frequency bittide network, while at the same time being connected over a lower-frequency
bittide network to a different chip, so that the entire system is still synchronized. This
concept could be extended to synchronize an entire data center together, as long as all the
connections are managed by bittide links. However, this linking of different frequencies is
not used in this thesis and it is assumed that all nodes operate at the same frequency.

17



6 Hardware on bittide

Hardware design is a complicated task. There are many considerations to be made to
create "good" hardware, depending on the final platform. Whether the hardware runs
on an FPGA or in another form differs. Introducing the bittide network into the mix
complicates it even further. In this chapter, the created mapping from hardware to the
bittide network is discussed. a few of the important considerations will be discussed when
creating a mapping of hardware to a bittide network with processor-like nodes, meaning
nodes that do instruction-based computation on a cycle basis. Unlike in hardware, within
the bittide network wires are more of a concept and less of a physical thing. Values
are stored in registers in between every computation and combinatorial paths have to be
scheduled in the temporal domain as well instead of just the spatial domain. The bittide
nodes used have a limited instruction set that is optimized for certain tasks. Below a few
of the important considerations are discussed that arise when creating a mapping between
hardware and this bittide network.

6.1 Mapping

The core idea behind the mapping relies on two interesting properties of circuits. Circuits
have parallelism, all wires and components operate independently of each other in parallel.
Circuits are also static, their layout is predetermined and does not change. The first
property indicates that when mapping a circuit to a multiprocessor, there is parallelism
to be exploited for the multiprocessor, and the second property indicates that this can
be achieved by a static schedule predetermined ahead of time. In the mapping proposed
in this thesis, this has been the thought process. The base components of the circuits
(think of adders, multiplexers, multipliers) are mapped to CPU instructions so that the
multiprocessor can execute them, and then much like FPGA place and routing, instructions
have to be placed on processors and data between them routed. The core of this mapping
is very simple and based on existing ideas, like scheduling and place and routing, however,
due to the differences between CPUs and FPGAs, some circuits might map better to
multiprocessors than others. In the rest of this chapter, different properties of different
circuits will be discussed, and how they map to multiprocessors.

6.2 Pipelining

When developing hardware for an FPGA, registers are often used not only to keep state
but also to pipeline the design, so that specific clock timings can be achieved. However, the
constraints on these clock timings are more relaxed when targeting the bittide network. The
implementation proposed in this thesis already takes care of all of the temporal scheduling
of the hardware designs. It has to do this anyway to fix the communication timings
within the bittide network. This does mean that the developer no longer has to consider
pipelining. However, the state is still important. This leads to the observation that there
are different types of registers, state registers, and others. While the proposed scheduler
does not care what type of register it is, it is important to note that pipelining registers
put unnecessary restrictions on the schedule and thus might harm the performance of the
final schedule. This is just one example of how even though someone has experience with
hardware design, they still have to learn how to design for bittide. This does raise the
question of how good this mapping between hardware and the bittide network is to be
used in practice. Pipelining is not the only difference here. Normally hardware developers
have to focus on the combinatorial path with the longest execution time to speed up the

18



design, but this is also taken care of in the proposed scheduler. The scheduler will simply
assign more processing power to the longest path, such that all processors are busy as much
as possible and thus shortening any path will improve the design speed. In Figure 3 two
versions of a very simple example hardware description are given, incrementing the input
three times, and below example programs are given which could be the result of mapping
this to a processor. The pipelined circuit has shorter combinatorial paths and should be
able to run at a higher frequency. The produced programs, however, require equivalent
processor cycles, and thus no throughput benefit can be gained with the pipelined version.
Notice that in the pipelined program, the program still has to run multiple times to produce
results, just like the pipelined circuit version produces results after multiple cycles.

Pipelined circuit

—> reg 1 4)@—> reg 2 4)@—> reg 3 4)@—>

Not pipelined
PIPELINED PROGRAM NOT PIPELINED PROGRAM
INPUT RO INPUT RO
ADDR21R3 ADDRO 1 R1
ADD R1 1 R2 ADD R1 1 R2
ADD RO 1 R1 ADD R2 1 R3
OUTPUT R3 OUTPUT R3

FIGURE 3: A very simple circuit, both with and without pipelining, and example
programs that these circuits might be mapped to

6.3 Instruction mapping

Yet another difference between running hardware on FPGAs vs. the bittide network is
the consideration of what kind of combinatorial paths should be implemented. Because
an FPGA has wires and LUTSs, it is trivial to arbitrarily switch and operate on a bit
level. However, processor-based architectures are constrained by their instruction set.
Thus implementations that focus heavily on bit "magic" might be emulated using many
instructions and thus observe a significant performance decrease. It is better to focus on
operations that can run natively on the provided instruction sets. This could be very
counter-intuitive for FPGA engineers as using these operations (for example 32/64 bit
sized operations) is often a big waste on FPGA platforms. For example, shuffling the bits
of a 32-bit number to arbitrary locations would be a trivial task on an FPGA, but on a
CPU it would require many instructions to isolate the bits and recombine them into the
correct result.

6.4 Branching

When encountering selection logic in hardware, any of the branches could be selected, and
thus each of the branches must be physically placed on the chip and thus will always be
evaluated. It is easy to see how this is necessary for hardware but when running on a cycle-
based processor this is different. Efficient processor code might first evaluate the selection
line and based on the result only compute a single branch. This seems straightforward, but
given that this is evaluated on a bittide network, execution times of the different branches

19



are important. One solution could be to pad branches with empty instructions to make
each path the same length. Another solution could be to inform other processors which
branch has been taken and to make sure that the other processors also branch into paths
that comply with the new timings. Another option is to simply calculate both branches
always. Calculating both branches always might seem like a performance waste, however,
this allows for parallel computation of both branches and the selection line. The result is
that the branches are not dependent on the selection line during scheduling. If there are idle
processors, these branches could be evaluated in parallel to the selection line. This behavior
is similar to branch prediction on modern processors and could increase performance. Of
course, this is completely situational and the optimal strategy is probably somewhere in
between these options.

20



7 Design choices

To produce a working prototype for a mapping of hardware to the bittide network various
choices have to be made. The bittide network itself is relatively abstract and has many
possible implementations. Hardware is also a broad category that has to be narrowed down.
This chapter names and elaborates several choices made to constrain the implementation
in order to build a real-world prototype.

7.1 Hardware description

Clash > Verilog » Yosys netlist > Optlmlzeq » ECP5 netlist
yosys netlist
) 4 A
High level ECP5
implementation Implementation

FIGURE 4: A hardware synthesis pipeline and the two places where the implemen-
tations tap in

The original idea behind this research is to apply synchronous hardware descriptions to
the bittide network and see if there is a mapping. Due to this, we restrict ourselves to
hardware or hardware-like descriptions as a start of our process of describing the network.
Clash was considered as a starting point for the compiler but it is much more complex
than the Json net-lists that Yosys can produce, thus in this research it was opted to go
for that instead. However, pursuing Clash in the future could be a promising lead. Yosys
was chosen due to it being open-source and a very versatile tool in converting Verilog to
appropriate other models. The choice was made to restrict ourselves to Verilog code that
Yosys will transform to either a high-level representation or an ECP5 synthesized version.
This is visualized in Figure 4. For the high-level variant, the choice was made to optimize
the Verilog description as little as possible and only convert it to a graph representation
from a Json netlist. However, processes are being reduced to register transfers. The choice
to alter the graph as little as possible is based on the notion that these programs optimize
toward FPGA targets or other hardware architectures. These optimizations do not make
much sense when targeting the bittide network.

7.2 RISC-V

The bittide network does not specify anything about how the nodes perform computation.
It just describes the synchronized communication behavior between them. Nodes could
be traditional processors, FPGAs, ASICs, or anything else, as long as they can somehow
comply with the notion of cycles and consume and produce data at those cycles. For this
research, we have opted to go for a RISC-V CPU as a node because of its simplistic nature
and the existing research into scheduling for processors. There also exists a setup of a
functioning bittide network with RISC-V nodes which also influenced this decision [1].

7.3 Network layout

To reduce the scope of the problem the layout of the bittide networks has been reduced to
fully connected graphs of a variable number of nodes. The decision to make the network

21



fully connected is because the scheduling problem is already complex enough, but without
a fully connected network, it would require path-finding for the data dependencies as well
(To connect nodes to each other via other nodes). Furthermore, a cycle of data transmission
on the bittide network does not always have to be at the same time as a CPU cycle on a
node (see 5.5). The number of CPU cycles could be a multiple of the number of bittide
cycles, however, in this research we have assumed them to be the same. We have opted to
target networks with different buffer lengths for their bittide links so that the scheduling
algorithm can be observed under low and high communication delays.

7.4 Compiler (Mapping and Scheduling)

To implement the mapping from hardware descriptions to the bittide network, it was
decided to create two programs. A mapper whose purpose is to convert the hardware
descriptions to RISC-V instructions with identical behavior, and a scheduler responsible
for assigning each instruction to a core and a time slot, or specific CPU cycle at which
the instruction executes. The scheduler works based on the HEFT algorithm, elaborated
in Chapter 4.4.1. HEFT was first chosen as an initial algorithm because of its simplicity,
to be later replaced by a more sophisticated algorithm, however after implementation, it
became clear that this algorithm was good enough and the decision was made to focus
on other parts than the scheduling. Details of both the mapper and the scheduler can be
found in Chapter 8.1 and 8.2 respectively.

7.5 Simulator

To test the implementations of the compilers and schedulers, a simulator was developed
that can simulate a network of RISC-V nodes. This simulator simulates the behavior of
the network to the level of the elastic buffers and their contents. The simulator requires
all communication between cores to go over the bittide network. It does not simulate
the individual frequencies of the nodes and the slow convergence because that part is
unnecessary in testing the correctness and performance of the compiled schedules. The
simulator requires a program for each node, containing instructions for both the RISC-V
core and to drive communication over the bittide connections. Since programs like matrix
multiplication have inputs and outputs, the RISC-V instruction set is extended with two
instructions, namely an input and an output instruction which the simulator will use to
inject information into the simulation and produce the outputs back to the user. For the
moment these input and output instructions are the only form of IO that is implemented
and act like regular instructions, and can also be scheduled at any node. Input could be
done in multiple ways. It might be more realistic to limit input and output nodes to certain
machines in the network so that they fill the role of "data loaders" for the network. Nodes
that can bridge data between the bittide world and the outside. Another option could be
a form of interoperability between programs running on the bittide network so that they
can pass data to each other, which would be interesting for future work.

7.6 Benchmarks

To arrive at tangible results about the performance of both the mapping and the scheduler,
a few algorithms have been implemented in Verilog to benchmark everything. Four classes
of problems have been selected, namely matrix multiplication, Conway’s Game of Life,
Prime number generation, and random instruction graphs (Here instruction graphs are di-
rectly generated and thus the mapping is bypassed). Matrix multiplication and Conway’s

22



Game of Life have been selected because of the known parallelism that can be exploited in
these operations, and because in the literature they are being compared with often, thus
providing a reference point for comparison. Prime number generation has been selected as
a highly sequential algorithm (The implementation used in this thesis checks primes one by
one). And lastly, random graphs have been selected as a way to give more general insights
into the performance for less specific problems. Implementations for all the benchmarked
algorithms can be found in the appendix. All of these problems will be mapped to the bit-
tide network and scheduled, after which the amount of cycles needed to run all instructions
sequentially is measured, and the number of cycles it takes on various sizes of networks
(in terms of nodes). This can then be compared against results found in the literature.
The decision was made to not choose an existing benchmarking set because of three issues,
First of all, since these hardware descriptions run on a bittide network of CPUs, they
can not be compared against other projects using these benchmarks. As the underlying
architecture would be too different, the comparison would be meaningless. Secondly, due
to time constraints, not the full set of features of Verilog is usable or implemented in this
thesis, thus these benchmarks would not work without adding more functionality. Lastly
but related to the previous point, these benchmarks have been optimized for hardware
synthesis and not to be run on a CPU, and thus the results would paint a skewed picture.

23



8 Implementation

In this chapter, the implementations for mapping and scheduling of the hardware descrip-
tions onto the bittide network are explained. The implementation consists of two parts,
first the mapping and then the scheduling. the mapper generates a DAG (Directed Acyclic
Graph) of RISC-V instructions from the hardware descriptions. This graph then has to
be scheduled onto the specific nodes of the bittide network. An initial implementation
has been made that differs in many aspects from the final implementation and details and
initial results of this implementation can be found in Appendix B.

In this chapter, the terms circuit register and CPU register will be used and should not
be confused with one another. A circuit register is a register specifying behavior in the
hardware description that will be mapped to the bittide network, while a CPU register is
a register in a RISC-V CPU within the bittide network. This CPU register stores values
inside the CPU between instructions issued. In this chapter, the terms circuit cycle and
CPU cycle will also be used, which also have little to do with one another. A circuit cycle
refers to a single cycle in the circuit described in the hardware description and refers to a
cycle in which all combinatorial logic is processed and stored inside the circuit registers. A
CPU cycle on the other hand refers to a single cycle of a RISC-V CPU in which a single
RISC-V instruction is executed and stored into a CPU register.

8.1 Generating the DAG

module add

endmodule

(B) The same program converted to a
(A) Verilog code describing some program graph by Yosys

FIGURE 5

The mapper from hardware descriptions to RISC-V instructions does not parse Verilog
directly. Instead, Yosys (Chapter 2.2) is used to transform the Verilog into a netlist
representation of the hardware circuits. An example of such a netlist is given in Figure
5b. This netlist consists of registers and combinatorial logic. The program in 5b does
not contain registers so only combinatorial logic is shown. Except for circuit registers,
these netlists are already directed acyclic graphs. Thus the compiler has to convert each
of the nodes in the netlists to RISC-V instructions. For most nodes this is trivial, an $add
or $mult node has to be converted to a RISC-V addition or multiplication instruction
respectively. Some nodes require more complicated conversions, such as an $eq node,
which should output a zero or one, based on whether the two inputs are equal or not.
There is no direct instruction in the basic RISC-V instruction set that has this behavior,
and thus a combination of instructions needs to be issued. In the case of $eq equal behavior

24



can be achieved by issuing a subtract instruction followed by a Set-Less-Then-Immediate-
Unsigned instruction. By subtracting two numbers, and checking if the result is (unsigned)
smaller than 1 the behavior of $eq is achieved. Another example is $mux or a multiplexer.
This behavior can be implemented in multiple ways but the chosen implementation was
(AxS)+ (B*S) Where S is the selector and A and B are inputs. Now that it is explained
how the nodes in the graph are mapped to instructions, the last part that remains are
circuit registers. To explain how circuit registers are implemented a few things need to be
recalled. Circuit registers carry data over cycles within a circuit. All of the combinatorial
logic is converted into a program that runs on the bittide network. Thus registers need to
carry data between full executions of the program or an entire cycle of the original circuit.
To achieve this, a circuit register is implemented by inserting extra nodes into the graph
without instruction, sort of like a wire, just passing data through. However, instead of
passing data through, the dependency direction is flipped. In the case of a normal wire,
where the output of an instruction would be written to a CPU register, and then the next
instruction would read it from the CPU register, the dependencies are flipped. So the
instruction Writing to this node has to execute after the instructions reading from this
node. The result is that when running a program the CPU register corresponding to this
node is first read, and later in the program this CPU register is written to, only to be read
again at the start of the next program and thus carrying the data over to the next program
execution. This change in how the circuit registers are mapped also maintains the acyclic
nature of the produced DAG. At this moment there is a DAG of RISC-V instructions and
the first step is nearly completed. The CPU register locations for each instruction still have
to be set. Now that there is a DAG of instructions, this can be done by simply traversing
the DAG by starting at a node that has no dependencies or whose dependencies already
have an assigned CPU register and assigning the next free CPU register location to that
node. This step can be repeated until each node in the graph has an output CPU register
location assigned. Then by looking at the input nodes for each node, the input CPU
registers can be set based on the output CPU registers of these input nodes. This is not
an efficient assignment as many CPU registers could probably be reused, and the resulting
programs thus use way more CPU registers than necessary, but it helps the debug process.
Furthermore, this could be optimized later in the process. An example instruction DAG
is given in Figure 6

25



Input i1 r1 —
MUL r11r1r10
LUIr102 4|_)
ADD r14 r11r13 |+
Input i2 r4 .
MUL r13r4 r12
LUIr12 3 j Ly
ADD r15r14 r9 || Output ri5 o
>
Input i3 r2 —
MUL r6 r2 r5
LUIT5 4 j
ADDr9r6r8 —
Input i4 r3 ]
MUL r8 r3 r7
LUIr7 5 4|_)

FIGURE 6: Instruction DAG generated from Figure 5b

8.2 Scheduling the DAG

Now that an instruction DAG as shown in Figure 6 is given, this has to be scheduled over
the bittide network. A decision has to be made on which instruction runs in which CPU
cycle, and on which core. In case data has to be moved between cores, communication
instructions have to be inserted. All of this is done using the HEFT (Heterogeneous Earliest
Finish Time) Algorithm [18| described in Chapter 4.4.1. The algorithm works in two steps.
First, a priority queue is constructed based on the node’s upward rank. The upward rank
for a node is determined by taking the maximum upward rank of its immediate successor
nodes and adding the average computation and communication delay of the node to that
score. The average computation delay is 1 CPU cycle as every instruction takes one CPU
cycle. The average communication delay is the average delay of the specific bittide network
that is being targeted. This upward rank represents the critical path to the furthest exit
node or the time that the program needs after this instruction to finish. After each node
is assigned an upward rank, the nodes are put into a priority queue from highest to lowest
rank. After this queue is constructed, the algorithm proceeds to the second step, the actual
scheduling. A node is taken from the priority queue and selected for scheduling until the
queue is depleted. Since the queue is constructed in a way where successors always have
a higher priority, it is unnecessary to check whether its dependencies have been scheduled
already. The first step to scheduling the node is to retrieve where and when its dependencies
have been scheduled. Then the algorithm will try to schedule the node on each core and
select the core on which the instruction finished earliest. When trying to schedule a node
on a specific core, first it is checked whether the dependencies were scheduled on the same
core. If this is not the case, a send, and receive will be scheduled first to get the data to
the correct core. The send and receive will be scheduled at the first empty slot after the
dependency is scheduled. What constitutes an empty slot can differ and in the Results
(Chapter 9) multiple options are evaluated, for example defining a slot to be empty when

26



there is no communication already going over that specific link, or when no communication
at all was happening for the cores in this cycle. After the communication is scheduled and
the data is brought to the selected core, the instruction can be scheduled on this core.
This happens similarly to the send, and receive instructions where the first possible slot is
selected. Again there are multiple ways to define an empty slot, for example when there is
no computation instruction, or when neither computation nor communication is happening
in that CPU cycle. After this process has happened for each core, the core for which the
instruction finished earliest is selected. The instruction (and optional send and receives)
will be permanently added to the schedule and the next node is selected from the priority
queue. After the queue is empty and all instructions have been scheduled, each core is left
with a schedule of which instructions it will run at which moment. Holes in this schedule
have to be filled with NOP instructions, and the schedule for each node has to be padded
with NOPs so that each schedule has the same length. If the program is meant to repeat (in
case the original hardware description contains registers and is meant to calculate results
over multiple cycles), a jump instruction has to be inserted on each core to let the program
start over when reaching the end. An example of a produced schedule can be found in
Figure 7. In order to arrive at this schedule, the upward rank is determined, which is 10
for the leftmost column of nodes in Figure 6, 8 for the second until 2 for the last column
containing the output instruction. This results in the leftmost column being scheduled
first and the rightmost column last. Each instruction is scheduled on a core/cycle where
it finishes first.

Core0 Corel
1: Input i4 r3 1: Input ilrl
2: LUI r5 3 2: LUI r1l2 3
3: Input i3 r2 3: LUI rl0 2
4. LUI r7 4 4: Input i2r4
5: MUL r6 12 r5 5: MUL rllrlrl0
6: MUL r8 r3r7 6: MUL r13rdrl2
7: ADD r9 r6 r8 7: ADD r14r1l1 rl3
8: NOP Sendrld | o, Nop
9: NOP — |9 .NoP
10: ADD r15r14 r9 10: NOP
11: OUTPUT r15 o 11: NOP

FIGURE 7: Schedule for 2 nodes generated from Figure 6. In this case, the send
instruction happens in parallel to RISC-V instructions and is not the responsibility
of the cores themselves but the network

8.3 Simulator

To test the correctness of the provided mappings and schedules, a simulator has been de-
veloped that accepts inputs provided by the scheduler. The simulator simulates RISC-V
cores on an instruction level with the assumption that each instruction takes a single cycle
(The scheduler makes the same assumptions). Each core has an amount of registers and
memory that is configurable. As the scheduler does not optimize register usage it is often
necessary to have unrealistically large register banks. The zero register always reads zero,
and can thus be used to discard outputs and read zeros where necessary. Furthermore,
the basic RISC-V instruction set is implemented with an extension for multiplication and

27



division. The simulator starts by initializing the network, this means instantiating all
cores and the links between them. The links will be filled up with zeros as initial data,
corresponding to the delay on these links. As explained in Chapter 5 the link delay cor-
responds with the amount of packets on the network and as the total amount of packets
in the network does not change we need to initialize the network with a predetermined
amount of packets on specific links. Next, each core will be assigned a program provided
by the scheduler, and the program counter is set to zero. After this, the simulator goes
into a loop where in each generation it lets each CPU step forward. This means that in the
simulator the frequencies of the cores are all synchronized and can not diverge. However,
as communication still happens exclusively via the elastic buffers that does not influence
testing correctness. Within each CPU step first, the incoming links are processed, mean-
ing data is read from each link and stored in the indicated registers (zero if no register is
provided). Then the instruction is executed, possibly updating the program counter and
register values. Lastly, the outgoing links are populated with values from registers specified
by the provided schedule. The keen observer might note that this order allows a core to
receive a value, use that value, and send the result over a link, all within the same cycle.
This is done purposely to keep the simulator flexible for possible future implementations.
However, it was decided that this might be unrealistic to do in a single cycle, therefore it is
the responsibility of the scheduler to generate schedules that do not abuse this possibility.
The simulator provides two interesting instructions outside the RISC-V instruction set,
the input and output instructions. These instructions are meant for the program to be
able to communicate with the outside world, for example, to read in a matrix to multiply,
or to provide the result so correctness can be verified. The simulator is provided not only
with a schedule and a network layout but also with a file containing inputs for the running
program. When an input instruction is encountered, the input file will be opened and the
next input value will be read which has the tag corresponding to the input instruction.
For example, there might be an Input il r2 instruction, which opens the input file, reads
the next input with the tag il, and stores the value in register r2. The output instruction
works similarly, except that it will pipe the tag together with the value to stdout of the
simulator program.

8.4 Benchmarks

Exact Verilog implementations for some of the matrix multiplications, Conway’s Game of
Life, and prime number generations can be found in Appendix A. For matrix multiplication
and Conway’s Game of Life, the sizes of the inputs differ but the general implementation
remains the same. The generation of random graphs however requires a little bit more
explanation. The graphs are generated as uniformly as possible. When generating a graph
of N nodes and E edges, a matrix of size N*N is created and filled with zeros. In this
matrix, one represents an edge from the node on the left to the node on the bottom. Thus
in a 2x2 matrix, a one in the left bottom represents an edge from the second node to
the first. For a graph with E edges, a random place containing a zero in the bottom left
triangle of the matrix is selected and replaced with a one. This is done E times, creating
a graph with E edges. Since each node represents an instruction and instructions within
the RISC-V instruction set have at most two dependencies, another constraint needs to
be applied. Whenever a column already has two ones, and thus the bottom node already
has two incoming dependencies, no ones can be added to this column. The result is a
DAG of N nodes and E edges, in which each node has at most 2 dependencies. The nodes
are then replaced with instructions, where each node without dependencies is turned into
an INPUT instruction, nodes with a single dependency are turned into an ADDI (Add

28



Immediate) instruction, and nodes with two inputs are turned into an ADD instruction.
For the execution time or generated schedule, it does not matter much which instructions
are chosen (as long as the number of dependencies matches) but it is required that each
node has an instruction and these instructions have been arbitrarily selected. Furthermore,
all of these benchmarks operate on data. This data is provided into the bittide network
using the INPUT instructions described above in Chapter 8.3. These INPUT instructions
are capable of loading a single scalar value into a register, and thus operating on a 32x32
matrix requires 32*32=1024 INPUT instructions to load all of the data into the CPUs.
Similarly, the results of the benchmarks will be provided using OUTPUT instructions,
which again can read a single register and produce a single scalar value.

29



9 Result & Evaluation

In this chapter findings are represented, elaborated, and evaluated. The implementation
will be subjected to multiple problems, among which are matrix multiplication, Conway’s
Game of Life, Generating primes, and random graphs. Then the parallelism achieved will
be measured when running these programs on a 12-node RISC-V bittide network. Later,
a few problems will be measured when scheduled on a 1- to 50-node network, and Lastly,
a comparison will be made against the RAW machine shown in Chapter 4.1.1.

9.1 Higher level Implementation

First, the results are presented when running each problem on a 12-core RISC-V bittide
network. Each problem is scheduled 500 times because the HEFT scheduling algorithm is
non-deterministic and thus produces different results each time. The number of cycles that
the produced program gives is measured and in the table, the minimum, maximum, and
average number of cycles is shown. As the number of nodes in a problem represents the
number of instructions in the dependency graph, the minimum cycle length on a single core
machine would be the number of nodes in the network, as there is no extra communication
delay. This is also directly the maximum number of cycles as each cycle can always be filled
with an instruction. Based on the number of nodes a speed-up factor can be calculated.
This is the amount of speed-up achieved in comparison to a single-core machine. The Min
Factor, Max Factor, and Avg Factor represent the speed-up in comparison to a single-core
machine for the minimum schedule length, maximum schedule length, and average schedule
length over the 500 generated schedules.

To get realistic results, a realistic implementation of the bittide network must be as-
sumed. For the benchmarks, a fully connected bittide network is assumed. However, it
might be unrealistic that a single node can at the same time receive data over all its con-
nections and send data back over the connections. This requires the register bank of the
processor to have many ports, in the case of a 12-node network, each register bank requires
25 ports. Thus results are presented for three different node designs. A node that has
unlimited ports on its register bank, and therefore unlimited communication parallel to
computational instructions running on the RISC-V core. A node is represented with a
single register bank, thus the node has to either communicate over a single link or make
a computation. Lastly, a hybrid node is represented with a few ports on its register bank,
allowing limited communication in parallel to computational instructions.

9.1.1 Benchmarks

To have any meaningful evaluation of the implementation an array of different benchmarks
has been created. To be able to compare results with existing literature, problems have
been picked that existing implementations have been evaluated for as well. In [13] their
implementation is tested against 32x64 * 64x8 matrix multiplication and a 32x32 board
of Conway’s Game of Life. Thus these are included in this thesis as well. More about the
implementations of these benchmarks can be found in 8.4. The comparison between the
RAW machine and this thesis is made in and below Table 7 and 8.

30



9.1.2 Unlimited communication

TABLE 2: Unlimited communications on a 12-node network

Instance Nodes Edges Min Cycles Max Cycles Avg Cycles Min Factor Max Factor Avg Factor
mat4x4 160.0 240.0 16.0 18.0 17.08 8.889 10.0 9.368
mat5x5 300.0 475.0 26.0 27.0 26.62 11.111 11.538 11.27
mat16x16 8704.0 16128.0 726.0 726.0 726.0 11.989 11.989 11.989
conway3x3 333.0 549.0 33.0 37.0 35.046 9.0 10.091 9.502
conway4x4 592.0 976.0 52.0 54.0 53.532 10.963 11.385 11.059
conway5x5 925.0 1525.0 79.0 80.0 79.698 11.562 11.709 11.606
conway16x16 9472.0 15616.0 791.0 791.0 791.0 11.975 11.975 11.975
random 72.0 99.0 15.0 32.0 21.822 2.25 4.8 3.299
random 160.0 240.0 20.0 38.0 27.32 4.211 8.0 5.857
random 300.0 475.0 26.0 44.0 34.112 6.818 11.538 8.795
random 8704.0 16128.0 726.0 726.0 726.0 11.989 11.989 11.989
primes 43.0 60.0 17.0 17.0 17.0 2.529 2.529 2.529

In Table 2 the results are presented for the amount of parallelization found on a 12-core
network. As can be seen, the amount of parallelism found seems to correlate a lot with
the problem size. This is logical because firstly, matrix multiplication and Conway’s Game
of Life are arbitrarily parallelizable when the size of the problem grows, and in general,
the chance to have two instructions that can be executed in parallel likely grows when the
number of instructions grows. It is interesting to note that in a few cases, the theoretical
maximum performance is achieved. As there are 12 cores, the program can be sped up at
most 12 times. In the case of 16x16 matrix multiplication, the generated schedules consist
of 726 cycles. The theoretical maximum is 8704 / 12 = 725.33, which rounded up is exactly
726 cycles. This also holds for 16x16 Conway’s Game of Life and the largest instance of the
random graphs. Note that in cases where the theoretical limit can not be achieved, there
can be a significant difference between the best and worst-case scenarios. This suggests
that performance gain might be possible using better scheduling algorithms as HEFT is
often not able to exploit all available parallelism.

9.1.3 Limit to either communicate or calculate

TABLE 3: Communication and computation managed by the RISC-V Core on a
12-node network

Instance Nodes Edges Min Cycles Max Cycles Avg Cycles Min Factor Max Factor Avg Factor
mat3x3 72.0 99.0 23.0 55.0 36.33 1.309 3.13 1.982
matdx4 160.0 240.0 43.0 113.0 70.326 1.416 3.721 2.275
mat5x5 300.0 475.0 85.0 201.0 130.776 1.493 3.529 2.294
mat16x16 8704.0 16128.0 2624.0 7000.0 4399.416 1.243 3.317 1.978
conway3x3 333.0 549.0 204.0 351.0 313.102 0.949 1.632 1.064
conway4x4 592.0 976.0 402.0 628.0 547.868 0.943 1.473 1.081
conway5x5 925.0 1525.0 556.0 909.0 776.312 1.018 1.664 1.192
conway16x16 9472.0 15616.0 4972.0 6642.0 5896.344 1.426 1.905 1.606
random 72.0 99.0 40.0 79.0 67.914 0.911 1.8 1.06
random 160.0 240.0 114.0 177.0 160.416 0.904 1.404 0.997
random 300.0 475.0 263.0 334.0 309.422 0.898 1.141 0.97
random 8704.0 16128.0 8794.0 9196.0 8907.3 0.946 0.99 0.977
primes 43.0 60.0 35.0 35.0 35.0 1.229 1.229 1.229

In table 3 the results are displayed for the situation in which the RISC-V core can perform
either a communication or computation instruction. The maximum average speed up
observed is 2.293 times faster with the 5 by 5 matrix multiplication. In the case of the
5x5 matrix multiplication, the smallest generated schedule is 85 instructions long and the
largest 201. This is a significant difference and would mean a speed-up of between 1.49
and 3.52 times. Overall each schedule is far away from the theoretical limit of a 12 times
speed up.

31



9.1.4 Limited to 2 receive, 2 send, and one instruction in parallel per cycle

TABLE 4: Communication is limited to 2 receives, 2 sends, and one instruction on
a 12-node network

Instance Nodes Edges Min Cycles Max Cycles Avg Cycles Min Factor Max Factor Avg Factor
mat3x3 72.0 99.0 13.0 15.0 13.096 4.8 5.538 5.498
mat4x4 160.0 240.0 17.0 19.0 18.076 8.421 9.412 8.852
mat5x5 300.0 475.0 27.0 29.0 27.664 10.345 11.111 10.844
mat16x16 8704.0 16128.0 727.0 727.0 727.0 11.972 11.972 11.972
conway3x3 333.0 549.0 33.0 39.0 35.32 8.538 10.091 9.428
conway4x4 592.0 976.0 52.0 55.0 53.516 10.764 11.385 11.062
conway5x5 925.0 1525.0 79.0 81.0 79.664 11.42 11.709 11.611
conwayl6x16 9472.0 15616.0 791.0 791.0 791.0 11.975 11.975 11.975
random 72.0 99.0 16.0 32.0 21.784 2.25 4.5 3.305
random 160.0 240.0 21.0 43.0 28.648 3.721 7.619 5.585
random 300.0 475.0 28.0 48.0 35.804 6.25 10.714 8.379
random 8704.0 16128.0 727.0 730.0 727.014 11.923 11.972 11.972
primes 43.0 60.0 17.0 17.0 17.0 2.529 2.529 2.529

In the previous section the results were shown for a network with unlimited communication,
however, due to physical limitations with the register banks and other components this
does not seem likely to be possible in reality. Thus in Table 4, the results are shown if
the communication can still happen in parallel but is more limited. In this case, a bittide
node is limited to two sending over two and receiving over two links in a single cycle. This
requires a more realistic number of extra ports on the register banks. The performance for
most of the problems has decreased somewhat which is to be expected. The performance
is still much better than in table 3 and when increasing the problem sizes the theoretical
limit can still be achieved.

9.1.5 Scaling bittide network
The next results show how well the approach scales with the bittide network.

TABLE 5: The achieved parallelism when scheduling 5x5 matrix multiplication over
different network sizes

Num Cores | Min Cycles | Max Cycles | Avg Cycles | Avg Factor | Effiency
1 301.0 301.0 301.0 0.997 0.997
5 61.0 61.0 61.0 4.918 0.984
10 32.0 32.0 32.0 9.375 0.938
15 23.0 25.0 23.78 12.616 0.841
20 19.0 22.0 20.64 14.535 0.727
30 17.0 21.0 17.76 16.892 0.563
40 17.0 20.0 17.08 17.564 0.439
50 17.0 20.0 17.18 17.462 0.349

In Table 5 the results are presented for mapping the 5x5 matrix multiplication problem
on networks with 1 to 50 cores. An extra column is included displaying the efficiency of
the achieved parallelism. This is the average factor divided by the number of cores. As
can be seen in the table, at a relatively low core count, there is enough parallelism in the
problem for the amount of cores and the parallelism efficiency is very high. However, as
the core count increases the efficiency decreases and it seems that around 40 cores, adding
extra cores does not increase the amount of parallelism achieved, stagnating at around a
17 times speed-up in comparison to a single core network.

32



TABLE 6: The achieved parallelism when scheduling 16x16 matrix multiplication

over different network sizes

Num Cores | Min Cycles | Max Cycles | Avg Cycles | Avg Factor | Effiency
1 8705.0 8705.0 8705.0 1.0 1.0

5 1742.0 1742.0 1742.0 4.997 0.999
10 872.0 872.0 872.0 9.982 0.998
15 582.0 582.0 582.0 14.955 0.997
20 437.0 437.0 437.0 19.918 0.996
30 292.0 292.0 292.0 29.808 0.994
40 219.0 219.0 219.0 39.744 0.994
50 176.0 180.0 176.1 49.426 0.989
75 118.0 126.0 119.62 72.764 0.97
100 91.0 100.0 94.68 91.931 0.919
150 64.0 69.0 66.16 131.56 0.877
200 52.0 55.0 53.5 162.692 0.813
250 52.0 55.0 53.34 163.18 0.653
300 52.0 54.0 53.08 163.979 0.547

TABLE 7: The achieved parallelism when scheduling 32x64 by 64x8 matrix multi-

plication over different network sizes

Num Cores | Min Cycles | Max Cycles | Avg Cycles | Avg Factor | Effiency
1 35329.0 35329.0 35329.0 1.0 1.0

2 17665.0 17667.0 17665.6 2.0 1.0

4 8833.0 8833.0 8833.0 4.0 1.0

8 4417.0 4417.0 4417.0 7.998 1.0

16 2209.0 2209.0 2209.0 15.993 1.0

32 1105.0 1105.0 1105.0 31.971 0.999

TABLE 8: The achieved parallelism when scheduling 32x32 Conway’s Game of Life

over different network sizes

Num Cores | Min Cycles | Max Cycles | Avg Cycles | Avg Factor | Effiency
1 37889.0 37889.0 37889.0 1.0 1.0

2 18945.0 18945.0 18945.0 2.0 1.0

4 9473.0 9473.0 9473.0 4.0 1.0

8 4737.0 4737.0 4737.0 7.998 1.0

16 2369.0 2369.0 2369.0 15.993 1.0

32 1185.0 1185.0 1185.0 31.973 0.999

In [13] the problems from Tables 7 and 8 above are also benchmarked. Directly two
things become clear. Firstly, for both problems on a single core machine, their implementa-
tion takes 2M+- cycles, while the mapping proposed in this thesis can solve both problems
in less than 40k instructions. This seems very extreme but can be largely attributed to the
following factors. An assumption was made that the RISC-V bittide network would take
1 cycle per instruction always, which is slightly unrealistic and the floating point math in
their implementation likely takes up more cycles per instruction. Furthermore, their im-

33



plementation has to deal with loops, which require extra instructions. Lastly the RISC-V
implementation assumes a very large register bank, while the RAW machine might need to
use loads and stores in between. Due to these factors, it is impossible to say whether the
presented mapping performs better or worse than their compiler. The second observation
has to do with the amount of parallelization found in both platforms. While the efficiency
of the RAW machine seems to degrade quickly with matrix multiplication and Conway’s
Game of Life, it seems that the proposed scheduling for the bittide network can find a lot
more parallelism. At 32 cores, the efficiency is still nearly perfect for both problems. This
can likely be attributed to the way data is stored in both systems. In the RAW machine,
data is pinned to a certain machine, and then the scheduler has to insert extra instructions
to move that around, to feed all the instructions needing that data. The RISC-V imple-
mentation however keeps this data in their registers with their instructions, thus scheduling
instructions already tries to minimize the data transfers and therefore solves this problem
more efficiently. This however can only be done because in this implementation all of the
data is statically allocated, while the RAW machine can deal with the dynamic allocations
possible in C++.

34



10 Conclusion

In search of new parallel ways to increase parallelization, this thesis looked into the possi-
bility of using hardware descriptions to exploit the parallelism provided by bittide synchro-
nization [12]. To do this an implementation was made that compiles hardware descriptions
into RISC-V instructions and schedules them onto different nodes of the bittide network.
The resulting schedules were evaluated based on the parallelism they exploited and how
well this scaled with the size of the bittide network. The research question of this thesis
was Can the bittide network be programmed using hardware description languages (HDL)
i a way that exploits the available parallelism? The research question is answered as a
result of the subquestions.

Does a mapping between HDLs and the bittide network exist?

The implementations presented in this thesis can transform the hardware descriptions
into programs that run on the bittide network producing equivalent results. This is demon-
strated by the mapping implemented in this thesis. The implementation uses various
heuristics to overcome the complications in finding this mapping, thus the implementation
takes mere seconds to schedule the largest presented problems on the bittide network. The
precise algorithmic complexity for finding these mappings has not been analyzed.

What are appropriate benchmarks to measure the exploited parallelism?

According to the literature review, many of the benchmarks used to test parallel ar-
chitectures rely on matrix-based algorithms. algorithms like matrix multiplication have
a lot of parallelism that could be exploited by such platforms. In this thesis, sequential
benchmarks and random graphs have also been implemented which demonstrated how the
implementation held up under conditions where there was less parallelism than with matrix
multiplication.

Is the approach able to exploit the available parallelism found in hardware descriptions?

The results found in Chapter 9 confirm that there is parallelism to be found in these
hardware descriptions that remains intact when mapping to the bittide network. All of
the problems presented observed performance increases when mapped over multiple cores.
When comparing the implementation to the RAW machine, much more of the parallelism
seems to be exploited. Even the prime number generation problem observed more than
a 2.5 times increase while only consisting of 43 instructions, while the larger problems
observed much more parallelism.

Does the approach scale well when the size of the bittide network increases?

The results in Chapter 9 show that at some point no more performance is gained when
adding more cores. But until that moment, adding more cores is very effective in increasing
the performance. Table 6 shows that with 16 by 16 matrix multiplication, over a hundred
cores can be used quite efficiently.

Can the bittide network be programmed using hardware description languages (HDL) in
a way that exploits the available parallelism?

To answer the main research question. Using hardware description languages and
mapping these onto a bittide network seems an effective way to use the parallel nature of
the bittide network. A high degree of parallelism was observed in the mapping produced
for fully connected bittide networks using nodes based on RISC-V cores.

35



11 Future work

In this research, a way to compose programs to run on the bittide network was proposed.
This is a first step because both the bittide network and the approach of using HDL to
produce exact timed schedules for instruction-level parallelism are new. There are many
directions that this research can go into. In this chapter, a few possible avenues will be
discussed

11.1 Functional languages

In this research, the focus was on HDL because of its functional nature. However multiple
limitations have been discussed in Chapter 6 like branching and the mapping of instruc-
tions. Furthermore, designing hardware is seen as a complicated task and there might be
too few developers in this area. Thus an interesting avenue to explore would be to look at
different languages that share good properties with HDL and have fewer of the downsides.
The Haskell core language would be particularly interesting as it is also a pure language
but can express constructs like recursivity. HDLs feel very restricted in what they can do
since they can only schedule spatially over the available area while the bittide network pro-
vides the extra temporal dimension and is therefore less restrictive. This means that many
of the constructs of Haskell that map poorly to hardware like recursion might run very
elegantly on the bittide network. All while possibly keeping a high degree of parallelism.

11.2 Bittide

For this thesis, the bittide network operated in a very simple mode. For example, the
assumption was made that for each CPU cycle, the bittide network would also do a transfer
instead of applying gear ratios (See Chapter 5.5). One can imagine the bittide network
operating in a data center to connect servers where internally within the CPUs in a single
server, the bittide network would transfer with high frequency, while the communication
between servers would happen at a significantly lower rate. This has many implications
for scheduling towards this network. For example, a program DAG containing highly
connected clusters, while having little connection between clusters might map very well to
such a system, while other programs might map poorly. These consequences of different
bittide parameters have not been explored in this Thesis.

11.3 Inter-operability

Another interesting avenue to explore could be interoperability on the bittide network.
Modern computers almost always have a layer of operating system between the hardware
and programs being executed, which the current methods in this thesis do not allow. This
can be implemented in many ways. Maybe a subset of bittide nodes can be reserved
for the operating system, and other nodes can communicate with this subset of nodes to
communicate with the operating system. This would be interesting because the operating
system and other programs have to be completely synchronized. There would also be a
lot of complications because the program has to be scheduled over a subset of the bittide
network, in a specific way to conform to the timing that the operating system nodes require.
This would complicate the scheduler immensely. Also, the program has to be rescheduled
every time the availability of nodes changes.

36



11.4 RISC-V

Currently, the project has many limitations that make it less appropriate for real-world
applications. For example, a simple RISC-V implementation was taken that does not im-
plement concepts like pipelining and assumes all instructions take the same length. Modern
processors have many details that an instruction-level scheduler should be aware of. Fur-
thermore, details like register spilling (where there are not enough registers so some of them
should be emptied into memory) are not taken into account. Also, modern-day compilers
perform many optimization tricks while the implementation described in this research does
no form of optimization. The result is that it is difficult for this research to compare itself
with state-of-the-art in performance. Thus a project that tries to optimize this implemen-
tation and get every bit of performance out of it could be interesting to see where this
research stands and if it could be a possible solution to increase processor performance.
The bittide network is a very flexible system and there is not even a requirement for all of
the nodes to be the same. In a case where multiple different servers have to be connected
using bittide, it is possible that the servers do not even share the same instruction set.
Or even more extreme, some of the nodes in the network do not necessarily need to be
processors but could be FPGAs or other accelerators as well.

11.5 Analysis

Due to the deterministic nature of the bittide network, many of the normally uncomputable
problems in the analysis of multiprocessor environments could be reviewed. One of the
reasons the bittide network was designed was to have guarantees over things like buffer
overflows which should not be able to happen on a synchronous platform like the bittide
network. The product of this research can produce exact schedules and can thus make
many guarantees over and provide exact values for throughput and latencies. It would be
interesting to have follow-up research to see how far this analysis can go and whether it
can help make more guarantees about parallel programs.

37



References

1]
2]

3]

4]

[5]

(6]

7]

8]

19]

[10]

[11]

[12]

bittide-hardware. URL: https://github.com/bittide/bittide-hardware.

pthreads(7) - linux manual page. URL: https://man7.org/linux/man-pages/man7/
pthreads.7.html.

I. Ahmad and Yu Kwong Kwok. A new approach to scheduling parallel programs using
task duplication. Proceedings of the International Conference on Parallel Processing,
2,1994. doi:10.1109/ICPP.1994.37.

Hamid Arabnejad and Jorge G. Barbosa. List scheduling algorithm for heterogeneous
systems by an optimistic cost table. IEEE Transactions on Parallel and Distributed
Systems, 25:682-694, 3 2014. doi:10.1109/TPDS.2013.57.

Christiaan Baaij, Matthijs Kooijman, Jan Kuper, Arjan Boeijink, and Marco Gerards.
Cash: Structural descriptions of synchronous hardware using haskell. Proceedings -
18th Euromicro Conference on Digital System Design: Architectures, Methods and
Tools, DSD 2010, pages 714-721, 2010. doi:10.1109/DSD.2010.21.

Debjyoti Bhattacharjee, Rajeswari Devadoss, and Anupam Chattopadhyay. Revamp:
Reram based vliw architecture for in-memory computing. Proceedings of the 2017
Design, Automation and Test in Furope, DATE 2017, pages 782-787, 5 2017. doi:
10.23919/DATE.2017.7927095.

Luiz F. Bittencourt, Rizos Sakellariou, and Edmundo R.M. Madeira. Dag scheduling
using a lookahead variant of the heterogeneous earliest finish time algorithm. Proceed-
ings of the 18th Euromicro Conference on Parallel, Distributed and Network-Based
Processing, PDP 2010, pages 27-34, 2010. doi:10.1109/PDP.2010.56.

Alexander Collins, Dominik Grewe, Vinod Grover, Sean Lee, and Adriana Susnea.
Nova: A functional language for data parallelism. Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), pages 8
13, 6 2014. URL: https://dl.acm.org/doi/10.1145/2627373.2627375, doi:10.
1145/2627373.2627375.

Sebastien Cook and Paulo Garcia.  Arbitrarily parallelizable code: A model
of computation evaluated on a message-passing many-core system. Comput-
ers 2022, Vol. 11, Page 164, 11:164, 11 2022. URL: https://www.mdpi.com/
2073-431X/11/11/164/htmhttps://www.mdpi.com/2073-431X/11/11/164, doi:10.
3390/COMPUTERS11110164.

Joseph A. Fisher, John R. Ellis, John C. Ruttenberg, and Alexandra Nicolau. Parallel
processing: A smart compiler and a dumb machine. Proceedings of the 1984 SIGPLAN
Symposium on Compiler Construction, SIGPLAN 1984, 9:37-47, 6 1984. URL: https:
//dl.acm.org/doi/10.1145/502874.502878, doi:10.1145/502874.502878.

Y. K. Kwok and I. Ahmad. Benchmarking the task graph scheduling algorithms. Pro-
ceedings of the 1st Merged International Parallel Processing Symposium and Sympo-
sium on Parallel and Distributed Processing, IPPS/SPDP 1998, 1998-March:531-537,
1998. doi:10.1109/IPPS.1998.669967.

Sanjay Lall, Calin Cascaval, Martin Izzard, and Tammo Spalink. Modeling and control
of bittide synchronization, 2021. URL: https://research.google/pubs/pub50734/.

38


https://github.com/bittide/bittide-hardware
https://man7.org/linux/man-pages/man7/pthreads.7.html
https://man7.org/linux/man-pages/man7/pthreads.7.html
https://doi.org/10.1109/ICPP.1994.37
https://doi.org/10.1109/TPDS.2013.57
https://doi.org/10.1109/DSD.2010.21
https://doi.org/10.23919/DATE.2017.7927095
https://doi.org/10.23919/DATE.2017.7927095
https://doi.org/10.1109/PDP.2010.56
https://dl.acm.org/doi/10.1145/2627373.2627375
https://doi.org/10.1145/2627373.2627375
https://doi.org/10.1145/2627373.2627375
https://www.mdpi.com/2073-431X/11/11/164/htm https://www.mdpi.com/2073-431X/11/11/164
https://www.mdpi.com/2073-431X/11/11/164/htm https://www.mdpi.com/2073-431X/11/11/164
https://doi.org/10.3390/COMPUTERS11110164
https://doi.org/10.3390/COMPUTERS11110164
https://dl.acm.org/doi/10.1145/502874.502878
https://dl.acm.org/doi/10.1145/502874.502878
https://doi.org/10.1145/502874.502878
https://doi.org/10.1109/IPPS.1998.669967
https://research.google/pubs/pub50734/

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

Walter Lee, Rajeev Barua, Matthew Frank, Devabhaktuni Srikrishna, Jonathan Babb,
Vivek Sarkar, and Saman Amarasinghe. Space-time scheduling of instruction-level
parallelism on a raw machine. ACM SIGOPS Operating Systems Review, 32:46-57,
10 1998. URL: https://dl.acm.org/doi/10.1145/384265.291018, doi:10.1145/
384265.291018.

Jack L Lo, Susan J Eggers, Joel S Emer, Henry M Levy, Rebecca L Stamm,
Dean M Tullsen, J L Lo, S J Eggers, H M Levy, ; J S Emer, R L Stamm, and
; D M Tullsen. Converting thread-level parallelism to instruction-level parallelism
via simultaneous multithreading. ACM Transactions on Computer Systems (TOCS),
15:322-354, 8 1997. URL: https://dl.acm.org/doi/10.1145/263326.263382, doi:
10.1145/263326.263382.

Vijay S. Pai, Parthasarathy Ranganathan, and Sarita V. Adve. Impact of instruction-
level parallelism on multiprocessor performance and simulation methodology. IEEE
High-Performance Computer Architecture Symposium Proceedings, pages 72-83, 1997.
doi:10.1109/HPCA.1997.569611.

Karthikeyan Sankaralingam, Ramadass Nagarajan, Haiming Liu, Changkyu Kim,
Jaehyuk Huh, Doug Burger, Stephen W. Keckler, and Charles R. Moore. Ex-
ploiting ilp, tlp, and dlp with the polymorphous trips architecture. Conference
Proceedings - Annual International Symposium on Computer Architecture, ISCA,
pages 422-433, 2003. URL: https://dl.acm.org/doi/10.1145/859618.859667,
doi:10.1145/859618.859667.

Khushboo Singh, Mahfooz Alam, Sushil Kumar, and Sharma M Tech. A survey of
static scheduling algorithm for distributed computing system. International Journal
of Computer Applications, 129:975-8887, 2015.

Haluk Topcuoglu, Salim Hariri, and Min You Wu. Task scheduling algorithms for
heterogeneous processors. Proceedings of the Heterogeneous Computing Workshop,
HCW, pages 3-14, 1999. doi:10.1109/HCW.1999.765092.

David W Wall. Limits of instruction-level parallelism. URL: https://dl.acm.org/
doi/pdf/10.1145/106972.106991, doi:10.1145/106972.106991.

C. Wolf, J. Glaser, and J. Kepler. Yosys-a free verilog synthesis suite. 2013. URL:
https://yosyshq.net/yosys/.

39


https://dl.acm.org/doi/10.1145/384265.291018
https://doi.org/10.1145/384265.291018
https://doi.org/10.1145/384265.291018
https://dl.acm.org/doi/10.1145/263326.263382
https://doi.org/10.1145/263326.263382
https://doi.org/10.1145/263326.263382
https://doi.org/10.1109/HPCA.1997.569611
https://dl.acm.org/doi/10.1145/859618.859667
https://doi.org/10.1145/859618.859667
https://doi.org/10.1109/HCW.1999.765092
https://dl.acm.org/doi/pdf/10.1145/106972.106991
https://dl.acm.org/doi/pdf/10.1145/106972.106991
https://doi.org/10.1145/106972.106991
https://yosyshq.net/yosys/

A  Benchmarks

A.1 Conway’s Game of Life

module GameOfLife_3x3(input wire current_state_0_0,
input wire current_state_0_1,
input wire current_state_0_2,
input wire current_state_1_0,
input wire current_state_1_1,
input wire current_state_1_2,
input wire current_state_2_0,
input wire current_state_2_1,
input wire current_state_2_2,
output reg next_state_0_0,
output reg next_state_0_1,
output reg next_state_0_2,
output reg next_state_1_0,
output reg next_state_1_1,
output reg next_state_1_2,
output reg next_state_2_0,
output reg next_state_2_1,
output reg next_state_2_2);
assign next_state_0_0 = (current_state_0_0 && (current_state_2_2 + current_state_2_0
+ current_state_2_1 + current_state_0_2 + current_state_O_1 + current_state_1_2 +

current_state_1_0 + current_state_1_1 == || current_state_2_2 + current_state_2_0 +
current_state_2_1 + current_state_0_2 + current_state_0_1 + current_state_1_2 +
current_state_1_0 + current_state_1_1 == 3)) || (!current_state_0_0 &&
current_state_2_2 + current_state_2_0 + current_state_2_1 + current_state_0_2 +
current_state_0_1 + current_state_1_2 + current_state_1_0 + current_state_1_1 == 3);

assign next_state_0_1 = (current_state_0_1 && (current_state_2_0 + current_state_2_1
+ current_state_2_2 + current_state_0_0 + current_state_0_2 + current_state_1_0 +

current_state_1_1 + current_state_1_2 == || current_state_2_0 + current_state_2_1 +
current_state_2_2 + current_state_0_0 + current_state_0_2 + current_state_1_0 +
current_state_1_1 + current_state_1_2 == 3)) || (!current_state_0_1 &&
current_state_2_0 + current_state_2_1 + current_state_2_2 + current_state_0_0 +
current_state_0_2 + current_state_1_0 + current_state_1_1 + current_state_1_2 == 3);

assign next_state_0_2 = (current_state_0_2 && (current_state_2_1 + current_state_2_2
+ current_state_2_0 + current_state_0O_1 + current_state_0_0 + current_state_1_1 +

current_state_1_2 + current_state_1_0 == || current_state_2_1 + current_state_2_2 +
current_state_2_0 + current_state_0_1 + current_state_0_0 + current_state_1_1 +
current_state_1_2 + current_state_1_0 == 3)) || (!'current_state_0_2 &&
current_state_2_1 + current_state_2_2 + current_state_2_0 + current_state_0_1 +
current_state_0_0 + current_state_1_1 + current_state_1_2 + current_state_1_0 == 3);

assign next_state_1_0 = (current_state_1_0 && (current_state_0_2 + current_state_0_0
+ current_state_O_1 + current_state_1_2 + current_state_1_1 + current_state_2_2 +
current_state_2_0 + current_state_2_1 == || current_state_0_2 + current_state_0_0 +
current_state_0_1 + current_state_1_2 + current_state_1_1 + current_state_2_2 +

40



current_state_2_0 + current_state_2_1 == 3)) || (!current_state_1_0 &&
current_state_0_2 + current_state_0_0 + current_state_0_1 + current_state_1_2 +
current_state_1_1 + current_state_2_2 + current_state_2_0 + current_state_2_1 == 3);

assign next_state_1_1 = (current_state_1_1 && (current_state_0_0 + current_state_0_1
+ current_state_0_2 + current_state_1_0 + current_state_1_2 + current_state_2_0 +

current_state_2_1 + current_state_2_2 == || current_state_0_0 + current_state_0_1 +
current_state_0_2 + current_state_1_0 + current_state_1_2 + current_state_2_0 +
current_state_2_1 + current_state_2_2 == 3)) || (!current_state_1_1 &&
current_state_0_0 + current_state_O_1 + current_state_0_2 + current_state_1_0 +
current_state_1_2 + current_state_2_0 + current_state_2_1 + current_state_2_2 == 3);

assign next_state_1_2 = (current_state_1_2 && (current_state_0_1 + current_state_0_2
+ current_state_0_0 + current_state_1_1 + current_state_1_0 + current_state_2_1 +

current_state_2_2 + current_state_2_0 == || current_state_0_1 + current_state_0_2 +
current_state_0_0 + current_state_1_1 + current_state_1_0 + current_state_2_1 +
current_state_2_2 + current_state_2_0 == 3)) || (!current_state_1_2 &&
current_state_0_1 + current_state_0_2 + current_state_0_0 + current_state_1_1 +
current_state_1_0 + current_state_2_1 + current_state_2_2 + current_state_2_0 == 3);

assign next_state_2_0 = (current_state_2_0 && (current_state_1_2 + current_state_1_0
+ current_state_1_1 + current_state_2_2 + current_state_2_1 + current_state_0_2 +

current_state_0_0 + current_state_0_1 == || current_state_1_2 + current_state_1_0 +
current_state_1_1 + current_state_2_2 + current_state_2_1 + current_state_0_2 +
current_state_0_0 + current_state_0_1 == 3)) || (!current_state_2_0 &&
current_state_1_2 + current_state_1_0 + current_state_1_1 + current_state_2_2 +
current_state_2_1 + current_state_0_2 + current_state_0_0 + current_state_0_1 == 3);

assign next_state_2_1 = (current_state_2_1 && (current_state_1_0 + current_state_1_1
+ current_state_1_2 + current_state_2_0 + current_state_2_2 + current_state_0_0 +

current_state_0_1 + current_state_0_2 == || current_state_1_0 + current_state_1_1 +
current_state_1_2 + current_state_2_0 + current_state_2_2 + current_state_0_0 +
current_state_0O_1 + current_state_0_2 == 3)) || (!current_state_2_1 &&
current_state_1_0 + current_state_1_1 + current_state_1_2 + current_state_2_0 +
current_state_2_2 + current_state_0_0 + current_state_0_1 + current_state_0_2 == 3);

assign next_state_2_2 = (current_state_2_2 && (current_state_1_1 + current_state_1_2
+ current_state_1_0 + current_state_2_1 + current_state_2_0 + current_state_0_1 +
current_state_0_2 + current_state_0_0 == || current_state_1_1 + current_state_1_2 +
current_state_1_0 + current_state_2_1 + current_state_2_0 + current_state_0_1 +
current_state_0_2 + current_state_0_0 == 3)) || (!current_state_2_2 &&
current_state_1_1 + current_state_1_2 + current_state_1_0 + current_state_2_1 +
current_state_2_0 + current_state_0_1 + current_state_0_2 + current_state_0_0 == 3);

endmodule

A.2 Matrix Multiplication

module matrix_mult (

41



input
input
input
input
input
input
input
input
input
input
input
input
input
input
input
input
input
input
output
output
output
output
output
output
output
output
output

assign
assign
assign
assign
assign
assign
assign
assign
assign

endmodule

signed
signed
signed
signed
signed
signed
signed
signed
signed
signed
signed
signed
signed
signed
signed
signed
signed
signed
signed
signed
signed
signed
signed
signed
signed
signed
signed

[31:
[31:
[31:
[31:
[31:
[31:
[31:
[31:
[31:
[31:
[31:
[31:
[31:
[31:
[31:
[31:
[31:
[31:

[31:
[31:
[31:
[31:
[31:
[31:
[31:
[31:
[31:

result_0_0
result_0O_1
result_0_2
result_1_0
result_1_1
result_1_2
result_2_0
result_2_1
result_2_2

0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]

mil_0_0,

mi_0O_1,

ml_0_2,

mi_1_0,

mi_1_1,

mi_1_2,

ml_2_0,

ml_2_1,

ml_2_2,

m2_0_0,

m2_0_1,

m2_0_2,

m2_1_0,

m2_1_1,

m2_1_2,

m2_2_0,

m2_2_1,

m2_2_2,
result_0_0,
result_O_1,
result_0_2,
result_1_0,
result_1_1,
result_1_2,
result_2_0,
result_2_1,
result_2_2
(m1_0_0 * m2_0_0)
(m1_0_0 * m2_0_1)
(m1_0_0 * m2_0_2)
(m1_1_0 * m2_0_0)
(m1_1_0 * m2_0_1)
(m1_1_0 * m2_0_2)
(m1_2_0 * m2_0_0)
(m1_2_0 * m2_0_1)
(m1_2_0 * m2_0_2)

A.3 Prime number generation

)

module prime_number_count (
output reg [31:0] last_prime,

input

reg [31:0] sieve_index

clk

=O;

42

+ + + + + + + + 4+

(m1_0_
(m1_0_
(m1_0_1
(mi1_1_1
(mi_1_1
(m1_1_1
(m1_2_1
(m1_2_1
(m1_2_1

=

¥ K X X X X ¥ * *

m2_1_0)
m2_1_1)
m2_1_2)
m2_1_0)
m2_1_1)
m2_1_2)
m2_1_0)
m2_1_1)
m2_1_2)

+ o+ 4+ + o+ + o+ o+

(m1_0_2
(m1_0_2
(m1_0_2
(m1_1_2
(m1_1_2
(m1_1_2
(m1_2_2
(m1_2_2
(m1_2_2

¥ XK X X X X ¥ * *

m2_2_0);
m2_2_1);
m2_2_2);
m2_2_0);
m2_2_1);
m2_2_2);
m2_2_0);
m2_2_1);
m2_2_2);



reg [31:0] test_prime = 0;
reg current_is_prime;

always @(posedge clk) begin

if (sieve_index < test_prime) begin
current_is_prime <= current_is_prime &&
((test_prime / sieve_index) * sieve_index) != test_prime;
sieve_index <= sieve_index + 1;
end else begin
if (current_is_prime) begin
last_prime <= test_prime;
end
sieve_index <= 2;
test_prime <= test_prime + 1;
current_is_prime = 1;
end
end

endmodule

B Initial Implementation

The initial implementation is based on synthesis for the ECP5. This consists of a compiler
and a scheduler.

B.1 Instruction generation

The compiler is responsible for converting different platforms to RISC-V instruction pro-
grams to be scheduled for execution. The ECP5 compiler compiles ECP5 Json files pro-
duced by Yosys to our internal representation of RISC-V instructions ready for the next
step. This compiler converts each ECP5 cell to a different program. The top-level ports
are treated as their own cells and thus get their own programs. The ECP5 implementation
has cells with inputs and outputs that are connected. Each bit has a unique id and if an
input and output share an id, this means that these components are connected via this
specific bit. A specific output bit could be connected to multiple inputs of different cells.
For each of these connections, a specific send instruction has to be generated to send this
bit to that specific program. To do this the first step is to collect for each unique bit, all the
locations where this bit is used as input so that we can later generate a write instruction
for each of them. After identifying all connections we can compile each different cell. Input
ports are compiled by first generating an Input instruction which is a special instruction
that tells the environment that this node expects input from the outside environment now.
In a simulation, this could mean user input. In a real setting, this could be resolved by
the layer between the bittide network and the outside world. After this input instruction,
send instructions are generated. A send instruction is generated for each cell that requires
this input as mentioned in the previous chapter. Output ports work similarly except that
they first generate a Recv instruction to receive a bit within the network and then generate

43



an Output instruction to output this data to the environment. When not using dedicated
hardware (like multipliers etc.), ECP5 synthesizes the rest into 2 different components,
LUTs and Flip-Flops. For the LUT, Recv instructions are first generated for the relevant
inputs. Then RISCV instructions are generated to find the resulting value based on the
lookup table. and then Send instructions are generated to forward this result to the next
node. An important detail here is that not all instructions have to be executed each time.
Loading the lookup table into a register only has to happen once for example. And there is
a high chance that not all inputs are connected to the lookup table thus these instructions
also only have to happen once at the beginning. Instructions that only have to happen
once at the beginning are identified and added to the setup part of the program instead.
Flip-flops are implemented slightly differently as they act like registers. This means that
their behavior mostly comes down to first sending the previously stored value to the net-
work and then receiving the next value from the network. apart from this detail, the rest is
implemented in a similar way as the other components, including identifying instructions
that only have to happen once and adding them to the setup part instead. Currently, the
compiler does not support dedicated hardware but in a future iteration these components
could be identified and in a similar way instructions for them could be generated. All the
collected programs are stored together in a model, converted to Json, and stored in a file
for the scheduler to take over.

B.2 Scheduler

The scheduler performs three important steps. Map each program to a different node,
create a dependency graph of all instructions, and create a schedule by resolving the tim-
ings in the dependency graph. FEach program has Send and Recv instructions. These
instructions correspond to their counterparts in different programs. When mapping two
programs with a Send Recv pair between them to hardware nodes, it is required that these
hardware nodes have a bittide connection between them to be able to exchange this data.
This problem is a sub-graph problem (identifying a sub-graph of connected programs in
the graph of connected hardware nodes). and this problem is NP-complete. The imple-
mentation for this is a simple brute-force approach. Each instruction reads or writes to
certain registers. A dependency graph can be created by identifying which instructions
are dependent on which other instructions by identifying the registers they are writing
to or reading from and finding other instructions that also use those registers. For ex-
ample, an instruction that reads from r0O should depend on the last instruction that has
been written to r0 because if it was scheduled earlier, this register would have a different
value. Similarly, a write instruction depends on all instructions that are read from it until
the previous write, as when writing too early, the read instructions would again have a
different value. These dependencies have the property that all instructions should have
some lower bound on their delay respectively to their dependencies. They can not be
scheduled before their dependencies, but they can be scheduled arbitrarily later. Because
this is a prototype, in the implementation each instruction is dependent on all instructions
before it in the program, disallowing changing the order in which instructions are exe-
cuted. There are two special case instructions, namely the Recv and the Send instructions.
The Recv instructions are dependent on their corresponding Send instructions, however,
there should be an exact delay between the Send and Recv instructions. Thus the Send
instruction depends on the Recv instruction, however, the Recv instruction also depends
on all instructions that the Send instruction depends on. This ensures that when we try
to schedule the Send/Recv pair, both their dependencies are already scheduled and we
can safely schedule these without having to move them. A directed graph is constructed

44



where each instruction corresponds to a node, and each node has connections to all of its
dependencies. After the dependency graph is constructed, the timings can be resolved.
The timings are resolved using a first-fit approach: First, a node is selected for which all
of its dependencies are already scheduled. Then this node is scheduled at the first possible
time. If this node happens to be a Send instruction, its Recv instruction is immediately
scheduled after. This results in a working schedule that could be very inefficient. An ex-
ample approach to improving upon this is to figure out afterward which instructions could
have been scheduled later. The total throughput of the schedule is dependent on the timing
of the first instruction of a node and the last. the throughput is dependent on the node
for which this difference is the largest. Thus there are two ways of improving this, first
by reducing the time at which the last instruction is scheduled, however, due to our first
fit algorithm, each instruction is already scheduled at the earliest possible time. However,
often instructions can be scheduled later, by trying to schedule instructions later, the total
time between the first instruction and the last of each program could be reduced. This
creates a sort of pipe-lining effect. After each instruction has a time at which it needs to
be executed an exact schedule can be created. The period of the programs is identified by
finding the program with the longest execution time. The other programs are padded with
NOP (no operation) instructions to make sure each program has the same period. Empty
spots in the schedules are also filled with NOP instructions. Afterward, a JAL (Jump and
Link) instruction is added to let all programs jump to their beginning again. This results
in a program for each hardware node (including nodes for which no actual instruction was
scheduled, just NOPs and JALs) all of equal length.

B.3 Results

\‘: ‘ii e r - :

WA

| B | $add

counter

(B) The same counter synthesized to
(A) The graph for a counter ECP5 LUTs

The initial approach that makes use of code synthesized for the ECP5 FPGA was able
to create schedules. However, a simple 3-bit counter would require more than 10 cores to
schedule and would take many cycles per increment. All this could be implemented on
a single core in 3 cycles per increment (an add instruction, output instruction, and jump
instruction). This is because each of the ECP5 nodes would be a separate program that
would be scheduled on its own core. This means that most of the nodes, each of which
is very simple, would have to first fetch their data from other nodes. On top of this,
synthesizing hardware for an ECP5 reduces the implementation to a bit level. So a 3-bit
counter is not simply one add instruction but the behavior is implemented using many 4-bit
LUTs. The one exception is that the ECP5 has dedicated multipliers (and other hardware)
which it will try to target when synthesizing. However, our counter would be implemented
using a LUT, which must first fetch its 3 bits from 3 different cores, then execute the LUT

45



operation in a few cycles (building the index, then checking the bit in that index) then
send its bit along. And a 3-bit counter requires a few LUTs. The result is that trivial
operations for which the RISC-V core has dedicated instructions will be split over many
cores requiring enormous execution and communication overhead. From these results, it
is clear that the ECP5 approach will produce efficient results. Due to the synthesis to
a bit level and the use of instructions operating on many bits at the same time within
the RISC-V processor, this is a bad match and will never reach acceptable performance
levels, however, it shows that there exists a mapping between the bittide network and
hardware. On top of that, the usage of ECP5 synthesized code allows us to run everything
that is able to synthesize to the ECP5 on the network. Thus existing code and anything
produced anywhere between Clash and VHDL /Verilog will also run on the network. This
implementation could still find usage in simulating designs to test for correctness or other
related purposes.

46



	Introduction
	Background
	Parallelism
	FPGA's and Yosys

	Research Question
	Literature Review
	Similar Architectures
	Raw machine
	VLIW architectures

	Compilers
	Languages
	Scheduling
	Heterogeneous earliest finish time
	Critical path on a processor
	Task duplication
	Other algorithms

	Evaluation

	Bittide
	Network
	Multiple nodes
	Fixed delay in communication
	Network initialization
	Gearboxing

	Hardware on bittide
	Mapping
	Pipelining
	Instruction mapping
	Branching

	Design choices
	Hardware description
	RISC-V
	Network layout
	Compiler (Mapping and Scheduling)
	Simulator
	Benchmarks

	Implementation
	Generating the DAG
	Scheduling the DAG
	Simulator
	Benchmarks

	Result & Evaluation
	Higher level Implementation
	Benchmarks
	Unlimited communication
	Limit to either communicate or calculate
	Limited to 2 receive, 2 send, and one instruction in parallel per cycle
	Scaling bittide network


	Conclusion
	Future work
	Functional languages
	Bittide
	Inter-operability
	RISC-V
	Analysis

	Benchmarks
	Conway's Game of Life
	Matrix Multiplication
	Prime number generation

	Initial Implementation
	Instruction generation
	Scheduler
	Results


