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Abstract

Accurate assessment of biological systems like the nociceptive system is essential for studying the
sensory perception of pain. This paper introduces a re�ned approach to pattern generation for a
nociceptive stimulator. Contemporary research has shown that electrical stimulation in the form
of short pulses can activate the Aδ− and C−�bers that are used in studying nociceptive behavior.
By con�guring the pulses and their frequency, and reading the evoked brain response, biomedical
researchers can better model the nociceptive system[1]. However, accurate timing of the stimulation
pulses in a particular pattern is of primary importance.

By setting up a timer interrupt for the pattern generation directly within the stimulator's
�rmware, the system achieves exceptional timing precision. This shift simpli�es the setup, reduces
the need for specialized knowledge such as calibration constants, and makes it more accessible
beyond lab settings. The resulting compact system can be applied to studying nociceptive behavior
and pain perception.

1 Introduction

Individuals su�ering from chronic pain form a large demographic in healthcare consumption, and
so gaining an understanding of how chronic pain is developing in patients - its early diagnosis -
can bring about a greater degree of control in early treatment of these symptoms, increasing the
chances of a successful treatment. The goal, for researchers, is to develop methods to understand
the nociceptive processes - how the human body reacts to stimulation.

The Ambustim is a device that was developed to generate electrical stimulation in the form of
rectangular pulses. By stimulating human subjects with a certain pulse characteristics (like width
and amplitude), the detection threshold of the nociceptive nerve is determined. Studying the
detection threshold on various subjects is one of the approaches taken by biomedical researchers
to expand the understanding of pain perception.

Unfortunately, the current implementation of the system comes with several hurdles that need
to be overcome in order to expand the research[2]. One of the issues is that the duration of these
experiments is impractical, up to 2 hours are required in attaining meaningful results [3]. Another
major issue is that the setup requires a lab setting and is unfeasible for untrained physicians. This
is because of the high complexity and limitations of the current design.

Contributing to the complexity of the system, when researchers wanted to understand the
relationship between issuing stimuli in certain patterns and evoked brain responses, a new feature
was introduced for this purpose. This new feature of modulated stimulation pulses has introduced
additional impracticalities to the system. First, in the form of additional hardware, with additional
wired interconnections to the pattern generating device. Second, new limitations in-terms of what
the system is capable of reliably con�guring to. Third, a separate application for con�guring for
the new hardware. Originally, a single application is used to communicate with the stimulator,
wirelessly, via Bluetooth. Now, a second application interfaces with the pattern generator through
a wired USB connection.

This paper explores alternative design choices for improved functionality integration, for re-
ducing system complexity and increasing accessibility. Section 2 is a comprehensive analysis of
the current system and relevant literature to establish the requirements for an improved design.
Informed by these requirements, Section 3 covers the development of a new design. In Section 4,
the testing process is covered with the outcomes of the new design. Then, Section 5 discusses the
outcomes of the new design compared to its previous implementation, providing recommendations
for further improvements. Finally, Section 6 concludes the paper.

2 Requirements

2.1 General background

Electrical stimulation can be used to activate the nociceptive system in a repeatable way. This
means that reactions can be consistently observed, making it possible to detect patterns using
Electroencephalogram (EEGs). The use of EEGs can o�er a deeper insight into nociceptive behav-
ior[4]. The system works by utilizing electrodes that lightly touch the skin to deliver the stimuli.
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Employing an EEG cap to monitor brain reactions to these stimuli can further enhance under-
standing of the nociceptive process. Responses to these stimuli are also indicated by users through
a button release.

Studying faulty aspects in the nociceptive system of chronic pain patients is complicated by
the nonlinear relation between the stimulus and response. So, in addition to characterizing the
stimulus-response pairs by using a single transient stimulus, biomedical researchers are using an
alternative technique to characterize stimulus-evoked brain activity; by measuring Steady State
Evoked Potentials (SSEPs). SSEPs rely on sustained activation of brain areas by a continuous
sensory stimulus. By modulating the intensity of this stimulus with one or multiple frequencies,
evoked brain activity can be observed in the electroencephalogram (EEG) at these frequencies and
their harmonics. [5]

The Ambustim is a device that performs the task of generating the customized stimulation
pulses. To achieve the continuous sensory stimulus for SSEPs, the system is designed to receive
patterns from a peripheral device in the form of (trigger) pulses. This pattern generating device is
called the trigger box. Upon receiving a trigger a stimulus is given, this way the stimulus pattern
will follow the pattern at which the trigger pulses are being received. The setup is illustrated in
Figure 1.

Figure 1: Interconnections of the current system

Figure 1 shows the current setup used. From here the functionality of the trigger box is
made clearer: the trigger box sends the trigger pattern to the Ambustim, and the �rst trigger in
a trigger pattern is also sent to the EEG device to signal the start of an evoked potential response.

2.2 Ambustim

The Ambustim is run by an ATmega162 microcontroller unit that controls the subsystems of the
device. Most notably is the Digital-to-Analog Converter (DAC) that is utilized for generating high
voltage pulses meant for stimulating the nociceptive nerves. The embedded code includes real-time
programming which allows for precise control over the microcontroller's operations. [6]

2.2.1 Real time programming

Real-time embedded systems programming involves interacting directly with a microcontroller's
hardware registers, providing precise control and e�cient use of the microcontroller's resources.
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Speci�cally, this means directly con�guring the hardware peripherals, such as timers, communica-
tion interfaces, etc.

In contrast, the Arduino framework abstracts away this direct control, which is bene�cial for
a quick implementation of a device's functionality. However, it often limits the optimization that
can be obtained via directly accessing registers.

The ATmega162 is part of the AVR microcontroller family, which provides a mechanism for
interrupting the main loop. This feature allows the interruption of ongoing tasks to handle des-
ignated events through Interrupt Service Routines (ISRs). Features like the interrupt mechanism
are critical for managing time-sensitive operations in real-time programming scenarios.

Hardware timers can be set up to automatically count up or down. When the timer reaches
a certain value, an interrupt �ag is set by the hardware. The CPU, while executing its main
program, regularly checks these �ags. When a �ag has been set, it pauses the main program, saves
the current state, and executes the associated ISR. Once the ISR is completed, the CPU restores
the previous state and resumes execution of the main program.

2.2.2 Main loop

The embedded code has 4 Interrupt Service Routines (ISRs) being used. (1) USART interrupt:
listens for incoming commands via the USART line, which connects to the Bluetooth module. These
commands are stored in a string array. (2&3) Timer3 comparator A and B: these ISRs handle
timing events associated with the di�erent phases of stimulation pulses. (4) Timer1 comparator
B: used in setting the maximum response time, a parameter that functions as a timeout for the
experiment, ensuring that the stimulation sequence is terminated within a speci�ed period if a
response is not recorded via button release.

SIGNAL(TIMER3_COMPA_vect){

// Handles device states STIM_PHASE_4 , STIM_PHASE_5 , STIM_PHASE_6

// Defaults to IDLE state

}

SIGNAL(TIMER3_COMPB_vect){

// Handles device states STIM_PHASE_1 , STIM_PHASE_2 , STIM_PHASE_3

// Defaults to IDLE state

}

SIGNAL(USART1_RXC_vect){

// receives commands from USART line

}

SIGNAL(TIMER1_COMPB_vect){

// Stops timer1

}

The main loop will check for any new commands to parse, and con�gure the parameters of
the stimulation pulses. If a trigger is received and parameters for the pulse train are used to
con�gure the stimulation pulses, the start_pulse function is called, initializing Timer3 and the
�rst phase of the stimulation pulse begins (positive pulse, denoted as STIM_PHASE_1). In context
of the illustration in Figure 2, this is the STIMULATION state. During this time, the main loop
continues to scan for new commands, but the ongoing pulse train is una�ected by these inputs.
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Figure 2: System timers �ow diagram

2.2.3 Timers

The ATmega162 provides several options for pre-scaling, including 8, 64, 256, etc. Prescalers are
mechanisms used to slow down the timer of the microcontroller by dividing the clock speed by the
prescaler factor. For example, a prescaler of 256 divides the clock speed by 256, slowing down the
timer by this factor. The choice of prescaler must ensure that the timer does not over�ow during
the required period; in other words, it must be su�ciently long so that no over�ow occurs. The
current design has Timer3 (a 16-bit timer) set to a prescaler of 256, which, given a time unit of
34.7 microseconds (=1/7.3728 MHz), results in (216 − 1)/7.3728 MHz, or 2.3 seconds, before the
timer over�ows.

As illustrated in Figure 3, Timer 3 alternates between its comparators, i.e., when Comparator
3A interrupt is enabled, Comparator 3B is disabled, and vice versa. Comparator 3A checks whether
the pulse sequence is terminated or has more in its sequence. This alternating mechanism is a useful
way of organizing the comparators for di�erent tasks; in practice, ISRs (Interrupt Service Routines)
should be kept as short as possible, executing only a few operations within their scope.

Using the ATmega162 datasheet[6], the register variables can be accessed and programmed
directly in software, meaning that speci�c bits in the register can be toggled to enable certain
modes of operation. When dealing with timers, two of several key registers include: the Timer
Interrupt Mask Register (TIMSK) and the Output Compare Register (OCR). The Timer Interrupt
Mask Register includes the Output Compare Interrupt Enable (OCIE) bit, which governs the
microcontroller's responsiveness to timer interrupts. On the other hand, the OCR sets the time
interval before triggering the next interrupt.
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Figure 3: Stimulation phases, showing the timer relevant register calls. TCNTn (Timer/Counter
Register) refers to the di�erent timers where n is the timer number

Figure 4: Illustration of the pulse widths and amplitudes depend on the parameters given in the
commands.

2.2.4 Stimulation phasing

The device states are organized using an enumeration, which de�nes the di�erent stimulation
phases and an idle state, as shown below:

typedef enum {

// Stimulation phases

STIM_PHASE_1 , // Positive pulse

STIM_PHASE_2 , // DeadTime

STIM_PHASE_3 , // Negative pulse

STIM_PHASE_4 , // Interpulse interval

STIM_PHASE_5 , // Terminate S command

STIM_PHASE_6 , // Control Q command (DEPRECATED)

// Not stimulating

IDLE

} DeviceState;

To reiterate, once start_pulse is called, the OCR is set to the positive pulse width, and the
interrupt for timer Comparator 3B is enabled. At the �rst interrupt (end of the positive pulse
width), the second phase of the pulse begins, denoted as STIM_PHASE_2. This phase includes a
period of 'dead-time' during which the OCR is incremented by the DEADTIME, allowing the DAC to
settle - to reach steady state before the next phase. This is denoted as STIM_PHASE_2. After this
discharge time, the 3rd phase commences i.e. the negative pulse (STIM_PHASE_3). Both phase 1
and 3 check to see whether the parameters are con�gured to have positive or negative amplitudes
greater than 0, otherwise the DAC remains closed.

Finally, at the end of phase 3 the program checks if the pulse train is complete, if so the
termination phase commences (declared as phase 5 in the program), otherwise the program is
running the inter-pulse interval phase before calling start pulse and transitioning back to phase
1. Note, unless the program is put in the termination phase (phase 5) a new pulse train cannot
commence, i.e. start_pulse can not be called from the main loop and will only be called inside of
phase 4. This cycle is illustrated in Figure 3.
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2.2.5 Stimulation Pulse Parameterization

The commands used to con�gure the Ambustim are communicated using protocols that start with
a letter, and uses the comma as a delimiter. For code readability, the commands are compiled in
an enumeration as follows,

typedef enum {

FEATURE = 'F', // Features query (Properties)

VERSION = 'V', // Version query

POS_AMP = 'A', // Set Positive Pulse Amplitude

NEG_AMP = 'a', // Set Negative Pulse Amplitude

POS_WID = 'W', // Set Positive Pulse Width

NEG_WID = 'w', // Set Negative Pulse Width

INTERPULSE_INTERVAL = 'I', // Set interpulse intervals for stimulus

pattern

CHANNEL_ORDER = 'P', // Set channel order for stimulus pattern

CHANNEL_ENABLER = 'C', // Enable or disable channels

POWER_ENABLER = 'M', // Set Power On/Off

CHECK_RESPONSE = 'R', // check response button(, IOK) and TRIG

STIM_MODE = 'S', // Set stimulation mode (NumTriggers , NumPatterns ,

MaxRespTime)

} Commands;

2.2.6 Parameter Validation

In addition to checking if the required number of parameters for each command is received, the
embedded software does a few checks to make sure the hardware is capable of producing the desired
outcome. One such check is done in the pulse width parameter. Each pulse parameter is ensured
to be atleast 105µs wide,

if (Par[ParNo] < PW_MIN){

Par [1] = PW_MIN;

}

However, there is no validation of an upper bound in the current implementation. So the
maximum will simply be according to the number of bits in the type, in this case 16 bits so 216−1.
For example, sending a value larger that what can be represented by 65,535 will result in the value
being rewritten as the modulo of 65,535.

Additionally, the DAC used in the device for generating variable voltage amplitudes, is 14 bits.
This means that an upper bound must be set to make sure the requested amplitude is within the
DAC's capability,

Par[ParNo] = Par[ParNo] & (0x0fff);

2.3 Trigger Box

The software implementation of the trigger box was initially developed as a temporary solution
to allow the exploration of di�erent trigger patterns on nociceptive behavior. Within the trigger
box is a simple program that runs on an Arduino Uno board, utilizing delay loops to generate the
pattern of triggers sent to the Ambustim. This raises a few challenges that motivated a few of the
design choices in the current embedded code which will be explored in the next subsection.

To reiterate, the triggers are meant to time the occurrence of stimulation pulses. For example,
for a single stimulation pulse, and num_triggers = 3, then each pulse will occur when the next
three triggers received for the trigger box.

In order to study the system, the code was made more modular, and validation checks were
added. These adjustments helped in understanding the underlying mechanisms of how triggers are
handled in the Ambustim's main loop and how the trigger box system interacts with it. A �ow
diagram was constructed to further illustrate these interactions (check Appendix section A.1).

The next step is in analyzing how triggering is processed by the Ambustim. The Ambustim
periodically checks the status of the pin connecting it to the trigger box, if HIGH then a trigger has
been received. However, a trigger can only be acknowledged if the 'S' command (case STIM_MODE)
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has been processed by the Ambustim, otherwise the trigger is ignored. This is to make sure
stimulation pulses have been con�gured.

As illustrated in Figure 1, the system relies on wired communication with the trigger box via
USB, communicating the following commands for the di�erent trigger modes:

2.3.1 Trigger mode 1: Regular Trigger

� Command: X Number Y

1. Number = trigger number to be sent to EEG ampli�er, must be between 0 and 255.

The Regular Trigger is responsible for initiating a stimulation pulse. Upon activation, it sends
a trigger signal to the EEG device, thereby tagging the corresponding response with a numerical
identi�er. The trigger pulses are 2ms wide, a duration that has been determined to be su�cient
for clear detection by the EEG device port, which samples at 1024 Hz.

Figure 5: Illustration of modulated trigger pulses. Multisine is based on several frequency compo-
nents. [5]

2.3.2 Trigger mode 2: Square wave modulated pulse sequence

� Command: A Duration, 0, Duty Cycle, Frequency, 0, 0, Interval calibration, Period calibra-
tion, 0 B

1. Sequence Length = sequence duration [ms].

2. Duty Cycle = duty cycle of square wave modulation in [integer].

3. Frequency = frequency of square wave modulation [Hz].

4. Interval calibration = calibration constant to correct interval between two pulses [us].

5. Period calibration = calibration constant to correct duration of the period [us].

The Square Wave Modulation pattern is meant to send 2ms triggers in sequence with an inter-
pulse interval of 5ms. The duty cycle and frequency of these pulses are communicated, as well as
the duration of the pattern. For example a duty cycle of 50% at 3Hz for some sequence length will
produce pulse chunks as illustrated in Figure 5a. The calibration parameters are covered in the
following subsection.

2.3.3 Trigger mode 3: Multisine wave modulated pulse sequence

� Command: CDuration, Frequency O�set, Amplitude1, Frequency1, Amplitude2, Frequency2,
Amplitude3, Frequency3, Interval Calibration D

1. Duration = sequence duration [ms].

2. Frequency O�set = frequency o�set of multisine [Hz].

9



3. AMP1,3 = frequency amplitude �rst sinusoid[Hz].

4. FREQ1,3 = modulation frequency �rst sinusoid [Hz].

5. Interval Calibration (PHI) = phase shift of second (+PHI/12) and third (-PHI/12)
frequency component.

This mode implements a multisine modulation, which is a combination of three sinusoidal
frequency components, each with its own amplitude. The 'Frequency O�set' parameter is used to
ensure that all resulting modulation frequencies are positive.

The 'PHI' parameter o�ers phase shifting capabilities to the frequency components. Achieving
the maximum bandwidth per frequency component. When the frequency components are in phase
with one another, their amplitudes combine, leading to a narrower e�ective bandwidth for each
component.

Inspection into the underlying real time implementation used for pulse frequency modulation
in the arduino revealed 2 requirements: (1) start with (emitting) a pulse at t=0, (2) then using
the computed instantaneous period values for subsequent pulses.

2.3.4 Timing inaccuracies

The Arduino code running on the trigger box will calculate the occurrence of the pulses in real
time which introduces a number of challenges. For example, the use of software delay loops gives
about 15% error in the interpulse intervals when the calibration constants are set to 0. These
errors were found using the command parameters for a 3 Hz square wave modulating pattern, at
50% duty cycle for 1 second.

Essentially, the pattern for the square wave implementation is meant to be 2ms pulses separated
by a 5ms interpulse interval for the duration of the on_period. This means the frequency of the
pulses is intended to be about 142.86 Hz, however, with an interpulse interval that is less than 5ms
the actual frequency is greater; 200 Hz in this example (check Figure 12):

// Square Wave command with suggested calibration constants

A1000 , 0, 50, 3, 0, 0, 2030, 702B

Consequently, this design choice of correcting for the inaccuracy of the interpulse interval raised
an impracticality in the implementation in the form of calibration constants, where the trigger
intervals were tested to see if they were timed correctly and any inaccuracy would introduce those
calibration constants to subtract from the while loop iterations. This was intended as a work-
around to reduce the error but had to be empirically determined.

// Wait until off period has elapsed.

p_wait = micros ();

while (1){

p_current = micros ();

if( abs(p_current - p_wait) > offPeriod - periodCalibration ) { break; }

}

Time sensitive events can run asynchronously, so that the processor can continue with other
tasks. However, this requires a more sophisticated approach than delay loops, that involve inter-
rupting the main loop to execute time sensitive events.

2.4 Design Requirements

(1) Timing Precision: The system must eliminate software timing loops, especially for tasks sen-
sitive to microsecond-level precision. Calibrated constants used for timing are not ideal for this
system due to their inherent variability.

(2) Compactness: For practical operation, the device's design should be as compact as possible to
increase portability.

(3) Parameter Validation: As new functionalities are added to the system, appropriate validation
checks must be setup. This is to ensure expected behavior under operating conditions.
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(4) Memory E�ciency: Considering the constraints of the system's memory, it's crucial to optimize
memory usage, ensuring that the system operates reliably without exhausting available resources.
The aim is to remove obsolete logic, unused variables, and enhance overall readability.

(5) Code Modularity and Extensibility: The codebase should be modular to ensure ease of main-
tenance and facilitate future development. This involves structuring the software in a way that
allows for scalability and ease of integration for new features.

3 Development

Figure 6: Redesign of the system

Following the design requirements in the previous section, or implications from Figure 6, several
solutions are possible. The simplest of these solutions is to replace the trigger box by integrating a
second microcontroller (smaller and more powerful than the Arduino Uno) inside the Ambustim's
casing. This microcontroller would generate and emit triggers in the same manner as the original
trigger box. While this approach has the bene�t of simplicity and the ability to handle �oating-
point calculations more e�ciently, it still su�ers from timing inaccuracies and requires empirically
determined calibration constants. Due to these drawbacks, a more sophisticated software-driven
solution for trigger generation was chosen.

The approach for precise timing involves direct register programming to manage delays. Un-
like solutions that rely on software delay loops for timing, this approach utilizes the hardware
peripherals of the microcontroller. By directly interacting with the timer hardware within the
microcontroller, delay periods can be determined more accurately. Timer peripherals can com-
municate directly with the CPU through interrupts, enabling precisely timed execution of speci�c
functions.

The process of checking whether a pin is high or low can be executed by using a �ag that is
set for a pulse length of 2ms, and the following interpulse interval. Timing these events can be
handled by one of the available 16-bit timers.

3.1 Method - AVR solution

The intervals of the triggers can be calculated on the Ambustim, and by using a timer in its 'Normal
mode', the Output Compare Register (OCR) can be set at the length of the trigger pulse so that
when the timer matches to OCR the interrupt service routine sets the trigger �ag to false for the
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period of the inter-pulse interval. This would repeat for the number of pulses at the calculated
intervals. To achieve this, the 16 bit Timer 1A was set up,

#define CLK_PRESCALE_256 0x04 // Select prescaler settings timer 3:

f_clk3 =7.3728/256 = 28.8 kHz , so t_clk3 =35 us

#define RELEASE_TIMERS 0X00

#define RESET_TIMER 0X0000

#define PAUSE_TIMERS 0x81 // Timer Synchronization Mode , prescaler Reset

Timers

#define enable_Interrupt_1A 0x10 // Only the interrupt bit is set

#define Timer_256_2ms 58 // calculations shown below

// Configure Timer 1A

TCCR1A = CLK_PRESCALE_256;

OCR1A = Timer_256_2ms;

SFIOR = PAUSE_TIMERS;

TCNT1 = RESET_TIMER;

SFIOR = RELEASE_TIMERS;

TIMSK = enable_Interrupt_1A;

// trigger EEG

The 16-bit timer means that 216 ticks occur before the over�ow �ag is set and the timer resets.
Since the clock of the microcontroller is set to 7.37MHz, choosing a prescalar of 256 means that
every 256 ticks of the clock, correspond to one tick in the counter/timer. Given that the clock of
the system is 7.3728MHz this means that one tick corresponds to,

Fclk3 =7.3728/256 = 28.8kHz

Tclk3 = 34.7us;

Using 16 bit timer, a prescalar at 256 and a clock of 7.3728 MHz, time taken for the timer to
over�ow,

OverflowT ime = (216 ∗ 256)/7.3728 = 2.3seconds

For 2ms pulses, the number of cycles is calculated as,

TimerCycles = 2ms/34.7us = 58

Using the same method for 5ms and 7ms, corresponds to:

// Cycle numbers were tuned during test

#define Timer_256_2ms 58

#define Timer_256_7ms 202

#define Timer_256_5ms 144

The next step was to add a new commands to the list,

typedef enum {

// rest of the commands

TRIGGER_MODE_SQUARE = 'X',

TRIGGER_MODE_SINE = 'Y',

TRIGGER_MODE_REGULAR = 'Z'

} Commands;

Enumerations were used to communicate the state of the trigger, whether the trigger is on or
o�, and when a trigger pattern is complete, i.e. all intervals have been iterated through.

// Define the enum for Trigger states

typedef enum {

TRIG_ON ,
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TRIG_OFF ,

TRIG_END ,

} TriggerState;

Once the pulse intervals were calculated, the ISR was set up (check Appendix B for the full
implementation),

case TRIG_OFF:

// Turn on trigger

OCR1A += Timer_1024_2ms; // add trigger on time

// other logic

case TRIG_ON:

// Turn off trigger

// if sequence does not terminates

OCR1A += trig_intervals[trigger_count ]; // add trigger off time

// other logic

By using this implementation, additionally pulse patterns can be implemented by simply pop-
ulating the trig_Interval array. This helps make the trigger pulse implementation adaptable to
other pulse sequences that may later be included in the system.

3.1.1 Regular Trigger

� Command: X, Number

1. Number = trigger number to be sent to EEG ampli�er, must be between 0 and 255.

Here, the most basic idea of a trigger is seen, once a trigger event is generated and an S
command has been received (prior), the pulse to the patient is initiated and the same trigger is
sent to the EEG. This signals to the researcher that the pulse has stimulated the patient and the
corresponding EEG is the response to the stimulus.

Figure 7: RegularTrigger
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3.1.2 Square Wave

� Command: X, Duration, Duty Cycle, Frequency

1. Sequence Length = sequence duration [ms].

2. Duty Cycle = duty cycle of square wave modulation in [integer].

3. Frequency = frequency of square wave modulation [Hz].

Once a trigger command is received, a function to calculate the trigger intervals for a square
wave is called. Calculating the number of 2ms pulse, with a 5ms inter-pulse interval, that can �t in
the duration of an on_period based on the frequency and the duty cycle. The pattern is repeated
for the duration of the sequence speci�ed in the parameter passed.

A python script was written on this implementation (check Appendix section C.3) to check the
output of the set of parameters.

Figure 8: Square Trigger Mode for a double pulse stimulation

3.1.3 Multisine Wave

� Command: Y,Duration, Frequency O�set, Amplitude1, Frequency1, Amplitude2, Frequency2,
Amplitude3, Frequency3, Interval Calibration

1. Duration = sequence duration [ms].

2. Frequency O�set = frequency o�set of multisine [Hz].

3. Amplitude1,3 = frequency amplitude �rst sinusoid [Hz].

4. Frequency1,3 = modulation frequency �rst sinusoid [Hz].

5. Interval Calibration (PHI) = phase shift of second (+PHI/12) and third (-PHI/12)
frequency component.

A python script was also implemented here to verify the output when taken away from a real
time paradigm and employed on an o�ine/functional paradigm. The script can be found in the
Appendix C.4, and serves as a suggestion for a possible C implementation.

Figure 9: MultiSine Trigger Mode showing variable interpulse intervals for single pulse stimulation
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3.2 Code Modularity

By applying the principle of separation of concerns, various aspects of the system were identi�ed and
segregated into distinct modules. This entailed relocating the variables that each module depends
upon to their corresponding '.h' �les. Furthermore, by declaring these variables as static and
using getters and setters, they are shielded from unintended external manipulation. Integrating
the triggering functionality became a streamlined process, merely involving the addition of its
respective '.c' and '.h' �les, and adding the new commands to the protocol in the Protocol module.

This was done to clarify the relationship, and interactions, between all the variables and the
individual modules.

3.3 Validation checks

The validation of the frequency parameter serves as an essential �rst check in this context because
of the constraints set on the implementation. According to literature, the base frequency in the
square wave modulated pulse sequence that allows for a maximum representation of 143Hz. The
selection of the 5ms interpulse interval is not arbitrary; it was carefully chosen to limit the e�ects
of peripheral nerve repolarization on measured SSEPs [4].

In the �nal system design, other validation checks on the di�erent parameters would be neces-
sary, this is to ensure the ranges for a series of parameters are valid and producible by the device's
hardware. Some of these parameters are yet to be speci�ed.

4 Validation

To test the implementation, a convenient way of connecting to the Ambustim was developed.
A simple python script that discovers the MAC addresses of nearby Bluetooth devices. On the
Bluetooth module, the last few characters of the MAC address were printed onto the body. Check
the Appendix section C.1 for this script.

Next, a second script was developed for connecting to and communicating with the Ambustim
via said Bluetooth module. This script can also be found in the Appendix section C.2.

For performance testing, pin states were toggled corresponding to trigger states, showcasing
the improvement over the previous implementations. In the actual system, while the �rst trigger
pulse is emitted to the EEG, its corresponding state in the embedded code is also set to TRIG_ON.
Subsequent pulses toggle between the states TRIG_ON and TRIG_OFF in the code.

Assessing runtime memory was challenging due to the lack of simulator support for this chip
in Microchip Studio. Print-based debugging was employed for determining cycle counts for tasks
like square wave calculations.

4.1 Pulse width

Figure 10: Pulse width accuracy.
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4.2 Square wave modulation

The displayed images from the old implementation use the suggested command parameters with
the corresponding calibration constants:

Figure 11: The interpulse interval shows signi�cant improvement over old implementation (top).

16



Figure 12: Old implementation (top) shows the frequency of the trigger pulses being at 200Hz
instead of the intended ≈142Hz. The new implementation (bottom) displays the reliability and
accuracy in using timer interrupts.

Figure 13: Under the new implementation the duration of the on_period + off_period matches
the intended period of 333ms.

5 Discussion

The software-driven solution demonstrated increased accuracy in the interpulse intervals. The
removal for the need of calibration constants streamlines the application of any integer frequency
without manual calibration. For the square wave modulated trigger pattern, the �oating point
calculations were done with 40% of the SRAM still free. Less SRAM might a�ect performance, as
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intermediate calculations reside in the SRAM.
The limited RAM of 1kB put a limit on the size of the arrays that could be used. In the

original implementation the arrays sizes were much larger, taking up a lot of the SRAM. For the
implementation discussed in the paper, the arrays were sized su�ciently for the device to execute
all the commands, and perform adequately.

Arrays were ostensibly sized largely due to the bu�er being read within the main loop. To
mitigate potential data races caused by UART interrupts, disabling the UART receive �ag (RXEN1
or RXCIE1) is recommended when accessing the bu�er. For double-pulse (stimulation) tests, a
bu�er size of 20 proved adequate, rendering the original 200 (bu�er size) unnecessary.

Memory was conserved by repeating patterns through a counter variable in the square wave as
opposed to storing the additional intervals. While this optimized memory usage, it added com-
plexity to the square wave modulation, resulting in an extended ISR. For a Multisine modulation
scenario, increasing available memory would simplify the implementation and shorten the ISR.

Trigger pulse patterns require �oating point calculations. Using a microcontroller equipped
with a Floating Point Unit (FPU) would be advised, as the current calculation for the 3Hz square
wave modulation case demands 70*256 clock cycles to complete the �oating point calculations.
This duration would extend for multisine operations due to the involvement of more �oating point
values.

Regardless of the additional SRAM, an 8 bit system, in the absence of an FPU, might have
similar performance characteristics to the ATMega162. This is because mere memory increments
might not signi�cantly curtail execution cycles. Considering a 16 bit system would improve �oatin
point caluclations, but an FPU would o�er the most e�ciency. Moreover, such a transition might
also o�er power conservation bene�ts, a critical consideration for battery-dependent devices like
the Ambustim.

6 Conclusion

This paper introduces an optimized design for generating modulated triggering patterns in the
Ambustim, an electrical stimulation device employed for nociceptive system studies and pain per-
ception analysis. The focus was to implement pattern generating functionality into the Ambustim's
�rmware, thereby reducing system complexity by eliminating the need for calibration constants,
and making the system more accessible for practical usage beyond lab settings. By employing hard-
ware interrupts for triggering patterns directly within the �rmware, timing accuracy was achieved.

The design was tested for square wave and multisine wave modulated triggering patterns
through Python simulations, validating the square wave modulation through pin read-outs, and
providing a recommendation on an implementation for multisine modulation. The lack of a Floating
Point Unit (FPU) remains a bottleneck for more complex tasks like Multisine triggering, suggesting
the potential bene�ts of upgrading to a more advanced microcontroller for future work.

The outcomes showed a considerable improvement in the accuracy over the previous design,
which relied on software loops and calibration constants. The current approach not only eliminates
the need for manual calibration but also makes it feasible to apply uncalibrated integer frequency
for stimulation.

In conclusion, this research contributes a meaningful step toward simplifying the Ambustim's
setup and enhancing its accuracy and versatility. Thus aiding in more e�ective research into
nociceptive systems and pain perception.
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A Appendix I

A.1 Trigger

Figure 14: Trigger Box code

B Appendix II

1 #include "TriggerModes.h"

2 #include "Protocol.h"

3

4 // Trigger parameters

5 static volatile uint16_t trig_intervals[MAX_TRIGGER_PATTERN],

trigger_counter , trig_intervals_array_size;

6 static volatile uint16_t repetitions , repetitions_counter;
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7 static volatile TriggerState trig , old_trig;

8

9 // Square Wave modulated pulse sequence , command: X, <DURATION >, <

DUTYCYCLE >, <FREQ >

10 static volatile uint16_t total_sequence;

11 static volatile double duty_cycle;

12 static volatile uint32_t on_period;

13 static volatile uint32_t off_period;

14

15

16 // Alternate between trigger states until the end of the specified

sequence length (total_sequence)

17

18 SIGNAL(TIMER1_COMPA_vect) {

19 switch(trig){

20 case TRIG_OFF:

21 // Turn on trigger flag

22 sbi(PORTA , 5);

23 trig = TRIG_ON;

24 OCR1A += Timer_256_2ms; // add trigger on time

25 break;

26

27 case TRIG_ON:

28 // Turn off trigger flag

29 cbi(PORTA , 5);

30

31 // Check if sequence terminates

32 if(trigger_counter < trig_intervals_array_size){

33 OCR1A += trig_intervals[trigger_counter ]; // add trigger

off time

34 trigger_counter ++;

35 }

36

37 // Check for completion after incrementing TriggerCount

38 if(trigger_counter >= trig_intervals_array_size){

39 trigger_counter = 0;

40

41 repetitions_counter ++;

42

43 if(repetitions_counter >= repetitions){

44 // Sequence is done

45 trig = TRIG_END;

46 break;

47 }

48

49 trig = TRIG_OFF;

50 } else{

51 // Continue sequence

52 trig = TRIG_OFF;

53 }

54 break;

55

56 case TRIG_END:

57 // Handle end condition immediately

58 TIMSK = ZERO; // Disable interrupts from timer1 compA and

compB

59 TCCR1A = ZERO; // Stop clocksource timer 1

60 break;

61

62 default:

63 // Reserved for unexpected Trig states.

64 break;

65 }
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66 }

67

68 // Initializes trigger -related variables.

69 // This function resets the variables responsible for the intervals ,

including the states of the triggers. Used to ensure that previous

values do not interfere with the new sequence.

70 void initialize_trigger () {

71 int i;

72 // Initialize variables for trigger intervals

73 for(i = 0; i < MAX_TRIGGER_PATTERN; ++i){

74 trig_intervals[i] = 0;

75 }

76

77 trigger_counter = 0;

78 trig_intervals_array_size = 0;

79 trig = TRIG_OFF;

80 old_trig = TRIG_OFF;

81 }

82

83 // Configures Timer 1 for handling the trigger sequences.

84 void setup_trig_timer () {

85 // Configure Timer 1A

86 TCCR1A = CLK_PRESCALE_256;

87 OCR1A = Timer_256_2ms;

88 SFIOR = PAUSE_TIMERS;

89 TCNT1 = RESET_TIMER;

90 SFIOR = RELEASE_TIMERS;

91 TIMSK = enable_Interrupt_1A;

92

93 sbi(PORTA , 5);

94 trig = TRIG_ON;

95 old_trig = TRIG_OFF;

96 }

97

98 // Calculates the intervals for a square wave pulse sequence based on

input parameters. Given the total sequence time , frequency and duty

cycle , this function calculates the on and off periods for a square

wave. It then translates these durations into intervals that the

system should wait between triggers.The function also computes how

many times the trigger sequence should be repeated to match the

desired total sequence duration

99 void calculate_square_wave_intervals () {

100 // Play this many triggers

101 trig_intervals_array_size = on_period / (Timer_256_7ms *

TIMER_256_to_us);

102 off_period = (on_period + off_period) / TIMER_256_to_us - (

trig_intervals_array_size * Timer_256_7ms);

103

104 // 5ms between each trigger

105 for(int i = 0; i < trig_intervals_array_size; i++) {

106 trig_intervals[i] = Timer_256_5ms;

107 }

108

109 // if on_period fits more than once in the total sequence

110 uint16_t temp1 = total_sequence;

111 uint16_t temp2 = (trig_intervals_array_size * Timer_256_7ms *

ms_to_us * TIMER_256_to_us ) + (off_period * ms_to_us *

TIMER_256_to_us);

112 repetitions = (( double) temp1 / temp2) - 1;

113 repetitions_counter = -1;

114 if(repetitions >= 1) {

115 trig_intervals[trig_intervals_array_size] = off_period;

116 trig_intervals_array_size += 1;
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117 }

118 }

C Appendix III

C.1 Python script for discovering the Ambustim

1 import subprocess

2 import re

3

4 def discover_devices ():

5 result = subprocess.run(['system_profiler ', 'SPBluetoothDataType '],

stdout=subprocess.PIPE , text=True)

6

7 devices = re.findall(r'Address: (.*)', result.stdout)

8

9 print("Found {} devices.".format(len(devices)))

10

11 for addr in devices:

12 print(" {}".format(addr))

13

14 discover_devices ()

C.2 Python script for communication with the Ambustim

1 import socket

2 import time

3 import threading

4

5 MACAddress = '00:01:95:0C:C2:61' # NociTrack

6 port = 1

7 s = socket.socket(socket.AF_BLUETOOTH , socket.SOCK_STREAM , socket.

BTPROTO_RFCOMM)

8 s.connect (( MACAddress , port))

9 print("Connection established")

10 s.settimeout (4)

11 time.sleep (1)

12 btReadSize = 4000

13

14 def receiver(sock , btReadSize):

15 while True:

16 data = sock.recv(btReadSize) # read bluetooth data

17 if data:

18 text = data.decode('UTF -8')

19 print("", text)

20 else:

21 print("No data read , re -connecting ...")

22 sock.connect (( MACAddress , port))

23

24 # Start the receiver thread

25 receiver_thread = threading.Thread(target=receiver , args=(s, btReadSize)

)

26 receiver_thread.start ()

27

28 # Start Up F command <,,> , sets NUMCHANNELS , MAXPATTERN , AD2mA and

TU2ms

29 s.send(bytes('F,0,0,0,0\0', 'UTF -8'))

30 print("sent data: F,0,0,0,0")

31 time.sleep (1) # Add delay here

32 # Sets Version1 Version2 and SerNo

33 s.send(bytes('V,0,0,0\0', 'UTF -8'))
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34 time.sleep (1) # Add delay here

35 s.send(bytes('M,1 ,1\0', 'UTF -8'))

36 time.sleep (1) # Add delay here

37 s.send(bytes('C,1,1,0\0', 'UTF -8'))

38 time.sleep (1) # Add delay here

39 s.send(bytes('I ,2000 ,2000\0 ', 'UTF -8'))

40 time.sleep (1) # Add delay here

41 s.send(bytes('P,1 ,1\0', 'UTF -8'))

42 time.sleep (1) # Add delay here

43 s.send(bytes('A,60 ,60\0', 'UTF -8'))

44 time.sleep (1) # Add delay here

45 s.send(bytes('a,0 ,0\0', 'UTF -8'))

46 time.sleep (1) # Add delay here

47 s.send(bytes('W,480 ,480\0', 'UTF -8'))

48 time.sleep (1) # Add delay here

49 s.send(bytes('w,400 ,400\0', 'UTF -8'))

50 time.sleep (1) # Add delay here

51 s.send(bytes('S, 0 , 1, 1000\0 ', 'UTF -8'))

52 time.sleep (1) # Add delay here

53 # 1 sec sequence with 50% duty cycle and 3Hz frequency

54 s.send(bytes('X,1000 ,50 ,3\0', 'UTF -8'))

C.3 Python script for simulating Square Wave Modulated pulse se-

quence

Figure 15: Square wave modulated pulse sequence python code used for testing outcomes of im-
plementation

1 import matplotlib.pyplot as plt

2

3 # Parameters

4 total_sequence_ms = 1000

5 duty_cycle_percent = 50

6 freq_hz = 3

7

8 # Defines

9 PULSE_AMP = 1

10 Freq_CPU = 7372800

11 PRE_SCALERRR = 256

12 T_256_2ms = 58

13 T_256_5ms = 144

14 T_256_7ms = 202

15 TIMER_TO_US = PRE_SCALERRR * 1000000 // Freq_CPU
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16

17 # Time

18 Timer_256_2ms = (T_256_2ms * PRE_SCALERRR * 1000000) // Freq_CPU # 2ms

in us

19 Timer_256_5ms = (T_256_5ms * PRE_SCALERRR * 1000000) // Freq_CPU # 5ms

in us

20 Timer_256_7ms = (T_256_7ms * PRE_SCALERRR * 1000000) // Freq_CPU # 7ms

in us

21

22 # Print widths

23 print(f"Actual 2ms width: {Timer_256_2ms} us")

24 print(f"Actual 5ms width: {Timer_256_5ms} us")

25 print(f"Actual 7ms width: {Timer_256_7ms} us")

26

27 # Case: Trig_Mode_Square

28 duty_cycle = duty_cycle_percent / 100.0

29 on_period_theoretical = (1.0 / freq_hz) * duty_cycle * 1000000 # in us

30 off_period_theoretical = (1.0 / freq_hz) * (1.0 - duty_cycle) * 1000000

# in us

31

32 # Calculate trigger intervals for square wave mod

33 num_pulses_on_period = int(on_period_theoretical / Timer_256_7ms) + 1

34 on_period_actual = Timer_256_7ms * (num_pulses_on_period)

35 off_period_actual = (on_period_theoretical + off_period_theoretical) - (

num_pulses_on_period * Timer_256_7ms )

36 off_period_actual = int(off_period_actual /( PRE_SCALERRR *1000000/ Freq_CPU

)) * (PRE_SCALERRR *1000000/ Freq_CPU)

37 total_sequence_actual_ms = (on_period_actual + off_period_actual) *

freq_hz / 1000

38

39 # Validate outcomes

40 print(f"Theoretical On Period: {on_period_theoretical :.2f} us , Actual On

Period: {on_period_actual :.2f} us , Timer ticks: {( T_256_7ms*

num_pulses_on_period):.2f}")

41 print(f"Theoretical Off Period: {off_period_theoretical :.2f} us , Actual

Off Period: {off_period_actual :.2f} us , Timer ticks: {(

off_period_actual /( PRE_SCALERRR *1000000/ Freq_CPU)):.2f}")

42 print(f"Theoretical Total Sequence Time: {total_sequence_ms} ms , Actual

Total Sequence Time: {total_sequence_actual_ms :.2f} ms")

43

44 # Calculate total sequence

45 sequence = []

46 for _ in range(num_pulses_on_period):

47 sequence += [PULSE_AMP] * int(Timer_256_2ms) + [0] * int(

Timer_256_5ms)

48 sequence += [0] * int(off_period_actual)

49

50 # Repeat

51 sequence = sequence * freq_hz

52

53 # Plotting

54 plt.plot(sequence)

55 plt.ylim(-0.1, PULSE_AMP + 0.1)

56 plt.title('Square Wave Modulated pulse sequence ')

57 plt.xlabel('Time [us]')

58 plt.ylabel('Amplitude ')

59 plt.show()
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C.4 Python script for simulating Multisine Wave Modulated pulse se-

quence

Figure 16: Multisine wave modulated pulse sequence python code used for testing outcomes of
implementation. The arduino implementation against the one implemented in python are aligned.
Emitting the �rst pulse immediately, and then using the computed instantaneous frequencies for
the subsequent pulses. The frequency spectrum shows the 3Hz magnitude of half the amplitude
with the appropriate phase shift. This is because only the �rst half of the spectrum is being plotted

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from scipy.fft import fft
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4

5 # Hardware based

6 Freq_CPU = 7372800

7 PRE_SCALER = 256

8 T_256_2ms = 58

9

10 # Constants

11 PI = np.pi

12 RES = 100000000

13 PULSE_AMPLITUDE = 1

14 MAX_FREQ_FFT = 50

15

16 # Parameters

17 SEQ_DUR = 1 # Total time in seconds

18 OFFSET = 15.0 # Frequency offset

19 AMP1 = 7.0 # Amplitude for each sin component

20 AMP2 = 0.0

21 AMP3 = 0.0

22 FREQ1 = 3.0 # Frequency for each sin component

23 FREQ2 = 3.0

24 FREQ3 = 10.0

25 PHI = 8 # Phase shift

26

27 # Time

28 Timer_256_2ms = (T_256_2ms * PRE_SCALER * 1000000) // Freq_CPU # 2ms in

us

29 RESOLUTION = Timer_256_2ms / RES # Time resolution in seconds , based on

timer

30 pulse_width = Timer_256_2ms / 1000000 # Pulse width in seconds , 2ms

31 T = np.arange(0, SEQ_DUR , RESOLUTION)

32 signal_pulses = np.zeros_like(T)

33

34 # Instantaneous period calculation

35 freq = OFFSET + AMP1 * np.sin (2.0 * PI * FREQ1 * T) + AMP2 * np.sin (2.0

* PI * FREQ2 * T + (PHI * PI / 12.0)) + AMP3 * np.sin (2.0 * PI *

FREQ3 * T - (PHI * PI / 12.0))

36 ipi = 1 / freq

37

38 # Set the first pulse at t=0

39 start_pulse = 0

40 end_pulse = int(pulse_width / RESOLUTION)

41 signal_pulses[start_pulse:end_pulse] = PULSE_AMPLITUDE

42

43 # Start with the time of the first pulse

44 next_pulse_time = pulse_width

45 current_time = 0

46

47 # Generate pulses based on the signal amplitude

48 for i in range(len(T)):

49 current_time += RESOLUTION

50 if current_time >= next_pulse_time:

51 start = i

52 end = i + int(pulse_width / RESOLUTION)

53 if end < len(T):

54 signal_pulses[start:end] = PULSE_AMPLITUDE # Add 2ms pulse width

55 next_pulse_time += ipi[i] # Update the next pulse time

56

57 # Compute the FFT of the signal

58 fft_output = np.fft.fft(freq)

59 fft_magnitude = np.abs(fft_output)[:len(T)//2] / len(T)

60 fft_magnitude [0] /= 2 # Do not double the DC component

61 fft_frequency = np.fft.fftfreq(len(T), d=RESOLUTION)[:len(T)//2]

62
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63 # Plot

64 fig , axs = plt.subplots(3, 1, figsize =(6, 9)) # Create 4 subplots

65

66 # Waveform

67 axs [0]. plot(T, freq)

68 axs [0]. title.set_text('Input Signal Frequency ')

69 axs [0]. set_xlabel('Time (s)')

70 axs [0]. set_ylabel('Frequency (Hz)')

71

72 # PFM

73 axs [1]. plot(T, signal_pulses)

74 axs [1]. title.set_text('Pulse Frequency Modulated Signal ')

75 axs [1]. set_xlabel('Time (s)')

76 axs [1]. set_ylabel('Amplitude [V]')

77

78 # Frequency Spectrum

79 axs [2]. plot(fft_frequency , fft_magnitude)

80 axs [2]. title.set_text('Frequency Spectrum ')

81 axs [2]. set_xlabel('Frequency (Hz)')

82 axs [2]. set_ylabel('Magnitude [V]')

83 axs [2]. set_xlim ([0, MAX_FREQ_FFT ])

84

85 plt.tight_layout ()

86 plt.show()
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