
Heuristics for 
inventory management of 
reusable medical device trays
Bachelor Thesis Advanced Technology
Wick Wijnholds

August 2023

Supervisor:
dr. ir. Aleida Braaksma

Committee:
dr. ir. Aleida Braaksma
Hayo Bos, MSc
dr. Faiza Bukhsh



Abstract

This report summarizes our research into heuristics for inventory levels of reusable medical device (RMD)
trays in hospitals, with a specific focus on the case of the Diakonessenhuis, a medium-sized hospital in The
Netherlands. We show that generic methods from the field of inventory management are not applicable to the
case of RMD tray inventories, and describe and compare domain-specific heuristics described by Fineman and
Kapadia [1], Diamant et al. [2] and Hosteins et al. [3], using a discrete event simulation by the latter. We show
that the heuristic by Diamant et al. performs best, provided suitable parameters are chosen. Finally, we look
into the potential of operating theatre planning modification and the pooling of intercompatible tray types, and
find that there is potential in the former, but fail to show potential in the latter.
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1 Introduction

1.1 Background

In recent years, hospitals have had to deal with a
steady increase in patient and procedure numbers
[4]. As a result, healthcare costs have steadily been
rising. Surgical procedures, performed in operat-
ing rooms (ORs), account for up to 60% of total ex-
penses, of which about half is spent on equipment
[5]. The inventory of surgical instruments alone is of-
ten worth several millions of dollars [6]. It is therefore
critical to manage this costly inventory properly. In
this report, we summarise our research into heuris-
tics for reusable medical device (RMD) inventory lev-
els in hospitals - from literature study to a compari-
son of selected heuristics using discrete-event simu-
lation, based on data from a medium-sized hospital
in The Netherlands.

1.2 RMD usage patterns

The usage of RMDs involves a cyclic pattern: they
are first used in an OR, then transported to a central
sterilisation service (CCS), where they go through
several stages of cleaning and sterilisation. Typi-
cally, this process takes several hours. They are
then moved to inventory, ready to be used again.
RMDs are not generally packaged separately: in-
stead, they are stocked in sets of varying sizes in
surgical trays. Once opened, these trays need to
be fully sterilised before they can be re-used. There
is often a multitude of different trays, each tailored
for specific surgical procedures. Managing all this
inventory is complicated by the fact that the trays re-
quired vary not only per procedure, but also per sur-
geon. We will explore the usage of RMDs further in
Section 2.

1.3 Problem and Approach

The goal of our research is to propose a heuristic for
RMD inventory levels (based on existing inventory
management best practices, in combination with the
outcomes from simulations) that allows the hospital
to better tailor inventory levels to demand, either by
reducing total inventory or reducing the rate at which
the trays are not available when they are needed.
Based on this goal, we formulated our research
question:
“Can we find or formulate a heuristic for RMD tray
inventory levels that, once implemented, performs
better than the current historically determined inven-
tory levels?”

The approach taken to answer this question is as fol-
lows:

1. Understand and describe the way that RMD
trays are (re)used in hospitals.

2. Perform a literature search for techniques
from inventory theory involving reuse, as well
as for domain-specific literature (i.e. health-
care/hospital/sterilisation logistics).

3. Evaluate the results of the literature study, and
choose heuristics to test.

4. Implement the chosen heuristics, and test
them using the simulation by Hosteins et al. [3]

5. Process and evaluate the results of the above
testing. If needed, alter the heuristics to im-
prove performance.

6. Repeat the implementation–testing–
processing–evaluation cycle until satisfied.

1.4 Report structure

This report is structured in the following way:
Section 2 gives a more thorough description of the
problem. Section 3 then gives an overview of the
results of the literature study. Section 4 then details
the heuristics we selected. Section 5 describes our
testing methodology. The results of our tests can
be found in Section 6. Section 7 explores several
potential avenues of improvement. Finally, Section
8 provides concluding remarks and discusses pos-
sible future research avenues, and Section 9 looks
back at the research process.

2 Problem formulation

Let us now take a detailed look at the problem at
hand, starting with the cycle that RMD trays go
through, continuing on with a description of our case
study, and ending with a description of the demand
patterns of RMD trays.

2.1 RMD usage

After the RMD trays arrive at the CSS, the following
steps are taken (see Figure 1):
First, the RMDs are taken out of the trays. The
RMDs are then individually rinsed. The RMDs then
go through a cleaning cycle in a disinfectionmachine.
The RMDs are checked for damage and assembled
into trays. Finally, they go through a sterilisation cy-
cle in an autoclave. When they are ready for use,
they go into storage, until such a time arrives that
they are needed in the OR or in an outpatient facil-
ity. If the trays are available when needed, then all
is well. If they are not available, hospital staff will
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Figure 1: Sterilisation flow, from [3]

see if another set of trays could be used for the pro-
cedure at hand. If this is not the case, the surgery
might be delayed slightly if the tray is almost sterile,
or, more commonly, it is rescheduled to a later date if
possible. This, of course, is not to be preferred, and
happens quite infrequently. After usage, the trays
return to the CSS, completing the cycle.

2.2 Case study

The Diakonessenhuis is a medium-sized hospital in
the province of Utrecht, The Netherlands. It con-
sists of one main location with a central sterilisation
service (CSS) in the city of Utrecht and several sub-
sidiary outpatient clinics in the greater Utrecht area.
For these subsidiary locations, RMD trays are trans-
ported in batches to and from the CSS. Currently,
RMD tray inventory levels are not determined in a
consistent manner: they are, instead, mostly his-
torically determined. This, of course, often leaves
room for improvement, as it does in this case. In
order to work more efficiently, the Diakonessenhuis
has entered into a collaboration with the Centre for
Healthcare Operations Improvement and Research
(CHOIR) at the University of Twente. One of the
results of this collaboration is a discrete event sim-
ulation of the sterilisation process by Hosteins et
al. [3], which was tailored to the situation at the Di-
akonessenhuis and verified against data collected at
the hospital.

2.3 Tray demand

As part of their research, Hosteins et al. [3] analysed
the usage patterns of RMD trays. They note that
there are multiple sources of demand:

• Elective surgeries, which are planned ahead
of time and might require multiple trays.

• Emergency surgeries, which are obviously not
planned ahead of time, and might require mul-
tiple trays.

• Outpatient procedures, which are planned
ahead of time and require only one tray. These
account for about ten percent of surgeries.

In order to ease analysis of the results for the 1213
tray types present at Diakonessenhuis, Hosteins et
al. [3] divided these types into three clusters:

• Cluster 0 comprises the 32 most frequently
used trays in surgeries - these have high de-
mand and appropriately high inventory levels.

• Cluster 1 comprises the 771 other trays used
in surgeries.

• Cluster 2 comprises the 410 trays used in out-
patient procedures.

We will use the same clusters throughout this report.
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2.3.1 The trouble with demand

Many of the methods that we will explore will require
us to put a number on the demand for a specific
tray type. This is not as easy as it may seem - not
only does the level of demand vary wildly between
tray types, it also varies significantly from day to day.
There are even a few tray types that have zero de-
mand altogether. Compare, for example, the de-
mand for tray 0 (in Figure 2) and tray 4 (in Figure
3) - tray 0 has relatively stable and high demand out-
side of the weekend, while tray 4 has low demand,
and only on Wednesdays and Thursdays.
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Figure 2: Daily mean demand for trays of type 0
(Cluster 0)
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Figure 3: Daily mean demand for trays of type 4
(Cluster 2)

We can see that this is exemplary of a difference in
clusters when we look at Figures 4 and 5: high de-
mand in cluster 0, low demand in clusters 1 and 2,
and a much greater variability of demand in cluster
2 than in cluster 0, with cluster 1 in between.
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Figure 4: Mean demand over all trays of each cluster
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Figure 5: Relative range (difference between maxi-
mum and minimum, divided by the mean), averaged
over all trays of each cluster

If we are now asked to pick a single number to char-
acterise ‘demand’, as we often will be, what would
that number be? In this report, we often choose the
demand on the busiest day of the week. We believe
we can justify this, because the worst-case perfor-
mance is very relevant to us. After all, the hospi-
tal will never run out of trays of type 4 on a Mon-
day, but it might do so on a Wednesday. When we
must specify what distribution the demand has, we
will work under the assumption of Poisson arrivals
for all procedures, which by the additive property of
the Poisson distribution also implies that the demand
for each tray type will be Poisson-distributed. This is
the same assumption as made in the simulation by
Hosteins et al. [3]. De Bruin et al. [7] also found this
to be true for admissions to hospital wards in another
Dutch hospital, which we expect translates well to
surgery demand.
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3 Literature review

3.1 Inventory management and reverse logis-
tics

Because of the cyclic nature of the use of RMD trays,
we looked into the field of ‘closed-loop supply chain’
(CLSC) inventory theory, which is also known as ‘re-
verse logistics’ (RL). The methods used in this field
are often adapted from those used in classical inven-
tory theory to account for the presence of a loop in
what would otherwise be a straight supply chain. Of
course, there is amultitude of ways in which a supply
chain could contain such a closed loop - a classifica-
tion by Akçali and Çetinkaya categorised research
until 2009 by configuration, and found 14 different
closed-loop supply chain types [8]. When we look at
our case through their classification system, we find
that it can best be described as a so-called 2SP-a
system: a system with two stock points (in our case,
pre-sterilisation and post-sterilisation storage), with-
out manufacturing (see Figure 6).

Figure 6: The 2SP-a system, courtesy of [8]

Many of themore complicated configurations reduce
to 2SP-a, expanding the amount of research that we
can make use of significantly. Take, for example,
a configuration where products can be made from
either new materials or recycled materials. When
we set the price of new materials to a prohibitively
high level, we can force any applicable heuristics to
produce a minimal number of products from scratch.
We have then, effectively, reduced the configura-
tion of the system to one which is closer to our sys-
tem. In this way, we can at least attempt to apply
a decent fraction of research to our problem. To do
this, we must translate our problem into a reverse
logistics problem. At first glance, this appears to
be merely a case of semantics: where we sterilise
an RMD tray, they remanufacture goods. Where
we purchase RMD trays, they manufacture goods.
Where they get returns or store recoverables, we
have dirty trays. When they talk about servicables,
we talk about sterile inventory. When we dig deeper,
however, the divide turns out to be broader than ter-
minology. Let us look at some of the approaches
from reverse logistics, and see where the analogy
breaks down.

3.1.1 EOQ-based

The economic order quantity (EOQ) is a concept in
standard inventory management, providing an exact

answer to the question: ‘what is the optimal size
of orders such that the total inventory cost is min-
imised?’. It applies specifically to situations of con-
stant demand and instantaneous production, which
simplifies its calculation. In their book on reverse
logistics, Dekker et al. [9] suggest several different
modifications of the EOQmodel for reverse logistics,
where some fraction of demand is met with reman-
ufactured goods, while other goods are produced
from scratch. They optimise the total cost per unit
of time, i.e., the sum of production and remanufac-
turing setup costs and holding costs for servicables
and recoverables under various (re)manufacturing
schedules. Of these, the most applicable is a modifi-
cation where it is assumed one manufacturing batch
is followed by R remanufacturing batches. Dekker
et al. find the following formula for an optimal initial
manufacturing batch size Q∗

p:

Q∗
p =

√
2(d− ur)Kp

hs(1− ur

d ) + hu
ur

d

(1)

where d is the demand, ur is the number of returns,
Kp is the manufacturing setup cost, hs is the unit
holding cost of servicables and hu is the unit holding
cost of recoverables. This formula, however, starts
to break down when ur

d approaches 1, i.e., when the
return rate for a given time frame is very high, when
it reduces to the following:

Q∗
p ≈

√
2(d− ur)Kp

hu
(2)

We find that Q∗
p is now determined by Kp, hu and

d− ur. When we translate this back to our case, we
see that the optimal inventory size (that is what Q∗

p

would be) is determined by:

• Manufacturing setup costs, which become the
fixed costs incurred when ordering RMD trays
(which will probably be dominated by shipping
costs, relatively minor in comparison to the
cost of the trays themselves).

• The cost of storing the dirty trays (which is zero
for all intents and purposes, since trays are
sterilised almost immediately after use, so they
spend only a short time on a small shelf wait-
ing for their turn). Given that hu ≈ 0, the value
of Q∗

p will be unrealistically high.

• What might best be described as of ‘net de-
mand’ (d − ur), which approaches zero as
ur

d → 1.

All the above makes clear that while this heuristic
might work excellently for, say, a beer bottle manu-
facturer (with high manufacturing setup costs for fir-
ing up the glass furnaces, lower reuse rates and sig-
nificant costs for storage), it does not translate well
to our problem.
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3.1.2 Wagner-Whitin-based

In 1958, Harvey Wagner and ThomasWhitin [10] de-
veloped an algorithm to solve the so-called dynamic
lot size model: to find a production schedule that
minimises total inventory costs for variable (forecast)
demand over a set number of time slots. They formu-
lated a mixed-integer linear programming (ILP) prob-
lem to do just that. In 2000, Richter and Sombrutzki
modified this model to take into account remanufac-
turing [9, 11] and set up the following ILP:

minC =

T∑
t=1

(Kpγ
p
t +Krγ

r
t +Kwγ

w
t + cpQ

p
t

+ crQ
r
t + cwQ

w
t + hsI

o
t + huI

u
t )

s.t. Iot = Iot−1 − dt +Qp
t +Qr

t

Iut = Iut−1 + ut −Qr
t −Qw

t

Qp
t ≤ Mγp

t , Q
r
t ≤ Mγr

t , Q
w
t ≤ Mγw

t

Qp
t , Q

r
t , Q

w
t , I

0
t , I

u
t ≥ 0

γp
t , γ

r
t , γ

w
t ∈ {0, 1},

where:

• Kp,Kr and Kw are the fixed setup costs for
production, remanufacturing and disposal, re-
spectively.

• γp
t , γ

r
t and γw

t indicate whether production, re-
manufacturing or disposal occur in period t.

• cp, cr and cw are the variable costs per unit for
production, remanufacturing and disposal, re-
spectively.

• Qp
t , Q

r
t and Qw

t is the number of units pro-
duced, remanufactured or disposed of in pe-
riod t.

• hs and hu are holding costs for servicables and
recoverables, respectively.

• Iot and Iut are the inventory levels for servica-
bles and recoverables in period t, respectively.

• dt and ut are the forecast demand and returns
in period t, respectively.

When we analyse this ILP in relation to our problem,
we note the following:

1. Disposal is not relevant to our case - we are
not throwing away perfectly good RMDs. That
also means that we will always clean them -
the variable costs for remanufacturing do not
matter either.

2. The CSS has fixed, long, continuous ‘produc-
tion runs’ (i.e., working days of the CSS staff).
There are no significant costs associated with
switching from cleaning one type of tray to an-
other, either. Remanufacturing setup costs,
therefore, are not very relevant.

3. Similar to what we noted with the modified
EOQ heuristic, ‘production’ setup costs are
negligible, as are holding costs for recover-
ables.

4. Since remanufacturing is no longer a choice, it
is predetermined, so we can remove the vari-
able Qr

t . We can instead say that the inven-
tory remanufactured equals the demand from
a prior period. In fact, we can stop keeping
track of the recoverables inventory altogether.

5. We want to find an initial inventory level, so we
do not need to purchase inventory after the first
period.

6. After all these changes, the holding costs
(which we now calculate only for sterile inven-
tory) will scale very well with the initial inven-
tory level. We can therefore just minimise the
initial inventory level.

Removing these parts from the Richter-Sombrutzki
ILP, we are left with the following simple scheme:

min Io0
s.t. Iot = Iot−1 − dt + ut−1

Qp
t , I

o
t ∈ N

where the demand dt and return rate ut are fore-
casts.
This ILP can be described as: “find the minimal in-
ventory level such that demand from our forecast is
met for all periods over which we give a forecast.”
This is not a very nuanced statement - it does not
allow, for example, weighing some small fraction of
RMD tray unavailability against the benefit of need-
ing less inventory. It is more akin to the BSxx heuris-
tic that we will discuss in Section 4.1, while being
less versatile. For this reason, we must also con-
clude that it is probably not very useful.
Again, we see that our problem simply does not map
very well onto techniques for production and order
planning, which leads us to disregard techniques
that are used throughout many industries. We there-
fore turn to domain-specific literature.
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3.2 Domain-specific literature

More specific approaches can be found in the work
of Bijvank and Vis [12], Diamant et al. [2] and Fine-
man and Kapadia [1].

3.2.1 Fineman and Kapadia

The earliest paper that we could identify relating to
inventory levels of sterile inventory comes from Fine-
man and Kapadia [1], who, in 1978, developed a sim-
ple model for the logistics of sterilised items in hos-
pitals. They made various simplifying assumptions,
the most important of which are continuous process-
ing and non-varying daily demand, and came up with
heuristics for what they call ‘replacement stock’ - in-
ventory to be ordered to replace worn out items - and
‘processing stock’ - inventory required to keep sup-
ply up while other inventory is processed, or in our
case sterilised:

Replacement Stock = D(ta + tc)/n (3)
Processing Stock = D · tprocess (4)

where

D = the daily demand for the item in question
ta = the replenishment interval
tc = the time the hospital could be cut off

from supplies
tprocess = the processing time for this item

n = the number of possible uses
of the item in question

For our case, where n is usually high (many RMDs
can be used dozens of times), replacements do not
take long to arrive (so ta is relatively low), and supply
chains are robust (so tc is relatively low), the replace-
ment stock levels will be mostly insignificant when
compared to the processing stock levels. A simple
heuristic might be to keep stocks equivalent to the
processing stock levels proposed by Fineman and
Kapadia, where we take the processing time to be
the median time for an RMD tray to go through ster-
ilisation, which is 3 hours and 18 minutes at the Di-
akonessenhuis.

3.2.2 Bijvank and Vis

Bijvank and Vis consider inventory processes in hos-
pitals, and model these as discrete-time Markov
chains [12]. Unfortunately, their work is mostly con-
cerned with disposable inventory that needs con-
stant replenishment, like gloves and needles. What
is interesting in their work, however, is that they
model the inventory of items through time as a

discrete-time Markov chain - an approached shared
with the research of Diamant et al., which we will now
discuss.

3.2.3 Diamant et al.

Like Fineman and Kapadia, Diamant et al. [2] are
actually concerned with our specific problem - that
of reusable surgical supplies. As stated before, Dia-
mant et al. use a discrete-timeMarkov chain for their
inventory process. This is aMarkov chain with states
ySt ∈ {0, 1, ..., S − 1, S} where ySt is the amount of
ready-to-use inventory in period t and S is the to-
tal number of RMD trays of a specific type. Every
transition from one state to the next corresponds to
the passing of a set amount of time. Transition prob-
abilities are determined by demand, which can be
arbitrarily distributed. In this model, the assumption
is made that inventory used in one period becomes
unavailable the next period, and available the period
after that. Choosing the correct period length turns
out to be very important, as we will see in Section 6.
This heuristic is worked out in much more detail in
Section 4.3.

3.3 Computer simulation approaches

Besides this work on heuristics, progress has also
been made in a related field: building computer sim-
ulations of the sterilisation process. For example, in
2012, Di Mascolo and Gouin [13] created a generic
model of sterilisation departments which uses data
on the specific set-up of a sterilisation department in
order to predict performance. More recent work by
Rupnik, Narding and Kramberger in 2019 [14] and
Hosteins, Bos and Leeftink in 2023 [3] uses discrete
event simulation (DES) in combination with actual
RMD utilisation data in order to simulate with higher
accuracy and fewer simplifications.
The simulation by Rupnik et al. models the sterili-
sation department as a network of two queues (one
after the other), each with three servers, and uses
real data from 2000 surgeries for validation. The
simulation by Hosteins et al. models the sterilisa-
tion department in much more detail, separating the
process into eight diferent steps (see Figure 1), each
with their own queue, and proposing anOR schedule
generator in order to simulate actual usage patterns,
thereby fully simulating the usage cycle of RMDs.
We will use their simulation in order to assess our
heuristics.
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4 Heuristics

4.1 Base-stock heuristic

In their paper describing their DES model of the ster-
ilisation cycle, Hosteins et al. [3] also tested three in-
stances of their so-called ‘base-stock’ (BSxx) heuris-
tic: BS50, BS75 and BS95. In this heuristic, the in-
ventory level is set to the xxth percentile of demand
on the busiest day of the week. We will use this
heuristic as a point of comparison.

4.2 Fineman and Kapadia

As mentioned before in Section 3.2.1, we can use
the processing stock heuristic from the paper of Fine-
man and Kapadia [1], which is as follows:

Processing Stock = D · tprocess

where

• D is the daily demand for the item in question

• tprocess the processing time for this item

Given that daily demand is not constant, we have
several options to choose from. We tested the de-
mand on the busiest, mean and median day of the
week, based on the data provided with the model
by Hosteins et al., all with a processing time of four
hours.

4.3 Diamant et al.

As mentioned before, the heuristic by Diamant et al.
uses a Markov chain to model the system. We now
describe how this heuristic works. First, define the
following variables:

• S: the number of RMD trays in the system

• ySt : The on-hand inventory at the start of pe-
riod t, given S total trays

• dt: demand in period t

• zSt : the number of trays to be sterilised at the
end of period t given S total trays

Using the definition (x)+ = max (x, 0) , we then as-
sume that any trays used in period t are sterilised in
period t+1 and ready to be used again at the start of
period t+2. Therefore, the on-hand inventory at the
start of a new period equals the sum of the on-hand
inventory at the end of the previous period and the
inventory that was newly sterilised:

ySt = (ySt−1 − dt−1)
+ for t = 1

ySt = (ySt−1 − dt−1)
+ + zSt−2 for t = 2, 3, ...

Since we can never use more inventory than we
have on hand, the ‘dirty’ inventory at the end of

the period is zt = min(ySt , dt). Important to note
is that the total inventory is constant, which implies
S = ySt + zSt−1: inventory is either available or be-
ing cleaned. We can use this to find a relationship
between ySt , ySt−1 and dt−1:

ySt = (ySt−1 − dt−1)
+ + S − ySt−1 (5)

=

{
S − ySt−1 if dt−1 ≥ ySt−1

S − dt−1 if dt−1 < ySt−1

(6)

Clearly, what we have here is a discrete-timeMarkov
chain {ySt , t = 1, 2, ..., T} where the transition prob-
abilities Pij from ySt−1 = i to ySt = j are set by the
distribution of the demand. Let {πi(S) = P(ySt = i)}
be the steady-state probability distribution of the in-
ventory level. Assuming i.i.d. demand represented
by a non-negative integer-valued random variableD,
we can define the service level as the probability that
demand does not exceed inventory:

Service Level = 1−
S∑

i=0

πi(S)P(D > i) (7)

Taking this as their starting point, Diamant et al. [2]
find a closed-form solution for π0(S) and πS(S):

π0(S) =
P(D = 0)P(D ≥ S)

1− P(D ≥ S)P(D ≥ 1)
(8)

πS(S) =
P(D = 0)

1− P(D ≥ S)P(D ≥ 1)
(9)

Assuming Poisson demand with mean λ, we then
find the following:

P(D = 0) =
λ0e−λ

0!
= e−λ

P(D ≥ S) = 1− P(D ≤ S − 1)

= 1− e−λ
S−1∑
i=0

λi

i!

P(D ≥ 1) = 1− P(D = 0)

= 1− e−λ

which gives us π0(S) and πS(S):

π0(S) = e−λ 1− e−λ
∑S−1

i=0
λi

i!

1− (1− e−λ
∑S−1

i=0
λi

i! )(1− e−λ)
(10)

πS(S) = e−λ 1

1− (1− e−λ
∑S−1

i=0
λi

i! )(1− e−λ)
(11)

These are both monotone decreasing functions of S,
as can be seen in Figures 7 and 8 and is proven by
Diamant et al [2].
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Figure 8: Full inventory probabilities for varying in-
ventory levels

The rest of the steady-state probability distribution
can then be solved for using a recursive method [2]:

πS−i(S) =
P(D = i)

1− P(D ≥ S − i)P(D ≥ i+ 1)

×

(
1−

i−1∑
k=0

πk(S)

)

+
P(D ≥ i+ 1)P(D = S − i)

1− P(D ≥ S − i)P(D ≥ i+ 1)

×
S∑

k=S+1−i

πk(S)

πi(S) =
P(D ≥ S − i)P(D = i)

1− P(D ≥ S − i)P(D ≥ i+ 1)

×

(
1−

i−1∑
k=0

πk(S)

)

+
P(D = S − i)

1− P(D ≥ S − i)P(D ≥ i+ 1)

×
S∑

k=S+1−i

πk(S)

We can then use this distribution, an example of
which is shown in Figure 9, to find the service level
for various total inventory levels, see Figure 10. Con-
versely, if we set a service level, we could find a suit-
able inventory level.
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Figure 9: Stationary distribution
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Figure 10: Service level for varying inventory levels
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5 Methodology

5.1 Performance indicators

We evaluate the performance of each of the above
heuristics using the following Key Performance Indi-
cators (KPIs):
Surgery reschedule rate: the percentage of surg-
eries that has to be rescheduled because no possi-
ble combination of RMD trays that can be used for
that surgery is or becomes available within 120 min-
utes of the scheduled start time, or 30 minutes in
case of emergency surgery.
Alternative set rate: the percentage of non-
emergency surgeries for which a different combina-
tion of RMD trays is used than the one preferred.
Total inventory level: the sum of inventory levels of
all tray types.

5.2 Simulations

All simulations were run on the High-Performance
Computing (HPC) cluster of the Electrical Engineer-
ing, Mathematics and Computer Science (EEMCS)
faculty of the University of Twente. We ran an en-
semble of 30 identical simulations, parallelised over
as many CPU cores, in order to get decent confi-
dence intervals for our KPIs. Each simulation was
set up to simulate 728 days of hospital activity, not
including 42 days of ‘warmup’, meant to remove any
transient behaviour from the results. The resulting
data was then processed in order to obtain the re-
sults that we discuss in Section 6.

5.3 Overview of experiments

We performed various numerical experiments us-
ing the inventory levels prescribed by the following
heuristic configurations:

• Base scenario (current inventory levels)

• Fineman and Kapadia for mean, median and
busiest weekday, as described in Section 4.2.

• Base-stock for percentiles ranging from 50 to
95.

• Diamant et al. with 24 hour periods for service
levels from 10 to 99 per cent.

• Diamant et al. with 12 hour periods for service
levels from 92 to 99.99 per cent.

• Diamant et al. with 8 hour periods for service
levels from 92 to 99.9 per cent.

• Diamant et al. with 6, 4 and 2 hour periods for
service levels from 92 to 99.999 per cent.

6 Results

An overview of selected simulation results can be
found in Figure 11. Right away, we can see that
the performance of the different heuristics varies
quite significantly. The difference in performance be-
tween variants of the same heuristic also seems sig-
nificant. We discuss the performance of the individ-
ual heuristics in Sections 6.1, 6.2 and 6.3. Finally,
we comment on the differences between heuristics
in Section 6.4).

6.1 Base-stock heuristic

Table 1: Results for base-stock heuristic

total inv. reschedule rate alt. set rate

Base 2925 0.0376 ± 0.0006 1.196 ± 0.007

BS50 1614 0.214 ± 0.002 6.43 ± 0.02
BS60 1704 0.150 ± 0.002 4.72 ± 0.03
BS65 1757 0.114 ± 0.002 3.979 ± 0.015
BS70 1824 0.081 ± 0.002 3.03 ± 0.02
BS75 1898 0.0605 ± 0.0009 2.44 ± 0.04
BS80 1986 0.0511 ± 0.0010 1.942 ± 0.009
BS85 2092 0.0337 ± 0.0006 1.379 ± 0.014
BS90 2273 0.0329 ± 0.0007 0.869 ± 0.009
BS95 2713 0.0098 ± 0.0005 0.384 ± 0.007

As can be seen in Table 1 and previously shown
by Hosteins et al. [3], the base-stock heuristic per-
forms significantly better than the current inventory
policy at the Diakonessenhuis. Take, for example,
the BS85 instance - it has a lower reschedule rate
than the current level, while operating on approxi-
mately 28% less inventory.
As Figure 12a shows, inventory levels can safely be
lowered for many tray types whilemaintaining similar
overall performance by increasing the inventory in a
relatively low (approx. 10%) number of tray types,
mostly in less frequently used inventory (Cluster 1)
and inventory used in outpatient clinics (Cluster 2).

6.2 Fineman and Kapadia

Table 2: Results for Fineman-Kapadia heuristic

total inv. reschedule rate alt. set rate

Base 2925 0.0376 ± 0.0006 1.196 ± 0.007

FKmed 1217 2.070 ± 0.009 45.64 ± 0.03
FKmean 1216 2.054 ± 0.003 45.44 ± 0.03
FKmax 1228 1.859 ± 0.013 40.495 ± 0.018
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Three instances of the Fineman-Kapadia heuristic
were tested:

• FKmed based on median of the demand for
each day of the week.

• FKmean based on the average demand over
the entire week.

• FKmax based on demand on the busiest day
of the week.

As Table 2 shows, there is little difference between
the FKmed and FKmean instances, as one might
have expected. Interestingly, the FKmax heuristic
performs significantly better with only just over ten
trays more than FKmed and FKmean. Looking at
Figure 11, we can see that this improvement is in
line with the improvement shown by other heuristics
at similar inventory levels.

6.3 Diamant et al.

Table 3: Results for Diamant et al. heuristic
(4 hour period)

total inv. reschedule rate alt. set rate

Base 2925 0.0376 ± 0.0006 1.196 ± 0.007

D92 1369 0.635 ± 0.005 17.17 ± 0.04
D93 1380 0.565 ± 0.005 16.703 ± 0.018
D94 1402 0.511 ± 0.003 15.53 ± 0.02
D95 1432 0.397 ± 0.005 12.84 ± 0.04
D96 1453 0.315 ± 0.002 11.47 ± 0.05
D97 1480 0.2999 ± 0.0012 10.47 ± 0.03
D98 1549 0.251 ± 0.002 7.968 ± 0.019
D99 1652 0.1623 ± 0.0006 5.79 ± 0.02
D99.5 1774 0.0913 ± 0.0011 3.64 ± 0.04
D99.9 2086 0.0280 ± 0.0009 1.456 ± 0.016
D99.95 2243 0.0152 ± 0.0004 0.875 ± 0.014
D99.99 2756 0.0040 ± 0.0004 0.376 ± 0.010
D99.995 2900 0.0031 ± 0.0002 0.268 ± 0.008
D99.999 3510 0.0022 ± 0.0002 0.098 ± 0.005

6.3.1 Period comparison

As we touched upon before, the choice of period is
quite a critical one when using the Diamant et al.
heuristic. The results in Figure 11 demonstrate this
nicely: it is especially obvious how much worse the
instances with a 24h period perform when compared
to other periods. We see that the 2, 4 and 6 hour
period instances perform similarly when it comes to
reschedule percentage, with the 8 and 12 hour pe-
riods performing slightly worse. When it comes to
alternative set rates, the two hour period at points
performs worse than even the 24 hour period for
similar inventory levels, while the other periods all

seem to perform similarly. Given that the median
tray sterilisation time is 3 hours and 18 minutes, it
is no surprise that methods with periods that match
that closely generally perform well, since they most
closely conform to reality.

6.3.2 Overall performance

Table 3 shows the results for several instances of
the Diamant et al. heuristic with four-hour period,
with varying service levels ranging from 92% up to
99.999%. We can see that this performs very well.
Take, for instance, D99.9, which has slightly less
reschedules, but more importantly 40% less inven-
tory than the base scenario. Or take D99.999, which
has slightly less inventory, but less than one-tenth
the reschedule and alternative set rates of the base
scenario.

6.4 Comparison

6.4.1 Performance

When comparing heuristics, we look back to Section
1.3, where we specified that we were looking for ei-
ther
1) Reduction of required stock (at a similar level of
performance), or
2) Reduction of unavailability (at a similar inventory
level).
To compare with the first criterion, we look at Table
4, where we see that the Diamant heuristic with four
hour period and base-stock heuristic are very close
- compare, for example, BS85 and D99.9 4h, which
have similar total inventory and performance levels.
To compare for the second criterion, we look at Fig-
ure 11, where we see the Diamant heuristic with four
hour period outperform all others in reschedule rate,
while the 6 and 8 hour period Diamant heuristic seem
to perform better in alternative set rate. The base-
stock heuristic also seems like it would perform quite
well here, although our testing did not take it quite
up to the inventory level needed to state this con-
clusively. Finally, we note that we cannot properly
compare the Fineman and Kapadia heuristic with
the other heuristics - performance seems in line with
very low service levels for the Diamant heuristic, so it
does not meaningfully perform worse in that aspect
- it simply lacks the level of control that we have in
other heuristics, as we discuss in Section 6.4.2.

6.4.2 What makes a good heuristic?

When evaluating heuristics, we have to consider
more factors than how well the output performs. Af-
ter all, a heuristic with all-right performance and
short run times will more often than not be preferred
over one with excellent performance at the cost of a
significant amount of run-time. While run time is not
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Table 4: Comparison: similar performance level

total inv. reschedule rate alt. set rate

Base 2925 0.0376 ± 0.0006 1.196 ± 0.007

BS85 2092 0.0337 ± 0.0006 1.379 ± 0.014
BS90 2273 0.0329 ± 0.0007 0.869 ± 0.009

D99.99 2h 2125 0.0241 ± 0.0004 2.43 ± 0.04
D99.995 2h 2274 0.0150 ± 0.0004 2.24 ± 0.04
D99.999 2h 2881 0.0056 ± 0.0004 1.13 ± 0.04
D99.9 4h 2086 0.0280 ± 0.0009 1.456 ± 0.016
D99.95 4h 2243 0.0152 ± 0.0004 0.875 ± 0.014
D99.5 6h 2024 0.054 ± 0.002 1.78 ± 0.03
D99.9 6h 2404 0.0124 ± 0.0012 0.513 ± 0.011
D99 8h 2084 0.0414 ± 0.0007 1.14 ± 0.01
D98 12h 2241 0.0288 ± 0.0007 1.100 ± 0.014
D99 12h 2442 0.0203 ± 0.0007 0.644 ± 0.003
D91 24h 2538 0.0351 ± 0.0005 1.264 ± 0.007
D92 24h 2595 0.0246 ± 0.0007 0.998 ± 0.008

problematic for any of the heuristics that we discuss
here, there are certain factors that we must weigh,
namely control, complexity and insight, which we
discuss one by one:
Control: the proverbial number of dials that we can
turn in order to influence the final solution, allow-
ing the end user to make decisions, for example in
weighing off reschedule rate to total inventory levels.
Clearly, this is not the strong suit of the Fineman-
Kapadia heuristic, which does not allow its user any
real freedom to choose. The base-stock and Dia-
mant et al. heuristics both allow the user to tweak
some percentage - service level for Diamant et al,
demand percentile for the base stock heuristic. Both
these heuristics are therefore to be preferred over
the Fineman-Kapadia heuristic when it comes to con-
trol.
Complexity: how hard is it for managerial staff to
understand and implement? Clearly, the Fineman-
Kapadia heuristic is the easiest to comprehend - tak-
ing two basic properties and multiplying them is sim-
ple. The base-stock heuristic is also easy to un-
derstand for anyone who has had an introductory
course in statistics. The Diamant et al. heuristic is
harder to fully comprehend, using slightly more com-
plex concepts like discrete-time Markov chains. The
resulting formulas, however, could be understood
by someone who has had an introductory course in
statistics, similar to the base-stock heuristic.
Insight: what does this heuristic tell us about the na-
ture of our system? Sometimes, heuristics appear
to be arbitrary rules, that do not provide any insight.
Luckily, this is not the case for the heuristics we
have selected - each one tells us something about
the nature of the system. The Fineman-Kapadia
heuristic tells us that we must look at the demand
within one processing cycle, the base-stock heuris-

tic tells us that the distribution of demand matters,
and the Diamant et al. heuristic combines these con-
cepts to paint a more complete picture. With insight,
of course, often comes complexity, but also perfor-
mance. It is our task to weigh these factors against
each other, which we do in our concluding remarks
(see Section 8).

7 Extensions

7.1 Equalising demand

In Section 2.3.1, we discussed the variability of the
demand, and noted that it poses somewhat of a chal-
lenge for us. As an experiment, let us see what
might happen if we had full control over the distribu-
tion of demand over the days of the week. Clearly, it
would be best for us if we could spread out demand
as much as possible. To illustrate the potential im-
pact of scheduling changes, we ran a simulation with
the trays from the D99.95 (4h) instance and with the
demand for every weekday set to the mean. The
results can be found in Table 5. When demand is
equalised, the reschedule rate drops threefold, while
the alternative set rate decreases by an entire order
of magnitude, which tells us that there are potential
gains to be had in performance or inventory levels
when inventory levels are weighed in when schedul-
ing. Of course, this scenario represents an unfea-
sible extreme - we treat it merely for illustrative pur-
poses.

7.2 Tray grouping

As mentioned in Section 2.1, it can happen that a
different set of trays is used for a specific proce-
dure, which made us wonder if accounting for this
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Table 5: Results for the extensions

type total inv. reschedule rate alt. set rate

D99.9 4h normal 2086 0.0280 ± 0.0009 1.456 ± 0.016
D99.95 4h normal 2243 0.0152 ± 0.0004 0.875 ± 0.014

D99.95 4h equalised demand 2243 0.0051 ± 0.0004 0.0834 ± 0.0008
D99.95 4h grouping 2208 0.08488 ± 0.00013 7.412 ± 0.018

effect might allow for lower total inventory levels at
the cost of higher alternative set rates by computing
inventory levels for groups of ‘compatible’ tray types
together. One might question, of course, whether
this is a trade one would want to make - we endeav-
oured merely to find if it is in any way effective. This
required us to first develop some measure of ‘com-
patibility’ between tray types, based on limited data
and without the involvement of subject matter ex-
perts (SMEs). We had at our disposal a list of all
configurations of tray types that were used for each
kind of surgery during 28 weeks in 2021, from the
data acquired by Hosteins et al. [3]. Outpatient pro-
cedures use only one type of tray each, so these
were excluded. This list is structured as follows (ex-
cerpt from data for one of the surgery types):

[ [153], [148, 205], [205, 148], [148, 205], [148,
205], [148, 205], [148, 155, 153, 205], [148], ... ],

where each number represents a tray type. As we
can see, this list has not been deduplicated, allow-
ing us to find the relative frequency of each of the
configurations listed.
To obtain some measure of compatibility from this
data, we performed a series of steps that we detail
in Appendix A. Once we found a measure of com-
patibility between tray types, we set a threshold for
compatibility, and created a graph G where the ver-
tices represent tray types and edges are created be-
tween compatible (that is, compatibility above a cer-
tain threshold level, see Appendix A) tray types. In
this graph, we then find all the cliques. Starting at the
largest clique, we select cliques in such a way that
no two selected cliques have a vertex in common.
We then sum of the demand for all tray types in a
clique, and calculate the total inventory I for each
clique using the Diamant et al. heuristic with a ser-
vice level of 99.95% and a period of 4 hours. We
then distribute the total inventory over the different
tray types as follows: first, we calculate for tray type
t what fraction ft of the total demand for that clique
originates with this type. We then set the inventory
level of the tray type It to It = ⌊ft ·I⌋. If

∑
It < I, we

go down the list of tray types in decreasing order of
demand, increasing the inventory level by one, until
I =

∑
It.

The results of this grouping can be found in Table 5.
As expected, we see the alternative set rate increase

significantly. We also see the reschedule rate rise
significantly. A comparison with the results of the
Diamant et al. 99.9% (4h) results shows that a re-
duction of inventory level can be attained with much
lower loss of performance, whichmeans that we can-
not recommend this specific version of tray grouping.
We cannot rule out, however, that a similar scheme
may perform much better than we show here, given
our limited experimentation.

8 Concluding Remarks

8.1 Summary

In this report, we looked into the problem of finding
a heuristic for inventory levels of RMD trays. We
found that various techniques from traditional inven-
tory theory do not apply. We tried three heuristics
from domain-specific literature, and found that the
heuristic proposed by Diamant et al. [2] with a four-
hour period performs best. We found that the base-
stock heuristic proposed by Hosteins et al. [3] per-
forms remarkably well for its simplicity. The heuris-
tic based on the work of Fineman and Kapadia [1]
performs quite well relative to inventory level, but
lacks any semblance of control, thereby making it
unsuitable for our purpose. We also looked at two
extensions: demand equalisation and tray grouping.
Demand equalisation showed great potential for im-
proving performance at the same inventory level, or
reducing inventory levels at the same performance
level. We were not able to make tray grouping work
well.

8.2 Recommendations

For best results, the Diakonessenhuis should con-
sider using the heuristic from Diamant et al. with a
proper period, matched to the time it takes to ster-
ilise the RMDs to set new inventory levels. The
base-stock heuristic could also be used, if they pre-
fer trading some performance for simplicity. They
might also consider taking RMD inventory into ac-
count when planning surgeries, though further re-
search is needed in this area. They might also con-
sider looking critically at the number of different tray
types, to see if some types could not be consoli-
dated in order to make use of the pooling advantage.
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Some variation of the algorithm described in Section
7.2 could still be of use here to indicate where con-
solidation might be possible. If not, they should at
least investigate the tray types with zero demand, as
mentioned in Section 2.3.1.

8.3 Future research

There are several avenues of future research that
seem promising:
Firstly, research could focus on developing better
heuristics for the RMD tray inventory level problem.
One might, for example, create some kind of itera-
tive method based on discrete-event simulation that
updates the inventory levels after every run until they
converge to optimal values (though this would be a
computationally costly method). Secondly, research
could be done into weighing material constraints like
RMD tray inventory in the already complicated pro-
cess of operating theatre planning. Finally, more re-
search could be done on optimising the composition
of RMD trays (see for example van de Klundert et al.
[15]), which has the potential to drastically reduce
the number of required RMDs [16]. Of course

9 Reflection

While reflecting on the process of writing this bach-
elor thesis, the author was reminded of the old
adagium “Hindsight is 20/20”. Especially in the ex-
ploratory phase, much time was spent on ideas and
methods that, as it turned out later, were not worth
the effort. While some of this is a natural part of the
process, it is the author’s conviction that a significant
part of this could have been prevented, had he been
more thorough in his review of potential heuristics.
Looking back, one might also conclude that commu-
nication was not always timely, though this luckily
did not result in any major delays. These points are,
however, overshadowed by a certain sense of ac-
complishment, now that this report is complete. In-
stead of looking back, the author now wishes to look
forward, towards the coming year, when, God and
committee willing, he will be starting his master’s in
Applied Mathematics.
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A Tray grouping procedure

Here, we explain our procedure for grouping tray
types. We start with data from surgeries, where
for each surgery we have a list containing all tray
type configurations used during a certain time period.
We work out an example based on the following list,
taken from the data set:

[ [153], [148, 205], [205, 148], [148, 205], [148,
205], [148, 205], [148, 155, 153, 205], [148], ... ],

where each number represents a tray type. To get
from this list to some measure of compatibility, the
first step we take is to transform this list into a tree
structure, using Algorithm 1. First, we find the num-
ber of occurences for each tray type. The results can
be found in Table 6.

Table 6: Type counts for configuration list

Tray type Count

148 146
205 138
153 37
155 4
156 1
21 1

We then sort the trays in the configurations in de-
scending order of occurrence:

[[153], [148, 205], [148, 205], [148, 205], [148, 205],
[148, 205], [148, 205, 153, 155], [148], ... ]

We then add each of the configurations to a tree, as
described in Algorithm 1. The result can be found in
Figure 13.

ROOT

153 (3) 148 (146)

205 (129)

153 (24)

155 (2)

155 (2)

153 (5)

205 (9)

153 (5)

21 (1) 156 (1)

Figure 13: Tree generated from configuration list.
Key: Tray type (occurrences)
This tree is a compact representation of all the con-
figurations used in a given surgery. One can read
it as follows: starting from the root node, every step
along the tree adds a tray type to the configuration.
The number in parentheses indicates the number of
occurrences of the current sequence, including con-
figurations with more tray types. For example, going
from the root node down to 148, then down to 205
and finally to 153, we get the configuration [148, 205,
153]. Configurations including this sequence occur
24 times - this includes the two occurrences of [148,
205, 153, 155].
Besides giving insight into the frequency of various
configurations, the tree gives insight into which tray
types might be interchangeable - these are the types
which occur as sibling nodes (i.e., nodes that have
the same parent node) in this tree. Of course, if we
want to ensure that a tray type can be exchanged
for another quite frequently, we need to count both
when it occurs with other trays as sibling nodes and
when it does not - not only for one surgery (like in
this tree), but for all of them.
We now give an example of the application of Algo-
rithm 2. We first descend down the tree to (ROOT,
148, 205, 153). We note that this node has only one
child, and that it occurs here twice. Now that we
have counted these occurrences, we can remove
them from this child and its parent nodes (153, 205
and 148). This leaves us with the tree that can be
found in Figure 14.

ROOT

153 (3) 148 (144)

205 (127)

153 (22) 155 (2)

153 (5)

205 (9)

153 (5)

21 (1) 156 (1)

Figure 14: Tree after first count.
For simplicity, nodes with zero count are left out.
Key: Tray type (occurrences)
We now move up a level to (ROOT, 148, 205). We
note that this has two children: 153, occurring 22
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Algorithm 1 Tray configuration list to tree structure
Input:
list of tray configurations for a surgery C.

Output:
A tree T , where each node n ∈ T stores a tray type number and a counter.
A list Loccur containing the number of occurrences of each tray type.

1: Initialise an empty tree T with a root node nroot
2: Store the number of occurrences of each tray type in a list Loccur
3: for c ∈ C do:
3.1: Sort c by L in descending order
3.2: Set the current node ncurrent to nroot.
3.3: for tray type t ∈ c do:
3.3.1: If not present, add a child node nchild of n with tray number t and counter at 1 to T .
3.3.2: Else, increment the counter of the child node nchild by 1.
3.3.3: Set ncurrent ot nchild.

Algorithm 2 Counting co-occurences
Input:
Tree structure T , where each node n ∈ T stores a tray type number and a counter.
Number of total tray types N .

Output:
A sparse matrix Mconfig of size N ×N ,
containing the number of tray configurations in which trays co-occur.

A sparse matrix Moccur of size N ×N ,
containing the number of co-occurences of each combination of trays.

1: Initialise Mconfig and Moccur as N ×N sparse matrices.
2: Apply Subprocedure 1 to the root node nroot of T .

3: Subprocedure 1
Input: current node n ∈ T , root node nroot of T .

3.1: if n has children do:
3.2: for each child nchild of n do:
3.2.1 Apply Subprocedure 1 to nchild.
3.3: for each pair of children (n1, n2) in the children of n do:
3.3.1: Add 1 to Mconfig[t1, t2], where t1 and t2 are the tray numbers stored in n1 and n2, respectively.
3.3.2: Add the count of n1 to Moccur[t1, t2], where t1 and t2 are like in 3.2.1.
3.4 else do:
3.5 Recursively subtract the count stored in n from the count stored in each of its parent nodes,

excluding nroot.
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times, and 155, which occurs twice. We note that
we saw 153 and 155 occur together, subtract the oc-
currences as before, and move up a level to (ROOT,
148).

ROOT

153 (3) 148 (120)

205 (103) 153 (5)

205 (9)

153 (5)

21 (1) 156 (1)

Figure 15: Tree after second count.
For simplicity, nodes with zero count are left out.
Key: Tray type (occurrences)

Again, we note the occurrences of 205 and 153 at
the same level, and subtract the number of occur-
rences of 205 and 153 from those of 148. We move
over from (ROOT, 148) to (ROOT, 205) and note
that it has an ‘only child’ 153, and subtract its count
from the number of occurences of (ROOT, 205). Fi-
nally, we note all of the children of the root node and
their co-occurrences. Finally, of course, we move
up to the root node, repeating the same procedure
for each of its children as we have for the children of
148. In the end, we find matrices Mconfig containing
the number of tray configurations in which tray types
co-occur (Table 7) andMoccur containing the number
of co-occurences of each combination of trays (Table
8).

Table 7: Mconfig (all-zero rows/columns left out)

148 205 153 155 156 21

148 1 1 1 0 1 1
205 1 2 2 0 1 1
153 1 2 4 1 1 1
155 0 0 1 2 0 0
156 1 1 1 0 1 1
21 1 1 1 0 1 1

Table 8: Moccur (all-zero rows/columns left out)

148 205 153 155 156 21

148 12 12 12 0 12 12
205 4 107 107 0 4 4
153 3 22 35 1 3 3
155 0 0 2 4 0 0
156 1 1 1 0 1 1
21 1 1 1 0 1 1

We can now repeat this process for each type of
surgery, each time adding to Mconfig,Moccur and
Loccur. Using this data, we can define a number of
different measures of compatibility. We tried various
measures, and settled on the relative number of co-
occurences of each combination of trays (that is, ev-
ery column in Moccur divided by the list from Table
6, which we named Loccur in Algorithm 1). We set
a threshold of 0.8 for this metric, and used this to
create a graph as described in Section 7.2.

20




	Introduction
	Background
	RMD usage patterns
	Problem and Approach
	Report structure

	Problem formulation
	RMD usage
	Case study
	Tray demand
	The trouble with demand


	Literature review
	Inventory management and reverse logistics
	EOQ-based
	Wagner-Whitin-based

	Domain-specific literature
	Fineman and Kapadia
	Bijvank and Vis
	Diamant et al.

	Computer simulation approaches

	Heuristics
	Base-stock heuristic
	Fineman and Kapadia
	Diamant et al.

	Methodology
	Performance indicators
	Simulations
	Overview of experiments

	Results
	Base-stock heuristic
	Fineman and Kapadia
	Diamant et al.
	Period comparison
	Overall performance

	Comparison
	Performance
	What makes a good heuristic?


	Extensions
	Equalising demand
	Tray grouping

	Concluding Remarks
	Summary
	Recommendations
	Future research

	Reflection
	Tray grouping procedure

