
MSc Thesis Applied Mathematics

Understanding the
Performance of Hyperbolic
Graph Neural Networks

B.P. Petrov

Supervisors:
prof. dr. C. Brune
dr. C. Stegehuis

Committee member:
dr. Annika Betken

September, 2023

Department of Applied Mathematics
Faculty of Electrical Engineering,
Mathematics and Computer Science

Abstract

Hyperbolic graph neural networks (HGNNs) have been gaining prominence in the field of machine learning.
They have been shown to perform better than their Euclidian counterparts on a wide variety of datasets with
underlying hyperbolic geometry [1]. However, a persisting problem of HGNNs is the lack of understanding of
what exactly causes this performance gap, and thus in which specific cases their usage is recommended [2].
In this thesis we investigate the correlation between dataset properties and HGNN performance, in particular
by taking HGCN [1] and GCN [3] as comparable models. Experiments show that δ-hyperbolicity, specifically
δavg is a reliable indicator that HGCN will perform better than GCN on the given dataset, except when
the dataset used is very dense. In the latter case the degree distribution should be considered, and other
properties like clustering or Balanced Forman curvature do not give a good indication. Furthermore, our
experiments show that, when the underlying hyperbolic geometry is present, the HGCN is good at handling
noise in the graph structure, whereas the GCN benefits when noise in the features is present. The role of the
learnable curvature of the HGCN is investigated and appears to likely not relate directly to curvature in the
data. Lastly, experiments show that, when the given dataset is highly hyperbolic, the HGCN does very well
in case the embedding dimension is low and does not benefit greatly from a higher embedding dimension.
The GCN performs poorly when the dimension is low and improves steadily when the dimension increases.
On the other hand, when the dataset is not hyperbolic, both models perform very similar, but the HGCN
still maintains a slight edge when the embedding dimension is low.

2

Contents

1 Introduction 4

2 Background 5
2.1 Learning on graphs . 5

2.1.1 Basics . 6
2.1.2 Traditional features . 6
2.1.3 Shallow node embeddings . 7
2.1.4 Graph neural networks . 7

2.2 Hyperbolic geometry . 8
2.2.1 Riemannian geometry . 8
2.2.2 Hyperbolic space . 10
2.2.3 Hyperbolicity of graphs . 11

2.3 Hyperbolic graph neural networks . 13

3 Modelling 15
3.1 HGCN . 15
3.2 Modelling choices . 17
3.3 Random graph models . 19
3.4 Data statistics . 20

3.4.1 Basic measures . 21
3.4.2 Gromov’s δ-hyperbolicity . 21
3.4.3 Balanced Forman curvature . 22
3.4.4 Noise . 23

4 Experiments 23
4.1 Dataset properties and model performance . 24

4.1.1 Dataset statistics . 24
4.1.2 Model performance . 27
4.1.3 Robustness to noise . 28

4.2 Learnable curvature . 29
4.3 Embedding dimension . 30

5 Discussion 32
5.1 Research question 1: What properties of the dataset guarantee that HGNNs will perform

better than (Euclidian) GNNs? . 32
5.2 Research question 2: What role does the curvature play as a learnable parameter in the HGCN? 35
5.3 Research question 3: Can the performance gap between HGNN and GNN be compensated for

by increasing the embedding dimension of the GNN? . 36
5.4 General remarks . 36

6 Conclusion 37

A Hyperparameter configurations 42

B Curvature training plots 42

C Formulas for Riemannian manifolds and hyperbolic space 45

3

1 Introduction

Graph neural networks (GNNs) have in recent years become an important part of the AI field, as they have
been shown to be great tools for learning on graph data [4]. Their areas of application range from recom-
mender systems for movies to analysis of transportation networks to predicting protein-protein interaction
in the human body. This diversity comes from the fact that many real-world phenomena can be described as
graphs, creating many tasks for graph learning. And there is an equally diverse library of model architectures
that can be used for these tasks, just as there is a huge variety of models in deep learning as a whole [5].
This variety often leads to the common problem: which neural network architecture should be chosen for a
specific context?
Quite recently, GNNs have been combined with another recently growing field within AI: geometric deep
learning [6]. In this field, the goal is to create models that suit the underlying geometry of the data, what-
ever that may be. This could for example be spherical data (such as the omnidirectional vision of drones
[7]), or hyperbolic data. Hyperbolic deep neural networks allow for the embedding of data with hierarchical
structure into few dimensions [8]. The first neural network of this type was developed in 2018 in the form
of Hyperbolic Neural Networks [9], though there had been previous works utilizing hyperbolic geometry in
the context of machine learning [8]. Soon after, hyperbolic learning made its way to GNNs, resulting in so-
called hyperbolic graph neural networks, or HGNNs [2] (in this work we use HGNN to describe the general
framework hyperbolic GNNs, as opposed to Hyperbolic Graph Neural Networks [10], a paper describing a
particular HGNN architecture published in 2019).
The motivation for the use of HGNNs is straightforward: GNNs typically work by embedding the nodes of
a graph in Euclidian space. However, this poses problems when working with graph data with underlying
hyperbolic geometry, meaning hierarchical or tree-like structure [1]. The intuition behind this is the follow-
ing: consider the “volume” of a graph, which is number of nodes surrounding an arbitrary node of a graph,
within a given distance/radius. For trees, this volume grows exponentially with the radius. In contrast, in
Euclidian space a ball’s volume grows polynomially with the radius. This leads to high distortion in the
embedding, and requires more dimensions to embed in. On the other hand, in hyperbolic space the volume
increases exponentially with the radius, making it a good match for this problem. Thus, hyperbolic space
is much better suited for embedding hyperbolic data, and, as it turns out, many real-world datasets exhibit
properties of hyperbolic geometry [8]. Examples of this are human hierarchies, cell development processes,
and citation networks.
Based on this knowledge, researchers began creating hyperbolic graph neural networks, with one of the first
ones being Hyperbolic Graph Convolutional Networks (HGCN) [1] in 2019. HGCN is not the first model to
make use hyperbolic space for learning on graphs, but it is the first such deep model and thus the first to
capture node features in addition to the graph structure itself. All of this makes it an important milestone
in the field. In the years since then, many other models have been created around the HGNN framework,
such as Fully Hyperbolic GNN [11] and Hyperbolic-to-hyperbolic GNN [12], which improve on the technical
aspects of HGNNs. Furthermore, HGNNs have been used in a variety of tasks like recommender systems
[13] and algorithmic trading [14].

Despite the abundance of progress in HGNNs, there are several challenges that still persist. These are
formulated by Yang et al. [2] in a survey of HGNN architectures. Challenge I: Real-life data often exhibits
curvatures that are not constant but vary over the dataset, how can HGNNs leverage this? Challenge II: How
can the learning process be defined in hyperbolic space? Challenge III: Why does hyperbolic space perform
better in some cases? In which cases specifically are HGNNs guaranteed to perform better? Challenge IV:
How can HGNNs be made more efficient as to be feasible for large-scale datasets?
In this work we address challenge III, meaning why and in which cases HGNNs are superior. Specifically we
want to investigate in which cases HGNNs perform better than regular GNNs and why. Through this we
also tackle the larger problem in the AI sphere which is how to choose right model depending on the context.
Chami et al. [1] show that there are certain contexts where the HGCN performs better than (any) Euclidian
graph learning methods and concludes that this performance advantage can be determined by Gromov’s
δ-hyperbolicity. This is an important result but it leaves a lot of questions, for example: Is δ the only
property that can predict this difference in performance? What is the role of the learnable curvature? How
does the embedding dimension affect the performance?

4

This thesis investigates the following research questions (RQs) with respective subquestions:

RQ1: What properties of the dataset guarantee that HGNNs will perform better than (Euclidian) GNNs?

• Is the δ-hyperbolicity always a good indicator of this?

• Are there other dataset statistics that can predict this difference in performance?

• How does noise in the data affect the performance of HGNNs and GNNs?

RQ2: What role does the curvature play as a learnable parameter in the HGCN?

• Does the curvature converge during the optimization process?

• How does the curvature differ per layer in the neural network?

• If the learned curvature converges to a value, can this value be estimated by looking only at the
data?

RQ3: Can the perfomance gap between HGNN and GNN be compensated for by increasing the embedding
dimension of the GNN?

• Is the performance gap between the two models dependent on the embedding dimension?

• Can a high-dimension GNN embedding always perform better than a low-dimension HGNN em-
bedding?

Having an answer to the first research question would make it easier to decide whether to use a hyperbolic
model given only the dataset. The second research question could remove the need for setting the curvature
as a learnable parameter in the HGCN, instead making it possible to set the value before training based
on properties of the dataset. Finally, the third research question would further outline the use cases of
hyperbolic and Euclidian models, when a given embedding dimension is required. All of these together serve
to paint a paint a picture of what GNN model to use in different cases, as well as improving the understanding
of HGNNs as a whole.
This thesis proceeds as follows: Section 2 starts with a broad collection of theoretical background needed to
properly understand the HGNNs. This includes a review of learning on graphs where the basic functionality
of GNNs is presented. Then hyperbolic space will be investigated: What is hyperbolic space and how can
we work with it? How can we determine if a graph has underlying hyperbolic geometry? Section 3, the
modelling section, goes in detail into the mechanisms of the HGCN. Furthermore, in this section the datasets
to be used are introduced, along with several random graph models and dataset properties to be investigated.
Section 4 describes the experiments to answer the previously stated research questions. The thesis ends with
a discussion of the results in Section 5 and a conclusion in Section 6.

2 Background

The theoretical background of this thesis is split into two parts: learning on graphs, and hyperbolic geometry.
These two topics provide the theoretical foundation to hyperbolic graph neural networks, which are presented
as the last part of this section.

2.1 Learning on graphs

Learning on graphs is a wide field with many components. We briefly explain the basics and continue with
the main focus of this thesis, graph neural networks. Basics of graphs in general and basics on deep learning
are omitted. Furthermore, graph learning contains many advanced topics not addressed here, such as graph
augmentation methods, generative methods, spectral GNNs, knowledge graphs, and more. This subsection
is largely based on the “Machine Learning with Graphs” lectures by Jure Leskovec [15].

5

2.1.1 Basics

Many real-world contexts can be described using graphs, from which different applications arise. Molecules
can be described as nodes being atoms and links being the bonds between them, with application to drug
discovery as an example. Traffic networks with their locations and connections between them are also graphs,
and can be used to predict traffic on a given route. Social networks, as in people and any kind of social
relations between them, can be used to recommend new connections or predict attributes of a given person.
In fact any scenario where there are entities that interact or relate with each other can be described as a
graph where graph learning tasks can be formulated. Often scenarios where a graph describes a real-world
phenomenon, also provide rich node features that can be used in graph learning methods.
In graph learning the goal is usually to embed the nodes of a graph in some space, while preserving the data
structure. Preserving the structure means that nodes that are similarly connected in the graph are close to
each other in the embedding space. As an example of a task, the “average” of two nodes in the graph is not
defined, but embedding them in R2 makes finding the average trivial. The same holds for more elaborate
processes such as node classification, a common task for graph learning. Suppose we want to classify some
nodes of the graph, which we do by embedding them intoR2 and performing standard multiclass classification
there (Figure 1). If, for example, some of the labels in the left picture were unknown, we could use the right
picture to predict their class. In this example our operations are purely based on the graph structure, with
no extra information given by the nodes.

Figure 1: Example of embedding into 2 dimensions for node classification.

Another common task for graph learning is link prediction, meaning predicting between which nodes there
are links. There are different options for this. First the nodes are embedded in some space, then, in order to
predict whether a link exists between two given nodes, their embeddings are either concatenated or multiplied
using dot product, followed again by any usual classifier. There are also more elaborate options, such as the
Fermi-Dirac encoder, used in the HGCN [1]. Another possible task for graph leaning is graph classification,
which can be done for example by averaging node embeddings, or using an artificial fully connected node.
Other possible tasks exist, such as node clustering, graph generation, graph evolution, however these are not
of interest to this thesis.
Methods for learning on graphs typically leverage two things: the graph structure (connections between
nodes) and node features, which can be given in the data or induced from the graph itself. Learning
on graphs can be classified in transductive learning (methods that do not generalize to unseen data) and
inductive learning (methods that generalize to unseen data). The shallow methods described later in this
chapter are always transductive, whereas the deep methods may be inductive.

2.1.2 Traditional features

Traditional features are inferred from the graph structure. These can be node-level features, link-level
features, and graph-level features. Typical node-level features are degree, centrality (how important is a
given node in the graph, for which different measures exist), clustering coefficient (how connected are each
node’s neighbors, or counting the number of triangles a node is part of), and graphlets (a generalization of
clustering that counts structures other than triangles).

6

Link-level features are based on properties of pairs of nodes, and fall in three main categories: distance-based,
local neighborhood overlap (distance up to 1), global neighborhood overlap (whole graph). Graph-level
features are based on kernel methods, one simple example being the graphlet kernel: describe a graph as
counts of graphlets it containts (bag-of-graphlets). Once the kernel is computed, getting the similarity of
two graphs can simply be done by taking the dot product.
In more elaborate methods, such as graph neural networks, these traditional features are typically not directly
used, as the neural network itself can infer them.

2.1.3 Shallow node embeddings

Node embeddings are a way of mapping the nodes of a graph to points in some space, where we can perform
operations on them. This has to be done in a way that preserves the similarity of nodes: nodes that are
close together and/or similar in the graph should be close to each other in the embedding.
The simplest node embeddings are the shallow ones. These are limited in that they do not work on unseen
nodes (transductivity) and they do not capture structural similarity, they just compare neighborhoods.
They are an unsupervised method thus they are task independent. They also do not take into account node
features.
The main types of shallow embedding are: naive (based on adjacency in graph), neighborhood overlap, and
random walk methods, such as DeepWalk [16] and Node2vec [17]. In general, different models might perform
better or worse on different tasks so there isn’t a “best” embedding method.
It is also possible to embed an entire graph. Ways to do this are using some node embedding and summing
the embeddings, adding a virtual node that is connected to all other nodes, or by using an anonymous walk.

2.1.4 Graph neural networks

Graph Neural Networks (GNNs) are a deep node embedding method. They work using message passing:
iteratively updating the representations of nodes by exchanging information with their neighbors. In this
way, information is propagated through the graph in each layer of the neural network. There are three steps
in message passing: feature transformation (1), neighborhood aggregation (2), and nonlinear activation (3)
[1][2].

Feature transformation hℓ
i = W ℓxℓ−1

i + bℓ (1)

Neighborhood aggregation yℓ
i = AGG

(
hℓ

)
i

(2)

Nonlinear activation xℓ
i = σ

(
yℓ
i

)
(3)

Here ℓ is the layer to be computed, i is the index of the current node, W and b are the weights and bias
of the linear layer respectively, σ is the nonlinear activation function, and AGG is the aggregation method.
In fact, (1) and (3) are simply the steps that would be performed in a standard deep neural network, with
the addition being (2), the aggregation step. This step is crucial as it allows the propagation of information
within the graph, and it can differ greatly between different architectures. It must always be permutation
invariant, as the neighbors of a node are unordered (unlike a standard convolution in for example image
processing CNNs).
There are three main types of GNNs, determined by the aggregation mechanism [18]:

• Convolutional: weighed average of node features and node neighbor features, with predetermined
weights (such as average, sum, or max).

• Attentional: same as convolutional, but weights are learned by a MLP where the input is the concate-
nated features of two nodes, and the output is the weight between them.

• General: a general nonlinear function computes the incoming features from each neighbor, which are
then aggregated using standard convolution methods.

7

Figure 2: Message passing types, from left to right: convolutional, attentional, general [18].

The message passing mechanism determines the expressiveness of the model: general is more expressive than
attentional, attentional more expressive than convolutional. Naturally, the more expressive models are also
more computationally expensive, so a conscious choice of architecture always needs to be made with this
kept in mind.
There are a few important points to be made here. First of all, (1) and (2) are not completely separate in
the general message passing case. There, the features are transformed while taking neighbors into account.
However, in this work we will focus on the convolutional and attentional case, thus the structure of Equations
1-3 is perfectly valid for us. Furthermore, a small distinction can be made in the convolution mechanism,
depending on whether the node itself is taken into account or just the neighbors. In our work the node itself
is always taken into account.
To simplify the GNN model, we specify a variation of (2) which is (4), where N (i) is the set of neighbors of
node i.

yℓ
i = hℓ

i +
∑

j∈N (i)

wijh
ℓ
j (4)

The weights can either be predetermined or determined with attention, putting a GNN either in the con-
volutional or attentional category. In Graph Convolutional Neural Networks (GCN) [3] the weights are
uniform, whereas in Graph Attention Networks (GAT) [19]. These are two of the most commonly used GNN
architectures [4].
Other state-of-the-art GNN architectures are GraphSAGE [20], Simplified Graph Convolution (SGC) [21],
and Graph Isomorphism Networks, (GIN) [22]. GraphSAGE provides an alternative convolution method
where the node features are concatenated with the convolved features of its neighbors, instead of being
part of the convolution themselves. SGC is an alternative simplified architecture that has been shown to
perform much faster than other models without sacrificing prediction accuracy. Finally, GIN is a GNN that
is designed to be as expressive as the Weisfehler-Lehman isomorphism test. All of these models have been
shown to perform better on certain tasks but worse on others.

2.2 Hyperbolic geometry

Hyperbolic graph neural networks (HGNNs) are graph neural networks equipped with hyperbolic geometry,
which is part of the fields differential geometry and Riemannian geometry. Furthermore, data can exhibit
properties which are considered hyperbolic, making it suitable for HGNNs. In the following paragraphs,
these concepts are explained in order to give a basis for understanding HGNNs.

2.2.1 Riemannian geometry

For an in-depth introduction into the mathematical foundation of differential geometry the reader is referred
to ”Lectures on the Geometric Anatomy of Theoretical Physics” by Frederic Schuller [23]. Most concepts
in that series are not required for this thesis and are omitted: from logic (propositions, logical operators,
axiomatic systems) to set theory (Zermelo-Fraenkel axioms, equivalence, number spaces) to algebraic struc-
tures (groups, fields, algebras) to vector spaces (homeomorphisms, bases, tensors). All of these concepts
build the foundation of differential geometry but are not necessarily required to work with it. In this review
we present the minimum amount of theory that is needed to understand HGNNs. We start with topological

8

spaces and later adopt the structure and notation used in Chami et al. [1].
A topological space is a set of points with a topology, where the topology defines neighborhoods (open sets)
in the set. It can be seen as a generalization of metric spaces, where the closeness between points is defined,
without assigning a numerical value, or metric, to it. A topology needs to satisfy three conditions which are
omitted here.
A topological manifold is a topological space that is locally Euclidian, along with some other properties
that we omit. Locally Euclidian means that each point has a neighborhood that is homeomorphic to an
open subset of Euclidian space. The dimension of the Euclidian space defines the dimension of the re-
spective manifold. A trivial example of a topological manifold is the Euclidian n-space Rn, whereas a
more interesting example is the torus, the Cartesian product of two circles, which locally resembles R2.
Figure 3 shows how the torus can be embedded in 3-dimensional space, but it should be noted that this
“ambient” higher-dimensional space is not necessary and the torus exists purely as a 2-dimensional manifold.

Figure 3: The torus, a 2-dimensional (smooth) topological manifold.

Furthermore, a manifold is defined by maps from the manifold to Euclidian space called charts. There are also
transition maps that map from one charted set to another. In case these maps are infinitely differentiable,
the manifold is called smooth. For example, the previously described torus is a smooth manifold. From
now on we only consider smooth manifolds, the subject of the field of differential geometry, even when not
explicitly mentioned.
A key feature of manifolds are tangent spaces, which are commonly used to perform operations in HGNNs.
Consider a smooth manifold M, and a point x ∈ M. The tangent space of M at x is denoted as TxM
and the union of all tangent spaces of M is called the tangent bundle, denoted by T M. Tangent spaces
can be defined intrinsically without considering a higher-dimensional ambient space in which the manifold
is embedded, or extrinsically. Extrinsically means the tangent space is simply viewed as the tangent (hyper-
)plane to the (hyper-)surface at a given point, or equivalently the first order approximation of the manifold
around a given point. We adopt the extrinsic view as it fits our purpose and is easier to work with. Tangent
spaces are very useful because of their vector space structure. An important property of the tangent space
is that its dimension equals that of the manifold.
We further equip the manifold with a Riemannian metric. The Riemannian metric gives the manifold
a measure the rate of change, and thus the distance between points, as well as a norm. A Riemannian
manifold is thus a metric space. Using the Riemannian metric, Riemannian manifolds are also equipped
with curve lengths and geodesics (generalization of shortest paths). Formal definitions of these can be found
in Appendix C.
A crucial concept in differential geometry is that of curvature. Any formal definition of curvature is too
involved for this summary but intuitively it describes how much a manifold deviates from Euclidian space.
In Euclidian space, the curvature is 0 at any point. The curvature need not be constant over the whole
manifold, though in this thesis we only work with manifolds with constant curvature. A manifold with
constant positive curvature is called spherical, whereas a constant negative curvature means hyperbolic
space. Many of the properties of Euclidian space do not hold for curved spaces and need to be defined

9

properly. For more information on curvature in Riemannian manifolds we refer to Lee [24].
In Riemannian manifolds, points in the manifold can be mapped to any tangent space using the logarithmic
map logx : M → TxM, and vice versa using the exponential map expx : TxM → M, where x ∈ M. We
refer to these maps by log-map and exp-map, respectively.
Another concept that needs to be generalized to non-Euclidian space is that of translation, generalized to
parallel transport. The parallel transport Px→y : TxM → TyM transports a vector from the tangent space
of one point to that of another, or, more generally, it preserves the local curvature when moving along
a curve. In Riemannian manifolds parallel transport preserves the norm and the inner product with the
direction of movement. In Euclidian space this is trivial but in curved space it has to be carefully defined
and it can lead to unintuitive results.
For example, consider the globe as a spherical manifold. Suppose one is to stand on a point A on the
equator facing the north pole N, then proceed to walk first to N, then to another point B on the equator (far
away from A), then back to point A. This is to be done while only moving along geodesics (straight lines)
and without changing one’s orientation. Upon arrival back at A, one would find oneself facing a different
direction than the original one towards N, as shown in Figure 4. In fact, the angle between the starting
and final direction of view is proportional to the area of the triangle that the movement described. This
phenomenon is called holonomy and is one of many examples where curved space behaves differently from
Euclidian space.

Figure 4: Visualization of parallel transport on a spherical 2-dimensional manifold. The tangent
vector is transported from A to N to B to A, which results in some rotation.

2.2.2 Hyperbolic space

Having established the mathematical background of Riemannian geometry, we can now introduce hyperbolic
geometry that is the basis for HGNNs. In short, hyperbolic space is a Riemannian manifold with constant
negative curvature, along with being complete and simply connected, which is not something we will address
here.
There exist different models that all describe the same hyperbolic space, two famous ones being the Poincaré
ball model and the Hyperboloid model (also known as Minkowski model or Lorentz model) [8]. The two
other commonly used models are the Poincaré half-plane model and the Beltrami-Klein model, though they
are not used in this work. Both the Poincaré ball model and the Hyperboloid model have an intuitive
interpretation with advantages and disadvantages. The d-dimensional hyperbolic space according to the
Hyperboloid model is a hyperboloid surface embedded in Rd+1, whereas the d-dimensional Poincaré ball is
simply the unit ball in Rd. As Riemannian manifolds, both also have a metric, which we give in Appendix C,
along with other technical details of both models.
For the sake of visualization, we take d = 2, where we refer to the models as hyperboloid sheet and Poincaré
disk respectively. Figure 5 shows the relationship between the two models. The disk has radius 1 and its
center is at (0, 0, 0), and the hyperboloid sheet has its apex at (1, 0, 0), which is the origin of that hyperbolic
space. The two models are related by a simple geometric operation in R3: a point on the hyperboloid sheet

10

can be projected onto the Poincaré disk by drawing a line between the point and (−1, 0, 0). The intersection
of this line and the disk is the projected point, and this transformation works both ways. It should be noted
that the hyperboloid sheet stretches infinitely in all directions, whereas the Poincare disk contains the whole
infitite space inside the unit disk (it gets denser and denser the closer one goes to the boundary).
The Poincaré ball model has an advantage when it comes to visualizing points in the space, in particular
in the 2-dimensional Poincaré disk case. On the other hand, this model is less numerically stable than the
Hyperboloid model [1], likely due to points close to the boundary being hard to distinguish with machine
precision. This makes the Hyperboloid model the better choice for computational tasks. Furthermore, it is
a better tool for visualizing the tangent spaces, as they are simply the tangent planes of the curved surface,
in the 2-dimensional case.
For both models formulas are derived for distance, geodesics, tangent spaces, parallel transport, exponential
and logarithmic maps, as well as projecting to the manifold from an outside point. Formulas for mapping
between both manifolds and mapping between manifolds with different curvature also exist. All of these
formulas are listed with explanation in Appendix C. It needs to be kept in mind that basic properties
of Euclidian space often do not hold in hyperbolic space, meaning a lot of attention needs to be given to
elementary operations.

Figure 5: Two representations of 2-dimensional hyperbolic space, Poincaré ball (disk) and Hyperboloid
model [1].

2.2.3 Hyperbolicity of graphs

Hyperbolic space has been a well-researched concept for a long time, but only relatively recently it has been
used to embed data. This section contains an exploration of what it means for a graph to have underlying
hyperbolic geometry.
There is a clear reason why hyperbolic space is preferred for embedding hierarchical or tree-like data: it
expands similarly to tree-like data where Euclidian space does not [2]. It is well known that Euclidian space
expands polynomially, meaning if we take a point in Euclidian space and consider a circle with radius r
around it, the area AE of the circle increases polynomially with r, specifically AE(r) = πr2. In contrast,
hyperbolic space expands exponentially, with the area of a circle being AH(r) = 2π(cosh r − 1) (this is for
the case of curvature -1, a more negative curvature would mean faster increase).
We can quickly show a similar fact for graphs. Consider two graphs, a lattice/grid L and a tree T with a

11

constant branching factor, here we take the factor 3 (see Figure 6). Starting from a node in either graph,
we can count the number of nodes Â within a given distance r̂. It can be shown that ÂL(r̂) = 2n2 + 2n+ 1
and ÂT (r̂) = 1

2 (3
n+1 − 1), for the lattice and tree respectively. The important thing here is that in the

lattice the number of nodes within a given distance increases polynomially (in fact quadratically) with the
distance, and exponentially in the hyperbolic case. Euclidian space simply does not have enough space to
fit a tree. Based on this we can say that hyperbolic space is better for fitting tree-like and hierarchical data
(which is also tree-like). We can further state can trees can be thought of as discrete hyperbolic spaces, or
hyperbolic space as a continuous tree [25]. In a similar way, we can say that grids are Euclidian and cliques
are spherical [26], though we will not go into these types of graphs.
The previous explanation gives a good intuition of why this is, whereas for a more technical approach we
refer to [25]. For another visualization of this disparity, as well as a formal proof of the distortion in Euclidian
space, we refer to [27].

Figure 6: Expansion of a grid (left) and a tree (right). Nodes visited after 1 step are colored in red.

In short, trees are most suitably embedded in hyperbolic space. In fact it has been shown that a tree can
be embedded in hyperbolic space with arbitrarily low embedding distortion even in low dimensions [28].
However, networks appearing in the real world are rarely exactly trees, which is why a measure of tree-
likeness is useful. The most common one is Gromov’s δ-hyperbolicity [29], which measures how tree-like
a graph is by using its shortest paths. The δ-hyperbolicity is given by Definition 1 and is computed by
iteratively sampling 4 points of the graph and calculating their δ value. This is necessary as calculating the
value for all possible quadruples of points becomes infeasible for large graphs. Thus the maximum δ over
some number of samples is usually taken and the graph is considered δ-hyperbolic.

Definition 1 Let G be a graph with node set V, and let ℓ(x, y) be the shortest path distance between nodes x
and y. G is δ-hyperbolic if for any nodes a, b, c, d ∈ V, ordered such that ℓ(a, b)+ ℓ(c, d) ≥ ℓ(a, c)+ ℓ(b, d) ≥
ℓ(a, d) + ℓ(b, c), the following condition holds:

(ℓ(a, b) + ℓ(c, d))− (ℓ(a, c) + ℓ(b, d)) ≤ 2δ

δ-hyperbolicity is actually a measure for infinite graphs, measuring how the δ value increases as the graph
increases. For trees, this value is constant, regardless of size, whereas for grids it increases with the size of
the grid. It is this relationship between size and δ that determines hyperbolicity. However, for large graphs
it is also a valid metric [29].
A 0-hyperbolic graph is exactly a tree, and in general low δ means the graph is close to a tree. It should be
noted that cliques are also 0-hyperbolic but this and other examples will be discussed later.

12

Tree-likeness is not the only property associated with hyperbolicity of a graph. Common properties are
heterogeneous/power-law/right-skewed degree distribution (PL), high/strong average clustering (HC), clus-
tering inversely proportional to degree (IP), tree-like/close to a tree (TL), small-world/small diamater/short
longest paths (SW). The correlation between various combinations of these properties has been studied [30].
Networks with PL are called scale-free. In scale-free graphs, low-degree nodes are called tail nodes, whereas
high-degree nodes are called high-end nodes. Another class of graphs, hierarchical, is actually a description
of real-world datasets, which have then been shown to exhibit certain properties: PL, HC, IP, TL [25].
Clearly, hierarchical graphs are scale-free, but the distinction comes from the fact that scale-free graphs may
have clustering independent of node degree, which is not the case for hierarchical graphs. Furthermore, the
concept “underlying hyperbolic geometry” refers to the same properties as hierarchical graphs. Thus we use
hierarchical graphs and graphs with underlying hyperbolic geometry interchangeably. Both scale-free and
hierarchical graphs have been shown to appear frequently in the real world and to exhibit high distortion in
Euclidian embeddings [1], which is why it is important to consider them.

2.3 Hyperbolic graph neural networks

Having introduced the fundamentals of graph neural networks and hyperbolic geometry, we can continue
with hyperbolic graph neural networks (HGNNs). We start with a history of the concept, listing major
publications on hyperbolic learning in general but focusing on graph neural networks. Based on this search,
we will summarize if and how each of our research questions has been addressed in literature.
A very early example of embedding data in hyperbolic space is Geographic Routing Using Hyperbolic Space
[31], published in 2007, though the first exaple of graph embedding in hyperbolic space are Poincaré Em-
beddings [32], published in 2017. Poincaré embeddings are however only shallow embeddings and it should
be noted that they are not the first examples of learning on Riemannian manifolds [33].
Various improvements have been made to shallow hyperbolic embeddings (for example introducing Lorentzian
embeddings [34] which added the Hyperboloid/Lorentz model), but more importantly the first deep learning
method that utilizes embedding in hyperbolic space is Hyperbolic Neural Networks, published in 2018 [9].
This work is considered pivotal for this field as it was the first to generalize neural network operations to
hyperbolic space, specifically for MLPs and recurrent neural networks.
Based on HNN, hyperbolic geometry was applied into other deep learning architectures: convolutional neural
networks [35], transformers [35], variational autoencoders [36], and graph neural networks [1]. Peng et al.
[8] summarizes the major developments of the various branches of hyperbolic learning.
The first graph neural networks utilizing hyperbolic space are Hyperbolic Graph Neural Networks [10] and
Hyperbolic Graph Convolutional Networks [1], both published in 2019. These were developed in parallel
and have some differences in technical details and application area. Specifically, Hyperbolic Graph Neural
Networks are for graph classification and HGCN is for link prediction and node classification. In short, these
models work by considering each layer of the GNN as a hyperbolic space, as opposed to the Euclidian space
used by most GNNs. In the modelling section we will go into the mechanisms of the HGCN but for now it
is important to note that the operations in hyperbolic space that these models are built on are performed
in tangent spaces.
Since then, these two models and the ones developed after them have been adapted to many specific types
of networks, most notably knowledge graphs [37][38], recommender systems [13][39], and dynamic graphs
[40][41].
Furthermore, some flaws were recognized in these first HGNN models, which have been addressed since.
First, HGNNs were generalized to positive or negative curvature with κGCN, also called Constant Curva-
ture GCN (2019) [27]. Furthermore, Chen et al. [11] proved that operations in the tangent space are only
an approximation and do not lead to optimal results. This was addressed by models that perform their
operations on the manifold: H2H-GCN [12], Lorentzian GCN [42], Fully-HNN [11] (all in 2021). Another
limitation is that real-world data often does not have homogeneous curvature. This was addressed by GIL
(Graph geometry Interaction Learning (2020) [43], where the embedding is done in Euclidian and hyperbolic
space simultaneously. Similarly, mixed-curvature GNNs (2021) [44] embed data in a product of spaces of
different curvatures. Most recently, κHGCN [45] (2022) attemps to include heterogeneous curvature in the
models by calculating the Ricci curvature of each edge. Fu et al. [46] claims that curvature as hyperparam-

13

eter (as in κGCN) or learnable parameter (as in HGCN) does not produce optimal results. This is fixed by
performing adaptive curvature exploration using reinforcement learning in a new model called ACE-HGNN.
Some attempts to go beyond Riemmanian manifolds have been made by Ultrahyperbolic NN (2021) [47] by
embedding in pseudo-Riemannian manifolds, as well as trivial bundle embeddings (2021) [48]. Lastly, some
papers develop completely new mechanisms for HGNNs, such as Hyperbolic Laplacian features [49], text
enriched HGCN [50], adaptive frequency-based HGNN [51], MST-HGCN [52] (all in 2022).
The previous list is restricted to papers published before 2023. That being said, our literature research
revealed that all papers on HGNNs released in the first half of 2023 fall within one of these categories. Thus
this is an exhaustive list of general directions for new HGNN models.
Yang et al. [2] is a great resource summarizing most HGNN architectures, down to fine differences in
mechanisms. They also list persisting problems with them. In short these problems are the presence of
heterogeneous geometry of real-world data, the lack of purely hyperbolic optimization methods, the lack of
understanding of why and when HGNNs are beneficial, and lack of scalability of hyperbolic models. Most
of the papers listed previously attempt to fix one or more of these problems, though they are largely still open.

Next we investigate in how far our research questions have been addressed in the previously mentioned
literature. First, we look at measures of hyperbolicity that are used to predict or explain model perfor-
mance. Some papers only use datasets with known high hyperbolicity, where something is already known
about the data (for example trees or pure hierarchies [10]), whereas others distinguish their datasets based
on some measure. There does not seem to be a consensus on the best measure to use, though δ-hyperbolicity
appears to be the most common by far. It is used by the majority of HGNN papers, including the HGCN
[1] and papers that build on it.
As a variation of this, the average δ, called δavg can be used, where instead of taking the largest found
value, the average over all samples is taken. Zhang et al. [42] uses this metric, as well as Tifrea et al. [53],
the latter of which scales this value based on the size of the graph. Furthermore, Zhu et al. [43] looks at
the distribution of the δ-curvature (of largest connected element without sampling). The motivation behind
using these alternative measures is to surmount the limitations of standard δ-hyperbolicity, which will be
addressed later in this thesis.
Traditional graph features associated with hyperbolicity are also often looked at, such as network size, de-
gree distribution (often the power of the power-law of the degree distribution) [54][55], average degree [56],
clustering coefficient [54]. Density is often considered when working with recommender systems, though
sometimes also for more general application [50]. However, it needs to be kept in mind that density does
not have any theoretical connection to hyperbolic geometry.
In some papers, completely different measures are introduced and used. A measure of sectional curva-
ture/parallelogram rule [38][27]. On the other hand, assortativity is a measure used in trivial bundle em-
beddings [48], though this is not actually an HGNN.
With some slight variations, these are all the measures used in HGNN literature to determine hyperbolicity
and thus predict the performance of the respective HGNN. In general, most research agrees that hyperbolic
models are better for data with underlying hyperbolic geometry, though some claim that Euclidian models
are sometimes more useful [57]. Furthermore, there does not seem to be serious study on the robustness to
noise of HGNNs.
As far as the second research question goes, concerning curvature as a learnable parameter, we do not have
as many sources to look into. A lot of HGNN architectures simply set the curvature as a hyperparameter
[10]. Chami et al. [1] prove that the layers of the GNN are equally expressive regardless of curvature, but
changing curvature can make the whole model more numerically stable. In fact, they show that the accuracy
of the model is directly influenced by the value of the layer curvature. One of the later works, ACE-HGNN
[46], shows that this way of setting the curvature as a learnable parameter is not optimal, instead opting to
use reinforcement learning to achieve the same thing, leading to better results. This is however a completely
different mechanism and does not help answer our research question. Thus the only known results about
learnable curvature come from Chami et al.
Concerning the effects of the embedding dimension on model performance, the majority of research agrees
that HGNNs are most beneficial for low-dimensional embedding [10]. This means that at low embedding
dimension, HGNNs perform significantly better than Euclidian GNNs, whereas at high embedding dimension
the two types of models are comparable in performance. This trend has been identified when the dataset is

14

hyperbolic, but it appears that it has not been investigated what the results looks like when the data is not
hyperbolic.

3 Modelling

This section starts with an in-depth view of the HGCN architecture. Then we will explain the modelling
choices like benchmark models, datasets, and hyperparameters. Finally, three random graph models are
introduced, as well as dataset statistics related to hyperbolicity.

3.1 HGCN

The Hyperbolic Graph Convolutional Network (HGCN) [1] is an HGNN model, which introduces hyperbolic
geometry to a GNN. There are several challenges addressed by the HGCN: How to use Euclidian features for
hyperbolic operations? How to do the aggregation of the features in hyperbolic space? How to choose the
curvature for the hyperbolic space (for each layer)? All of these questions are trivial (or non-existent) for
regular/Euclidian GNNs but it is not obvious how to translate them to the hyperbolic case. More concretely,
the HGCN needs to redefine the core operations of a graph neural network (1), (4), and (3) (specifically
those of the GCN that it is based on), to satisfy these goals .
In this section we introduce the superscript E to signify the respective point lies in Euclidian space. For
hyperbolic space we will use the superscript H , and, where needed, the curvature −1/K will be indicated
with a superscript K , with K > 0.
Before defining the message passing operations, features must be mapped hyperbolic space, as they are
usually Euclidian. This is done by considering them as vectors in the origin tangent space, and using the
exponential map to map them to hyperbolic space. The formula for the exponential map can be found in
Appendix C.
In Euclidian GNNs the feature transformation step is a simple matrix multiplication and vector addition
(1). However, this vector structure does not exist on the hyperbolic manifold, thus the authors opted to use
the tangent space for its vector structure. Other options are possible including performing the operations
directly on the manifold, which should lead to more precise results at the cost of computational power.
Thus the necessary operations are redefined as (5) and (6), where W and b again simply represent the
weights and bias of the layer, respectively. Clearly, both operations are dependent on the manifold curvature
of the layer. Here the superscript ℓ is omitted but it is implied that all the embeddings here are in the same
layer.

W ⊗K xH := expKo

(
W logKo

(
xH

))
(5)

xH ⊕K b := expKxH

(
PK
o→xH (b)

)
(6)

In (5) we log-map down to the tangent space of the origin, where we perform the multiplication, followed by
mapping back up to the manifold with the exp-map. In (6) we consider b as a vector in the origin tangent
space, which we parallel transport to the tangent space of the point we are trying to add it to. Then we
exp-map it up to the tangent space.
The HGCN is equipped with different options on how to perform the neighborhood aggregation. The most
basic method is convolution, which can be done either in the local tangent space of the point, as in (7), or
in the origin tangent space. As in a regular GCN, the weights wij of the averaging are uniform. Here as
well layer indication is omitted. In (7), as opposed to the Euclidian case (4), the node itself disappears in
the convolution, as log-mapping it to its own tangent spaces simply gives 0.

AGGK
(
xH

)
i
= expKxH

i

 ∑
j∈N (i)

wij log
K
xH
i

(
xH
j

) (7)

The other option is to use attention, meaning the weights are learned as in (8). This simply means that to
find the weight wij to be used for the respective aggregation, the embeddings of each point in the current

15

layer are log-mapped to the origin tangent space and concatenated. This concatenation is then fed to a
separate multi-layer perceptron, followed by a softmax over all neighbors.

wij = SOFTMAXj∈N (i)

(
MLP

(
logKo

(
xH
i

)
∥ logKo

(
xH
j

)))
(8)

In summary, there are two choices to be made in aggregation: basic convolution or attention; aggregation
on local tangent space or origin tangent space.
The HGCN must also define an activation function. Aside from the usual purpose of the nonlinear activation
function, in the HGCN it has another goal: to transform the curvature between the layers. In the HGCN
each layer can have its own curvature, thus the embeddings need to be transformed between layers.

Given hyperbolic curvatures −1/Kℓ−1,−1/Kℓ at layer ℓ − 1 and ℓ respectively, we will use σ⊗Kℓ−1,Kℓ
to

denote the activation between them (9).

σ⊗Kℓ−1,Kℓ (
xH

)
= expKℓ

o

(
σ
(
logKℓ−1

o

(
xH

)))
(9)

This process consists of taking a point and log-mapping it down to the origin tangent space ToHd,Kℓ−1 ,
applying the Euclidean non-linear activation σ, and then exp-mapping it up to Hd,Kℓ . This is possible
because the origin tangent spaces for hyperbolic spaces with different curvature are the same, so it can be
used as a bridge between the layers.
The layer curvature mentioned previously can be set to a desired value, which can affect model performance.
However, it can also be set as a learnable parameter in the neural network. This has been shown to lead to
better results in most cases, even though the expressive power can be shown to be the same regardless of
curvature. This is on the one hand due to machine precision, and on the other hand because the norms of
hidden layers vary according to curvature [1]. This means that if a bad value is chosen for the curvature,
despite the same expressive power, the optimal weights of the layer may be very large or very small. Thus,
it can lead to computational issues.
For the node classification task, the output of the last HGCN layer is mapped to the tangent space of
the origin with the logarithmic map. There, Euclidean multinomial logistic regression can be done. An
alternative approach would be to directly classify points on the hyperboloid manifold using the hyperbolic
multinomial logistic loss. This method has been shown to perform similarly to the previous one, so the
choice is made to not use it [1].
For link prediction, the Fermi-Dirac decoder is used (10), a generalization of the sigmoid to hyperbolic space
[25].

p
(
(i, j) ∈ E | xL,H

i ,xL,H
j

)
=

[
e

(
d
KL
L (xL,H

i ,xL,H
j)

2−r
)
/t
+ 1

]−1

(10)

The result is the probability of a link between xi and xj , with r and t being tunable parameters. The neural
network is trained to optimize using cross-entropy loss using negative sampling, meaning the negative class
(pairs of node without an edge between them) is undersampled in order to match the positive class.

Summary

Putting everything together, we end up with the following sequence of operations taking place in the HGCN.
First, points are mapped to hyperbolic space. Then, a number L of hidden layers follows, each with 3 core
operations (11), (12), and (13).

hℓ,H
i =

(
W ℓ ⊗Kℓ−1 xℓ−1,H

i

)
⊕Kℓ−1 bℓ (11)

yℓ,H
i = expKxH

i

 ∑
j∈N (i)

wij log
K
xH
i

(
xH
j

) (12)

xℓ,H
i = σ⊗Kℓ−1,Kℓ

(
yℓ,H
i

)
(13)

Finally, the embeddings of the final layer (xL,H)i∈V are used for node classification by mapping down to
the origin tangent space and performing Euclidian classification, or link prediction by using the Fermi-Dirac

16

decoder.
In practice, an extra step of projecting the new point onto the manifold or onto the tangent space is done
to ensure numerical stability. However, this is not necessary when using the Poincaré ball model.

3.2 Modelling choices

There are several choices to be made for the modelling of this thesis. As a foundation we use the code provided
by Chami et al. [1] as it provides a vast and proven library of models, datasets, tasks, and hyperparameters.

Architecture

As benchmark models to the HGCN, Chami et al. use a selection of shallow, deep, Euclidian, hyperbolic,
MLP, and graph models. The shallow models include Euclidian graph embedding, as well as its hyperbolic
counterpart, Poincaré embedding [32]. As shallow methods, these cannot incorporate node features, thus
so-called “mixed” versions of those are also used, where node features are simply concatenated to the shallow
embedding.
For standard models the options are a multi-layer perceptron, as well as its hyperbolic counterpart, the HNN
[9]. These methods make use of node features but not of the graph structure.
Lastly, state-of-the-art GNN models are provided, the main limitation of which is not using hyperbolic space.
These are the previously mentioned GCN, GAT, GraphSAGE, and SGC.
We choose the GCN as a comparison model. We want the two models to be compared to have as similar
structure as possible, differing only in the use of hyperbolic space. An alternative approach would be to use
the HGCN with attention and the GAT. However, the attention mechanism is not the focus of this work, and
it significantly increases the training time for experiments, so we opt to use the HGCN without attention,
and the GCN. Other methods like GraphSAGE and SGC that differ in technical details are not interesting
when studying the effects of hyperbolic geometry.

Datasets and task

The HGCN has been benchmarked on 5 datasets, which are also often used to benchmark GNN architectures.
We will use all the ones that are provided in the implementation, meaning with the notable absence of the
Human PPI dataset from the original paper, as well as a different version of the Disease dataset, called
Disease-LP (for link prediction) [1]. A detailed overview of these datasets is given in Table 1. As task we
take link prediction, as it is applicable even when the nodes are not classified.
Furthermore, we will use a a dataset called Road, a road network, as an example with clear non-hyperbolic
geometry. We know that no hyperbolic geometry is present as the graph is essentially already embedded
in R2. To extract this dataset we use OpenStreetMaps, which is commonly used for this purpose [58]. We
extract the road network of Enschede, Netherlands by taking a square around the city center with side
10km, resulting in a graph with comparable size to the others (Figure 7). In this dataset the node features
are simply the geographic coordinates of each node (road intersection), and we ignore the provided edge
features (number of lanes, speed limit, etc). We do not introduce node classes since the only task will be
link prediction.

Hyperparameters

There are many hyperparameters to be chosen for the experiments. The implementation of Chami et al. [1]
provides their found hyperparameters for some datasets and models, most importantly for the HGCN. We
use those as a starting point and make changes where necessary.
First we discuss the geometry-related hyperparameters. As a hyperbolic model, the Poincaré ball will be
used, and the aggregation will done in the origin tangent space as opposed to the local tangent space. The
attention mechanism will not be used as to make the HGCN directly comparable to the GCN. Unless stated
otherwise, the curvature of each layer will be set as a learnable parameter. For the Fermi-Dirac decoder
parameters we always use the default r = 2 and t = 1 [1].

17

Dataset Description δ
Disease Simulated disease spreading 0
Airport Airline routes 1
Pubmed Citation network for medicine publications 3.5
Cora Citation network for machine learning publications 11
Road Road network of Enschede 20

Dataset Nodes Edges
Disease 2665 Agent 2664 Infection
Airport 3188 Airport 18631 Route exists
Pubmed 19717 Publication 88651 Citation
Cora 2708 Publication 5429 Citation
Road 5160 Road intersection or endpoint 7009 Road

Dataset Features Classes
Disease 11 Susceptibility to disease 2 Infected or not
Airport 4 Long., lat., alt., GDP of country 4 Country pop. (4 bins)
Pubmed 500 Presence of dictionary words 3 Academic subarea
Cora 1433 Presence of dictionary words 7 Academic subarea
Road 2 Coordinates - -

Table 1: Datasets to be used in experiments.

As far as the neural network hyperparameters, the following have to be chosen: learning rate, weight decay,
dropout, number of hidden layers, and activation function. Chami et al. report performing a hyperparameter
search over all of these, so we use their results as a starting point. We simplify the search by picking ReLU
as the activation function, and setting the number of hidden layers to 2, to make all experiments comparable
to each other and to the experiments of Chami et al. (there the number of layers is also always chosen to
be 2, with 16 neurons each, presumably for the same reason). Normalization of the features is done before
training.
Dropout is done in the form of DropConnect, which is a generalization of dropout [59]. In dropout, nodes
in the neural network are randomly ignored to prevent overfitting. In DropConnect, actual connections are
dropped instead of nodes. This is necessary since dropout itself cannot be directly used on the HGCN due
to the curvature in the hidden layers, whereas the weights themselves are in Euclidian space.
The optimizer used is Adam. Note that a special optimizer like RiemannianSGD is not needed for the
HGCN since the neural network parameters are all in Euclidian space. The method is batch gradient
descent, meaning the whole dataset is used in every optimizer step.
Having chosen the number and size of hidden layers, as well as the activation function, this leaves learning
rate, weight decay, and dropout to be chosen. For learning rate we consider the values 0.001 (low), 0.01
(medium), and 0.1 (high); for dropout we consider 0.0 (none), 0.2 (low), and 0.5 (high): for weight decay
we consider 0.0 (none), 0.0001 (low), and 0.001 (high).
We use the following procedure to find optimal hyperparameters. The respective model is trained and
evaluated on the validation set for 5 runs with different initial (random) weights. We try to achieve a)
high average validation accuracy, b) consistency between runs (in both accuracy and epochs before early
stopping), and c) smoothly decreasing loss. Observing all three of these should ensure that the chosen
hyperparameters are suitable.
First, the best learning rate is picked without any dropout or weight decay. After this, with the set learning
rate, the best dropout value is found. Finally, with the found learning rate and dropout values, the best
weight decay value is found. There are more involved methods of finding optimal hyperparameters, but this
suffices for this thesis.
Furthermore, we use a data split of 85/5/10% for training/validation testing. This split is not changed
between runs. The evaluation is done using the ROC AUC, the area under the ROC curve. A value of 1

18

Figure 7: Road dataset. Each red point is a road interstection, and is plotted in accordance with its
given geographic coordinates.

indicates a perfect prediction, 0 a completely wrong prediction. In this work “accuracy” is sometimes used
interchangably with ROC AUC, and the ROC AUC may be given scaled as a percentage (i.e. 90.0 instead
of 0.9).
The number of training epochs is 5000 but early stopping is done based on the validation set with patience
of 100 epochs. This means that if the ROC AUC on the validation set does not improve in 100 consecutive
epochs, early stopping occurs. In practice early stopping occurs almost always, so we can also take the
number of epochs before early stopping into consideration. The patience may be adjusted if necessary,
though this should be avoided as it might make the results less comparable to each other. Lastly, we may
make use of a learning rate scheduler, though the Adam optimizer already adjusts the learning rate of each
parameter so this might not be necessary.
Appendix A contains the found optimal hyperparameters for each dataset. We omit the specifics of finding
these, though one observation should be made. Regardless of hyperparameters used, training the GCN on
the HRG dataset always has a large variability between runs. This shows an element of randomness in this
model, specifically on this dataset, which can likely be attributed to the model space not being suitable
(Euclidian space for hyperbolic data).

3.3 Random graph models

We introduce three random graph for which something is already known about the underlying geometry.
In experiments we use same random seed for generating these, effectively making each a unique dataset.
The stochastic block model (SBM) [60] creates blocks of nodes of given sizes. Every pair of nodes connects
independently with some given in-block or between-block connection probability. We opt to use high within-
block and low between-block connection probabilities, resulting in close communities and a dense graph,
as shown in Figure 8. For experiments we will use the same parameters as Figure 8 with the block sizes
multiplied by 10. Regardless of any properties we might find with experiments, the SBM should not have
any underying hyperbolic geometry. It is not tree-like and the degree distribution is very homogeneous,
though there is some clustering present.

19

Another model with a similar structure is the Lancichinetti–Fortunato–Radicchi benchmark (LFR) [61].

Figure 8: Example of graph generated by the stochastic block model. Block sizes are 10, 12, 14,
and 16. Within-block connection probabilities are between 0.8 and 0.9. Between-block connection
probabilities are between 0.02 and 0.1.

It exhibits the same community structure as the SBM but it ensures heterogeneous degree distributions,
making it more comparable to real-world hierarchical datasets. It is created by specifying the power of the
degree distribution τ1, the power of the community size distribution τ2, the intra-community connection
probability µ, as well as some parameters constraining the degrees. We will use the same parameters as in
Figure 9 with 1000 nodes. This dataset is similar to the SBM in structure, with the notable addition of
heterogeneous degree and block distributions, making it closer to a scale-free network.
Lastly, we consider hyperbolic random graphs (HRG) [62]. These are generated directly based the on principle
of underlying hyperbolic geometry [25]. In short, points are produced on the unit disk with uniform angular
probability and exponential radial probability (high probability of being anywhere close to the edge of the
disk, low probability of being close to the center). Then, points are connected which are close to each other
in terms of hyperbolic distance. Aside from exhibiting a power-law degree distribution, high clustering, and
small diameter, HRGs come with hyperbolic coordinates for each node, laying on the Poincaré disk.
This graph model also comes with tunable parameters. α controls the power of the degree distribution and
thus the magnitude of the underlying curvature. The power is calculated by 2α+1, with α ranging from 0.5
to 1. T is the temperature controlling the edge generation. With temperature 0, only nodes that lie close
to each other in hyperbolic space will be connected. As T increases, these connections become more and
more random. The HRG is a very hyperbolic graph by many properties and it is expected that it would be
best embedded in hyperbolic space. Perhaps the same could be said for the LFR considering its predefined
heterogeneous degree distribution, but for SBM the expectation is the opposite. In any case, it needs to be
checked what statistics can be extracted from these graph models and how the two GNN models perform on
them. There are of course many other random graph models with varying underlying geometry, but we will
focus on these three as they represent the extremes (purely hyperbolic to non-hyperbolic).

3.4 Data statistics

Here we provide graph properties that can be measured against model performance. We base this selection
on existing literature on the topic. This shows the majority of research that compares hyperbolicity and
model performance use either basic measures, δ-hyperbolicity-based measures, or in some rare cases entirely
different measures. We choose to look at the basic features and δ-hyperbolicity. We do not include less

20

Figure 9: LFR benchmark graph with 250 nodes and parameters τ1 = 2, τ2 = 1.1, µ = 0.1, minimum
degree 20, maximum degree 50. The nodes of each block are pictured with a different color.

common properties like sectional curvature. Instead we add a novel method in the form of Balanced Forman
curvature of the edges of a graph, which has previously been used to detect bottlenecks in graphs [26].

3.4.1 Basic measures

Based on theory related to hierarchical/scale-free networks and underlying hyperbolic geometry, we can
investigate some of the traditional graph features. Specifically: network size, density, average degree, de-
gree distribution (to identify power-law/heterogeneous distribution), average clustering coefficient, clustering
coefficient distribution, clustering-degree relationship.

3.4.2 Gromov’s δ-hyperbolicity

Gromov’s δ-hyperbolicity measures how tree-like a graph is in terms of its metric structure [29] and is a
separate measure than traditional properties like clustering and degree distribution [30]. The lower δ is,
the more tree-like a graph is, with trees being 0-hyperbolic. Definition 1 gives the formal definition of δ-
hyperbolicity.
The δ-hyperbolicity of basic graph types can easily be computed. For trees and complete graphs/cliques it
is 0, where as for a grid of size n-by-n it is n−1 [29]. It is noteworthy that complete graphs are 0-hyperbolic
even though in many ways they are quite different from trees. More concretely, 0-hyperbolic graphs are
exactly clique trees, that is cliques connected in a tree shape. Furthermore, for cycles it is approximately
n/4, which is the largest possible hyperbolicity for a graph of size n.
δ-hyperbolicity is a measure for infinite graphs but it is still a valid way of comparison if graphs are sufficiently
large. For example, the δ of a 3-by-3-node grid is 2, implying high hyperbolicity. However, a 20-by-20-node
grid would be 19. The important thing to note here is that for a graph with no hyperbolic geometry, δ
increases with the size of the graph. In contrast, for graphs with hyperbolic geometry δ is independent of
the size. Thus, if computed for reasonably large graphs, δ should give a good indication of hyperbolicity.
That being said, we will use δ-hyperbolicity as a metric for how hyperbolic a graph is. As the graphs we are

21

Figure 10: Hyperbolic random graph with 100 nodes, α = 0.75 (default), T = 0.

working with are quite large, we will use sampling with 50000 samples. According to the definition, we take
the largest found δ of all samples. Additionally, based on what other researchers have introduced, we will
also look at δavg, which is the average value over the samples. Other known options, like the distribution of
δ over the found samples, will not be used.

3.4.3 Balanced Forman curvature

To provide a completely different point of view on graph geometry, we add a measure of curvature of an
edge based on Ricci curvature. There is no single measure of edge curvature so we take Balanced Forman
curvature, a recent addition which was developed to detect bottlenecks in graphs [26].
Yang et al. [2] proposes to use such a curvature measure for models that take into account heterogeneous
curvature, but here we use it as a measure for global homogeneous curvature. We can aggregate in two ways
to provide information about the whole graph: taking the average over all edges, and looking at the overall
distribution.
Balanced Forman curvature of the edge between two nodes i and j is given by Definition 2. Here du is the
degree of node u, ♯∆(u, v) is the set of triangles containing edge (u, v), ♯u□ is the set of neighbors of u forming
a 4-cycle based at (u, v) without diagonals. γmax(u, v) is the maximal number of 4-cycles based at (u, v)
traversing a common node.

Definition 2 Given two adjacent nodes i and j in a graph, the Balanced Forman curvature of the edge
between i and j is given by

Ric(i, j) :=
2

di
+

2

dj
− 2 + 2

|♯∆(i, j)|
max {di, dj}

+
|♯∆(i, j)|

min {di, dj}
+

(γmax(i, j))
−1

max {di, dj}

(∣∣♯i□∣∣+ ∣∣∣♯j□∣∣∣) .

An important observation is that the values of Ric(i, j) range from -2 (hyperbolic) to infinity. We can look
at a few basic graph types to investigate their curvature.
Example: Let Cn be a cycle on n nodes. Due to symmetry all edges will have the same curvature. For the
cases n = 3 and n = 4 the curvature is 3

2 and 1, respectively. For the case n ≥ 5 the curvature is 0.
Example: Let Kn be a complete graph on n nodes. The curvature of each edge is n

n−1 .
Example: Let Gn be a grid of size n-by-n. This graph is not fully symmetric so internal and boundary edges
will have a different curvature. Interior edges have curvature 0, edges on the exterior have curvature 1

3 or 1
6 .

Example: Let Tr be a tree with a constant branching factor r. We again have to distinguish different edges,

22

this time leaf and non-leaf edges (an edge is a leaf edge if it is connected to a leaf node). Leaf edges have
curvature 2

r+1 , non-leaf edges have curvature 4
r+1 − 2. Suppose r = 3, then the leaf edges have curvature 1

2
and the rest of the edges have curvature -2.
We have seen that, when looking at basic graphs, Balanced Forman curvature provides different types of
values than δ-hyperbolicity. Most notably cliques have positive Balanced Forman curvature. On the other
hand, the Balanced Forman curvature for grids is (close to) 0, further differentiating this measure from
δ-hyperbolicity. Trees have negative curvature which matches other notions of graph curvature.

3.4.4 Noise

We will analyze the robustness to noise of the HGCN and GCN on the HRG data. The reason HRG is useful
for this is because it is easy to add noise to it in a structured way, and we know it has underlying hyperbolic
geometry. We will do this in two ways: introducing noise to the graph structure in the form of changing the
temperature parameter T in the HRG generation algorithm; and introducing noise to the features by adding
values sampled by a normal distribution with mean 0 and standard deviation σ.
Figure 11 and Figure 12 show the result of the noise on the data. Setting the temperature parameter T
close to 1 results in very few edges which is not desirable for experiments, which is why we do not take
values above 0.8. To achieve fully random features, we simply replace them by values sampled by a standard
normal distribution. For fully random egdes, we generate edges from scratch, each with a probability 0.05,
as in the Erdős–Rényi model [63]. Furthermore, we can utilize both types of noise in the same experiments,
with varying parameters.

(a) σ = 0.0 (original) (b) σ = 0.2 (c) σ = 0.4

(d) σ = 0.6 (e) σ = 0.8 (f) Fully random

Figure 11: Adding noise to features of HRG.

4 Experiments

In this section we present experiments that attempt to answer the research questions of this thesis. The first
subsection presents a breakdown of the selected properties of each dataset, comparing it to the performance
of both the GCN and HGCN. This is followed by an analysis of the effect of noise on model performance,
specifically on the HRG dataset.
In the second subsection, the role of the learnable curvature in the HGCN is investigated. Finally, the third
subsection addresses the performance gap between GCN and HGCN by varying the embedding dimension.

23

(a) T = 0.0 (original) (b) T = 0.2 (c) T = 0.4

(d) T = 0.6 (e) T = 0.8 (f) Fully random

Figure 12: Varying temperature of HRG.

4.1 Dataset properties and model performance

We will start by investigating the first reserach question, namely what dataset properties relate to model
performance in the case of GCN and HGCN.

4.1.1 Dataset statistics

First, we observe the size and density of each dataset in Table 2. With the exception of Pubmed, the
real-world datasets are of comparable size, with Pubmed being much larger. The synthetic datasets based
on graph models (HRG, LFR, SBM) are all chosen to be (around) 1000 nodes in size. The density of the
real-world datasets is also similar, Cora and Airport being about one order of magnitude larger. The graph
model datasets vary quite a bit in density, due to the chosen parameters for LFR and SMB. The SBM’s
large density is due to the large parameters chosen for the in-block and between-block probabilities.
We see the degree distribution for each dataset in Figure 13. A strict power-law degree distribution would

Dataset Number of nodes Density (scale 1e-4)
Cora 2708 14.3

Pubmed 19717 2.3
Airport 3188 36.7
Disease 2665 7.5
Road 5160 5.3
HRG 1000 72.9
LFR 1000 349.8
SBM 1040 2432.2

Table 2: Network size and density for each dataset.

look like a decreasing straight line in the log-log scale, though in practice such a strict distribution cannot
be expected. Thus we can categorize the datasets in the following way: Cora, Pubmed, Airport, and HRG
all have a distribution resembling a power-law. For the SBM the distribution clearly does not resemble
power-law. For Disease, Road, and LFR, this is not immediately clear due to the scale. However, the same

24

(a) Cora (3.90) (b) Pubmed (4.47) (c) Airport (11.69)

(d) Disease (2.00) (e) Road (2.72) (f) HRG (7.29)

(g) LFR (34.95) (h) SBM (126.12)

Figure 13: Degree distribution for each dataset in the form of scatter plot with log-log scale. The
horizontal axis indicates the degree, the vertical axis indicates the number of nodes in that degree.
The number in parentheses after each dataset name indicates the average degree in the graph. All
plots have the same boundaries of the horizontal axis but the boundaries of the vertical axis vary.

distributions plotted in linear scale (not pictured) lack the right-skewed shape, thus we conclude that they
are not power-law distributed.
The average degree is the lowest for Disease and Road and highest for LFR and SBM, which is to be expected
given the nature of the respective datasets. For LFR and SBM this is again due to the parameters we have
chosen. The average degrees of the other datasets are comparable.
As far as clustering goes (Figure 14), we can divide the datasets in several groups: (mostly) low clustering
(Cora, Pubmed, Disease) both high and low clustering (Airport); (mostly) high clustering (HRG), and
medium clustering (LFR, SBM). The average clustering of each dataset matches this description as well,
even though naturally there are some variations (for example Cora (0.24) and Pubmed (0.06)).
None of the degree-clustering plots (Figure 15) indicate a strict inverse-proportional relationship between
degree and clustering. However, some of the datasets (Cora, Pubmed, Airport, HRG) clearly show that
high clustering occurs only on low-degree nodes. Stated differently: high degree implies low clustering. We
cannot make such observations for Disease (no clustering is present) or Road (the degrees are very low).
Similarly, for SBM and LFR we observe no clear relationship between degree and clustering.
The results of the δ-hyperbolicity show a few things. First of all there is some relationship between δworst

and δavg, in that δavg appears to be between 5 and 20 times lower than δworst, or around one order of
magnitude. The notable exception here is Cora, where δworst is more than 40 times higher than δavg. In

25

(a) Cora (0.24) (b) Pubmed (0.06) (c) Airport (0.49)

(d) Disease (0.00) (e) Road (0.05) (f) HRG (0.72)

(g) LFR (0.58) (h) SBM (0.67)

Figure 14: Clustering coefficient distribution for each dataset in the form of histogram. The horizontal
axis indicates the clustering coefficient, the vertical axis indicates the number of nodes in that interval
of clustering coefficient. The number in parentheses after each dataset name indicates the average
clustering coefficient in the graph. The horizontal axis in each plot is shown from 0 to 1, the vertical
axis varies.

fact, with other datasets the trend is that higher δworst and higher δavg go hand in hand, but Cora has lower
δavg than Pubmed but a much higher δworst. This indicates that the graph of Cora has regions that are not
hyperbolic (for example grid-like), but overall it is quite hyperbolic.
As the chosen size and number of blocks of the SBM might affect the calculated δ-hyperbolicity, we calculated
it on similar, but larger (up to 20 blocks) SBM graphs. The result is still never higher than 2.0.
A note about the calculations of δ-hyperbolicity: even with 500000 epochs the values reported by Chami et
al. could not be reproduced for Cora and Pubmed. According to our calculations both are 2.5-hyperbolic,
but this could be because of the smaller number of iterations. Thus it is important to note that the other
calculations might not be accurate either. Furthermore, the calculated value for Airport is 1.5, which is
higher than the value given by Chami et al.
That being said, we can again categorize the datasets based on this property. SBM, HRG, Airport, and
Disease have low hyperbolicity, with Disease being a tree. This is taking into account both the worst-case
and average-case δ-hyperbolicity. Cora on the other hand has high δworst but its δavg is comparable to the
other datasets.
Looking at the Balanced Forman curvature (Figure 16) we again see large similarity between Cora, Pubmed,
Airport, and HRG. Each is shaped like a right-skewed bell curve with negative mean, with Pubmed having

26

(a) Cora (b) Pubmed (c) Airport

(d) Disease (e) Road (f) HRG

(g) LFR (h) SBM

Figure 15: Degree-clustering plots for each dataset. The horizontal axis indicates the degree of a
node, the vertical axis indicates the clustering coefficient of that node. Both axes are scaled the same
for all plots, except for Disease and Road to make the plots more readable.

notable a spike around 0. On the other hand, Disease, LFR, and SBM have very similar distributions with
most edges around 0 and some close to -2, with average around 0. Road looks similar to the other bell curve
distributions but less smooth and closer to 0. We categorize the datasets’ Balanced Forman curvature into
negative (Cora, Pubmed, Airport, HRG) and close to 0 (Disease, Road, LFR, SBM).
A summary of these results can be found in Table 5. Here we only look at each property in a broad sense,
looking at the trend. For example, we consider a network to have a power-law degree distribution if the
log-log degree distribution plot resembles a line. We also do not include less relevant properties (average
degree, size, density) in this table but they should still be kept in mind.

4.1.2 Model performance

Next we present the performance of both models on each dataset with the previously found hyperparameters.
The results can be seen in Table 4. The results of Cora and Disease presented by Chami et al. [1] differ
significantly from ours, with them achieving a much smaller error reduction on Cora and a much larger error
reduction on Disease. It is unclear where this disparity comes from but it will be taken into account when
analyzing these results.
On Road we see an error reduction of 25%, which is quite low compared to the other real-world datasets.
On the synthetic datasets, HRG, LFR, and SBM, we notice a trend: HRG, being purely hyperbolic, has

27

Dataset δworst δavg Ratio
Cora 11.0 0.26 42.3

Pubmed 3.5 0.36 9.7
Airport 1.0 0.17 5.9
Disease 0.0 0.0 -
Road 20.0 2.59 7.7
HRG 1.0 0.06 16.7
LFR 1.5 0.22 6.8
SBM 1.0 0.08 12.5

Table 3: δ-hyperbolicity of datasets. Cora, Pubmed, Airport, Disease are taken from Chami et al.
[1], others are calculated with 50000 samples. The ratio shown is δworst/δavg.

Dataset GCN HGCN Error reduction
Cora 87.4 ± 2.5 93.1 ± 0.4 -45.2%

Pubmed 91.1 ± 0.5 96.3 ± 0.0 -58.4%
Airport 91.5 ± 0.2 94.8 ± 0.4 -38.8%
Disease 56.9 ± 2.2 63.9 ± 0.1 -16.2%
Road 96.4 ± 0.1 97.3 ± 0.1 -25.0%
HRG 86.8 ± 1.9 97.1 ± 0.2 -78.0%
LFR 90.1 ± 0.2 91.2 ± 0.4 -11.1%
SBM 92.4 ± 0.2 92.6 ± 0.3 -2.6%

Table 4: Model performance of GCN and HGCN on each dataset. For Pubmed the result is taken
from Chami et al. [1].

the largest error reduction observed so far, whereas SBM, which we know has no underlying hyperbolicity,
shows almost no difference in model performance. On the LFR the difference is still small, but larger than
that of the SBM.

In Table 5 the dataset properties are summarized together with the difference in model performance. To
make things simpler, we categorize error reduction of 30% percent or more as high, lower than 30% as low,
and lower than 5% as very low.

Dataset Degree distr. Clustering Degree-clust. δ-hyperbolicity BF curv. Error red.
Cora Power-law Mostly 0 Hd - Lc High worst, low avg. Negative High∗

Pubmed Power-law Mostly 0 Hd - Lc Medium Negative High
Airport Power-law Mostly 0 and 1 Hd - Lc Low Negative High
Disease - Only 0 - Low (tree) 0 Low∗

Road - Mostly 0 - High 0, varying Low
HRG Power-law Mostly 1 Hd-Lc Low Negative High
LFR - Medium - Low 0 Low
SBM - Medium - Low 0 Very low

Table 5: Summary of dataset properties. “Hd-Lc” stands for high degree - low clustering and indicates
a present relation between the two. The last column shows the error reduction of the HGCN as opposed
to the GCN, where ∗ in the last column indicates that this result does not match that of Chami et
al. [1]. Size, density, average degree, and average density are omitted.

4.1.3 Robustness to noise

To analyze both models’ robustness to noise, we run experiments on the HRG. We vary the temperature
(noise on edges) and the noise on the features. We report the ROC AUC on the test set over 5 runs with

28

(a) Cora (-0.44) (b) Pubmed (-0.85) (c) Airport (-0.70)

(d) Disease (0.00) (e) Road (-0.20) (f) HRG (-0.18)

(g) LFR (-0.02) (h) SBM (0.28)

Figure 16: Balanced Forman curvature distribution for each dataset in the form of histograms with
20 bins. The horizontal axis represents the curvature, the vertical axis is the number of edges in
that interval. The number in parentheses after each dataset name indicates the average value over
all edges. The horizontal axis is scaled from -2 to 2.5 for all plots (no larger value is observed), the
vertical axis varies.

different random seeds. The results are summarized in Table 6. In general, results show that the higher noise,
the worse the performance, for both models and both types on noise. However there are a few noteworthy
exceptions.
Low feature noise (σ = 0.2) significantly improves the GCN performance, which is not the case for the
HGCN. This is true for temperature up to 0.6. On the other hand, low temperature (T = 0.2) increases
performance of HGCN slightly, which is not the case for the GCN. This trend is present for low (0.0 and
0.2) and very high (0.8 and random) feature noise.
The last column results in around 0.5 ROC AUC for both models, which indicates that the guesses are
random in this case. In general, we observe that in all cases, except random edges, the HGCN outperforms
the GCN, though this gap decreases significantly when both types of noise are strongly present.

4.2 Learnable curvature

Next we investigate the learnable curvature of the HGCN. We start by looking at the training of the learnable
curvature parameter of each layer of the neural network, in Figure 17, Figure 18, and Figure 19. Only a
selection of the plots are shown here, the rest can be found in Appendix B. The plots are achieved by

29

Temperature
HGCN 0.0 0.2 0.4 0.6 0.8 Random

F
ea
tu
re

n
o
is
e 0.0 97.1 97.5 95.7 89.4 84.3 49.9

0.2 95.6 95.8 93.3 86.8 82.6 50.1
0.4 92.5 92.2 88.8 85.0 78.4 49.9
0.6 92.5 90.9 84.2 79.4 73.0 49.9
0.8 86.9 87.8 82.1 74.6 69.3 50.1
Random 80.0 80.5 73.0 68.9 64.0 49.9

Temperature
GCN 0.0 0.2 0.4 0.6 0.8 Random

F
ea
tu
re

n
o
is
e 0.0 87.0 81.1 81.1 75.6 73.1 50.3

0.2 91.2 89.9 86.1 81.0 68.6 49.9
0.4 83.0 83.2 77.6 68.2 66.7 50.2
0.6 80.3 78.8 75.6 69.3 66.2 50.3
0.8 79.3 76.0 68.8 65.5 64.2 49.8
Random 74.9 76.5 69.8 61.4 62.3 49.6

Table 6: Experiments with noise of HGCN and GCN on the HRG. Underlined values indicate that
the respective accuracy is higher than a value up or to the right of in the table.

recording the curvature in each layer at each training epoch. This is done for 3 different random seeds and
the two runs that exhibit most differences are collected (meaning differences with regard to shape of the
curves, order of the layers, etc.). The goal is to capture variability in the training of the same dataset.
With the “order” of the layers what is meant is whether the curvature increases with each following layer,
or decreases, or some other pattern.
First, as a general observation we notice that the learnable curvature rarely converges during training.
For example, in the case of Cora (Figure 17), the values appear to increase almost constantly. Further
experiments (not pictured) show that even when training for up to 5000 epochs, the values rarely converge.
In fact, in some cases the trend changes after a long number of epochs (e.g. one of the values increases
for 3000 epochs and then starts decreasing). The same can be said about the average of the curvatures.
Futhermore, this happens for different types of datasets.
More specifically, we observe that in some cases such as Cora (Figure 17) the training looks almost the same
for different runs, with only some small differences in values. In other cases, such as Disease (Figure 18),
the process looks similar, but in the end the order of the curvatures is different. Lastly, in SBM (Figure 19)
we see that the progression looks completely different between runs. In general, there does not seem to be
consistency between different runs, at least not for all datasets.
In Table 7 we see the final learned values for each layer (corresponding to run 1 of each of the plots). Here
we further observe that the average final curvature is around 1 for all datasets except HRG. In fact, HRG
exhibits the largest values (in layers 0, 2, and the average). There appears to be no trend for progression of
curvature over the layers. For example, in Airport we see that layer 2 has the lowest and layer 1 the highest
final value, but in the case of HRG this is the opposite.
Next we perform the same experiments only on the HRG, with different values of α. The parameter α
controls the power of the power-law distribution of the degrees. We take 3 values for α: 0.6 (low), 0.75
(medium), 0.9 (high). The results are summarized in Table 8. We notice that for layers 0 and 2, as well as
the average, increasing α decreases the learned value. For layer 1 the opposite is true, the value increases as
α increases.

4.3 Embedding dimension

In order to find out if the performance of the GCN can match that of the HGCN, we take two datasets: HRG
and SBM. This is because these are very different: HRG is hyperbolic and the HGCN has been shown to
perform significantly better, whereas the SBM is not hyperbolic and both models have similar performance

30

(a) Run 1 (b) Run 2

Figure 17: Learnable curvature optimization on Cora. The horizontal axis shows the epoch and the
vertical axis shows the value of the curvature at each layer at that epoch.

Dataset Layer 0 Layer 1 Layer 2 Average
Cora 1.11 1.15 1.06 1.11

Airport 1.00 1.40 0.78 1.06
Disease 1.52 1.37 0.13 1.01
Road 0.99 1.07 1.11 1.06
HRG 2.22 0.8 4.33 2.45
LFR 1.26 1.1 1.11 1.00
SBM 1.85 0.7 0.35 0.97

Table 7: Final learned curvature in each layer for each dataset.

on it. Furthermore, we vary the embedding dimension, while keeping the number and sizes of hidden layers
the same (2 hidden layers of dimension 16). As embedding dimensions we take 2 (low), 16 (medium), 128
(high), 1024 (very high).
In the case of HRG (Table 9) we see that the relative performance gap (taking into account error reduction)
stays consistent with the dimension. It is still noteworthy that the accuracy of the HGCN increases only
from 93.2 to 97.4, whereas the GCN goes from 74.1 to 91.3, so the absolute difference is much higher in the
GCN’s case. Furthermore, we see that while the GCN’s performance steadily increases with the dimension,
for the HGCN there is barely an increase beyond dimension 16.
Nonetheless, even with embedding dimension 1024, the HGCN still significantly outperforms the GCN. In
fact, the GCN at 1024 dimensions still gives a worse result than the HGCN at 2 dimensions.
The results for the SBM are quite different, as shown in Table 10. The HGCN appears to achieve the
same results regardless of the embedding dimension. The GCN on the other hand shows some increase in
performance when the embedding dimension becomes higher. In any case the results are very close and the
variance is significant, but it looks like for a higher dimension (128 or 1024), both models perform about the
same. At dimension 2 the HGCN shows a better result by a small margin.

31

(a) Run 1 (b) Run 2

Figure 18: Learnable curvature optimization on Disease. The horizontal axis shows the epoch and
the vertical axis shows the value of the curvature at each layer at that epoch.

α value Layer 0 Layer 1 Layer 2 Average Accuracy
0.6 2.78 0.16 6.22 3.05 94.8
0.75 2.22 0.8 4.33 2.45 97.0
0.9 1.8 1.38 2.75 1.98 98.1

Table 8: Final learned curvature in each layer for HRG with changing α values.

5 Discussion

In this section we interpret the results of the previous experiments and use them to answer the research
questions. We also explain their limitations and link to existing research in the field, as well as giving a
general discussion with possible directions for further research.

5.1 Research question 1: What properties of the dataset guarantee that HGNNs
will perform better than (Euclidian) GNNs?

To answer the first research question we started by looking at what dataset properties correlate with dif-
ferences in model performance of the HGCN and GCN. We do not specifically consider size and density as
predictors of performance, as they are not theoretically linked with hyperbolicity. But they will be taken
into account when explaining differences in resutlts.
The traditional graph features related to hyperbolicity give some indication of model performance. The
power-law degree distribution and high-degree-low-clustering relationship appear together every time, and
they are a good indicator that the HGCN will perform better than the GCN. Thus one of them can be
omitted in future studies on such properties, for example only looking at degree distribution since it is more
directly related to hyperbolicity. It also has to be noted that both of these relationships can only exist
when high degrees are present, which is not the case in Disease for example. It is also clear, however, that
degree distribution is not necessary for hyperbolicity, as Disease does not have any distinct distribution due
to having low degrees in general. Despite this, Disease does have underlying hyperbolic geometry, which is
reflected in the performance of both models (taking into account the results of Chami et al. [1]).
Another direction that could be taken with degree distribution is determining the power of the power-law

32

(a) Run 1 (b) Run 2

Figure 19: Learnable curvature optimization on SBM. The horizontal axis shows the epoch and the
vertical axis shows the value of the curvature at each layer at that epoch.

Dim. GCN HGCN Error reduction
2 74.1 ± 3.4 93.2 ± 2.1 -73.7%
16 86.8 ± 1.9 97.1 ± 0.2 -78.0%
128 89.0 ± 1.3 97.3 ± 0.3 -75.5%

1024 91.3 ± 1.0 97.4 ± 0.4 -70.1%

Table 9: Performance on HRG of each model for a given embedding dimension

distribution. This power is related to the curvature of the graph, at least in HRG [62]. We shortly inves-
tigated this by altering the α parameter of the HRG generation, showing that higher α results in better
performance. This shows that there could well be a relation between this power (or how skewed the degree
distribution is) and the preference for embedding in hyperbolic space. This approach does, however, raise
new difficulties, like what is the best way to fit a power-law on the distribution of a real-world dataset?
Furthermore our short experiment does not show the performance gap of the HGCN and GCN, which would
be more useful.
It is interesting to note that the LFR dataset we created does not exhibit power-law degree distribution,
despite being generated by a model that should include it. This is likely due to the chosen parameters, as well
as the relatively small size of the graph. Despite the lack of power-law degree distribution, the performance
gap between GCN and HGCN is notably larger on the LFR than the SBM. This indicates that the small
amount heterogeneity of the degrees in the LFR still contributes to some underlying geometry which can be
captured by the HGCN. It still needs to be kept in mind that such small differences could be the consequence
of the variability of the results, or even other differences in the graphs themselves, like the number of blocks.
Clustering varies quite a bit in the datasets where a heterogeneous degree distribution is observed. Cora and
Pubmed exhibit 0 clustering for the majority of nodes, HRG has the opposite, and Airport is a mix of both.
However this does not seem to relate directly to performance, so we can attribute this to local differences
in the networks in the smaller-degree nodes. HRG has a tendency for clustering, regardless of temperature.
It may very well be that airport networks as a whole have some tendency to cluster locally, whereas this
does not happen in citation networks. However this difference in local clustering should not affect the global
hyperbolic structure. Furthermore, while clustering has been observed in many scale-free and hierarchical

33

Dim. GCN HGCN Error reduction
2 92.1 ± 0.2 92.7 ± 0.4 -7.6%
16 92.4 ± 0.2 92.6 ± 0.3 -2.6%
128 92.8 ± 0.1 92.6 ± 0.2 +2.8%

1024 92.5 ± 0.3 92.8 ± 0.0 -4.0%

Table 10: Performance on SBM of each model for a given embedding dimension.

graphs, it is not necessary for their existence. Therefore, it seems that clustering does not have utility for
predicting hyperbolicity and thus model performance.
Regarding δ-hyperbolicity, Chami et al. [1] conclude that the performance of the HGCN, and more specif-
ically its advantage over Euclidian models, is directly tied to low δ-hyperbolicity. However, our results
indicate that this may not always be true. The stochastic block model (SBM), for which we know there is
no underlying hyperbolic geometry (as opposed to for example HRG), has low δ-hyperbolicity even when
increasing the graph size and the number of blocks. This is confirmed by the traditional graph features that
we investigated: no power-law degree distribution, medium clustering, no clear relationship between degree
and clustering. Furthermore, the performance of both models on the SBM dataset is almost the same.
This outcome likely relates to the fact that the δ-hyperbolicity of a clique is 0, the same as a tree. Real-world
datasets are often not very dense, so this is not a problem, but the SBM shows that cases may occur where
the δ-hyperbolicity is low despite no underlying hyperbolic geometry. It should be noted that the results
for δ-hyperbolicity may not be accurate as they are calculated by sampling, but this is another inherent
limitation of this metric.
To deal with this inconsistency, we propose the following procedure: when the density of the graph is low,
simply check the δ-hyperbolicity to decide what model to use. If the graph is very dense, instead consult the
degree distribution to check for heterogeneity/power-law.
We further added δavg, the average-case δ over the taken samples, as a dataset property. Overall it appears
that δavg has a close relationship with δworst (which is the classical definition of δ-hyperbolicity), with around
one order of magnitude difference. The notable exception here is Cora, where δavg is quite low despite δworst

being quite high. Considering we expect Cora to have a similar hyperbolicity as Pubmed, as they are both
citation networks, it would make more sense to look at the average hyperbolicity. This would deal with the
inherent problem of δ-hyperbolicity, specifically δworst, which is that is can be determined entirely by a small
part of the graph which is very non-hyperbolic (for example ring or grid). It could be that in Cora there
is such a region, which is affecting δworst despite having a small effect on the overall hyperbolicity. Thus
using δavg, or at least taking it into account, makes more sense. Furthermore, one could instead look at the
distribution of the found δ, getting an even clearer picture.
The Balanced Forman curvature is closely related to degree distributions on the datasets we used. This
means that it is in general a useful indicator but still does not capture the hyperbolicity of Disease, being
a tree. This is likely because Disease contains many edges connected to leaf nodes, which can be shown to
have positive curvature. Such leaf edges would not necessarily affect the geometry of the graph, but there
could be a large number of them. So much so that the distribution of edge curvature does not anymore
give a clear picture of the underlying curvature of the graph. A way to get past this in general would be to
distinguish between different types of edges, but it is not obvious how this could be done for an arbitrary
graph. Thus we conclude that Balanced Forman curvature does not have utility as a global measure for
predicting the performance of HGNNs, and is better left as a local measure of curvature for other tasks. It
does appear to capture scale-free graphs to some extent - Cora, Pubmed, Airport, and HRG all have similar
degree distributions and similar Balanced Forman curvature distributions. Nonetheless, in such cases it is
still more useful to look at degree distribution, as it is easier to compute.
To summarize, our results indicate that when given a dataset and considering whether to use a HGNN or
an Euclidian GNN, the best thing would be to take into account multiple properties. If the dataset has
low density, then δ-hyperbolicity, specifically δavg indicates that an HGNN would be a better choice. If the
density is high, one should look at the degree distribution to determine hyperbolicity.
More experiments are necessary to make these findings more concrete and to specify exact values of the met-
rics we discussed. Furthermore, it would be interesting to investigate whether other values used in literature

34

(such as sectional curvature) also have utility for this task.

To further investigate the first research question, we observed how the performance of both models is affected
by noise, both in the features and in the graph structure. In general, we observe that adding any type of
noise, regardless of the model, makes the result worse. This was to be expected but there are some exceptions
to this trend that should be discussed. The GCN improves with some noise in the features present. This
likely relates to the fact that the Euclidian embedding space is not well suited for the original data, and
adding noise makes it more “flat”, at least with regards to the features. This trend also appears even when
some temperature is present, implying even further that the hyperbolic features are what the GCN has a
problem capturing.
It is also noteworthy that the same trend is not present in the HGCN, where the quality of the predictions
strictly decreases when adding noise to the features. The HGCN on the other hand slightly improves when
noise in the edges, or temperature, is present. One reason for this could be that the message passing of the
GNN architecture is more effective when there are more connections in the graph. However, this would also
apply to the GCN. The more likely explanation is that the HGCN is able to make good use of the node
features and thus infer where the clustering caused by temperature will appear.
It still needs to be kept in mind that despite these reductions, the HGCN performs better in every single case.
Thus, even though the GCN reacts better to noise in the features, the HGCN is a better choice regardless, if
the goal is to have the highest accuracy possible. It would also be interesting to see whether the same trend
is present when the data is not hyperbolic, for example on Road, or on other datasets in general.
Finally, both models achieve an accuracy of around 0.5 when the edges are completely random. This is
reasonable, as the task is link prediction, which cannot be done in a meaningful way if the edges are random.

5.2 Research question 2: What role does the curvature play as a learnable
parameter in the HGCN?

Next we observed the curvature of each layer as a learnable parameter. The lack of convergence in most
cases and the lack of structure in the learned parameters indicate that the HGCN does not strictly relate the
curvature of the data to these parameters. If the opposite were the case, we would expect that the learned
values would always converge in the same way, at least when there is hyperbolic geometry present in the
data.
This theory is supported by the fact that comparing the learned curvature between datasets does not seem
to have a strong correlation to their respective properties and hyperbolicity. Most of the values are around
1, even for datasets where it is known that the underlying geometry is very different (for example Disease
and SBM). We do notice that for the HRG the values, including the average, are the highest of all datasets.
This is consistent with the fact that HRG is very hyperbolic, so the learned curvature might still be related
to curvature in the data. However, even if this is the case, this correlation does not appear to be useful for
predicting the learned values from the data.
The experiments with changing the α value of the underlying curvature, which directly relates to the amount
of curvature present in the dataset [25], show the same thing. The curvature of layers 0 and 2, as well as
the average, decreases as α increases. Only for layer 1 the trend makes sense, as higher α relates to higher
learned curvature.
Despite some observations, we can reasonably conclude that the learned curvature does consistently correlate
to the dataset used and its properties. Just as Chami et al. show, the curvature of each layer serves to
numerically stabilize the model. As such, the best strategy is to find what value of curvature leads to the
best results, by setting it as a learnable parameter like Chami et al., or by other methods like reinforcement
learning [46]. It could be interesting to experiment with setting the curvature to different pre-decided values,
possibly even a different value in each layer. However, based on our findings, this would not be a very useful
new direction for research.

35

5.3 Research question 3: Can the performance gap between HGNN and GNN
be compensated for by increasing the embedding dimension of the GNN?

Experimenting with changing the number of embedding dimension of both models provides more insight
into their usefulness. When the data is hyperbolic, the HGCN benefits from a low embedding dimension.
This is shown in our experiments as well as in existing literature [2]. Despite the relative error reduction
between the HGCN and GCN being very close for any embedding dimension, the absolute difference should
also be considered. At very low embedding dimension (specifically 2) the HGCN still provides a high quality
prediction, whereas that of the GCN is quite poor.
Both the HGCN and GCN’s performances are significantly improved when increasing the dimension from 2
to 16, but beyond 16 dimensions the HGCN barely improves, whereas the GCN increases steadily. These
observations tell us that the GCN really needs a higher embedding dimension to make a good prediction.
On the other hand, the HGCN does quite well even with a very low embedding dimension, and it does not
benefit much from having a higher one. This is consistent with the theory that hyperbolic/scale-free data
can be embedded in a lower dimension by an HGNN.
We also notice that even when the GCN can make use of 1024 dimensions, and the HGCN only 2, the HGCN
is still better by a small margin. This further solidifies the benefits of HGCN on hyperbolic data, regardless
of embedding dimension.
When it comes to non-hyperbolic data like the SBM graph, the performance of both models is much more
comparable. However, at low embedding dimension the HGCN still appears to have a slight edge. This
could be due to the randomness of the experiments, but more likely the HGCN is simply more flexible due
to the learnable curvature parameters, which make a difference at low dimensions.
Just as in other experiments, regardless of the setup, the HGCN is never worse than the GCN. In this case
there are some experiments (SBM with 128 dimensions) where the GCN might be slightly better, but this
is still negligible and could be due to the inherent randomness.

5.4 General remarks

From all the performed experiments we can make a general observation that the HGCN performs better
than the GCN in every single case, regardless of dataset, noise, and embedding dimension. Of course, this
difference is much smaller when there is no underlying hyperbolic geometry for the HGCN to capture. This
does not mean that any HGNN is better than any Euclidian GNN, as Chami et al. have shown that this
is not the case. So this difference in performance gap might become more relevant if different Euclidian or
hyperbolic models are chosen.
In any case, based on GCN and HGCN specifically, it seems that simply introducing hyperbolic space to any
Euclidian GNN, when possible, will not make the performance worse. In fact, it can be said that utilizing
an HGNN over an Euclidian GNN will not significantly worsen performance, whereas it may significantly
improve it. As a whole, this indicates that the HGCN not only captures underlying hyperbolic geometry if
it is present, but also serves as extra flexibility for the model, in case the data is not hyperbolic.
Knowing this, we also have to take into account the fact that the computations of HGNNs, especially training,
take much longer. A concrete study on these times would be a fitting follow-up to this thesis, so that a more
informed overview can be made. But in general we can say that using an HGNN on a non-hyperbolic data
might not be worthwhile because of higher computation times. On hyperbolic datasets using a HGNN is
more reasonable, as the high computation times are compensated by significantly better performance. But
in any case, if a high prediction accuracy is not the goal and the priority is low training and computation
times, it is advised to simply use a Euclidian GNN. Furthermore, depending on the specific hyperbolic and
Euclidian models chosen, this gap can disappear, in which case computation times become the important
factor.
Another direction that could have been taken to answer our research questions is investigate hyperbolicity
of features: This thesis focused purely on hyperbolicity of the graph structure, not taking into account node
features. It is clear that node features also play a role, as hyperbolic neural networks exist [9] that do not
even work with graphs. It would be useful to take a look, similarly to this work, into what kind of attributes
make node features hyperbolic, if there even are such attributes. We have already made steps towards this
by adding noise to the features of the HRG but this just gives a basic idea.

36

This research focused on a particular variation of a particular HGNN architecture, as well as on a particular
task. This was necessary in order to be able to be able to give depth to the research, but it also leaves a
lot of possibilities for future work. For example, our experiments can be repeated with added attention,
which would mean working HGCN with attention and GAT [19]. The attention mechanism can better
capture hierarchies, shown by Chami et al., which could lead to different results. Furthermore, the link
prediction task that was the focus of our experiments is only one possibility for a graph learning task. Node
classification, as done by Chami et al. [1], and graph classification, as done by Liu et al. [10], are two other
tasks with a wide variety in application. For a more complete picture these should also be included.
Using the HGCN might also not be the best option when it comes to fully utilizing hyperbolic geometry. It
is one of the more established papers in the field, but has been shown to have many limitations, for example
the tangent space operations, or the learnable curvature. More state-of-the-art models, like the ACE-HGNN
[46] or the H2H-GCN [12] would be better suited for this. Comparing these performance of these models
would also be useful.

6 Conclusion

In this thesis we investigated the performance of HGNNs, specifically the HGCN [1]. The first research
question was what properties of a dataset can predict a good performance of an HGNN, compared to that of
a Euclidian GNN. We conclude that δ-hyperbolicity is a good predictor but the average-case δ-hyperbolicity
may be a better option. Furthermore, δ-hyperbolicity may not be reliable when the dataset is very dense,
and in such cases traditional graph properties should be considered, specifically the degree distribution. If
the degree distribution is very heterogeneous, i.e. resembling a power-law, the graph can be considered
hyperbolic and thus an HGNN should have an advantage. Furthermore, our experiments indicate that
Balanced Forman curvature, a measure of Ricci curvature for graph edges, does not appear to have utility
for this problem.
We have also shown that, when the given dataset is highly hyperbolic, HGNNs are better equipped to deal
with noise in the graph structure, whereas Euclidian GNNs handle noise in the features better. Despite this,
the HGCN is a better tool than the GCN when it comes to accuracy, regardless of noise.
The experiments in this thesis also indicate that the learnable curvature is simply an extra parameter in the
GNN that serves to improve the expressiveness of the model. Attempts to set it to a given value, based on
dataset properties for example, will likely not lead to optimal results. The recommended way to deal with
this is to learn the curvature, with one of the existing methods or possibly a new one. It also appears that
the inclusion of curvature as a learnable model parameter gives the model extra expressiveness, regardless
of geometry of the data.
The last part of this work confirmed the known fact that HGNNs benefit from low embedding dimension
when the dataset used is hyperbolic, but we have also shown that even with non-hyperbolic data there is
still some benefit to using HGNNs when the dimension is low, further confirming the previous point about
the learnable curvature as increasing expressiveness regardless of curvature.
In conclusion, this thesis has made progress into developing a better understanding of HGNNs and when they
are advantageous. Our research has identified some dataset properties are good predictors of performance,
confirmed the role of curvature values in training hyperbolic models, and related model performance to
embedding dimension.

References

[1] I. Chami, R. Ying, C. Re, and J. Leskovec, “Hyperbolic graph convolutional neural networks,” in
Proceedings of the 33rd International Conference on Neural Information Processing Systems, no. 438,
pp. 4868–4879, Red Hook, NY, USA: Curran Associates Inc., Dec. 2019.

[2] M. Yang, M. Zhou, Z. Li, J. Liu, L. Pan, H. Xiong, and I. King, “Hyperbolic Graph Neural Networks:
A Review of Methods and Applications,” Feb. 2022. arXiv:2202.13852 [cs].

[3] T. N. Kipf and M. Welling, “Semi-Supervised Classification with Graph Convolutional Networks,” Feb.
2017. arXiv:1609.02907 [cs, stat].

37

[4] P. Veličković, “Everything is connected: Graph neural networks,” Current Opinion in Structural Biology,
vol. 79, p. 102538, Apr. 2023.

[5] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A Comprehensive Survey on Graph Neural
Networks,” IEEE Transactions on Neural Networks and Learning Systems, vol. 32, pp. 4–24, Jan. 2021.
arXiv:1901.00596 [cs, stat].

[6] M. M. Bronstein, J. Bruna, T. Cohen, and P. Veličković, “Geometric Deep Learning: Grids, Groups,
Graphs, Geodesics, and Gauges,” May 2021. arXiv:2104.13478 [cs, stat].

[7] T. S. Cohen, M. Geiger, J. Koehler, and M. Welling, “Spherical CNNs,” Feb. 2018. arXiv:1801.10130
[cs, stat].

[8] W. Peng, T. Varanka, A. Mostafa, H. Shi, and G. Zhao, “Hyperbolic Deep Neural Networks: A Survey,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, pp. 10023–10044, Dec. 2022.
Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9] O. Ganea, G. Becigneul, and T. Hofmann, “Hyperbolic Neural Networks,” in Advances in Neural In-
formation Processing Systems, vol. 31, Curran Associates, Inc., 2018.

[10] Q. Liu, M. Nickel, and D. Kiela, “Hyperbolic graph neural networks,” in Proceedings of the 33rd In-
ternational Conference on Neural Information Processing Systems, no. 739, pp. 8230–8241, Red Hook,
NY, USA: Curran Associates Inc., Dec. 2019.

[11] W. Chen, X. Han, Y. Lin, H. Zhao, Z. Liu, P. Li, M. Sun, and J. Zhou, “Fully Hyperbolic Neural
Networks,” in Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), (Dublin, Ireland), pp. 5672–5686, Association for Computational Linguistics,
May 2022.

[12] J. Dai, Y. Wu, Z. Gao, and Y. Jia, “A Hyperbolic-to-Hyperbolic Graph Convolutional Network,” in
2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 154–163, June
2021. ISSN: 2575-7075.

[13] J. Sun, Z. Cheng, S. Zuberi, F. Perez, and M. Volkovs, “HGCF: Hyperbolic Graph Convolution Networks
for Collaborative Filtering,” in Proceedings of the Web Conference 2021, WWW ’21, (New York, NY,
USA), pp. 593–601, Association for Computing Machinery, June 2021.

[14] R. Sawhney, S. Agarwal, A. Wadhwa, and R. Shah, “Exploring the Scale-Free Nature of Stock Markets:
Hyperbolic Graph Learning for Algorithmic Trading,” in Proceedings of the Web Conference 2021,
WWW ’21, (New York, NY, USA), pp. 11–22, Association for Computing Machinery, June 2021.

[15] J. Leskovec, “Machine Learning with Graphs, Stanford lecture series,” 2021.

[16] B. Perozzi, R. Al-Rfou, and S. Skiena, “DeepWalk: Online Learning of Social Representations,” in Pro-
ceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining,
pp. 701–710, Aug. 2014. arXiv:1403.6652 [cs].

[17] A. Grover and J. Leskovec, “node2vec: Scalable Feature Learning for Networks,” July 2016.
arXiv:1607.00653 [cs, stat].

[18] M. Bronstein, “Beyond Message Passing: a Physics-Inspired Paradigm for Graph Neural Networks,”
May 2022. testing.

[19] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, “Graph Attention Net-
works,” Feb. 2018. arXiv:1710.10903 [cs, stat].

[20] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation learning on large graphs,” in
Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS’17,
(Red Hook, NY, USA), pp. 1025–1035, Curran Associates Inc., Dec. 2017.

38

[21] F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger, “Simplifying Graph Convolutional
Networks,” in Proceedings of the 36th International Conference on Machine Learning, pp. 6861–6871,
PMLR, May 2019. ISSN: 2640-3498.

[22] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How Powerful are Graph Neural Networks?,” Feb. 2019.
arXiv:1810.00826 [cs, stat].

[23] F. Schuller, “Lectures on the Geometric Anatomy of Theoretical Physics,” 2015.

[24] J. M. Lee, Riemannian Manifolds, vol. 176 of Graduate Texts in Mathematics. New York, NY: Springer,
1997.

[25] D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, and M. Boguñá, “Hyperbolic geometry of complex
networks,” Physical Review E, vol. 82, p. 036106, Sept. 2010. Publisher: American Physical Society.

[26] J. Topping, F. Di Giovanni, B. P. Chamberlain, X. Dong, and M. M. Bronstein, “Understanding over-
squashing and bottlenecks on graphs via curvature,” Nov. 2022. arXiv:2111.14522 [cs, stat].

[27] G. Bachmann, G. Becigneul, and O. Ganea, “Constant Curvature Graph Convolutional Networks,” in
Proceedings of the 37th International Conference on Machine Learning, pp. 486–496, PMLR, Nov. 2020.
ISSN: 2640-3498.

[28] R. Sarkar, “Low Distortion Delaunay Embedding of Trees in Hyperbolic Plane,” in Graph Drawing
(M. van Kreveld and B. Speckmann, eds.), Lecture Notes in Computer Science, (Berlin, Heidelberg),
pp. 355–366, Springer, 2012.

[29] A. B. Adcock, B. D. Sullivan, and M. W. Mahoney, “Tree-Like Structure in Large Social and Information
Networks,” in 2013 IEEE 13th International Conference on Data Mining, pp. 1–10, Dec. 2013. ISSN:
2374-8486.

[30] W. S. Kennedy, O. Narayan, and I. Saniee, “On the Hyperbolicity of Large-Scale Networks,” June 2013.
arXiv:1307.0031 [physics].

[31] R. Kleinberg, “Geographic Routing Using Hyperbolic Space,” in IEEE INFOCOM 2007 - 26th IEEE
International Conference on Computer Communications, (Anchorage, AK, USA), pp. 1902–1909, IEEE,
2007.

[32] M. Nickel and D. Kiela, “Poincaré embeddings for learning hierarchical representations,” in Proceedings
of the 31st International Conference on Neural Information Processing Systems, NIPS’17, (Red Hook,
NY, USA), pp. 6341–6350, Curran Associates Inc., Dec. 2017.

[33] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst, “Geometric Deep Learn-
ing: Going beyond Euclidean data,” IEEE Signal Processing Magazine, vol. 34, pp. 18–42, July 2017.
Conference Name: IEEE Signal Processing Magazine.

[34] M. Nickel and D. Kiela, “Learning Continuous Hierarchies in the Lorentz Model of Hyperbolic Geome-
try,” in Proceedings of the 35th International Conference on Machine Learning, pp. 3779–3788, PMLR,
July 2018. ISSN: 2640-3498.

[35] R. Shimizu, Y. Mukuta, and T. Harada, “Hyperbolic Neural Networks++,” Mar. 2021. arXiv:2006.08210
[cs, stat].

[36] E. Mathieu, C. Le Lan, C. J. Maddison, R. Tomioka, and Y. W. Teh, “Continuous Hierarchical Rep-
resentations with Poincaré Variational Auto-Encoders,” in Advances in Neural Information Processing
Systems, vol. 32, Curran Associates, Inc., 2019.

[37] P. Kolyvakis, A. Kalousis, and D. Kiritsis, “Hyperbolic Knowledge Graph Embeddings for Knowledge
Base Completion,” in The Semantic Web (A. Harth, S. Kirrane, A.-C. Ngonga Ngomo, H. Paulheim,
A. Rula, A. L. Gentile, P. Haase, and M. Cochez, eds.), Lecture Notes in Computer Science, (Cham),
pp. 199–214, Springer International Publishing, 2020.

39

[38] I. Chami, A. Wolf, D.-C. Juan, F. Sala, S. Ravi, and C. Ré, “Low-Dimensional Hyperbolic Knowledge
Graph Embeddings,” in Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, (Online), pp. 6901–6914, Association for Computational Linguistics, July 2020.

[39] Y. Chen, M. Yang, Y. Zhang, M. Zhao, Z. Meng, J. Hao, and I. King, “Modeling Scale-free Graphs
with Hyperbolic Geometry for Knowledge-aware Recommendation,” in Proceedings of the Fifteenth
ACM International Conference on Web Search and Data Mining, WSDM ’22, (New York, NY, USA),
pp. 94–102, Association for Computing Machinery, Feb. 2022.

[40] L. Sun, Z. Zhang, J. Zhang, F. Wang, H. Peng, S. Su, and P. S. Yu, “Hyperbolic Variational Graph
Neural Network for Modeling Dynamic Graphs,” Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 35, pp. 4375–4383, May 2021. Number: 5.

[41] S. Yan, Y. Xiong, and D. Lin, “Spatial Temporal Graph Convolutional Networks for Skeleton-Based
Action Recognition,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, Apr. 2018.
Number: 1.

[42] Y. Zhang, X. Wang, C. Shi, N. Liu, and G. Song, “Lorentzian Graph Convolutional Networks,” in
Proceedings of the Web Conference 2021, WWW ’21, (New York, NY, USA), pp. 1249–1261, Association
for Computing Machinery, June 2021.

[43] S. Zhu, S. Pan, C. Zhou, J. Wu, Y. Cao, and B. Wang, “Graph Geometry Interaction Learning,” in
Advances in Neural Information Processing Systems, vol. 33, pp. 7548–7558, Curran Associates, Inc.,
2020.

[44] A. Gu, F. Sala, B. Gunel, and C. Ré, “Learning Mixed-Curvature Representations in Product Spaces,”
Sept. 2018.

[45] M. Yang, M. Zhou, L. Pan, and I. King, “HGCN: Tree-likeness Modeling via Continuous and Discrete
Curvature Learning,” in Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, KDD ’23, (New York, NY, USA), pp. 2965–2977, Association for Computing Machinery,
Aug. 2023.

[46] X. Fu, J. Li, J. Wu, Q. Sun, C. Ji, S. Wang, J. Tan, H. Peng, and P. S. Yu, “ACE-HGNN: Adaptive
Curvature Exploration Hyperbolic Graph Neural Network,” in 2021 IEEE International Conference on
Data Mining (ICDM), pp. 111–120, Dec. 2021. ISSN: 2374-8486.

[47] M. Law, “Ultrahyperbolic Neural Networks,” in Advances in Neural Information Processing Systems,
vol. 34, pp. 22058–22069, Curran Associates, Inc., 2021.

[48] Z. Xie, X. Zuo, and Y. Song, “Trivial bundle embeddings for learning graph representations,” Dec. 2021.
arXiv:2112.02531 [cs].

[49] T. Yu and C. De Sa, “Random Laplacian Features for Learning with Hyperbolic Space,” Mar. 2023.
arXiv:2202.06854 [cs] version: 2.

[50] N. Choudhary, N. Rao, K. Subbian, and C. Reddy, Text Enriched Sparse Hyperbolic Graph Convolutional
Networks. July 2022.

[51] F. Wei, M. Ping, and K. Mei, Adaptive Frequency-Based Fully Hyperbolic Graph Neural Networks. June
2022.

[52] Y. Liu, B. Lang, and F. Quan, “MST-HGCN: a minimum spanning tree hyperbolic graph convolutional
network,” Applied Intelligence, vol. 53, pp. 14515–14526, June 2023.

[53] A. Tifrea, G. Bécigneul, and O.-E. Ganea, “Poincaré GloVe: Hyperbolic Word Embeddings,” Nov. 2018.
arXiv:1810.06546 [cs].

40

[54] A. Cacciola, A. Muscoloni, V. Narula, A. Calamuneri, S. Nigro, E. A. Mayer, J. S. Labus, G. Anastasi,
A. Quattrone, A. Quartarone, D. Milardi, and C. V. Cannistraci, “Coalescent embedding in the hyper-
bolic space unsupervisedly discloses the hidden geometry of the brain,” May 2017. arXiv:1705.04192
[cond-mat, q-bio].

[55] B. P. Chamberlain, S. R. Hardwick, D. R. Wardrope, F. Dzogang, F. Daolio, and S. Vargas, “Scalable
Hyperbolic Recommender Systems,” Feb. 2019. arXiv:1902.08648 [cs, stat].

[56] X. Fu, Y. Wei, Q. Sun, H. Yuan, J. Wu, H. Peng, and J. Li, “Hyperbolic Geometric Graph Representation
Learning for Hierarchy-imbalance Node Classification,” in Proceedings of the ACM Web Conference
2023, WWW ’23, (New York, NY, USA), pp. 460–468, Association for Computing Machinery, Apr.
2023.

[57] M. Kochurov, S. Ivanov, and E. Burnaev, “Are Hyperbolic Representations in Graphs Created Equal?,”
July 2020. arXiv:2007.07698 [cs, stat].

[58] A. Jain, “Analyzing OpenStreetMap Road Network Attributes with NetworkX, PyG and Graph Neural
Networks,” Jan. 2022.

[59] L. Wan, M. Zeiler, S. Zhang, Y. LeCun, and R. Fergus, “Regularization of neural networks using drop-
connect,” in Proceedings of the 30th International Conference on International Conference on Machine
Learning - Volume 28, ICML’13, (Atlanta, GA, USA), pp. III–1058–III–1066, JMLR.org, June 2013.

[60] P. W. Holland, K. B. Laskey, and S. Leinhardt, “Stochastic blockmodels: First steps,” Social Networks,
vol. 5, pp. 109–137, June 1983.

[61] A. Lancichinetti, S. Fortunato, and F. Radicchi, “Benchmark graphs for testing community detection
algorithms,” Physical Review E, vol. 78, p. 046110, Oct. 2008. Publisher: American Physical Society.

[62] T. Bläsius, T. Friedrich, M. Katzmann, U. Meyer, M. Penschuck, and C. Weyand, “Efficiently generating
geometric inhomogeneous and hyperbolic random graphs,” Network Science, vol. 10, pp. 361–380, Dec.
2022. Publisher: Cambridge University Press.

[63] P. Erdős and A. Rényi, “On the Evolution of Random Graphs,” 1984.

[64] M. Leimeister and B. J. Wilson, “Skip-gram word embeddings in hyperbolic space,” May 2019.
arXiv:1809.01498 [cs, stat].

[65] J. W. Robbin and D. A. Salamon, Introduction to Differential Geometry. Berlin, Heidelberg: Springer,
2022.

41

A Hyperparameter configurations

The chosen hyperparameters configurations based on the procedure proposed in section 3 are given in Ta-
ble 11.

GCN HGCN
Cora lr 0.01, dropout 0.2 lr 0.001, dropout 0.5, weight decay 0.001

Pubmed lr 0.01 lr 0.01, dropout 0.5, weight decay 0.0001
Airport lr 0.1, weight decay 0.001 lr 0.1, weight decay 0.001
Disease lr 0.1 lr 0.1
Road lr 0.01 lr 0.01
HRG lr 0.1 lr 0.1
LFR lr 0.01, dropout 0.5, weight decay 0.001 lr 0.01, dropout 0.5
SBM lr 0.1, dropout 0.2, weight decay 0.0001 lr 0.1, weight decay 0.0001

Table 11: Hyperparameter choices for all datasets and models. Unless specified, no dropout or weight
decay is used.

B Curvature training plots

This appendix section shows the curvature training plots for each dataset (Figure 20 - Figure 26). These
are achieved by training 3 times with different random seed, and picking 2 of those to plot. In each plot, the
horizontal axis shows the epoch and the vertical axis shows the value of the curvature at each layer at that
epoch.

(a) Run 1 (b) Run 2

Figure 20: Learnable curvature optimization on Cora.

42

(a) Run 1 (b) Run 2

Figure 21: Learnable curvature optimization on Airport.

(a) Run 1 (b) Run 2

Figure 22: Learnable curvature optimization on Disease.

43

(a) Run 1 (b) Run 2

Figure 23: Learnable curvature optimization on Road.

(a) Run 1 (b) Run 2

Figure 24: Learnable curvature optimization on HRG.

44

(a) Run 1 (b) Run 2

Figure 25: Learnable curvature optimization on LFR.

(a) Run 1 (b) Run 2

Figure 26: Learnable curvature optimization on SBM.

C Formulas for Riemannian manifolds and hyperbolic space

Here we give the relevant definitions and formulas for Riemannian spaces and hyperbolic space. Most of this
is summarized from Chami et al. [1]. Some derivations and proofs that are omitted here can be found there.
A Riemannian manifold is a pair (M, g) with a smooth manifold M and Riemannian metric g; gx : TxM×

45

TxM → R for x ∈ M. The Riemannian metric gives the manifold a measure the rate of change, and thus
the distance between points. The norm induced by the Riemannian metric is denoted by ||v||g =

√
gx(v,v)

for v ∈ TxM.
The Riemannian metric γ allows us to directly define the length of a curve on the manifold, given by (14).
Here γ : [a, b] → M is a smooth curve on M. γ(a) and γ(b) are the start- and endpoints of the curve,
respectively, t is a sort of time measure, and the derivative over t measures the rate of change when moving
along the curve.

L(γ) :=

∫ b

a

||γ′(t)||gdt (14)

We can now define distances and geodesics. The distance d : M×M → [0,∞) between two points on the
manifold is given by (15). It is simply the length of the shortest curve between the two points. A geodesic is
exactly this shortest curve, defined by (16), and is a generalization of straight lines to non-Euclidian space.

d(x,y) := inf
γ
{L(γ) : γ is a continuously differentiable curve joining x and y} (15)

γ : [a, b] → M is geodesic if d(γ(t), γ(s)) = L(γ|[t,s])∀(t, s) ∈ [a, b](t < s) (16)

Next we explain formulas for both models of hyperbolic space. Some derivations are explained at the
end.

Poincaré ball model

Poincaré ball model of dimension d, radius 1, and constant negative curvature -1 is the Riemannian manifold
(Dd,1, (gx)x) with

Dd,1 :=
{
x ∈ Rd : ∥x∥2 < 1

}
and

gx = λ2
xId

where || · ||2 is the Euclidian 2-norm and λx := 2
1−∥x∥2

2
. Note that gx(u,v) := u · gx · v with gx being a

matrix that defines the product at x.

Thus we have ||u||gx =
√
< u,u >gx =

2||u||22
1−||x||22

, meaning the norm of the tangent goes to infinity as x goes

away from the origin. Note that since the disk is in R2, all the tangent spaces are also just R2. With this
norm we can find an expression for the distance between to points x and y on the disk:

d1D(x,y) = arcosh

(
1 + 2

∥x− y∥22
(1− ∥x∥22) (1− ∥y∥22)

)
Other formulas for the Poincaré disk are omitted but can be derived in a similar way as those for the
Hyperboloid model.

Hyperboloid model

The Hyperboloid model is based on the Minkowski inner product. The Minkowski inner product ⟨., .⟩L :
Rd+1 ×Rd+1 → R is given by:

⟨x,y⟩L := −x0y0 + x1y1 + . . .+ xdyd

The hyperboloid model with unit imaginary radius and constant negative curvature − 1
K in d dimensions is

defined as the Riemannian manifold (Hd,1, (gx)x) where

Hd,K := {x ∈ Rd+1 : ⟨x,x⟩L = −K,x0 > 0}

46

and

gx :=

−1

1
. . .

1

 .

Tangent spaces: The tangent spaces of the hyperboloid model are given by

TxHd,K :=
{
v ∈ Rd+1 : ⟨v,x⟩L = 0

}
.

This follows from the definitions of the hyperboloid model and the tangent space.
Distance: The distance between two points in the hyperboloid is given by

dKL (x,y) =
√
K arcosh(−⟨x,y⟩L/K)

Geodesics: Let x ∈ Hd,K and u ∈ TxHd,1 with u unit speed (⟨u,u⟩L = 1). The unit-speed geodesic
γk
x→u :→ Hd,1 such that γx→u(0) = x and γ̇x→u(0) = u is given by

γK
x→u(t) = cosh

(
t√
K

)
x+

√
K sinh

(
1√
K

)
u.

This is equivalent to a straight line passing through x in direction u.
Parallel transport: If two points x and y on the hyperboloid Hd,1 are connected by a geodesic, then the
parallel transport of a tangent vector TxHd,1 to the tangent space TyHd,1 is:

Px→y(v) = v −
⟨logx(y),v⟩L
d1L(x,y)

2

(
logx(y) + logy(x)

)
Projections: A point x = (x0,x1:d) ∈ Rd+1 can be projected on Hd,1 with:

ΠRd+1→Hd,1(x) :=

(√
1 + ∥x1:d∥22,x1:d

)
.

Similarly, a point v ∈ Rd+1 can be projected on TxHd,1 with:

ΠRd+1→TxHd,1(v) := v + ⟨x,v⟩Lx.

These projections can be used to make sure that certain points remain in the manifold or the tangent space
after certain operations in the implementation.
Exponential and logarithmic maps: For x ∈ Hd,K ,v ∈ TxHd,K and y ∈ Hd,K such that v ̸= 0 and
y ̸= x, the exponential and logarithmic maps of the hyperboloid model are given by:

expKx (v) = cosh

(
∥v∥L√

K

)
x+

√
K sinh

(
∥v∥L√

K

)
v

∥v∥L

logKx (y) = dKL (x,y)
y + 1

K ⟨x,y⟩Lx∥∥y + 1
K ⟨x,y⟩Lx

∥∥
L
.

The exponential map maps a vector from the tangent space of a point to the hyperboloid. The logarithmic
map maps a point from the hyperboloid to a vector in the tangent space of another point. These can be
used to go back and forth from the manifold to a tangent space, where certain operations can be done.

Projection between Poincaré ball and hyperboloid model

The following equations show how to project points between the two models, which can be useful for example
for visualizing a point on the Poincaré disk after computing it in the Hyperboloid model.

ΠHd,1→Dd,1 (x0, . . . , xd) =
(x1, . . . , xd)

x0 + 1

ΠDd,1→Hd,1 (x1, . . . , xd) =

(
1 + ∥x∥22, 2x1, . . . , 2xd

)
1− ∥x∥22

47

Derivations of formulas for Hyperboloid model

Here we give a brief overview on how one would go about deriving the formulas of the Hyperboloid model,
meant to give the reader a better understanding of the model and its operations.
Before looking at the formulas it is useful to look at the definitions of the hyperbolic functions in Figure 27.
What is important is that cosh and sinh are defined as parametrizations of the hyperboloid. We can use this
to define the geodesics on the hyperboloid.

Figure 27: Hyperbolic functions; related formula is cosh2 x− sinh2 x = 1

Geodesics: The geodesic crossing point x on the hyperboloid in the direction u must satisfy the following
conditions: x is on the hyperboloid and u is a unit tangent vector so ⟨x,x⟩L = −1; the norm ⟨u,u⟩L = 1;
the product of ⟨x,u⟩L = 0; the geodesic lies in the plane spanning x and u so c(t) = a(t)x + b(t)u; the
geodesic lies on the hyperboloid so ⟨c(t), c(t)⟩L = −1; the geodesic has unit speed so ⟨c′(t), c′(t)⟩L = 1; the
geodesic starts at x with velocity u so c(0) = x and c′(0) = u.
The unique solution to these conditions is a(t) = cosh(t), b(t) = sinh(t). We do not give a proof but it can
be seen as the same process as parametrizing a geodesic on a sphere, which would be (̧t) = cos(t)x+ sin(t)u
based on the identity cos2(t) + sin2(t) = 1, whereas in the hyperbolic case this is cosh2(t)− sinh2(t) = 1.
Exponential and logarithmic maps: The exponential and logarithmic maps follow from the geodesic
definition and are explained by Chami et al. [1] in an appendix. The idea that a vector in the tangent space
is a projection of a geodesic going through that point.
Parallel transport: For the parallel transport formula the proof includes taking the covariant derivative
along a geodesic. The proof is given in an appendix of [64] based on theory from [65].
Projections: The projections to the hyperboloid and the tangent space are given in [65]. They are motivated
by the geometric structure, and so are the projections between the hyperboloid and the Poincaré disk.
Distance: The distance formula is derived directly from the geodesic formula. Consider x and y on the
hyperboloid. We know there is a u ∈ TxH that defines the geodesic between x and y. We know that
⟨x,x⟩L = −1, ⟨x,u⟩L = 0, and y = x cosh(t) + u sinh(t) with t > 0 and t = d(x,y). Then we simply derive
the distance:

⟨x,y⟩L = ⟨x,x cosh(t) + u sinh(t)⟩L
⟨x,y⟩L = ⟨x,x⟩L cosh(t) + 2⟨x,u⟩L cosh(t) sinh(t) + ⟨x,u⟩L sinh(t)

⟨x,y⟩L = 1 · cosh(t) + 0 · cosh(t) sinh(t) + 0 · sinh(t)
⟨x,y⟩L = cosh(t)

t = arcosh(−⟨x,y⟩L)
d(x,y) = arcosh(−⟨x,y⟩L)

48

	Introduction
	Background
	Learning on graphs
	Basics
	Traditional features
	Shallow node embeddings
	Graph neural networks

	Hyperbolic geometry
	Riemannian geometry
	Hyperbolic space
	Hyperbolicity of graphs

	Hyperbolic graph neural networks

	Modelling
	HGCN
	Modelling choices
	Random graph models
	Data statistics
	Basic measures
	Gromov's -hyperbolicity
	Balanced Forman curvature
	Noise

	Experiments
	Dataset properties and model performance
	Dataset statistics
	Model performance
	Robustness to noise

	Learnable curvature
	Embedding dimension

	Discussion
	Research question 1: What properties of the dataset guarantee that HGNNs will perform better than (Euclidian) GNNs?
	Research question 2: What role does the curvature play as a learnable parameter in the HGCN?
	Research question 3: Can the performance gap between HGNN and GNN be compensated for by increasing the embedding dimension of the GNN?
	General remarks

	Conclusion
	Hyperparameter configurations
	Curvature training plots
	Formulas for Riemannian manifolds and hyperbolic space

