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ABSTRACT 

Hunger remains a major problem for low and middle-income countries. Moreover, Micronutrient 

deficiencies(MNDs) or hidden hunger are fatal and prevalent in these regions. Billions, including 

children, suffer from MNDs. In trace amounts, micronutrients like Selenium, Calcium, Iron, and others 

are found in the human body. Measurement of these micronutrients is vital, but the current methods 

available for testing and measuring are time-consuming and expensive. Hence, a method tackling both 

setbacks from prior techniques is the need of the hour. Several scientists have taken the help of field 

and crop samples to spatial map these micronutrition concentrations using spatial statistics. 

 

This study aimed to develop a machine learning method comprising remote sensor data from Sentinel 

1 and Sentinel 2 and other ancillary information like topographic, climatic, and soil characteristics data 

for micronutrient concentration in Calcium, Iron, Magnesium, and Zinc. To do this, we take the help 

of GeoNutrition Surveys as our reference data and use the Random Forest model for building the 

model. The study area for the research is Malawi. We use the GEEMAP library and GEE Python API to 

fetch all the datasets but the Sentinel 2 L1C, which we used Copernicus hub. L2A Sen2Cor algorithm 

was used for the atmospheric correction. After filtering many data points with inconsistent data or 

NaN values. After several combinations of the models, R2 accuracy for each model was 

Calcium(0.25), Iron(0.25), Magnesium(0.29), and Zinc(0.23). Finally, partial dependence plots 

indicated that topographic and climatic features have the highest correlation with micronutrient 

concentrations. SWIR band depicted most dependency among the spectral features. Cloud cover and 

the consequences of these missing data were major limitations.  

 

From these findings, this study is a foundation for using spectral and polarimetric features with 

machine learning techniques for micronutrient concentrations in tropical settings. Moreover, further 

development in terms of improving models via deep learning could be done. Using UAVs for 

acquiring spectral features is an experiment for future use. 

 

Keywords:  Sentinel-1, Sentinel-2, Worldclim, GeoNutrition, MERIT DEM, spectral, hidden 

hunger, MNDs, Polarimetric, Random Forest  
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1. INTRODUCTION 

1.1. Background 

The global impact of hunger is severe, with approximately one in every nine individuals facing hunger 

(FAO, 2020). The World Health Organization (WHO) reports that nearly 45% of child deaths under 

the age of five are associated with undernutrition, a prevalent malnutrition in low- and middle-income 

countries (WHO, 2021). Micronutrient deficiencies (MNDs) are one of several types of undernutrition, 

although the symptoms are not as obvious as those of other types, which is why it is referred to as 

"Hidden Hunger" (Muthayya et al., 2013). Alarmingly, it is estimated that approximately 1.5 billion 

individuals worldwide are affected by one or more types of MNDs as Iron (Fe), Zinc (Zn), Iodine (I), 

Calcium (Ca), or Selenium (Se) deficiencies(FAO, 2018; Saka et al., 2013). These deficiencies 

commonly occur in regions where grain-based diets dominate, with limited access to nutrient-rich 

plant and animal foods (Bouis & Saltzman, 2017). Sub-Saharan Africa and Southeast Asia are 

particularly affected by MNDs (Black et al., 2013), with Sub-Saharan women being disproportionately 

impacted, subsequently affecting the nutritional well-being of their children as they bear the primary 

responsibility for caregiving (Conti et al., 2019). Clinical complications can arise, such as anemia 

resulting from Fe deficiency (Camaschella, 2015) or hypocalcemia due to Ca deficiency (Ross et al., 

2011). 

 

MNDs are intricately linked to various health issues. For instance, a deficiency in Zn can result in 

developmental delays, loss of appetite, impaired immune function, as well as hair loss, diarrhea, 

delayed sexual development, impotence, hypogonadism in males, and severe cases may even lead to 

eye and skin diseases. Additionally, weight loss, slowed wound healing, taste abnormalities, and 

mental lethargy can manifest as potential symptoms (Heyneman, 1996; Prasad, 2004). Inadequate 

intake of Ca can lead to weakened bones and osteoporosis, characterized by brittle bones and an 

increased risk of fractures. Ca deficiency may cause rickets in children, while adults may develop 

other bone diseases. It is worth noting that vitamin D deficiency is more prevalent with Ca deficiency. 

In children with rickets, the growth cartilage typically fails to mineralize, resulting in irreversible 

changes to the skeletal structure. Osteomalacia, a condition characterized by poor bone mineralization 

and softening, can occur in adults and children due to Ca insufficiency (Ross et al., 2011). Chronic 

latent Magnesium (Mg) deficiency has been associated with atherosclerosis, myocardial infarction, 

hypertension, malignant tumors, kidney stones, changes in blood lipids, premenstrual syndrome, and 

psychological conditions (Jahnen-Dechent & Ketteler, 2012).  

 

Micronutrient measurements are typically conducted using biomarkers, which involve assessing 

micronutrient levels or enzyme activity in human blood and tissues. These biomarkers serve as status 

indicators and are widely used to evaluate population health (Fairweather-Tait, 2011; Gödecke et al., 

2018; King et al., 2015). Establishing sufficient biomarker thresholds poses challenges due to 

variations in "healthy" ranges among different demographic groups, the influence of physiological 

buffering, and the immediate impact of infection and inflammation on micronutrient concentrations 

(Jamison et al., 2006; King et al., 2015). 

 

Biomarker investigations present additional difficulties in terms of logistics and data management. 

Volunteers face challenges in providing blood or tissue samples, while technical obstacles involve 
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ensuring stable laboratory hygiene and constant refrigeration, particularly in low-income countries. 

Alternative approaches for predicting risks of micronutrient deficiencies include analyzing food 

consumption data. However, these strategies are not only time-consuming but also uncertain due to the  

regional variations in food quality (Hurst et al., 2013; Joy, 2015; OI Bermudez, 2012). 

 

Although laboratory analyses offer detailed insights into micronutrient deficiencies, they have 

limitations, as their implementation could be more consistent across different spatial scales. 

Furthermore, the complexities and challenges associated with these analyses highlight the need for 

further research and alternative approaches to address micronutrient deficiencies effectively. 

 

Measurement of nutrient concentrations for the consumed crops is usually done using the lab analysis 

(wet chemistry) on the grains (Huang et al., 2020; Ibrahim et al., 2022; Wang et al., 2013). Other 

studies used hyperspectral imaging of the grains themselves to assess the nutrients in the grains 

(Grieco et al., 2021; Herzig et al., 2019 and Mohammadi Moghaddam et al., 2013). The benefit from 

hyperspectral imaging over the chemical test is the non-destructive assessment of micronutrients. Yet, 

they both require expensive equipment and trained workers to assess the sample of the grains. 

Consequently, it is crucial to develop efficient methods for obtaining accurate information on crop 

nutrient levels and their spatial and temporal variability. 

 

Although laboratory analyses through wet chemistry of the micronutrient concentration of the grains 

offer detailed insights into potential grain micronutrient deficiencies, this method is expensive and 

time-consuming and, consequently, cannot be applied across time and large areas. These challenges 

call for further research and alternative approaches to measure potential micronutrient deficiencies in 

crops effectively. 

 

Remote sensing data have been successfully used in the past to predict nutrients in the soil, crop 

canopy, and grains. For example, Kaur et al. (2020) employed combined optical remote sensing data 

from Landsat-8 and Sentinel-2, along with climate data and ground truth values, to predict soil N, 

Potassium (K), Phosphorus (P), and Organic Carbon (OC) for select districts in Maharashtra, India. 

Various linear and non-linear regression models, including Multiple Linear Regression (MLR), 

Random Forest Regression (RFR), Support Vector Machine for Regression (SVR), and Gradient 

Boosting (GB), were examined. The findings indicated that RFR and GB outperformed other 

techniques. Forkuor et al. (2017) focused on mapping the spatial distribution of six soil characteristics 

including silt, clay, cation exchange capacity (CEC), soil organic carbon (SOC), and N in a 580 km2 

agricultural watershed in south-western Burkina Faso using RapidEye and Landsat images, terrain 

data, and climatic data. Four statistical prediction models were evaluated and compared, including 

Multiple Linear Regression (MLR), RFR, SVR, and Stochastic Gradient Boosting (SGB). The results 

indicated that MLR performed slightly better than the machine learning approaches, with RFR 

consistently demonstrating the highest accuracy. Similarly, Zhou et al. (2020) conducted a study on 

assessing different remote sensing sensors such as  Synthetic Aperture Radar (SAR) and optical high-

resolution imagery to predict SOC and They found the Sentinel-1 and Sentinel-2 based features 

obtained better R2 accuracies than others. The results suggest the potential significance of employing 

Sentinel-1 and Sentinel-2 imagery for estimating nutrient concentrations. 

 

Botoman et al. (2022) conducted a study focusing on the prediction of Zn content in maize grain using 

soil parameters and environmental factors. They employed a linear mixed model (LMM), 
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incorporating expert rankings and false discovery rate (FDR) corrections. The predictors included 

soluble Zn, soil pH, total Zn, potentially present Zn, soil organic carbon, oxalates, effective cation 

exchange capacity, mean annual precipitation, mean annual temperature, slope, topographic index, and 

enhanced vegetation index(EVI) from MODIS dataset. EVI is a more sensitive vegetation index to 

biomass, atmospheric backdrop, and soil condition (Huete et al., 2002a). They found evidence for 

justifying  Similarly, Gashu et al. (2020) conducted a study aiming to spatially predict the 

concentration of selenium in grains(teff and wheat) within the Amhara region of Ethiopia. They 

utilized LMM framework, incorporating soil parameters and environmental factors. In addition to 

these factors, they also included remotely sensed data, specifically bands from Visible region and 

shortwave infrared regions from the MODIS sensor and the EVI derived from the same. Furthermore, 

Gashu et al. (2021) revealed a high correlation between soil pH, SOC, and micronutrient concentration 

for Ca, Fe, Se and Zn in Ethiopia and Malawi. In summary, these studies highlight the utilization of 

various soil parameters, environmental factors, and remotely sensed data within the LMM framework 

for predicting micronutrient concentrations in grains. Incorporating these additional predictors like soil 

parameters and environmental could improve the accuracy and reliability of the predictive models. 

 

Belgiu et al. (2023) used hyperspectral satellite-borne imagery from PRecursore IperSpettrale della 

Missione Applicativa (PRISMA) to predict micronutrient estimation for Ca, Fe, Mg and Zn for crop 

wheat, corn, soy and paddy. They predicted the R2 accuracy for micronutrient concentration between 

0.49 and 0.58, emphasizing the potential of hyperspectral remote sensing in predicting micronutrients.  

 

1.2. Problem Statement 

 

Previous studies dedicated to predicting micronutrient concentrations in crop yields rely on medium-

resolution satellite data, such as MODIS  (Botoman et al., 2020, 2022; Gashu et al., 2021). This 

research investigates the potential of using RFR on Sentinel 1 and Sentinel 2 data for estimating the 

micronutrient concentration. Previous studies have primarily used spatial statistics techniques for 

estimating and mapping micronutrient concentrations (Botoman et al., 2020, 2022; Gashu et al., 2021). 

In this thesis,  RFR will be used due to its capability to predict the non-linear relationship between 

nutrients and  investigated predictors. 

 

Creating detailed maps of MNDs nationally would be particularly beneficial for low- and middle-

income countries, which experience a significant burden of MNDs (Black et al., 2013). The study 

specifically aims to assess the potential of remote sensing and environmental data to estimate nutrients 

of public health importance, such as Zn, Mg, Ca, and Fe. The analysis will focus on Malawi, where 

maize is the staple crop grown in the Northern, Central, and Southern regions (Gashu et al., 2021).  

 

1.3. Research Objectives and Questions 

 

Overall Objective: The main aim of this research is to evaluate the potential of remote sensing images 

and other ancillary geoinformation such as topographic, soil characteristics and climatological data, 

and to estimate the concentration of micro-nutrients, i.e., Fe, Ca, Mg, and Zn, the grains of maize 

cultivated in Malawi.  

Sub-Objective-1: Evaluate the performance of radar and optical data for estimating micro-nutrient 

concentrations. 
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Research Question-1-1: What is the importance of Sentinel-1 and Sentinel-2 spectral and 

polarimetric features for estimating micro-nutrient concentrations? 

Sub-Objective-2: Evaluate the performance of Digital Elevation Model-based derivatives for 

estimating micro-nutrient concentrations. 

Research Question 2-1: What is the importance of topographic features derived from the 

slope, elevation, and Topographic wetness index relative to Sentinel-1 and Sentinel-2 predictors in 

estimating micronutrient concentration? 

Sub-Objective-3: Evaluate the performance of soil data for predicting micro-nutrient concentrations. 

 Research Question 3-1: What is the importance of soil parameters relative to Sentinel-1 and 

Sentinel-2 predictors in estimating micro-nutrient concentration? 

Sub-Objective-4: Evaluate the performance of Climatology data like precipitation and temperature as 

features for estimating micro-nutrient concentrations. 

 Research Question 4-1: What is the importance of climatological data like temperature and 

precipitation relative to Sentinel-1 and Sentinel-2 predictors in estimating micronutrient concentration? 
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2. RELATED WORK 

2.1. Spectral and Polarimetric features for (Micro)nutrient Concentration 

Many studies have assessed the potential of various remote sensing images for predicting nutrients in 

the soil. For example, Kaur et al. (2020) used Landsat 8 and Sentinel 2 to predict macronutrients such 

as  N, K, P, and OC in the soils of Maharashtra, India. Remote sensing images have also been 

successfully used to predict various nutrients in the crop canopy. Rossi et al. (2022) uses Sentinel 2 

data for estimating N in rice and maize crops. Studies such as Fu et al. (2020), Li et al. (2014), Ling et 

al. (2019) and Sharifi (2020) gives evidence for usage of crop canopy in estimating nutrient 

concentration using remotely sensed inputs. 

  

Other techniques using spectral features are through reflectance spectrometry in the lab or having 

hyperspectral reflectance measurements using airborne or satellite imagery. Studies like Curran, 

(1989), Graeff & Claupein, (2003) and Pandey et al. (2017) are an example of using reflectance to 

measure the amount of nutrients like Nitrogen, Phosphorus, Ca, and Sulphur are detected in various 

crops like maize an dother plant canopies. Whereas other research by Belgiu et al. (2023), Li et al. 

(2018), Ling et al. (2019), Liu et al. (2017) and Marang et al. (2021) depicted on use of hyperspectral 

data for estimating and monitoring nutrients like Mg, N and P, Ca, and K available in various crops. 

 

On the other hand, polarimetric features have a certain major benefit over Multispectral satellite-based 

sensors as clouds have little effect on radar backscatter readings, which are sensitive to surface 

roughness and moisture content and can be used to portray the structure of a feature. Because of the 

thick trunks, leaves, and branches, highly structured elements such as the forest reflect most energy 

and look brighter. Conversely, barren land has darker characteristics because it reflects the signal away 

from the antenna in a different direction (ESA, 2020). Studies by Lapaz Olveira et al. (2023) and 

Munir et al. (2022) are recent developments on how C band SAR data is used to estimate nitrogen 

from the canopy of maize and oil palm, respectively.  

 

Recently, Belgiu et al. (2023) investigated the potential of hyperspectral data, namely, PRISMA and 

Sentinel 2 to estimate the composition of macro and micronutrients in crop harvest. The findings of the 

research indicated that the utilization of remote sensing imagery to estimate the nutritional content of 

crops has the capacity to provide cost-efficient, timely, and spatially detailed assessment of the 

nutritional values of crops. 

 

Various studies used remote sensing covariates together with other environmental factors to predict 

nutrient concentrations in staple crops. For example, Gashu et al., (2020) predicted Se with LMM 

framework, incorporating similar soil parameters and environmental factors. In addition to these 

factors, they also included remotely sensed data. 

 

2.2. DEM and its derivatives for Micronutrient Concentration 

The region's topographic characteristics considerably influence the spatial distribution of soil qualities 

(Suleymanov et al., 2021). Farming activities in specific field distribution patterns are may be 

influenced by the topography features of the geographical area (Husak et al., 2008). Moreover,  

Botoman et al. (2022) and Gashu et al. (2020) used elevation and its cognates along with other 
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variables to estimate concentrations of Zn and Se, respectively, and revealed that topography 

influences the prediction of their respective micronutrient concentration.  

 

2.3. Soil parameters for Micronutrient Concentration 

Soil properties such as Soil pH significantly impact soil biogeochemical processes in the natural 

environment. Soil pH is therefore called the "master soil variable" since it controls many biological, 

chemical, and physical qualities and processes affecting plant development and biomass output (Neina, 

2019). Research by Farwa et al. (2020) where both predict macronutrients like N, P, and K using only 

soil parameters, whereas studies by Botoman et al. (2022) and Gashu et al. (2020)  use soil pH, SOC 

and oxalates to estimate the concentration of Zn and Se respectively and showed that soil 

characteristics influenced the prediction of their respective micronutrient concentrations. 

 

2.4. Climatological parameters for Micronutrient Concentration 

It is well-established that various environmental elements, including rainfall and average temperature, 

profoundly shape plants' development and nutritional state as they impact plants’ physiology. These 

influential factors hold considerable sway in determining the levels of macronutrients present within 

plants (Köhler et al., 2019). Noteworthy investigations conducted by Botoman et al. (2022) and Gashu 

et al. (2020) have employed annual downscaled mean temperature and downscaled mean precipitation 

data for mapping Zn in Malawi and Selenium in Ethiopia, respectively. Both studies have utilized the 

CHELSA dataset (Karger et al., 2017). The incorporation of climatological parameters for the 

assessment of micronutrients yields significant insights and implications. 
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3. STUDY AREA AND DATA USED 

3.1. Study Area 

The research encompasses the entire country of Malawi as the study area (see Fig. 1). Malawi is 

located in eastern southern Africa, positioned between latitude 9°22′ and 17°7′ South and longitude 

32°40′ and 35°55′ East. It spans a land area of 94,275 square kilometers. Malawi is a landlocked 

country bordered by Tanzania, Mozambique, and Zambia. The country's topography is highly diverse, 

with the Great Rift Valley running from north to south and encompassing Lake Malawi. The 

surrounding regions of the Great Rift valley feature vast plateaus situated at elevations ranging from 

800-1,200 meters up to 3,000 meters (Saka et al., 2013). 

 

Malawi experiences a subtropical climate characterized by dry and seasonal conditions. The warm-wet 

season occurs from November to April, accounting for approximately 95% of the annual precipitation. 

This period coincides with the maize crop calendar (Botoman et al., 2020).Other crops grown during 

the same season are cotton, millet, paddy and sorghum. The average annual rainfall varies between 

725mm and 2,500mm, with Lilongwe receiving around 900mm, Blantyre receiving 1,127mm, Mzuzu 

receiving 1,289mm, and Zomba receiving 1,433mm. The lower Shire Valley and certain villages in the 

Salima and Karonga regions are susceptible to flooding. A cold and dry winter season prevails from 

May to August, with mean temperatures ranging from 17 to 27 degrees Celsius and occasionally 

dropping to 4 to 10 degrees Celsius in isolated areas, with frost occurrences during June and July. 

September through October is characterized by hot and dry weather, with typical temperatures ranging 

from 25 to 37 degrees Celsius. Humidity levels range from 50% to 87% during the drier months of 

September/October and the rainy months of January/February (Ministry of Forestry and Natural 

Resources, n.d.). 

 

 

 
Figure 1 Study area map with district and country boundaries in Malawi and Africa, respectively 
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As of 2018, the estimated population of Malawi stood at 17.5 million people, with approximately 84% 

residing in rural areas. The country's economy is vulnerable to external shocks due to its reliance on 

inadequate irrigation systems and low agricultural productivity. Agriculture plays a central role in 

Malawi's economy, contributing 30% to the GDP and accounting for more than 80% of national export 

revenues (JICA, 2022). This sector employs 64% of the country's workforce and plays a crucial role in 

ensuring food security. Over the past few decades, the percentage of land used for agriculture has 

steadily increased, with approximately 61% of Malawi's total land area currently dedicated to crop 

cultivation and livestock grazing. The production of maize and groundnuts, which are the main staple 

foods, dominates the agricultural sector (FAO, 2018). Agriculture in Malawi heavily relies on rain-fed 

farming practices, with limited production and consumption of animal products. Consequently, the 

country faces persistent food shortages at both the national and household levels (JICA, 2022). 

 

3.2. Dataset 

The research used two types of datasets. The first type comprises raster imagery obtained from sources 

such as Sentinel 1, Sentinel 2, MERIT digital elevation model, African Soil Information Service 

(AfSIS) soil data, and WorldClim climatic data. The second type of data consists of vector data, 

specifically the Ground reference data collected in the framework of the GeoNutrition project 

conducted by (Kumssa et al. 2022). The data includes Ca, Zn, Fe, and Mg measurements in various 

crops, including Maize.  

 

 

Table 1 The table depicts various datasets, their resolutions, coverage and spectral information, VIS is 

Visible bands(RGB), NIR(Near Infrared) and SWIR(Short wave infrared) 

Dataset & Source Spatial Resolution Temporal 

Resolution 

Temporal 

Coverage 

(Time Period) 

Spectral 

Information 

Sentinel - 2 10m & 20m 5 Days 2017-2018 VIS, NIR (10 m) 

Red Edge bands 

(20 m)and SWIR 

bands (20 m) 

Sentinel - 1 5 x 20 m 6 Days 2017-2018 C band IW with 

VV/VH 

polarization 

MERIT 90m - 2017 - 

WorldClim 2 1000m - 1970-2000 - 

AFSIS Soil Grid 250m - 2008-2014 - 

GeoNutrition 

Data 

- - 2018 - 
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3.2.1. Sentinel 1 and Sentinel 2 

Sentinel-1a and Sentinel-1b C band Level-1 Ground Range Detected (GRD) SAR images with dual 

polarization Vertical transmit Vertical receiver (VV), and Vertical transmit Horizontal receiver (VH) 

(VV+VH) in Interferometric Wide swath (IW) acquisition mode has been used from the year 2017 to 

2018. The temporal resolution of the S1a+S1b images is six days with a spatial resolution of 10m. No 

additional pre-processing has been done on the S1 image. Google Earth Engine (GEE) provides pre-

processed S1 GRD images with GRD border noise removal, thermal noise removal, radiometric 

calibration, and terrain correction. We use the Python API for GEE with an additional library, 

GEEMAP (Wu, 2020). From Sentinel 1, we use the VV, VH and their polarimetric arithmetic products 

VV+VH, VV-VV,VV*VV, and VV/VH. Also, we use the Radar vegetation index(RVI) (Kim & Van 

Zyl, 2009), along with the aforementioned polarimetric independent variables. RVI is calculated 

 as 8 ∗
𝑉𝐻

𝐻𝐻+𝑉𝑉+2∗𝑉𝐻
.  

Also, RVI is well recognized for being sensitive to vegetation cover and biomass.  

Sentinel-2 is a high-resolution, wide-swath imaging mission that supports Copernicus Land 

Monitoring investigations, such as monitoring plant, soil, and water cover, as well as observing inland 

rivers and coastal regions. 13 spectral bands are sampled by the Sentinel-2 Multispectral Instrument 

(MSI), including four bands at a spatial resolution of 10 meters, six bands at 20 meters, and three 

bands at a resolution of 60 meters. This study used Sentinel-2a and Sentinel-2b with a five-day interval 

with all bands at 20m (VIS, SWIR, RE) from the years 2017 to 2018 used. Cloud filtering was done 

using SCL, i.e., Scene Classification Layer, available in Sentinel 2. We performed Sen2Cor, was used 

for atmospheric correction of the images since only L1C data was available. We fetched data through 

Copernicus API Hub for large downloads. A total of 13 tiles/granules of Sentinel 2 data cover the 

entirety of Malawi. From Sentinel 2, we use all the bands available except B01(Ultra blue or Coastal), 

and deriving indices mentioned in Annexes 8.1. 

3.2.2. MERIT Digital Elevation Model 

MERIT DEM refers to a high-resolution global Digital Elevation Model (DEM) with a spatial 

resolution of approximately 3 arcseconds, which is equivalent to about 90 meters at the equator. It was 

developed by eliminating significant error components from existing DEMs, including the NASA 

SRTM3 DEM, JAXA AW3D DEM, and Panoramas DEM (Yamazaki et al., 2017). MERIT DEM 

utilizes multiple satellite datasets and employs various filtering techniques to address absolute bias, 

tracking noise, speckle noise, and tree height offset. By removing these error components, the 

accuracy of land area mapping with a vertical accuracy of 2 meters has significantly improved from 

39% to 58%. This improvement is particularly notable in flat areas where elevation errors previously 

exceeded topographic variations. Additionally, the enhanced DEM effectively highlights terrains such 

as river networks and mountain-valley structures. 

This study utilized the slope(degrees), elevation(m), and topographic wetness index (TWI) derived 

from MERIT DEM. TWI combines information about local upslope contributing area and slope to 

assess the influence of topography on hydrological processes. The index is calculated based on both 

the slope and the contributing area per unit width orthogonal to the flow direction.  

3.2.3. Climatic data 

WorldClim (Hijmans et al., 2005) is a spatially interpolated monthly climate data covering land areas 

across the globe. It has a spatial resolution of approximately 1 square kilometer. The dataset 

incorporates various climate variables, including monthly temperature (minimum, maximum, and 

average), precipitation, solar radiation, vapor pressure, and wind speed. To generate this dataset, data 

from a large number of weather stations, between 9,000 to 60,000 stations, were collected and 
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aggregated for the period between 1970 and 2000. The WorldClim dataset provides detailed climate 

information for different locations worldwide through sophisticated interpolation techniques. 

This research had extracted the average temperature and accumulated precipitation over the growing 

season from the WorldClim dataset. These variables are of particular interest and relevance to the 

study, as they provide valuable insights into the climatic conditions during the period when crops are 

cultivated. 

 

Table 2 Climatological variable used for model building 

Variable Units Source Used in 

Average 

Temperature(over the 

season) 

Degree Celsius http://www.worldclim.com/version2 (Botoman et al., 

2022; Gashu et al., 

2020) 

Accumulated 

Precipitation(over the 

season) 

mm 

 

3.2.4. AFSIS Soil Data 

The AFSIS soil data (Hengl et al. 2015), provides estimates of various soil properties across the 

African continent. These properties include organic carbon content, pH level, fractions of sand, silt, 

and clay, presence of coarse debris, bulk density, cation exchange capacity, total N content, 

exchangeable acidity, and levels of exchangeable bases such as Ca, Mg, potassium, sodium, as well as 

extractable aluminum. The soil data is derived from an automated mapping framework with random 

forests. With a spatial resolution of 250 meters, the soil properties are estimated at two or six standard 

soil depths throughout the entire African continent. 

For this research, the focus is on the soil depth of 100 centimeters. This depth is considered significant 

as it provides the most suitable environment for root growth (Gao et al. 2010). Furthermore, specific 

variables depicted in the table below will be used in the analysis. 
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Table 3 Soil variable used for building models 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.5. GeoNutrition survey data  

The dataset provided by Kumssa et al. (2022) encompasses primary data from GeoNutrition surveys 

conducted in Ethiopia and Malawi. This dataset includes information on the concentrations of 29 

mineral micronutrients such as Silver, Magnesium, Aluminium, Manganese, Arsenic, Molybdenum, 

Boron, Nickel, Barium, P, Beryllium, Lead, Ca, Rubidium, Cadmium, Sulfur, Cobalt, Selenium, 

Chromium, Strontium, Caesium, Thallium, Copper, Uranium, Fe, Vanadium, K, Zn, Lithium in grains 

and up to 8 soil chemistry characteristics. The concentrations of micronutrients in the grains were 

determined using inductively coupled plasma-mass spectrometry (ICP-MS) (Kumssa et al., 2022). 

Sampling took place across Malawi during the harvest season from April to June 2018 to ensure 

national coverage. The distribution of concentration values for the micronutrients can be observed in 

Figure 2, providing insight into their variability. Mg has the highest concentration among all of the 

micronutrients and Fe has some outliers present. Additionally, Figure 3 illustrates the spatial 

distribution of the sampling points throughout the region.   

 

 

Variable Units Used in 

Cation Exchange 

Capacity 
Mmol/kg (Botoman et al., 2022) 

Soil Organic Carbon dg/kg 
(Botoman et al., 2022; 

Gashu et al., 2020) 

pH - 
(Botoman et al., 2022; 

Gashu et al., 2020) 

Organic Carbon Stock t/ha - 

Total Nitrogen cg/kg (Gashu et al., 2020) 
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Figure 2 Combined violin and box and whisker plot for the micronutrient concentration in maize grain 

collected from Malawi 
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Figure 3 Spatial Distribution of the data points in Malawi representing locations from where grain and 

soil samples were taken. 
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4. METHODS 

 

When discussing the methodology, the first step, as illustrated in the figure below, involves preparing 

the Sentinel 2 and Sentinel 1 data for sampling (extracting raster values). For Sentinel 2 data, 

atmospheric correction is necessary since only Top-of-Atmosphere reflectance (L1C products) are 

available for the Malawi region between November 2017 and April 2018. Sen2cor from ESA is 

employed for this purpose. Cloud masking is applied to the Sentinel 2 data using the SCL bands of the 

image. Sentinel 1 data is obtained using the GEE Python API (Gorelick et al., 2017). The polarimetric 

features are averaged over the growing season for each data point. Climatological data is also retrieved 

using the GEE Python API, specifically WorldClim (Hijmans et al., 2005), which provides average 

temperature and total rainfall throughout the growing season. The soil data utilized is the AFSIS soil 

grid with a spatial resolution of 250m (Hengl et al., 2017). Various soil characteristics, such as cation 

exchange capacity, soil organic carbon, organic carbon stock, nitrogen availability, and soil pH (water-

soluble), are analyzed. Topographic features are derived from the MERIT DEM, which has a spatial 

resolution of 90m at the equator. Elevation, slope, and TWI (Topographic Wetness Index) are 

extracted from the MERIT DEM. Subsequently, all these data sources are sampled for the available 

data points. Feature reduction techniques are applied to eliminate excessive independent variables, and 

a RFR (Breiman, 2001) is trained using the significant independent variables to achieve improved 

model performance. Hyperparameter tuning uses the Grid Search approach (LaValle et al., 2004). 

Lastly, Partial Dependency Plots (Friedman, 2001) are used to visualize the influence of an individual 

or a couple of characteristics on the predicted outcome of the machine learning model. 

 

Figure 4 Flowchart depicting the data flow and the generalized methodology 
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4.1. Sentinel 2 

Top of the Atmosphere (TOA) S2 (a+b) imagery captured between November 2017 and April 2018 

was obtained through the Copernicus Hub API utilizing the sentinelsat library. Due to the 

unavailability of Bottom-of-the-Atmosphere(BOA) images, an atmospheric correction was performed 

on the TOA imagery using Sen2cor L2A, thereby generating BOA images. This correction process 

involved batch-processing via the terminal. For this study, a consistent spatial resolution of 20m was 

adopted for all Sentinel 2 bands. To effectively mask out clouds, an intuitive approach leveraging the 

Rasterio and numpy libraries in Python was employed. The Scene Classification Layer (SCL) 

excluded everything except vegetation, non-vegetation, and water bodies. It is worth noting that the 

SCL was initially designed for a 60m resolution; hence, an upscaling factor of 3 was applied to 

achieve a 20m resolution, which was subsequently utilized in the analysis. 

 

In this study, once the images were ready, we sampled them in two ways, either just taking the 

reflectance of the particular pixel which coincides with the datapoint and another way, was by creating 

a buffer of 60m around the datapoint and averaging the reflectance, and finally, averaging them 

through the growing season; some variations, like dividing the total temporal period into three and two 

parts, i.e., making three and two-month composites, were also done. Finally, after the images were 

sampled, we removed the data points with no data, or too few observations i.e., not having at least one 

cloud free pixel per month. We would only use these data points for further analysis. 

 

Regarding sampling design, as the study uses the sklearn library, which is unable to understand the 

NaN values as information for the model, especially for the Fe concentration, 439 data points are lost 

when using the dataset. From 1608 to 884 data points, nearly losing 55% of data was due to missing 

values and noisy and cloudy data. This raises questions on the generalization of the model. This leads 

to whether the number of samples is enough to train a robust model. For selection of valid data points, 

algorithm is used as follows: 

 

the set of all locations as L, and the set of all months as M. We can express the valid locations where 

the total number of pixel per month is at least 1. 

 

{𝑙 ∈ 𝐿 | (∀ 𝑚 ∈ 𝑀)(𝑥{𝑙𝑚} ≥ 1)} 

 

In this notation: 

 

• l ∈ L represents that location l is an element of the set of all locations L. 

• m ∈ M indicates that month m is an element of the set of all months M. 

• x_{lm} represents the total number of pixel per month m at location l. 

 

Also, we employed averaged bands for calculating spectral indices, which are widely used in 

vegetation/crop remote sensing shown in Annex 5.1. Therefore we used a total of 20 spectral 

features(9 raw bands and 11 indices) were used as independent variables for the model 

 

4.2. Sentinel 1 

The pre-processing steps, including generating a mean composite for the growing season and 

extracting the values, were conducted using the GEEMAP library and the GEE Python API. The data 

points obtained from the previous Sentinel 2 processing were utilized in this stage. As for the Sentinel 

1 GRD, VV and VH data, which have a resolution of 10m, were resampled to a 20m resolution using 
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bilinear resampling. The S1 GRD data had already undergone radiometric and terrain correction. 

Lastly, we sample the VV and VH values for the data points. We also calculate and use polarimetric 

arithmetic like addition(VV+VH), ratio(VV/VH), and difference(VV-VH). A remark made during this 

was that VV and VH are logarithmic values, and so for calculating the other derived polarimetric 

values, this was taken care of. 

 

Furthermore, we use the Radar Vegetation Index (Kim & Van Zyl, 2009) for its ability to be sensitive 

to crop cover and biomass. Overall, a total of six polarimetric independent variables for the model viz 

VV,VH,VV/VH,VV+VH,VV-VH, and RVI. 

  

4.3. Climatological data 

WorldClim climatological data was used in this research.. Also, as mentioned for Sentinel 1 data for 

this data too, we use GEEMAP with GEE Python API. The point to be noted was that this study used 

the mean average temperature over the growing season, and we aggregated the precipitation over the 

temporal period too. Finally, we sample them with the data points. Hence, from climatological data, 

we get Average temperature and accumulated precipitation as independent variables for the model. 

4.4. Soil data 

In this research, we use AFSIS soil data which comprises estimations of diverse soil characteristics 

across Africa. These characteristics encompass the content of organic carbon, pH level, proportions of 

sand, silt, and clay, presence of coarse debris, bulk density, cation exchange capacity, total nitrogen, 

exchangeable acidity, and levels of exchangeable bases such as Ca, Mg, potassium, sodium, as well as 

extractable aluminum. The spatial resolution of AFSIS is 250m. This research uses Cation Exchange 

Capacity, Soil Organic Carbon, Organic Carbon Content, N, and pH. Again, we use GEEMAP with 

GEE Python API for fetching and sampling. Here, we use only the first four bands of each soil 

characteristic since the depth of 100cm is reached. Therefore, we use a total of five independent 

variables for the model. 

4.5.  Topographic data 

MERIT DEM was used in the study, which has a spatial resolution of 90m. We resampled to 20m 

resolution and used GEEMAP with GEE Python API. Also, using ee.Terrain package for 

computing slope. We use TWI to understand how topography influences hydrological processes. 

Therefore, we use three independent variables from the topographic data for the model. 

4.6. Feature reduction 

Feature reduction is crucial in reducing dataset size and eliminating unnecessary variables. 

Fortunately, several models are available to calculate the relevance of features, enabling us to 

disregard less useful ones. One such model is the RF proposed by Breiman (2001). In this study, we 

will utilize the sklearn library, developed by Pedregosa et al. (2011), to perform feature selection in 

Python. 

 

The Recursive Feature Elimination (RFE) algorithm was employed, a feature selection/reduction 

technique based on the wrapper approach Guyon et al. (2002). This study used a blend of RFE and 

Cross-Validation(CV) called RFECV.  RFECV, an acronym for Recursive Feature Elimination with 

Cross-Validation, represents a feature selection technique accessible within the scikit-learn 

(sklearn) library. RFECV integrates the concepts of Recursive Feature Elimination (RFE) and 
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cross-validation to automatically determine the ideal number of features for a given machine learning 

model. 

 

The RFECV procedure commences by fitting the designated estimator (machine learning model) using 

the complete set of features. Subsequently, it progressively eliminates features through recursive 

iterations, considering their importance, and re-fits the model using the reduced feature set. The 

significance of each feature is assessed based on a predefined metric for feature importance, such as 

coefficient values for linear models or feature importance scores for tree-based models. 

 

Following each round of feature elimination, RFECV employs cross-validation to assess the model's 

performance using the reduced feature set. Cross-validation partitions the data into multiple folds, 

training the model on a subset of the folds and evaluating its performance on the remaining fold. This 

process is repeated several (Total number of features/step size) times, and an average performance 

score is computed. 

 

RFECV iterates the recursive elimination process until the specified number of features or a minimum 

threshold is reached. Throughout each elimination step, it tracks the cross-validated performance 

scores. This facilitates the identification of the optimal number of features that maximizes the model's 

performance. The RFECV algorithm provides both a ranking of feature importance and a visualization 

of the cross-validated performance scores plotted against the number of selected features. These 

outputs aid in comprehending the trade-off between feature selection and model performance, enabling 

informed decision-making regarding feature subset selection. In summary, RFECV integrates 

recursive feature elimination with cross-validation to automatically determine the optimal number of 

features that yield the highest model performance. It serves as a powerful tool for feature selection in 

machine learning tasks, providing valuable insights for enhanced decision-making. 

 

For this study, we used three different RFECV models for each micronutrient model, changing one 

hyperparameter, i.e., the number of trees for the random forest model. The number of trees were 500, 

1000, and 1500. At the end of this process, we save the ‘important’ features and build the model with 

them. 

4.7. Random Forest Model  

The process’s next and final major step is building a RFR model. In this research, To estimate the 

concentrations of micronutrients and construct RF models, we employed the Python library sklearn 

(Pedregosa et al., 2011). In this study, the micronutrient concentration served as the response variable 

for the regression task. The data was split into a training set, comprising 80% of the data, and a testing 

set, encompassing the remaining 20%. The testing set was solely utilized for evaluating the 

performance of the models, while model creation was conducted solely on the training set. 

 

We used GridSearch CV, which suggested a combination of Grid Search and CV. Grid Search is a 

technique used in Random Forest (RF) models for tuning hyperparameters. It systematically explored 

a predetermined set of hyperparameter combinations to find the optimal configuration that maximizes 

model performance. This technique constructed a grid of hyperparameter values and thoroughly 

assesses the model's performance for each combination. 

 

Grid search requires defining a range or list of values for each hyperparameter of interest. The 

algorithm then systematically trains and evaluates the model using all possible combinations of these 

hyperparameter values. Evaluation metrics, such as mean squared error (MSE) or R-squared (R²)(in 



ESTIMATING MICRONUTRIENT CONCENTRATIONS IN MAIZE GRAINS WITH SENTINEL-1 AND -2 IMAGES 

18 

this research), assess each combination's performance. Throughout the grid search process, the 

algorithm calculates the model's performance for every hyperparameter combination and tracks the 

one that achieves the best performance based on the evaluation metric. Once the grid search is 

complete, the optimal hyperparameter combination is identified, and the model can be retrained using 

these ideal hyperparameters. Grid search streamlines the hyperparameter tuning process by 

exhaustively exploring diverse combinations, saving time and effort compared to manual tuning. It 

enables a systematic and comprehensive search across the hyperparameter space, ultimately enhancing 

model performance. 

  

For this study, we used (i) the number of decision trees, (ii) the depth of the decision tree, (iii) the 

lowest number of samples necessary to divide an intermediate node, and (iv) the lowest number of 

samples necessary at the terminal node as hyperparameters to train our model. The configuration for 

the GridsearchCV is as follows:  

param_grid = { 

'n_estimators': [500, 1000, 1500], 

'max_depth': [5, 10, 20], 

'min_samples_split': [2, 3, 5], 

'min_samples_leaf': [1, 2, 4] 

    } 

 

Lastly, we take the natural logarithm of the dependent variables, viz. micronutrient concentrations, for 

linearizing relationships. For each micronutrient concentration, a separate model was introduced. After 

training the model, it was tested on the testing dataset, where the evaluation of the model was done 

using the coefficient of determination (R2), Root Mean Squared Error (RMSE), relative 

RSME(RRMSE), and Mean Bias error(MBE). Also, we analyze the model using the Partial 

dependencies plot and SHAP(SHapley Additive exPlanations) (Lundberg et al., 2017) to determine 

how the target variable (predicted outcome) changes as one or more input features vary while keeping 

all other features constant and identify the most influential features in your RF model and their relative 

contributions, respectively. Features with larger absolute SHAP values have a more substantial impact 

on the predictions, while features with smaller absolute SHAP values have less influence (Lundberg et 

al., 2017). We analyzed what features are significant for the model. SHAP feature importance method 

was used to undergo this operation. It is based on the cooperative game theory notion of Shapley 

values. SHAP feature significance quantifies the influence of each feature on the model's output for a 

single instance. 
  



ESTIMATING MICRONUTRIENT CONCENTRATIONS IN MAIZE GRAINS WITH SENTINEL-1 AND -2 IMAGES 

19 

5. RESULTS 

This chapter is divided into four main sections. The first part focuses on feature selection, which 

involves exploring three different variants: varying the number of decision trees (500, 1000, 1500) and 

utilizing RFECV with a k-fold value of ten. The second part involves evaluating the model by 

presenting its metrics and assessing its performance. The third part involves utilizing SHAP variable 

importance to identify and describe the significant features within the model. Lastly, the chapter 

discusses using PDP to analyze how specific features influence the overall model. 

 

Throughout the research analysis, a total of 85 different models containing for all four micronutrients 

were constructed to find best model for each micronutrient. Among them, the model with the highest 

accuracy, measured by the R2 score, was selected to present the research results. For the model, a 

temporal window of two months was employed. Additionally, features with missing values (NaN) 

were removed from the analysis, as the sklearn library does not handle such data. As a result, a dataset 

consisting of 884 data points was used for further analysis and interpretation. 

5.1. Variable Selection 

RFECV is a valuable technique for selecting the most significant and informative features from a large 

pool of variables. This process enhances both the performance and interpretability of the model. 

Hence, the idea behind the strategy of taking multiple options in terms of the number of decision trees 

as RFECV itself is a random forest regressor. Therefore additional inclusion of various decision trees 

was pseudo hyperparameter tuning. The result of RFECV for each micronutrient are shown in the Fig. 

5. 

 

 

Figure 5 Graphs presenting the feature reduction for each micronutrient 
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The axis of the charts represents the number of variables and R2 values for the x and y axis, 

respectively. Red, blue, and purple lines represent the 500, 1000 and 1500 decision trees, respectively. 

Lastly, we select the number of variables depending on the highest y-axis value. The features selected 

were as shown in table below: Note: Please refer to Annex 2 for explanations of variables 

nomenclature. 

 

Table 4 The table showing all the features selected for the model through RFECV 

Model Selected Features 

Ca 

'B02_ST1_mean', 'B02_ST3_mean', 

'B04_ST1_mean', 'B04_ST3_mean', 

'B05_ST1_mean', 'B05_ST3_mean', 

'B06_ST2_mean', 'B07_ST1_mean', 

'B11_ST1_mean', 'B12_ST2_mean', 

'B12_ST3_mean', 'NDRE1_mean_ST3', 

'EVI_mean_ST2', 'MSAVI_mean_ST1', 

'NDRE3_mean_ST1', 'NDRE2_mean_ST1', 

'Prec_acc', 'RVI', 'Temp_avg', 'TWI', 'VH', 

'VV', 'DEM', 'SOC', 'CEC', 

'pH', 'pol_dif', 'pol_add', 'pol_ratio', 'OCS' 

Fe 
'Prec_acc', 'Temp_avg', 'VH', 'DEM', 

'pol_ratio' 

Mg 

'B03_ST1_mean', 'B03_ST2_mean', 

'B05_ST1_mean', 'B11_ST2_mean', 

       'B12_ST2_mean', 'NDRE1_mean_ST3', 

'MNDWI2_mean_ST2', 'NDWI_mean_ST2', 

       'EVI_mean_ST1', 'NDRE2_mean_ST1', 

'Prec_acc', 'RVI', 'Temp_avg', 'TWI', 

       'VH', 'Slope', 'DEM', 'SOC', 'CEC', 'pH', 

'pol_dif', 'pol_add', 

       'pol_ratio', 'Nitrogen_mean' 

Zn 

'B04_ST1_mean', 'B05_ST1_mean', 

'B06_ST1_mean', 'B06_ST2_mean', 

       'B06_ST3_mean', 'B11_ST2_mean', 

'MNDWI1_mean_ST3', 

'MNDWI2_mean_ST2', 

       'MNDWI1_mean_ST2', 

'SAVI_mean_ST2', 'EVI_mean_ST1', 

'NDRE2_mean_ST1', 

       'Prec_acc', 'Temp_avg', 'TWI', 'VH', 

'VV', 'Slope', 'DEM', 'SOC', 'CEC', 

       'pH', 'pol_add', 'pol_ratio', 'OCS', 

'Nitrogen_mean' 
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5.2. Variable importance 

 

The SHAP values for a feature indicate the feature's average contribution over all conceivable feature 

combinations. We can determine the relevance of each characteristic in the model's predictions by 

computing these values. On the x-axis, we have the mean SHAP value, which suggests the impact of 

the feature on model output and y-axis have the selected features. The variable importance graphs are 

shown in Fig. 6: Please visit Annexes (b) for abbreviations. 

 

 

 

 

5.3. Model Evaluation 

The evaluation results are shown in the Fig. 7 to 10. 

 

 

Figure 6 Bar graphs depicting feature importance among selected features 
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Figure 7 Mean Bias Error for Ca, Zn, Fe, and Mg models 

 

Figure 8 Coefficient of R-square for Ca, Zn, Fe, and Mg models 
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Figure 9 Root mean square error for Ca, Zn, Fe, and Mg models 

 

Figure 10 Relative root mean square error for Ca, Zn, Fe and Mg models 

It was noticed from the Fig. 7 to 10 collectively, that R2 highest for the Mg model and lowest for the 

Zn at 0.29 and 0.23, respectively. MBE was zero for all models except Zn, stating that there is no 

systematic bias or likelihood for the model's predictions to constantly overestimate or underestimate 

actual values. For the Fe model, predictions are relatively accurate and have a modest amount of error 

compared to the variability in the data, as indicated by RMSE and RRMSE values of 0.23 and 0.17, 

respectively. 
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5.4. Partial dependence plots 

PDPs can be used to describe the link between the input feature and micronutrient concentration 

estimation, as shown in the Fig. 11 to 14 for few selected features.Across all the model, 

Elevation(DEM) shows negative relationship to micronutrient concentrations. For the independent 

features in Fe model(Fig. 11), Elevation(DEM) and polarimetric ratio(VV/VH) shows an negative 

relationship, while for the mean temperature throughout the growing season show positive 

relationship. For Zn model(Fig. 12), VH, pH, and CEC and mean temperature depicted positive 

relationship towards the Zn content, while B11_ST2_mean and DEM showed a negative relationship, 

inferring that lower the magnitude, more the Zn concentration. We see similar dynamic for Ca 

model(Fig 13), except for variable ‘Prec_acc’ which is precipitation aggregated throughout the season, 

for this variable we see a flat curve stating little-to-less change in Ca content with increase in 

precipitation. Lastly, for the Mg model(Fig. 14), ‘Prec_acc’ variable demonstrates a positive 

correlation, along other variables such as ‘RVI’, ‘Pol_diff’ and mean temperature showing direct 

relationship with Mg concentrations. Meanwhile, DEM, SOC and N content show inverserly 

proportional relationship with the Mg content. The y-axis represents the model's average predicted 

outcome or response; in this case, the natural log of micronutrient concentration and the x-axis explain 

the magnitude of input features. Note: Please refer to Annex 8.2 for explanation of abbreviations used. 

 

 

  

Figure 11 Partial Dependence Plot of selected features for micronutrient Fe per feature 

Figure 12 Partial dependence plots of selected features for micronutrient Zn per features 
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Figure 14 Partial Dependence Plot of selected features  for micronutrient Mg per feature 

Figure 13 Partial dependence plots of selected features for micronutrient Ca per feature 
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6. DISCUSSION 

The present study describes a machine learning based method for predicting micronutrient 

concentrations utilizing Sentinel 1 and Sentinel 2 satellite imagery and geospatial data as input. This 

study is a ground-breaking effort to estimate micronutrient concentrations by combining satellite data 

from Sentinel 1 and Sentinel 2. A notable accuracy level (R2) of 0.29 was achieved for estimating Mg 

micronutrient concentration using precipitation accumulated over the season as the most important 

variable. Soil characteristics extracted from coarser spatial resolution performed better than remotely 

sensed inputs. Red-edge bands from the Sentinel are also significant in creating a robust model. Lastly, 

through this study, estimation of micronutrient concentrations was done, returning Mg as most 

accurately estimated, followed by Fe, Ca, with same R2 accuracies and Lastly, Zn. The difference 

between the highest and lowest R2 accuracies was just 0.06. Major significant features were 

climatological, topographical, and polarimetric features. Spectral features were polluted by 

NaN(missing values), noisy and inconsistent data. Change in the type of sensor used for extracting 

spectral features may have significant implications on the model. 

 

The best prediction model for Fe included none of the remotely sensed inputs or derivatives from the 

Sentinel 2. The features selected were precipitation throughout the season, average temperature 

thought out the season, VH polarization, elevation, and polarimetric ratio. Another interesting 

observation was that average temperature and elevation were always presented as the models’ most 

important features. As a research by Pelegrino et al. (2019) also supported the claim that elevation has 

association with micronutrient concentration. Among, all four CEC was highly significant among them 

since CEC plays a vital role in the uptake of macro and micronutrients from the soil to the shoot of the 

plant and is an indicator of soil fertility (Ulhassan et al., 2022). Also, CEC is significantly correlated 

with the micronutrient content is the soil (Najafi-Ghiri et al., 2013). Another study by Miner et al. 

(2018) for the crop maize provided evidence that SOC is contributes significantly for availability of 

micronutrients. Hence, justifying the correlation between soil parameters and micronutrient 

concentration. PDPs depicted the type of influence that would be made by the magnitude increase in 

the input features. For example, PDPs of the Fe model showed that trend in the elevation is linear 

negative but for average temperature(Temp_avg) is linear positive and similarly for other 

micronutrients too. The distribution and availability of micronutrients were notably influenced by 

temperature (Najafi-Ghiri et al., 2013). Furthermore, many approximately flat lines, which helps better 

understand the low accuracies in all models were shown by PDPs. PDPs for all the models and all their 

features is shown in Annex 8.3. 

 

Spectral features, including raw bands and indices, were unimportant compared to the features of their 

counterparts such soil and climatological features. It is understood from the results that SWIR 1 band 

was the feature that excelled in the group of all spectral features. It’s very sensitive to moisture and 

known for water absorption. Also, Paz-Kagan et al. (2020) proposed that utilizing reflectance 

spectroscopy in the shortwave infrared (SWIR) spectral range could enable accurate estimation of N 

content. Evidence from Belgiu et al. (2023), justifies the SWIR bands for estimating micronutrient 

concentration as they found SWIR important for estimating micronutrient content. Apart from SWIR 

bands, Band 4 and Band 6, and SAVI and NDVI using the Red-edge showed some significance, yet 

nowhere came out as the best predictors of the models. A reason behind the failure of Spectral data 
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could be inconsistent data in terms of non-noisy and regularity in the temporal dimension. This finding 

co-aligns with known difficulty of using remote sensing in a tropical and humid region (Tseng et al., 

2008).  

 

Figures 11-14 showed a strong relationship, either positive or negative among the features, among 

which climatological, topographic and soil were frontrunners. Studies from Botoman et al. (2022) and 

Gashu et al (2020) supports their presence as they found soil and landscape features showing influence 

on the model. According to the PDPs, polarimetric, topographic, climatological, and soil features were 

among the models’ most significant features. Therefore, answering the research questions regarding 

their significance in estimating micronutrient concentrations. Existing literature highlights the 

importance of polarimetric(Munir et al., 2022), climatological, topographic, and soil features, stating 

them as crucial for estimating as well as mapping micronutrient concentration in sub-Saharan Africa 

(Botoman et al., 2022; Gashu et al., 2020; Miner et al., 2018; Najafi-Ghiri et al., 2013; Paz-Kagan et 

al., 2020).  

 

A limitation of these models is that they are trained on Malawi dataset only, GeoNutrition surveys also 

mentions Ethiopia’s micronutrition concentration data, as it is still not known that how will these 

models would perform on Ethiopia dataset. Hence the generalization of model and fine-tuning the 

model to fit these demands is still pending. Technically, the research was carried out utilizing high-

performance computing, which provides efficient processing with time complexity of O(n), and the 

cloud computing environment made available through the GEE Python API. To improve 

maintainability and reusability, the code was modularized. Hence, reusability of code is benefits for 

training on different dataset than Malawi. 

 

The main limitation of the study was the unavailability of cloud-free imagery for Sentinel 2 since the 

growing season of maize overlaps with the rainy season in Malawi. Using airborne imagery collected 

by unmanned aerial systems or vehicles (UAV) would offer a viable alternative. In terms of improving 

spectral features, since already using UAVs, employing hyperspectral sensors would greatly help. The 

unavailability of Sentinel 2 L2A products on GEE and Copernicus hub added an additional process of 

atmospherically correcting the data. In terms of computational time and delay, this process goes on for 

hundreds of hours of processing. An experiment for utilizing maximum of datapoints by removing 

Sentinel 2 features was done, results from the experiment had no significant change compared with 

results of models with spectral features. Other experiments with input data as both combing 

environmental covariates with Sentinel 1 and only using environmental covariates as inputs was also 

done. In both cases, there is was no significant change in models’ performance.    

 

The Random Forest regressor method was used with cross-validation for variable selection/Feature 

reduction and hyperparameter tuning with ten-fold CV. Hence, creating at least 810 combinations to 

find the best-fit model for each micronutrient. Also, to increase the accuracy of the models, outlier 

removal techniques like inter-quartile range and Isolation forest (Tony Liu et al., 2008) were also used, 

but they had no significant impact. Strategies regarding changing the training and testing ratio were 

also done i.e., changing the ratio from 80:20 to 60:40, but they produced results with lower accuracies 

than prior trained models. Other machine learning methods with no hyperparameter tuning were also 

tested, yet Random Forest was best among them. Scope for implementing deep learning methods like 

1D-CNN (Lecun et al., 1998) and LSTM (Hochreiter & Schmidhuber, 1997) known for their usage 
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and exemplary performance in time-series problems, could produce better results in the estimation of 

micronutrient concentration. Yet, more importance should be given to preparing the dataset to the 

highest levels for completeness. 

 

For future directions, UAVs and deep learning methods should be used. Applications of the findings 

from this research could be combined with findings of malnutrion surveys conducted by the non-profit 

organization or local government to apply changes in policies of region and implement better schemes 

for the vulnerable population. Understanding that farmers in Malawi perform subsistence farming 

(Benson, 2021). Through official channels of extension services, they should be made aware of what 

their crops and soil lack in terms of micronutrients content. 
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7. CONCLUSION  

7.1. Conclusion 

This study aims to estimate micronutrient concentrations by integrating data from Sentinel 1 and 

Sentinel 2 satellites and GIS data, such as topographic and soil characteristics. The findings reveal that 

Sentinel 2 features exhibit lower significance than other features due to missing. Topographic and 

climatological features consistently demonstrate more association with all four models. The research 

addresses the challenge of identifying hidden hunger in Malawi, specifically micronutrient deficiencies 

(MNDs). Obstacles such as cloud cover and the unavailability of atmospherically corrected Sentinel 2 

data pose challenges. To build the models and optimize their performance, the RF regressor from 

sklearn is utilized, along with appropriate hyperparameter tuning. Various variations of the RF 

algorithm are explored, and the models with the highest accuracy for all micronutrients are selected. 

However, it is crucial to consider the model's adaptability when tested in different settings, as 

generalizability is paramount. For future studies, developing a new deep-learning model could prove 

advantageous, and generating a crop mask specific to Malawi from 2017-2018 would be necessary for 

accurately mapping micronutrient concentrations. Subsequently, the resulting map could be utilized 

for further investigations into MNDs in Malawi. 

 

7.2. Answers to Research Questions 

1. What is the importance of Sentinel-1 and Sentinel-2 spectral and polarimetric features for 

estimating micro-nutrient concentrations? 

Among Sentinel-1 and Sentinel-2, Sentinel-1 turns out to be better predictor of micronutrient 

concentrations. 

2. What is the importance of topographic features derived from the slope, elevation, and 

Topographic wetness index relative to Sentinel-1 and Sentinel-2 predictors in estimating 

micronutrient concentration? 

Topographic feature perform better at estimating micronutrient concentration, relative to Sentinel 1 

and Sentinel-2. Fig. 6 shows the variable importance which supports the argument. 

3. What is the importance of soil parameters relative to Sentinel-1 and Sentinel-2 predictors in 

estimating micro-nutrient concentration? 

Soil parameters also show better influencing in estimating micronutrient concentration than Sentinel 1 

and Sentinel 2 predictors(Fig. 6). 

4. What is the importance of climatological data like temperature and precipitation relative to 

Sentinel-1 and Sentinel-2 predictors in estimating micronutrient concentration? 

Climatic data show better association with micronutrient concentration than Sentinel 1 and Sentinel 2 

predictors (Fig. 6). 
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8. ANNEXES 

8.1. Spectral Indices 
Table 5 Detailed description of spectral indices 

Spectral Indices Mathematical Formulae Author 

Normalized 

Difference 

Vegetation 

Index 

NDVI (NIR – RED) / (NIR + RED) (Kriegler et al., 1969) 

Red Edge 

Chlorophyll 
RECl (NIR / RED) – 1 

(Clevers & Gitelson, 

2013) 

Normalized 

Difference 

Red-Edge 

NDRE 
(NIR – RED EDGE) / (NIR + 

RED EDGE) 
(Hunt Jr. et al., 2011) 

Modified Soil 

Adjusted 

Vegetation 

Index 

MSAVI 

(2 * Band 4 + 1 – sqrt ((2 * Band 

4 + 1)2 – 8 * (Band 4 – Band 3))) 

/ 2 

(Bannari et al., 1995) 

Green 

Normalized 

Vegetation 

Index 

GNDVI 
(NIR – GREEN) / (NIR + 

GREEN) 
(Gitelson et al., 1996) 

Normalized 

Difference 

Water Index 

NDWI 
(GREEN – NIR) / (GREEN + 

NIR) 
(Gao, 1996) 

Soil Adjusted 

Vegetation 

Index 

SAVI 
((NIR – RED) / (NIR + RED + 

L)) * (1 + L) where L = 0.5 
(Major et al., 1990) 

Enhanced 

Vegetation 

Index 

EVI 
2.5 * ((NIR – RED) / ((NIR) + 

(6 * RED) – (7.5 * BLUE) + 1)) 
(Huete et al., 2002b) 

Modified 

Normalized 

Difference 

Water Index 

MNDWI (Green – SWIR)/(Green+SWIR) (Xu, 2007) 
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8.2. Abbreviations 

Table 6 Abbreviation used in the thesis 

Acronym Meaning 

ST_1,ST_2,ST_3 Represents the three windows of 2 month interval. 

For Example: ‘B11_ST2_mean’ indicates mean of 

SWIR band reflectance over the second temporal 

window. 

B02_mean till B12_mean Average of raw bands 

VV,VH Polarizations 

CEC Cation Exchange Capacity 

SOC Soil Organic Carbon 

pH pH 

OCS Organic Carbon Stock 

Nitrogen Total Nitrogen 

DEM Elevation 

Temp_avg Average temperature 

Prec_acc Aggregated precipitation throughout the growing 

season 
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8.3. PDPs for all selected features  

 

Figure 15 PDPs for all the features used for building Iron model 



 

40 

  

Figure 16 PDPs for all the features used for building Calcium model 
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Figure 17 PDPs for all the features used for building Magnesium model 
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Figure 18 PDPs for all the features used for building Zinc model 


