
 
 

 
 

 
 
 
 
 
 
 
 
 

CROP TYPE DISCRIMINATION 
USING FIELD AND SATELLITE 
HYPERSPECTRAL 
MEASUREMENTS IN BUSIA, 
KENYA 

 
 
 
 
 
 
 
 
 

Kelvin Aslen Mlawa 
June 2023 
 

 

 

 

 

 

 

 

 

 
 

SUPERVISORS:  
Dr. Roshanak Darvishzadeh  
Prof. Dr. Andy Nelson 

 
 
 
 
 
 
 
 

 

 

 

  



 
 

 
 

  

 

 

CROP TYPE DISCRIMINATION 
USING FIELD AND SATELLITE 
HYPERSPECTRAL 
MEASUREMENTS IN BUSIA, 
KENYA 

 
 
 
 
 
 

 

KELVIN ASLEN MLAWA 

Enschede, The Netherlands,  

June, 2023 
 
 
 

Thesis submitted to the Faculty of Geo-Information Science and Earth 

Observation of the University of Twente in partial fulfillment of the 

requirements for the degree of Master of Science in Geo-information 

Science and Earth Observation.  
Specialization: Natural Resources Management 

 
 
 
 
 
 
 
 

 

SUPERVISORS: 
 

Dr. Roshanak Darvishzadeh  
Prof. Dr. Andy Nelson 

 
 

 

THESIS ASSESSMENT BOARD:  
Dr.ir. Vrieling, Anton (Chair)  
Prof. Abel Ramoelo (External Examiner) 
  



 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DISCLAIMER 

This document describes work undertaken as part of a programme of study at the Faculty of Geo-Information Science and 

Earth Observation of the University of Twente. All views and opinions expressed therein remain the sole responsibility of the 

author, and do not necessarily represent those of the Faculty. 

  



 
 

i 
 

ABSTRACT 

Crop type discrimination is essential for effective agricultural monitoring and management, enabling better 

resource allocation and yield prediction. This study investigated the potential of hyperspectral remote 

sensing data to discriminate between maize and cassava crops in Busia County, Kenya, at both the leaf 

(using layer stack) and satellite levels. Through fieldwork, comprehensive analysis of spectral signatures, 

and the identification of significant bands, this research aimed to provide valuable insights into 

hyperspectral-based crop discrimination. 

The study used field measurements and satellite data. The field measurements included field boundary 

coordinates and spectral measurements of cassava and maize taken at the leaf layer stack level using an 

ASD FieldSpec3 spectroradiometer during the field visit from 11 July to 4 August 2022. The PRISMA 

satellite data acquired on 1 July 2022 was used to extract the mean spectral reflectance of crop fields. The 

Mann-Whitney U test was used to determine whether there were significant differences between cassava 

and maize and in which bands/ regions these differences existed. Continuum removal and band depth 

analysis were then used to better understand the differences in the absorption features of cassava and maize 

spectral reflectance at the leaf and satellite levels. Finally, Random Forest Classification was used to 

discriminate between crop types at both leaf and satellite levels. 

The results showed that there were significant differences between the spectral reflectance of cassava and 

maize at the leaf level that appeared to exist in several wavelength regions (385-701nm, 709-1346nm, 1455-

1658nm, 2070-2115nm, and 2237-2254nm). Continuum removal and band depth analysis along the 

absorption regions helped further understand the differences between the two crops. At the field level, 

analysis of the spectral signatures showed clear differences between cassava and maize leaf spectral 

reflectance in the visible, NIR, and SWIR along the bands with the highest absorption peaks at 496, 677, 

679, 1162, 1459, and 1460 nm. Similarly,  clear differences between cassava and maize were observed at the 

satellite level in the bands with the highest absorption peaks at 470, 650, and 1163 nm. These differences 

were most likely due to biophysical and biochemical differences between cassava and maize. By considering 

only the bands with the highest absorption peak and using random forest classification, this study 

successfully discriminated between cassava and maize at the leaf level with an overall accuracy of 94% and 

a kappa score of 0.89. Additionally, at the satellite level, this study was able to discriminate maize from the 

non-maize class with an overall accuracy of 77% and a kappa score of 0.54. These results provide valuable 

insights into the hyperspectral bands that could effectively discriminate between cassava and maize and 

further demonstrate the usefulness of hyperspectral data in crop discrimination. 

Further testing of crop discrimination methods using only the bands with the highest absorption peaks is 

recommended when considering more crop types. This may help to refine the methodology and improve 

crop type discrimination using hyperspectral data in future studies. 

 

 

 

 

 

 

 

 

 



 
 

ii 
 

 

 

 

 

 

 

 

 

 

ACKNOWLEDGEMENTS 

 

I would like to express my heartfelt gratitude to the individuals and institutions who have contributed to 

the preparation of this work. First and foremost, I extend my sincerest appreciation to my esteemed first 

supervisor, Dr. Roshanak Darvishzadeh, and my distinguished second supervisor, Prof. Dr. Andy Nelson. 

Their invaluable guidance, constructive remarks, thought-provoking discussions, and unwavering 

encouragement throughout the entire research process have been instrumental in shaping this work. I am 

profoundly indebted to them for their exceptional supervision, patience, and unwavering commitment 

during the course of my thesis study. 

I am also deeply thankful to Dr.ir. Vrieling, Anton, the Chairman of the thesis assessment board, whose 

insightful suggestions and comments have significantly enhanced the quality of this work. Furthermore, I 

extend my gratitude to Miss Mbali Mahlayeye for her technical advice provided at various stages of this 

endeavour. 

My heartfelt appreciation goes to NUFFIC for the OKP scholarship, and to my employer, the Tanzania 

National Carbon Monitoring Centre, for granting me study leave, which has afforded me the opportunity 

to pursue my studies at the esteemed Faculty of ITC. Without their generous assistance and unwavering 

support, my academic endeavours would have been rendered impossible. 

I am profoundly grateful to my beloved family, Mr. and Mrs. Aslen Mlawa, for their unwavering support 

throughout the entire duration of this work. Their encouragement and belief in my abilities have been a 

constant source of strength and inspiration. I would also like to extend my sincere thanks to Angelique 

Keyter, Mwangala Simate, and Henriette Ishimwe for their support and companionship during my 

enriching stay in Enschede. 

Finally, I would like to express my heartfelt appreciation to the staff of ITC, my esteemed teachers, and my 

dedicated classmates in the Natural Resources Department. Their unwavering support, inspiration, and 

willingness to engage in meaningful discussions have played a vital role in shaping my academic journey 

during the MSc program. 

 

 

         Kelvin Aslen Mlawa. 
  



 
 

iii 
 

TABLE OF CONTENTS 

 
ABSTRACT ................................................................................................................................................................... i 

ACKNOWLEDGEMENTS ..................................................................................................................................... ii 

TABLE OF CONTENTS ........................................................................................................................................ iii 

LIST OF FIGURES .................................................................................................................................................... v 

LIST OF TABLES ..................................................................................................................................................... vi 

1.INTRODUCTION .................................................................................................................................................. 1 

1.1.Introduction and background ......................................................................................................................... 1 

Main objective and Specific objectives ............................................................................................................ 3 

1.3.Research questions and hypothesis ................................................................................................................ 3 

2. METHODOLOGY ................................................................................................................................................ 4 

2.1. Study area .......................................................................................................................................................... 4 

2.3. Data acquisition and pre-processing ............................................................................................................. 6 

2.3.1 Field data measurement and pre-processing ......................................................................................... 6 

2.3.2. Satellite data extraction and pre-processing ......................................................................................... 7 

2.4. Data analysis ..................................................................................................................................................... 8 

2.4.1. Mann-Whitney U test on field data ....................................................................................................... 8 

2.4.2. Absorption features ................................................................................................................................. 8 

2.4.3. Continuum-removal and feature extraction ......................................................................................... 9 

2.4.4. Random forest classification .................................................................................................................. 9 

3. RESULTS ............................................................................................................................................................... 11 

3.1. Mean spectral reflectance of maize and cassava ....................................................................................... 11 

3.2. Mann-Whitney U test results ....................................................................................................................... 11 

3.3. Continuum removal and band depth analysis ........................................................................................... 11 

3.4. Random forest classification ........................................................................................................................ 13 

3.4.1. Classification using leaf measurement collected in the filed ........................................................... 13 

3.4.2. Classification at satellite level on PRISMA data ................................................................................ 13 

4. DISCUSSION ........................................................................................................................................................ 14 

4.1. Difference in spectral reflectance and spectral signatures ....................................................................... 14 

4.2. Hyperspectral bands suitable for discrimination at the leaf stack layer and satellite level ................. 15 

4.3. Classification ................................................................................................................................................... 16 

5. CONCLUSION .................................................................................................................................................... 17 

6. LIST REFERENCES ........................................................................................................................................... 18 

 

 



 
 

iv 
 

APPENDIX SECTION ........................................................................................................................................... 22 

Appendix I: Noise band removed from field spectral measured data .......................................................... 22 

Appendix II: Field level mean reflectance standard deviation (on top) and first derivative (on bottom)

 .................................................................................................................................................................................. 22 

Appendix III: Noise band removed from satellite spectral measured data ................................................. 23 

Appendix IV: Field level mean reflectance standard deviation (on top) and first derivative (on bottom)

 .................................................................................................................................................................................. 23 

Appendix V: Spectral Bands with High Absorption Peaks and Associated Biochemicals……………24 

Appendix VI: Cassava field pictures .................................................................................................................. 24 

Appendix VII: Maize field pictures .................................................................................................................... 26 

Appendix VIII: Field measurements .................................................................................................................. 27 

 

  



 
 

v 
 

LIST OF FIGURES 
 
Figure 1 Location of Busia County in Kenya and distribution of cassava and maize fields. ........................... 4 

Figure 2 Methodological flowchart of the crop type discrimination . ................................................................. 5 

Figure 3 Spectral measurements in the field ............................................................................................................ 6 

Figure 4 (a) Cassava samples smoothed reflectance (n=31), (b) Maize samples smoothed reflectance 

(n=30). ........................................................................................................................................................................... 7 

Figure 5 Map showing crop fields visited vs PRISMA image coverage and cloud problem ........................... 8 

Figure 6 Spectral signature of a) Cassava fields and b) Maize fields obtained from PRISMA image data, in 

Busia, Kenya. ................................................................................................................................................................ 8 

Figure 7 (a) Reflectance spectra and continuum line, (b) band depth in continuum removed reflectance. .. 9 

Figure 8 Average spectral signature of cassava and maize: (left) leaf level measured using ASD field 

spectroradiometer, (right) field level obtained from PRISMA data, in Busia, Kenya.. ................................... 11 

Figure 9 Continuum removed reflectance of smoothed field data .................................................................... 13 

  



 
 

vi 
 

LIST OF TABLES 
 
Table 1 Selected significant spectral regions based on a Mann-Whitney U test. ............................................. 11 

Table 2 Absorption regions and band depth at the leaf level. ............................................................................ 12 

Table 3 Absorption regions and band depth at satellite level. ............................................................................ 12 

Table 4 Cassava and maize classification output at field level data based on testing data. ............................ 13 

Table 5 Confusion matrix - results of maize and nonmaize classification using PRISMA data ................... 13 

 

  



Crop Type Discrimination Using Hyperspectral Data in Busia Kenya 

 

1 
 

1. INTRODUCTION 

1.1. Introduction and background 

Africa's present population is expected to quadruple by 2050 (United Nations, 2019). As a result, the demand for 

grains in 2050 is expected to be more than three times that of 2010 (Van Ittersum et al., 2016). Providing adequate 

food for the continent’s population will be a challenge, as present food production rates are two to three times lower 

than what is required to sustain food security (FAO, 2021; Maja & Ayano, 2021). A stable and reliable farming 

management system is required to increase farming yield and achieve food security. Crop type discrimination is a 

very important component of the farming management system. The accurate quantification of Crop type in 

agricultural areas is crucial for regional to global food security measures since it allows for precise acreage and yield 

estimation (Azar et al., 2017; Inglada et al., 2015; Ozdarici-Ok et al., 2015). 

Many countries worldwide are utilizing remote sensing techniques, particularly hyperspectral remote sensing, as a 

promising approach for accurate crop discrimination, mapping, and classification (Thenkabail et al., 2018). 

Hyperspectral remote sensing has demonstrated its efficacy in a range of applications within the farming industry, 

including crop yield estimation (Ferencz et al., 2004), pest and disease control (Moran et al., 1997), crop health 

monitoring (Lichtenthaler et al., 1998), and precise crop classification (Schotten et al., 1995). By leveraging the 

spectral information captured by hyperspectral sensors, it becomes possible to distinguish between different crop 

types with high precision and details. 

Over the last three decades, remote sensing's achievements in precision agriculture and farm management have 

emphasized the capacity to collect massive amounts of data from various sensors and platforms. Agricultural remote 

sensing has traditionally relied on data from multispectral broadband sensors (Thenkabail et al., 2018), and to some 

extent, active sensors; however, the introduction of hyperspectral remote sensing for agriculture monitoring has 

offered greater opportunity for detailed information extraction on Crop types, their status and characteristics. 

In contrast to multispectral sensors that capture information in discrete broad spectral bands, hyperspectral sensors 

offer the advantage of capturing data in continuous narrow spectral bands. This enables the assessment of essential 

vegetation ecophysiological information in crops (Inoue et al., 2019). Spectral data measured using hyperspectral 

sensors provide valuable insights into physiological parameters such as chlorophyll content for crop growth 

monitoring, nitrogen content for effective fertilizer management. This rich and comprehensive information 

contained in hyperspectral data makes it the optimal choice for crop type discrimination (Blackburn & Ferwerda, 

2008; Chen et al., 2008; Rao et al., 2007; Thenkabail et al., 2000, 2004). 

Several studies have demonstrated the effectiveness of using hyperspectral data for crop type discrimination. Xue 

et al. (2017) utilised data obtained from Compact Airborne Spectrographic Imager (CASI) and Shortwave Infrared 

Airborne Spectrographic Imager (SASI) to discriminate various crops, including Corn, Fragrant-flowered Garlic, 

Cauliflower, Bell Pepper, Potato, Endive Sprout, and Watermelon, employing a sparse graph regularization (SGR) 

method for crop mapping. Thenkabail et al. (2004) employed a 1-nm-wide narrowband FieldSpec Pro Full Range 

spectroradiometer to discriminate six crops, namely corn, groundnut, rice, soybean, cowpea, and cassava, using 

Wilk’s lambda, Pillai trace, and average squared canonical correlation methods. Nidamanuri and Zbell (2011) focused 

on the discrimination and mapping of alfalfa, winter barley, winter rape, winter rye (Secale cereale), and winter wheat 

(Triticum spp.) using field data from FieldSpec JR spectrometer and hyperspectral images captured by the HyMAP 

imaging system mounted on an airborne platform, employing three methods, namely mixture tuned matched 

filtering (MTMF), spectral feature fitting (SFF), and spectral angle mapper (SAM) methods. Another study by Dave 

et al. (2022a) suggested the use of a new band selection algorithm utilizing the statistical parameter, spectral 

information divergence (SID), comparing its performance with commonly used classifiers such as support vector 

machine (SVM), K-nearest neighbours, and artificial neural network (ANN), using three hyperspectral datasets, 

including AVIRIS-NG, Indian Pines, and Salinas. Furthermore, Sulaiman et al. (2022) reviewed the usability of 
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hyperspectral images for weed analysis in rice fields, discussing various supervised and unsupervised classification 

methods, such as support vector machines, artificial neural networks, decision trees, maximum likelihood 

classification, K-means classification, iterative self-organizing method (ISODATA), Laplacian support vector 

machine (LapSVM), and self-training. They emphasized the potential of hyperspectral images captured from UAV 

platforms when used in conjunction with machine learning algorithms. Moreover, Dave et al. (2022b) proposed the 

use of similarity measure and fuzziness (SS-SMFZ) for hyperspectral data sample selection, employing Airborne 

Visible near InfraRed Imaging Spectrometer-Next Generation (AVIRIS-NG) dataset and benchmark hyperspectral 

datasets, namely Indian Pines and Salinas, and using supervised machine learning classifiers, including Support 

Vector Machine (SVM), K-Nearest Neighbors (KNN), and Random Forest (RF), to classify land cover classes, 

including reference crops such as tobacco peak vegetative, tobacco vegetative, and wheat soft dough. In a study by 

Spiller et al. (2021), crop type mapping of tomato and corn was performed using a one-dimensional convolutional 

neural network (CNN), comparing the outputs between PRecursore IperSpettrale della Missione Applicativa 

(PRISMA) images and Synthetic Aperture Snow Radar (SASI) and Compact Airborne Spectrographic Imager 

(CASI) airborne images. Additionally, Su (2020) reviewed the use of color imaging, hyperspectral imaging, and 

spectroscopy in the discrimination of weeds and crops, employing supervised and unsupervised machine learning 

algorithms. It is worth noting that most previous studies on crop discrimination have predominantly utilised airborne 

data, with relatively few studies focusing on field spectrometry. 

Selecting the optimum spectral region in the measured crop spectrum is challenging but crucial in differentiating 

one crop from another (Arafat et al., 2013; Dhumal et al., 2015). It involves identifying the specific spectral bands 

that are most informative for distinguishing between different crop types, considering factors such as the absorption 

and reflectance characteristics of crops and the spectral resolution and noise levels of the hyperspectral sensor. 

Selecting the optimal bands for crop type discrimination in hyperspectral data presents a significant challenge due 

to the high-dimensional nature of the data. It requires striking a balance between capturing relevant spectral 

information and minimizing data redundancy. 

Different crops exhibit distinct biochemical and biophysical characteristics, resulting in variations in their spectral 

signatures. These differences in spectral signatures enable the discrimination of different crop types when the 

appropriate approach is employed to capture and analyse these distinctions. Identifying and employing the most 

effective approach for crop discrimination, whether it involves band selection (Zhang et al., 2016), vegetation index 

calculation (Thenkabail et al., 2013), or other techniques such as machine learning algorithms (Singh et al., 2022), 

pattern recognition methods (Galvão et al., 2018), spectral feature extraction ( Zhang et al., 2019), spectral angle 

mapping (Martin et al., 2011), spectral unmixing (Chi & Crawford, 2014), and hyperspectral image classification 

techniques, is crucial to ensure accurate crop discrimination (Aneece & Thenkabail, 2021; Janse & Deshmukh, 2021). 

By selecting the optimal approach for crop discrimination, researchers can leverage the unique spectral 

characteristics of crops, effectively distinguishing between them and enhancing the accuracy of crop type 

discrimination. 

This study aimed to address a significant research gap in the field of crop type discrimination by capitalizing on the 

potential of new and advanced hyperspectral sensors, specifically the PRISMA satellite, in conjunction with field 

data. While previous studies had predominantly relied on the use of multispectral sensors for crop-related research, 

including crop type discrimination, there had been limited exploration of the capabilities offered by the latest 

hyperspectral sensors. Furthermore, although some studies had made use of existing hyperspectral sensors, the 

potential of the PRISMA sensor for crop type discrimination had remained unexplored. By filling this gap in the 

literature, this research sought to demonstrate the effectiveness of combining PRISMA's high-resolution 

hyperspectral data with field data for accurate and detailed discrimination of different crop types. The findings of 

this study contributed to advancements in crop mapping and management strategies, ultimately aiding in addressing 

the challenges posed by the increasing food demand resulting from Africa's population growth. 
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The advances in hyperspectral remote sensing and the launch of recent satellites such as Deutsches Zentrum für 

Luft- und Raumfahrt Earth Sensing Imaging Spectrometer (DESIS), PRISMA, and Environmental Mapping and 

Analysis Program (EnMAP) have created new opportunities to utilise hyperspectral satellite imagery to characterise 

and monitor agricultural areas. The above literature review shows that out of the small number of studies that used 

hyperspectral satellite data in an agricultural context, most have considered crop traits retrieval (Marshall et al., 2022; 

Mohammadi et al., 2023; Tagliabue et al., 2022; Verrelst et al., 2021) and none have explored its capacity for crop 

type discrimination.  

This study will focus on two levels of crop type discrimination in Busia County, Kenya. First, at the leaf level, 

exploring the differences between the spectral signatures of cassava and maize at the leaf level using leaf layer stacks 

and then at the canopy level using recent hyperspectral satellite data (PRISMA) for discriminating maize from other 

crops. 

Discrimination of the two crops will help in accurate crop mapping which in turn will help for better crop 

management.  

 

1.2. Objectives, research questions and hypotheses 

Main objective and Specific objectives 

The aim of this study is to discriminate major crop types (cassava and maize) in Kenya using hyperspectral remote 

sensing.  

Specific objectives  

Objective 1: To study the spectral signatures of cassava and maize leaves and understand their variations in the field 

in Busia County, Kenya. 

Objective 2: To explore whether the hyperspectral wavebands/regions suitable for discrimination of cassava and 

maize at the field level are relevant at the satellite level. 

Objective 3: To discriminate maize from casava and maize from other crops in Busia County, Kenya using 

hyperspectral data at the leaf and satellite  levels, respectively.  

1.3. Research questions and hypothesis 

Question 1: How the spectral signatures of cassava and maize leaves vary at the leaf level when measured from a 

stack layer? 

Hypothesis: The spectral reflectance of cassava in NIR and SWIR regions is higher compared to that of maize 

difference in biophysical characteristics. 

Question 2: What are the differences between hyperspectral bands suitable for discriminating cassava and maize at 

the field and satellite levels? 

Hypothesis: Optimum hyperspectral wavebands suitable for discrimination of cassava and at the field and satellite 

levels are similar except those located around the water absorption peaks. 

Question 3: How to discriminate maize from casava and maize fields from other crops in Busia County, Kenya, 

using hyperspectral measurements?  

Hypothesis: Supervised machine learning classifiers like Random Forest (RF) can be used to discriminate maize 

from casava and maize fields from other crop fields.  
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2. METHODOLOGY 
2.1. Study area  

Located in Kenya's extreme west, Busia County has a total area of 1,694.5 km2. It has boundaries with Kakamega 

to the east, Bungoma to the north, Lake Victoria to the south-west, Siaya to the south-east, and the Republic of 

Uganda to the west. It is located between 0° and 0.45° North latitude and 34.25° East longitude. The Lake Victoria 

Basin encompasses the majority of Busia County. The altitude is undulating and ranges from approximately 1,500m 

in the Samia and North Teso Hills to 1,130m above sea level on the shores of Lake Victoria. Based on census 

statistics from 2019, Busia had a population of about 893,681. 

The yearly rainfall in Busia County ranges from 760 to 2000 mm. The long rain season, which lasts from late March 

to late May, accounts for 50% of the annual rainfall, while the short rain season, which lasts from August to October, 

accounts for 25%. From December to February, there is a dry season with occasional showers. The temperatures 

across the county are quite consistent. The yearly mean maximum temperature ranges from 26°C to 30°C, while the 

mean minimum temperature ranges from 14°C to 22°C.  

The hills of Samia and Budalang'i in Busia County are covered in a natural forest, although other areas of the county 

feature on-farm woodlots integrated with agricultural production. Beans, sorghum, finger millet, rice, cowpea, 

groundnuts, sweet potato, banana, oil palm, green gram, cotton, tobacco, sugarcane, and pepper are some of the 

other significant crops farmed in Busia County, in addition to major crops cassava and maize. Horticultural crops 

are also grown, including, among others, pineapples, tomatoes, kale, cabbage, watermelons, native vegetables, 

mangoes, amaranth, jack fruit, onions, and papaya. 

 

Figure 1 Study area  (Busia County in Kenya) and distribution of cassava and maize fields. 
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2.2. Methodological flow chart 

The crop type discrimination performed in this study is outlined in the flow chart (Figure 2). The major steps include 

field measurements, data pre-processing, and data analysis at the field and satellite levels. The flow chart also shows 

at which steps different objectives of this study were achieved.  

 

Figure 2 Methodological flowchart of the study . 
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2.3. Data acquisition and pre-processing 

2.3.1 Field data measurement and pre-processing 

Leaf samples, specifically spectral measurements at the leaf stack layer level using a spectroradiometer, were collected 

from a total of 30 maize fields and 31 cassava fields (Figure 3) between 11 July and 4 August, 2022. Reflectance 

spectra of maize and casava layer stacks were then measured in the field around noon (seen in Figure 3), with the 

sun being almost at the nadir position. In each layer stack, five sample measurements were taken, with ten reflectance 

measurements recorded for each measurement, this resulted in a total of 50 reflectance measurements saved for 

each layer stack, using an ASD FieldSpec3 spectroradiometer. The wavelength range of the field spectroradiometer 

is between 350 nm to 2500 nm, with a spectral sampling of 1.4 nm in the 350 nm to 1000 nm range and 2 nm in the 

1000 nm to 2500 nm range (Huang et al., 2014). The fiber optic, with a field view of approximately 13.3 cm, was 

placed in a pistol and handheld approximately 30 cm above the 30 cm * 30 cm layer stack sample at the nadir 

position avoiding the surroundings' influence on the spectral measurements. The radiance of a standard white panel 

covered with BaSO4 of known reflectivity was collected prior to reflectance measurements for normalisation of the 

target data.  

Noisy bands below 400 nm, after 2475 nm and those affected by water absorption regions were removed. This 

resulted in the removal of 202 spectral bands, and the remaining 1949 wavebands were used for further analysis. 

The details of the removed bands can be found in Appendix I.  

The fifty reflectance measurements taken from each layer stack sample were averaged to represent one sample. By 

averaging the fifty saved reflectance measurements made from each layer stack sample, it was possible to reduce the 

measurement noise. To further smooth the spectra, a moving Savitzky-Golay filter (Savitzky and Golay,1964) with 

a frame size of eleven data points (1st-degree polynomial) was used to smooth the reflectance spectra using 

MATLAB R2022a (MathWorks, Inc.), the smoothed spectra were used for further analysis in this study. The, 

reflectance spectra of cassava and maize samples are shown in Figure 4, and the plots for field data variability are 

shown in Appendix II.  

 

Figure 3 Spectral measurements of Casava leaf layer stack  during the field campaign in Busia County, Kenya 
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Figure 4(a)  Measured leaf reflectance of Cassava (n=31), (b) Measured leaf reflectance of Maize (n=30) after smoothing using 
Savitzky Golay filter. 

 

2.3.2. Satellite data extraction and pre-processing 

In this study, we utilised data from the PRISMA (Precursore Iperspettrale della Missione Applicativa) satellite to 

perform our analysis. PRISMA is a hyperspectral satellite developed and operated by the Italian Space Agency (ASI) 

and was launched on 22 March 2019. It is designed to acquire high-resolution imagery with an extensive spectral 

range, enabling detailed and accurate characterisation of Earth's surface. The PRISMA sensor captures images in 

hundreds of narrow contiguous spectral bands about 237 bands with a 30 meter spatial resolution, providing valuable 

information about the reflectance properties of different materials and objects on the Earth's surface (Guarini et al., 

2018). The hyperspectral data acquired by PRISMA allows for enhanced discrimination and identification of various 

land cover types, making it particularly well-suited for agricultural applications such as crop type discrimination.  

The PRISMA image was acquired for this study on 1st July 2022. The PRISMA image partially covered the study 

area and was significantly affected by clouds, with nearly 80% of it obscured, as shown in Figure 5. We extracted 

the average spectral reflectance of 38 maize fields and 9 cassava fields in the study area from the PRISMA image 

that fall in clear areas, using ENVI Classic 5.6.3. Additionally, a non-maize class was established, consisting of fields 

with mixed crops, including maize planted together with cassava, beans, groundnuts, or wheat, from which we were 

able to extract 35 field samples. 

In order to prepare the data for analysis, noisy bands affected by water absorption regions were removed, eliminating 

approximately 42 spectral bands (see Appendix III for further details); hence the remaining 188 bands were used 

for further analysis. A moving Savitzky-Golay filter with a frame size of 9 data points (1st-degree polynomial) was 

applied to the averaged reflectance spectra to further remove the unwanted noise and refine the data. The Savitzky-

Golay filter reduces noise and has been widely used in previous studies for spectral smoothing (Ruffin & King, 

2003). MATLAB R2022a (MathWorks, Inc.) was used for the processing and analysis of the data; the plots for 

satellite data variability is shown are Appendix IV.   

(a) (b) 
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Figure 5 Map showing crop fields visited vs PRISMA image coverage and cloud problem 

 

 

Figure 6 Spectral signature of a) Cassava fields and b) Maize fields obtained from PRISMA image data, in Busia, Kenya. 

 

 

2.4. Data analysis 

2.4.1. Mann-Whitney U test on field data 

The Mann-Whitney U test compares the median spectral reflectance from maize and cassava to determine whether 

spectral differences exist. The test was set at 0.05 confidence level (Kokaly & Clark, 1999; Mitchell & Glenn, 2009; 

Schmidt & Skidmore, 2003). The main aim of the test was to check if significant differences in spectral bands exist 

between cassava and maize, and if so, which bands or regions show a significant difference between the two crops 

under an established level of confidence. This help to narrow down to the bands/regions suitable for discriminating 

the two crops (maize and cassava). 

2.4.2. Absorption features 

This study focused on analysing the spectral reflectance of cassava and maize by examining three known absorption 

features due to leaf biochemical content, as detailed in Table 1. Specifically, the chlorophyll absorption features in 

(a) (b) 
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the visible region (R400 – 555 and R555 – 771) were selected due to their relevance in estimating chlorophyll content, 

nitrogen concentration and other biochemicals in fresh standing canopies, as reported in previous studies (Mutanga 

et al., 2004; Sulaiman et al., 2022; Thenkabail et al., 2004). Additionally, an absorption feature found in the near 

infrared and short wavelength region (R820 – 1262) was also considered, as this range has been shown to be influenced 

by biochemical components (water, cellulose, carbohydrate and lignin) in several studies (Curran et al., 2001; Kokaly 

& Clark, 1999; Thenkabail et al., 2000, 2004). These three absorption regions were considered for both cassava and 

maize at both, leaf and satellite levels. However, an additional absorption region in the short-wavelength region 

(R1406-1677) was only considered for field-level data analysis, as noisy bands were removed from this region at satellite-

level data (Verrelst et al., 2021).  

2.4.3. Continuum-removal and feature extraction 

Continuum removal was performed in regions with absorption features. The process of continuum removal involves 

quantifying the deviation of absorption bands of different samples (maize and cassava) from a common baseline, 

which is defined as the convex hull surrounding the data points of a reflectance spectrum (Mutanga et al., 2004). 

This common baseline, or "continuum," consists of continuous lines connecting local maxima points of the spectral 

reflectance (Mutanga et al., 2004). To isolate a specific absorption feature for analysis, the reflectance spectra is 

divided by the continuum at each wavelength: RCR = R/C where RCR is the continuum-removed spectra, R is the 

reflectance spectra and C is the continuum as shown in Figure 8(a), resulting in a continuum-removed spectra with 

values ranging from 0 to 1. The first and last points in the reflectance spectra are always local maxima and thus 

become 1 in the continuum-removed spectra. This technique allows for the isolated analysis of particular absorption 

features (band depth and wavelength position) within a spectrum as shown in Figure 7(b), Band depth (BD) was 

calculated by subtracting the continuum removed reflectance (R′) by 1 (Kokaly & Clark, 1999).  

Formally stated:  

 BD = 1- R′ 

Where BD is band depth and R′ is the continuum-removed reflectance value. 

  

Figure 7 (a) Reflectance spectra of maize and continuum line, (b) band depth in maize continuum removed reflectance. 

2.4.4. Random forest classification  

A random forest (RF) classifier was used to classify the leaf level reflectance data measured at the field and satellite 

level data. RF has been shown to be effective in various classification tasks (Liaw & Wiener, 2002) and can handle 

complex patterns and nonlinearities within a dataset, in the context of our study, nonlinearity may arise due to the 

intricate spectral characteristics exhibited by the crops in the hyperspectral data collected at both field and satellite 

levels.. RF is an ensemble learning method that constructs multiple decision trees and then combines their outputs 

(a) (b) 
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to produce the final classification result (Breiman, 2001). During the construction of each decision tree, a bootstrap 

sample of the original data is used, and at each node of the tree, a random subset of features is considered for 

splitting. This approach helps to reduce overfitting and improve the model’s generalisation performance. 

We used 70% of the data to train the RF model, and the remaining 30% was used for validation. The performance 

of the RF model was evaluated using various metrics including producer and user accuracy, Kappa score, F1-score, 

p-value and overall accuracy. We evaluated the validation set to estimate the generalisation performance of the 

model. The results of the classification will be more elaborated in the result chapter and further analyzed under the 

discussion chapter of this work.  

Classification was performed separately using random forest for hyperspectral data at leaf and satellite levels. To 

avoid overfitting the classification model, due to the high number of bands present in hyperspectral data, we only 

considered bands that showed very high absorption peaks after band depth analysis. At the leaf level classification 

was performed between cassava and maize classes but due to cloud cover only few cassava field samples (6 samples) 

were available at the satellite level. Hence the classification at the satellite level was performed between maize and 

non-maize class, which included 38 samples for maize class and 34 samples for the non-maize class. In this way, we 

ensured that a reasonable and comparable sample size was available.  
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3. RESULTS 
3.1. Mean spectral reflectance of maize and cassava  

 The average spectral signatures of cassava and maize at the leaf and satellite levels are shown in Figure 8. Clear 

differences could be observed between these reflectance data in the visible and NIR regions both at the leaf (400nm 

to 700nm and 750nm to 1200nm) and satellite (400nm to 550 and 750nm to 1200nm) levels. 

   

Figure 8 Average spectral signature of cassava and maize : (left) leaf level measured using ASD field spectroradiometer 
(cassava n=31 and maize n=30), (right) field level obtained from PRISMA image data (cassava n=6 and maize n=38), in 

Busia, Kenya. 

 

3.2. Mann-Whitney U test results 
After conducting a statistical test at a 0.05 level of confidence on the leaf level data across the entire spectral range, 

several spectral regions were identified in which the spectral bands from these regions showed significant differences 

between cassava and maize. These significant regions are presented in Table 1. From these significant spectral 

regions, we were able to identify absorption regions that were used for further investigation in this study. 

Table 1 Selected significant spectral regions based on a Mann-Whitney U test. 

Significant spectral regions at leaf Level (p-value < 0.05) 

385nm -701nm 

709nm - 1346nm 

1455nm - 1658nm 

2070nm - 2115nm 

2237nm - 2254nm 

 

3.3. Continuum removal and band depth analysis 

After applying continuum removal to the selected absorption regions described in subsections 2.4.2 and 2.4.3, we 

analyzed the band depth on continuum reflectance between cassava and maize at the leaf and satellite levels. Tables 

2 and 3 show the band depth in these absorption regions. As can be seen from these tables, the band depth varied 

between cassava and maize at the leaf and satellite levels. Nevertheless, there are similarities in bands with the highest 

absorption peaks between these two data levels.  
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Table 2 Absorption regions and band depth at the leaf level. 

Wavelength range 
(nm) 

Band with the highest absorption peak 
(nm) 

Band depth 

Cassava Maize 

400-555 496 0.502 0.309 

555-771 677 & 679 0.901 0.809 

820-1262 1162 0.089 0.085 

1406-1677 1459 & 1460 0.362 0.374 

 

Table 3 Absorption regions and band depth at satellite level. 

Wavelength range 
(nm) 

Band with the highest absorption peak 
(nm) 

Band depth 

Cassava Maize 

400-555 470 0.389 0.443 

555-771 650 0.659 0.658 

820-1262 1163 0.125 0.115 
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Figure 9 Continuum removed reflectance of smoothed field data 

 

3.4. Random forest classification 

3.4.1. Classification using leaf measurement collected in the filed 

Significant bands with the highest absorption peaks (496, 677, 679, 1162, 1459, and 1460) were used to assess the 

classification of cassava and maize samples collected at the field level. To create the model, we used 30 maize samples 

(21 samples for training and 9 samples for testing) and 31 cassava samples (22 samples for training and 9 samples 

for testing). The classification of the two crops using leaf reflectance data resulted in an overall accuracy of 94%, as 

measured by the kappa score of 0.89 and F1 score of 0.94. Table 4 summarizes the classification outputs for the 

cassava and maize classes.  

Table 4 Cassava and maize classification output at field level data based on testing data. 

Crop Producer accuracy User accuracy F1 score 
Kappa 
score 

P-value 
Overall 

accuracy 

Cassava 0.8 0.89 
0.94 0.89 5.6329e-05 94% 

Maize 0.9 1 

 

3.4.2. Classification at satellite level on PRISMA data 
At the satellite level, due to the small number of cassava field samples classification was performed to discriminate  

maize from other crops. For this, the significant bands with the highest absorption peaks (470, 650 and 1163) were 

used to classify, maize and non-maize classes. We used 38 maize field samples (27 samples for training and 11 

samples for testing) and 35 non-maize samples (25 samples for training and 10 samples for testing) to create the 

model. The classification output had an overall accuracy of 77%, a kappa of 0.54, and an F1 score of 0.78. Table 5 

summarized the classification outputs for the maize and non- maize classes.  

Table 5 Confusion matrix - results of maize and non-maize classification using PRISMA image data based on testing data. 

Crop 
Producer 
accuracy 

User accuracy F1 score 
Kappa 
score 

P-value 
Overall 

accuracy 

Maize 0.72 0.8 
0.78 0.55 1.5068e-04 77% 

Non-maize 0.82 0.75 
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4. DISCUSSION 

Discriminating major crop types (cassava and maize) in Kenya using hyperspectral remote sensing is of great 
significance in agriculture and crop monitoring. This study aimed to discriminate cassava and maize crops using 
their spectral signatures  obtained through field spectroscopy of leaves layer stacks and PRISMA satellite in Busia 
County, Kenya. To study cassava and maize discrimination important bands were identified using Mann-whitney U 
test, continuum removal and band depth analysis. Random forest classification models were developed based on 
the bands from the absorption peaks, and the accuracy of crop discrimination was evaluated at both leaf and satellite 
levels. The main finding were, there was significant difference between cassava and maize spectral signatures, the 
regions suitable for cassava and maize discrimination at leaf level are suitable at satellite level also and by considering 
bands with highest absorption peak is possible to discriminate maize from the other crops.   In this section, we will 
discuss the observed differences in spectral signatures reflectance of the two crops, the suitable hyperspectral bands 
for discrimination, and classification outputs after only considering the bands with the highest absorption peak, also 
assumptions and possibilities for future studies at each section will be discussed. 

4.1. Variations in spectral reflectance of cassava and maize  

The difference observed in the spectral reflectance signatures of cassava and maize at the leaf level confirms the 

findings of earlier studies by  Thenkabail et al. (2004), who reported variations in the spectral response of corn, rice, 

cowpea, groundnut, soybean and cassava crops. The significant differences in the visible and near-infrared (NIR) 

regions of the mean spectra of the cassava and maize, which are primarily influenced by the leaf physiology and 

biochemical composition of the species, suggest that these regions are particularly useful for discriminating between 

cassava and maize. 

At the leaf level, maize exhibited higher reflectance than cassava in the visible range and cassava exhibited higher 

reflectance than maize in the NIR and SWIR range (Figure 9). This difference can be attributed to the existing 

variations  in cassava and maize leaf properties such as chlorophyll content, water content in a leaf, leaf thickness 

and roughness. Several studies have shown that water content affects leaf reflectivity in the NIR range and 

chlorophyll content in the visible range, with lower water content leading to higher reflectivity and high chlorophyll 

content reducing leaf reflectivity (Daniel et al., 2003; García et al., 2009; Hegarty-Craver et al., 2020). These findings 

support the argument that the observed differences in spectral signatures between cassava and maize at the leaf 

stack level are mainly influenced by the biochemical makeup of the crops rather than differences in the growth stage 

(phenology). In this study, both maize and cassava were at the same growth stage (maturity stage); hence there was 

no difference in phenology to cause the difference in the reflectance between the two crops. 

The Mann-Whitney U test results conducted on the leaf level data (Table 1) further support the observed differences 

between cassava and maize. The test revealed significant differences at several wavelength regions, particularly in 

the visible and NIR regions (385-701nm, 709-1346nm, 1455-1658nm, 2070-2115nm and 2237-2254nm), this 

statistical test was performed at leaf level only but it was not possible to perform this statistical test to satellite level 

data due to unbalanced number of samples between the two crops (maize, n=38 while cassava, n=6). These 

significant wavelengths, which exhibit distinct reflectance patterns for cassava and maize, can be attributed to the 

variations in leaf physiology and biochemical composition difference between the two crops. The significant 

wavelength regions align with several other studies that have identified similar wavelength regions to be significant 

in discriminating crop types because with hyperspectral data these wavelength regions contain information about 

crop biophysical and biochemical characteristics which can be used in distinguishing one crop from another (Curran 

et al., 2001; Odindi & Kakembo, 2009; Schmidt & Skidmore, 2003; Thenkabail et al., 2004). 
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One limitation of this study was the inability to measure canopy-level reflectance due to the height of the maize 

plants in the field, which exceeded two meter. Consequently, measurements were taken at the leaf level, providing 

data only on leaf reflectance. This limitation hinders a comprehensive understanding of overall canopy reflectance 

and introduces potential biases in the results and interpretations. To overcome this limitation in future studies, it is 

recommended to explore the use of field measuring platforms or alternative measurement techniques that enable 

the collection of canopy-level reflectance data. By incorporating such approaches, researchers can gain a more 

comprehensive understanding of spectral signatures and variations at the canopy level, facilitating a more precise 

assessment of crop discrimination and characterisation. 

No biochemical laboratory analysis was conducted in this study, and the identification of biochemical components 

associated with differences at various wavelengths relies on existing studies that have performed laboratory 

experiments. To enhance future investigations, it is suggested that biochemical analyses be performed on cassava 

and maize samples. This would enable more accurate identification of the biochemical components responsible for 

spectral reflectance differences across different regions of the electromagnetic spectrum. These analyses,  would 

enhance understanding of the underlying biochemical processes influencing spectral signatures and further can be 

used to refine crop discrimination techniques. 

4.2. Hyperspectral bands suitable for discrimination at the leaf stack layer and satellite level 

 In our leaf level data, we identified six bands with the highest absorption peaks at wavelengths of 496 nm, 677 nm, 

679 nm, 1162 nm, 1459 nm, and 1460 nm (Table 2). These bands were found to be associated with specific pigments 

and biochemical components, as supported by the existing literature on plant biochemistry. For example, 

chlorophyll "a" and "b" were identified as the primary pigments responsible for light absorption at 496 nm, 677 nm, 

and 679 nm (Curran, 1989; Curran et al., 2001; Kokaly & Clark, 1999; Manjunath et al., 2014), playing essential roles 

in photosynthesis. At 1162 nm, water and cellulose were found to be the main biochemical components responsible 

for light absorption (Curran, 1989; Curran et al., 2001; Kokaly & Clark, 1999; Manjunath et al., 2014), which has 

implications for remote sensing of plant water status and soil moisture. Furthermore, carbohydrates and lignin were 

found to be the primary biochemical components responsible for light absorption at 1459 nm and 1460 nm (Curran, 

1989; Kokaly & Clark, 1999; Kumar et al., 2001), responsible for plant cell wall structure and function (Curran et 

al., 2001). At the satellite level, three bands were identified as having the highest absorption peak 470 nm, 650 nm, 

and 1163 nm (Table 3), we observed that chlorophyll "a" and "b" were again the main pigments responsible for light 

absorption at 470 nm and 650 nm, while cellulose was the primary biochemical component associated with light 

absorption at 1163 nm (Curran, 1989; Kokaly & Clark, 1999; Kumar et al., 2001), Cellulose, as the primary structural 

component of plant cell wall, plays a crucial role in providing mechanical support and rigidity. These relationships 

between wavelengths and responsible biophysical parameter have been summarised in Appendix V. 

Remarkably, we noted that the R820-1262 absorption region exhibited similar patterns at both the leaf stack level and 

satellite level, with 1162 nm and 1163 nm as the highest absorption peaks, indicating the involvement of water and 

cellulose as the responsible biochemical components. This suggests that these bands may be useful for discriminating 

between cassava and maize at both the leaf stack and satellite levels. Another significant finding was observed in the 

R400-555 absorption region, where we observed the highest difference in band depth between maize and cassava for 

both leaf stack-level and satellite-level data. This finding holds considerable importance for crop management and 

monitoring, providing valuable information for resource allocation, yield prediction, and early detection of stress or 

disease. The results align with existing finding which finds blue region and NIR regions to be suitable regions for 

crop discrimination (Buchhorn et al., 2013; Hennessy et al., 2020). 

In this study, we adopt a comprehensive approach by examining sensitive bands for crop discrimination at both the 

leaf stack layer level and the satellite level, unlike other studies that typically focus on investigating the sensitive 

bands for crop discrimination either at the satellite level or the field level individually. Using continuum removal 

output and band depth analysis, we established the correlation between specific wavelengths and the biochemical 
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components of the plants. However, it is crucial to acknowledge the potential variations in plant samples due to 

factors such as genotype and farming inputs. In the Busia region, where a significant number of farmers face 

economic constraints, different maize and cassava species were observed in fields based on seed availability, and 

farmers utilised various farming inputs depending on their financial capacity. Therefore, further research is 

recommended to investigate the impact of seed variations and farming inputs on maize and cassava in the Busia-

Kenya region. This can be accomplished through laboratory experiments and additional analytical investigations 

focusing on specific wavelengths in relation to crop type. By doing so, we can enhance our understanding of crop 

discrimination and characterisation, leading to more precise assessments and practical applications in agriculture.  

4.3. Classification 

Classification of cassava and maize crops at the field level using only bands with the highest absorption peaks 

achieved an overall accuracy of 94% (kappa score: 0.89, F1 score: 0.94), indicating the high predictive power of the 

model. This finding aligns with previous studies that employed hyperspectral field data for crop classification (de 

Leeuw et al., 2007; Piiroinen et al., 2015). However, unlike most of these studies which considered bands estimated 

to be significant, our study focuses solely on bands with the highest absorption peaks because this approach has not 

yet been tested  in previous studies so it was worthy considering in this study. Despite the use of this new approach, 

the results are convincing, suggesting the potential of these bands for future research. Moreover, the use of only 

significant bands with the highest absorption peaks for classification at the leaf level highlights the accuracy and 

efficiency provided by hyperspectral data in crop discrimination. This approach could be further developed to enable 

precise and cost-effective monitoring of crop health and yield at the field level. 

At the satellite level, the classification results of maize and non-maize exhibited slightly lower accuracy compared to 

the field-level data (overall accuracy of  94%), with an overall accuracy of 77% (kappa score: 0.54, F1 score: 0.78). 

This discrepancy can be attributed to various factors, including the influence of additional variables which have been 

acknowledged by other studies to affect classification such as, background (soil) effect (Sabat-Tomala et al., 2020), 

atmosphere noise (Underwood et al., 2003), weed (Lu et al., 2020) and small farmland size relative to the spatial 

resolution of the PRISMA image (30m). Nevertheless, the successful classification of maize and non-maize classes 

at the satellite level demonstrates the potential of hyperspectral remote sensing for crop mapping and monitoring, 

other studies in the literature have also shown promising results in land cover classification of agricultural crops by 

using hyperspectral satellite images. For instance, Pepe et al. 2022 use similar hyperspectral remote sensing sensor 

(PRISMA) at Jolanda di Savoia estate Emilia-Romagna region Italy to perform classification of nine crop types, 

including maize, and achieved an overall accuracy of 90%. These findings further support the effectiveness of 

hyperspectral remote sensing for crop discrimination.  

It is important to acknowledge that the classification models used in this study were based on a limited number of 

samples (30 maize samples and 31 cassava samples for leaf stack layer level classification, and 38 maize samples and 

35 nonmaize samples for satellite-level classification) and focused on a specific maturity stage of the crops only. 

Enhancing the accuracy of the classification models could be achieved through future studies with larger sample 

sizes, considering different stages of crop growth, and encompassing more diverse crop types. 

Overall, the findings of this study indicate that hyperspectral remote sensing, employing bands with the highest 

absorption peaks, can deliver accurate and efficient crop classification at both field and satellite levels. The presented 

approach has the potential to improve crop monitoring and management, contributing to more sustainable and 

productive agricultural practices. 
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5. CONCLUSION 

This study successfully demonstrated the potential of hyperspectral remote sensing for crop type discrimination at 

the field level and satellite level for maize and cassava crops in Busia County, Kenya. The study had three specific 

objectives: studying the spectral signatures of maize and cassava, exploring whether the hyperspectral 

wavebands/regions suitable for discrimination of maize and cassava at the field level are relevant at the satellite 

level, and discriminating between maize and cassava fields using hyperspectral field data and satellite data 

(classification).  

Analysis of the spectral signature of cassava and maize at the field level revealed clear differences between the two 

crops. These differences were identified in specific absorption regions. The main biochemical components 

associated with the difference in spectral characteristics between maize and cassava include chlorophyll a and b (at 

bands 496, 677, and 679 nm), water and cellulose content (at band 1162 nm), and carbohydrates and lignin (at bands 

1459 and 1460 nm). These findings indicate that at the leaf level, distinct spectral characteristics can differentiate 

between cassava and maize, providing valuable insights into crop discrimination. 

Considering the same absorption regions as used at the field level, the distinct differences between cassava and 

maize were identified at bands 470 and 650 at the satellite level. Chlorophyll a and b were the main responsible 

biochemical components at these bands, while band 1163 nm exhibited cellulose content as the main biochemical 

component responsible for the difference in spectral characteristics. Moreover, the absorption region R400-555 

showed the highest difference in band depth between maize and cassava at both the field and satellite levels, with 

chlorophyll a and b being the main biochemical components found in this region. These findings suggest that 

discrimination between the two crops can be achieved at this region, regardless of the spatial resolution of the sensor 

used (field or satellite measurement). 

By considering only bands with the highest absorption peaks, it is possible to discriminate between maize and other 

crop classes. The results of this study showed that at the field level, by only considering bands with the highest 

absorption peak, an accuracy of 93% was achieved during the classification of cassava and maize. At the satellite 

level, an accuracy of 77% was attained during the classification of maize and non-maize classes. These findings 

demonstrate the potential of using hyperspectral satellite data for discriminating maize fields from other crops in 

Busia County, Kenya. 

This study contributes to the field of crop monitoring and management by providing valuable insights into crop 

type discrimination. With the provision of accurate and efficient discrimination of crop types at both the field and 

satellite levels. 

Overall, the results of this study suggest that hyperspectral remote sensing, by using only bands with the highest 

absorption peaks can provide accurate and efficient discrimination of crop types at both the field and satellite levels. 

The approach presented in this study has the potential to improve crop monitoring and management, leading to 

more sustainable and productive agricultural practices. Future research can build on the findings of this study to 

develop more advanced methods for crop discrimination which may involve more biochemical components of the 

crops and involve more crop types using hyperspectral remote sensing, and to explore its application in other 

agricultural regions worldwide.  
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APPENDIX SECTION 
 Appendix I: Noise band removed from field spectral measured data 

 

Appendix II: Field level mean reflectance standard deviation (on top) and first derivative (on bottom) 

 

 

 
Cassava(nm) No. bands lost Maize (nm) No. bands lost 

Noise band due to sensor 

changes in spectral 

sampling characteristics. 

(from 1.4 to 2nm) 

1000 1 1000 1 

water absorption bands 1347 up to 1405 59 1347 up to 1405 59 

Atmospheric water vapor 

bands 

1796 up to 1943 148 1796 up to 1943 148 

Noise at the end of 

signature 

2470 up to 2500 31 2481 up to 2500 31 

The total number of bands lost 239 
 

239 
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Appendix III: Noise band removed from satellite spectral measured data 

 

 
Cassava (nm) No. bands lost Maize (nm) No. bands lost 

water absorption bands 1370 up to 1491 17 1370 up to 1491 17 

Atmospheric water 
vapor bands 

1765 up to 1984 25 1765 up to 1984 25 

The total number of bands lost 42 
 

42 

 

Appendix IV: Satellite level mean reflectance standard deviation (on top) and first derivative (on bottom) 
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Appendix V: Bands with the highest absorption peak and related known biochemicals and supported 

citations used to establish the relationship 

 

Wavelength 

Range (nm) 

Band with the 

highest absorption 

peak (nm) 

Known causal 

biochemical 
Reference Data Level 

R400-555 496 Chlorophyll 

“a” and “b” 

(Curran, 1989; Curran et al., 2001; 

Kokaly & Clark, 1999; Manjunath et 

al., 2014) 

Field level/ 

Stack level 

R555-771 677 

679 

Chlorophyll 

“a” and “b” 

(Curran, 1989; Curran et al., 2001; 

Kokaly & Clark, 1999; Manjunath et 

al., 2014) 

R820-1262 1162 Water and 

Cellulose 

(Curran, 1989; Kokaly & Clark, 

1999; Kumar et al., 2001) 

R1406-1677 1459 

1460 

Carbohydrates 

and Lignin 

(Curran, 1989; Kokaly & Clark, 

1999; Kumar et al., 2001) 

R400-555 470 Chlorophyll 

“a” and “b” 

(Curran, 1989; Curran et al., 2001; 

Kokaly & Clark, 1999; Manjunath et 

al., 2014) 

Satellite level 
R555-771 650 Chlorophyll 

“a” and “b” 

(Curran, 1989; Curran et al., 2001; 

Kokaly & Clark, 1999; Manjunath et 

al., 2014) 

R820-1262 1163 
Cellulose 

(Curran, 1989; Kokaly & Clark, 

1999; Kumar et al., 2001) 
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Appendix VI: Cassava field pictures 
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Appendix VII: Maize field pictures 
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Appendix VIII: Field measurements 

 

  
 

 

 

 

 

 


