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ABSTRACT  
Crop classification in remote sensing faces challenges due to limited ground truth labels. However, incor-

porating historical ground information can help to overcome these challenges. By utilising data from pre-

vious seasons or years, classification accuracy can be improved, and the need for costly and time-consum-

ing ground truth data collection can be reduced. Integrating historical information also enables early and 

in-season mapping, which aids in making pre-harvest decisions. 

In this study, within-season crop type mapping was performed by using Sentinel-1 and Sentinel-2 data, 

historical cropland data together with weather data in the province of Flevoland, Netherlands. The objec-

tives of this study were to explore the influence of weather conditions, satellite sensor characteristics, and 

temporal shifts on crop dynamics and phenological metrics when historical cropland data is used to train 

the model and to determine the optimal temporal window for accurate crop classification. 

Analysis of phenological metrics derived from both Sentinel-1 (C-band Synthetic Aperture Radar) and 

Sentinel-2 (multispectral optical) data was conducted. The results revealed distinct patterns and variations 

in phenological metrics for different crop types. Sentinel-1 data exhibited an advantage in detecting early 

signs of vegetation growth, attributed to its all-weather capability, as it can capture data regardless of 

weather conditions, including cloudy or rainy periods. On the other hand, Sentinel-2 data relied on sun-

light and was limited by cloud cover during cloudy periods. 

The integration of weather parameters, particularly temperature, and precipitation, played a significant role 

in understanding inter-annual variations in estimated phenology. Warmer conditions were associated with 

earlier detection of phenological phases, while wet conditions caused delays in reaching phenological 

stages. Furthermore, this study highlighted the differences between Sentinel-1’s backscatter (CR) and Sen-

tinel-2’s spectral reflectance normalised difference vegetation index (NDVI) values for various crops em-

phasising the importance of considering both optical and SAR data for comprehensive vegetation analysis. 

Thermal time was introduced as a parameter to mitigate the impact of temporal shifts of crop dynamics 

caused by weather variability. By aligning thermal time values across different years, refined feature space 

that enhanced the accuracy of within-season crop type mapping was achieved. June emerged as the opti-

mal temporal window for model performance, although certain crops exhibited early discernibility as early 

as April. Crop rotation practices influenced growth patterns and phenological stages, which in turn af-

fected classification accuracy. 

This study provides valuable insights into within-season crop type mapping and highlights the significance 

of integrating multiple data sources namely, Sentinel-1, Sentinel-2, weather parameters, and thermal time 

for accurate and robust crop classification. The findings offer valuable information for stakeholders in 

agriculture, enabling timely and reliable monitoring of crop types in the region. Continued research in this 

field will further advance agricultural monitoring and management, ultimately contributing to improved 

food security and sustainable agricultural practices. 
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1. Introduction 

1.1 Background 

The global population is rapidly increasing, leading to heightened demand for food production worldwide. 

This escalating demand places significant pressure on agricultural cultivation to meet the needs of a grow-

ing population (Calicioglu et al., 2019).(Schlund & Erasmi, 2020)  However, the importance of sustainable 

agricultural practices cannot be overstated. It is no longer sufficient for agriculture to solely focus on 

increasing food production; it must also address the critical objectives of biodiversity conservation, 

maintenance of material cycles, and provision of essential ecosystem services. 

Sustainable agriculture aims to strike a delicate balance between meeting the demand for food and pro-

tecting the environment (James, 2006; Lafferty, 2015). Minimising the environmental impact of agricul-

tural practices is essential for mitigating ecological degradation, reducing resource depletion, and preserv-

ing the integrity of ecosystems. By adopting sustainable farming techniques, farmers can ensure the lon-

gevity of their land and mitigate potential negative consequences associated with intensive agricultural 

production(Foley et al., 2005). Furthermore, as the planet faces evolving environmental conditions, such 

as climate change and resource scarcity, it becomes imperative for agricultural practices to adapt. Climate 

change poses challenges such as altered precipitation patterns, increased frequency of extreme weather 

events, and shifting temperature regimes. These changes necessitate the development and implementation 

of adaptive measures within agricultural systems to ensure their resilience and productivity in the face of 

uncertainty. Through the integration of sustainable farming practices and adaptation to changing environ-

mental conditions, crop type mapping serves as a valuable tool for addressing the challenges of global 

food insecurity. 

Accurate information about the types of crops grown, their respective planting times, and locations is 

crucial for assessing crop production variability and identifying the spatial distribution patterns that cor-

respond to different agricultural areas and crop types. ( Zhang et al., 2020). Early crop type mapping is 

particularly significant in today's farming system monitoring. It allows for timely assessment of crop types 

during the growing season, enabling proactive management and improvement of farming practices. By 

mapping crop types at different stages of growth, farmers can make informed decisions regarding irriga-

tion, fertilisation, pest control. This information helps to ensure that crops receive the necessary care and 

resources at the right time, leading to enhanced productivity. Studies conducted by Zhang et al.( 2020), 

Lin et al. (2022), and Yaramasu et al. (2020) emphasise the importance of accurate crop type mapping in 

assessing crop production variability, identifying early crop health conditions, and determining specific 

nutrient requirements. Foerster et al. (2012) and Lin et al.(2022) further highlighted the significance of 

within-season crop mapping for effective farming system monitoring.  

Remote sensing has shown the potential to be a significant information source for crop type mapping as 

a result of its ability to provide extensive coverage, timely data collection, fast updating, and dynamic data 

collection (Z. Lin et al., 2022; H. Zhang et al., 2020). Remote sensing provides better spatial resolution 

and sample frequency, making it much easier to analyse and evaluate cropland's level and condition than 

traditional in-situ measurements (Chauhan et al., 2019; Foerster et al., 2012). High spatial resolution data 

can be utilised to perform crop type mapping at a country, continental or global scale. For instance, 

Sentinel-2 data acquired at 10 m spatial resolution was used for agricultural mapping in Europe (Defourny 

et al., 2019), Africa (Jin et al., 2019), and Asia (Yi et al., 2020). Sentinel-1 and Sentinel-2 have a 

high temporal resolution of 5-6 days of revisiting time, thus opening new opportunities for capturing 

agricultural dynamics through multi-temporal classification techniques (Bargiel, 2017; Clevers et al., 2017). 
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Several studies have been conducted to explore the timeliness of crop mapping using remote sensing data. 

These studies have demonstrated the potential of these sensors in providing timely and accurate 

information for crop mapping purposes. For instance, Blickensdörfer et al. (2022) utilised time series data 

from Landsat-8 and Sentinel-2, combined with environmental data, to achieve accurate crop type mapping 

in Germany with overall accuracies between 78% and 80%. In addition, Orynbaikyzy et al. (2022) 

evaluated the transferability of Random Forest models (RF) for crop type mapping in Germany, their 

findings showed that the integration of SAR-Optical data improved accuracy and timeliness of crop 

mapping.  Kussul et al. (2018) demonstrated the timeliness advantage of Sentinel-1 (SAR) data in Ukraine, 

where dense cloud cover impaired the clarity of optical data (Sentinel-2) during within-season crop type 

mapping. Their findings highlighted that SAR data performed well during early stages of crop growth 

when obtaining clear optical data was challenging. 

Moreover, the integration of Landsat and Sentinel-2 data has shown promise in enhancing the timeliness 

and accuracy of crop mapping. Johnson & Mueller. (2021) integrated the Cropland Data Layer with a full 

season's worth of Sentinel-2 and Landsat imagery, achieving improved crop type mapping accuracy in the 

Great Plains regions and the Corn Belt of the United States. Zhang et al., (2022) utilised Sentinel-2 data 

and the Cropland Data Layer for within-season crop mapping in the Mississippi Delta area, demonstrating 

the relevance and scalability of timely crop mapping over a large geographical extent. 

Despite the progress made in crop type mapping, research gaps still exist. Limited studies have been 

conducted for within-crop type mapping, particularly in Europe, and the incorporation of meteorological 

data remains underexplored.  

This study aims to address these gaps by leveraging historical cropland data, Sentinel-1, Sentinel-2, and 

weather data to enhance the accuracy and applicability of within-season crop type mapping in Flevoland, 

Netherlands. The findings of this research will contribute to agricultural management practices in the 

region, providing valuable insights for decision-making processes, crop yield assessments, and sustainable 

farming practices. 

1.2 Problem Statement 

Today's crop commodities markets in developed nations like the Netherlands rely on within-season fore-

casts of planting progress, crop conditions, and anticipated yields. However, this process is fraught with 

uncertainty during the growing season because the most precise field-level planting information is cur-

rently mostly made public after the end of harvesting period  (Hao et al., 2018; Whitcraft et al., 2015; 

Zhong et al., 2016). Furthermore, the classification of crop types utilising remote sensing technologies is 

a challenging task due to the natural features of most agriculture areas, such as crop rotation and seasonal 

variations in crop morphology (Dey et al., 2020). Optical sensors have shown a significant application for 

crop type mapping and agriculture land use monitoring due to their reflectance measurement in the near-

infrared and visible range from targets in the electromagnetic spectrum (Shang et al., 2022). Sentinel-2 

A/B imaging offers better potential for enhancing crop type classification over heterogeneous agricultural 

land due to its higher spatial, temporal, and spectral resolution over other optical sensors (Fernández-

Manso et al., 2016; Ienco et al., 2019). However, previous studies have revealed the issue of optical data 

discontinuity during critical growth stages of crops when cloud cover is present (Beamish et al., 2020; 

McNairn & Shang, 2016). But it is still difficult to effectively identify between crop types using simply 

spectral information, especially for crop types with similar vegetative growth stages. SAR as an active 

sensor was employed to address the issue of cloud cover during relevant growth stages (Beamish et al., 

2020; Shang et al., 2022). Due to SAR's capacity to penetrate through clouds, cover a large area, and 

generates its own power to illuminate ground targets, it can collect high-resolution earth observation data 

at any moment of day or night and practically all-weather conditions (Nasirzadehdizaji et al., 2019). Fur-

thermore, SAR is able to obtain precise information about crops as it is sensitive to crop structure (S. Gao 
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et al., 2013). Sentinel-1 and Sentinel-2 have proven to be effective, and potentially can meet the different 

observational needs when used to monitor land related activities. But it is not yet known which sensor 

can perform well in crop type mapping. Previous studies have proven the significance of optical and  radar 

sensors independently for crop-type mapping (Defourny et al., 2019; Ofori-Ampofo et al., 2021). How-

ever, integrating data from two sensors can result in better performance compared to the use of only one 

sensor. Since optical and SAR sensors use distinct data-gathering approaches, the combined data from 

both can improve discrimination between targets based on reflectance and, structural or moisture charac-

teristics. This is demonstrated by research on  crop mapping, urban mapping, and grassland monitoring 

conducted by (Ienco et al., 2019; Ofori-Ampofo et al., 2021; J. Wang et al., 2020). Furthermore, the issue 

of  incomplete data resulting from the presence of cloud in time series of satellite images can be solved 

by  data fusion (Pohl & Van Genderen, 2010). Additionally,  Veloso et al. (2017) and Blickensdörfer et al. 

(2022) in their studies have shown the importance of data fusion of optical sensors with SAR in crop-type 

mapping, but there is still few studies that use data fusion of optical sensors (Sentinel-2) and SAR for 

within-season crop-type mapping in the Netherlands. Furthermore, classification techniques used to pro-

duce good-quality crop maps require sufficient ground truth data. However, the acquisition of data re-

quires a lot of time, labour, and money to be collected, which becomes a limitation (C. Zhang et al., 2022). 

This shows a need of preparing a ground truth dataset from historical cropland data that can be re-adapted 

to the current year as a solution for reducing cost, labour, and time taken to collect ground truth data.  

Previous studies have explored various methods to map crop types within a target year when limited or 

no ground truth information are available (Cai et al., 2018; Hao et al., 2017; Johnson & Mueller, 2021; 

Konduri et al., 2020; Waldner et al., 2015; S. Wang et al., 2019). One approach that has been widely used 

is the utilisation of historical cropland data to train a classifier, which can then be applied to the target 

year. This method, commonly referred to as "decision boundary-based approach," aim to transfer decision 

boundaries learned from historical years to classify the target year's data. By training the classifier with 

historical labels and leveraging the knowledge gained from past observations, this approach enable the 

estimation of crop types in the absence of ground truth information (Xu et al., 2021; Yaramasu et al., 

2020b; You & Dong, 2020; C. Zhang et al., 2021; Zhong et al., 2014). The utilisation of historical data for 

crop type mapping presents certain challenges and errors due to the variability in crop patterns and spectral 

features between the historical and target years. These variations can arise from factors such as weather 

condition variability and crop phenology. Ghazaryan et al.(2018) and Lin et al.(2022) in their studies have 

confirmed the challenges posed by inter-annual variations in crop growth patterns due to weather condi-

tions. They observed that variations in temperature, precipitation, and sunlight between different years 

can lead to changes in the spectral response of crops. These variations make it challenging to directly 

transfer decision boundaries or spectral signatures from historical years to the target year. Also Johnson 

& Mueller. (2021) and C. Zhang et al. (2021) in their studies showed that while performing within season 

crop type mapping, using long and simple rotation patterns perform well but it can only be used in a 

specific area.  Additionally, a study by C. Lin et al. (2022) demonstrated the ability to identify crop types 

early in the season without relying on current-year data as a reference. They achieved this by generating 

labels from historical data using a topology-based method, which helped reduce the impact of intra and 

inter-annual variability. The study noted that their approach was not sensitive to crops that exhibited 

consistent behaviour across different topology features.  

The main challenges found to perform the within-season crop type mapping task are: 

• There are still few studies that address within-season crop type mapping considering both optical 

Sentinel-2 data and SAR Sentinel-1 data. 

• Although the integration of Sentinel-1 data can mitigate the cloud coverage problem that affects 

the optical Sentinel-2 data, it is not yet known which crop can be discriminated, when it can be 

discriminated, and with which sensor (Sentinel-1 and Sentinel-2). 
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• Using historical cropland data could result in major errors, mainly if cropping patterns and 

weather conditions shift from one year to another. 

1.3 The novelty of the study 

• To understand the optimal approach using Sentinel-1, Sentinel-2, or a combination of both data 

to perform within-season crop type mapping.  

• To  investigate the reasons behind the potential lack of representativeness of historical cropland 

data for the target year, attributed to variations in crop phenology and weather conditions. 

• To leverage multiple years of historical crop data and weather data to establish a database of 

phenological trends for different crops with good generalization capabilities.  

• To define the novel approach of combining data of Sentinel-1, Sentinel-2, weather data, and his-

torical Cropland data to perform within season crop type mapping in Flevoland. 

 

1.4 Research Objectives 

Main Objective 

The main objective of this study is to analyse the capability of using Sentinel-1 (SAR-temporal backscatter 

data), Sentinel-2, weather data and cropland historical data to perform within-season crop type mapping. 

Specific objectives 

1. Explore the temporal behaviour of SAR backscatter (Vertical- Horizontal (VH), Vertical- Vertical 

(VV), and VV/VH ratio) and spectral reflectance of Sentinel-2 for different crop types for mul-

tiple years. 

2. Investigate the best feature space (time invariant) to create a training data set using the historical 

cropland data that is representative of the target year leveraging crop calendar and weather data 

information. 

3. Determine the optimal temporal window that effectively captures the essential phenological 

stages for each crop type within the season. 

4. Determine the relevance of Sentinel-1, Sentinel-2, and their fusion to enhance in-season crop type 

classification. 

1.5 Research Questions and Hypothesis 

1. What is the crop-specific temporal profiles recorded by Sentinel-1 and Sentinel-2 in the con-

sidered study area for different years? 

Ho: In the study area, there is no variability of crop-specific temporal behaviour from Sentinel-1 and 

Sentinel-2. 

2. What is the most effective approach for creating a time-invariant feature space using historical 

data, crop calendar information, and weather data to construct a representative training dataset 

for a specific target year? 
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Ho: There is no significant difference in the effectiveness of different approaches for creating a time-

invariant feature space using historical data, crop calendar information, and weather data to construct a 

representative training dataset for a specific target year 

3. Which temporal window can optimally capture the essential phenological stages per crop type 

to generate accurate within season crop type mapping? 

Ho: There is no phenological stage that can be identified in a temporal window.  

4. Does within-season crop type mapping with the integration of Sentinel-1 and Sentinel-2 data 

perform better than utilising only SAR or optical features? 

Ho: Sentinel-1 and Sentinel-2 features together do not improve on employing either SAR or only optical 

features for in-season crop-type mapping. 
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2. Study Area and Dataset Description 

2.1. Study area 

2.1.1. Location 

The study area is Flevoland, established in 1986, which is a relatively young province in the Netherlands 

located in the central part of the country. It occupies the area that was previously the Zuiderzee Bay, a 

body of water. Geographically, Flevoland is situated between 52°32′ North latitude and 5°40′ East 

longitude. One notable characteristic of Flevoland is its low-lying position, with its average elevation about 

5 meters below sea level. 

Figure 2.1 shows the 5 municipalities of Flevoland, which is divided into three distinct regions: 

Noordoostpolder, Eastern Flevoland, and Southern Flevoland. Noordoostpolder comprises the 

municipalities of Noordoostpolder and Urk, while Eastern Flevoland includes Lelystad and Dronten. The 

municipalities of Almere and Zeewolde fall under Southern Flevoland. 

With its predominantly flat terrain, Flevoland is primarily an agricultural region, known for its fertile soil. 

It offers favourable conditions for farming and crop cultivation. Notably, the province has witnessed 

extensive land reclamation efforts, creating new land areas. This development has resulted in the 

establishment of Almere, a modern city within Flevoland. 

The figure 2.1 provides a visual representation of the distribution of municipalities within Flevoland, 

highlighting the spatial layout of the province.  

 

Figure 2.1 Flevoland province map and its 5 municipalities. 

 

 

 

Municipalities 
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2.1.2. Weather condition in Flevoland 

Flevoland, a province in the Netherlands, exhibits a temperate climate with distinct seasonal variations. 

The region experiences four seasons: summer, autumn, winter, and spring. The proximity of Flevoland to 

Lake IJssel influences its climate, resulting in smaller temperature differences compared to other parts of 

the country. 

During the summer months of July and August, Flevoland sees average temperatures ranging between 

20°C and 25°C. This period represents the warmest time of the year in the province. In contrast, the 

coldest temperatures occur in January and February, with average minimum temperatures varying between 

0°C and 2°C. These colder months are accompanied by a decrease in both the minimum and maximum 

temperatures. 

The annual maximum temperatures in Flevoland generally range from 14°C to 16°C, while the annual 

minimum temperatures range from 5°C to 7°C. These temperature ranges provide an overview of the 

typical climate in the region throughout the year. 

In terms of precipitation, Flevoland receives an average annual rainfall which varies between 700 mm and 

800 mm. The driest month is April, with an average rainfall of only 37 mm. This indicates that April 

experiences significantly less precipitation compared to other months. The weather conditions over a four-

years period from 2018 to 2021, were visualised by using bar chart as it is shown on figure 2.2.  

Figure 2.2 presents Monthly weather parameters recorded in Flevoland for the year 2018. The Minimum-

Temperature, Maximum Temperature, and monthly Precipitation are reported. 

 

Figure 2.2: Weather data for four years, 2018, 2019, 2020 and 2021 in Flevoland 
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2.1.3.  Agriculture in Flevoland 

Flevoland was established to increase agricultural land and mitigate the risk of flooding in the Netherlands. 

During Second World War, the first farmers moved into the Noordoostpolder region of the newest 

province. The province was originally intended to serve as a zone for optimal agricultural development. 

It was able to establish huge, specialised farms because of the availability of water, strong infrastructure, 

and large, rectangular parcels of land. As a result, Flevoland has favourable agricultural production 

conditions. Agriculture is important for development and spatial planning in Flevoland. In 2012, 

Approximately 75% of the land in the province was used for agriculture (Mandryk et al., 2012). In 

Flevoland, agriculture accounts 6% of employment and 5.5% of the region's gross regional product (  

means that  in 2007 for The Netherlands, these statistics were 1.8 and 3%, respectively) (Mandryk et al., 

2012). Arable farming is the most common farm form, accounting 70% of the total farm population and 

occupying 65% of available agricultural land (Mandryk et al., 2012). Due to urbanisation, the increase of 

infrastructure, and the creation of natural areas, agricultural land has been reduced during the previous 

few decades. 

As this province is known as the centre of Agriculture in the Netherlands, different crops are grown in 

this region. This study will focus on the predominant crop types present in Flevoland, such as Potato, 

corn, Summer Barley, Summer Wheat, Winter Barley, and Winter Wheat. The average field size observed 

was 5.55 hectares (ha), with the smallest field measuring 0.05 ha and the largest field measuring 28.78 ha. 

The total area covered by target crop is 35402.92 hectares, which is the 24 % of total area of hall province 

of Flevoland. The Area of Flevoland is approximately to be 146803.73 hectares.  Table 2.1 shows the crop 

calendar for the main targeted crops, by highlighting their growing season for different phenological 

stages.  

Table 2.1:Crop calendar for the main crops present in Flevoland. 

 

 

 

Figure 2.3 provides an overview of the Dutch province of Flevoland, showcasing the spatial distribution 

of six crop types considered in the year 2020. Flevoland is renowned for its diverse agricultural 

landscape, and the figure highlights the specific locations and patterns of different crops cultivated 

within the province. Among these crops, potatoes were found to be the dominant crop, followed by 

winter wheat in comparison to others. Conversely, summer wheat and summer wheat appeared to be 

less prevalent in the province. 
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Figure 2.3:Spatial distribution of 6 crops type considered in this study and located in Flevoland for the year 2020. 

2.2 Dataset Description 

Table 2.2 provides an overview of the datasets employed in the study, highlighting the specific parameters 

and their respective years. In the following sections, details are given for each data source. 

Table 2.2:Selected data to be used in this research study. 

Data Source Spatial resolution Date Type Reference 

Historical 

cropland data 

BRP - 2018-2021 farmer-based declaration https://ser-

vice.pdok.nl/rvo/brpge

wasper-

celen/atom/v1_0/ba-

sisregistratie_gewasper-

celen_brp.xml 

Sentinel-1 ESA 10m 2018-2021 SAR https://develop-

ers.google.com/earth-

en-gine/datasets/cata-

log/COPERNI-

CUS_S1_GRD 

Sentinel-2 ESA 10m 2018-2021 Optical https://develop-

ers.google.com/earth-

en-gine/datasets/cata-

log/COPERNI-

CUS_S2_SR_HARMO-

NIZED 

Weather data KNMI  2018-2021 In-situ KNMI - Daily weather 

data in the Netherlands 

 

https://www.knmi.nl/nederland-nu/klimatologie/daggegevens
https://www.knmi.nl/nederland-nu/klimatologie/daggegevens
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2.2.1 Cropland reference data  

To generate the reference cropland data used for training and validating the results obtained, this study 

took advantage of the public availability of the Basic Register of Parcel (BRP) databases. In the Nether-

lands, the BRP offers publicly accessible crop-specific land cover data sets that are updated annually and 

based on farmer’s declaration. Indeed, the crop parcels’ owners have the responsibility of registering their 

agricultural parcels each year and provide information regarding the crops grown in those parcels. This 

ensures that the data used in the study is up-to-date and reflective of the current agricultural landscape. 

By leveraging the BRP, researchers can accurately determine the precise locations of farmland and the 

corresponding crop type for a specific year. For this study, the BRP data were downloaded to represent 

the spatial distribution of the crop types that were present in Flevoland in the years of 2018, 2019, 2020 

and 2021.  Since these data are provided by the Netherlands Enterprise Agency, they can be considered a 

reliable and accurate source of information. 

To define the boundaries of the farms, the Agricultural Area of the Netherlands (AAN) dataset was uti-

lised. This dataset provides essential information for mapping out the extents of agricultural land. The 

AAN dataset provides information or spatial data regarding the agricultural areas or boundaries within the 

Netherlands, which is used to establish the boundaries of the individual agricultural plots. 

For the visualisation of shapefiles, this study used QGIS, a widely adopted free and open-source Geo-

graphic Information System (GIS) program. The cropland maps were used to generate the reference la-

belled data used to train, test, and validate the experiment carried out in this study. The table 3 shows the 

total number of fields across the years in Flevoland whereby Potato showed to be a dominant crop among 

other crops. The table 2.3 shows the total number of fields per crop type found in Flevoland over the year 

2018 up to 2021.  

Table 2.3: The number of fields of each targeted crop in Flevoland present in 2018, 2019, 2020 and 2021. 

Crop type 
Number of fields 

2021 2020 2019 2018 

Potato 3099 3581 3154 3196 

Summer Barley 255 396 199 313 

Winter Barley 135 102 111 72 

Corn 596 688 589 622 

Summer wheat 253 335 129 315 

Winter Wheat 1652 1679 1739 1595 

TOTAL 5990 6800 5944 6119 

 

2.2.2 Sentinel-1 SAR data 

Sentinel-1 Synthetic Aperture Radar (SAR) images have been widely used for agricultural monitoring be-

cause of their high temporal density (6-day revisit interval) and spatial resolution in (10 m). This study 

utilised SAR time series images acquired from Sentinel-1, with a revisit time of 6 days, to cover the growing 

seasons of 2018, 2019, 2020, and 2021. Pre-processing steps, including range-doppler terrain correction, 

multi-looking, data calibration, and thermal noise removal, were performed through Google Earth Engine 

(GEE) to ensure data suitability and maintain measurement accuracy. 

To conduct a comprehensive analysis, the study employed the interferometric wide swath mode in com-

bination with dual polarisation. Specifically, the vertical transmission/vertical reception (VV) and vertical 

transmission/horizontal reception (VH) combinations were utilized. GEE served as the platform for han-

dling large datasets and facilitating efficient data management and analysis. GEE offered access to pre-
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processed Sentinel-1 backscatter images shortly after their acquisition. The "COPERNICUS/S1 Ground 

Range Detected" image collection in GEE was utilised to access the SAR data with a spatial resolution of 

10 meters. This collection provided the necessary tools for processing and analysing the Sentinel-1 data. 

Ground Range Detected (GRD) products derived from SAR data that had undergone detection, multi-

looking, and projection to surface range using the WGS84 Earth ellipsoid model. The cross-ratio of VV 

and VH backscatter coefficients derived from the Sentinel-1 SAR data were used in this study to extract 

SAR-based phenological metrics for each crop. 

In addition, the cross-ratio derived from the VV and VH backscatter coefficients was not only used to 

extract phenological metrics but also played a crucial role in the classification process itself. The cross-

ratio was utilised as a feature in conjunction with other relevant data. 

2.2.3 Sentinel-2 Multispectral Data 

This study employed Sentinel-2, a multi-spectral imaging sensor operated by the European Space Agency, 

for crop-type mapping. This sensor offered wide-swath, high-resolution imagery with a revisit time of 

every 5 days (Adrian et al., 2021). Thirteen reflectance bands covering visible, near-infrared (NIR), and 

short-wave infrared (SWIR) spectral ranges were available. Specific bands were selected based on their 

significance in crop-type mapping (Maponya et al., 2020; H. Zhang et al., 2020), including visible bands 

(B2, B3, B4) with 10 m resolution, red edge bands (B5, B6, B7) with 20 m resolution, a near-infrared band 

(B8) with 10 m resolution, and short-wave infrared bands (B11, B12) with 10 m resolution. The study 

focused on analysing Sentinel-2 imagery acquired between 2018 and 2021 to investigate temporal changes 

and patterns in the study area. 

The analysis of Sentinel-2 data was conducted using the GEE platform. GEE facilitated access to pre-

processed Level 2A Bottom of atmosphere (BOA) reflectance Sentinel-2 data from the COPERNI-

CUS/S2_SR_HARMONIZED collection. This collection contained atmospherically corrected data ob-

tained using the Sen2Cor software (Main-Knorn et al., 2017), which incorporated the libRadtran radiative 

transfer model for aerosol characterisation (Mayer & Kylling, 2005). The collection also provided a cloud 

mask to distinguish between cloudy and cloud-free pixels, with different types of clouds identified. Images 

with less than 40% cloud coverage were selected for further processing. 

To ensure data consistency, the red edge band was resampled from its original 20 m resolution to a higher 

resolution of 10 m using a cubic interpolation approach, where the values within each new pixel were 

averaged. By aligning the spectral information of the red edge band with the other bands, the spatial 

resolution throughout the dataset remained consistent. Afterward, a mosaic was generated by combining 

all the selected images and monthly composites. The average value compositing technique was employed 

for this purpose. This technique calculates the pixel value for each band by averaging the corresponding 

pixels in the individual images or composites. By considering the average values over time, the impact of 

cloud cover was minimised. Ultimately, this process resulted in the creation of an annual time series com-

posite that was utilised to extract phenological metrics and facilitate crop classification. 

2.2.4 Weather data 

Weather data plays a crucial role in understanding the impact of weather changes on the physical and 

temporal behaviour of crops. In this study, different weather parameters such as precipitation and tem-

perature were examined to investigate these effects. The weather data used in the analysis were obtained 

from the Lelystad ground weather station, located in Flevoland. This specific station was selected to ac-

curately represent the weather conditions in the study region under investigation. 

By focusing on a single ground weather station, the study can capture localised weather variations that 

directly influence the growth and development of crops in the region. The weather data were downloaded 

from KNMI, the authoritative source for daily weather data in the Netherlands. 
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The weather data were utilised to assess crop development by quantifying the thermal time experienced 

by crops using Growing Degree Days (GDD). Additionally, precipitation data were employed to under-

stand the influence of weather conditions on crop phenology. 

By integrating weather data into the analysis, this study aimed to gain insights into the relationship between 

weather changes and the observed phenological behaviour of crops recorded by Sentinel-1 and Sentinel-

2. 

3. Methods 
Figure 2 and Figure 3 present the flowcharts of the two main phases of the proposed workflow. The first 

part of flowchart explains how the cropland data of year 2018-2020 were prepared to generate training 

and validation datasets (Objective 1 and Objective 2). The second part of flowchart reports the steps 

carried out to generate the in-season crop type mapping approach (Objective 3 and Objective 4). 

Flowchart   

 

Figure 3.1:Flowchart part1 reporting how the: (1) temporal behaviour of the targeted crops was extracted, and (2) 
training and validation data set to be used for classification were created. 
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Figure 3.2:Flowchart part 2 representing the crop type classification process implemented to generate the crop map 
for 2021. 

 

3.1. Data Preparation 

Both Sentinel-1 and Sentinel-2 satellites offer frequent acquisitions with a revisit time of  approximately 5 

days, allowing for regular monitoring of  crop phenology. However, cloud coverage often leads to the 

exclusion of  some Sentinel-2 images, necessitating the use of  interpolation techniques to fill in the gaps. 

For interpolating missing data in a time series dataset, dates were converted into day, month, and year 

components using the strsplit function. Then, it converted the dates to a numerical format represented as 

the number of  days from the start of  the year. Finer grids were created by specifying a step value, this 

creates a more granular time grid for interpolation purposes. 

The original dates and the finer grid dates were scaled between 0 and 1 using min-max normalisation. This 

normalisation ensures that the interpolated data remains within the range of  the original data. The min-

max normalisation was performed separately for each variable, such as b2, b4, etc. 

To interpolate missing values in the data, a loop was used. First, any missing values in the variable were 

replaced with zeros. This step is necessary as some interpolation methods cannot handle missing values 

directly. Then, the inpaintCoherent function was applied to estimate the missing values based on the 

Objective 3 

To determine the optimal temporal 

window that effectively captures the 

essential phenological stages for each 

crop type. 
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surrounding data points. The inpaintCoherent function was a method used for coherent data inpainting, 

which fills in missing values in a way that maintains the coherence and smoothness of  the data. 

After estimating the missing values, the interp1 function is used to interpolate the data from the original 

dates to a finer grid of  dates. The finer grid is obtained by defining a step size (in this case, it is set to 6). 

Linear interpolation is employed to estimate the values between the original dates based on the available 

data points. This interpolation process enables the generation of  a continuous and spatially explicit rep-

resentation of  variables of  interest in the Sentinel-2 data. 

To improve data quality in this study, the selection of  an appropriate smoothing method is critical. Two 

commonly used methods, Gaussian and Savitzky-Golay (SGolay), were evaluated for their performance 

in pre-processing the time series of  Sentinel-2 data per crop type. Results show that both methods effec-

tively reduce noise and enhance data quality. However, after careful evaluation and comparison, it was 

found that the Gaussian smoothing method outperforms the SGolay method in preserving important 

spatial features and maintaining overall data integrity (see Figure 3 and Figure 3.4). Consequently, the 

Gaussian smoothing method was chosen as the most suitable approach. 

The smoothing operation involved applying a Gaussian filter to the interpolated data after filling in missing 

or sparse data points to enhance temporal resolution. The Gaussian filter was selected for its noise sup-

pression capabilities while preserving the general shape of  the data. A window size of  11 was specifically 

chosen to strike a balance between capturing relevant information and smoothing out potential noise or 

outliers. 

Once the data underwent the Gaussian smoothing process, noise was effectively reduced, resulting in a 

clearer representation of  the general trend in the temporal behaviour of  different crops. This enhanced 

visualisation and analysis by emphasising underlying patterns and minimising random fluctuations. Con-

sequently, a more accurate assessment of  temporal behaviour was possible, facilitating meaningful com-

parisons between different crops. 

 

Figure 3.3:Example of median temporal profiles of CR observations for summer wheat with Gaussian and Savitzky-
Golay smoothing. 
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Figure 3.4:Example of median temporal profiles of NDVI observations for summer wheat with Gaussian and 
Savitzky-Golay smoothing. 

3.2. Crop Phenological Metrics 

This study focused on vegetation phenology, which examines plant growth and development across 

seasons. Previous research has shown the value of phenological characteristics in improving crop type 

mapping accuracy. Using the Google Earth Engine band reflectance and backscatter values were obtained 

and exported to Excel files. These files were then used in MATLAB to extract phenological metrics from 

vegetation indices. The process involved deriving measures such as seasonal start, end, and peak. The 

extracted temporal profiles allowed for evaluating changes in different years due to varying weather 

conditions and identifying specific crop varieties. 

 

Figure 3.5: Seasonal metrics derived from temporal profile using TIMESAT: (a) start of season, (b) end of season, 
(c) length of season, (d) base value, (e) time of middle of season, (f) peak value, (g) amplitude, (h) small integrated 
value, (h þ i) large integrate 

The time series of Sentinel-1 and Sentinel-2 data can be used to represent crop growth phenological 

features by computing vegetation indices. These temporal profiles can be used to collect information on 

the physiological process of crops from growth and development to maturity and ripeness stages, with 

variations occurring at different stages of the growth cycle. For this reason, starting of season, peak 

metrics, and end of season were used to set up a crop calendar at the field level.  
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The selection and applicability of a vegetation index are often based on its sensitivity to the features of 

interest and/or its sensitivity to affecting factors (X. Gao et al., 2000). In this study despite NDVI which 

is the primary vegetation index, and Enhanced vegetation index (EVI) were extracted together with the 

spectral bands and backscatter (CR, VH, and VV). NDVI together with Cross Ration were used for 

extracting phenology metrics and for crop classification. Information about NDVI and EVI are 

summarised in Table 3.1. 

Table 3.1:Summary of vegetation indices extracted from the Sentinel-2 time series of images for the considered years. 

Abbreviation Name                           Formula Explanation 

NDVI 

Normalized 

Difference 

Vegetation 

Index 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 

 

NDVI is an excellent starting point 

for understanding crop development 

during the growing season (Gim et 

al., 2020). 

EVI 

Enhanced 

Vegetation 

Index 

𝐸𝑉𝐼 =
𝐺 ∗ (𝑁𝐼𝑅 − 𝑅𝑒𝑑)

𝑁𝐼𝑅 + 𝐶1 ∗ 𝑅𝑒𝑑 − 𝐶2 ∗ 𝐵𝑙𝑢𝑒 + 𝐿
 

 

EVI is more reliable when applied to 

crops with a dense canopy or at an 

advanced growth stage of a 

vegetation (Huete et al., 2002). 

 

When mapping different crop type, a single spectral indicator like NDVI or EVI may not capture certain 

crucial phenological stages or define complex crop growth and environmental variables. So, it is important 

to know how well the different spectral features work for mapping crop types and to figure out if the red 

edge bands in Sentinel-2 are significant for accurate crop type classification. Table 3.2 shows how red edge 

indices was calculated.  

Table 3.2:Overview of the Red Edge Indices that computed, where B8a is Narrow infrared band and three red-edge 
bands of vegetation (B5, B6, and B7). 

Overview of the Red Edge Indices that computed, where B8a is Narrow infrared band and three red-edge 

bands of vegetation (B5, B6, and B7). 

Vegetation Index Sentinel-2 Formula 

NDVIn1  

NDVIn2  

NDVIn3  

(B8a - B5)/ (B8a + B5) 

(B8a - B6)/ (B8a + B6) 

(B8a - B7)/ (B8a + B7) 

 

3.3. Calendar Time Feature Space 

In the process of remote sensing image classification, constructing an effective feature space is a crucial 

step that greatly influences the accuracy of the classification results. The selection of informative features 

plays a vital role in achieving satisfactory classification outcomes. In this study, the feature space for 

within-season crop type mapping was constructed using Sentinel-1 and Sentinel-2 data, along with the 

weather and historical cropland data. 

To construct the feature space, multiple data sources were utilised. Initially, the original bands from 

Sentinel-2 imagery were employed which encompass a range of spectral bands capturing electromagnetic 

radiation across the spectrum. These bands provide valuable spectral signatures that can distinguish 

different crop types based on their unique reflectance properties. 
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In this study, the reflectance values from bands 2, 4, 5, 6, 7, 8, 8A, 11, and 12 of Sentinel-2 were combined. 

This process included concatenating the reflectance values and stacking them vertically, resulting in the 

creation of a variable representing the combined spectral bands. By assigning class labels to each time 

series, a labelled time series dataset was generated. This labelled dataset served as the foundation for 

constructing the feature space specific to the Sentinel-2 data. Moreover, vegetation index (table 3.1 and 

3.2) features were extracted from the Sentinel-2 data, supplementing the original bands. These indices 

were used as an additional feature for classification and discrimination of different crops types. 

The incorporation of backscatter values from Sentinel-1 into the analysis involved the creation of a 

variable through the ratio of VH (vertical transmit, horizontal receive) values to VV (vertical transmit, 

vertical receive) values. This ratio was computed as an indicator to capture the relationship between the 

backscatter values. By calculating this ratio, a representative variable that characterises the scattering 

properties was derived, which played a pivotal role in the analysis. Furthermore, to construct the labelled 

time series dataset for Sentinel-1, the labels column, and the combined backscatter values were 

horizontally concatenated. This concatenation process facilitated the integration of the labels representing 

different crop types with the corresponding backscatter values, resulting in a comprehensive labelled 

dataset. By incorporating the backscatter information from Sentinel-1, this labelled dataset was used to 

create feature space for Sentinel-1. 

3.4. Thermal Time Feature Space 

As the weather condition has a direct influence on the stages of crop growth, it necessitates being 

considered when assessing the temporal behaviours of crops. The temperature during the growing season 

is a major factor in determining the rate of crop development, with a maximum rate occurring at an 

optimal temperature range that varies depending on the crop and stage of development. To analyse crop 

temporal behaviours, the study adopts the thermal time approach, which quantifies crop development 

using Growing Degree Days (GDD). Crop thermal time is commonly expressed in terms of GDD, which 

are calculated by adding up daily average temperatures above a baseline. Since the amount of heat 

accumulated throughout the growing season significantly affects crop development. 

𝐺𝐷𝐷 =∑𝑚𝑎𝑥

𝑡

𝑖=1

𝑇𝑚𝑖𝑛
𝑖 + 𝑇𝑚𝑎𝑥

𝑖

2
− (𝑇𝑏𝑎𝑠𝑒,0) 

Where 𝑇𝑚𝑎𝑥
𝑖  and 𝑇𝑚𝑖𝑛

𝑖  Th are the minimum and maximum temperatures for day i, accumulated for all the 

previous days i = 1, 2, ..., t, and 𝑇𝑏𝑎𝑠𝑒 is temperature base. The temperature must be varied between 00C 

and 300C. In this study, the base temperature for all crops was assumed to be zero since the specific crop 

types were not known. By setting a uniform base temperature, the analysis focuses on the accumulated 

heat units above this threshold without considering crop-specific temperature requirements. This 

approach allows for a generalised assessment of crop temporal behaviours based on the thermal time 

approach using GDD. 

By calculating the cumulative thermal time and comparing it across different years, the data were aligned 

to make it comparable and standardised. This aligning process involves adjusting the values of thermal 

time to reduce differences between years and enable easier comparison and analysis. The thermal time 

values were rearranged to reduce differences between years, this is a valid approach to standardise the 

data. By aligning the values of thermal time for comparable dates across years, the effects of temporal 

variations were mitigated and make the data more suitable for comparative analysis. This alignment and 

standardisation process of thermal time data helped to identify patterns, trends, or similarities and 

differences in crop development across different years in the same region. It provided a consistent basis 

for crop classification that requires comparative evaluation of thermal time data across multiple years. 
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Furthermore, the study investigated the relationship between phenological events, such as Start of Season 

(SOS), Peak of metrics, and End of Season (EOS), and weather conditions. To explore this relationship, 

a line plot, where the x-axis represents the thermal time and the y-axis represents the median NDVI value 

for each thermal time interval were used. This type of plot provided a visual representation of the pattern 

of NDVI values as thermal time progresses. It allowed for a comprehensive understanding of how NDVI 

behaved in relation to thermal time throughout the growing season. This method assisted in identifying 

specific crop characteristics, whereby several crops may have the same planting time, development period, 

and harvesting period during the growing season, but the amount of temperature and precipitation each 

crop needs to grow is unique, causing them to behave differently. So, the different laws that are based on 

the characteristics weather of crops can be helpful in determining the period range and classifying the 

types of crops to some extent. 

By incorporating weather data, the thermal time approach, NDVI analysis, assessment, the study aims to 

provide a comprehensive understanding of crop temporal behaviours. This methodology allows for a 

deeper exploration of the impact of weather conditions on crop growth and development. 

3.5. Sentinel-1 and Sentinel-2 Data fusion 

In this study, early fusion was tested and used to determine its effect in crop type mapping. Early fusion 

combined a common feature vector the Sentinel-2 and Sentinel-1 features before performing the 

classification.  

To perform early fusion, the three datasets (Sentinel-1, Sentinel-2, and Vegetation Indices) were combined 

by vertically concatenating their respective matrices. This was achieved using the vertcat function, which 

merges the matrices together in a vertical manner. The resulting matrix, referred to as the combined 

dataset, contains rows that represent individual samples or observations. By vertically concatenating the 

datasets, the information from Sentinel-1 (radar backscatter measurements), Sentinel-2 (multispectral 

imagery), and Vegetation Indices were integrated into a single unified dataset. Each row in the combined 

matrix contains the data associated with a specific sample, including the crop IDs or labels and the 

corresponding features extracted from the three datasets. 

3.6 Historical Cropland Reference Dataset Preparation 

The selection of training and test data is a crucial step in the development and evaluation of the Random 

Forest (RF) model for crop type mapping. In this study, the historical cropland dataset spanning multiple 

years (2018-2020) was utilised for training the model, while the data from 2021 was reserved for testing 

and validation. The use of multiple years of historical data for training provides several advantages. It 

allows for a larger and more representative training dataset, capturing the temporal variability in crop 

patterns and reducing the influence of specific year-to-year variations. This helps to create a more robust 

and generalisable model that can accurately classify crops across different growing seasons. 

To ensure that the training dataset is representative and balanced, a stratified random sampling strategy 

was employed. This means that the selection of training samples was based on the proportion of each 

crop type in the entire Flevoland region. By considering the number of fields available for each crop, the 

sampling strategy ensures that the training dataset includes a sufficient number of samples for each crop 

type, preventing any bias towards crops with higher or lower field densities. The use of stratified random 

sampling helps to capture the diversity of crop types and their spatial distribution within the study area. It 

ensures that the RF model is trained on a diverse range of samples, allowing it to learn the characteristic 

spectral and temporal patterns associated with different crops. The table 3.3 shows the total number of 

fields samples for each crop across the years in Flevoland whereby Potato showed to be a dominant crop 

among other crops. 
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Table 3.3:Distribution of field samples over the year in Flevoland. 

Crop type 
Number of the field sample 

2021 2020 2019 2018 

Potato 1000 1000 900 445 

Barley, Summer 105 160 100 68 

Barley, Winter 81 66 79 63 

Corn 190 259 175 247 

wheat, summer 125 106 72 61 

Wheat, winter 700 600 800 301 

TOTAL 2201 2191 2126 1185 

 

3.7. Important Feature Selection 

In this study, we employed the Random Forest algorithm to perform feature selection and identify im-

portant features for classifying different crop types based on backscatter data from Sentinel-1, spectral 

bands, and vegetation indices from Sentinel-2. The methodology used calendar time and thermal time 

feature space separately.  

To identify the important features, a Random Forest model was constructed using a variable representing 

the combined spectral band’s dataset, the ratio of VH and VV together with vegetation indices from 

Sentinel-2. The model consisted of 100 trees, and the 'OOBPredictorImportance' option was enabled to 

calculate the feature importance based on out-of-bag predictions. 

Based on the RF model, the feature importance values was calculated. To ensure comparability, the im-

portance values was normalised by dividing them by the sum of all importance values. Subsequently, the 

feature importance values were sorted in descending order to determine the most influential features. To 

present the results, the feature importance values alongside their corresponding indices were displayed. 

Furthermore, the feature importance was visualised using a bar plot, which provided a clear representation 

of the relative importance of each feature (Annex 9). 

3.8. Random Forest Algorithm 

This study employed the RF algorithm, a supervised non-parametric machine learning approach intro-

duced by Breiman. (2001). RF is an ensemble of decision trees, where each tree is constructed using a 

randomly selected subset of variables and training data. The study utilised a bootstrapping technique, 

where two-thirds of the training data, known as the inbag data, were used to build each tree, while the 

remaining one-third, called the out-of-bag (OOB) data, was used for evaluating the model's performance 

(Guan et al., 2013). The data used in this study were obtained from satellite images (Synthetic Aperture 

Radar (SAR) data from Sentinel-1 (S1) and multi-spectral data from Sentinel-2 (S2) captured in 2018, 2019, 

2020, and 2021 for various crop types. The SAR data included the vertical and horizontal polarisation 

bands (VH and VV), while the multispectral data comprised nine spectral bands (B2, B4, B5, B6, B7, B8, 

B8A, B11, and B12).  

For each crop type, the SAR data (VH and VV) were processed to calculate the Cross Ratio of the two 

polarizations (VH and VV). The Time Series values were computed by subtracting the VV values from 

the VH values. Similarly, the multispectral data from Sentinel-2 were extracted for each crop type by 

concatenating the spectral bands to create a time series (TS) for that crop. 
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To facilitate supervised learning, the labelled datasets were created by assigning class labels to the extracted 

features. Each crop type was assigned a unique numerical label. For example, for the crop type "corn," a 

label of 1 was assigned. The same labelling process was repeated for other crop types, including "potato" 

(label 2), "summer wheat" (label 3), "summer barley" (label 4), "winter barley" (label 5), and "winter wheat" 

(label 6). The RF algorithm was employed for feature selection using bootstrapping and out-of-bag (OOB) 

evaluation. The labelled datasets, consisting of the extracted features and corresponding class labels, were 

split into training and testing sets using a holdout method. The training set comprised 70% of the data, 

while the remaining 30% was allocated to the testing set. 

The RF used 100 trees, as specified by the nTrees parameter. In the TreeBagger function, the default value 

for the number of nodes in each decision tree of the RF classifier is determined automatically based on 

the data and the number of trees. The TreeBagger function in MATLAB performs the functionality that 

can be achieved by specifying parameters such as MinLeafSize, MaxNumSplits, and NumPredic-

torsToSample in other implementations. The characteristics of the dataset, which include the input fea-

tures and the corresponding class labels, are considered by the TreeBagger function to automatically de-

termine the number of nodes in each decision tree. For each decision tree in the RF model, two-thirds of 

the training data (inbag data) were randomly sampled with replacement to build the tree, while the remain-

ing one-third (out-of-bag data) was used to evaluate the model's performance. This bootstrapping tech-

nique ensured that each tree had a slightly different training set, allowing for ensemble learning and re-

ducing overfitting. 

Once the Random Forest model was trained, it was evaluated using the testing set. The model's perfor-

mance was assessed by measuring its accuracy, which was calculated as the proportion of correctly classi-

fied samples in the testing set. Additionally, the out-of-bag (OOB) error rate was computed to estimate 

the model's performance without the need for a separate validation set. 

3.9. Accuracy Assessment 

In this study, several common metrics were utilised to assess the accuracy of the crop type classification 

results. These metrics provide insights into the performance and agreement between the predicted 

classifications and the ground truth data. The metrics employed include User Accuracy (UA), Producer 

Accuracy (PA), Overall Accuracy (OA), kappa coefficient, and F-score. 

The confusion error matrix, derived from comparing the predicted classifications with the actual crop 

types, serves as the basis for calculating these metrics. User Accuracy (UA) represents the proportion of 

correctly classified pixels for each crop class, indicating the reliability of the model in identifying specific 

crop types. Producer Accuracy (PA) indicates the proportion of correctly classified pixels for a given crop 

class out of all the pixels assigned to that class. Overall Accuracy (OA) provides an assessment of the 

overall correctness of the classification results by considering all crop types. The kappa coefficient is a 

statistical measure of interclass agreement that takes into account the possibility of agreement occurring 

by chance. It evaluates the performance of the classification by comparing the observed agreement with 

the expected agreement, providing a more comprehensive evaluation than OA alone. 

𝑭 = 𝟐𝑿(
𝑷𝑨 × 𝑼𝑨

𝑷𝑨+ 𝑼𝑨
) 

For crop type classification in this study used historical cropland data of year 2018 to 2020 as training 

dataset and year 2021 as validation data. 
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4. Experimental Results 
This section provides a comprehensive overview of the main findings regarding the temporal behaviour, 

phenological metrics, and classification accuracy of different crop types using data from Sentinel-1 and 

Sentinel-2. The results strongly emphasise the crucial role of pre-processing techniques, thorough tem-

poral analysis, and the consideration of time-invariant characteristics for attaining accurate and reliable 

crop monitoring and classification. 

4.1 Sentinel-1 and Sentinel-2 Crop Phenological Metrics 

Phenological metrics are indicators that capture the timing and dynamics of  vegetation growth and 

changes throughout the growing season. Common phenological metrics include the start of  the growing 

season, the end of  the growing season, peak vegetation activity, and the length of  the growing season. In 

this study, six different crops were studied and extracted their start of  the season, end of  the season, and 

peak metrics. For space constraints, the phenological metrics of  potato are reported for both sensors, 

table 4.1 shows the phenological metrics of  potato for Sentinel-1, and Sentinel-2. The remaining crops 

can be found in Annex 7 and 8. 

The results showed that from the phenological metrics extracted from Sentinel-1, the growing season 

starts earlier while the peak metrics are reached later than the phenological metrics extracted from Senti-

nel-2. Additionally, the end of  the season varied depending on crop type. For corn and potato, their season 

ended earlier for Sentinel-1 compared to Sentinel-2 while the season of  winter wheat, winter barley, sum-

mer wheat, and summer barley ended late for Sentinel-1 compared to Sentinel-2. These findings indicate 

that there are differences in the timing of  vegetation growth that can be captured when considering the 

two data sources.  

Table 4.1:Example of  the phenological metrics of  potato, extracted from Sentinel-1, Sentinel-2. 

 
   2018 2019 2020 

POTATO SOS 11-May 30-May 18-May 25-May 

EOS 08-Sep 03-Sep 09-Sep 04-Sep 

Peak ra-

tio 

ratio value -6.5 -7 -7.1 -7 

Date 22-Jul 29-July 04-Aug 30-Jul 
 

 

  

 2018 2019 2020 2021 

POTATO SOS 25-May 02-May 28-May 10-Jun 

EOS 10 Sep 17 Sep 20-Aug 14-Sep 

Peak 

NDVI 

 0.82 0.84 0.83 0.7 

 06-Jul 13-Jul 17-Sep 22-Jul 

 

4.2 Sentinel-1 and Sentinel-2 Calendar Time Feature Space – Analysis 

The study aimed to understand the temporal dynamics of  SAR backscatter and Sentinel-2 Reflectance for 

different crop types in the Province of  Flevoland, Netherlands. The temporal behaviour of  the VV 

backscatter, VH backscatter, and the ratio of  VH and VV backscatter, i.e., the Cross Ratio (CR), are re-

ported since they can provide specific temporal patterns and trend for the considered crop types. In gen-

eral, the CR and the Normalized Difference Vegetation Index (NDVI) offer a more comprehensive de-

piction of  crop seasons compared to relying solely on VV or VH data. Additionally, both CR and NDVI 

demonstrate consistent spatial and temporal stability, making them reliable indicators for understanding 

the temporal behaviour of  crops. Therefore, in this study, the analysis focused on utilising the CR and 

NDVI plots to effectively assess the temporal behaviour of  the crops. 

To examine the behaviour of  the CR and NDVI over time, the temporal behaviour of  crops observed 

from CR and NDVI were compared for the different years with the crop calendar. The results showed 

significant temporal patterns in the CR and NDVI trends. For space constrain, the example reported in 

2021 
Sentinel-1 

Sentinel-2 
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Figure 4.1 shows the median temporal behaviour computed for the crop type “potato” available in the 

considered study area over a span of  four years. Both indices exhibited a consistent pattern of  rising values 

early in the growing season, followed by a progressive decline as the crops approached maturity. Moreover, 

this behaviour aligns with the expected growth and development phases of  crops reported in the crop 

calendar (referring to the table 2.1), characterised by an initial period of  active growth and subsequent 

decline as the plants mature. However, because of  the different climate conditions, one can notice that 

the phenological parameters are slightly different across the different years. Interestingly, the growing sea-

son of  2019 stood out, displaying notably higher values for NDVI, while the highest CR is observed in 

2018 compared to the other three years as can be seen in Figure 4.1. 

Similar results are visible for the remaining crop types reported in Annex 1 up to 5. Specifically, when 

analysing corn, it was observed that it had a high NDVI value in 2020 and 2019, while 2021 had the lowest 

maximum NDVI value among the four years studied. On the other hand, the CR of  corn in 2021 was 

found to have the highest value, while 2019 had the lowest CR value among the four years. For summer 

barley, 2018 and 2019 showed high maximum NDVI values, while 2020 had the lowest maximum NDVI 

value. The CR plot indicated that 2018 and 2021 had the highest CR value, whereas 2020 had the lowest. 

Similarly, for summer wheat, 2018, 2019, and 2021 exhibited high maximum NDVI values, while 2020 

had the lowest. The CR plot showed that 2018 and 2021 had the highest CR value, while 2019 had the 

lowest. In the case of  winter barley, 2019 had a high maximum NDVI value, while 2020 had the lowest. 

The CR plot indicated that 2018 and 2020 had the highest CR value, whereas 2019 and 2021 had the 

lowest. Finally, for winter wheat, 2018, 2019, and 2021 showed high maximum NDVI values, while 2020 

had the lowest. The CR plot showed that 2018 had the highest CR value, while 2021 had the lowest.  

Overall, the observed variations in NDVI and CR values across different years can be attributed to the 

distinctive growth stages and development patterns of  the crops. These insights gained from the analysis 

aid in identifying and distinguishing different phenological metrics of  the crops, providing a deeper un-

derstanding of  their temporal behaviour.  

 

  

(a) (b) 

 
 

(c) (d) 

Figure 4.1:  Example of median temporal profiles for potato samples available in the considered study area computed 
for the years 2018, 2019, 2020, and 2021. The profiles included the following parameters: (a) NDVI, (b) VH 
backscatter (c) CR (VH/VV backscatter ratio), and (d.) VV backscatter. 
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4.3. Sentinel-1 and Sentinel-2 Thermal Time Feature Space – Analysis  

To address weather variability and temporal shifts of crop phenological events across different years, 

thermal time was employed as a parameter to examine crop behaviour and capture time-invariant charac-

teristics. The study focused on six major crop types in the Flevoland region from 2018 to 2021. A line 

plot, including NDVI vs Thermal time and CR vs Thermal time, facilitated consistent comparisons of 

crop dynamics throughout the season, mitigating the influence of weather fluctuations. 

 

The temporal shift of the crop refers to the variation in the timing of crop development and phenological 

events across different years. This shift can be influenced by weather conditions, such as temperature and 

precipitation, which can vary from year to year. When using calendar time, the maximum NDVI values 

are directly associated with specific dates in each year, which can be affected by the temporal shift. This 

means that the occurrence of maximum NDVI may not consistently align with the same stage of crop 

growth in different years. The utilisation of thermal time as a metric resulted in a significant reduction in 

temporal shifts, indicating its effectiveness in providing a consistent measure of crop growth as it can be 

observed on Figure 4.2 and table 4.2. 

 

The results showed that when considering calendar time, the maximum NDVI values observed in differ-

ent years showed a range from 0.70 to 0.84. However, when using thermal time as a reference, the maxi-

mum NDVI values for each year had a slight variation, ranging from 0.82 to 0.84. 

 

(c) (d) 

Figure 4.2:Example of median temporal profile for potato sample available in the considered study area computed 
for the years 2018, 2019, 2020, and 2021. The profiles compare the calendar time vs thermal time across different 
years for Sentinel-1 and Sentinel-2. 

Table 4.2: Maximum median NDVI value observed when calendar time and thermal time used 

Potato 

 Year Max NDVI value obtained from Calendar Time Max NDVI value obtained from Thermal time 

2018 0.82 0.83 

2019 0.84 0.84 

2020 0.83 0.82 

2021 0.7 0.82 

 
 
 

 

 

 

 

 
 

 
 

(a) 

 

(b) 
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4.4 Within Season Crop Type Mapping – Optimal Temporal Window 

In this study, a selective predictor approach using random forest was employed to identify the important 

features for classifying the six crops under investigation. The results revealed that the optimal temporal 

window for effectively classifying these crops spanned from April to August. 

This temporal window coincided with the crop calendar of the Netherlands, where the study was con-

ducted. It was observed that most of the targeted crops started their growth in April and reached their 

maturity and harvesting stages in August. By aligning the temporal window with the phenological stages 

of the crops, the study was able to capture the most discriminative features for accurate classification. 

 

To evaluate the results obtained, the F1-score was used as a performance measure to quantitatively deter-

mine the classification window (April to August). The high F1 scores reflect the models' ability to accu-

rately identify and classify crop types within the selected classification window. This is crucial for applica-

tions such as crop monitoring and land management. which result in the highest classification accuracy 

per crop type. The results demonstrated that the highest accuracy can be achieved in June for Sentinel-2 

data and in July for Sentinel-1 data. This aligns with the understanding that these months coincide with 

the maturity stage of most crops, making them easier to distinguish and classify accurately. The figure 4.3 

shows F1-score on y-axis and time on x-axis in terms of moth for six crops. 

 

The analysis showed a consistent pattern among various crop types. Potato, winter barley, and winter 

wheat demonstrated high F-1 scores (above 0.60) as early as April when both Sentinel-1 and Sentinel-2 

data were used. On the other hand, Corn, summer barley, and summer wheat showed a clear identification 

pattern in June for both sensors, with their F1 scores exceeding 0.50. 

Moreover, the study found that Potato and winter wheat consistently exhibited excellent classification 

performance across all years and for both sensors. Additionally, the F1 scores remained stable and con-

sistent from July to August for all crop types for both sensors, as shown in Figure 4.3. This suggests that 

during this period, the classification models consistently and accurately identified and classified the differ-

ent crops. Figure 4.3 shows the F1 score trend for different crops in different years within selected win-

dow. 

 

 

 
 

SENTINEL 1 SENTINEL 2 
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Figure 4.3: F1 scores results obtained per crop type throughout the year when considering different temporal 
windows. The results are computed using the RF classifier in 2018, 2019, 2020, and 202. 

4.5. Inter-annual Crop Type Mapping  

In this phase of the study, the inter-annual variation of crop types was examined in the Flevoland region 

of the Netherlands, comparing the classification results obtained with the calendar time to one achieved 

when considering the thermal time. The objective was to compare the performance of classification mod-

els when weather data were considered and when they were not considered. For each year individually, 

the data was divided into a training set comprising 70% of the data and a testing set consisting of the 

remaining 30%. This process was followed separately for both Sentinel-1 and Sentinel-2 data to assess the 

classification accuracy for each sensor. 

 



WITHIN-SEASON CROP TYPE MAPPING BASED ON THE TIME SERIES OF SENTINEL-1, SENTINEL-2, WEATHER, AND HISTORICAL CROPLAND DATA 

26 
 

4.5.1 Temporal Dynamics of Crop Classification 

The experimental results reported in this section analyse the classification results obtained for different 

crop types when training the model in 2018 and classifying data from subsequent years (2019, 2020, and 

2021). The results are represented as a graph bar which displays the F1 scores obtained for each crop type 

in the different years. The aim of this experiment was to check the effect of using historical crop land data 

to train targeted year. 

In order to perceive the temporal dynamics of crop phenological events, analysis was conducted. A two-

step procedure was used in the experiment, which aimed to understand how crops change through time. 

Initially, the data from the previous year were used as the training dataset to develop and refine the pre-

dictive model. Subsequently, the data from the target year were used to evaluate the efficacy of the model. 

The findings revealed that as the target year progressed further away from the training data, it was ob-

served that the crop classification model's accuracy progressively decreased. In other words, when at-

tempting to predict crop types for a specific year based on historical data from a previous year, the model's 

effectiveness decreased as the distance between the training and target years increased. 

This finding emphasizes the importance of taking into consideration temporal variations in crop phenol-

ogy when designing predictive models, as their performance may vary over time. The decreasing accuracy 

observed in the bar graph serves as an indicator of the challenges faced when using the previous year's 

data as the training dataset and the target years' data as the testing dataset. It highlights the importance of 

considering the dynamic nature of crop growth and phenology over time. The figure 4.4 shows an example 

where the training data collected in the year 2018 were used to train the classification algorithm while the 

data available in 2019, 2020, and 2021 were used as test set. 

 

 

 

 

Figure 4.4:Impact of Temporal Shifts on Crop Type Classification Accuracy Over the year 2018-2021 
together with weather data across the same time. 
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4.5.2 Comparison of calendar time and Thermal Time Feature Space 

 

In the study carried out in the Flevoland province, an analysis of the classification results obtained through 

two different approaches was done. The objective was to determine how taking thermal time into account 

affected both inter-annual and intra-annual changes in crop behaviour. The figure 4.5 and 4.6 show intra- 

annual classification when calendar time is considered and when thermal time is considered. By comparing 

the classification results between the two approaches, the observed results, indicating a greater impact of 

considering thermal time on inter-annual rather than intra-annual variation of crop behaviour (figure 4.5 

and 4.6), can be attributed to several factors specific to the study conducted in the province of Flevoland.  

Interannual variation refers to the differences in crop behaviour and growth patterns observed between 

different years. In Flevoland, various factors such as weather conditions, crop rotation practices, and land 

management strategies contribute to these interannual variations. By incorporating thermal time, which 

considers temperature-related growth and development of crops, the classification model becomes more 

sensitive to these interannual variations. This enables the model to capture and utilise the specific temporal 

patterns associated with different years, leading to improved classification results. 

On the other hand, intra-annual variation refers to the changes and fluctuations in crop behaviour within 

a single year. In Flevoland, the presence of a well-structured agricultural system, including crop rotation 

and irrigation practices, can help maintain relatively stable growth patterns and phenological stages of 

crops throughout the year. As a result, the impact of considering thermal time on capturing intra-annual 

variations may be less pronounced, as the growth patterns and phenological stages within a single year are 

relatively consistent. Furthermore, the unique characteristics of the province of Flevoland, such as its 

fertile soil, flat landscape, and advanced agricultural practices, contribute to the overall stability and pre-

dictability of crop behaviour. This stability within a year further reduces the potential impact of thermal 

time on intra-annual variations. 

Overall, the study conducted in the province of Flevoland demonstrates that considering thermal time 

can have a significant effect on capturing interannual variations in crop behaviour. which will be further 

analysed and discussed in the next section of the study. 

 

Figure 4.5: The Impact of Thermal Time on Inter-annual Variation of Crop Types for Sentinel-1 
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Figure 4.6: The Impact of Thermal Time on Inter-annual Variation of Crop Types for Sentinel-2 

4.6 Within Season Crop Type Mapping using Historical Data  

This study compared the performance of classification models using calendar time and thermal time ap-

proaches. Training was done using data from 2018, 2019, and 2020, and validation was performed using 

data of 2021. The classification performance was evaluated using the confusion matrix.  

4.6.1 Calendar Time Feature Space 

The study compared the performance of the classification model with calendar time. Three experiments 

were conducted: (1) using Sentinel-1 data, (2) using Sentinel-2 data, and (3) using combined Sentinel-1 and 

Sentinel-2 data.  

Sentinel 1-Data 

The classification model achieved an overall accuracy of 0.8 and a kappa score of 0.77. The F1 scores 

varied across different crop classes, with the highest scores observed for potato (0.89) and winter wheat 

(0.90). Summer wheat (0.34) and summer barley (0.31) had lower F1 scores. Error omission rates ranged 

from 0.11 for winter wheat to 0.66 for summer wheat. Producer accuracy was highest for potato (0.85) 

and winter wheat (0.89), while summer wheat (0.34) and summer barley (0.37) had lower producer accu-

racy. Error commission rates varied from 0.08 for winter wheat to 0.80 for summer barley. User accuracy 

was highest for winter wheat (0.92) and potato (0.89), while summer barley (0.20) had the lowest user 

accuracy. The results are interpreted in the table 4.3. 

Table 4.3: the confusion matrix results of Sentinel-1 without considering the thermal time. 

 
Corn Potato SW SB WB WW Total UA F1_score 

Corn 134 46 2 1 5 2 190 0.72 0.72 

potato 35 879 9 71 1 5 1000 0.89 0.89 

Summer wheat 7 28 41 35 2 12 125 0.33 0.34 

Summer barley 0 15 41 44 2 3 105 0.20 0.31 

Winter barley 1 2 0 2 40 36 81 0.75 0.58 

Winter wheat 4 16 26 24 7 623 700 0.92 0.90 

Total 181 986 119 177 57 681 2201  

Producer Accuracy 0.71 0.85 0.34 0.37 0.53 0.89 
 

 

Overall Accuracy 0.8  

Overall kappa score 0.77  
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Sentinel-2 Data 

When using only Sentinel-2 data, the classification model achieved an overall accuracy of 0.64 and a kappa 

score of 0.58. The F1 scores for different crop classes were relatively lower compared to the Sentinel-1 

experiment. The highest F1 scores were observed for potato (0.68) and winter wheat (0.78), while summer 

wheat (0.22) and summer barley (0.30) had lower scores. Error omission rates ranged from 0.18 for winter 

wheat to 0.84 for summer wheat. Producer accuracy was highest for corn (0.75) and potato (0.62), while 

summer wheat (0.16) and summer barley (0.26) had lower producer accuracy. Error commission rates 

varied from 0.16 for potato to 0.71 for summer wheat. User accuracy was highest for potato (0.75) and 

winter wheat (0.78), while summer barley (0.34) had the lowest user accuracy, As it can be seen from the 

table 4.4.  

Table 4.4: confusion matrix results of Sentinel-2 without considering the thermal time. 

  Corn Potato SW SB WB WW Total UA F1_score 

Corn 712 136 11 5 41 45 950 0.34 0.47 

potato 1284 3117 44 33 47 475 5000 0.75 0.68 

Summer wheat 15 342 102 40 6 120 625 0.34 0.22 

Summer barley 15 222 58 138 8 84 525 0.34 0.30 

Winter barley 8 17 1 3 72 304 405 0.35 0.24 

Winter wheat 43 289 94 173 31 2870 3500 0.73 0.78 

Total 2077 4123 310 392 205 3898 11005 
 

 

Producer Accuracy 0.75 0.62 0.16 0.26 0.17 0.82    

Overall Accuracy 0.64 

Overall kappa score         0.58  

 

Combined Sentinel-1 and Sentinel-2 Data 

Combining Sentinel-1 and Sentinel-2 data resulted in an overall accuracy of 0.7 and a kappa score of 0.65. 

The F1 scores showed improvements compared to the Sentinel 2 experiment, with higher scores observed 

for all crop classes. The highest F1 scores were observed for potato (0.78) and winter wheat (0.81), while 

summer wheat (0.28) and summer barley (0.34) had lower scores. Error omission rates ranged from 0.18 

for winter wheat to 0.75 for summer barley. Producer accuracy was highest for potato (0.87) and winter 

wheat (0.82), while summer wheat (0.26) and summer barley (0.32) had lower producer accuracy. Error 

commission rates varied from 0.13 for potato to 0.67 for summer wheat. User accuracy was highest for 

potato (0.87) and winter wheat (0.80), while summer barley (0.39) had the lowest user accuracy. The de-

tailed result is illustrated in the table 4.5. 

Table 4.5: the confusion matrix results of the combination of Sentinel-1n and Sentinel-2 without considering the 
thermal time. 

  Corn Potato SW SB WB WW Total UA F1_score 

Corn 1232 336 18 7 64 53 1710 0.42 0.53 

potato 1617 6671 73 77 67 495 9000 0.81 0.78 

Summer wheat 33 506 297 125 10 154 1125 0.33 0.28 

Summer barley 21 323 181 302 14 104 945 0.39 0.34 

Winter barley 14 22 8 9 180 496 729 0.45 0.31 

Winter wheat 77 381 332 296 64 5150 6300 0.80 0.81 

Total 2994 8239 909 816 399 6452 19809  

Producer Accuracy 0.73 0.75 0.26 0.32 0.25 0.82    

Overall Accuracy  0.7 

Overall kappa score 0.65 
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Thermal-Time Feature Space 

The study also considered the impact of time-invariant factors on the classification model. Similar to the 

previous section, three experiments were conducted: (1) using Sentinel-1 data, (2) using Sentinel-2 data, 

and (3) using combined Sentinel-1 and Sentinel-2 data. 

Sentinel-1 Data 

When incorporating time-invariant information with Sentinel-1 data, the classification model achieved an 

overall accuracy of 0.81 and a kappa score of 0.78. The F1 scores showed improvements compared to the 

classification without time-invariant information, with higher scores observed for corn (0.67) and potato 

(0.92). Error omission rates ranged from 0.07 for potato to 0.86 for summer barley. Producer accuracy 

was highest for potato (0.93) and winter wheat (0.88), while summer barley (0.14) had the lowest producer 

accuracy. Error commission rates varied from 0.09 for potato to 0.79 for summer barley. User accuracy 

was highest for corn (0.87) and potato (0.91), while summer barley (0.21) had the lowest user accuracy. 

Table 4.6: the confusion matrix results of Sentinel-1 with considering the thermal time. 

  Corn Potato SW SB WB WW Total UA F1_score 

Corn 106 69 6 5 2 2 190 0.87 0.67 

potato 12 926 12 38 0 12 1000 0.91 0.92 

Summer wheat 3 3 46 5 0 68 125 0.42 0.39 

Summer barley 1 3 32 22 4 43 105 0.21 0.24 

Winter barley 0 4 0 0 65 12 81 0.50 0.64 

Winter wheat 3 8 14 6 51 618 700 0.83 0.85 

Total 125 1013 110 76 122 755 2201    

Producer Accuracy 0.54 0.93 0.39 0.14 0.81 0.88    

Overall Accuracy  0.81  

Overall kappa score 0.69  

 

Sentinel 2 Data 

Incorporating time-invariant information with Sentinel 2 data resulted in an overall accuracy of 0.73 and 

a kappa score of 0.69. The F1 scores were generally higher compared to the classification without time-

invariant information. The highest F1 scores were observed for potato (0.85) and winter wheat (0.78), 

while summer wheat (0.26) and summer barley (0.19) had lower scores. Error omission rates ranged from 

0.16 for potato to 0.87 for summer barley. Producer accuracy was highest for potato (0.84) and winter 

wheat (0.77), while summer barley (0.13) had the lowest producer accuracy. Error commission rates varied 

from 0.16 for potato to 0.67 for summer barley. User accuracy was highest for potato (0.84) and winter 

wheat (0.78), while summer barley (0.33) had the lowest user accuracy. 

Table 4.7: the confusion matrix results of Sentinel-2 with considering the thermal time. 

  Corn Potato SW SB WB WW Total UA F1_score 

Corn 619 300 7 3 7 14 950 0.62 0.63 

potato 328 4251 190 59 23 149 5000 0.84 0.85 

Summer wheat 13 146 142 52 25 247 625 0.29 0.26 

Summer barley 11 136 63 69 45 201 525 0.33 0.19 

Winter barley 6 22 0 1 269 107 405 0.31 0.43 

Winter wheat 28 191 59 21 479 2722 3500 0.78 0.82 

Total 1005 5046 461 205 848 3440 11005    

Producer Accuracy 0.68 0.84 0.22 0.13 0.67 0.77    

Overall Accuracy 0.73  

Kappa score 0.66  
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Combined Sentinel-1 and Sentinel-2 Data 

Combining Sentinel-1 and Sentinel-2 data with time-invariant information yielded an overall accuracy of 

0.77 and a kappa score of 0.73. The F1 scores showed improvements compared to the Sentinel 2 experi-

ment. The highest F1 scores were observed for potato (0.88) and winter wheat (0.82), while summer wheat 

(0.3) and summer barley (0.31) had lower scores. Error omission rates ranged from 0.13 for potato to 0.75 

for summer barley. Producer accuracy was highest for potato (0.87) and winter wheat (0.82), while summer 

barley (0.25) had the lowest producer accuracy. Error commission rates varied from 0.13 for potato to 

0.63 for summer barley. User accuracy was highest for potato (0.87) and winter wheat (0.82), while sum-

mer barley (0.39) had the lowest user accuracy. 

Table 4.8: the confusion matrix results from the combination of Sentinel-1n and Sentinel-2 by considering the 
thermal time. 

  Corn Potato SW SB WB WW Total UA F1-score 

Corn 1124 528 17 6 15 20 1710 0.65 0.66 

potato 463 7928 250 108 45 206 9000 0.87 0.88 

Summer wheat 19 209 291 172 34 400 1125 0.35 0.30 

Summer barley 17 168 152 242 64 302 945 0.39 0.31 

Winter barley 15 26 3 2 494 189 729 0.37 0.48 

Winter wheat 66 260 113 80 672 5109 6300 0.82 0.82 

Total 1704 9119 826 610 1324 6226 19809    

Producer Accuracy 0.66 0.87 0.26 0.25 0.67 0.82     

Overall Accuracy 0.77  

Kappa score 0.73  
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5. Discussion 
5.1 Sentinel-1 and Sentinel-2 Crop Phenological Metrics 

When analysing the phenological metrics extracted from Sentinel-1 data, it was observed that the season 

starts earlier compared to the phenological metrics extracted from Sentinel-2 data. This differences in 

season start dates between Sentinel-1 and Sentinel-2 can be attributed to the differences in the capabilities 

and characteristics of the two satellite sensors. This results align with the study conducted by Mercier et 

al.(2020) where they confirmed the differences in the capabilities and characteristics of the two satellite 

sensors, Sentinel-1 and Sentinel-2.  

The earlier start dates observed in the phenological metrics derived from Sentinel-1 data can be attributed 

to its ability to detect changes in surface conditions even under cloudy or unfavourable weather conditions. 

The studies conducted by Meroni et al.(2021); Schlund & Erasmi.(2020) confirm the capability of Sentinel-

1 to detect changes in surface conditions even when faced with cloudy or unfavorable weather conditions. 

These findings emphasise the advantage of Sentinel-1's all-weather imaging capabilities, allowing for reli-

able monitoring and analysis of surface changes regardless of atmospheric conditions. This allows for the 

identification of early signs of vegetation growth or changes in land cover, which may not be captured by 

Sentinel-2 during cloudy periods. On the other hand, Sentinel-2 is an optical satellite operating in the 

electromagnetic spectrum's visible and near-infrared regions. It relies on sunlight to capture images and is 

affected by cloud cover, limiting its observation capabilities during cloudy periods. 

The influence of weather parameters, specifically temperature, and precipitation, on the inter-annual 

variations of estimated phenology is visible in the presented experimental results. The warmer conditions 

observed in 2018 and 2019 likely contributed to the earlier detection of phenological phases for different 

crops. The increased temperatures can accelerate the developmental processes, leading to an advance in 

phenological stages d’Andrimont et al.(2020) have reported similar observations, affirming that elevated 

temperatures facilitate crop development. Their studies reveal that higher temperatures enhance the 

progression of phenological stages, including flowering, fruiting, and maturation, in various crop types. 

These findings align with this study’s results, highlighting the consistent impact of increased temperatures 

on crop phenology. 

Conversely, the wet conditions experienced in 2020 and 2021 may have caused delays in reaching the 

phenology phases. Excessive moisture can result in a slower progression of phenological events. These 

findings agree with the research conducted by Schlund & Erasmi. (2020) who observed temporal varia-

bility in wheat phenology across 2017, 2018, and 2019.  

In addition to the earlier start dates observed in phenological metrics extracted from Sentinel-1 data, the 

results also indicate that the peak metrics were reached later compared to those extracted from Sentinel-

2 data. Moreover, the end of the season varied depending on the crop type, with differences between 

Sentinel-1 and Sentinel-2. The later peak metrics observed in Sentinel-1 data can be attributed to the 

different characteristics and capabilities of the two satellite sensors. Sentinel-1 provides information based 

on the backscattered SAR signal, which is influenced by vegetation structure and water content. This signal 

can be affected by factors such as vegetation density (Gao et al., 2017), biomass (Wang et al., 2019), and 

moisture content (Veloso et al., 2017b; Wang et al., 2019), which may cause a delay in reaching peak 

metrics compared to optical sensors like Sentinel-2. 

Regarding the end of the season, the variations observed between Sentinel-1 and Sentinel-2 data for dif-

ferent crop types can be attributed to the specific growth and senescence patterns of each crop. Factors 

such as crop genetics, management practices, and environmental conditions can influence the duration of 

the growing season as mentioned by Ettinger et al.(2020) and Y. Gao et al.(2022). For instance, in the case 

of corn and potato, the season ended earlier in Sentinel-1 compared to Sentinel-2. This could be due to 

the SAR signal capturing changes in vegetation structure and water content associated with crop maturity 

and senescence earlier than the optical signal captured by Sentinel-2.  
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These findings emphasise the importance of considering multiple data sources to capture the full range of 

vegetation dynamics and highlight the potential of Sentinel-1 for detecting early signs of growth and 

changes in vegetation structure. 

5.2 Sentinel-1 and Sentinel-2 Calendar Time Feature Space 

The analysis of SAR backscatter (CR) and spectral reflectance (NDVI) from Sentinel-1 and Sentinel-2 

data, respectively, revealed distinct patterns and trends for different crop types in the study area. The 

variations in both NDVI and CR plots provided insights into the growth dynamics, phenological changes, 

and scattering properties of each crop across the different years.  

Winter barley exhibited high CR values in 2020 and 2018, indicating a dense vegetation structure possibly 

due to favorable weather conditions earlier in the growing season. In contrast, low CR values were ob-

served in 2019 and 2021, suggesting reduced vegetation activity influenced by weather conditions such as 

below-average precipitation or excessive rainfall. High NDVI in 2018 shows that Winter Barley might 

have benefited from earlier precipitation or favorable conditions during critical growth stages. These con-

ditions could have led to healthier and more vigorous growth, reflected in higher NDVI values. This 

disparity can be attributed to the fact that NDVI is primarily influenced by the amount of chlorophyll and 

overall greenness of the vegetation, whereas CR is more sensitive to structural characteristics such as crop 

density and compactness. In 2019, despite the lower structural density indicated by the CR values, winter 

barley might have exhibited higher chlorophyll content or greener leaves, resulting in higher NDVI values. 

Corn showed high NDVI in 2019, indicating healthier and more vigorous growth due to favorable weather 

conditions. In 2021, cooler temperatures and excessive rainfall resulted in lower NDVI values, indicating 

reduced vegetation activity. However, despite the low NDVI in 2021, corn exhibited high CR values, 

suggesting a dense vegetation structure. This disparity could be related to factors like crop density or leaf 

orientation, indicating a different scattering behaviour of the vegetation. Potato displayed high NDVI 

values in 2018, 2019, and 2020, indicating healthy vegetation and vigorous growth. In 2021, lower NDVI 

values indicated reduced vegetation vigour, possibly due to factors like excessive rainfall or cooler tem-

peratures. The highest CR value in 2018 indicated a denser vegetation structure compared to subsequent 

years. Subsequent years showed lower CR values, suggesting a decrease in biomass accumulation and 

structural density. 

In 2018, winter wheat exhibited high CR and NDVI values, potentially because of favorable early-season 

rainfall and optimal temperature during critical growth stages. These conditions may have compensated 

for the subsequent dry period, promoting optimal growth, biomass accumulation, and a dense vegetation 

structure, leading to high CR values. Despite the low precipitation in June and July, winter wheat still 

showed high NDVI values. This could be attributed to favorable conditions earlier in the growing season 

or during critical growth stages, potentially increasing chlorophyll content and improving overall vegeta-

tion health, resulting in higher NDVI values. 

Summer wheat showed high NDVI in 2018, 2019, and 2021. Despite the low precipitation observed in 

June and July of 2018, Summer Wheat showed high NDVI values in that year. This could be attributed to 

favorable weather conditions during other parts of the growing season, including early-season rainfall or 

suitable temperatures that promoted healthy growth and chlorophyll production in the crop. In 2019 and 

2021, with higher precipitation compared to 2018, Summer Wheat likely benefited from improved water 

availability throughout its growth stages, leading to higher NDVI values in those years. The high CR values 

observed in 2018 and 2021 can be linked to the structural characteristics and biomass accumulation pat-

terns of Summer Wheat (Mandal et al., 2020). In 2018, despite the low precipitation in June and July, 

Summer Wheat might have exhibited resilience to water stress or benefited from favourable weather con-

ditions earlier in the growing season. These factors could have contributed to denser vegetation and higher 

biomass, reflected in the high CR values. Similarly, in 2021, with higher overall precipitation, Summer 

Wheat might have experienced robust growth and dense vegetation, leading to elevated CR values. Sum-

mer Barley exhibited high NDVI values in both 2018 and 2019, despite the low precipitation during June 

and July. This can be attributed to several factors. Firstly, sufficient rainfall in the early stages of the 
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growing season likely promoted healthy growth and chlorophyll production, leading to elevated NDVI 

values. Additionally, favorable temperature conditions during critical growth stages may have contributed 

to enhanced photosynthetic activity and higher NDVI values in Summer Barley. Regarding the high CR 

values observed in 2018 and 2021, they can be linked to the structural characteristics and biomass accu-

mulation patterns of Summer Barley. Despite the low precipitation during June and July, other factors 

influenced the vegetation structure and biomass, resulting in high CR values. These factors include earlier 

precipitation, which provided beneficial soil moisture conditions before the dry period, leading to denser 

vegetation and higher biomass reflected in the high CR values. Moreover, favorable temperature and light 

conditions during critical growth stages further contributed to the development of a compact and dense 

vegetation structure, supporting the high CR values. Studies conducted by Mandal et al.(2020) have iden-

tified similar patterns, demonstrating that the denser vegetation structure and higher biomass content 

contribute to a more pronounced response to remote sensing data, resulting in elevated CR values. 

The variations in CR and NDVI values across different years revealed the influence of weather conditions 

on these parameters. By considering factors such as precipitation, and temperature we gained a deeper 

understanding of the relationships between weather patterns and the observed CR and NDVI trends. 

These findings enhance our knowledge of the complex interactions between crop growth, environmental 

factors, and remote sensing indicators, contributing to the broader agricultural monitoring and manage-

ment field. 

5.3 Sentinel-1 and Sentinel-2 Thermal Time Feature Space 

When using calendar time, the maximum NDVI values varied across the years, ranging from 0.70 to 0.84. 

On the other hand, when using thermal time, the maximum NDVI values for each year were slightly 

different, ranging from 0.82 to 0.84. 

The observed differences in the maximum NDVI values between calendar time and thermal time indicate 

a reduction in a temporal shift of crop phenological events when thermal time is considered. Temporal 

shift refers to the variation in crop development stages due to weather conditions and temperature fluc-

tuations across different years. By incorporating thermal time, which normalises the effect of temperature, 

the influence of temporal shifts is minimized. Thermal time allows for a more standardized comparison 

of crop dynamics throughout the season by aligning the growth stages of crops based on accumulated 

temperature. It reduces the impact of weather variability on crop development, making it easier to identify 

consistent patterns and relationships between NDVI and crop behaviour. Therefore, when comparing the 

maximum NDVI values obtained from calendar time and thermal time, the smaller variation in NDVI 

values obtained from the thermal time suggests a reduced temporal shift. This indicates that the use of 

thermal time helps to capture the underlying growth patterns and time-invariant characteristics of the 

crops, providing a more reliable measure of crop growth across different years. 

These findings align with previous research conducted by Nyborg et al., (2022) and Parent et al., (2019) 

emphasising the significance of using thermal time to minimize the effects of weather variability in time 

series data. Thermal time as a parameter has the potential to reduce the impact of temporal shifts caused 

by weather conditions, making it a valuable tool for crop type mapping. The integration of thermal time 

as a parameter and the alignment of thermal time values across different years demonstrated their effec-

tiveness in addressing weather variability and temporal shifts in crop dynamics. The refined feature space 

resulting from this approach provided a solid foundation for analysing and interpreting crop behaviour, 

enabling more reliable insights into the relationship between thermal time, crop growth, and phenological 

development. Continued research in this area will contribute to the advancement of within-season crop 

type mapping and enhance our understanding of the role of thermal time in minimizing temporal shifts 

caused by weather conditions. 

The incorporation of thermal time, derived from external weather data, alongside Sentinel-1 and Sentinel-

2 data significantly improved the analysis of crop behaviour. While both sensors provided valuable in-

sights, the enhancement was more pronounced in the case of Sentinel-2 data. Moreover, the presence of 

missing data in the Sentinel-2 dataset necessitated interpolation, which introduced a temporal shift among 
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years. However, the inclusion of thermal time effectively reduced this temporal shift, resulting in a more 

accurate representation of inter-annual variations. This finding underscores the significance of incorpo-

rating temperature information and highlights the potential of integrating different data sources to mitigate 

data gaps and optimize crop monitoring studies. However, to further validate the robustness of thermal 

time, additional studies should be conducted across a wider range of crop types and longer time periods. 

This expanded scope would refine the methodology and assess the usability of thermal time as a parameter 

in reducing temporal shifts in crop type mapping. Further research will provide a more comprehensive 

understanding of the applicability and limitations of thermal time as a tool for crop monitoring and map-

ping. 

5.4 Within Season Crop Type Mapping - Optimal Temporal Window  

The analysis aimed to determine the optimal temporal window for effectively capturing the essential phe-

nological stages of different crop types in Flevoland, Netherlands. The results, evaluated using the F1-

score as a performance measure, provided valuable insights into the classification accuracy within the 

selected classification window (April to August). 

As expected, the highest model performances occurred in June for both Sentinel-1 data and Sentinel-2 

data. This is in line with the crop calendar of the considered crop types whereby most crop reach their 

peak metrics in this time. Indeed, these findings agree with the well-established understanding that these 

months correspond to the maturity stage of the considered crop types, facilitating their accurate distinction 

and classification (Kamilaris & Prenafeta-Boldú, 2018). These results demonstrate that for the considered 

crop types it is possible to perform in-season crop type mapping, thus enabling production of crop type 

maps before the end of the calendar year. Providing timely and accurate information about the crop types 

present in the scene is extremely important for various stakeholders such as farmers, agronomists, policy-

makers, and researchers. By analysing the results obtained in detail, one can notice that potato, winter 

barley, and winter wheat showed early discernibility as early as April, compared to other crops. This early 

identification was evident in both Sentinel-1 and Sentinel-2 data due to the presence of distinctive spectral 

characteristics and growth patterns.  Indeed, their phenological metrics showed that their starting seasons 

start earlier than the remaining crop (Annex7 and 8), which enables the identification of these crops at an 

earlier stage. This finding corroborates previous studies that have emphasized the unique phenological 

behaviour and spectral responses exhibited by these crops as stated by Mercier et al.(2020) and Veloso et 

al.(2017). 

Conversely, corn, summer barley, and summer wheat displayed a more distinct identification pattern in 

June for both sensors, indicating that their phenological stages and spectral characteristics become more 

pronounced and distinguishable during this period. Crop rotation practices can influence the growth pat-

terns and phenological stages of crops. As a result, these crops may exhibit unique spectral signatures that 

remain consistent over time. The consistent and reliable classification performance of certain crops, such 

as potato and winter wheat, across all years and data from both Sentinel-1 and Sentinel-2, suggests that 

their growth patterns resulting from crop rotation practices contribute to their distinguishable spectral 

signatures. These crops have specific characteristics and growth behaviours that make them easily distin-

guishable from other crop types, regardless of variations in environmental conditions, imaging sensors, or 

different years of observation. The results are aligned with existing knowledge regarding these crops' spec-

tral separability and unique phenological behaviour conducted by Veloso et al.(2017). 

In summary, crop rotation can introduce variations in phenology and growth patterns, which can affect 

the spectral signatures of crops. While certain crops like winter wheat may exhibit more stable character-

istics across years, other crops like corn and summer barley may experience more variability due to their 

similar phenology and the influence of crop rotation. By considering these approaches, future studies can 

explore the potential of crop rotation as a strategy to mitigate phenological variation and improve classi-

fication accuracy. It is important to conduct systematic investigations and evaluate the effectiveness of 

different strategies of how incorporating crop rotation in different agricultural contexts to further refine 

and optimize crop classification methodologies. 
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Moreover, incorporating ground-based observations or field measurements to validate derived phenolog-

ical metrics would bolster the accuracy and applicability of within-season crop-type mapping. Additionally, 

integrating comprehensive weather data, including soil moisture, and cropping patterns, would provide 

valuable insights into the intricate relationship between crop growth dynamics and weather conditions. 

Furthermore, the influence of cover crops specifically was not addressed, it is important to consider their 

presence and potential impact on the spectral response of agricultural fields. Cover crops are commonly 

used in the Netherlands after harvesting to protect and improve the soil, enhance sustainability, and pro-

vide additional ecosystem services. Integrating cover crop information into future studies could help as-

sess its influence on classification accuracy and improve our understanding of the agricultural landscape's 

temporal behaviour. This would contribute to more comprehensive crop monitoring and management 

practices. 

5.5 Inter-annual Crop Type Mapping  

The observed decrease in F1 score can be attributed to the interannual variability in crop growth patterns, 

which are influenced by various factors such as weather conditions and land management practices. This 

agrees with previous studies conducted by (Cai et al., 2018), which highlight the impact of temporal shifts 

on classification model performance when transitioning from one year to another. 

Weather conditions, including temperature, and precipitation, play a significant role in crop growth and 

phenological development. Variations in weather patterns across different years can lead to differences in 

crop characteristics, such as growth rates, leaf structure, and water stress responses. These variations sub-

sequently affect the spectral signatures captured by Sentinel-1 and Sentinel-2 sensors, impacting the accu-

racy of crop classification results. Given the time constraints of this study, conducting field visits to pre-

cisely understand the causes of these variations was not feasible. However, our findings provide a foun-

dation for identifying the existence of variations in model performance as we transition from one year to 

another. To enhance model performance and classification accuracy, future studies should prioritise in-

vestigating the underlying causes of changes in crop characteristics during the transition between years. 

This understanding will allow for the exploration of methods to incorporate these changes into the model 

effectively. 

Overall, acknowledging the influence of temporal shifts and interannual variability in crop behaviour is 

crucial for improving the reliability and applicability of crop classification techniques, ultimately enhancing 

our ability to monitor and manage agricultural systems effectively. 

5.6 Within Season Crop Type Mapping using Historical Data  

The results of the classification experiments carried out considering the calendar time representation re-

vealed varying model performances across different data sources. Using Sentinel-1 data, the model 

achieved a higher overall accuracy and kappa score compared to Sentinel-2 data. However, the F1-scores 

were generally lower for most crop classes. Combining both Sentinel 1 and Sentinel 2 data improved the 

overall accuracy and F1 scores compared to the individual data sources. This suggests that the combina-

tion of multiple data sources can provide complementary information for crop classification. 

When considering the time-invariant feature space (i.e., thermal time), the model's performance improved 

compared to ones obtained with the calendar time. The incorporation of time-invariant information led 

to higher OA of 1%, 11% and 7% when using only Sentinel-1, Sentinel-2 and the combination of Sentinel-

1 and Sentinel-2. The F1-scores also showed improvements for most crop classes, indicating better clas-

sification performance. This highlights the importance of including time-invariant features in crop classi-

fication models. 
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Among the crop classes, potato consistently exhibited high F1 scores, indicating that it was easier to clas-

sify accurately. Winter wheat also achieved relatively high F1 scores in all experiments. On the other hand, 

summer wheat and summer barley consistently had lower F1-scores, suggesting challenges in accurately 

distinguishing these classes. This lower accuracy could be attributed to the inconsistent sample size avail-

able for these two crops. This observation is in line with findings from previous studies, whereby Kamilaris 

& Prenafeta-Boldú.(2018) in their study also reported that the inadequate sample size for certain crop 

classes can negatively impact the classification accuracy of remote sensing-based crop mapping. Unlike 

other crops, summer wheat and summer barley had a smaller number of samples, which might have af-

fected the overall precision of the results. Results demonstrate the benefits of incorporating time-invariant 

factors and combining multiple data sources for crop classification. The findings can inform the develop-

ment of more accurate and robust crop classification models, facilitating agricultural monitoring and man-

agement. 

Another significant finding was related to the impact of thermal time on the performance of Sentinel-1 

and Sentinel-2. When the thermal time was applied, Sentinel-1 showed less improvement compared to 

Sentinel-2. This could be attributed to the consistent acquisition dates of Sentinel-1, which allowed com-

plete data availability every six days. In contrast, Sentinel-2's acquisition dates were not consistent, requir-

ing interpolation to fill in the gaps. As a result, thermal time exhibited a high positive impact on Sentinel-

2. Furthermore, Sentinel-1 consistently demonstrated higher accuracy compared to Sentinel-2. when Sen-

tinel-1 and Sentinel-2 were combined, the overall accuracy did improve, but Sentinel-1 still maintained a 

higher level of accuracy compared to Sentinel-2. This indicates that Sentinel-1 provided more precise and 

reliable data for crop assessment and monitoring, even after combining it with Sentinel-2. The differences 

observed in model performance can be attributed to the distinctive characteristics of Sentinel 1 and Sen-

tinel 2 data. Sentinel 1 data, based on radar technology, provides valuable information on backscatter 

signals and surface roughness. This information is advantageous for crops with dense canopies or crops 

with distinct SAR signatures. However, it may not capture certain spectral characteristics that are better 

captured by Sentinel 2 data, such as variations in chlorophyll content or leaf structure. This discrepancy 

could explain the lower F1-scores observed for some crop classes in the Sentinel-1 experiment. 

Conversely, Sentinel-2 data comprises multispectral imagery that offers rich spectral information for crop 

classification. The spectral bands in Sentinel-2 data capture reflectance properties related to vegetation 

health, phenology, and moisture content. However, atmospheric conditions, cloud cover, and shadow 

effects can impact the quality and accuracy of classification results. The improved performance observed 

when combining Sentinel-1 and Sentinel-2 data can be attributed to the synergistic effects of integrating 

both SAR and optical information. The combination of these data sources compensates for the limitations 

of each individual dataset and provides a more comprehensive understanding of crop characteristics. Our 

findings align with previous research that emphasizes the benefits of combining SAR and optical data for 

crop classification, the complementary nature of these data sources in capturing different aspects of crop 

properties has been widely recognized. Studies have shown that the integration of SAR and optical infor-

mation can improve classification accuracy and reduce uncertainties associated with using a single data 

source (Hong et al., 2014; Joshi et al., 2016; McNairn et al., 2009; Nasiri et al., 2022). 

To further enhance the classification models, future studies could explore the integration of ancillary data, 

such as high-resolution imagery, additional climate data, and ground-based observations. Furthermore, 

changes in land management practices, such as crop rotation, irrigation techniques, and fertilization, also 

contribute to temporal shifts of crop characteristics. Additionally, it could be better when also these fac-

tors can be considered for future studies instead of considering only thermal time. Furthermore, the utili-

zation of advanced machine learning techniques, such as deep learning algorithms, holds promise for 

improving the accuracy and robustness of crop classification models. By continuously refining these mod-

els, we can contribute to advancing agricultural practices and decision-making processes. 
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5.7. Limitation and Recommendations of the study 

Limitation 

Small sample size: This study acknowledges that among the six crops analysed, there was variation in 

the number of samples available. While some crops had a high number of samples, others had a signifi-

cantly smaller number. This discrepancy in sample size could affect the generalisability of the findings and 

the overall reliability of the results. For a more robust analysis, it would be preferable for the number of 

samples to be nearly equal among the different crops. This would ensure a balanced representation and 

provide a more accurate understanding of the phenological patterns and dynamics across all crops. By 

achieving a more equitable distribution of samples, future studies can enhance the reliability and general-

izability of their findings, enabling more confident conclusions and practical applications. 

Absence of fieldwork: The study highlights that due to time constraints, fieldwork was not feasible, 

which resulted in the absence of direct validation of the remote sensing data and phenological metrics 

with on-ground observations. This limitation has implications for the comprehensiveness and accuracy of 

the study's findings. Field data collection plays a crucial role in providing detailed and context-specific 

information about the crops and their growth stages. By conducting on-site field visits, researchers can 

assess phenological stages, collect ground-based observations, and measure vegetation indices, thus ena-

bling validation and calibration of the remote sensing data. Moreover, field visits would also facilitate a 

deeper understanding of the underlying factors that may contribute to crop dynamics, particularly when 

comparing different years. Factors such as soil conditions, management practices, and localised climate 

variations can be better captured through field observations, leading to a more holistic analysis of crop 

growth patterns and their drivers.  

Recommendations 

Increase sample size: Conducting future studies with a larger sample size would enhance the represent-

ativeness and generalisability of the findings. Including a wider range of crop types and multiple locations 

would provide a more comprehensive understanding of crop dynamics and phenological patterns. By 

increasing the diversity and number of sample sites, researchers can capture a broader range of environ-

mental and agricultural conditions, thereby improving the reliability and applicability of the study's results. 

A larger sample size would also allow for more robust statistical analysis and increase confidence in the 

conclusions drawn. 

Validate with field observations: To improve the reliability of the results, it is recommended to conduct 

fieldwork and collect on-ground observations in conjunction with remote sensing data. Field observations 

can provide direct validation of the remote sensing-based phenological metrics and enhance the accuracy 

of the study. By collecting field observations, such as ground truth measurements, field phenology obser-

vations, and yield data, researchers can compare and validate the remote sensing-derived results. This 

validation process would ensure that the remote sensing data accurately reflects the true state of the crops 

and their phenological stages, providing more confidence in the study's findings. 

Explore additional data integration: While the study integrated Sentinel-1, Sentinel-2, and thermal time 

data, further exploration of additional data sources could provide more comprehensive insights. Consid-

eration of other remote sensing datasets, such as hyperspectral or LiDAR data, could enhance the analysis 

of crop dynamics and improve the accuracy of crop type mapping. Incorporating additional data sources 

can provide a more detailed characterization of crop properties, such as vegetation structure, biochemical 

composition, and canopy density. This richer information can help refine the analysis and improve the 

understanding of crop growth dynamics, leading to more accurate and precise assessments. 

Long-term studies: Conducting long-term studies spanning multiple years would enable a better under-

standing of inter-annual variability and climate impacts on crop phenology. Long-term data analysis would 
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provide valuable insights into the long-term trends and stability of crop growth patterns, allowing for 

more accurate predictions and management strategies. By observing and analysing crop dynamics over 

multiple years, researchers can assess the influence of climate variability and change on crop phenology, 

identify trends, and develop predictive models. Long-term studies would provide a more comprehensive 

understanding of the temporal dynamics of crops, enabling policymakers and agricultural stakeholders to 

make informed decisions and adapt to changing environmental conditions. 
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6. CONCLUSION  

The analysis of Sentinel-1 and Sentinel-2 data in Flevoland, Netherlands has yielded valuable insights into 

the phenological behaviour, growth patterns, and spectral characteristics of different crop types within a 

single season. By integrating SAR backscatter (CR), spectral reflectance (NDVI), and thermal time data, a 

comprehensive understanding of crop dynamics and their relationship with weather conditions has been 

achieved. This study aimed to investigate crop-specific temporal profiles across multiple years, develop an 

effective approach to construct a time-invariant feature space using historical data, crop calendar infor-

mation, and weather data. Moreover, the study intend to determine the optimal temporal window for 

accurate within-season crop type mapping, and compare the performance of integrating Sentinel-1 and 

Sentinel-2 data versus using only SAR or optical features. The findings contribute to advancing remote 

sensing applications in agriculture and provide valuable guidance for future crop monitoring and manage-

ment practices. 

1. What is the crop-specific temporal behaviour recorded by Sentinel-1 and Sentinel-2 in the 

considered study area for different years? 

The analysis of phenological metrics extracted from Sentinel-1 and Sentinel-2 data revealed distinct dif-

ferences in season start dates and peak metrics between the two satellite sensors. Sentinel-1 exhibited 

earlier start dates due to its ability to detect changes in surface conditions under cloudy or unfavourable 

weather conditions. Weather parameters, such as temperature and precipitation, were found to influence 

inter-annual variations of phenology. Warmer conditions resulted in earlier detection of phenological 

phases, while wet conditions caused delays. These findings emphasise the importance of considering mul-

tiple data sources to capture vegetation dynamics fully. Sentinel-1's ability to detect early signs of growth 

and changes in vegetation structure is a valuable asset for crop monitoring and management. 

2. What is the most effective approach for creating a time-invariant feature space using historical 

data, crop calendar information, and weather data to construct a representative training dataset 

for a specific target year? 

The analysis of SAR backscatter (CR) and spectral reflectance (NDVI) from Sentinel-1 and Sentinel-2 

data, respectively, provided valuable insights into the growth dynamics, phenological changes, and scat-

tering properties of different crop types across different years. Weather data played a crucial role in un-

derstanding the variations in CR and NDVI values. For instance, winter barley exhibited high CR values 

in favorable weather conditions, leading to dense vegetation structure, while low CR values were observed 

in unfavourable weather conditions. Similarly, variations in NDVI values were associated with healthier 

and more vigorous growth during favorable weather conditions. These findings highlight the potential of 

combining SAR and optical data for crop monitoring, as both sensors offer unique insights into vegetation 

characteristics. 

3.  Which temporal window can optimally capture the essential phenological stages per crop type 

to generate accurate within season crop type mapping? 

The utilization of thermal time as a parameter and the alignment of thermal time values across different 

years proved effective in mitigating the impact of weather variability and temporal shifts on crop dynamics. 

This approach standardized and compared crop behaviour, leading to a more consistent assessment of 

growth patterns. Thermal time has the potential to reduce the influence of temporal shifts caused by 

weather conditions, making it a valuable tool for crop type mapping. The integration of thermal time 

alongside Sentinel-1 and Sentinel-2 data significantly improved the analysis of crop behavior, particularly 

in the case of Sentinel-2 data. However, further research is needed to validate the robustness of thermal 

time across a wider range of crop types and time periods. 
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4. Does within-season crop type mapping with the integration of Sentinel-1 and Sentinel-2 data 

perform better than utilising only SAR or optical features? 

The analysis of the optimal temporal window for capturing essential phenological stages of different crop 

types in the study area revealed that the highest model performances occurred in June for both Sentinel-

1 and Sentinel-2 data. This aligns with the crop calendar of the considered crop types, where most crops 

reach their peak metrics during this time. This finding allows for the timely and accurate production of 

crop type maps before the end of the calendar year. Furthermore, the early discernibility of certain crops 

such as potato, winter barley, and winter wheat as early as April was evident in both Sentinel-1 and Senti-

nel-2 data. These crops showed distinctive spectral characteristics and growth patterns, enabling their 

identification at an earlier stage. 

In conclusion, the integration of Sentinel-1 and Sentinel-2 data, alongside with weather information, his-

torical cropland data and thermal time, has provided valuable insights into within-season crop type map-

ping in Flevoland, Netherlands. The analysis has enhanced our understanding of crop dynamics, growth 

patterns, and their relationship with environmental factors. The findings underscore the importance of 

considering multiple data sources and weather conditions to capture the full range of vegetation dynamics. 

These insights can inform decision-making processes related to agricultural management, resource alloca-

tion, and crop monitoring, ultimately contributing to more efficient and sustainable agricultural practices. 
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7. APPENDIX 
Annex 1:  Example of  median temporal profiles for Corn samples available in the considered study area 

computed for the years 2018, 2019, 2020, and 2021. The profiles included the following parameters: NDVI, 

VH backscatter CR (VH/VV backscatter ratio), and VV backscatter. 

  

  

 

 

Annex 2:  Example of  median temporal profiles for Summer barley samples available in the considered 

study area computed for the years 2018, 2019, 2020, and 2021. The profiles included the following param-

eters: NDVI, VH backscatter CR (VH/VV backscatter ratio), and VV backscatter. 
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Annex 3:  Example of  median temporal profiles for Summer wheat samples available in the considered 

study area computed for the years 2018, 2019, 2020, and 2021. The profiles included the following param-

eters: NDVI, VH backscatter CR (VH/VV backscatter ratio), and VV backscatter. 

  

  

 

 

Annex 4:  Example of  median temporal profiles for Winter Barley samples available in the considered study 

area computed for the years 2018, 2019, 2020, and 2021. The profiles included the following parameters: 

NDVI, VH backscatter CR (VH/VV backscatter ratio), and VV backscatter. 
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Annex 5:  Example of  median temporal profiles for Winter wheat samples available in the considered study 

area computed for the years 2018, 2019, 2020, and 2021. The profiles included the following parameters: 

NDVI, VH backscatter CR (VH/VV backscatter ratio), and VV backscatter. 

  

  
 

Annex6: Example of  median temporal profile for six crop sample available in the considered study area computed for 

the years 2018, 2019, 2020, and 2021. The profiles compare the calendar time vs thermal time across different years 

for Sentinel-2. 
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Annex6: Example of  median temporal profile for six crop sample available in the considered study area computed for 

the years 2018, 2019, 2020, and 2021. The profiles compare the calendar time vs thermal time across different years 

for Sentinel-1. 

   

   

 

Annex7: Phenological metrics extracted from Sentinel-1 for six crops. 

   2018 2019 2020 2021 

Summer 
wheat 

SOS 11-Apr 24-Apr 18-April 19-Apr 

EOS 28-Jul 04-Aug 03-Sep 16-Sep 

Peak 
CR 

value -5.8 -6.3 -6.00 -5.8 

Date 16-Jun 23-Jun 11-Jul 18-Jul 

 

   2018 2019 2020 2021 

Corn 

SOS 05-May 18-May 30-May 25-May 

EOS 26-Sep 15-Oct 15-Oct 28-Oct 

Peak 
CR 

value -6.5 -6.7 -6.50 -6.3 

Date 28-Jul 04-Aug 22-Aug 17-Aug 

       

   2018 2019 2020 2021 

Summer 
barley 

SOS 05-Apr 12-Apr 12-Apr 19-Apr 

EOS 03-Aug 04-Aug 04-Aug 17-Aug 

Peak 
CR 

value -5.7 -6.29 -6.56 -5.75 

Date 16-Jun 23-Jun 29-Jun 12-Jul 

       

   2018 2019 2020 2021 

Winter bar-
ley 

SOS 24-Mar 17-Feb 13-Mar 02-Mar 

EOS 04-Jul 11-Jul 29-Jul 18-Jul 

Peak 
CR 

value -6.26 -6.5 -6.20 -6.5 

Date 17-May 12-Apr 18-May 01-May 
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   2018 2019 2020 2021 

Winter 
wheat 

SOS 24-Mar 01-Mar 25-Mar 14-Mar 

EOS 04-Jul 05-Jul 23-Jul 23-Aug 

Peak 
CR 

value -5.60 -6.00 5.60 -6 

Date 23-May 12-May 30-May 19-May 

 

Annex 8: Phenological metrics extracted from Sentinel-2 

   2018 2019 2020 2021 

Summer 
Wheat 

SOS   19-April 26-April 04-May 29-April 

  EOS   24-Jul 31-Jul 8-Aug 9-Aug 

  
Peak 
NDVI 

value 0.82 0.81 0.72 0.81 

   Date 06-Jun 01-Jun 15-Jun 10-Jun 

       

   2018 2019 2020 2021 

Corn 

SOS 31-May 01-Jun 09-Jun 22-Jun 

EOS 28-Sep 17-Sep 01-Oct 28-Oct 

Peak 
NDVI 

value 0.83 0.86 0.88 0.77 

Date 24-Jul 31-Jul 14-Aug 15-Aug 

       

   2018 2019 2020 2021 

Summer bar-
ley 

SOS 13 Aprl 14 Aprl 28 Aprl 29 Aprl 

EOS 12-Jul 25-Jul 02-Aug 09-Aug 

Peak 
NDVI 

value 0.84 0.85 0.79 0.82 

Date 31-May 01-Jun 15-Jun 10-Jun 

       

   2018 2019 2020 2021 

Winter barley 

SOS 26-Mar 15-Mar 17-Mar 24-Mar 

EOS 06-Jun 01-Jul 09-Jun 16-Jul 

Peak 
NDVI 

value 0.85 0.88 0.82 0.84 

Date 07-May 14-Apr 04-May 17-May 

       

   2018 2019 2020 2021 

winter wheat 

SOS 26-Mar 03-Mar 23-Mar 18-Mar 

EOS 12-Jul 13-Jul 15-Jul 16-Jul 

Peak 
NDVI 

value 0.87 0.86 0.81 0.86 

Date 19-May 02-May 22-May 23-May 
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Annex 9: Feature Imporatance 

 

 

Annex8: Weather data of Flevoland for year 2018 to 2021 
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Annex9: Explore how the accuracy changes when previous year is used to train the target year. 
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Annex 10: Max NDVI value obtained from Calendar Time and Thermal time. 

Potato 

  Max NDVI value obtained from Calendar Time Max NDVI value obtained from Thermal time 

2018 0.82 0.83 

2019 0.84 0.84 

2020 0.83 0.82 

2021 0.7 0.82 

 

Corn 

  Max NDVI value obtained from Calendar Time Max NDVI value obtained from Thermal time 

2018 0.83 0.84 

2019 0.86 0.86 

2020 0.88 0.87 

2021 0.77 0.87 

 

Summer Barley 

  Max NDVI value obtained from Calendar Time Max NDVI value obtained from Thermal time 

2018 0.84 0.85 

2019 0.85 0.85 

2020 0.79 0.8 

2021 0.82 0.8 

 

Winter Barley 

  Max NDVI value obtained from Calendar Time Max NDVI value obtained from Thermal time 

2018 0.85 0.85 

2019 0.88 0.86 

2020 0.82 0.83 

2021 0.84 0.83 

   

   

Summer Wheat 

  Max NDVI value obtained from Calendar Time Max NDVI value obtained from Thermal time 

2018 0.82 0.82 

2019 0.81 0.82 

2020 0.72 0.75 

2021 0.81 0.82 

   

   

Winter Wheat 

  Max NDVI value obtained from Calendar Time Max NDVI value obtained from Thermal time 

2018 0.87 0.87 

2019 0.86 0.87 

2020 0.81 0.82 

2021 0.86 0.82 

 


