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Abstract

Climate change is one of the greatest challenges currently faced by humanity. Currently, initiatives
are being developed to achieve net-zero carbon emissions by 2050. Nevertheless, the impacts
of these emissions are already being experienced, exerting an ever-increasing influence on the
climate. These impacts are also being felt by financial institutions and are encompassed in the ESG
governance. The Netherlands is no exception to these challenges, facing increased risks regarding
floods and ecological/geographical risks due to extended drought periods. Banks are increasingly
compelled to study the impacts of climate change on their loan portfolios since these phenomena
can devalue underlying assets or reduce creditworthiness of borrowers. Currently, a significant
portion of loans comprises private residential mortgages. Typically, these loans are secured by
residential properties that are vulnerable to the amplified climate threats. Unfortunately, there is a
very limited literature available that quantifies these threats to the residential mortgage portfolio.
Therefore, the following research question is formulated to fill the identified gap in the current
literature:

What is the predicted increase in Loss Given Default up to 2050 for the residential mortgage portfolio in
the banking sector in the Netherlands, resulting from physical climate risks such as flooding, pile rot, and
settlement?

The existing literature on the impact of extended drought periods is rather limited. While
drought periods are known to induce pile rot in houses built on wooden pole foundations
and can cause settling damage due to uneven foundation settlement, the quantification of
these effects remains constrained. One methodology, proposed by Costa et al., has developed a
Hazard-Exposure-Vulnerability framework to predict damages to properties resulting from these
phenomena.

While the current literature lacks the quantification of flood and drought risks to a residential
mortgage portfolio, several papers have been published that attempt to model the impact of
floods on floodplain areas predominantly consisting of residential properties. Some of these
methodologies employ a Bernoulli trial approach to determine whether a flood has occurred. By
combining this methodology, with a damage model dependent on the property’s area and a set
of inundation depth-damage functions, it becomes possible to predict the damage to residential
properties.

The methodology employed in this research combines a synthesis of previously conducted studies.
A Bernoulli trial approach based on charts from the Klimaateffectatlas is employed, alongside
a custom set of inundation depth-damage functions specific to the Netherlands provided by
Deltares. This combined method predicts damages resulting from flooding. To forecast damages
from settling and pile rot up to 2050, the Hazard-Exposure-Vulnerability framework proposed by
Costa et al. is utilised. Based on these incurred damages, the implication of physical climate risk
on the value-to-loan ratio and the loss given default can be predicted for the upcoming 30 years.



The research presents several realistic predictions, with the simulation involving a given
inundation depth of 0.5m and a high settling and pile rot scenario resulting in the highest estimated
amount of damage. For a dummy portfolio comprising 4116 mortgages, the average flood damage
incurred amounted to €826,308. The average settling damage is €332,523, whereas the average pile
rot damage is €1,035,242. Considering both direct and indirect damages, the VtL decreased from
the average baseline of 1.3068 to 1.3040 when the average incurred damages are used. Further
reduction occurred when the 99.9% VaR is utilised, lowering the VtL to 1.3029. Simultaneously,
these damages increased the LGD from the average baseline of 16.78% to 16.88% for the average
incurred damage and to 16.94% for the 99.9% VaR damage. The reduction of the VtL and LGD
are both primarily concentrated around the Randstad, with physical risks being particularly high
in Amsterdam. However, when points proximity is disregarded the overall reduction in LGD is
observed in the municipality of Landsmeer.

Additionally, an extreme prediction is conducted, wherein the incurred flood damages exceeded
the indirect damages by a factor of 12. While this scenario is highly unrealistic, it could become
relevant if incentives to comply with the Waterwet 2050 are disregarded. In this hypothetical
scenario, the average incurred flood damages totaled €9,630,762. These damages lead to a decrease
in the VtL to 1.2924 and 1.2867 for the average case and the 99.9% VaR case, respectively.
Simultaneously, the LGD increased to 17.34% and 17.80% for the average case and the 99.9% VaR
case, respectively. The domination of direct damages focuses the physical climate risk more around
the major rivers, where the inundation depths are the highest.

In summary, the realistic prediction exhibited a limited impact on the VtL and LGD due to
physical climate risks. Conversely, the extreme scenario does reveal significant decreases in the
VtL and an increase in the LGD. This emphasises that while physical climate risks might not
have a significant impact in average cases, the risks could play a crucial role in extreme scenarios.
Therefore, conducting stress testing becomes essential to thoroughly evaluate these tail risks.
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1 INTRODUCTION

1 Introduction

1.1 Problem context

Climate change represents one of the greatest challenges humanity has ever encountered.
Currently, human activities contribute to the rising levels of greenhouse gases (GHG), accelerating
the pace of climate change. Governments worldwide are striving to reduce carbon emissions,
aiming for a net-zero ambition by 2050. However, the impacts of climate change are already being
experienced globally, causing extensive damage. These climate changes, coupled with evolving
regulations on GHG emissions, have led to a rapidly changing economic landscape and substantial
financial risks. Financial institutions, in particular, face significant risks on both their assets and
liabilities. To address these challenges, over 100 financial institutions worldwide have established
the Network of Central Banks and Supervisors for Greening the Financial System (NGFS), with
the goal of developing an environment and climate risk management framework for the financial
sector.

In addition to their own commitment, financial institutions are guided by the Basel Committee’s
publication of 18 principles for the effective management and supervision of climate-related risks
[1]. These principles encompass the integration of Environmental, Social, and Governance (ESG)
factors and associated risks into financial practices. The ESG framework focuses on non-financial
factors and aims to be incorporated into companies to identify material risks and growth
opportunities. While these directives are currently not mandatory, they are likely to be integrated
into the Basel framework in the coming years. As a result, banks and insurers are actively working
on addressing the associated capital requirements. The significance of this topic is evident in its
central position in financial research, as depicted by the most frequently used keywords in the
field, shown in Figure 1.1.

Figure 1.1: Keyword search trends on Scopus regarding the financial sector [2].
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1 INTRODUCTION

A significant aspect of ESG risk is associated with climate risks. Therefore, the assigned
task at Mount Consulting focuses on the climate risk component within the ESG framework.
Mount Consulting provides consultancy services to several prominent banks and insurers in the
Netherlands, primarily focusing on qualitative aspects of the sector. Their expertise lies in areas
such as EU taxonomy, data separation during takeovers, and data vendor selection. Recently, there
has been a growing interest in the quantitative aspect of ESG, particularly in climate risk modeling.

As the importance of ESG continues to grow, Mount Consulting also needs to gather information
on this topic. Currently, other employees in the company are qualitatively assessing the regulatory
aspects of ESG. However, these regulatory frameworks do not provide guidelines regarding
estimates for the required risk capital. To improve the knowledge regarding the analytical part
of this topic, the internship aims to quantify these risks, primarily focusing on the physical risks
associated with climate change.

Mount Consulting primarily serves banks and insurers within the Netherlands, so the scope of
the internship is limited to assets located in this region. By narrowing down the research area, the
quantification of physical risks becomes more realistic, considering that different parameters are
relevant in different parts of the world. For instance, physical climate risk modeling in the USA
and the Caribbean focuses on earthquakes and hurricanes [3, 4], which do not pose a threat of
physical damage in the Netherlands. Nevertheless, a similar approach is required to identify and
quantify potential damages to underlying assets, such as loans.

1.2 Core problem

The Netherlands is situated 26% below sea level, with an additional 33% of the country prone
to flooding [5]. This area primarily encompasses the densely populated regions, making the
failure of water defenses a significant concern. It could lead to a major loss of life and extensive
damage to everything located within this vulnerable area. Throughout history, the threat of
flooding has been ever-present, with the most memorable incidents being the North Sea floods
in 1953. Since then, the government has made significant improvements to flood defenses and
demonstrated a strong commitment to long-term defense measures through the enactment of the
Waterwet 2050. However, the current rate of climate change predicts a sea level rise of 26cm to
82cm [6], which endangers the effectiveness of the existing primary flood defenses. Additionally,
climate change brings about more extreme weather events, including heavy rainfall, hailstorms,
and prolonged periods of drought. These droughts cause groundwater levels to drop, exposing
wooden foundations to oxygen and resulting in rotting. Moreover, these dry periods can induce
uneven settlement of foundations, causing damage to houses. These climate effects are expected
to intensify in the coming years as climate change worsens.

Banks are increasingly compelled to study the effects of climate change on their loan portfolios, as
such phenomena can devalue underlying assets and reduce the creditworthiness of borrowers who
bear the responsibility for the resulting damages. Furthermore, with the introduction of technical
standards for ESG by the European Banking Authority (EBA) and the implementation of other
ESG-related regulatory frameworks like the Corporate Sustainability Reporting Directive (CSRD)
and the Sustainable Finance Disclosure Regulation (SFDR), regulatory bodies are preparing to
incorporate directives related to this topic into the Basel framework. This could lead to additional
credit risks and may also influence operational risks [7]. As a result, banks are required to hold
higher levels of risk capital. Consequently, policymakers and bank boards of directors are keen
to obtain approximate figures regarding the expected physical damage and accompanying credit
risks [8].

2



1 INTRODUCTION

This thesis primarily focusses on the residential mortgage portfolio, which constitutes 50% of ING
Bank’s total loan book [9]. For banks that predominantly specialise in this type of mortgage, like
Volksbank, the residential mortgage portfolio represents an even higher percentage [10]. Therefore,
this portfolio has a significant influence on the bank’s balance sheet.

Currently, there is ample literature available regarding the incurred damage from acute physical
climate risks in the Netherlands [11, 12]. Additionally, the indirect implications of these acute
events have been extensively researched, with several papers examining the decline in house
prices following such weather events [13, 14]. However, this literature primarily focuses on the
extent of the damage and does not address the credit risks faced by banks in relation to these risks.
Hence, there is a need for more empirical research that explores the economic implications of these
physical risks on mortgage default rates, loss given default, and the overall creditworthiness of
borrowers.

In addition to acute threats, chronic climate events also cause damage to residential homes.
However, research in this area is currently limited due to its limited generalisability beyond the
Netherlands and its limited practical relevance for other countries. Although Costa et al. have
proposed a modeling methodology for pile rot and settling [15], there is a lack of research in the
available literature that examines the actual damages resulting from these chronic climate events
and their implications on parameters such as probability of default (PD) and loss given default
(LGD). This research gap highlights the need for further investigation into the assessment and
quantification of damages caused by pile rot and settling, as well as their subsequent impact on
credit risk metrics.

Therefore, by quantifying the physical risks on the residential mortgage portfolio, this research
aims to bridge the gap between the incurred damages from acute and chronic climate risks and
their implications on credit metrics. Additionally, it will contribute to answering questions about
the potential exposure of banks to climate change risks concerning their residential mortgage
portfolios.

1.3 Problem approach

In order to address the core problems identified earlier, this research aims to develop an accurate
modeling framework that allows for an evaluation of the financial implications associated with
physical climate risks, with a specific focus on the residential mortgage portfolio. The primary
objective is to investigate the specific effects of flooding, pile rot, and settlement on loan default
rates and loss given default rates. The research approach will consist of the following key
components.

The first step in this research is to acknowledge the regulatory framework that governs financial
institutions across Europe, known as the Basel framework. The Basel framework consists of three
pillars that guide risk management practices within the financial sector. It is crucial to recognise
that climate risk is considered a material risk and should be integrated into Pillar I, as emphasised
by Genest et al. [16].

However, it is important to note that the current Basel framework does not explicitly include
environmental, social, and governance risks. Nevertheless, recognising the significance of
ESG risks, the EBA has already issued directives regarding these risks. This highlights the
evolving regulatory landscape and the increasing recognition of the importance of incorporating
climate-related factors into financial risk management practices. Based on these directives a
foundation for a prediction model can be established.
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Building upon this regulatory context, a literature review will explore the current knowledge on
physical climate risks in the Netherlands. It will cover different climate scenarios and identify the
specific climate risks that apply to the Netherlands. The review will examine existing studies and
methodologies, presenting current efforts to quantify both acute climate events, such as floods,
and chronic events, such as pile rot and settling. Additionally, it will explore current efforts made
to connect climate risks with mortgage credit risk. The literature review aims to identify gaps in
knowledge and contribute to understanding which methodologies to employ in the subsequent
sections of the thesis.

Constructing a representative portfolio that closely resembles an actual bank’s residential
mortgage portfolio is a crucial step in addressing the core problem. Due to the confidentiality
of residential mortgage data, obtaining an actual bank’s portfolio is unattainable. However, by
carefully selecting and constructing a portfolio that captures key characteristics and risk profiles, a
representative portfolio can be created. This representative portfolio will enable a comprehensive
analysis of the impacts of physical climate risks on loss given default rates.

To address the problem of identifying potential damages that may occur in the next few decades,
it is necessary to translate the qualitative concept of "climate change" into a quantitative set of
variables. This set of variables should specifically capture the risks and hazards relevant to the
Netherlands, as the thesis focuses on this geographical area. By defining and quantifying these
variables, a basis for quantitative analysis of climate risk can be achieved.

Subsequently, the research aims to establish a connection between the portfolio and the actual risks
associated with climate change. This involves developing a model that can accurately predict the
damages to underlying assets caused by climate-related factors. The damage to underlying assets
due to climate change has a substantial effect on the required risk capital, as the value of the assets
decreases with damage, leading to higher loss given default rates. The shift in this core credit risk
parameter provides an indication of the quantitative influence of climate change on the residential
mortgage portfolio.

In conclusion, this research aims to develop an accurate modeling framework that integrates
physical climate risks into the risk management practices of financial institutions, with a specific
focus on the residential mortgage portfolio. By addressing the core problems identified, including
the need for a representative portfolio, quantifying climate-related variables, and establishing the
connection between the portfolio and actual risks, this study seeks to provide valuable insights into
the financial implications of physical climate risks. The findings will not only contribute to filling
the research gap in understanding the impacts on loss given default rates but also offer meaningful
guidance for banks, policymakers, and other stakeholders in effectively managing climate-related
risks.

1.4 Research objectives

With the core problem and accompanying problem approach of the internship covered, a central
research question with corresponding sub-questions is formulated. The main research question
regarding this research is:

"What is the predicted increase in Loss Given Default up to 2050 for the residential mortgage portfolio in
the banking sector in the Netherlands, resulting from physical climate risks such as flooding, pile rot, and
settlement?"
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First, this research includes the quantitative estimation of LGD given the above-mentioned climate
events. Moreover, the research incorporates the positioning of high-risk areas given the portfolio.
Nevertheless, the research does not entail any mitigation solution or approximate risk charge to
minimise the influence of these climate events.

Second, the research analyses the impact of climate change on the LGD and Value-to-Loan (VtL)
and does not incorporate the PD and consecutive Expected Loss (EL). This is mainly due to the
complex nature of PD modeling and the limitation in input parameters such as a bank’s portfolio.
In future research, the addition of a climate-adjusted PD would be beneficial but due to the
limitation of this research, it is not included in the scope of the research.

Lastly, the research is limited to a stagnant portfolio. Therefore, portfolio dynamics such as
premature closure and VtL shifts due to macro-economic parameters are disregarded to limit the
research to the intrinsic effect of the climate change events.

1.5 Research questions

To answer the main research question, the thesis is divided into several sub-sections each
corresponding to a component highlighted in the problem approach. The sub-sections have a set
of sub-questions which helps to structure the research.

(i) Climate risks and regulations.

The Basel regulatory framework strongly regulates financial institutions across Europe.
The Basel framework is divided into three pillars. Currently, the Basel framework
excludes ESG risks. However, the EBA has already published directives regarding these
risks. Hence, the following research questions are formulated:

- Which climate risk regulations and directives are banks exposed to?

- Which published pillar III physical climate risk directives are currently applicable to the
residential mortgage portfolio and what do they enforce?

(ii) Literature review.

To identify the current efforts made towards this topic, a literature review should be
conducted. This review aims to identify current climate scenarios and climate threats
applicable to the Netherlands, as well as methodologies and attempts to quantify these
climate risks. Therefore, the following research questions have been formulated:

- What are the specific climate scenarios, risks and hazards relevant to the Netherlands?

- How can the qualitative concept of "climate change" be translated into a quantitative set
of variables?

- Which methodologies or approaches are currently utilised to quantify physical climate
risks?

- What researches have been conducted to examine how the credit risk of banks is affected
by physical climate risks?
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(iii) Generating a residential mortgage portfolio.

To predict damages to certain buildings and structures, the model requires a portfolio
that closely represents an actual bank’s portfolio. However, since the internship is
not being conducted at the internal risk management department but at an external
consultant, banks are not willing to share their highly confidential residential mortgage
portfolios. Therefore, constructing a portfolio that somewhat resembles an actual
portfolio becomes important. In light of this, the following sub-questions are composed:

- What considerations are taken into account when determining the size and composition
of a residential mortgage portfolio?

- What data sources are required to gather the necessary information for constructing a
representative portfolio?

- How is data on loan characteristics, such as interest rates, and loan-to-value ratios
incorporated into the portfolio?

(iv) Creating damage patterns across different areas within the Netherlands

To connect the portfolio with the risks associated with climate change, it is necessary
to convert the quantified physical climate risks into estimated damages to underlying
assets. This step involves addressing the following sub-questions:

- How are the potential damages to underlyings quantified using the identified climate
variables?

- How can real-world data be used to validate the accuracy of the incurred damages to
underlyings?

(v) Connecting incurred damages with risks and required risk capital

The damage to underlyings due to climate change has a substantial effect on the
required risk capital, as the VtL decreases, implying a higher LGD. Hence, it is
important to associate the damages with actual figures required by Basel Pillar I.
Therefore, the following sub-questions are formulated to establish this connection:

- How are damages to an underlying and VtL associated with LGD?

- What is the overall effect of the physically induced damages on the LGD?

- How does the model tie in with the proposed ESG regulations and directives?

1.6 Research approach

To answer the aforementioned questions, the following research approach will be applied. First,
a literature review should be conducted to acquire information regarding the current applicable
Basel framework for physical climate risks. Additionally, the literature study should incorporate
previous efforts in quantifying these risks. To accurately predict damages over a 30-year period,
the literature review should include probable climate scenarios, as the probability and severity of
climate events depend on the extent of climate change. Lastly, existing literature on the impact
of physical climate events on mortgage credit risk is analysed to identify utilised methodologies,
findings, and research gaps in investigating the relationship between climate change and credit
risk for the residential mortgage portfolio.
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Subsequently, the necessary data can be gathered to construct a residential mortgage portfolio that
closely resembles an actual portfolio. This can be achieved by collecting data on VtL from annual
reports and approximating the distribution of underlyings associated with residential mortgages
based on the population distribution across the Netherlands.

Additionally, data needs to be gathered to quantify acute and chronic climate risks. Accessing
current predictive flood risk maps and probabilistic models can provide insights into the frequency
and severity of acute climate risks in the future. Moreover, quantification of chronic climate events
requires data on the probability of properties being built on appropriate foundation types and the
severity of the resulting damage. Both settling and pile rot originate from the same groundwater
patterns and hence require similar data for quantifying these qualitative risks. Furthermore, for
quantifying both acute and chronic climate events, the climate scenarios obtained in the literature
review should be incorporated, as these scenarios significantly impact the prediction of input risks.

The next step in answering the research questions is to develop a modelling framework that
incorporates these input variables and predicts the incurred damages over the coming decades.
As mentioned earlier in the problem approach, this study will thoroughly investigate existing
modelling methodologies and approaches to identify the most effective and widely accepted
methodology available in the current literature. The development of the modelling framework
will be based on this best-fit methodology, and its accuracy in predicting damages to underlyings
will be validated by comparing the results with real-world data.

Lastly, the data is analysed to assess the specific impacts of flooding, pile rot, and settlement on
the LGD of the residential mortgage portfolio. Furthermore, it is possible to allocate the physical
climate risk to specific regions within the Netherlands in relation to the residential mortgage
portfolio.
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2 Literature review

The goal of this chapter is to identify possible risks associated with climate risks and previous
modeling efforts to express climate risks in actual figures. The chapter begins with an introduction
to ESG and briefly mentions import regulations and directives regarding physical climate risks.
This is followed by the introduction of several climate scenarios. Subsequently, the applicable
climate risks to the Netherlands and their associated quantitative data for climate risk models
are presented. Afterwards, the existing methodologies and approaches to model acute and
chronic climate events are discussed. Finally, the literature review addresses the existing literature
regarding the integration of physical climate change risks into credit risk metrics.

2.1 ESG regulation

Climate risk is embedded within the overarching term ESG. As briefly discussed in the
introduction, these regulations regard the social aspects of the financial sector. Within the next
two subsections, ESG is elaborated on and the import regulations and directives are addressed.

2.1.1 The Environmental, Social, and Governance framework

Sustainable finance refers to the process of considering environmental, social, and governance
factors into account when making financial decisions. Rather than just focusing on maximising
stakeholder benefits, ESG factors also consider non-financial terms. This framework seeks to
maximise financial returns while accounting for social risks and opportunities [17].

Firstly, the environmental aspect of ESG regards energy consumption, carbon emissions, waste
production, and climate change of particular companies. Secondly, the social term addresses the
companies relationship with people and other companies. This factor involves terms such as
inclusion and diversity. Lastly, the governance factor encompasses the internal system of practices
and procedures the company adopts to make effective decisions and comply with the law [18].
The ESG framework is deeply convoluted within a company, just like the factors themselves are
intertwined. As of this moment, the thesis will focus on the environmental section of ESG since
within this part climate risks are located.

2.1.2 Regulations and directives

Different regulations and directives are issued by the EBA. The content within this thesis is
mainly impacted by the standards proposed in: ’Final draft implementing technical standards on
prudential disclosures on ESG risks in accordance with Article 449a CRR’. These directives are
located within Pillar III of the Basel framework and state that ’The Article 449a of Regulation (EU)
No 575/2013 (CRR) requires large institutions with securities traded on a regulated market of any
Member State to disclose prudential information on environmental, social and governance risks,
including physical risks and transition risks, as defined in the report referred to in Article 98(8)
of Directive 2013/36/EU’ [19]. Within this directive, the EBA developed a draft implementing
technical standards (ITS) specifying uniform formats and associated instructions for the disclosure
of ESG information. The different quantitative templates on climate change disclosed within the
document are displayed in Figure 2.1 [19].
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Figure 2.1: Proposed quantitative templates on ESG from the EBA [19].

Within this disclosure, template 5 is most important for this research since this thesis solely regards
the physical risks of climate change (red contoured in Figure 2.1). The template is depicted in
Figure A.1. This template assists banks in evaluating their exposures to both chronic and acute
physical climate risks across different assets. However, it only facilitates the quantification of the
gross carrying amount of assets which are exposed to either acute or chronic climate change.
Hence, the technical standards only quantify the amount exposed to a particular risk and do not
evaluate the actual costs the risks bear [20].

2.2 Climate scenarios

Before the actual physical risks are explained, climate scenarios proposed by the NGFS committee
are described. The NGFS proposed 72 different climate scenarios. However, in this thesis, the
quantity of scenarios is limited to the most important six individual scenarios. In practice, an
unlimited number of scenarios exist. However, these six cover the most reasonable spectrum of
scenarios.

The scenarios are spread across categories within the NGFS framework. This framework
encompasses the quantity of physical risks and the transition pathway incorporated within the
climate scenario. A figure illustrating the different quadrants is provided in Figure 2.2, along with
a description of these quadrants in Table 2.1.
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Table 2.1: Quadrants employed by the NGFS committee to qualitatively separate climate scenarios [21, 22].

NGFS Framework Transition risks Physical risks Description

Orderly Low Low These types of scenarios assume an
introduction of climate policies at an
early stage and become gradually
more stringent. Additionally, it
presumes there are no substantial
discrepancies between policies
promulgated by the governing bodies.

Disorderly High Low In the disorderly framework, scenarios
are incorporated which explore higher
transition risks due to delayed climate
policies or inconsistent policies across
industries for example. The policies
are not gradually introduced but are
very stringent upon introduction.

Hot house world Low High These scenarios assume that only a
modest number of jurisdictions adopt
climate policies to counteract global
warming. Nevertheless, global efforts
are insufficient to stagnate the global
warming resulting in irreversible
impacts like sea-level rise.

Too little, too late High High The most extreme scenarios are
located within this quadrant. It
assumes the governmental bodies
do not do enough to meet the set
climate goals leading to significant
climate related disasters. The presence
of physical risks spurs a disorderly
transition to a net-zero economy with
policies being very stringent upon
introduction.

The NGFS proposed six scenarios, none of which are located in the "too little, too late" quadrant.
To end up in this quadrant, there needs to be a certain sequence of physical events originating from
a scenario in the "hot house world" quadrant. Subsequent to the physical disasters, very stringent
regulations should follow, which is highly implausible given the current awareness. Therefore,
none of the six scenarios are located within this quadrant. The distribution of the six main scenarios
proposed by the NGFS across the framework is provided in Figure 2.2.
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Figure 2.2: Climate scenarios proposed by the NGFS committee distributed across the quadrants [21].

Firstly, the most recognisable scenario is the Net Zero 2050 scenario, which aligns with the pathway
to a net zero carbon economy outlined in the 2015 Paris Agreement. This scenario entails the least
amount of physical risks, with only a limited number of transition risks due to a transparent
and unambiguous pathway. Secondly, the Below 2°C scenario follows a similar pathway as the
Net Zero 2050 scenario, but with slightly less stringent rules. Consequently, carbon emissions are
gradually phased out, in line with the Paris Agreement, resulting in higher physical risks but lower
transitional risks. Both of these scenarios are located within the orderly quadrant.

Thirdly, the Divergent Net Zero scenario envisions a carbon-neutral economy around 2050 but
with higher costs due to divergent policies across sectors, leading to a more rapid phase-out of
oil. However, significant variation in carbon pricing, for example, introduces high transition risks,
while the rapid phase-out of oil mitigates an overall temperature increase, thereby limiting the
physical risks. Fourthly, the Delayed Transition scenario assumes that annual carbon emissions
do not decrease before 2030, requiring strong regulations to limit global warming to 2°C.
Consequently, this scenario entails both mild transitional and physical risks. These scenarios are
placed within the disorderly quadrant.

Fifthly, the Nationally Determined Contributions (NDCs) scenario encompasses the currently
pledged targets aimed at limiting global warming. However, these targets currently lack the
backing of implemented policies, directives, or regulations. Nonetheless, governmental bodies
have already put these targets forward. Lastly, the NGFS committee proposed a scenario that
preserves only the currently implemented policies. Hence, while the physical risks are high, the
transition risks are low. Since both the NDC and current policies scenarios exhibit low transition
risks but high physical risks, they are located within the hot house world quadrant.

The most important scenarios for this thesis are the Net Zero 2050 and the NDC or current policies
scenarios, as these scenarios oppose each other regarding physical risk. Hence, scenarios with the
most pronounced contrast in physical risks are of greater interest for this research.
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2.3 Climate risks

The Netherlands is exposed to various climate events, such as flooding, hail, and droughts. These
weather events can result in property damage and revenue loss. The following chapter will explore
the relevant climate events for the Netherlands, discuss the probability of the event occurring, and
the typical damages associated with each event.

2.3.1 Flooding

The most significant climate risk faced by the Netherlands is the risk of flooding. Approximately
26% of the country is situated below sea level, with an additional 33% at risk of flooding [5]. This
includes densely populated areas, making the potential consequences of water defences failure
catastrophic in terms of loss of life and damage to infrastructure. To assess these risks, probability
charts can be utilised. A provider of these charts for the Netherlands is the klimaateffectatlas.
The charts by the klimaateffectatlas provide information on the probability of a flood based on
the inundation depth or determine the maximum inundation depth given a certain probability.
The inundation depth refers to the depth of water from the ground level to the water surface. A
schematic representation of inundation depth is illustrated in Figure 2.3.

Figure 2.3: Schematic representation of the inundation depth in case of a flood.

Besides probability charts, there are also charts representing the maximum inundation depth given
the flood probability. The charts that present a fixed inundation depth and varying probability
provide a more realistic perspective, while the charts with a fixed probability and variable
inundation depth represent a worst-case scenario. These charts aim to estimate the probability
of a flood based on high or low climate scenarios. The high and low scenarios used by the
klimaateffectatlas are the Gematigd laag (Gl) and Warm hoog (Wh) scenarios, respectively. The
Gl scenario aligns with the lower range of the Representative Concentration Pathway (RCP) 2.6
scenario, while the Wh scenario corresponds to the RCP 8.5 pathway. These scenarios are closely
linked to the upper range of the net-zero 2050 and NDC scenarios, respectively, as defined by the
NGFS [23, 24].

Additionally, the predictions take into account the regulations outlined in the Waterwet 2050,
which govern the primary flood barriers. This law sets a maximum allowable flood probability,
which the current flood protections do not meet. However, the government is obligated to meet
this standard by 2050. The prediction methodology used in these charts is adapted from the
2007/60/EC directive on the management of flood risks. Similarly, the charts depicting maximum
inundation depth for a given flood probability utilise the same prediction methodology [23].
An example of both types of charts is presented in Figure 2.4 below. The complete set of flood
prediction charts provided by the klimaateffectatlas is appended in Appendix B.
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(a) (b)

Figure 2.4: (a) The probability of a flood occurring with an inundation depth of 0,5 m [23]. , (b) The
maximum inundation depth which could be achieved given the probability of flooding equals 1/1000 years
[23].

Both of these maps are closely linked to the distance from a river and the elevation of the terrain
relative to sea level. As shown in Figure 2.4a, areas in the eastern parts of the Netherlands have
minimal risk of flooding due to climate change. Conversely, regions with high population density,
particularly in and around the conurbation in the western parts of the country, face significant
flooding risks. However, Figure 2.4b reveals that the most severe inundation depths in an extreme
scenario are not concentrated in the conurbation but are more centered around the cities of
Den Bosch, Nijmegen, and Arnhem. These cities are situated close to major waterways in the
Netherlands, such as the Rijn and the Maas, which are prone to flooding with very high inundation
depths, as also visible in Figure B.2a.

These figures are referenced and utilised in various researches, which will be further explained in
subsection 2.4. The figures are based on projections of climate conditions, sea level rise, and the
strengthening of primary flood defenses. Therefore, they provide estimations that are challenging
to validate quantitatively. Consequently, models built upon these figures inherently incorporate
these uncertainties.

2.3.2 Droughts

The next climate change risk relevant for the Netherlands is prolonged periods of drought,
which directly impacts the agriculture sector by causing water stress. During these periods, the
government may impose restrictions on crop field irrigation, resulting in lower crop yields. This
puts pressure on loans and increases the probability of default. Additionally, drought periods
indirectly affect the residential mortgage portfolio, as phenomena like pile rot and settling can
occur. Pile rot refers to the decay of foundation poles, while settling refers to uneven foundation
settlement on "op staal" foundations.
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Foundation damage commonly occurs in houses built before 1975, particularly those constructed
on clay or peat soils with wooden piles or shallow concrete foundations. These structures are
sensitive to changes in groundwater levels in different ways. For a detailed overview of the specific
mechanisms that can cause damage to residential housing, refer to Table 2.2.

Table 2.2: Overview of damage mechanisms regarding residential housing with respect to droughts [25, 26].

Damage mechanism Description

Pile Rot Wooden pile foundations tend to rot when exposed to oxygen. The
extended periods of drought following climate change causes the
groundwater level to drop below the top of the foundation wood.
Consequently, the poles start to decay because the poles were exposed
to oxygen. Subsequently, the poles decay until the foundation cannot
keep up the buoyancy required to withstand the force of the house
pressing down causing the structure to settle. This settlement induces
cracks within the house and could lead to a complete renovation of the
house with the accompanying foundation.

Negative adhesion Climate change induces settlement of the ground. Clay and peat soils the
houses are constructed on tend to stick to the wooden foundation poles.
Therefore, the soil pulls the house down with the settlement inducing
an uneven foundation. Hence, the walls and the foundation could crack
causing massive damage to the structure.

Settlement If the foundation of a structure settles at an equal rate across
the foundation, no damage is induced on the structure. However,
when an uneven settlement such as diagonal settlement occurs, the
house becomes damaged. Commonly, this damage is associated with
structures built ’op staal’ and could lead to an extensive renovation of
the foundation structure.

Although the literature regarding the quantification of these risks is limited, Costa et al.
proposed a methodology to quantify these risks based on the conceptual framework of
Hazard-Exposure-Vulnerability [15]. Additionally, Kok [25] published a paper outlining another
applicable methodology for quantifying these risks specifically for buildings in the Netherlands.
The subsequent section will provide further elaboration on the characteristics and approach of this
methodology.

2.4 Climate risk modelling

Currently, the focus of physical climate risk modeling is predominantly on residential mortgage
portfolios. This emphasis stems from the fact that banks’ balance sheets are primarily composed of
these types of mortgages [9, 10, 27]. Additionally, a significant portion of the asset side comprises
commercial loans to various industries. However, progress in the development of such models has
been limited, as each sector requires a customised approach to assess climate risks. Consequently,
these models have not been widely adopted, given the smaller scale of individual branches
compared to the overall mortgage portfolio [12].
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This subsection is divided into three parts, each addressing climate risk modeling for
private residential mortgages. Firstly, the discussion centers around hedonic pricing models.
Subsequently, attention is directed towards efforts in flood modeling. Lastly, the focus shifts to
the methodologies developed for modeling chronic climate events.

2.4.1 Hedonic pricing models

The effects of floods on a property value can be estimated with a hedonic pricing model (HPM) or
a repeat-sales model. Lamond et al. [28] constructed a repeat-sales model to research the impact of
flood insurance on residential property prices. As the name suggests, this methodology utilises
information on properties which have been sold multiple times. The proposed methodology
employs a questionnaire to identify data such as property details, flood history, and insurance
costs. The methodology involves distributing questionnaires in three types of areas: those at risk
of floods but not recently flooded, areas at risk and recently flooded, and areas not designated
as at risk. This approach aims to gather comprehensive insights into flood risk perception and
its impact within different geographical contexts. This questionnaire in combination with the
assigned flood risks from the Environment Agency in the UK analytically determines the impact
of flood probability on the residential property price [28]. Although this methodology sounds
interesting to execute and has been successfully employed in previous research on climate change
regarding market responses to hurricanes [29], generally, the HPM is the preferred method since it
is a more comprehensive and practical approach [30].

HPM models are employed in multiple researches regarding the effects of floods on the prices of
residential properties. HPMs utilise a mathematical function that incorporates various parameters
known to impact property prices. The general structure of such a model is outlined in Equation 2.1.

p = f(Location, Structure,Neighbourhood) (2.1)

Wherein, the property price (p) can be represented as a function of various property characteristics
such as location, structure, and neighborhood. This function can be further extended to incorporate
climate-related parameters, such as flood duration, to better capture the influence of environmental
factors on property values. Generally, these functions employ a log-linear setup as presented in
Equation 2.2 [31].

Ln(pi) = β0 +
∑

β1FLOODi +
∑

β2LOCi +
∑

β3STRi +
∑

β4NGHi + ϵ (2.2)

Applying this model to the property market allows estimation of the extent to which each factor
affects the market price of the property. However, a substantial drawback of this model is that it
captures a consumer’s willingness to pay. Consequently, if property owners perceive no flood risk,
it is also reflected in the HPM, leading to potential discrepancies between perceived and actual
risks. This downside was demonstrated in a study by Fuerst and Warren-Myers, which examined
the implications of sea level rise on property values. The research concluded that the influence of
sea level rise is insignificant, even in areas with significant flood risks, suggesting either a lack of
consideration or awareness of the risks by the market and purchasers [32].

Nevertheless, several other studies have shown that HPM is a viable approach for assessing the
effect of flood probability on property valuation. Multiple studies have focused on properties in
the United States, with Pope et al. finding that properties situated in floodplains experience a value
reduction ranging from 3.8% to 4.5% [33].
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In addition, Bin et al. conducted a study that highlighted the effectiveness of HPM in capturing
the influence of perceived flood risk on property prices. Their research differentiated between
properties in high and low flood probability areas within floodplains. The study found that
properties in high-probability floodplains experienced a decrease in value of 7.8%, while properties
in low-probability floodplains only experienced a decrease of 6.2%. This indicates that flood risk
perception does influence property value [34].

However, when addressing the research question, both the repeat-sales and hedonic pricing
models pose significant implementation challenges. These challenges primarily stem from the
need for an extensive set of house characteristics for a hedonic pricing analysis and the requirement
of sales prices for the repeat-sales methodology. The effectiveness of the HPM greatly improves
with more detailed house characteristics, but obtaining such data can be challenging [35].
Consequently, the general applicability of this model becomes problematic, particularly for
properties with varying characteristics and facing different types of flood risks.

Furthermore, quantifying the credit risk associated with climate risk through the impact of risk
perception on the model’s outcomes may not be a suitable approach. Therefore, the literature
explores alternative avenues by examining the current modelling efforts undertaken by banks.
These efforts provide valuable insights into the assessment of climate-related risks in the context
of credit risk.

2.4.2 Predictive flood modelling

Larger banks, such as ABN Amro, have made investments in creating climate risk models for
their residential mortgage portfolio. ABN Amro, for instance, employed a Bernoulli trial method
to predict portfolio-specific probability maps. This method involves cross-referencing the spatial
charts of their residential mortgage portfolio with flood probability maps. It assigns a flood
probability to each individual mortgage and estimates the associated risk using the Bernoulli trial
method [12]. In the theory of probability and statistics, a Bernoulli trial is a random experiment
with two possible outcomes, "success" and "failure," where the probability of success remains
the same in each experiment. The methodology discussed in this text has a long history, dating
back to the first paper on the subject published in 1969 [36]. This methodology has been applied
in several papers to determine the occurrence of weather events. For example, Hossain et al.
utilised Bernoulli trials to predict the occurrence of rainfall [37], and Callaghan and Hughes
employed Bernoulli trials to assess flood hazards [38]. While the implementation of this model
is straightforward, a notable drawback is the requirement for accurate input flood probabilities to
ensure an accurate model.

The probability of a flood occurring is influenced by various factors, such as hydraulic load,
defense type, and failure mechanisms. These parameters are closely linked to the design of dikes,
which serve as input variables in probability charts [39]. The design of these charts is based on
Bayesian probability theory, which allows for the incorporation of expert judgment due to the
presence of many unknown parameters that need to be estimated [11]. Generally, these probability
estimations provide the likelihood of a flood occurring within a specific time interval. In the
Bernoulli trial methodology, these charts are used to determine whether a flood has occurred by
comparing a randomly generated number with the probability of a flood occurring.
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In literature, numerous models exist for estimating potential flood damages when a flood occurs.
Some papers utilise a methodology that incorporates damage functions. One such earlier model,
developed by Dutta et al., uses a simple method based on inundation depth and different
residential structures to estimate the relative flood damage incurred by each structure [40].
These models have evolved to include additional parameters, such as flow depth, which is
particularly relevant for flash floods [41]. However, these flow depth curves are less applicable
to the Netherlands as these curves are specifically designed for estimating damage in floods with
high flow velocity, which is not relevant due to the limited slope of the terrain.

A significant development for the Netherlands is the creation of damage models by the joint
research center (JRC). Huizinga developed a set of inundation depth-damage functions and
maximum damage values that can be utilised by all EU countries [42, 43]. These models are
relatively simple and hence contain some uncertainty, especially when dealing with multivariate
models. However, these curves can provide a reasonably accurate estimate, particularly when
data is limited [44]. The Dutch government incorporates these JRC-type damage functions in their
methodology for predicting flood damages to buildings. This methodology was initially published
in 2005 by Koks et al. and has been continuously developed, with the most recent version dating
back to 2017 [45, 46].

Besides these depth-damage functions, more sophisticated methodologies are also employed to
predict damages to buildings. For instance, Dottori et al. propose a methodology called In-depth
Synthetic Model for Flood Damage Estimation (INSYDE), which utilises 23 input variables, six
describing the flood event, and 17 referring to building features. This approach improves the
accuracy of damage prediction, enhancing the reliability of the model. However, it is worth noting
that the inclusion of additional required parameters may introduce limitations to the practical
applicability of the model. Nevertheless, the model has been successfully validated for multiple
flood cases in Italy, demonstrating its robust performance and effectiveness [47, 48]. Numerous
advanced methodologies have been developed to predict flood damages, and in some cases,
they outperform the basic JRC damage function, as shown in a comparative analysis by Arrighi
et al. [49]. However, the transferability of these models depends on the similarity between the
calibration context and the implementation area. The analysis suggests that simpler models, such
as the JRC curves, can provide estimates comparable to more complex models like INSYDE
when applied to their appropriate calibration area. Therefore, when considering the research
scope limited to the Netherlands, the Standaardmethode 2017 Schade en Slachtoffers by Deltares
is deemed a suitable methodology. It is specifically designed for buildings in the Netherlands,
offering a simplistic yet tailored approach.

The ABN Amro case study mentioned at the beginning of this subsection employs the
Standaardmethode 2017 Schade en Slachtoffers methodology for the prediction of incurred
damages ones a flood has occurred. Using this method in combination with the Bernoulli trial
methodology, ABN constructed maps for flood risks. A similar Bernoulli method is employed to
estimate the risks associated with pile rot. The only notable difference is that the data provided
was very granular at the time of publication [12]. An example of the maps constructed with this
method is displayed in Figure 2.5 below.
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Figure 2.5: Portfolio-specific probability maps for flooding risk (Left) and pile rot risks (Right) [12].

Another example of an application of a similar methodology is the case study conducted by the
United Nations Environment Program Finance Initiative (UNEP FI). The UNEP FI utilised JBA
flooding scores to assess the current flood risk to properties in the UK. The JBA flood score is
determined at the property level and takes into account factors such as property elevation, the
probability of coastal and river floods. Based on these JBA flooding scores, climate scenarios, and
data from a recent global assessment of future changes in flood risk, the UNEP FI developed
a model to estimate the impact on the loan-to-value ratio (LtV) by deducting the value of the
property due to flood risks.

As a case study, the UNEP FI applied this methodology to a sample of UK residential mortgages.
Using this approach, UNEP FI observed an increase in loans with a LtV greater than 80%, with the
percentage ranging from 5% to 10%, depending on the climate scenario. It is important to note that
the analysis was conducted on a 3% subset of the initial sample, which was most exposed to flood
risks [50]. Therefore, the actual impact of floods would be lower, as stated in this research.

Apart from being employed by banks and major research institutions, the Bernoulli trial
methodology is also utilised in various research papers. However, these papers use it to estimate
the damages incurred in specific regions, including buildings and agricultural land. Unlike
this study, which focuses on residential properties across the entire Netherlands, these papers
demonstrate the methodology’s applicability in approximating flood damages for a particular area

18



2 LITERATURE REVIEW

The first notable paper where this methodology is applied is a publication by Hoes et al. The
simulation methodology closely resembles the approach employed by ABN Amro. Similarly,
the methodology utilises a Bernoulli trial to determine the occurrence of a flood. Additionally,
the paper leverages the ’Basisregistratie Adressen en Gebouwen’ (BAG) register, a cadastral
polygon shape file containing the footprint of 7 million buildings in the Netherlands. The BAG
map is cross-referenced with the ’LGN6’ map, which specifies land usage, including agricultural
purposes. By overlaying these maps, it becomes possible to quantify the damage a flood would
cause in a specific area. The paper employs a methodology similar to the Standaardmethode 2017
Schade en Slachtoffers by Deltares to estimate damages to buildings and agricultural land. This
approach involves the use of a damage function, which considers the inundation depth multiplied
by a base value per square meter. Essentially, the simulation follows an identical methodology and
execution compared to the previously discussed ABN Amro simulation. The main difference lies in
the data preparation stage, where the ABN Amro simulation uses their own residential mortgage
portfolio as input files, while the paper by Hoes et al. utilises a combination of the BAG, Top10NL,
BBG, and LGN6 maps to assess the land usage exposed to the flood [51].

The second paper that employs a similar methodology focuses on industrial buildings. In the first
part of the paper by Koks et al., a direct loss model is utilised to estimate the direct damages to
buildings. This model solely focuses on the actual flood damages incurred and does not employ
a Bernoulli trial to determine flood occurrence. However, the direct flood model used in this
approach is worth reviewing. The model is based on Equation 2.3.

Ddir =
m∑
l

r∑
n

a(hr)D
max
l (2.3)

Where Ddir is total direct damage in the area under consideration, Dmax is value at risk for land-use
category i, ai(hr) is a depth-damage function for land-use category i, and hr is inundation depth
of the flood in a particular cell r [52]. Similar to the ABN Amro simulation and the paper by Hoes
et al, the direct loss model employs a multiplication between a damage factor depending on the
inundation depth and a base value at risk depending on the building affected by the flood. A
schematic overview of this simulation is provided in Figure 2.6 where the important part of the
simulation for this thesis is the direct model assessment step.

Figure 2.6: Overview of the different components of the framework. The dark grey squared boxes are the
inputs, the ellipses are the different models, and the light grey squared boxes are the model outputs [52].
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The other parts of this flood damage assessment methodology are less applicable to the current
thesis since the Cobb-Douglas function is predominantly used for buildings with an industrial
function. However, considering the impact of indirect effects of floods in future research could be
a significant addition to this field of research. Therefore, an explanation of the second part of the
methodology from this paper is added in Appendix C.

While all the previously discussed research papers focus on approximating the incurred damage
in the event of a flood, there is limited research on predicting the impact of these damages on the
residential mortgage portfolio. Typically, papers that explore the effect of climate change on the
portfolio are retrospective, analysing changes after the event has occurred [4, 53]. Forward-looking
models are predominantly published by national banks or governmental research organisations.
Although there are a few research papers attempting to predict the influence of flooding on the
residential mortgage portfolio, the amount of research in this area is limited [54].

A particularly interesting paper by Bikakis examines the impact of climate change on a UK
residential mortgage portfolio up to 2080. The study employs a simplistic methodology where
the total value of all outstanding residential mortgages in each region is divided by the cumulative
value of properties in the same area. This percentage is then multiplied by the Estimated Annual
Damages (EAD) for the region. Finally, the total value of mortgage-related EAD is divided by
the common equity tier 1 (CET1) to predict the impact of climate change on the required CET1
[55]. The paper utilises the results of a climate risk assessment conducted by Sayers et al., which
predicts flood damages to residential properties in different UK regions from 2015 to 2080. Multiple
climate scenarios are considered to estimate damages across the full spectrum of potential climate
conditions [56]. Bikakis leverages these damages to estimate the EAD.

The results of this multi-step analysis show that under the Present Day climate scenario, 0.01%
of the UK’s CET1 capital is currently exposed to flood risk. However, this percentage increases
to 0.03% under the 4°C Low population growth scenario. These findings highlight a significant
portion of the residential mortgage portfolio that is susceptible to climate risks, potentially placing
banks beyond their CET1 capital buffer [55].

2.4.3 Risk perception

Physical climate risk is not only determined by damages but also by risk perception. In flood-prone
areas, monetisation of the actual damage and the damage to subjective well-being shows that risk
perception is twice as damaging to people than the actual physical damage. This change in risk
perception shifts demands for houses away from flood-prone areas, thereby changing housing
prices [57]. Different researchers have proved this perception indeed exists. However, the extent
and duration of the flood perception differ significantly between areas. Exemplary, a Pennsylvania
flooding in 1972 saw house prices plummet by 30% in the subsequent months. Contradictory, the
1974 floods in Ontario observed no influence on house prices [58].
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The closest representation of the influence of floods on the Dutch perception of floods comes from
the 1993 and 1995 Maas floods. Before the floods, there was no significant difference between the
house price of the affected area and the non-affected area. However, after the first flood, property
values dropped approximately 4%, whereas, after the second flood, the values declined by an
additional 2-5 percent [13]. The paper states the effect did not gradually become smaller as the
memories of the second flood faded. Nonetheless, commonly, this happens as time progresses, the
memories of the flood disappear, and the dispersion between the property values decreases [57].
Refering back to the ABN Amro model earlier discussed, ABN chose to employ a 5% shock to the
housing market which temporarily stayed in place after which it disappeared across the following
couple of years [59].

The main purpose of adding these micro-economic parameters is to identify adverse movement
in important macroeconomic parameters such as gross domestic product (GDP) and the
unemployment rate. These variables massively influence the PD [60]. Hence, these parameters
are of particular interest to the banks.

Commonly, the above-described tendencies are observed in all simulations regarding climate risks.
Firstly, an estimation of incurred damages is made. Subsequently, macroeconomic parameters
such as house depreciation due to risk perception are added. Lastly, expected loss and important
macroeconomic parameters like GDP are determined. These parameters influence internal PD and
LGD models.

2.4.4 Pile rot and settling modelling

As briefly mentioned when identifying the research gap, there is a scarcity of research focusing
on modeling damage caused by settling and pile rot. While the literature on quantifying these
risks is limited, Costa et al. have proposed a methodology to address this challenge. The
methodology is based on a conceptual framework of Hazard-Exposure-Vulnerability, where the
hazard characterises the events causing damage, exposure assesses the inventory of the building at
risk, and vulnerability defines the degree of physical damage to the building at risk [15]. Together
with a paper published by Kok [25], this methodology is the only applicable approach to quantify
these risks for buildings in the Netherlands. Therefore, further elaboration on this methodology is
necessary.

The methodology employs different hazard levels corresponding to different stages of foundation
hazard. The damage level of a house is classified into six distinct categories, ranging from 0 to
5. The classification is based on the degree of hazard to the overall structural integrity, where 0
indicates no hazard and 5 represents a very high level of hazard. The methodology prescribes
a certain level of incurred damage after surpassing a hazard level, taking into account the
vulnerability of the underlying structure. A detailed description of these categories is provided
in Appendix D.

Subsequently, the exposure is based on data regarding the percentage of houses within a certain
district built on wooden poles or "op staal." Multiplying the approximated damage category by
the percentage of houses on the specific foundation type provides an estimation of the expected
risks within a certain area. A combination of the paper by Costa et al., Koks et al., and quantitative
efforts by the Klimaateffectatlas provides the expected vulnerability in 2050 and the exposure of
neighborhoods in the Netherlands. By multiplying these spatial charts, it is possible to predict the
risks on a per-neighborhood basis. The charts displaying the risk due to pile rot and the risk due
to settlement are depicted in Figure 2.7a and Figure 2.7b, respectively.
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(a) (b)

Figure 2.7: (a) The qualitative risk associated with damages due to wooden foundation poles [23]. , (b) The
qualitative risk associated with damages due to uneven settlement of the foundation [23].

Figure 2.7a and Figure 2.7b display the qualitative risks based on the multiplication of exposure
and vulnerability. However, when the vulnerability is cross-referenced with the hazard level and
multiplied by the exposure, the quantitative risk can be determined. Unlike acute events like
flooding, where damages are immediately visible, the deterioration of a foundation is a slow
process. As a result, the vulnerability increases over time due to the degradation of the foundation.

The deterioration of the foundation is influenced by various factors, including the duration of
drought periods, soil type, and the type of wood used for the piles. However, Costa et al. and
Koks et al. assume a linear relationship between the damage level and time, implying a consistent
degradation of the foundation over time. By adopting this assumption, it becomes possible to
determine the precise timing at which hazard thresholds are exceeded, aligning precisely with the
occurrence of damages. Combining this with an estimated base rate per hazard level allows for the
calculation of the total damage sustained by a property.

It is important to note that the linear deterioration of the foundation has not been conclusively
proven. The methodology proposed by Costa et al. and Koks et al. has been adopted by the
Klimaateffectatlas and is also incorporated into the methodology used by ABN Amro [12].
However, there are currently no published papers utilising this methodology or proposing
alternative approaches within the existing literature [15, 25].
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2.4.5 Climate risk incorporation in credit risks management

This subsection aims to explore the existing literature on the integration of climate effects with
the credit risk metrics for the residential mortgage portfolio. A study conducted by Weber et al.
investigates the current practices of banks in Europe regarding the inclusion of climate risks in
their credit risk management. The research involves sending questionnaires to 205 major banks
in Europe to gather information on their current implementation of environmental risks. The
study reveals that banks give more consideration to environmental risks during the rating phase
compared to other phases of the credit risk management process. Interestingly, during the costing
phase, 74% of the banks have only partially or not at all incorporated environmental risks, despite
the recommendation that these risks should be considered as these risks impact all phases of the
credit management process [61]. It should be noted that this paper was published in 2008, so the
banking landscape changed drastically after this period, where banks probably have incorporated
more environmental risks in their credit risk management process.

However, despite Weber’s paper being outdated, some of its points remain relevant today.
Berman’s paper echoes this sentiment by emphasising that current flood risk assessment tools are
insufficient and outdated in accurately measuring flood risk and the effectiveness of mitigation
strategies. Similarly, Monnin’s research highlights the absence of climate risks in credit risk
analysis but highlights the emergence of new methodologies for integrating these risks [62, 63].

Berman suggests that major banks should take the lead in developing standardised tools and
metrics for assessing flood risk and property resilience. These tools will be utilised during the
mortgage origination process, ongoing portfolio analysis, and asset management. Furthermore,
mortgage loan programs and incentives will be established to incentivise responsible risk
mitigation practices. These frameworks aim to enhance climate risk awareness among individuals
and facilitate efforts to mitigate such risks, ultimately reducing property owners losses and the
associated risk of loan default [62].

These papers primarily focus on the current integration of climate risk in credit risk management
and analysis. Subsequently, the following papers explore the impact of various climate events on
the residential mortgage portfolio, despite their lack of relevance to the Netherlands. However, the
methodologies used to connect climate events with mortgage credit risks could still be applicable
for this area.

One paper specifically examines the effect of Hurricane Harvey on mortgage credit risk, employing
a difference-in-difference (DiD) approach. This statistical method compares outcomes between
two groups before and after a climate event to estimate causal effects. The study investigates the
hurricane’s influence on default rates and also explores the impact of flood insurance on these
rates. Kousky et al. find that in the short term, mortgage delinquencies and forbearance increase
regardless of whether the property is insured against floods. However, in the long run, the default
rate for mortgages with flood insurance is statistically equivalent to that of undamaged properties,
while mortgages without flood insurance are more likely to default compared to the control group.
Thus, the results strongly support the notion that flood insurance not only provides financial
protection to households but also safeguards banks [53].

While the findings presented in this paper are valuable, one limitation of using the DiD
methodology is its reliance on historical data. This makes the methodology an unreliable tool for
predicting future credit risks associated with climate change trends [63].
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Another relevant to this research is a study by Rossi which examines the influence of hurricane
intensity and frequency on mortgage default rates, employing a standard logistic regression model
similar to the research conducted by Kousky et al. The regression results support the hypothesis
that an increase in hurricane intensity and frequency leads to a higher probability of default.
Consequently, if the frequency and intensity of major Atlantic hurricanes rise in the coming
decades, as suggested by meteorological research [64, 65], a larger number of borrowers will be
affected. This, in turn, is expected to result in higher default rates due to wind and flood damage
to residential properties, exposing banks to additional mortgage credit risks [66]. These regression
methodologies can be widely applied to various climate events, as demonstrated in studies like
Issler et al., where similar regression approaches to those used by Rossi and Kousky et al. are
employed to examine the impact of wildfires on mortgage credit risks [67]. Furthermore, Ouazad
and Kahn’s research confirms this statement, investigating the effects of different natural disasters
on the securitisation dynamics of residential mortgage portfolios through a series of identical
regressions [68].

The final paper to be discussed in this section is by Calabrese et al. What sets this paper apart
from previous contributions is its focus on incorporating the physical characteristics of extreme
events as explanatory variables, rather than solely assessing post-damage impacts. Unlike the
previous studies, Calabrese et al. aims to account for future changes in risk. To achieve this, the
paper employs an additive Cox proportional hazard model, which simultaneously evaluates the
effects of multiple factors on mortgage survival probability.

The overall model yields similar results to those obtained by Kousky et al. and Rossi. However,
the paper by Calabrese et al. demonstrates the differences in survival curves when weather events
are included or excluded from the models. The methodology involves two mortgages: Mortgage
A, which is subjected to a Category 3 hurricane with a low flood probability and limited rainfall,
and Mortgage B, which experiences a substantial amount of rainfall and a high flood probability.
The survival curves for Mortgage A and Mortgage B are illustrated in Figure 2.8a and Figure 2.8b,
respectively.

(a) (b)

Figure 2.8: (a) Survival curves for the Mortgage A as a result of the application of the default model[4]. ,
(b) Survival curves for the Mortgage B as a result of the application of the default model [4].
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The survival curves depicted in Figure 2.8 illustrate different scenarios. The black curve represents
the baseline survival curve without the inclusion of a weather event, while the blue curve
represents the survival curve when a weather event is taken into account. The red dotted line
indicates the specific time at which the weather event occurred. Both figures clearly show a
significant drop in the survival probability of the mortgage after the weather events, indicating
a notable negative influence on the probability of default. These figures demonstrate the impact of
these risks on the residential mortgage portfolio, especially with the increasing frequency of such
events due to climate change.

The most intriguing aspect of this paper is the scenario analysis conducted by Calabrese et al.,
which explores the future impacts of climate change using metrics from the 2050 First Street (FS)
flood model [69]. This model, developed by Bates et al., employs the RCP 4.5 climate scenario
to estimate the projected flood exposure of properties. The scenario analysis incorporates two
weather scenarios: scenario 1, which includes 300mm of precipitation in 5 days, and scenario 2,
which combines a category 2 hurricane with 200mm of precipitation in 5 days. The prediction
results reveal that the default probability increases by up to 36% for scenario 1 and 17% for scenario
2, depending on the city’s location, following changes in exposure from FS2020 to FS2050. The
highest increases are observed in coastal areas with the greatest flood exposure. Overall, based on
these findings, Calabrese et al. assert that climate change will bring about substantial changes in
risk. It is noteworthy that RCP 4.5 is considered a relatively mild scenario, and the impacts are
expected to escalate significantly in the latter half of the 21st century [4].
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3 Portfolio preparation

This chapter will describe the preparation of a dummy portfolio to predict the damages incurred
due to climate change. Normally, a bank has information regarding the location, surface area,
exposure, and underlying value of its loans. Nevertheless, this information is classified as highly
confidential. Therefore, this data is not openly shared with companies outside the bank. Hence,
to predict the implications of climate change on the VtL and LGD, a realistic portfolio is required.
This chapter explains how a generic portfolio utilised to represents a bank’s residential mortgage
portfolio is created and the underlying assumptions which are made in the process. A flowchart
schematically illustrating the steps explained in this chapter to create the private residential
mortgage portfolio is displayed in Figure E.1.

The first step in creating the portfolio is to determine the required size to accurately represent a
bank’s portfolio. To calculate the required sample size, first, determine the theoretical sample size
needed to replicate a portfolio with an infinite population. This initial calculation is crucial since it
acts as the basis for finding the sample size required for a portfolio with a finite number of houses.
The required samples for a theoretical infinite portfolio can be calculated with Equation 3.1 [70].

n =
Z2 · P (1− P )

ϵ2
(3.1)

Subsequently, the number of samples calculated with Equation 3.1 is employed in Equation 3.2 as
input parameter n. This equation is designed to calculate the required portfolio size to statistically
represent a portfolio with size N.

n′ =
n

1 +
Z2 · P (1− P )

ϵ2 ·N

(3.2)

Wherein, Z represents the z-score corresponding to the chosen confidence interval, N stands for
the population size of the original portfolio, ϵ denotes the margin of error, which quantifies the
degree of random sampling error and provides a measure of acceptable deviation from the true
value. Lastly, P represents the population proportion, indicating the proportion of the population
in a specific category [70]. In this case, a value of 0.5 is assigned because it is unknown for this
specific case and a value of 0.5 maximises the required amount of samples in the portfolio.

In this thesis, the ING portfolio will be employed as the basis of the created portfolio. Currently,
the outstandings in the ING residential mortgage portfolio in the Netherlands account for 114,219
million euros [9]. To determine the number of houses in the portfolio, the initial step involves
dividing this numerical value by the average Wet waardering onroerende zaken (WOZ) value for
residences in the Netherlands. However, simply performing this division of outstanding quantities
by the average WOZ value would not provide an accurate estimate. This inaccuracy arises because
the reported outstandings in the annual report cover the exposures of the bank, rather than
reflecting the valuation of underlying assets. As a result, it is essential to consider the valuation
of these underlying assets in relation to the overall exposures. In the annual report, ING provided
the distribution of the VtL as shown in Table 3.1.
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Table 3.1: VtL distribution of the 2021 ING residential mortgage portfolio [9].

VtL No cover 0-25% 25-50% 50-75% 75-100% >100%
Percentage - - - 0.5% 7.6% 91.8%

To estimate the average Value-to-Loan (VtL), a normal distribution is fitted to match the tail of
the mortgage portfolio. The best-fitting normal distribution to the figures provided in Table 3.1
has an average of 1.303 and a standard deviation of 0.217. This bears the assumption that the
VtL is normally distributed, which is difficult to validate without the actual portfolio. However,
in literature, modelling of expected loss and probability of default is sometimes conducted with
bivariate normal distributions [71]. These figures are indirectly linked to VtL values. Hence, the
estimation of a normally distributed VtL seems to be a reasonable assumption.

According to the CBS, the average WOZ value of houses in the Netherlands is €315,000 [72].
Combining the outstanding from ING, average VtL, and the average WOZ value, the size of
the residential mortgage portfolio in the Netherlands is estimated to incorporate approximately
472,500 loans. This is a rough estimate of the number of houses in the portfolio. However, the
formulation presented in Equation 3.2 reaches the limit of the required sample size for portfolio
sizes above 300,000 samples. At this juncture, the sample size required for the theoretical scenario
with an infinite number of houses in the portfolio equals the sample size needed for a finite
portfolio of over 300,000 samples. Consequently, the precise number of houses in the portfolio
becomes less critical, as long as it exceeds 300,000. Using Equation 3.1, the calculation shows the
portfolio should contain 4116 sample points given a confidence interval of 99% and a margin of
error of 2%.

The second step is to generate the actual coordinates of the points. Randomly generating points
within the Netherlands would not provide an accurate representation of a bank’s portfolio since
houses are not evenly spread across the Netherlands. Therefore, the population density is used
to associate each point with specific coordinates. A chart provided by the CBS divides the
Netherlands into sections using 100m by 100m squares, each containing information about the
population residing in that area [73]. This chart distinguishes between squares on land and squares
on water, allowing for the exclusive assignment of coordinates located on land.

To distribute the 4116 sample points randomly, points within the range of 0 to the cumulative total
population of the Netherlands are generated. For instance, if the simulation has covered 10 squares,
each accommodating 10 people, the cumulative population would be 100. If the subsequent square
holds 5 people, the simulation would assign a range of 100 to 105 to this square. If a randomly
generated number, such as 102, falls within this range, the simulation would determine a random
set of coordinates within the corresponding 100m by 100m square and subsequently incorporate
these coordinates into the portfolio. This process continues until a portfolio containing 4116 sample
points is constructed. The resulting distribution of points obtained through this methodology is
illustrated in Figure 3.1.
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Figure 3.1: Randomly generated points in the residential mortgage portfolio.

Rationally, the majority of the points in Figure 3.1 are located in the Randstad since the majority of
people live in this area. Additionally, major cities like Amsterdam and Rotterdam can be observed
due to a substantial cluster of points in close proximity.

With the longitude and latitude of the points determined, the third step is to correlate the
previously described climate risk data to the data points. Firstly, the flood probability and
maximum inundation depth charts are appended to the data points. The data from the
klimaateffectatlas is provided in a Tag Image File Format (TIFF) file and previously depicted
in Figure 2.4a. These files consist of approximately 3.25 billion points in a (61775,52880) matrix.
To correspond the longitude and latitude coordinates to the x-y data in the matrix, an affine
transformation is performed. An affine transformation is a linear mapping method that preserves
points, straight lines, and planes. Therefore, the longitude and latitude in the European Petroleum
Survey Group (EPSG) 28992 coordinate system can be transformed into x-y coordinates from the
flood matrix. With this transformation, the correct flood probability or maximum inundation depth
prescribed at the x-y coordinate can be added to the data set.
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The fourth step is to assign data regarding pile rot and settling to the portfolio. This data is also
from the klimaateffectatlas and is delivered as a geopackage. Geopackages are constructed from
small individual multi-polygons covering the entirety of the Netherlands. The circumferences of
the polygons are made up of lines between certain longitude and latitude points. Hence, the points
within these lines are precisely known. Therefore, it can be determined whether a longitude and
latitude from the portfolio is within a polygon. If the randomly generated coordinates of a point
are located within the circumference of the multi-polygon, the probability and severity data from
the klimaateffectatlas chart are transferred to the data of the point. This methodology applies to
both the settling and the pile rot data.

In the fifth step, the points are assigned to a neighborhood with an accompanying code. This code
is utilised to group points that are in close proximity to each other. This is necessary since floods do
not occur at a single individual location but in a larger area. Consequently, if a house is located in
the near vicinity, the likelihood that it is also affected by the flood would be substantial. Therefore,
the data set is appended with a unique neighborhood code. The different unique neighborhoods
in the Netherlands are provided by the CBS and displayed in Figure 3.2 [74].

Figure 3.2: Unique neighbourhoods located within the Netherlands [74].

The above-described methodology generates a dummy residential mortgage portfolio designed
to represent an actual bank portfolio. Additionally, the methodology demonstrates the data
preparation required for predicting incurred damages due to climate risk modeling.
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4 Modelling structure

This section describes the modeling structure and methodology used to predict the damages due
to climate change. The chapter incorporates the explanation of four different models based on the
previously constructed portfolio. First, the simulation that predicts the damages incurred due to
flooding is described. This simulation utilises the probability given by the inundation depth charts
as the basis for calculation. Secondly, a more extreme flood simulation is discussed, which is based
on the maximum inundation given the flood probability. Third, the simulation to forecast indirect
damages as a result of drought periods is defined. Lastly, the prediction which is responsible for
calculating the economic implications of the incurred damages is described. All these individual
simulations have a flowchart which are presented in Appendix E.

4.1 Flood simulation with given inundation depth

The quantification of climate risks should incorporate methodologies aimed at predicting physical
damage incurred up to 2050, as uncertainties beyond this point significantly increase. Previous
literature has outlined efforts to predict the impact of physical climate risks, including hedonic
price modeling, repeat-sales modeling, and a combination of the Bernoulli trial methodology
with a damage function approach. The latter is preferred for this research because it focuses on
prediction, whereas the former methods are retrospective.

The model used to predict flood damage based on inundation depth utilises the portfolio described
earlier. The simulation methodology for this prediction closely resembles the approach described
by ABN AMRO and applied by Koks et al. to identify flood-affected areas [12, 52]. These
methodologies employ a Bernoulli trial to determine the occurrence of a flood at specific locations.
Similar trial methodologies have been employed to detect other weather events, as demonstrated
in papers by Hossain et al. and Callaghan [37, 38].

For each individual point in the portfolio, a Bernoulli trail is employed to determine whether a
flood has occurred based on the assigned flood probability at the location. When the Bernoulli trail
yields a success, indicating a flood has occurred, the simulation records the event and calculates
the incurred damage based on the damage function methodology put forward by Deltares. This
methodology is preferred as it is tailored for properties in the Netherlands and is employed by the
Dutch government to determine water policy regulations. The calculation involves multiplying
the surface area by the damage factor and the base rate per square meter. While these paragraphs
provide a brief overview of the methodology and the reasoning behind its employment, the
subsequent paragraphs offer a more detailed description. A flowchart illustrating this simulation
can be found in Figure E.2.
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The Monte Carlo utilised in this research spans 30 years without dependencies between the years.
In this Bernoulli trail methodology, the Monte Carlo simulation draws a random number from a
uniform distribution between 0 and 1 for neighborhoods containing a point from the residential
mortgage portfolio. It then verifies whether the random sample is lower than the specific flood
probability of that point. Therefore, flood damage is assigned to the point. To predict damage
to a structure, a JRC-type damage function is employed. Specifically, the simulation utilises the
Standaardmethode 2017 Schade en Slachtoffers. These curves are relatively simple, incorporating
only inundation depth as a descriptive variable. However, as demonstrated in the comparative
analysis by Arrighi et al., these JRC-type curves, designed for specific areas, can yield estimates
comparable to those of more sophisticated models [49]. A description of the Standaardmethode
2017 Schade en Slachtoffers methodology is provided in subsection F.1, where the surface area of
the residential home and the property type are required for its application.

Both criteria are estimated based on the provided municipality code. The Netherlands is divided
into 352 municipalities. CBS provides information regarding the number of houses in different
surface area categories for both single- and multi-family homes [75]. Accordingly, a distribution
between the percentage of single- and multi-family homes can be constructed. To randomly
determine whether the house is a single- or multi-family home, a draw is taken from a uniform
distribution between 0 and 1 and compared to the fraction of single-family homes in the
municipality. If the sample is below the percentage of single-family homes, the house is assigned
as a single-household house. Conversely, if the sample is above the percentage of single-family
homes, the house is assigned as a multi-household house.

Subsequently, a random sample from a Weibull distribution is taken, which is prepared based on
the CBS data on the surface area of houses in the specific municipality. An example of such a
distribution is provided in Figure 4.1 below.

Figure 4.1: Weibull fit to the surface area distribution for the Utrecht municipality for a single-family house
[75].

A Weibull distribution to fit the data is utilised because the data for each municipality has a unique
shape. Typically, municipalities in the north of the Netherlands have a negative kurtosis with a
larger tail, whereas the surface area distribution in the randstad are closer to a normal distribution.
A Weibull distribution is capable of taking on various shapes, including these extreme forms.
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Subsequently, the damage functions from subsection F.1 are utilised to generate a damage factor
for the building. Additionally, the Standaardmethode 2017 Schade en Slachtoffers provides the
average damage per square meter, as shown in Table F.1. Therefore, the damage to the building
is calculated by multiplying the obtained damage factor by the average damage per square meter
and the surface area of the building. The resulting damage is discounted with the risk-free rate
to obtain the net present value of the damage. This methodology can be summarised in equation
form as shown in Equation 4.1.

Si =

30∑
j=1

aijSAiSNi

(1 + r)j
(4.1)

Wherein, S represents the incurred damage of building i due to flooding in the simulated 30 years,
a denotes the damage factor, SA represents the surface area of building i, SN represents the base
rate per square meter, r represents the risk-free rate, and j represents the simulation year ranging
from 1 to 30.

Subsequently, it is verified whether there are any additional points located within the
neighbourhood. If such points exist, the simulation checks whether the flood probability for this
point is also surpassed by the randomly generated Bernoulli trial. If this condition is met, the
previously described methodology is repeated until there are no more additional points in the
neighbourhood polygon.

4.2 Flood simulation with given flood probability

The flood simulation given the flood probability is constructed using a similar methodology
compared to the flood simulation given the inundation depth. The main difference lies in the
purpose of the simulation. This simulation aims to represent an unlikely but highly negative
scenario. The damage obtained with the maximum inundation depth given the flood probability
charts is more extreme than the flood probability given the inundation depth, as certain areas in the
map reach maximum inundation depths multiple times higher than the highest given inundation
depth utilised in the prediction described in subsection 4.1. This leads to higher damage factors
and, consequently, higher damages. Additionally, the modeling setup is designed to enhance
the extremity of the scenario. A flowchart describing this particular simulation is appended in
Figure E.3.

Similar to the previous simulation, the residential mortgage portfolio serves as the basis for this
simulation and the program runs a Monte Carlo simulations over a 30-year period. However,
this simulation differs from the previous one in terms of the Bernoulli trial methodology used
to assess flood occurrence. In the previous simulation, flood probability was determined by charts
that depended on inundation levels. In this methodology, flood probability remains fixed, while
the maximum inundation depth varies. The program checks whether each randomly generated
draw is lower than the given probability on any of the four provided probability maps from the
klimaateffectatlas dataset.
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Initially, the random draw is compared to the lowest probability map. If the random draw is lower
than the given probability, the associated inundation depth is passed to the damage functions.
However, if the random draw is higher than the given flood probability, the draw is compared to
the next lowest given flood probability and repeats this process until the draw is checked against
all the charts. If a flood probability higher than the randomly generated draw is encountered, a
flood probability higher than the randomly generated draw, it writes the corresponding maximum
inundation depth from the corresponding flood chart to the damage function. If the random draw
exceeds the highest flood probability, the Bernoulli trial determines that no flood has occurred. The
different flood probabilities given to the charts are outlined in Table 4.1.

Table 4.1: Flood probabilities for the inundation depth flood charts provide by the klimaateffectatlas [23].

Chart Name Flood Probability

Very small 1/100,000
Small 1/1,000
Medium 1/100
High 1/10

The actual damage calculation is identical to the procedure practiced in subsection 4.1. First, the
damage factor is calculated from the inundation depth followed by the overall damage from the
multiplication of the surface area, damage factor, and base rate per square meter. Second, the
damage is discounted with the risk-free rate. This methodology is comprised in Equation 4.1.

The extremity in this modeling technique arises due to the exploitation of the four charts in
one model and the usages of the maximum inundation depth since this greatly improves the
frequency of floods and increase the severity of the occurred flood. Consequently, the observed
damages from this simulation are expected to be higher compared to the methodology explained
in subsection 4.1.

4.3 Indirect damage to the residential mortgage portfolio simulation

The simulation of indirect damages to the residential mortgage portfolio presents a distinct
approach compared to the methodologies discussed earlier. This methodology draws upon a
framework proposed by Costa et al. [15], previously discussed in the literature review. This
methodology employs a continuous increase of the damage, whereas the damage due to floods
has a discrete modeling methodology. Although the methodology is rather simplistic, there
are currently no alternatives due to the early stage of research on this topic. Therefore, this
methodology is deemed the best fitting for this research at the moment. A flowchart illustrating
the process of predicting the indirect damages to the residential mortgage portfolio utilising this
methodology is presented in Figure E.3.

Similar to the previous predictions, a Monte-Carlo simulation across thirty years is utilised.
Currently, the data provided by the klimaateffectatlas includes expectations on the severity level
in 2050 [76]. According to the klimaateffectatlas, the pathway to this end-point is relatively
linear, which is a fair approximation since the indirect influences are comprised of a continuous
degradation, meaning the degradation has a nearly constant rate. The simulation exploits this
concept and applies an almost linear pathway of the severity level to the provided end-point.
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Similar to the methodology proposed by Costa et al., the severity of the damage is distributed
across five damage categories. The five levels of damage which can occur are described in
Appendix D. If the vulnerability exceeds a certain hazard level, indicating a specific threshold
is surpassed, damage is assigned to the house. The data from the klimaateffectatlas provides
expectations on the severity level in 2050 and does not include any uncertainty with the outcome
of the simulation. Therefore, to create some randomness in the simulation, the severity at 2050 has
been given a three-sigma of half a point. The simulations predicts across thirty years, and hence
the variability has to be distributed across the thirty years. To convert the three-sigma of half a
point over 30 yeas to a one year one-sigma, the conversion shown in Equation 4.2 is required.

σ1 =

√√√√√(
3σ30
3

)2

30
=

√√√√√(
3 · 0.5
3

)2

30
=

√
1

1080
(4.2)

In the methodology employed in this research, all houses are assumed to start at a severity
level of 0. Every simulated year, a random draw from a normal distribution with a mean of
the point expected severity at 2050 divided by the number of years in the simulation and a

standard deviation of
√

1

1080
is added to the severity level. This creates a relatively linear pathway

towards the expected severity in 2050 provided by the klimaateffectatlas. A schematic example of
a pathway up to the highest damage level is provided in Figure 4.2.

Figure 4.2: Exemplary pathway for the severity level for indirect damages to the residential mortgage
portfolio.

The severity level for all the data points is yearly increased until it surpasses an integer level. Once
this occurs, a damage value is assigned to the house according to Table D.1. This table provides
the maximum and minimum repair costs for the incurred damage to the house. By setting the
difference between the maximum and minimum costs to six sigma, which covers 99.99966% of
the samples, the standard deviation can be estimated. Additionally, the mean is calculated as
the average of the maximum and minimum repair costs. The calculated means and standard
deviations for the five severity levels are displayed in Table 4.2.
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If a point reaches the highest severity level of five before the end of the 30-year simulation,
the severity level is kept at five and no more damage is assigned to the point. The underlying
assumption for this is that at severity level five, the entire foundation is rebuilt, effectively
solving the problem. Furthermore, the methodology assumes no efforts are made to improve
the foundation before reaching severity level five. In reality, people might choose to renovate or
replace their foundation before severity level five. However, this decision-making process is not
incorporated in the methodology due to the lack of available information regarding when and if
such decisions are made.

Table 4.2: Damage categories with accompanying mean and standard deviation for the repair costs.

Severity level Mean Standard deviation

1 1,250 250
2 2,750 750
3 6,000 1,333.33
4 35,000 8,333.33
5 75,000 15,000

To ensure consistent damage estimation across different damage categories, only one random draw
is taken from a standard normal distribution. Subsequently, the corresponding probability of this
random draw is calculated using the cumulative distribution function (CDF). This probability is
matched with the appropriate CDF of the normal distribution based on the just surpassed severity
level and the corresponding damage is assigned to the data point. This approach is adopted
because the damage to a house is primarily impacted by its surface area. Consequently, the CDF
probability of the repair costs remains relatively consistent across severity levels, as it is assumed
that the surface area of a house does not change over time.

Subsequently, the net present value (NPV) of the damage is calculated by discounting the incurred
damage using the risk-free rate and the year in which the damage occurs. The severity level is
increased until the 30-year simulation period is completed. To assess the risk associated with the
incurred damages, the total damage to the structure is multiplied by the probability of the house
being on the appropriate foundation type for the indirect damage to occur. These incurred damage
are then utilised to determine the economic implications of the indirect damages due to climate
change.

4.4 Economic implications of the incurred damages

The final part of the simulation utilised in this thesis serves as the central point. It acts as
a coordination point, providing information to all the previously mentioned simulations in
this chapter, while also receiving the incurred damages from them. Besides, this simulation is
responsible for analysing the economic implications resulting from the incurred damage to the
portfolio. The flowchart representing the steps in explained in this subsection is provided in
Figure E.5.
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The analysis of the economic implications of the incurred damage on the portfolio begins by
combining the points in the original portfolio with the damage portfolio, which only includes
points with a flood probability. The value of the underlying asset is then estimated, representing
its market value. However, assigning a market value to a house proves to be challenging due to
limited information available on the actual sales price distribution within an area. Typically, only
average sales prices for a specific period are publicly available. To properly estimate the value of
the underlying asset, the WOZ value is utilised. The average WOZ value for each municipality is
publicly available [77], although the actual distribution per municipality is not provided. However,
a categorised distribution of the WOZ value for the entire Netherlands is disclosed by the CBS,
which can be converted into a Weibull distribution [78]. In order to establish a distribution
per municipality, it is assumed that this WOZ-distribution is equal across all the municipalities.
However, a shift factor proportional to the average WOZ value of the municipality compared to
the national average is added. This adjustment ensures that the distribution’s mean aligns with
the CBS-provided average for the particular municipality. A random draw from the appropriate
distribution function is taken as an approximation of the actual value of the underlying asset.

Subsequently, the exposure at time t based on the underlying asset value and the VtL distribution
constructed in section 3 is determined. Next, the damages incurred on the underlying asset due
to flooding or indirect causes are deducted from the value of the underlying. Typically, when
an underlying asset is repossessed, the bank aims to sell the property quickly, often through an
execution auction. Generally, the bank receives less money compared to the current market value of
the underlying asset. Therefore, a haircut is applied to the value of the underlying asset. Currently,
as per Basel CRE36, banks are allowed to apply a singular haircut based on historical internal data
[79]. However, this information is confidential and not publicly available. Thus, an approximation
of the haircut is incorporated into the prediction. The estimation is based on the data published in
a paper by Leow and Mues [80], where Leow and Mues researched a two-stage LGD model that
includes a haircut for repossessed and forced-sold properties. The data is based on the UK housing
market, but it is assumed to be a good approximation of the Dutch residential market. The data
used by Leow and Mues is presented in Figure 4.3.
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Figure 4.3: Distributions of observed haircuts in the UK residential market given a repossession and forced
sale [80].

A random draw from this distribution is taken and applied to the value of the underlying asset
as a haircut. Subsequently, this recovered value is utilised to generate a new VtL by dividing the
repossessed value by the exposure at time t. Additionally, the LGD is calculated by first subtracting
the recovered value from the exposure and then dividing this value by the exposure. The LGD
cannot be negative since a loss cannot be negative. Therefore, the LGD is programmed to be the
maximum of the calculated LGD or zero. The entire calculation performed by the prediction is
summarised in Equation 4.3.

LGDit = max

(
EADit − (1− β) · V alue underlyingit

EADit
, 0

)
(4.3)

Wherein, EADit represents the exposure at default of loan i at time t, LGDit represents the loss
given default of loan i at time t, and β represents the haircut applicable to the underlying.
After completing this methodology, the economic implications of the incurred direct and indirect
damage are visible.

4.5 Modelling interdependence

This chapter has provided an overview of the individual simulation and the corresponding
assumptions. To illustrate the interdependencies between the various simulations and the involved
portfolio, Figure 4.4 has been created. This flowchart outlines the data importation and information
sharing between different simulations. Clearly, file which calculates the economic implications of
the incurred damages serves as the central component of the program. However, it is important to
note that the flood simulation based on flood probability is treated as a separate simulation. This
design choice was made to ensure a realistic main simulation. As discussed in this chapter, the
flood simulation based on flood probability represents an extreme scenario that is highly unlikely
to occur. Therefore, this simulation is not included in the main modelling structure.
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Figure 4.4: Design and interdependencies of the overall simulation.

4.6 General remarks on the methodology

Both the modeling of acute and chronic climate events is based on a static model primarily due
to the limitations of currently available input parameters. In the Netherlands, the primary source
of climate data provides cross-sectional data at specific points in time, such as 2050 and 2100.
Consequently, creating a dynamic model with this data is challenging, leading to the decision to
employ a static modeling methodology.

The methodology explained in this chapter relies heavily on the input parameters. For example,
the flood probability in 2050 is contingent upon expected climate change and expected compliance
with the Waterwet 2050. Given the complexity of Earth’s climate and long-term uncertainties in
politics, these figures are subject to change over time, resulting in significant uncertainty associated
with these parameters. Therefore, models of this nature could potentially be run annually using
updated and improved input parameters. However, in the context of this research, the validity
and realism of the predictions could be questioned due to these uncertainties. Specifically, for
the extreme prediction scenario, there may be concerns about its realism. Nevertheless, the
assumptions made in these methodologies can only be validated over time, and as such, these
uncertainties, although acknowledged, cannot be minimised with current knowledge.
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5 Results

This chapter presents the outcomes of the predicting model explained earlier. The results are
organised into four sections. Firstly, the direct flood damages are examined, focusing on the
impacts of flooding on the residential mortgage portfolio. Secondly, the analysis explores the
indirect damages caused by pile rot and settling. Subsequently, the discussion shifts to the
influence of these damages on the VtL and LGD. Lastly, the direct damages resulting from the
alternative extreme flood modeling methodology are discussed. This subsection incorporates all
previous subsections, including the incurred damages and their implications on the VtL and LGD.
Additionally, some additional information outside of the scope of the main research is provided
which regards the required risk capital and the connection of the results with the current regulatory
framework.

The results section is setup to first describes the incurred damages on the portfolio for both the
direct as well as the indirect damages. A full description, explanation, and risk allocation of these
results are provided in subsection 5.1 and subsection 5.2 after which the main research question is
answered in subsection 5.3 based on the results of these two subsections.

5.1 Direct flood damages

In this subsection, the direct flood damages to the residential mortgage portfolio are explained.
This section is divided in four distinctive parts where the first parts examines the incurred damages
on the portfolio and the distribution these damages. Secondly, a partial validation of the results is
discussed. Thirdly, the scaled quantity of damage for the current ING portfolio and the entire
Netherlands is generated and analysed. Lastly, the allocation of flood risk patterns across the
Netherlands is computed and examined.

In this subsection, an explanation of the direct flood damages to the residential mortgage portfolio
is discussed. This section is divided into four distinctive parts, with the first part examining the
incurred damages on the portfolio and their distribution. Secondly, a partial validation of the
results is discussed. Thirdly, the scaled quantity of damage for houses nationwide is generated and
discussed. Lastly, the regions within the Netherlands where the risk of flood damages is discussed.

The direct flood damages to the residential housing are based on three flood probability charts with
a given inundation depth. The amount of damage incurred on the structures is dependent on the
location of the property, surface area, and inundation depth of the flood. The probability of a flood
occurring with a low inundation depth is relatively high, whereas floods with an inundation depth
of 2.0 meters rarely occur. To illustrate the difference between these flood charts, a summation of
the incurred damages obtained within the 30 years from each Monte Carlo simulation is combined
into a histogram. The histogram for the simulation with an inundation depth of 0.2 meters is
provided in Figure 5.1.
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Figure 5.1: Histogram of flood damages to houses from the Monte Carlo given an inundation depth of 0.2m.

The histogram from the obtained damages with an inundation depth of 0.2m closely represents
a normal distribution. The data matches a normal distribution fit to the observations, which is
represented by the blue line. Additionally, the median and mean are approximately identical.
Contrarily, the incurred damages histogram from the simulation with an inundation depth of 2.0
meters has a substantially different shape. This histogram is depicted in Figure 5.2.

Figure 5.2: Histogram of flood damages to houses from the Monte Carlo given an inundation depth of 2.0m.
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As can be noticed from Figure 5.2, the histogram of the damages with the inundation depth chart
of 2.0 meters becomes positively skewed, i.e., the average is higher than the median. This positive
skewness induces a heavy tail on the higher side damages, which could be very dangerous to a
bank if ignored [81, 82]. These tails emerge from a statistical property of the Poisson distribution.
The Poisson distribution is a statistical probability distribution that models the likelihood of a
certain number of events occurring within a specific time interval, given the average rate of
occurrence. Hence, the Poisson distribution is discrete since it counts the number of events in
a time period. The gamma distribution is a comparable distribution wherein the time until a
specified number of events occurs is modeled. Contrarily to the Poisson distribution, the gamma
distribution is a continuous probability distribution [83].

Because time is continuous and the number of events is discrete, both Figure 5.1 and Figure 5.2
are fitted with a gamma distribution. The gamma distribution posses the property that if the
shape factor goes up the distributions tends to become normally distributed [84]. This shape
factor is inherently connected to the time till the next event where the shape parameter goes
up if the time to the next event becomes shorter. Because the probability of an event occurring
with a given inundation depth of 0.2m is multiple times higher compared to the probability of
an event occurring with a given inundation depth of 2.0m, the time between events is smaller and
hence a more pronounced gamma distribution is obtained with the prediction given an inundation
depth of 2.0m. The observation of a gamma distribution is backed by previous researches on the
hydrological flood frequency since these researches have shown frequent usage of Gamma family
distributions. Several research concludes these types of distributions are best suitable as inputs
for flood frequency models. Therefore, with enough time until the next flood event, the obtained
flood frequency curve tends to become a gamma distribution [85, 86]. To better illustrate the effect
of the time until the next event, the average flood probabilities in the prepared residential mortgage
portfolio are provided in Table 5.1.

Table 5.1: Average flood probability of the points in the residential mortgage portfolio across the simulated
inundation depths.

Inundation depth (m) 0.2 0.5 2.0

Average flood probability 5.43· 10−4 3.56· 10−4 4.58· 10−5

Average yearly flood occurrence 2.228 1.458 0.188

Table 5.1 displays the average flood probability of the simulation with an inundation depth of
0.2m is almost twelve times as high compared to the simulation with an inundation depth of 2.0m.
Hence, the time between events is smaller, and the obtained damages become more normally
distributed. In between these two extremes, the simulation with an inundation depth of 0.5m is
located. The histogram of this simulation is provided in Figure 5.3.
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Figure 5.3: Histogram of flood damages to houses from the Monte Carlo given an inundation depth of 0.5m.

The histogram in Figure 5.3 is relatively close to a normal distribution. This is in accordance with
the expectations since the average flood probability of the simulation with an inundation depth
of 0.2m is only one and a half times as high as the simulation with an inundation depth of 0.5m.
Therefore, the time in between events is rather similar, and hence the distribution is expected to
be comparable. However, to statistically demonstrate the dissimilarities between the simulations,
a comparative analysis is constructed with the most important parameters. The results of this
analysis are displayed in Table 5.2.

Table 5.2: Comparative analysis of the statistical import parameters regarding the flood simulation given
the inundation depth.

Inundation depth (m) 0.2 0.5 2.0

Average (€) 656,247 826,308 204,017
Median (€) 654,997 816,770 175,904
Percental difference
average and median

0.19% 1.17% 15.98%

Skewness 0.141 0.333 1.039

The skewness of all the simulations displays a positive shift, indicating a heavier right-tailed
distribution. Statistically, distributions are considered symmetrical with a skewness below 0.5 [87].
Hence, the simulation with a given inundation depth of 0.2m and 0.5m is recognised as a normal
distribution, whereas the simulation with a given inundation depth of 2.0m is regarded as heavily
skewed towards the right. This is important to establish in credit risk since the value at risk (VaR)
and expected shortfall (ES) are dependent on the right tail skewness of the distribution.
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To prepare for the worst-case scenarios, banks have developed the VaR and ES. The VaR can be
defined as the maximum possible loss during a time period t after excluding all worse outcomes
whose combined probability is at most p. The ES is an adjustment on the VaR by taking the average
of the outcomes above the VaR to account for non-normal behavior in the tail. To identify these tail
risks, this research incorporates these factors in the analysis of the results. The observed VaR and
ES of the pr editions are provided in Table 5.3.

Table 5.3: Value at risk and expected shortfall regarding the flood simulation given the inundation depth.

Inundation depth (m) 0.2 0.5 2.0

Average (€) 656,247 826,308 204,017
90% VaR (€) 796,586 1,060,155 388,002
90% ES (€) 851,983 1,149,155 486,618
99.9% VaR (€) 1,003,836 1,407,510 795,136
99.9% ES (€) 1,019,891 1,469,624 857,947

The average, VaR, and ES of the simulation with a given inundation depth are all the highest
with the inundation depth set at 0.5m. This originates from a mixture of the inundation depth
influencing the damage factor and the probability of the event occurring. The combination of these
is the highest in the simulation with the given inundation depth of 0.5m. Later in this subsection,
these figures will be employed to adjudicate the financial implications on a bank’s portfolio.

First, the numbers the program provides need to be validated against a real case. During the last
decades, the Netherlands has suffered relatively few influential floods up to the 2021 flooding in
Limburg. To validate the damages from the simulation, this event will be utilised since it is a flood
which recently occurred and affected mainly residential properties. The Verbond van Verzekeraars
reports about 10,000 claims from people primarily focused on household inventory and structure.
These claims amount to a total incurred damage of around 210 million euros, which equals around
21,000 euros per claim [88]. To compare to the simulation, the average damages per claim coming
from the program are provided in Table 5.4.
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Table 5.4: Average incurred damage per
claim regarding the flood simulation given the
inundation depth.

Inundation depth
Average damage
per house (€)

0.2 10,906
0.5 20,455
2.0 38,757

Figure 5.4: Inundation depth during the 2021
Limburg floods [89].

The claims originating from the simulation are strongly dependent on the inundation depth. To
properly compare the incurred damages from the simulation to the claims from the Limburg
flood, the approximate inundation depth of the flood has to be determined. Figure 5.4 depicts the
recorded inundation depth during the 2021 Limburg floods. The picture shows the inundation
depth is between 0.1m and 2.0m with commonly observed depths between 0.5m and 1.0m.
Therefore, the average damage per house from the simulation with a given inundation depth of
0.5m is a good reference to the floods in Limburg. The simulation provides an average damage of
€20,455 per house given the house incurred flood damage. Hence, the prediction is verifiable since
this number is comparable to the average damage incurred on houses during the Limburg floods.

Additionally, a paper by Ermolieva et al. obtains similar results with a different modeling
methodology. Ermolieva et al. utilise a Hazard-Exposure-Vulnerability methodology to predict the
flood damages to households for a region around Rotterdam [90]. The results from this paper are
provided in Table 5.5. The paper specifically provides the total amount of losses and the number
of affected citizens. However, the paper does not include the quantity of affected households. To
scale the damages to the amount per household, the damage per citizen is multiplied by 2.13,
which represents the average number of residents per household as of 2022 [91].
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Table 5.5: Losses obtained by Ermolieva et al. from floods for a region around Rotterdam [90].

Flood probability Total damage Affected citizens Damage per citizen Damage per household

1/10 20,248,656 1,804 11,224 23,908
1/100 54,404,334 7,354 7,398 15,758
1/1000 96,487,015 11,585 8,329 17,740

The model developed by Ermolieva et al., which utilises a different methodology, yields similar
results compared to the methodology employed in this thesis. Consequently, the model’s results
are validated using current available literature on this topic and actual damages from the Limburg
floods. However, it is important to note that these analyses do not fully validate the model, as
the results of the damage calculation are primarily influenced by the damage functions used in
this methodology. The validation of the Bernoulli trial component of the methodology is more
challenging, as it relies on the predicted flood probability in 2050, which is dependent on future
regulations and made efforts to reduce flood probability.

The setup of the portfolio allows for the allocation of flood risks to a particular area. The program
provides the average incurred flood damages per point across all the Monte Carlo iterations. This
average indicates the flood risk a certain point bears. The incurred damages to each point are
loaded into a program called QGIS. QGIS creates a heatmap based on the amount of incurred
damages within a circle of 20 kilometers. The greater the amount of incurred damages within a
radius of 20km, the greater the flood risk of the area. Figure 5.5a and Figure 5.5a display the heat
maps for the simulation with a given inundation depth of 0.2m and 2.0m, respectively.
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(a) (b)

Figure 5.5: (a) Heatmap of incurred flood damages on the residential mortgage portfolio given an inundation
depth of 0.2m., (b) Heatmap of incurred flood damages on the residential mortgage portfolio given an
inundation depth of 2.0m.

The areas with the greatest flood risks, as indicated by heat maps, are situated near Amsterdam.
Especially, the simulation given an inundation depth of 0.2m has almost all risks concentrated
around Amsterdam. Other areas that bear some flood risks are the regions around Zwolle,
Groningen, and Rotterdam. However, this is only marginal compared to the Amsterdam area. The
risk being allocated to one particular area is a consequence of the population density, population
size, and flood probability. With a population of around 900,000, the municipality of Amsterdam
has roughly 250,000 more residents than the second-ranked city of Rotterdam. Additionally, the
municipality of Amsterdam is rated as the fourth densest municipality in the Netherlands [92].
Combining this with a relatively high flood probability as visible in Figure B.1a, the risks are
predominantly located in this area.

Comparably, the simulation with a given inundation depth of 2.0m has the majority of the risks
around the Amsterdam area. However, the other areas with a medium flood risk are cities located
close to the rivers such as the Ijsel, Waal, and Rijn. Primarily, this is induced due to the high flood
probability around these rivers. Additionally, the population density around Arnhem, Zwolle, and
Den Bosch elevates the risks.
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The flood risk allocation from the simulation given an inundation depth of 2.0m is predominantly
dependent on the flood probability since according to Figure B.1b, a substantial part of the major
cities within the Netherlands has a flood probability of zero. Contrarily, the simulation given
an inundation depth of 0.2m is mainly dependent on the population size and density since a
substantial portion of the Netherlands has a relatively high flood probability. The simulation with
a given inundation depth of 0.5m provides a heat map that is almost identical to the heat map of
the simulation with a given inundation depth of 0.2m. Similar to the heat map of the simulation
given an inundation depth of 0.2m, the distribution of the flood risk is primarily induced due to
the population size and density. The heat map of this simulation is provided in Figure 5.6.

Figure 5.6: Heatmap of incurred flood damages on the residential mortgage portfolio given an inundation
depth of 0.5m.

The difference between the simulation with a higher inundation depth is induced by the flood
type. Commonly, the smaller inundation depths are induced by coastal flooding, whereas the
damages in the simulation given an inundation depth of 2.0m are caused by river floods. This
contrast is visible in the probability charts since the probability of a flood occurring with a given
inundation depth of 2.0m is almost solely associated with areas around the major rivers in the
Netherlands, whereas the probability chart given an inundation depth of 0.2m has a positive
probability assigned to almost half of the points in the Netherlands.
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The heat maps exhibit a diverse portfolio of regions with a significant risk of flooding.
Nevertheless, the most predictable region is not embraced in the heat map. Specifically, the Maas
area in Limburg is allocated with a low amount of risk. However, the previous three major floods
all occurred within this province. Therefore, a logical question is why? The answer has to do with
the preparation of the portfolio and the probability charts. The probability charts do display a
very high probability of a flood occurring near the Maas in Limburg. However, the area around
the Maas with a high probability is incredibly narrow. The widest span of flood probability along
the Maas in Limburg reaches up to 2.5km from the riverbank, while in most segments, the flood
probability extends only 1km from the bank. Hence, a substantial portion of the houses in Limburg
does not have a flood probability since even within cities, houses are not always located within
1km of the river. Consequently, the program does not recognise the Maas in Limburg as a high-risk
area since the impacted area around the Maas is relatively small, and therefore, a considerable
amount of damage is not obtained from this area. This observation highlights the limitation of
using a simulated portfolio instead of an actual bank’s portfolio. Additionally, this highlights the
problems associated with utilising a smaller portfolio which significantly decreases the granularity
of the results.

A simplistic validation of these results can be achieved by comparing the results with literature
regarding the possible damage in a protected area per kilometer of primary flood defense. A paper
by Ten Brinke et al. evaluates these numbers for the Netherlands and finds that the provinces of
Friesland, Groningen, and Noord-Holland bear significant potential flood risks, with the largest
risks being allocated to Zuid-Holland [93]. These provinces also appear in the analysis performed
in this thesis regarding flood risks. Although these results provide an indication the results are
valid, a proper validation with these results from Ten Brinke et al. is not possible since the results
from the paper regard the possible damages per kilometer of primary flood defense, whereas the
employed methodology in this research predicts the possible damages per square kilometer of
land. Hence, the paper by Ten Brinke et al. provides an indication that the model performs well.
However, a full validation cannot be achieved with these results.

To generate a flood risk for an entire bank portfolio, the simulated portfolio should be scaled.
Currently, the simulation is based on a portfolio with 4116 samples. Therefore, the average damage
is scaled to this number of houses. However, the size of the sample is established so that it would
be representative of a portfolio with an infinite number of houses. Hence, the damages incurred on
the sample portfolio can be linearly interpolated to the ING portfolio and a nationwide portfolio.
The interpolated numbers for these portfolios are provided in Table 5.6.

Table 5.6: Average incurred damages for different interpolated portfolios regarding the flood simulation
given the inundation depth.

Inundation depth
Average damage
(Portfolio) (€)

Average damage
(ING portfolio) (M€)

Average damage
(Nationwide) (M€)

0.2 656,247 76 1,289
0.5 826,308 95 1,623
2 204,017 24 401
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Currently, the Netherlands has 8.05 million registered houses, which would incur between 400
million and 1.6 billion euros of flood damage in the upcoming 30 years according to the prediction.
Scaled to the residential mortgages in the Dutch ING portfolio, this equals damages between 24
and 95 million euros. In relation to the outstanding amount of the ING mortgage portfolio, which
is 113,846 million euros, the figure of 95 million euros is relatively insignificant. However, further
discussion on the impact of these damages, combined with indirect climate risks, is provided at
the end of this chapter.

5.2 Indirect damages

In this subsection, the indirect flood damages to the residential mortgage portfolio are explained.
Similar to the previous section, this section is divided in parts. First, the incurred damages on the
portfolio and the distribution of these damages are examined. Secondly, the validity of the obtained
results are discussed. Thirdly, the scaled quantity of damage for the current ING portfolio and the
entire Netherlands is generated and analysed. Lastly, the allocation of both settling and pile rot
risks to specific areas in the Netherlands is generated and examined.

As discussed in the literature review, the indirect damages to the Dutch residential mortgage
portfolio are induced by pile rot and settlement. The extent of damage to the structure depends on
the cumulative severity level assigned by the simulation. The employed prediction methodology
for these types of damages utilises a Hazard-Exposure-Vulnerability framework. An example of
this methodology is illustrated in Figure 4.2. The resulting damage to the structure is subsequently
multiplied by the probability of the house being constructed on a suitable foundation that is prone
to pile rot or settlement. The input parameters from the Klimaateffectatlas offer high and low
scenarios for both pile rot and settlement. The resulting damages caused by pile rot using both the
high and low scenarios are depicted in Figure 5.7a and Figure 5.7b, respectively.

(a) (b)

Figure 5.7: (a) Histogram of incurred pile rot damages with the high scenario provided to the prediction.,
(b) Histogram of incurred pile rot damages with the low scenario provided to the prediction.

49



5 RESULTS

The simulation predicts damages caused by pile rot that follow a normal distribution. This
result is expected since pile rot is presumed to be a continuous process, leading to a gradual
increase in damage to the structure. Therefore, the incurred damages are anticipated to exhibit
a histogram that follows a normal distribution. In both Figure 5.7a and Figure 5.7b, the average
and median values are very close to each other, indicating a normal distribution. Additionally, the
skewness values of 0.095 and 0.102 for Figure 5.7a and Figure 5.7b, respectively, further support
the observation of a normal distribution. The second indirect damage mechanism is the settlement
of a house. Similar to the pile rot damages, there are high and low scenarios. The observed damage
distribution of the high and low scenarios are depicted in Figure 5.8a and Figure 5.8b, respectively.

(a) (b)

Figure 5.8: (a) Histogram of incurred settling damages with the high scenario provided to the simulation.,
(b) Histogram of incurred settling damages with the low scenario provided to the simulation.

Both histograms depicting the damages caused by settling exhibit a normally shaped distribution,
similar to the pile rot damages. The skewness values for the high and low scenarios are relatively
low, measuring 0.124 and 0.119, respectively. The similarity in the shape of the distributions can be
again attributed to the continuous nature of the settling damage mechanism.

However, it is worth noting that the total amount of damage incurred due to settling is
approximately three times higher compared to the damage caused by pile rot. This indicates that
settling poses a greater risk in terms of potential damage to the structure. The most relevant figures
representing the indirect damages from both pile rot and settling are summarised in Table 5.7.

Table 5.7: Simulated indirect damages to the residential mortgage portfolio.

Indirect damage Scenario Average damage (€) 90% VaR (€) 99.9% VaR (€)

Pile rot High 332,523 339,294 348,674
Pile rot Low 319,023 325,325 334,404
Settlement High 1,035,242 1,083,620 1,147,042
Settlement Low 705,871 746,967 807,370
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The difference between the indirect damages caused by settling and pile rot can be attributed to
the year of construction of the houses. Wooden foundation piles, which are susceptible to pile rot,
were primarily used in buildings constructed before 1975. This means that more than half of the
houses in the Netherlands are already excluded from the risk of pile rot damage [75]. Furthermore,
even among the buildings from this period, only a fraction of them are actually built on wooden
piles and are therefore susceptible to pile rot.

In contrast, a significant portion of houses in the Netherlands is constructed on shallow concrete
foundations, making them more prone to settling. As a result, the multiplication of the incurred
damage and the probability of the house being built on the appropriate foundation is considerably
higher with the settling mechanism compared to the pile rot mechanism.

To support this statement, data on the average severity and average probability of houses being
subjected to the indirect damage mechanisms is generated from the simulated portfolio. This data
provides confirmation of the higher risk associated with settling compared to pile rot.

Table 5.8: Average severity level and occurrence probability of the houses in the residential mortgage
portfolio.

Indirect damage Parameter Average

Pile rot Severity High 0.973
Severity Low 0.949
Probability 6.90%

Settlement Severity High 0.578
Severity Low 0.477
Probability 66.71%

Table 5.8 displays the average occurrence probability of pile rot, which is ten times lower compared
to the occurrence probability of settlement. However, the average severity level for pile rot is twice
as high. As a result, the average damage due to pile rot is higher, despite the lower probability
of occurrence. These differences in severity and probability lead to variations in the incurred
damages. Although the overall damages from pile rot are lower, a bank could still consider a
higher risk premium if a house is deemed susceptible to pile rot compared to a house susceptible
to settlement since the average incurred damage per point is higher. Nevertheless, this is only
applicable if there is decided to do a case-by-case calculation of a climate risk premium instead of
applying a general risk premium for a specific area.

Furthermore, Table 5.8 explains the relatively similar incurred damages in both scenarios for the
indirect damage due to pile rot. The divergence between severity levels in the high and low
scenarios is relatively small, resulting in rather similar damages. In contrast, there is a more
significant difference in settlement damages between the scenarios, as reflected in the severity
level with noticeable variance.

Validating the incurred indirect damages is challenging due to insufficient documentation on
foundation damages caused by pile rot and settling. However, as a reference, Deltares conducted
research on expected foundation damages up to 2050, which estimated a total range of 5 to 39
billion [25]. Currently, the damages are based on the generated residential mortgage portfolio. To
properly compare these results, the incurred damages should be scaled to the national level. The
linear scaling of the portfolio is provided in Table 5.9.
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Table 5.9: Average incurred damages for different interpolated portfolios regarding pile rot and settling.

Indirect damage Scenario
Average damage
(Portfolio) (€)

Average damage
(ING Portfolio) (M€)

Average damage
(Nationwide) (M€)

Pile rot High 332,523 38 653
Pile rot Low 319,023 37 627
Settlement High 1,035,242 119 2,033
Settlement Low 705,871 81 1,386

The combined damages from both high scenarios amount to 2.65 billion euros, which is
significantly lower than the lowest value provided by Deltares. However, it is important to note
that the damages from the simulation are discounted using a risk-free rate of 5%. This discounting
takes into account the year in which the damages occur. Currently, the simulation is set up such
that each foundation starts at a severity level of zero and can escalate to level five after 30 years.
As shown in Table 4.2, the damage incurred by a house increases exponentially with the severity
level. Therefore, the higher repair costs occur towards the end of the 30-year period. Consequently,
the damages could be discounted by up to 75%. Thus, the actual damages are higher than what is
displayed in Table 5.9.

As a reference, a prediction without the risk-free rate was also conducted, resulting in an average
combined indirect damage of €3,643,305. Scaled to the number of houses in the Netherlands, the
total indirect damages amount to 7.2 billion. This falls within the range provided by Deltares.
However, it is important to note that this is not a validation of the model since the actual numbers
are currently unknown and difficult to validate since research regarding this topic is limited.

Similar to flood damages, the location of the damages is crucial. The damages obtained are
associated with specific coordinates, allowing QGIS to create heat maps depicting the density
of damage. The heat maps for settling and pile rot can be seen in Figure 5.9a and Figure 5.9b,
respectively.
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(a) (b)

Figure 5.9: (a) Heat map of settling damages on the residential mortgage portfolio., (b) Heat map of pile rot
damages on the residential mortgage portfolio.

The settling risk is highly concentrated around Purmerend, primarily due to the assigned
probability and severity levels in this city. The multiplication of these numbers determines the
settling risk, and ranking this multiplication reveals the top ten riskiest points. Interestingly, all ten
points are located within the municipalities of Purmerend, Landsmeer, and Volendam, which are
adjacent to the high-risk area. This indicates that the settling risk is less dependent on population
density and size but highly dependent on the risk factor shown in Figure 2.7. Other municipalities
with an increased risk of settling can be found around Delft, Den Haag, and Zoetemeer. In these
areas, a relatively high probability and severity risk, combined with a high population density and
size, contribute to the settling risk.

On the other hand, the risk associated with pile rot is more widespread across the Netherlands but
still concentrated in major cities. Similar to the flood risks, the highest pile rot risks are associated
with Amsterdam. City centers, in general, pose a relatively high-risk area due to the age of the
buildings. There is a clear distinction in construction years for neighborhoods in Amsterdam
[94], with older city centers having a higher probability of being built on wooden foundations.
Consequently, the probability of pile rot occurring in these city centers is high. However, unlike the
settling risk, pile rot risks are not confined to a specific area. Nevertheless, the population density,
population size, and presence of older buildings contribute to the allocation of pile rot risks mainly
in the major cities of the Netherlands. Besides Amsterdam, cities such as Rotterdam, Utrecht,
Leeuwarden, and Groningen have also been assigned a medium pile rot risk by the prediction.
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5.3 Economic implications of climate risks

In the previous two subsections, the direct and indirect damages to the portfolio were discussed.
This subsection utilises these results to connect the predicted damage incurred due to climate
change to VtL and LGD. In this section, first, VtL and LGD values are generated for all the
scenarios that are passed through the prediction algorithm. Second, the validity of the obtained
LGD distributions is discussed. Finally, heatmaps depicting the shift of LGD from the baseline
values are generated, allowing identification of regions with the highest climate risks associated
with the region.

In this section, the damages discussed in the previous subsections are categorised into three
scenarios: the original case, the average damage scenario, and the 99.9% worst-case scenario.
The original case serves as a baseline, where no damage is assigned. In the average scenario, the
average damage obtained from the Monte Carlo simulation is allocated to each household. This
entails summing up the damages incurred over the 1000 Monte Carlo simulations and dividing
the total by 1000. As a result, the damage per household is relatively low, but nearly all loans in
the portfolio are affected.

Conversely, the 99.9% worst-case scenario utilises the 99.9% VaR from both the direct and indirect
simulations. Consequently, the direct damages in this scenario are significantly higher compared
to the average case, but the number of affected households is lower.

The first important economic parameters is the VtL. This parameter indicates the proportion
of the underlying property value in relation to the loan exposure. As the damage to a house
occurs, the value of the underlying property decreases in proportion to the extent of the damage,
thus adjusting the VtL. A histogram is created for the scenario involving high indirect damage
simulation, along with direct damages resulting from the simulation with an inundation depth of
0.2m. The histogram is presented in Figure 5.10.

Figure 5.10: Histogram of the VtL before and after direct and indirect damages from the simulation with a
high indirect scenario and the flood simulation with an inundation depth of 0.2m.
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Figure 5.10 shows that the VtL distributions in all three scenarios are almost overlapping. However,
it is important to note that even a small shift of a few basis points (BPS) can have an impact on the
required capital of a bank. To highlight these shifts, Table 5.10 provides the changes in VtL for
all the scenarios. These scenarios are based on the generated baseline VtL, which allows for a
simplified comparison between them.

Table 5.10: Key figures of the VtL and LGD from the simulation on the residential mortgage portfolio.

Sim
number

Inundation
depth (m)

Indirect
scenario

Scenario
Average
VtL (-)

Average
LGD (-)

Percent change
VtL (BPS)

Percent change
LGD (BPS)

Base - - Base case 1.3068 0.1678 0.0 0.0
1 0.2 High Average 1.3042 0.1688 20.2 55.2
2 0.2 High 99.9% VaR 1.3035 0.1690 24.9 71.0
3 2.0 High Average 1.3047 0.1686 15.8 44.1
4 2.0 High 99.9% VaR 1.3038 0.1691 22.9 73.7
5 0.5 High Average 1.3040 0.1688 21.4 59.3
6 0.5 High 99.9% VaR 1.3029 0.1694 29.5 94.2
7 0.2 Low Average 1.3046 0.1686 16.8 45.1
8 0.2 Low 99.9% VaR 1.3040 0.1689 21.2 61.1
9 2.0 Low Average 1.3052 0.1684 12.4 34.2
10 2.0 Low 99.9% VaR 1.3043 0.1688 19.1 55.2
11 0.5 Low Average 1.3044 0.1687 18.0 49.3
12 0.5 Low 99.9% VaR 1.3034 0.1692 25.7 84.3

As anticipated, the highest average VtL is associated with the economic implication from the
flood simulation with an inundation depth of 0.5m and the high indirect scenario (simulation
numbers 6 and 5). In the average scenario, there is a percentage shift of 21.4 BPS from the baseline
average VtL, while the 99.9% worst-case scenario has a deviation of 29.5 BPS. It is evident that
the VtL is closely tied to the damages incurred over the 30-year period. Thus, the simulation
with the highest average damage and VaR exhibits the largest negative shift in VtL. However,
the deviations between the different scenarios are difficult to discern from Figure 5.10 due to their
small magnitude. Nevertheless, these small shifts should not be disregarded, particularly when
considering the impact on the LGD. In fact, the shifts in LGD are considerably larger compared to
those in VtL. Figure 5.11 illustrates the distribution of LGD resulting from the flood simulation
with an inundation depth of 0.5m, where the high indirect scenario is considered (simulation
numbers 5 and 6).
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Figure 5.11: Histogram of the LGD before and after direct and indirect damages from the simulation with a
high indirect scenario and the flood simulation with an inundation depth of 0.5m.

To validate the histogram, the shape of the graph is compared to the historical recovery rates of
loans provided by Moody’s. The data provided is from 2007, which means it is slightly outdated.
However, the current overall recovery rate is approximately comparable to the recovery rate in
2007 [95]. Therefore, this data is used as an indication of the prediction validity. The comparison
between the values from the baseline simulation and the values from Moody’s is presented in
Figure 5.12.

Figure 5.12: Comparison between the base case LGD with the LGD in 2007 provided by Moody’s [96].

The data from Moody’s does not exactly match the data from the simulation. However, considering
the number of assumptions involved in establishing the LGD distribution, the shape of both
histograms looks similar. The main difference lies in the tail distribution, with the created
distribution having a normally distributed tail while Moody’s distribution has a more uniform
distribution in the tail. However, when considering the ING portfolio, the VtL tail follows a normal
distribution, favoring the sample’s normally distributed tail over the data provided by Moody’s.
As a result, the data cannot be validated with complete certainty, but it appears to be reasonably
close to the actual values obtained by banks.
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To illustrate the differences in LGD between the scenarios, the percentage change from the base
case is presented in Table 5.10. The LGDs tell a similar story to the VtLs, with relatively small
shifts. However, as a comparison, a model constructed by DMFCO concluded that the loss due to
floods in the Netherlands accounted for less than half a basis point per year [97]. In comparison,
the prediction shows the highest decrease in LGD of 15.8 BPS observed in scenario 6. This shift
occurs over a 30-year timeframe, suggesting an annual loss due to climate risk of approximately
0.5 BPS. Hence, the relatively small shift in the LGD due to climate change is also observed by
other researches.

Moving on to the allocation of the highest decrease in LGD, the municipalities with the greatest
average shift in LGD represent the highest risk associated with physical climate risk. The
municipalities are divided into seven categories based on the difference between the base case and
the obtained LGD from scenario 5. Scenario 5 is chosen to ensure all points with a flood probability
are assigned damage. If scenario 6 is used, the LGD shift becomes heavily dependent on one or
two flood damages in a municipality, which does not accurately represent the physical climate
risk. Furthermore, the fifth scenario exhibits the largest shift in LGD among all the averaged
scenarios, further emphasising the visualisation of climate risk. To ensure a sufficient sample size
for an accurate representation, municipalities with less than five data points are excluded from the
dataset. The LGD shift per municipality is depicted in Figure 5.13a.

(a) (b)

Figure 5.13: (a) LGD shift for every municipality from scenario 5 of the residential mortgage portfolio given
five points exist within the municipality., (b) Heat map of LGD shift from scenario 5 of the residential
mortgage portfolio.
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The highest climate risk for acquiring a new mortgage is associated with the red-colored
municipalities in Figure 5.13a. The municipalities with the highest combined physical climate risk
are Landsmeer, Purmerend, and Oldambt, while Amsterdam and Rotterdam are ranked relatively
lower at 24th and 23rd, respectively. However, the probability of obtaining a mortgage in these
cities is significantly higher compared to acquiring one in Oldambt. Therefore, a heat map is
created to account for the proximity of points with a shift in LGD, as shown in Figure 5.13b.

Similar to the incurred damages, the combination of population size, population density, and a
medium to high-risk level contributes to the majority of LGD shifts being concentrated around
Amsterdam. Upon closer examination, the high LGD shifts also extend into the region just
north of the city of Amsterdam, where the municipalities of Landsmeer and Purmerend are
located. The depiction of risk is not only influenced by population size and density but also by
the increased likelihood of physical climate-related damages. Similarly, the medium LGD shifts
around Groningen also extend into the region where the municipalities of Midden-Groningen and
Oldambt are situated. These municipalities rank among the top five with the highest physical
climate risk but lack in population density and size. Other areas with a moderate influence on
the LGD are the municipalities around Rotterdam and The Hague, as well as the municipality of
Zwolle. These areas of the Netherlands have the greatest impact on the LGD in the developed
portfolio.

Throughout this chapter, it is evident that density and size have a significant influence on the risk
assigned to a specific region. Therefore, the physical climate risks observed by a bank are highly
dependent on the portfolio owned by the bank. However, the physical climate risk on a portfolio
is not solely determined by its density and size. The location of the house also plays a crucial role,
particularly concerning direct physical climate risks. Nonetheless, banks can use Figure 5.13a as
a guideline to identify municipalities with an increased physical climate risk. Furthermore, this
figure can be utilised to diversify the portfolio and reduce risk by encouraging customers to take
a mortgage in municipalities categorised as grey in the figure, offering them a discount on the
interest rate. Conversely, banks may charge a higher rate in municipalities with increased climate
risks (red municipalities) to mitigate some of the inherent risks associated with the location of the
mortgage.

5.3.1 Required risk capital

To assess the necessary risk capital that a bank should hold, the calculation of the climate
risk-adjusted PD is essential. However, due to the complexity of the PD calculation, it is beyond the
scope of this research. Nonetheless, investigating climate-adjusted PD is an intriguing avenue for
future research in this field. The LGD, PD, and exposure at Default all play a role in determining
the EL of a portfolio. The formula for calculating the EL is presented in Equation 5.1.

ELit = EADit · PDit · LGDit (5.1)
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Subsequently, to determine the necessary capital provisions for covering physical climate risks, an
Internal Rating Based (IRB) or Standardised approach can be employed. The standard procedure
is partly regulated by Basel, specifically BIS-CRE 35 and BIS-CRE 36 [79, 98]. The PD also plays
a role in determining the loan’s stage. In accordance with the International Financial Reporting
Standards (IFRS) 9, a loan can be downgraded from an investment-grade loan (Stage 3) to a
lower-grade loan. This downgrade can occur when climate risks are incorporated into the Expected
Credit Loss (ECL). It is important to note that this change in stage from a Stage 2 to a Stage 1 loan
can significantly impact the capital requirement, as the loan is then subject to a 12-month ECL
instead of a lifetime ECL. As a result, the capital requirement increases due to the loan degradation
[99].

5.3.2 Connection to the current regulatory framework

As discussed in the literature review, the current regulations and directives primarily focus on
the Basel Pillar III implementation of technical standards, which specify uniform formats and
instructions for the disclosure of ESG information. However, these standards only incentivise
banks to disclose the extent of their exposure to physical climate risks.

At present, there are no climate-related constraints on capital requirements imposed on banks
under the Pillar I framework [16]. Nevertheless, the Basel framework already incorporates
certain requirements that encourage supervisors to consider climate-related financial risks. These
requirements are primarily based on the BIS-CRE 20.75 paragraph, which emphasises the need for
a prudently conservative appraisal of property value, excluding expectations of price increases and
considering potential market price sustainability over the loan’s duration [100]. This implies that
the LtV ratio should be adjusted to account for potential damage effects or value losses associated
with climate-related financial risks. However, these regulations currently lack specificity and are
challenging to enforce in their current form [101].

Therefore, while banks are making efforts to estimate the physical risks they face, the current
regulations and directives do not mandate the integration of these risks into internal PD and LGD
models. Consequently, banks assess these risks separately, as their incorporation would require
higher risk capital, as demonstrated in this thesis, resulting in lower Return on Equity (ROE)
and potentially harming the bank’s competitiveness. As a result, the developed models or similar
approaches to assess the impact of physical climate risks, lacking support from current regulations
and directives, are unlikely to be implemented due to their potential negative impact on bank’s
competitiveness.

However, it is anticipated that these risks will be incorporated into the Basel framework in the
coming years. The implementation process is already underway, with Basel publishing several
principles aimed at enhancing the climate-risk components of existing Pillar II supervisory review
processes [102, 103].

5.4 Direct flood damages with a given flood probabilities

This section presents the results from the most extreme simulation conducted as part of this
research. The section is structured similarly to the previous subsections. First, it discusses the
incurred damages and their accompanying distribution. Second, it explores the adjusted VtL and
LGD for all the different input scenarios. Lastly, generated heatmaps are used to identify regions
with the highest climate risks according to this modeling methodology.
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The resulting damages from this prediction are illustrated in Figure 5.14 below. As can be seen from
this histogram, the damages predicted utilising this approach are notably higher when compared
to the damages obtained from the configuration used for a specific inundation depth.

Figure 5.14: Histogram of flood damages to houses from the Monte Carlo given a flood probability.

Unlike the previous flood results, the distribution of the resulting damages follows a normal
distribution. This can be attributed to the phenomenon discussed earlier, where the time between
events causes the gamma distribution to approximate a Gaussian distribution. The simulation
setup allows for relatively short intervals between events, resulting in damages that are normally
distributed. However, the key focus of this simulation lies in the severity of the average incurred
damages and the 99.9% VaR. A comparison between the averages obtained from the simulation
with a specific inundation depth and this extreme simulation is presented in Table 5.11.

Table 5.11: Comparison between the incurred damages from simulations with a given inundation depth and
the simulation with a given flood probability.

Simulation given Inundation depth (m) Average (€) 99.9% VaR (€) 99.9% ES (€)

Inundation depth 0.2 656,247 1,003,836 1,019,891
Inundation depth 0.5 826,308 1,407,510 1,469,624
Inundation depth 2.0 204,017 795,136 857,947
Flood probability - 9,630,762 14,825,398 15,355,046

The damages obtained from the prediction with a specific flood probability are approximately
12 times higher compared to the simulation with an inundation depth of 0.5m. This difference
is attributed to the frequency of flood occurrences and the average depth of inundation. In
this prediction, the entire portfolio experienced an average of around 5.5 flood events per year.
In comparison, the simulation with an inundation depth of 0.2m had approximately 2 flood
events per year with the same portfolio. This disparity arises from the modelling methodology,
particularly the comparison of randomly drawn samples using four probability charts.
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Moreover, the average damage incurred during a flood in this simulation is €57,732. In comparison,
floods with an inundation depth of 2.0m result in an average damage of €38,757 per affected
property. The difference in incurred damage stems from the variation in inundation depth. The
probability charts are constructed based on the maximum inundation depth that could be reached
during a flood. Especially, the charts featuring lower flood probabilities indicate large areas with
inundation depths exceeding 2.0 meters. Consequently, these floods are more severe and result in
more extensive damage, given that the damage factor is solely influenced by the inundation depth
while the other parameters remain constant. Hence, the average damage sustained by a property
during a flood is higher.

The economic implications of these damages are calculated using the same methodology as the
economic implications with a given inundation depth. To ensure proper comparison between the
samples, the same baseline is utilised as in the previous subsection. The results of this comparison
are presented in Table 5.12.

Table 5.12: Comparison between the LGD shifts from the simulations with a given inundation depth and
the simulation with a given flood probability.

Sim
number

Simulation
Indirect
scenario

Scenario
Average
VtL (-)

Average
LGD (-)

Percent change
VtL (BPS)

Percent change
LGD (BPS)

Base - - Base case 1.3068 0.1678 0.0 0.0
5 Inun 0.5m High Average 1.3040 0.1688 21.4 59.3
6 Inun 0.5m High 99.9% VaR 1.3029 0.1694 29.5 94.2
11 Inun 0.5m Low Average 1.3044 0.1687 18.0 49.3
12 Inun 0.5m Low 99.9% VaR 1.3034 0.1692 25.7 84.3
13 Flood prob High Average 1.2924 0.1734 110.5 334.5
14 Flood prob High 99.9% VaR 1.2867 0.1780 153.9 603.5
15 Flood prob Low Average 1.2928 0.1733 107.1 324.1
16 Flood prob Low 99.9% VaR 1.2872 0.1778 150.2 593.5

As anticipated based on the incurred damages, the LGD is significantly higher in comparison
to the simulation with an inundation depth of 0.5m. The marginal shift of 15.8 BPS observed in
simulation number 6 becomes a shift of 101.3 BPS in scenario 14. Consequently, the economic
implications of this simulation are significantly greater. Furthermore, the balance between direct
and indirect damages is altered. In the simulation with an inundation depth of 0.5m, the relative
ratio of average direct to average indirect damages is approximately 0.6. In contrast, the simulation
with a given flood probability exhibits a ratio of around 7.0 between direct and indirect damages.
As a result, the indirect damages become almost negligible in this prediction, as the shift in
LGD is predominantly driven by flood damages alone. This is evident in the difference in the
percentage change between simulations 13 and 15, for instance. The transition from a high indirect
scenario to a low indirect scenario leads to a decrease of 10.4 BPS in the percentage change of LGD,
representing a relative change of approximately 3.1%. In comparison, the shift between simulations
5 and 11 is 10.0 BPS, corresponding to a relative change of 16.9%. Therefore, the influence of
indirect damages is less significant in this simulation setup compared to the more realistic setup.
The distribution of LGD risk across municipalities also reflects this observation. The LGD risk
per municipality and the heat map of LGD shifts can be seen in Figure 5.15a and Figure 5.15b,
respectively.
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(a) (b)

Figure 5.15: (a) LGD shift for every municipality from scenario 13 of the residential mortgage portfolio
given five points exist within the municipality., (b) Heat map of LGD shift from scenario 13 of the residential
mortgage portfolio.

When comparing Figure 5.13a and Figure 5.15a, the municipality with the highest shift in LGD
changes completely. In Figure 5.13a, Landsmeer has the highest LGD shift, but in Figure 5.15a,
it is ranked only 12th. Conversely, Veenendaal, which is ranked 173rd in the prediction with a
given inundation depth, has the highest LGD shift in this prediction. This highlights the significant
influence of direct damages on LGD in this simulation.

A similar pattern can be observed in Figure 5.13b compared to Figure 5.15b. Specifically, the
economic impact of climate change on LGD shifts away from the Randstad towards the middle
of the Netherlands. The areas around the major waterways in the country are deemed particularly
vulnerable to economic risks in this prediction. This shift in risk pattern is due to the inundation
depth depicted in the risk charts, as seen in Figure 2.4b. The inundation depth around the major
waterways is the highest in the Netherlands. Since the economic risk is primarily driven by flood
risk, the municipalities with the highest inundation depth also have the highest economic risk.

However, it is important to note that this scenario is currently irrelevant, as the existing primary
flood barriers are capable of limiting the frequency and depth of floods. Nonetheless, in an
extreme scenario with rapid sea level rises and a lack of government incentives to comply with the
Waterwet 2050, this scenario could become relevant. Nevertheless, as discussed in the framework
of the NGFS, it is unlikely that this scenario will be reached since it requires a sequence of events
that are highly implausible. Nonetheless, this scenario is valuable for discussion as it represents a
situation where direct climate risks dominate over indirect risks. Additionally, it emphasises the
importance of well-managed primary and secondary flood barriers within the Netherlands.
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6 Conclusion

This research aimed to assess the impact of physical risks associated with climate change on
the LGD for the Dutch residential mortgage portfolio. Additionally, it aimed to address the
literature gap concerning the connection between incurred damages due to climate change and
their implications for banks. Currently, existing literature primarily focuses on identifying incurred
damages, with limited attention given to their economic implications. To address the research
question, five stages with subsections were established.

Firstly, this research establishes a solid foundation by examining the existing ESG regulations,
climate scenarios, and relevant climate events specific to the Netherlands. Secondly, various
research approaches are explored, aiming to identify methodologies available for predicting the
incurred damages due to climate changes and understanding the current research landscape
regarding weather events impact on the residential mortgage portfolio.

Among the diverse methodologies proposed in literature to assess flood damages for specific
regions, the Bernoulli trial modelling approach is chosen. This approach, combined with
depth-damage curves specifically tailored for the Netherlands, is considered the most suitable
for this research. It serves as the methodology to predict flood damages accurately. Additionally,
the Hazard-Exposure-Vulnerability methodology, as proposed by Costa et al. and Koks et al.,
is applied to quantify indirect damages to residential properties. To facilitate the utilisation of
these methodologies, a dummy portfolio is constructed by integrating various public databases.
Consequently, the predicted damages are assessed, highlighting their implications on both the
Value-to-loan and Loss Given Default resulting from climate change.

Using this methodology, the residential mortgage portfolio incurred the highest amount of flood
damage in the probability charts given an inundation depth of 0.5m. The portfolio consisting of
4116 points resulted in an average flood damage of €826,308, with a 99.9% VaR of €1,407,510. The
indirect damages on the same portfolio resulting from pile rot and settlement, calculated under
a high scenario, amount to an average total damage of €332,523 and €1,035,242, respectively.
Therefore, 62.5% of the cumulative average damage incurred is attributed to these indirect
phenomena.

Considering both direct and indirect damages, the average VtL decreased from 1.3068 (in the base
case) to 1.3040 (with average damages) and 1.3029 (with the 99.9% VaR damages). Simultaneously,
the average LGD increased from 16.78% (in the base case) to 16.88% (with average damages) and
16.94% (with the 99.9% VaR damages), resulting in relatively modest economic implications. The
reductions in VtL and LGD are primarily concentrated around the Randstad, with Amsterdam
being particularly exposed to high economic risks due to a combination of relatively high climate
risks and a dense population. Without taking population density and size into account and
concentrating solely on the on VtL and LGD shifts from the baseline, the municipalities of
Landsmeer, Purmerend, and Oldambt stand out for having the highest combined physical risks.
Therefore, acquiring a new mortgage in these municipalities entails the highest physical climate
risks associated with the loan according to the prediction.
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As an extreme scenario, a simulation with a given flood probability and maximum inundation
depth was conducted. The results yielded an average flood damage of €9,630,762, along with a
99.9% VaR of €14,825,398. Consequently, the indirect damages become almost insignificant. The
economic implications reveal a decrease in the VtL ratio to 1.2924 and 1.2867, alongside an increase
in LGD to 17.34% and 17.80% for the average and 99.9% VaR scenarios, respectively. The economic
implications highlight significant economic consequences associated with this scenario. However,
this scenario is currently irrelevant due to the effectiveness of the existing primary flood barriers
in limiting the number of floods and inundation depth. Nevertheless, in an extreme scenario
characterised by rapid sea level rises and a lack of government incentives to comply with the
Waterwet 2050, such a scenario could become relevant. The domination of direct damages focuses
the risk more around the major rivers, where the maximum inundation depths are the highest.

To answer the main research question: What is the predicted increase in Loss Given Default up to 2050
for the residential mortgage portfolio in the banking sector in the Netherlands, resulting from physical
climate risks such as flooding, pile rot, and settlement?’, the analysis reveals several key insights.

Overall, the findings indicate that climate change has a relatively limited impact on the LGD,
with changes of up to 15BPS. This limited impact is observed across all scenarios except for
the extreme scenario applied to the residential mortgage portfolio. In this extreme scenario,
notable and significant increases in the LGD were observed, indicating the potential vulnerability
of the portfolio under severe climate-related conditions. This scenario highlights the need for
more extensive stress testing in the simulation, as it could generate scenarios where the incurred
damages are enormous, resulting in substantial economic implications. However, it is crucial to
carefully consider the severity and validity of these stress scenarios before implementing them in
the prediction, as this substantially impacts the economic implications.
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7 Recommendations

Current simulation

The prediction discussed in this thesis incorporates some assumptions and features that could be
improved in future research. First, to enhance the reliability of the program, proper validation of
the generated simulation is required. Currently, the outcomes of the program are validated against
the obtained flood damages in the 2021 Limburg floods and previously conducted researches.
However, properly validating the prediction is challenging due to the lack of information and
the prediction’s area-specific nature.

As a point of discussion in the context of the current simulation, it is important to note both
the portfolio generation and modeling structure rely on highly specific parametric assumptions.
Sometimes, the basis for these assumptions lacks a strong foundation in actual data, resulting in an
oversimplification of the problem. Additionally, these assumptions are often presumed to follow a
normal distribution, which may not hold true for certain distributions. This presumption reduces
the consideration of tail risks, as normal distributions have limited tail risk. Consequently, the
current predictions have significant limitations in identifying these risks. Given that climate risks
are closely tied to extreme tail events, particularly in relation to flooding in specific areas, it is
advisable to enhance the current assumptions of normality for some of the parameters used in the
prediction.

Another important point for discussion concerns the use of a static modeling methodology. This
simplification is a result of the limited availability of input data related to flood, pile rot, and
settling risks. However, the static nature of the prediction simplifies the interconnection between
years, which is common in realistic scenarios. Therefore, a recommendation would be to develop
a more dynamic modeling methodology in which results from the previous year (i-1) influence the
input parameters for the current year (i). Additionally, in the next subsection, a dynamic modeling
methodology that takes into account changes in the economic landscape and the bank’s portfolio
is discussed.

Simulation Expansion

The first recommended expansion to properly assess the impact of climate change on a bank
involves incorporating the PD into the simulation. This inclusion would not only enable the
prediction of the LGD but also facilitate the estimation of the necessary risk capital required to
address climate risks in accordance with Basel Pillar I regulations.

Moreover, this addition becomes particularly essential if other portfolios are to be included in the
prediction. The current model lacks consideration for any influence on the mortgage when the
LGD equals one, denoting a lack of underlying collateral. However, in these cases, the PD would
increase while the LGD remains at one. While this scenario doesn’t apply to private residential
mortgages due to the inherent collateral involved, it does hold true for other portfolios like loans
to the general industry.

To improve the results of this thesis and gain a better understanding of the tail risks associated with
climate risks, stress testing of the simulation is required. Currently, the simulation incorporates
a limited number of extreme scenarios that could have significant influence on this topic.
In particular, extreme floods can have a substantial impact on economic implications for the
portfolios, as demonstrated in the simulation with a given flood probability.
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To refine the simulation results, an actual portfolio from a bank would be necessary. Access to
an actual portfolio would remove current uncertainties in the prediction, such as the height of
exposure, current value of the underlying property, exact positioning of the underlying property,
and loan stage, for example. Currently, these values are approximated using parameters like the
WOZ-value for the value of the underlying property. However, this value is a rough estimation
and thus has significant associated uncertainty.

Without access to a highly classified bank’s portfolio, the simulation could utilise the BAG register
to improve the estimation of the underlying property. Currently, the simulation takes a random
sample to generate the surface area of the underlying property. However, a SPARQL query could
be used to accurately retrieve the surface area of a house. Subsequently, a cross-reference between
the surface area and the cumulative surface area distribution function of the municipality can be
made to estimate the cumulative probability of the sample. This probability can then be inserted
into the cumulative distribution function of the WOZ-value to generate an accurate value of the
underlying property based on point coordinates.

The next recommendation is the inclusion of macroeconomics in the model. As discussed in the
literature, the influence of macroeconomic parameters in the case of a flood is substantial. For
instance, the residential mortgage portfolio faces the risk that the perception of increased flood
risk could adversely impact the value of the underlying properties. The introduction of these
indirect losses could significantly increase the acute climate risks associated with climate events,
as displayed by Koks et al. in the literature review [52].

The last two recommendations in this regard are the inclusion of additional climate events and
a dynamic portfolio. Besides floods, the Netherlands experiences additional climate effects that
are not considered in this thesis. These events include additional storms often accompanied by
heavy rainfall, as well as wildfires resulting from prolonged drought periods. Currently, modeling
wildfires presents a significant challenge, primarily due to their frequent ignition by human
activities [104]. However, to accurately predict the damages caused by climate change, these events
need to be incorporated into the prediction.

The final recommendation for expanding the simulation is to introduce a dynamic portfolio.
Currently, the portfolios in this thesis are static, meaning the VtL and LGD remain the same
over time. This is a drastic simplification since customers pay off their debts, the bank takes on
new mortgages, and macroeconomic conditions change over time. Therefore, adding a dynamic
portfolio where mortgages are paid off prematurely and new mortgages are obtained could
enhance the simulation. However, this would be challenging to model and would require historic
data on previous mortgage foreclosures, for example.

As a general remark, to overcome some of the aforementioned challenges, a bank could decide to
implement the incurred damages from the simulation as input into their respective PD and LGD
models. If the prediction is executed with an actual bank’s portfolio, the incurred damages can be
incorporated into these models, which are already well-refined and validated.
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Data

The final recommendation is both a recommendation and a critical observation. The generated
simulation heavily relies on input data from the klimaateffectatlas. This data is the result of a
collaboration between the government, consultancies, and universities. While these institutions
are dependable, there are other data vendors for flood risk assessment, such as HKV consultants,
which have developed a Real-Time Flood Risk Assessment tool based on accurate flood charts
[105]. Therefore, a proper selection of data vendors would provide valuable insights.

Furthermore, the underlying climate scenario plays a crucial role in the data. The data obtained
from the Klimaateffectatlas is derived from climate change scenarios put forth by the KNMI. These
scenarios significantly influence the input data, thus warranting further research to identify the
specific climate scenarios upon which the data is based. The prediction’s dependency on these
input parameters is significant, emphasising the need for a thorough assessment of the input data.
Moreover, this implies an inherent risk or uncertainty linked to the prediction due to the substantial
reliance on these input parameters.

To partially mitigate the limitations imposed by input parameters, it is advisable to conduct the
proposed predictions on an annual basis, for instance. Climate change dynamics are influenced
by human behaviour, resulting in fluctuations, making the input parameters subject to yearly
variations. Consequently, by running predictions using updated data, more accurate forecasts
for future years can be attained. Therefore, it is recommended to periodically execute, evaluate,
and enhance these prediction methodologies on an annual basis to ensure that predictions remain
aligned with the latest information concerning input parameters.
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B PROBABILITY AND INUNDATION DEPTH CHARTS EMPLOYED DURING THE
SIMULATION

Appendix B Probability and inundation depth charts employed during
the simulation

The different probability charts employed during the simulation are displayed in the figures below.

(a) (b)

Figure B.1: (a) The probability of a flood occurring with an inundation depth of 0,2 m [23]. , (b) The
probability of a flood occurring with an inundation depth of 2 m [23].
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SIMULATION

(a) (b)

Figure B.2: (a) The maximum inundation depth which could be achieved given the probability of flooding
equals 1/10 years [23]. , (b) The maximum inundation depth which could be achieved given the probability
of flooding equals 1/100 years [23].

Figure B.3: The maximum inundation depth which could be achieved given the probability of flooding equals
1/100.000 years [23].
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Appendix C Extended Literature review

As mentioned in the main text, an interesting contrast between the style of modeling employed
by koks et al. and the previously discussed methods involves the calculation of indirect damage
in the model. Specifically, the economic shock and recovery period play a crucial role in these
types of models, as floods can halt production for extended periods. Therefore, the recovery
period becomes important when modeling industrial flood damages. Koks et al. developed a
simulation that encompasses both the initial damage to physical assets and the indirect losses
resulting from missed production. To reinforce the modeling methodology, a schematic overview
of this simulation is once again presented in Figure C.1.

Figure C.1: Overview of the different components of the framework. The dark grey squared boxes are the
inputs, the ellipses are the different models, and the light grey squared boxes are the model outputs [52].

In the first step, the direct model discussed in the main portion of this thesis is utilised to estimate
the damages caused by the flood. In addition to direct damages, this model also provides outputs
for the loss in capital and the affected quantity of labor. These outputs are then utilised as inputs
for the Cobb-Douglas production function, which calculates the loss of production. The model is
calibrated with industry-specific elasticities (α and β) to estimate the production losses based on
the losses in capital and labor.

Subsequently, this loss in production, along with an input-output table, is used in basic equations
to estimate the pre-recovery damages. The pre-recovery period encompasses the time it takes
for the floodwaters to recede. Recent floods in Europe have demonstrated that it can take
a considerable amount of time for the flood to subside, hindering or even disrupting daily
activities in factories [106]. Therefore, these basic equations include the necessary post-catastrophe
information regarding disproportions, which refer to a distorted predisaster economic connection
and the inability of total output to directly meet the final demand. These disproportions depict the
so-called post-disaster situation.

80



C EXTENDED LITERATURE REVIEW

Finally, this situation is input into an input-output (I-O) model, where the recovery phase
takes place. The recovery phase is a period of time during which the factory gradually restarts
production but still lacks some of the original capital or labor. As a result, production slowly
increases until it reaches the pre-flood level. The I-O model considers the regional economy,
consisting of households and various industries that exchange, import, produce, and export goods.
Additionally, it takes into account the interactions between sectors through the demand and
supply of consumption goods. Consequently, the simulation provides estimates for both indirect
and direct losses, which can be associated with the expected annual amount of damage incurred
due to a flood [52].

As previously stated in the main text, this thesis does not incorporate the indirect results discussed
in this paper, as the impact of indirect flood damage on the residential mortgage portfolio is
relatively minor compared to, for instance, an industrial building. Nonetheless, the paper offers
valuable insights into the modeling methodologies currently being developed by researchers and
helps identify existing research gaps.
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Appendix D Damage categories foundation risks

An important factor incorporated in the prediction and the probability charts is the damage factor.
This factor estimates the damage a structure will incur if foundation damages occur. The factor
is split into six categories ranging from 0 to 5. The different categories and their accompanying
damage estimations are displayed in Table D.1.

Table D.1: Overview of the damage classes with their accompanying required repairs and associated costs
[107].

Damage class Required repairs Min repair cost (e) Max repair cost (e)

0 No repairs - -
1 Painting 500 2.000
2 Painting, outer wall cracks 500 5.000
3 Painting, outer wall cracks, plastering 2.000 10.000

4
Painting, outer wall cracks, plastering,
new floors, window-frames repairs

10.000 60.000

5
Painting, outer wall cracks, plastering,
new floors, window-frames repairs,
foundation repairs

30.000 120.000

The figures provided in Table D.1 are based on the average floor space of a house in the
Netherlands. These figures are used to estimate the risks associated with each neighborhood
within the Netherlands and to approximate the damage the house has incurred within the
simulated time span.

The expected damage category a house is predicted to fall into by 2050, as provided by the
Klimaateffectatlas, is estimated based on several parameters. The damage factor for houses
constructed on wooden poles is determined by the following criteria. Firstly, the local average
lowest groundwater level charts estimate the decrease in the groundwater level in the upcoming
30 years. As the average groundwater level decreases, the piles become more exposed to oxygen,
accelerating their deterioration. Secondly, the average depth of the pile heads below ground level
is considered. Similarly, the deeper the piles are drilled into the surface, the less the poles will be
exposed to oxygen, reducing the speed of deterioration. Lastly, the soil type is used to approximate
the damage factor. Different soil types can counteract or enhance the pile rot mechanism. For
example, clay grounds tend to prevent oxygen from penetrating the soil, whereas sandy soils do
not possess this characteristic. The soil type within each neighborhood is determined from the
GeoTOP model provided by the national registration of subsoil.
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Similarly, the settlement damage factor is based on three factors. Firstly, settlement velocity maps
are used to estimate the damage factor. The reasoning behind this is that a higher settlement
velocity increases the opportunity for the house to develop foundation failures. Secondly, different
house characteristics are considered along with correction factors. For example, a correction factor
for the quality of the foundation is applied based on the average construction year within the
neighborhood. Therefore, a neighbourhood with older houses receive a higher correction factor
compared to a neighbourhood with newer houses. Lastly, the soil type is taken into consideration
again. For example, the swelling and shrinking of clay soils increase the probability of settlement.
In addition, the preceding loading of the soil is taken into account in determining the damage
factor [76].
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Appendix E Simulation flowcharts

Figure E.1: Simulation flowchart to prepare the residential mortgage portfolio.
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Figure E.2: Simulation flowchart to estimate flood damages given the inundation depth.
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Figure E.3: Simulation flowchart to estimate flood damages given the flood probability.
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Figure E.4: Simulation flowchart to estimate indirect damages.
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Figure E.5: Simulation flowchart to estimate the economic implications of the incurred damages.
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Appendix F Flood damage methodology

F.1 Standaardmethode 2017 Schade en Slachtoffers

To adjudicate the damage a building has sustained during floods, the Dutch government together
with Deltares developed a damage indication methodology. This rather simple methodology
employs damage indicators, building surface areas, and base rates. The basis for this damage
model is a combination of previously published models and actual flood damage observations.
This methodology is tailor-made for the Netherlands. Hence, the prices and damage curves are
specifically created to serve the Netherlands and would not provide an appropriate indication for
other countries. The equation the methodology is built upon is provided in Equation F.1 below.

Si =
n∑

i=1

aiSAiSNi (F.1)

Wherein, S is the total incurred damage, a is the damage factor, SA is the surface area of the
building, and SN is the base rate per unit of damage. The most substantial influence on the
damage sustained due to flooding is the damage indicator. This indicator provides a percentage
of the original price per meter which is endured as damage by the building. In this methodology,
the damage indicator is solely dependent on the inundation depth of the flood. Obviously, the
methodology provides a rough estimation of the actual damage encountered since parameters
such as flood duration and flow velocity are also important in floods [106, 108]. However, it
provides a relatively good approximation of the damages since the damage-depth curves are
specifically calibrated for the Netherlands.

Deltares has provided these types of damage indicators for several types of buildings and houses.
The report splits different buildings/structures into four distinct categories. Nevertheless, only
two categories are relevant to this thesis. Specifically, the report separates the damages incurred on
businesses from damage on residential buildings. The business buildings are further divided into
the building purpose implemented in the BAG.

The residential building category is divided based on single-family homes and multi-family
homes. Furthermore, the damage indicator graphs differentiate between apartments depending
on the floor where the apartment is located. The ground, first, and higher floors each have
their separate damage indicator graph, whereas the base damage is identical. Additionally, a
damage function regarding the household inventory is included in the report. The shape of this
function is equal for all the different households and hence is independent of the apartment floor.
Nevertheless, the beginning of the curve shifts by 2.5 meters depending on the apartment floor
since the household inventory is not damaged if the water does not reach the apartment. For
example, if an apartment is located on the third floor, the damage factor remains 0 until the
flood reaches an inundation depth of 7.5 meters. The last damage function important for this
thesis pertains to the structure of a house. This damage is relevant to houses designed for single
families. The damage functions regarding apartments and households are provided in Figure F.1a
and Figure F.1b, respectively.
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(a) (b)

Figure F.1: (a) The damage function of flood damages to appartments, (b) The damage function of flood
damages to the household inventory and building structure [46].

The last piece of required information delivered by the Standaardmethode 2017 Schade en
Slachtoffers is the base rate per unit incurred during a flood. This information is based on a report
by Bruijn et al. published in 2015 [109]. A summary of the most important figures from this report
are provided in Table F.1.

Table F.1: Maximum damage per category per unit [46].

Category Unit Direct Damage

Building structure m2 1,000
Household inventory Object 70,000
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