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1 Introduction

Anisotropic diffusion is a diffusion process where the rate of diffusion is not
the same in all directions. A common problem when solving partial differential
equations (PDEs) with anisotropic diffusion numerically is the stability [19].
When the grid is not properly aligned with the direction of anisotropy, this can
lead to problems, especially for strongly anisotropic problems.

Strongly anisotropic diffusion problems present a numerical challenge, because
errors in the direction where the diffusion is large may have a significant effect
on transport in the perpendicular direction. Anisotropic diffusion shows up in
a wide range of physical sciences. For instance, in fusion plasmas in magnetic
fusion devices, anisotropic diffusion shows up in electron diffusion through the
magnetic field [19]. In biology the diffusion of water in neural fibres is anisotropic
because of the underlying tissue structure [15]. In image processing anisotropic
diffusion is used to remove noise from images while preserving data [7].

Different strategies have been tried to robustly solve strongly anisotropic dif-
fusion problems. A strategy is to try to align the grid in such a way that the
problem is well-conditioned [14]. Another possibility is to use custom single-
level iterative methods [17]. Also, multi-level iterative solvers are used to solve
the problem numerically [6].

Another example of a multilevel method is [1]. In [1], the multigrid method
with multiple different smoothers is applied to the anisotropic diffusion prob-
lem. The methods are analysed using the local Fourier analysis (LFA). The
ILLU method performs the best smoother according to the LFA. As the LFA
assumes periodic boundary conditions, and the implementation of the multigrid
method and the ILLU smoother in this paper are unclear, we want to investi-
gate the convergence of the multigrid method with the ILLU smoother applied
to the anisotropic diffusion problem.

In this report, we will apply the multigrid method with the Jacobi, Gauss-
Seidel and ILLU smoother to the anisotropic diffusion problem. We will inves-
tigate the convergence of the multigrid method using the eigenvalue analysis.
This analysis will show that the multigrid method is not always converging for
strongly anisotropic problems. To address this, we will propose a bound on
the anisotropy for which the multigrid method with ILLU smoother converges.
Also, we will introduce a variation of the multigrid method that converges ro-
bustly for strongly anisotropic problems.

The report starts with an example of the multigrid in 1 dimension, to gently
introduce the reader to the multigrid method. Then the anisotropic diffusion
problem in 2 dimensions is introduced and the ILLU smoother is discussed. In
the end, the results will be shown.
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2 Introductory example of multigrid

This section contains a simple example of the multigrid method applied to a
partial differential equation (PDE) in one dimension. This is used as an intro-
ductory example to introduce the multigrid method.

To solve a PDE, several steps are taken. First, the PDE is discretized, and
then a linear system is obtained. This linear system is then solved to obtain a
numerical solution to the PDE. The linear system can be solved using direct or
iterative solvers. One of these iterative solvers in the multigrid method. The
multigrid method can be used to solve linear systems that result from discretiz-
ing PDEs.

To introduce the multigrid method we consider the Poisson equation in one
dimension: {

Find u ∈ H1
0 (Ω) such that

−u′′ (x) = f (x) , x ∈ Ω = (0, 1) ,
(1)

where f (x) ∈ L2 (Ω) is a square integrable function on the domain Ω. The
Hilbert space L2 (Ω) contains all square-integrable functions on Ω. The space
H1

0 (Ω) is the subspace of L2 (Ω) for which the weak derivative u′ is square in-
tegrable, i.e. u′ ∈ L2 (Ω) and u vanish on the border ∂Ω [13, Section 5].

In the remainder of this section, the multigrid method applied to Equation (1)
will be shown. Knowledge of the multigrid method is not assumed in this sec-
tion. If one is already familiar with the multigrid method, one can continue in
Section 3.

2.1 Weak formulation

For the multigrid method, the PDE is discretized according to the finite element
method (FEM). There are also other methods that can be used to solve PDEs,
like finite difference methods. FEM is better at handling complex geometries
[10, Introduction], and is thus used for multigrid methods in this report.

The first step to solve a PDE using the FEM is to put the equation into the
weak formulation. To get the weak formulation, the PDE from Equation (1)
is multiplied with an infinitely differentiable test function v ∈ C∞

0 , where C∞
0

with a compact support in (0, 1). Then integration by parts is performed [18,
Chapter 24]. We can see that any solution u of Equation (1) satisfies;∫

Ω

u′v′dΩ =

∫
Ω

fvdΩ. (2)

3



We can see that Equation (2) makes sense for u, v ∈ H1
0 (Ω), where H1

0 (Ω) is
the space of functions that are square integrable, have square-integrable weak
derivates and vanish on the border ∂Ω [13, Section 5]. This gives the weak
formulation where u ∈ H1

0 (Ω) is the weak solution:
Find u ∈ H1

0 (Ω) such that

a (u, v) = l (v) ,∀v ∈ H1
0 (Ω) ,

where a (u, v) =
∫
Ω
u′v′dΩ, and l (v) =

∫
Ω
fvdΩ.

(3)

From Lax-Milgram [18, Lemma 25.2] it follows that Equation (3) is well-posed.
Thus there exists a unique solution. In the next subsection, we will obtain a
linear system to approximate u with FEM. We will then approximate the solu-
tion of this linear system with the multigrid method.

2.2 Galerkin approximation

Now, the domain Ω = (0, 1) is discretized. A grid with n + 1 points is defined
such that: {

{x0, x1, x2, . . . xn} is a partition of Ω, with

x0 = 0 < x1 < x2 < . . . < xn = 1.
(4)

There are different choices that can be made when discretizing a domain in
one dimension. For simplicity, the grid is uniformly spaced. This means that
xi+1 − xi = h := 1

n for i = 0, 1, . . . , n− 1.

By projecting the weak formulation in Equation (3) onto a finite-dimensional
subspace, the Galerkin approximation is obtained. For this projection, contin-
uous piecewise linear basis functions (φi (x) , i = 1, 2, . . . n− 1) are used. These
basis functions have the property that

φi (xj) = δi,j , i, j = 1, 2, . . . , n− 1.

The finite-dimensional space Vh (Ω) is a subspace of H1
0 (Ω) and is spanned by

the basis functions φi:

Vh (Ω) := span {φi : i = 1, 2, . . . , n− 1} ⊂ H1
0 (Ω) .

This gives us the conforming Galerkin approximation [18, Definition 26.2]:{
Find uh ∈ Vh such that

a (uh, vh) = l (vh) ,∀vh ∈ Vh.
(5)
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This can be solved by substituting
∑n−1

i=1 uiφi for uh and φj for vh. Then this

leads to the problem with unknown u = [µ1, µ2, . . . , µn−1]
T ∈ Rn−1:

n−1∑
i=1

µia (φi, φj) = l (φj) , for j = 1, 2, . . . , n− 1.

This can be written as:
Su = f , (6)

where the S ∈ R(n−1)×(n−1) is defined by the entries Si,j = a (φi, φj) and
f ∈ Rn−1 is consists of the entries fi = l (φi). This system can be solved using
numerical techniques. Some iterative numerical methods will be discussed in
the next sections. The coordinate vector u corresponds directly to the Galerkin
solution uh =

∑n−1
i=1 µiφi. By the Lax-Milgram theorem [18, Lemma 25.2] both

Equation (5) and Equation (6) are well-posed.

2.3 Iterative methods

The linear system Equation (6) can be solved to get the Galerkin solution. For
large systems resulting from discretizing PDEs in two or more dimensions, direct
solvers can be slow and inefficient [11, Page 125]. In this example of the Poisson
equation in one dimension, a direct solver would be efficient. However, as the
Poisson equation in one dimension is used as an introduction to the anisotropic
diffusion equation in two dimensions, iterative methods are also used here. An
example of an iterative method is the Jacobi method. Given uk ∈ Rn−1, one
iteration of the Jacobi method to solve Equation (6) can be computed with;

uk+1 = uk +D−1
(
f − Suk

)
, (7)

where D ∈ R(n−1)×(n−1) contains the diagonal entries from S. The diagonal
matrixD is invertible because all row vectors are linearly independent [11, Prop-
erty 1.2]. The row vectors are linearly independent since D is diagonal and all
entries on the diagonal are nonzero by the construction of S.

More generally the stiffness matrix can be split S = M − N, such that M
is nonsingular. Then a linear iterative method can be defined as;

uk+1 = uk +M−1
(
f − Suk

)
, (8)

where M is called the preconditioner. The preconditioner M can be inverted
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due to its nonsingularity. An iterative method of this form will converge if and
only if the spectral radius of I −M is strictly smaller than 1 [11, Theorem 4.1].
The spectral radius is denoted with ρ and is the maximum absolute value of the
set of eigenvalues:

ρ (M) = max
λ∈σ(M)

|λ| , (9)

where σ (M) is the set of eigenvalues corresponding to M.

Another iterative method is the Gauss-Seidel method. For this method, S
is decomposed into S = L + D + U, where D is the same diagonal matrix
as for the Jacobi method, L and U are strictly lower and upper triangular
matrices. The forward Gauss-Seidel method is of the form of Equation (8),
with M = L + D, while the backward Gauss-Seidel uses M = D + U, where
S,M,L,D,U ∈ R(n−1)×(n−1).

The forward Gauss-Seidel iterative method is applied to the linear system from
Equation (6) which originates from Equation (1). The initial error, and the
error after 5 and 10 iterations can be seen in Figure 1.

Figure 1: The initial error and after 5 and 10 iterations of the Gauss-Seidel
smoother on a grid with 65 points when solving Equation (6) and starting with
a random guess.

In Figure 1 we see that the error decreases when multiple steps of the Gauss-
Seidel method are applied. We can also see that the error gets ”smoothed” as it
decreases. Because of this ”smoothing”, we will also call the iterative methods
”smoothers”.
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Figure 2: The initial error and after 5 and 10 iterations of the Gauss-Seidel
smoother on a grid with 9 points when solving Equation (6) and starting with
a random guess.

In Figure 2 we can see that the smoothing also happens when fewer points are
used. However because there are fewer points, the error decreases more quickly
from the smoothing, and also the iterative method is numerically cheaper to ap-
ply for fewer points. The multigrid method leverages both properties by using
multiple grids to solve Equation (6).

2.4 Multigrid method

Here will discuss the multigrid method in an abstract setting. Consider a se-
quence of spaces such that

V1 ⊂ V2 ⊂ . . . ⊂ Vm ⊂ H1
0 (Ω) .

For completeness, we recall the Galerkin problem in the linear finite-dimensional
subspace Vm here: {

Find um ∈ Vm such that

a (um, vm) = l (vm) ,∀vm ∈ Vm.
(10)

As we want to have an iterative method, we reformulate the problem such that
an initial guess can be used. With an initial guess u0 ∈ Vm, we want to find
ũm ∈ Vm such that u0+ũm solves the Galerkin approximation problem in Equa-
tion (10). This gives us{

Find ũm ∈ Vm such that

a (ũm, vm) = l (vm)− a
(
u0, vm

)
,∀vm ∈ Vm.

(11)
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To approximate the solution, we start out with 0̄ which denotes the function
that is zero on the entire domain Ω. Then we apply s steps of a smoother, for
instance, Equation (8), to obtain an approximation of um which we will call
upre
m ∈ Vm. As this is an approximation, it is not perfect. The approximation

can be improved with the subspace correction step in the subspace Vm−1:

{
Find um−1 ∈ Vm−1 such that

a (um−1, vm−1) = l (vm−1)− a
(
u0 + upre

m , vm−1

)
,∀vm−1 ∈ Vm−1.

We will define usub
m as the summation of upre

m and the approximation of um−1.
As the approximation of um−1 may not be perfect and the space Vm−1 is strictly
smaller than the space Vm, the new value usub

m is still an approximation. So we
will apply another s steps of a smoother to usub

m to obtain upost
m . This is one

step of a multigrid V-cycle. But we still need to discuss how to approximate
um−1.

We can define the subspace correction step in general. For an approximate
solution u0 ∈ Vm, the subspace correction ui ∈ Vi is the weak solution of:

{
Find ui ∈ Vi such that

a (ui, vi) = l (vi)− a
(
u0, vi

)
,∀vi ∈ Vi.

(12)

In the V-cycle of the multigrid the subspace correction on grid i, with i > 1, is
calculated as before. First s smoother steps are applied to the initial function
0̄, and then the approximate solution from the subspace correction from grid
i− 1 is added. Finally, s smoother steps are applied again to get upost. On the
coarsest grid, u1 is not approximated but calculated exactly. This completes
the V-cycle of the multigrid algorithm, that approximates um ∈ Vm from Equa-
tion (10).

Algorithm 1 Multigrid algorithm to approximate um from Equation (10)

function Multigrid(m, tol)
uapprox
m = 0̄

while ∥a (uapprox
m , vm)− l (vm)∥ ≥ tol,∀vm ∈ Vm do

uapprox
m = uapprox

m +VCycle (m,uapprox
m ) ▷ Equation (11)

end while
return uapprox

m

end function

The full multigrid algorithm calls the Multigrid function with the updated
guesses as input until a convergence criterion is achieved. In Algorithm 1 the
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Algorithm 2 V-cycle step to approximate ui from in Equation (12)

function VCycle(i, u0)
if i > 1 then

upre
i = Smoother

(
i, u0

)
usub
i = upre

i +VCycle
(
i− 1, u0 + upre

i

)
upost
i = usub

i + Smoother
(
i, u0 + usub

i

)
return upost

i

else
return ui ▷ Return weak solution ui from Equation (12)

end if
end function

iterations are stopped when the residual is smaller than the tolerance. However,
another stopping criterion could be the amount of iterations. The full algorithm
is shown in Algorithm 1. The algorithm calls the VCycle algorithm, which is
shown in Algorithm 2. Lastly, Smoother

(
i, u0

)
is called. This returns a func-

tion u ∈ Vi which approximates ui in Equation (12).

2.5 Numerical implementation

Here, the multigrid method will be applied to Equation (3). This is an example
of an implementation of the multigrid method. This will make it easier to un-
derstand the multigrid method in two dimensions. For this example, we need to
recall some definitions. Consider the discretizations of Ω as in Figure 3. Grid i
consist of the points

{
0, 1

n ,
2
n , . . . ,

n−1
n , 1| where n := 2i + 1

}
.

Figure 3: Nested discretizations in 1D
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As before, the continuous linear piecewise basis functions are used. We define
xi,j as the i-th point on the j-th grid, and φi,j as the i-th basis function on the
j-th grid. Then φi,k (xj,k) = δi,j . Now we can define the space Vi:

Vi = span
{
φj,i : j = 2, 3, . . . , 2i

}
(13)

These finite-dimensional spaces are nested such that

V1 ⊂ V2 ⊂ . . . ⊂ Vm ⊂ H1
0 (Ω) .

Any function ui ∈ Vi is uniquely determined by the corresponding coordinate
u = [u2,u3, . . . ,u2i ] through the following relation:

ui =

2i∑
j=2

ujφj,i. (14)

All functions ui ∈ Vi are also elements of Vi+1 as Vi is a subspace of Vi+1. So
the embedding pi : Vi ↪→ Vi+1 with pi (ui) = ui exists for all i < m. The matrix
representation of this embedding is

Pi =



1/2
1
1/2 1/2

1
1/2 1/2

1
. . .

1/2 1/2
1
1/2 1/2

1
1/2



∈ R(2
i−1)×(2i−1).

The matrix Pi is called the prolongation matrix. The coordinate vector ui ∈
R2i−1 corresponding to a function ui ∈ Vi can be mapped to a coordinate
vector ui+1 = Piui ∈ R2i+1−1 corresponding to to a function in Vi+1. The
prolongation matrix can also to map a coordinate vector coordinate vector
ui+1 ∈ R2i+1−1 corresponding to a function ui+1 ∈ Vi+1 to a coordinate vector

ui = PT
i ui+1 ∈ R2i−1 corresponding to a function ui ∈ Vi.

On the the finest grid, grid m, the stiffness matrix Sm and right hand side vector
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f are calculated. The the stiffness matrix Sm has entries Si,j = a (φi,m, φj,m).
The right hand side f is defined by the entries fi = l (φi,m). The prolongation
matrix can be used to calculate the stiffness matrices on coarser grids

Si = PT
i Si+1 ∈ R(2

i−1)×(2i−1). (15)

With all elements defined, we can construct the algorithm. This is the same
as Algorithm 1 and Algorithm 2, but applied to solving Equation (2). The
multigrid algorithm can be seen in Algorithm 3 and the V-cycle can be seen in
Algorithm 4.

Algorithm 3 Multigrid method to solve Equation (3)

function Multigrid1D(m, tol)
uapprox = 0
while ∥f − Smuapprox∥ ≥ tol do

uapprox = uapprox +VCycle1D (m, f − Smuapprox)
end while
return um

end function

Algorithm 4 Step of the V-Cycle of the multigrid method to solve Equation (3)

function VCycle1D(i, fi)
if i > 1 then

upre = D−1
i fi ▷ 1 step of Jacobi smoother

usub = upre + PiVCycle1D
(
i− 1, PT

i (fi − Siu
pre)

)
upost = usub +D−1

i

(
fi − Siu

sub
)

▷ 1 step of Jacobi smoother
else

upost = S−1
1 fi ▷ Exact solution

end if
return upost

end function
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3 Anisotropic diffusion in 2D

We will now consider anisotropic diffusion. This is the equation of interest for
this report. We will apply the multigrid method to this equation, in a similar
fashion as in Section 2.

We consider the following problem for anisotropic diffusion:{
Find u ∈ H2 (Ω) ∩ C0 (Ω) such that

−∇ · (K∇u (x, y)) = f (x, y) , (x, y) ∈ Ω = (0, 1)
2
,

(16)

where the diffusion tensor K ∈ R2×2 is given by:

K = RT

[
1 0
0 ϵ

]
R, ϵ > 0,

with the rotation matrix R ∈ R2×2;

R =

[
cos θ − sin θ
sin θ cos θ

]
, θ ∈ [0, 2π) .

Again, we convert this problem into a weak formulation. This is done by mul-
tiplying with a test function v ∈ C∞

0 (Ω), and then integrating over the domain
Ω. Applying integration by parts leads to the weak formulation:

{
Find u ∈ H1

0 (Ω) such that∫
Ω
K∇u · ∇vdΩ =

∫
Ω
fvdΩ,∀v ∈ H1

0 (Ω) .
(17)

3.1 Domain discretization

In this subsection, the domain will be discretized. This needs to be done, to
be able to define basis functions, which in turn are required to calculate the
linear system. The domain Ω has 2 dimensions. We discretize the domain into
triangles, this is one of the options for domains in two dimensions [12, Section
3]. The multigrid method has been shown to work with unstructured grids in
2 dimensions [9]. However, for the ILLU smoother, which will be discussed
in Section 3.3, a uniform grid is required [3]. So we will use structured grids
throughout the report.

To save the triangles properly, the edges and vertices are also numbered. In
Figure 4, 5 and 6, the numbering of the vertices, edges and triangles on grid 1, 2

12



and 3 can be seen. Grid i has
(
2i−1 + 1

)2
vertices.

Figure 4: Points on Grid 1, 2 and 3

Figure 5: Edges on Grid 1, 2 and 3

Figure 6: Triangles on Grid 1, 2 and 3

13



3.2 Linear system

A linear system can be obtained from the weak formulation in Equation (17)
and the discretization. Continuous piecewise linear basis functions φj are used
for the discrete problem. The basis functions are linear on each triangle and
correspond to the points from the discretization. The space Vi ⊂ H1

0 (Ω) is

spanned by all basis functions on grid i, which has ni :=
(
2i−1 + 1

)2
points:

Vi := span {φj |j = 1, 2, . . . , ni, } . (18)

Then the Galerkin problem is:

{
Find ui ∈ Vi such that∫
Ω
K∇ui · ∇vidΩ =

∫
Ω
fvidΩ∀vi ∈ Vi.

(19)

Any element ui ∈ Vi can be represented as a weighted sum of the basis func-
tions; ui =

∑ni

j=1 µjφj . So we can transform Equation (19) to a linear system

with unknown u = [µ1, µ2, . . . , µni
]
T
:

ni∑
k=1

µk

∫
Ω

K∇φk · ∇φjdΩ =

∫
Ω

fφjdΩ. (20)

This can be written as:
Smu = f , (21)

where the entry at k, j of Sm ∈ Rni×ni is given by
∫
Ω
K∇φi · ∇φjdΩ and the

entry at the j-th position of f ∈ Rn is given by
∫
Ω
fφjdΩ. There exists an

isomorphism between the coordinate um ∈ Rni and um ∈ Vm. The relation is
given by um =

∑ni

i=1 µiφi ∈ Vm.

3.3 Iterative methods

This subsection builds on the section on iterative methods in Section 2.3. This
subsection introduces multiple iterative methods. These methods can be used
to solve linear systems, and are introduced as such. However, they will mainly
be used as smoothing operators for the multigrid method. First, two well-known
iterative methods are quickly introduced, namely the Jacobi and Gauss-Seidel
methods. Then the Incomplete Line LU factorization is introduced.
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3.3.1 Matrix splitting methods

In this report, three iterative matrix splitting methods are used. As the name
implies, the matrix is split into these methods. To solve the linear system on
grid i, Siu = f , the mass matrix Si ∈ Rni×ni is split such that Si = M − N,
with ni = 2i−1 + 1. This split can be used in the iterative solver:

uk+1 = uk +M−1
(
f − Siu

k
)
. (22)

For the Jacobi and Gauss-Seidel methods, the matrix Si is decomposed into
Si = L+D+U. Where L is a strictly lower triangular matrix, U is a strictly
upper triangular matrix and D contains all diagonal entries of Si.

The Jacobi method uses M = D. The Gauss-Seidel method can be executed
forwards and backwards. For the forward iteration M = L +D, for the back-
ward iteration M = D+U [11, Section 4.2.1].

3.3.2 Incomplete line LU method

The third method that will be used in this report is the Incomplete Line LU
(ILLU) factorization. In this method, the stiffness matrix will be factorized
using the Line LU Factorization. We will consider the stiffness matrix on grid i,
which we call Si ∈ Rn2

i×n2
i , with ni = 2i−1 +1. This ILLU method is explained

in multiple different papers [3–5] and we will summarize the method here.

As described in Section 3.1, the grid is structured. Because of this structure,
the stiffness matrix Si corresponding grid i is of the form [3, Equation 2.20];

Si =



D1 U1

L2 D2 U2

L3 D3
. . .

. . .
. . .

. . .

. . . Dni−2 Uni−2

Lni−1 Dni−1 Uni−1

Lni Dni


∈ Rn2

i×n2
i , (23)

where all entries Lj , Dj and Uj , j = 1, 2, . . . , ni are band matrices of size ni×ni.
So in Lj , the only entries are along the main diagonal and the lower diagonal.
For Uj , the entries are along the main diagonal and the upper diagonal. Dj are
tridiagonal matrices. The total size of Si is n2

i by n2
i on the i-th grid. Please

note that the notation of [3] is not the same.
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With the block matrices Lj , Dj , Uj from above, there exists a factorization of S
such that [3, Equation 2.21];

Si = (L+B)B−1 (B + U) , (24)

where;

L =


0

L2
. . .

. . .
. . .

Ln 0

 , B =

B1

. . .

Bn

 , U =


0 U1

. . .
. . .

. . . Un−1

0

 ,

(25)

where 0 is a block matrix of size 2i−1 +1 by 2i−1 +1 containing zeros, just like
the empty entries. For this factorization to hold the following entries for Bi are
required [3];

B1 = D1, Bj = Dj − LjB
−1
j−1Uj−1, for j = 2, 3, . . . , ni. (26)

This factorization is called the Line LU factorization. However, numerically this
not very efficient as B−1

j are full matrices. To keep the same sparsity pattern,

Bj is approximated by B̄j ≈ Bj . This approximation is defined in the following
way:

B̄1 = D1, B̄j = Dj − tridiag
(
LjB̄

−1
j−1Uj−1

)
, for j = 2, 3, . . . , ni. (27)

This approximation does introduce an error. This error is introduced by the
tridiag operation and is denoted by Ē. The matrix Si is now split into a part
from the ILLU factorization and a part of the error introduced by the same
ILLU factorization:

Si =
(
L+ B̄

)
B̄−1

(
B̄ + U

)
+ Ē. (28)

Now that the stiffness matrix Si is split, it can be used as a smoother like the
matrix splitting methods. This time M =

(
L+ B̄

)
B̄−1

(
B̄ + U

)
. This leads to

the following smoother:

uk+1 = uk +
((
L+ B̄

)
B̄−1

(
B̄ + U

))−1 (
f − Siu

k
)
. (29)
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3.4 Prolongation matrix

Another ingredient for the multigrid method is the prolongation matrix. With
the domain in 2 dimensions, this is a bit more complicated than in 1 dimension.
However, the idea is the same. The setup will be explained here, without going
into too much detail, as this is already thoroughly covered in [8, Section 2.3.4]
(where it is called interpolation) and [2, Section 3.4]

Grid i + 1 has vertices on the vertices of grid i and on the midpoints of the
edges of grid i. Using this the prolongation matrix Pi, which prolongates an
element from Vi to an element from Vi+1, can be constructed. The matrix Pi

has a size of
(
2i + 1

)2
by

(
2i−1 + 1

)2
. For the vertices on grid i + 1 that cor-

respond to vertices, the corresponding entry should be set to one 1. For the
vertices on grid i + 1 corresponding to the midpoints of edges on grid i, the
values corresponding to the new points on grid i + 1 and the endpoints of the
edge on grid i should be set to 1

2 .

This structure of creating the prolongation matrix will work for a general grid
in 2 dimensions. So, it will also work for the structured grids used here. Again,
the restriction matrix that restricts an element from grid i+1 to an element on
grid i, is PT

i .

3.5 Multigrid V-cycle

Now, that all the required ingredients for the multigrid are known, it is time
for the multigrid method. Here the algorithm for the multigrid method will
be given. Algorithm 5 returns the coordinate vector um corresoponding to
um from Equation (19). Algorithm 6 executes the V-cycle, and Algorithm 7
is the smoother algorithm. In each V-cylce we start with an initial guess of 0.
Therefore the residual that is the input of the presmoothing step is fi−Si0 = fi.

Algorithm 5 Multigrid method to solve Equation (19)

function Multigrid2D(m, tol)
uapprox = 0
while ∥f − Smuapprox∥ ≥ tol do

uapprox = uapprox +VCycle2D (m, f − Smuapprox)
end while
return uapprox

end function
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Algorithm 6 Step of the V-Cycle of the multigrid method to solve Equa-
tion (17)

function VCycle2D(i, fi)
if i > 1 then

upre = Smoother2D (i, fi)
usub = upre + PiVCycle2D

(
i− 1, PT

i (fi − Siu
pre)

)
upost = usub + Smoother2D

(
i, fi − Siu

sub
)

else
upost = S−1

1 fi
end if
return upost

end function

Algorithm 7 Smoother in 2D

function Smoother2D(i, f)
u = 0
for j = 1 : steps do

u = u+M−1
i (f − Siu) ▷ Mi depends on the type of smoother

end for
return u

end function

4 Eigenvalue analysis

In this section, the convergence of the multigrid method applied to the anisotropic
diffusion equation in 2 dimensions from Section 3 is analysed. The analysis is
done by means of an eigenvalue analysis. We will start with the eigenvalues of
the smoothers, and then extend to the full multigrid method.

Consider a linear system of the form Su = f , with u, f ∈ Rn, and S,M ∈ Rn×n.
Using an iterative solver of the form;

uk+1 = uk +M−1
(
f − Suk

)
, M−1 ∈ Rn×n, (30)

the sequence of vectors
{
uk

}
converges to u for any u0 if and only if the spectral

radius of
(
I −M−1S

)
is strictly smaller than one [11, Theorem 4.1]. Recall that

the spectral radius is the largest absolute value of the eigenvalues.
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4.1 Eigenvalues of iterative methods

We will start with the eigenvalue analysis of the iterative methods as discussed
in Section 3.3. We consider the Jacobi, Gauss-Seidel and ILLU methods. These
methods are of the form in Equation (30). For the error of uk ∈ Rn we use [12,
Section 0.3]:

ek = uk − u. (31)

We can use the error definition to calculate the error propagation. The error
propagation on grid m is

ek+1 = uk+1 − u = uk − u+M−1
(
f − Smuk

)
=

(
I −M−1Sm

)
ek, (32)

where I is the identity matrix of size n2
m × n2

m, nm = 2m−1 + 1. This clearly
shows that the error propagation of a step of the smoother is a linear operation.
As seen in Section 3.3, the preconditioner matrix M equals D for the Jacobi
method, the preconditioner matrix is L + D or D + U for the Gauss-Seidel
method and

(
L+ B̄

)
B̄
(
B̄ + U

)
for the ILLU method.

Both the Jacobi and Gauss-Seidel iterative methods converge when Si is strictly
diagonally dominant [11, Theorem 4.2]. For the ILLU method, however, we do
not have such a theorem. So we will look at the spectral radii of the error propa-
gation of the iterative methods to infer convergence. We will calculate the spec-
tral radius of I−M−1Sm, with Sm from Equation (21). This is done in MATLAB

for θ ∈ {0, 0.1, 0.2, . . . , 3.1} and ϵ ∈
{
1, 0.1, 0.01, . . . , 10−5

}
and m = 4, 5, 6. The

eigenvalues can be seen in Figure 7.

We can see in Figure 7 that the spectral radius depends on the type of iterative
method, the value of ϵ, the value of θ and the grid.

When ϵ = 1, the diffusion tensor K is just the identity matrix in Rn×n. This
means that there is no anisotropy, and thus the spectral radius is uniform for
varying the rotation θ. For smaller values of ϵ, the anisotropy is stronger. We
can see that for stronger anisotropy, the spectral radius increases. This was ex-
pected as solving equations with strong anisotropy is considered challenging [19].

If ϵ is smaller than 1 we can clearly see the influence of the rotation θ on
the spectral radius. For values of θ that are close to one of the points of the set{
0, π

2 ,
3π
4 , π

}
, we can see that the spectral radii are relatively small. At those

angles of rotation, the lines in the grid are aligned with the direction of the
anisotropy. Therefore the grid is optimally aligned for solving the anisotropic
diffusion equation [14].
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Figure 7: Eigenvalues of iterative methods on different grids for different values
of ϵ and θ on grid m = 4, 5, 6.

We can see in Figure 7 that on finer grids, the spectral radius of the itera-
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tive methods increases. The spectral radius of the Jacobi method is larger
than 1 in most cases. Thus, we do not expect the multigrid method with this
smoother to converge to the weak solution of the anisotropic diffusion equation.
The spectral radius of the Gauss-Seidel method, however, is in all test cases
strictly smaller than 1. Thus, we expect the multigrid method with the forward
Gauss-Seidel smoother as pre-smoother and the backward Gauss-Seidel method
as post-smoother to converge to the weak solution of Equation (17). The spec-
tral radius of the ILLU method is far below 1 in most cases, however, there are
also quite some cases where the spectral radius is larger than 1. This happens
with small values of ϵ, on finer grids. Because of this, the multigrid method
with the ILLU smoother is expected to converge quickly in some cases, but we
expect it to not be robust for all values of ϵ and θ, which might only make it
usable under certain conditions. We will discuss these conditions in Section 4.6.

4.2 Error propagation of multigrid method

For the error propagation of an iteration of the multigrid method, the same
principle is applied. The error after i iterations on grid m is

eim = ui
m − um

First, the linearity of the error propagation is proven. This is done by first
showing it for the 2-grid method and then generalizing the multigrid method.
If we have the linearity, we know that eigenvalues do not depend on the input
u, but are constant for all uk.

4.2.1 Linearity of error propagation in 2-grid method

Here the linearity of the error propagation of the V-cycle of the multigrid method
with only two grids is shown. Consider Algorithm 8. This algorithm is Algo-
rithm 6 but tailored to the 2-grid method.

Algorithm 8 V-Cycle for the 2-grid method for anisotropic diffusion in 2 di-
mensions
function Vcycle2Grid(f2)

upre = 0+M−1
2,pre (f2 − S20)

usub = upre + P2S
−1
1 PT

2 (f2 − S2u
pre)

upost = usub +M−1
2,post

(
f2 − S2u

sub
)

return upost

end function

With the same reasoning as for the smoothers, the error propagation for esub
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can be determined;

esub =
(
I − P2S

−1
1 PT

2 S2

)
epre.

Combining this with the linearity results of the smoothers leads to:

ek+1 = V̄2e
k,

V̄2 =
(
I −M−1

2,postS2

) (
I − P2S

−1
1 PT

2 S2

) (
I −M−1

2,preS2

)
.

(33)

4.2.2 Linearity of error propagation in multigrid method

In the same way as before, the error propagation of the multigrid method with 3
grids will be calculated here. From Algorithm 6 we see the subspace correction
step is

usub
3 = upre

3 + P3VCycle2D(2, PT
3 (f3 − S3u

pre
3 ) ,

Working this out gives the following term for the error propagation in the sub-
space correction step;

esub3 =
(
I − P3

(
I − V̄2

)
PT
3 S3

)
epre3 .

This combines to the full error propagation of the 3-grid cycle:

V̄3 =
(
I −M−1

3,postS3

) (
I − P3

(
I − V̄2

)
PT
3 S3

) (
I −M−1

3,preS3

)
.

This can easily be extended to V-cycles with more grids. Then we obtain that
the following holds;

ek+1
m = V̄mekm,

V̄2 =
(
I −M−1

2,postS2

) (
I − P2S

−1
1 PT

2 S2

) (
I −M−1

2,preS2

)
,

V̄j =
(
I −M−1

j,postSj

) (
I − Pj

(
I − V̄j−1

)
PT
j Sj

) (
I −M−1

j,preSj

)
.

(34)

This result shows that the error propagation on every grid is a linear operation.

4.3 Eigenvalue calculation

Here, the method of calculating the eigenvalues will be described. To calculate
the eigenvalues of the error propagation of the multigrid method corresponding
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to the anisotropic diffusion, the eigenvalues of V̄m from Equation (34) have to
be calculated. One way to calculate these eigenvalues would be to construct the
matrices V̄m. However, there is another, arguably easier, alternative.

When calling Algorithm 6 with f = 0,uk ∈ Rn, the resulting output is

VCycle2D
(
m, f − Smuk

)
= VCycle2D

(
m,−Smuk

)
= V̄muk.

This means that calling this function with the right-hand side equal to 0 results
in the error propagation matrix multiplied with uk. As we are interested in the
eigenvalues of the matrix V̄m, the MATLAB function eigs can easily be used to
compute the eigenvalues of this matrix when given this function handle as an
input.

4.4 Eigenvalues of multigrid

In this subsection, the eigenvalues of the error propagation of the multigrid
method in Algorithm 5 will be shown and discussed. The eigenvalues are sepa-
rated into three figures. In Figure 8, the eigenvalues corresponding to the finest
grid being grid 4 are shown, in Figure 9 and Figure 10, the finest grid is grid 5
and 6 respectively. All subfigures in each category have the same axes for ease of
comparison. Based on the results, the influence of ϵ, θ, the number of grids and
the type of smoother will be discussed. The multigrid method with the Gauss-
Seidel smoother uses the forward Gauss-Seidel smoother as pre-smoother and
the backward Gauss-Seidel smoother as post-smoother.

We can see that the multigrid method with the Jacobi smoother is the worst
performing. With this smoother, the multigrid method only converges in a
few cases. So for solving the anisotropic diffusion equation with the multigrid
method, the Jacobi smoother is not suitable. In most cases tested here, the
multigrid method performs better with the ILLU smoother compared to the
Gauss-Seidel smoother. However, in the case with six grids and small values of
ϵ ≤ 10−3, the eigenvalue for the MGM with ILLU smoother is larger for some
values of θ. This means that it is not really robust. This was to be expected
from the eigenvalues of the smoothers as discussed in Section 4.1.

Again, when ϵ = 1, the spectral radii are uniform for varying rotation val-
ues θ. For decreasing values of ϵ, the eigenvalues generally increase. This was
expected as solving equations with strong anisotropy is considered challenging
[19].

It can also be seen that the eigenvalues depend on θ. for values of θ around
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Figure 8: Eigenvalues of error propagation of multigrid method for anisotropic
diffusion from Algorithm 8 on the 4-th grid, with different amount of grids in
the V-cycle.
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Figure 9: Eigenvalues of error propagation of multigrid method for anisotropic
diffusion from Algorithm 8 on the 5-th grid, with different amount of grids in
the V-cycle

25



Figure 10: Eigenvalues of error propagation of multigrid method for anisotropic
diffusion from Algorithm 8 on the 6-th grid, with different amount of grids in
the V-cycle
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{0, π/2, 3π/4, π} there is a local maximum or local minimum. As explained in
Section 3.3, this is because of the alignment with the grid. This shows that
the multigrid method with the Gauss-Seidel smoother performs worse when the
direction of anisotropy is aligned with the grid lines. The multigrid method
with the Jacobi smoother, however, seems to perform better when this is the
case.

Another observation is that the eigenvalues in general increase when a finer
grid is used. The spectral radius does not show dependence on the amount of
grids in this test.

4.5 Comparison with literature

As mentioned before, in the paper by Hemker [1] the Local Fourier Analysis
(LFA) has been applied to the anisotropic diffusion problem as seen in Equa-
tion (16). The LFA has been applied to the multigrid method with ILLU and
Gauss-Seidel smoothers. The local Fourier analysis (LFA) is a different tech-
nique than the eigenvalue analysis, but it is also related to the convergence of
the method. In the paper, only the values for ϵ = 10−2 and ϵ = 10−4, with θ in
steps between 0 and π radians.

To compare the results obtained here with those results, they have been plotted
together in Figure 11. The figures show the eigenvalues as calculated before
and the results of the referenced LFA. As can clearly be seen in both figures,
the LFA and eigenvalue analysis do not match up, especially for the multigrid
method with the ILLU smoother this is the case. For the multigrid method
with the Gauss-Seidel smoother, the results obtained here and the results from
[1] are similar but not the same either. There may be a couple of reasons for this.

The first and obvious difference is the method. The eigenvalue analysis and
LFA are not the same. They are both used to show convergence. The Local
Fourier Analysis is exact for rectangular grids with period boundary conditions
[16]. In other cases, it is also a commonly used method to approximate the
convergence factors of the multigrid method [16]. Even though the methods are
not the same they should at least give similar results. This is not the case here.
Thus, the difference in results should be sought elsewhere.

In the paper from Hemker, there are a lot of things left unclear. While the
multigrid method and grid discretization are described properly and unambigu-
ous, some things remain unclear. For instance, the number of grid refinements
and the coarsest grid are unknown. Also, the way the smoothers and multigrid
are implemented are not explained, and may thus vary from the implementation
here. All these differences in implementation and calculation may explain the
difference in results.
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Figure 11: Comparison between the LFA by Hemker [1] and the eigenvalues
from the error propagaion from Algorithm 6.

4.6 Proposed bound

We have seen that for values of ϵ < 0.01 the multigrid method with the ILLU
smoother on the 6-th grid does not converge for all values of θ. Here we will
propose a bound on ϵ to ensure convergence of the multigrid method with the
ILLU smoother for all values of θ on all grids.

To find the bound, we calculate the eigenvalue of the error propagation of the
ILLU smoother. The eigenvalues are calculated on grids with an element size
h ranging between 1 and 10−2, ϵ ranges from 1 down to 10−6 and θ is fixed to
π/4. The rotation is set to θ = π/4 as the previous tests have shown that this
results in the largest spectral radius.

In Figure 12 we can see the spectral radii as calculated. A line at ϵ = 0.05 and
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Figure 12: Proposed bound on ϵ and h to ensure convergence of multigrid
method with ILLU smoother, with lines at ϵ = 0.05 and h = 0.075.

at h = 0.075 have been added. These lines show the proposed bounds. Given a
value of ϵ > 0.05, or an element size h > 0.075, the ILLU method will converge
for all values of θ.

Please note that this bound is estimated from numerical experiments and is
not proven analytically.
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5 Stable multigrid method

We have seen in Section 4, that the multigrid method applied to anisotropic
diffusion problem does not always converge to the solution. This happens for
small values of ϵ on fine grids. Therefore, we will introduce a variation of the
multigrid method which is more stable.

Consider Algorithm 6, this algorithm solves the linear system of Equation (21)
(Su = f). The stiffness matrix S depends on the grid, and values of θ and ϵ.
So the stiffness matrix corresponding to ϵ on grid i can be denoted as Si,ϵ. The
linear system from Equation (21) is equal to

Sm,1u = f − (Sm,ϵ − Sm,1)u.

This equation is solved for u = S−1
m,ϵf . This is exactly the required solution,

while still using Sm,1. This can be made iterative

uk+1 = uk + τS−1
m,1

(
f − Sm,ϵu

k
)
. (35)

Upon convergence, the solution uk converges to S−1
m,ϵ.

5.1 Analysis of ideal iteration

Here we will discuss Equation (35), to discover why it should converge. The
error propagation for this iterative scheme is:

ek+1 =
(
I − τS−1

m,1Sm,ϵ

)
ek.

Since ϵ < 1, we know that

ϵ |ξ|2 ≤ ξTKξ ≤ |ξ|2 , ∀ξ ∈ R2,

With K being the diffusion tensor depending on ϵ from Section 3. As K is
directly related to Sm,ϵ, we use this to infer

ϵ (Sm,1v, v) ≤ (Sϵ,mv, v) ≤ (Sm,1v, v) , ∀v ∈ Rn2
m . (36)

We know that the eigenvalues λ and eigenvectors v of S−1
m,1Sm,ϵ satify Sm,ϵv =

λSm,1v. Multiplying this expression with vT and dividing by vTSm,1v gives

λ =
(Sm,ϵv, v)

(Sm,1v, v)
.

Using Equation (36) we get that the eigenvalues of S−1
m,1Sm,ϵ are bounded such

that ϵ ≤ λ ≤ 1. This means that the eigenvalues of the error propagation are

30



bounded such that

1− τ < λ < 1− ϵτ. (37)

So with for instance τ = 1, the iterative scheme Equation (35) converges.

5.2 Multigrid V-cycle

In general we do not have S−1
m,1. Therefore we approximate S−1

m,1 with the multi-
grid method. This can be seen in Algorithm 9, note that it calls VCycle2D1
which an be seen in Algorithm 10.

Algorithm 9 Stable multigrid method to solve Equation (19)

function StableMultigrid2D(m, tol)
uapprox = 0
while ∥f − Sm,ϵu

approx∥ ≥ tol do
uapprox = uapprox +VCycle2D1 (m, f − Sm,ϵu

approx)
end while
return uapprox

end function

Algorithm 10 Step of the V-Cycle of the multigrid method to solve Equa-
tion (17) for ϵ = 1

function VCycle2D1(i, fi)
if i > 1 then

upre = Smoother2D (i, fi)
usub = upre + PiVCycle2D1

(
i− 1, PT

i (fi − Si,1u
pre)

)
upost = usub + Smoother2D

(
i, fi − Si,1u

sub
)

else
upost = S−1

1,1fi
end if
return upost

end function

As before, we can calculate the error propagation

ek+1 = ek − τVCycle2D1
(
m,Sm,ϵe

k
)
.

Due to the linearity of the error propagation as proven in Section 4.2.2, we can
define A as

ek+1 = (I − τASm,ϵ) e
k.
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By the linearity of the matrices there exist α1, α2 > 0, such that

α1 (Av, v) ≤
(
S−1
m,ϵv, v

)
≤ α2 (Av, v) , ∀v ∈ Rn2

m

We can transform this to

α1 ≤
(
S−1
m,ϵv, v

)
(Av, v)

≤ α2.

By the definition of the Rayleigh quotient [11, Section 1.7] this holds for the
eigenvalues of the eigenvalue problem S−1

m,ϵv = λAv. Thus for all eigenvalues of
this problem, it holds that α1 ≤ λ ≤ α2. This leads to the eigenvalues of ASm,ϵ

being bounded by 1/α1 < λ < 1/α2. This gives us the following bounds on the
eigenvalues for the error propagation (I − τASm,ϵ)

1− τα2 < λ < 1− τϵα1.

Now the value of τ can be chosen such that

−1 < 1− τα2 < 1− τϵα1 < 1. (38)

Then the method will converge.

5.3 Eigenvalue analysis

As before, we can calculate the eigenvalues using the function VCycle2D1.
Again we will set the right-hand side to 0. Then eigenvalues can be calculated
using the MATLAB function eigs. This time we call

VCycle2D1
(
m,−Sm,ϵu

k
)
. (39)

The resulting eigenvalues can be seen in Figure 13, Figure 14 and Figure 15.
The first observation is that all the eigenvalues are smaller than 1. This means
that Algorithm 9 will converge for all combinations of parameters tested here.
As it is hard to see the exact values here, the overall maximal eigenvalue for
each smoother method will also be listed here. For the multigrid method with
the Gauss-Seidel smoother, the largest eigenvalue of the error propagation is
0.99777, for the ILLU smoother it is 0.99770, and for the Jacobi smoother it
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Figure 13: Eigenvalues for error propagation of Stable multigrid method for
anisotropic diffusion from Algorithm 9 on the 4-th grid, with different number
of grids in the V-cycle.
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Figure 14: Eigenvalues for error propagation of Stable multigrid method for
anisotropic diffusion from Algorithm 9 on the 5-th grid, with different number
of grids in the V-cycle.
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Figure 15: Eigenvalues for error propagation of Stable multigrid method for
anisotropic diffusion from Algorithm 9 on the 6-th grid, with different number
of grids in the V-cycle.
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is 0.99997. These values are very close to 1. But these examples are the most
negative case and are still strictly smaller than 1.

There is quite a difference between the eigenvalue when different smoothers are
used in the multigrid method. The multigrid method with the Jacobi smoother
always has the highest eigenvalues, while the multigrid method using the ILLU
smoother always has the lowest eigenvalues.

For decreasing values of ϵ, the eigenvalues increase. However, for values of ϵ
that are smaller than 10−3 there does not seem to be much difference between
the eigenvalues visually. This is another sign that this variant of the multigrid
method is stable.

Again, at θ in {0, π/2, 3π/4, π} the eigenvalues achieve local maxima. As before,
this is due to the grid structure as explained in Section 3.1. Also using finer
grids increases the spectral radius, while adding more coarser grids does not do
this.

5.4 Comparison

Now the results of eigenvalue analysis from the error propagation of Algorithm 5
and Algorithm 9 can be compared. The first will be called the ”normal” multi-
grid method while the second will be called the ”stable” multigrid method for
now. The figures containing the results and the discussion can be seen in Sec-
tion 4.4 and Section 5.3 respectively.

The main difference is that the eigenvalues of the stable multigrid method are
always smaller than 1. This is not the case for the normal multigrid method.
However, the stable multigrid method usually has slower convergence than the
normal multigrid method.

In both the normal and stable case it can be seen that the methods with the
Jacobi smoother perform the worst. Also the ILLU smoother performs better
than the Gauss-Seidel smoother usually, but not always. For instance when
ϵ = 10−5, θ = 0.4, the finest grid is grid 6 and the coarsest grid is grid 1 in the
V-cycle, then the multigrid method with the Gauss-Seidel smoother performs
better.

Another similarity between the normal and stable multigrid method is that
in both cases the eigenvalues are highly related to the grid alignment. This
shows that it pays off to align the grid properly when working with anisotropic
diffusion if this is possible. Also lower values of ϵ increase the eigenvalues in
both cases.
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6 Conclusion

The goal of this thesis was to quantify the convergence of the multigrid method
with ILLU smoothers when applied to the anisotropic diffusion equation.

We have shown that we cannot guarantee convergence of the multigrid method
with ILLU smoother for strongly elliptic problems. So instead we proposed a
bound of ϵ = 0.05. Anisotropic diffusion problems with 0.05 < ϵ ≤ 1, should
always converge for any rotation and grid size.

We have also shown that the Jacobi smoother in the standard multigrid it-
eration is unsuitable for solving this problem. However, the multigrid method
with the Gauss-Seidel smoother seems to be always convergent for all values of
anisotropy ϵ and rotation θ.

To deal with the multigrid method with the ILLU smoother diverging, we have
proposed an alternative multigrid method. This ”stable” method always con-
verges with either the Jacobi, Gauss-Seidel or ILLU smoother, although it may
be relatively slow. The algorithm for this stable multigrid method can be seen
in Algorithm 9.
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7 Discussion

Even though these results help to get a better understanding of the usage of
the multigrid method to solve problems with anisotropic diffusion, there is a
lot more that can be researched. So here are some suggestions for future work
extended on this report.

The grids used in the multigrid method were very coarse still. This was re-
quired for the eigenvalue calculation. Normally on the discretization considered
here, one could just use direct solvers. The multigrid is generally used for larger
linear systems. One could look at much finer discretizations and see what the
convergence rates are in that case.

In Section 4.5 the results of the eigenvalue analysis are compared with the
local Fourier analysis. There is a mismatch between the two methods. How-
ever, without diving deeper into the local Fourier analysis, the reason for this
mismatch cannot be given. But it would be very interesting to see where this
difference comes from. The source of this difference can give some insight into
methods to analyse the performance of multigrid methods.

Another possibility is to research the eigenvalues more. In Section 4.2.2 the
error propagation of the multigrid method is calculated explicitly. This calcula-
tion can be dissected to find out which parts of the multigrid method introduce
the divergence. This information may then be used to improve the multigrid
method applied to anisotropic diffusion.

In the eigenvalue analysis various parameter values for ϵ, θ and the number
of grids have been used. But, there are more properties that could change
the performance of the multigrid method. In this report, every smoother step
executed only a single step of the iterative method. Changing the amount of
smoother steps may change the results of the eigenvalue analysis. Also, other
smoothers could be considered.
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