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Summary 

Hydrology is a scientific field that deals with water resources aiming to understand its 

occurrence, distribution and impact towards the environment. To have a better perspective on 

how these processes work, hydrological modelling is often used as a tool to analyze the 

phenomena that occur in certain areas and is commonly used to examine the impact of certain 

interventions for water resources. As one of the crucial inputs for hydrological modelling, 

precipitation data plays an important role that could directly affect the performance of the 

hydrological models. However, due to limitations, the precipitation data availability is often 

inadequate or even unavailable in certain areas. One of the examples was found in the upstream 

Bengawan Solo catchment, Indonesia, where the precipitation data is inadequate. One of the 

options to overcome this problem is using satellite precipitation products to replace the in-situ 

data. However, there are various numbers of satellite precipitation products globally. Different 

products have different characteristics of precipitation data. Therefore, this research was 

conducted mainly to investigate the performance of the satellite precipitation products (SPPs) 

especially in the application for hydrological modelling. The satellite precipitation products 

investigated in this research are the Climate Prediction Center Morphing Technique 

(CMORPH) and the Multi-Source Weighted Ensemble Precipitation (MSWEP).  

 

In comparison with the observed precipitation from 12 in-situ stations, MSWEP satellite 

precipitation products with a smaller grid size show a higher performance compared to 

CMOPRH satellite products. This was identified with BIAS and MAE indicators that show 

lower values for MSWEP satellite product compared to CMORPH product. Moreover, in the 

application for SWAT+ hydrological model, the streamflow generated using MSWEP satellite 

product also shows a higher performance both for comparison with the observed streamflow 

and the streamflow generated by the same model using observed precipitation. Thus, the 

MSWEP precipitation product is corrected using a bias correction technique called quantile 

mapping. However, the results of the bias correction data do not show many improvements for 

the comparison with observed precipitation or for the streamflow generated using the corrected 

data.  
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1. Introduction 

1.1. Background and Motivation 

Hydrology is a scientific field that deals with the water resource on earth regarding its 

occurrence, distributions and the circulation also the chemical which has impacts towards the 

environment (Reddy, 2005). In practice, hydrology is often used to understand the impact of 

rainfall phenomena such as water supply, water quality, irrigation, flooding predictions, river 

discharge, and so on (Jajarmizadeh et al., 2012). Referring to Bergström (1991), advancing 

computer technology and mathematical model helped the development of hydrological models 

able to accurately simulate the actual phenomena in an area. Hydrological modelling is often 

used as a planning tool for water management. However, one of the rising problems of 

hydrological modelling is data scarcity. For instance, Sun et al. (2018) addressed that 

precipitation data could be inadequate for hydrological model due to the inexistence or uneven 

distribution of rain gauge stations (in situ stations). This is crucial because precipitation data 

directly influence the performance of the model. As a result, inadequate precipitation data could 

mislead the model into the inference of the results (Kauffeldt et al., 2013). 

 

One of the alternatives to substitute the in-situ measurement to obtain precipitation is using a 

satellite to predict the rainfall from observation in the atmosphere. These satellites estimate the 

rain using infrared and microwave sensors that capture the energy and water vapour streaming 

around the atmosphere (Kidd & Levizzani, 2011). Currently, these satellite products are 

available globally and with advanced spatial and temporal resolutions, which could be used 

efficiently for hydrological modelling compared to in-situ measurement (Maggioni & Massari, 

2018). However, due to the spatial and temporal resolutions of each satellite product, the 

accuracy of the precipitation prediction is also diverse. Finding satellite products that predict 

the most accurate precipitation needs more in-depth analysis and application in hydrological 

modelling to observe the feasibility of these products. A paradigm shift might arise if these 

products are considerably precise in predicting the precipitation and feasible for application in 

modelling. If the satellite precipitation products can precisely predicting the precipitation in 

certain area, it could be possible to use the satellite products in hydrological modelling and 

replacing the in-situ measurement for the precipitation data.   
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1.2. State of the art 

1.2.1. Satellite Precipitation Product 

Precipitation or rainfall data is the most influential forcing variable that directly determines the 

output of a hydrological model (Beck et al., 2017). On the other hand, Beck et al. (2016) argues 

that estimating the precipitation in certain area using modelling is challenging due to 

spatiotemporal heterogeneity. Michaelides et al. (2009), describes there are four main paths to 

obtain precipitation data for hydrological modelling. The first approach is to do a ground 

measurement using a rain gauge, which is the most accurate way to get the precipitation data. 

Another ground measurement is using a ground radar that can be observed remotely. The third 

option is to use a satellite sensor to derive the rainfall data. The last option is using atmospheric 

retrospective-analysis models. However, ground measurement is sometimes more complex to 

do in some area and sometimes require cost that relatively high. Due to these consequences, 

there are exist areas where precipitation data is unavailable due to inexistence of ground 

measurement. On the other hand, the satellite precipitations products can easily provide the 

precipitation data and available almost for all area around the world. For example, satellite 

precipitations products often used to obtain the precipitation around the ocean where ground 

measurement is unavailable. 

 

According to Salvadore et al. (2015), the emergence of satellite technology has made the 

precipitation data obtained from satellite more adequate and accessible for modelling. There 

are several satellite precipitation products (SPPs) that exist globally. For example, Liu et al. 

(2020) summarized six satellite missions providing precipitation data such as (i) Tropical 

Rainfall Measuring Mission (TRMM), (ii) Global Precipitation Measurement (GPM), (iii) 

NOAA National Center for Environmental Prediction (NCEP) and Climate Prediction Center 

(CPC) that merged for IR project, (iv) MERRA-2 and Global and Regional Land Data 

Assimilation Projects, (v) TROPICS and (vi) Datasets for Tropical Meteorology and 

Climatology. Each of these missions provides precipitation data using a different approach to 

elaborate data from satellite sensors. However, the TRMM project ended in April 2015 after 

serving for 17 years providing the precipitation data. The project itself continued by the GPM 

project that orbited in July 2014 with more advanced technology to observe precipitation. 

Polong et al. (2022), in study at the Upper Tana River basin of Kenya, assess four satellite 

precipitation products (SPPs), namely,  (i) Academic Research Consortium (ARC)-2, (ii) 

Climate Hazards Group InfraRed Precipitation with Station Data (CHIRPS v2.0), (iii) TMPA 
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3B42v7 that obtained from TRMM satellite and (iv) Precipitation Estimation from Remotely 

Sensed Information using Artificial Neural Networks – Climate Data Record (PERSIANN-

CDR). This study concluded that ARC-2 datasets have the highest performance in several tests, 

followed by CHIRPS and TRMM. 

 

Aiming to better understand these satellite products, Beck et al. (2017) assessed 22 satellite 

precipitation products (SPPs) which were grouped into two different types. One of the groups 

consisted of 9 SPPs that corrected using gauges data and the other group consisted of 13 SPPs 

that were not corrected and only relied on the satellite data. The uncorrected SPPs are evaluated 

using gauges observations as the reference and the corrected SPPs are tested using a 

hydrological model. In the uncorrected satellite precipitation result, MSWEP-ng v2.0 shows 

the lowest mean error against the ground gauges precipitation data for a short measurement 

period. For long-term precipitation measurements, CHIRPS v2.0, MSWEP-ng v1.2 and v2.0 

shows the same level of highest accuracy compared to the other products. For the corrected 

satellites products, hydrological modelling was used using each product and the generated 

streamflow was compared with the observed streamflow. The result of the model is presented 

based on Nash-Sutcliffe Efficiency as an indicator and it was found that for example, in tropical 

areas, MSWEP V2.0 is showing the best performance followed by MSWEP v1.2 and CHIRPS 

v2.0. 

 

Clearly, due to different methods and technology used for obtaining the data, the spatial and 

temporal resolutions of each product is diverse among one and another which gives a range of 

uncertainty in the data (Lee et al., 2023). Moreover, the accuracy of the SPP is highly 

influenced by the area where the product will be implemented. Therefore, all SPPs from various 

studies will be listed in Table A. 1 for consideration in further analysis. In this table, each row 

represents the best satellite precipitation product from an assessment and comparison to other 

products in the corresponding studies. 

 

1.2.2. Satellite Precipitation in Hydrological Modeling  

Hydrological modelling can be summarized as an attempt to understand and simulate the reality 

of the hydrological process in an area starting from the precipitation to the runoff process 

(Cherif et al., 2023). According to Pechlivanidis et al. (2013), hydrological modelling can be 

used for several purposes based on the problem defined in the field such as extreme conditions 
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(drought or flooding) and water management in general. In their studies about socio-hydrology, 

Blair and Buytaert (2016) indicate that hydrological modelling is not only an attempt to 

understand the physics of water but is also related to socio-economic aspects where the 

hydrological model is often considered as the background consideration for socio-economics 

decision making. This reason shows the importance of a hydrological model’s performance in 

representing the actual conditions in the application area. 

 

However, it is often found that the hydrological model has a low performance due to 

uncertainties from input data, model structure and boundary conditions which are mainly 

caused by limited data and weak knowledge of hydrological modelling. Due to these 

limitations, the accuracy and quality of the simulated prediction are threatened (Song et al., 

2015). As discussed in the previous section, precipitation is a highly prominent variable in the 

model. Due to limitations and challenges to obtain accurate precipitation from ground 

measurements, remote sensing data could be the easiest choice to get precipitation data. 

However, remotely sensed data does not give a direct measure of the aimed variable 

(precipitation) because it was derived from the observations using satellite infrared or in the 

electromagnetic microwave spectrum obtained at the top of the cloud. Therefore, using this 

method, the precipitation data is estimated where data biased estimate could exist (Tarek et al., 

2020). 

 

Currently, there are various studies about the application of satellite-based precipitation in 

hydrological modelling. One of the applications has been conducted by Su et al. (2021), where 

satellite-precipitation products, namely TMPA 3B42 and IMERG are used for hydrological 

simulation in catchment at the southern part of China. Yuan et al. (2017) uses TMPA and 

IMERG datasets for streamflow simulation in Chindwin River Basin, Myanmar. However, the 

TMPA dataset used is TMPA 3B42v7 where more improvement is included in this version. 

The results shows that both datasets are capable of simulating the streamflow in the area 

although showing considerable errors. In both studies, the error was fixed with a bias-correction 

method that eventually led to better results. Moreover, Peng et al. (2021) also performed a 

correction method for PERSIANN-CDR, CHIRPSv2.0, CMORPH, IMERG, GSMaPv6, and 

TMPA 3b42v7 datasets for application in Tarim Basin Hydrological model at China. The 

results show that all corrected datasets have a better performance compared to the raw data. 

Still, the satellite product has advantages and disadvantages even after being corrected. These 

studies confirm that satellite precipitation products are applicable for hydrological modelling. 
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Nevertheless, the performance of the hydrological model is strongly driven by the accuracy of 

the corresponding satellite precipitation product which is diverse in different regions (Chen et 

al., 2019). Therefore, choosing suitable product is crucial and a bias-correction method is still 

needed to reduce the inaccuracy of precipitation prediction.  

 

1.3. Research Gap 

Understanding hydrological processes is crucial for better water management planning. Often, 

hydrological modelling is used to get information about water characteristics in study area. The 

hydrological model needs several specific inputs such as precipitation. With accurate 

precipitation data, the model will have a better representation of the actual conditions. 

However, precise precipitation data from ground measurements are frequently not available. 

One example of this problem is found at the upstream Bengawan Solo catchment in Java, 

Indonesia. The existence and quality of ground measurement data are still questionable 

(Auliyani & Wahyuningrum, 2021).  

 

One of the alternatives is to use satellite-based precipitation data as the input for the model. 

There are several options available for satellite-based datasets for the model. It cannot be 

avoided that the satellite-based data might generate a biased estimation of the precipitation. 

Moreover, there is still minimum research on satellite precipitation for hydrological modelling, 

especially in Indonesia. Therefore, it is crucial to assess these satellite datasets to find out which 

one is suitable and feasible for application in hydrological modeling. 

 

1.4. Study Area 

As seen in Figure 1, the study area is called the upper Bengawan Solo (UBS) catchment and is 

located on the most populated and vital island in Indonesia. The catchment is in Central Java 

province and Yogyakarta province. The total surface area of the catchment is 3,306.5 𝑘𝑚2 

which corresponds to approximately 20,5% of the total Bengawan Solo Catchment (Rustanto 

et al., 2017) which is regarded as the largest catchment in Java. According to Suroso et al. 

(2023), the Bengawan Solo catchment plays an essential role because the area is mainly used 

for agricultural use. The water captured from this catchment is discharged to the Bengawan 

Solo River. The catchment itself is prone to extreme conditions. Drought is often occurring in 

dry periods. On the other hand, due to the high intensity of rainfall during the wet season, 
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flooding is also often occurring (Rustinsyah et al., 2021). Therefore, understanding the 

hydrology in this area is vital for supporting tools in decision-making. 

 

Figure 1. The study area 
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1.5. Research Objective 

‘To compare the precipitation and the simulated streamflow using observed and satellite-

based data for SWAT+ hydrological model application in the Bengawan Solo upstream 

catchment in Java, Indonesia.’ 

 

1.6. Research Questions 

To achieve this objective, four research questions is derived: 

1. What is the accuracy of the satellite-based precipitation data compared to the 

observed precipitation? 

2. What is the accuracy of the model that used observed precipitation compared to the 

observed streamflow? 

3. What is the performance of the model that used satellite-based precipitation data 

compared to streamflow generated by the model using observed data? 

4. What is the performance of the model using uncorrected and bias-corrected satellite-

based precipitation data by comparing the streamflow generated by the model using 

observed data? 

 

The first research question is the verification of satellite precipitation against the observed 

precipitation. The selected satellite precipitation products (SPPs) will be checked by several 

indicators to determine the accuracy of the satellite predictions against the observed 

precipitation. The second and third research questions are mainly focusing on hydrological 

modelling, where the outcomes of the model will be evaluated. The second research question 

will assess the performance of the model that uses the observed precipitation as the input. The 

result obtained from the model (streamflow) will be compared with the observed streamflow. 

The third research question will use satellite precipitation as the input of the model. The result 

of the model that uses the satellite precipitation will be compared to the streamflow obtained 

from the model that uses the observed precipitation as conducted in the second research 

question. The last research question will require an extra step to analyze and perform a bias-

correction method for satellite precipitation. After the satellite precipitation is corrected, it will 

be implemented in the model to see whether there are improvements in model performance 

compared to the the observed streamflow. 
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1.7. Scope and Boundary 

1.7.1. Scope 

In this research, the satellite precipitation product will be assessed by statistical comparison 

with observed data and application in rainfall-runoff hydrological modelling to observe 

whether the SPP product is feasible to be used in the corresponding area. The newest Soil and 

Water Assessment Tool (SWAT) model called SWAT+ will be used. This latest model has 

been improved with more capability to simulate the actual processes and interactions in the 

hydrological model (Senent-Aparicio et al., 2021). This model will represent the hydrological 

processes of upstream Bengawan Solo catchment in the West side of Mount Lawu. 

 

1.7.2. Boundaries 

The study will be using calibrated SWAT+ model. For simplification, the model will not be 

recalibrated to fit the satellite precipitation and will stick to the actual calibrated models. 

Moreover, aiming to have a better representation of the actual conditions, the hydrological 

model will be simulated for the period from 2008 to 2020 which matches the observed 

precipitation and streamflow data in the location. Due to the limited availability and quality of 

the data, the observed rainfall is only collected from 12 rainfall and meteorology stations that 

spreads over the catchment. The modelling process will be divided into three periods starting 

with two years of warm-up period that will begin from 1 January 2008 to 31 December 2009. 

The calibration period is five years starting from 1 January 2010 to 31 December 2015. Lastly, 

the validation period from 1 January 2016 until 31 December 2020 
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2. Research Methods 

2.1. Material  

2.1.1. In-situ Data 

For the research, some data from field observation is needed. Obviously, the precipitation 

data obtained from in-situ measurement stations is required as the reference for the 

comparison with the satellite precipitation product to determine the accuracy of the 

corresponding product. In this research, observed precipitation from 12 stations spread over 

the upstream of the Bengawan Solo catchment is used for the assessment. Overview of the 

stations can be seen in Table 1. However, for the modelling in a later stage, the dataset that 

is needed is not only precipitation. There is another dataset that is required from the in-situ 

measurement for the model’s input such as temperature, wind speed and humidity. These 

data could only be obtained from meteorology stations. Among these 12 stations that were 

selected for the study, there are five meteorology stations that will be used. These 

meteorology stations are indicated with symbol (*) at the beginning of their name in Table 

1. The other stations are considered as the rainfall stations. 

 

Table 1. Stations overview 

Station Name Coordinate Elevation 

Data Type 

Precipitation Temperature Humidity 
Wind 

Speed 

*Cengklik 731.08’ S, 110 43.8’ E 138 ✓ ✓ ✓ ✓ 

*Kedunguling 756.46’ S, 110 50.52’ E 158 ✓ ✓ ✓ ✓ 

*Ketro 722.68’ S, 110 53.94’ E 105 ✓ ✓ ✓ ✓ 

*Ngancar 759.34’ S, 110 58.74’ E 243 ✓ ✓ ✓ ✓ 

*Patihan 726.4’   S, 110 57.12’ E 81 ✓ ✓ ✓ ✓ 

Bendosari 741.7’   S, 110 52.98’ E 115 ✓ - - - 

Delingan 735.28’ S, 110 59.22’ E 191 ✓ - - - 

Jumantono 740.02’ S, 110 0.72’ E 343 ✓ - - - 

Kemuning 737.44’ S, 112 6.3’ E 784 ✓ - - - 

Polokarto 737.74’ S, 110 53.76’ E 119 ✓ - - - 

Sukoharjo 740.74’ S, 110 50.34’ E 99 ✓ - - - 

Tawangmangu 739.96’ S, 111 7.32’ E 1002 ✓ - - - 

 

As seen in Figure 2, there are stations that located inside and outside the study area. The reason 

to include the stations that is mainly to increase the number of stations that will be used for the 

comparison and for the input in modelling phase.  
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Figure 2. In-situ stations 

 

2.1.2. Satellite precipitation products (SPPs) 

Currently, the evaluation of satellite precipitation products in South-East Asia especially in 

Indonesia is rarely practiced. One of the satellite precipitation evaluations in Indonesia was 

performed by Rahmawati and Lubczynski (2018), where CMORPH25, CMORPH8, TRMM, 

and PERSIANN were assessed using a descriptive statistic to compare with the ground gauge 

data. The study was conducted on Bali Island which is located approximately 500 km east of 

this study area (Bengawan Solo Catchment). According to the results, CMORPH25 has 

relatively the lowest statistical bias compared to the other even though the accuracy is 

decreasing in the dry period. Referring to Table A. 1 and as assessed in the previous section, 

the CMORPH dataset provides rainfall data starting from December 2002 up until the present.  

 

Another study was conducted by one of the researchers of the Indonesian Agency for 

Meteorological, Climatological and Geophysics (BMKG). BMKG is one of the most important 

Indonesian governmental institutions responsible for providing meteorological, climatological 

and geophysics data for the government and the public. Wati et al. (2022) analyzed eight 

satellite precipitation products by comparing them to the rain gauge that spread all over 
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Indonesia (mainly in Java) retrieved from BMKG observations and interpreted the results using 

several statistical indicators. It was found that MSWEPv2 is the most outstanding product 

among the others. MSWEPv2 has a significantly low bias in comparison with BMKG’s rain 

gauge data. Moreover, according to Beck et al. (2017), MSWEPv2 shows a significantly better 

performance compared to the other 21 SPPs and it performs as the most accurate product for 

the tropical region. The temporal period availability for MSWEP also fits the intended period 

for this research which is available from 1979 until present.  

 

For this research, the available satellite-based precipitation around the globe needs to be 

selected. In determining the relevant products, the criteria such as performance and spatial and 

temporal resolution will be inspected. The performance criterion refers to which satellite 

product is the best based on the accuracy for the study area which focuses on the South-East 

Asia region. Spatial and temporal resolution requirements identify the data availability for the 

desired location and period of the study. The required period for the data is starting from 2008 

to 2020. From the literature that discussed before, CMOPRH and MSWEP have passed all of 

the criteria for this research. Therefore, considering the relevance of the satellite product for 

the study area, both the CMORPH and MSWEP dataset will be used for the research. 

 

2.1.2.1. Climate Prediction Center Morphing Technique (CMORPH) 

Climate Prediction Center Morphing Technique (CMORPH) is one of the satellite products 

that exists serving precipitation data since January 1998 until present. National Oceanic and 

Atmospheric Administration (NOAA) is the United States governmental agency that is 

responsible for serving this data (Precipitation - CMORPH CDR, 2023). This satellite product 

uses relatively low-frequency passive microwave (PMW) signals to estimate the precipitation 

on top of the cloud (Joyce et al., 2004). These precipitation data are then processed with a 

method called “morphing”, where the precipitation data is interpolated using a time-weighted 

scale. The spatial resolution of each pixel of this data covers approximately 0,25 degrees 

lat/lon. The temporal resolution is ranging from every 30 minutes, hourly to daily. For this 

research, the daily time scale will be used for the comparison with the observed precipitation. 

As seen in Figure 3, the study area is only covered by two pixels. However, other pixels will 

also be used for the comparison with the other in-situ stations located outside the study area. 

This figure was using the CMOPRH precipitation data on 1 January 2010. The darker color of 

the pixel represents higher precipitation value on that date. 
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Figure 3. CMORPH pixels 

 

2.1.2.2. Multi-Source Weighted Ensemble Precipitation (MSWEP) 

MSWEP is one of the most advanced satellite precipitation products. The precipitation from 

this product is not only derived by the estimation from satellite sensors but also integrated with 

the data from gauges observation together with reanalysis data. As the results, the performance 

of this product is higher compared to other products. MSWEP was already tested by many 

researchers and has shown a higher performance compared to other products (Beck, Van Dijk, 

et al., 2017). This product serves the precipitation data from 1979 up until three hours from 

real-time or called near real-time (NRT). The spatial resolution of this product is 0,1 degrees 

or approximately 11 km by 11 km near the equator.  

 

The MSWEP precipitation data is available and can be easily accessed through the GloH2O 

website (MSWEP - GLOH2O, 2023). However, permission is needed to clarify that there is no 

commercial purpose in using this data. Moreover, downloading the MSWEP data could only 

be executed by using a program called “rclone”. After the data is downloaded, the data is 

cropped according to the location of the study area. As seen in Figure 4, It was found that the 

MSWEP pixel is relatively small. As stated before, the pixel size of MSWEP is 0,1 degrees 
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which is smaller if compared to the CMORPH’s pixel with 0,25 degrees. With a smaller grid 

cell, MSWEP have a higher resolution and might lead to more accurate prediction compared 

to CMORPH satellite products. 

 

 

Figure 4. MSWEP pixels 
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2.2. Methods 

 

Figure 5.  Proposed Research Methodology 

 

As seen in Figure 5, the method will be conducted in a structured way starting from the 

pre-modelling phase to the post-modelling stage. Firstly, the precipitation retrieved from 

satellite data needs to be interpolated before the assessment. The interpolation method will be 

described in the next part. Table 2 explains the initials used in the flowchart. 

 

Table 2.  Initials In Flowchart 

Name Descriptions 

OBS Observed 

P,Obs Observed Precipitation 

P,Sat Satellite-Based Precipitation 

P,Sat_BC Bias-Corrected Satellite-Based Precipitation 

Q,Obs Observed streamflow  

Q(P,Obs) Simulated streamflow using observed precipitation 

Q(P,Sat) Simulated streamflow using satellite-based precipitation 

Q(P,Sat_BC) Simulated streamflow using bias-corrected satellite-based precipitation 
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2.2.1. Comparison of SPP Against Observed Precipitation 

Corresponding to the first research question, the precipitation that will be used in the 

hydrological model will be assessed to find out whether satellite products predict accurate 

rainfall in the studied area. As mentioned in the previous section, the CMORPH25 and 

MSWEPv2.0 datasets will be used in the analysis. To assess the accuracy of the satellite 

precipitation product, observed precipitation data obtained from 12 rain stations in the 

catchment will be used as the reference for the testing. Firstly, the satellite-based precipitation 

data will be collected from the database according to location and desired temporal period as 

the observed precipitation from the ground stations. The period for the testing spans 12 years 

starting from 1 January 2008 up until 31 December 2020. As seen in Figure 3 and Figure 4, 

both satellite products have different pixel sizes. Each pixel has a different number of in-situ 

stations. There are pixels with only one in-situ station and there are pixels with more than one 

in-situ stations inside. Five pixels from CMORPH coverage and nine pixels from MSWEP 

coverage are numbered and taken for the following assessment. The list of numbered pixels 

and the corresponding in-situ stations located inside the pixels can be found in Table 3. 

 

Table 3. List of SPP pixel and the corresponding in-situ stations 

SPP Pixel ID Corresponding in-situ stations 
Number of in-situ 

stations 

CMORPH 

CMORPH_1 iPatihan & iKetro 2 

CMORPH_2 iCengklik 1 

CMORPH_3 Delingan, Sukoharjo, Polokarto & Bendosari 4 

CMORPH_4 Tawangmangu, Jumantono & Kemuning 3 

CMORPH_5 iNgancar & iKedunguling 2 

  

MSWEP 

MSWEP_1 iKetro 1 

MSWEP_2 iPatihan 1 

MSWEP_3 iCengklik 1 

MSWEP_4 Delingan 1 

MSWEP_5 Sukoharjo, Polokarto & Bendosari 3 

MSWEP_6 Jumantono 1 

MSWEP_7 Tawangmangu & Kemuning 2 

MSWEP_8 iKedunguling 1 

MSWEP_9 iNgancar 1 

 

To have a reliable and credible comparison between both satellite products against the observed 

precipitation, for the pixel that has more than one in-situ station inside the pixel, the daily 
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monitored rainfall will be calculated using the average precipitation from all in-situ stations 

located inside the corresponding pixel per day. For example, the pixel CMORPH_3 in Table 3 

has four stations inside the pixel. Therefore, the observed precipitation will be calculated using 

the average value from these four stations in daily time steps. After both observed and satellite 

precipitation data are matched with the same spatial and temporal resolutions, the next step is 

to assess the accuracy of the SPP. 

 

According to a study conducted by Wang et al. (2020) about the evaluation of several SPP 

products, several indicators can be used for measuring the accuracy of the SPP such as Pearson 

correlation coefficient (CC), mean error (ME), root mean squared error (RMSE), percentage 

bias (PBIAS), probability of detection (POD), false alarm ratio (FAR), and critical success 

index (CSI). Another study conducted by Sun et al. (2016) suggests that the SPP accuracy can 

be verified using systematic bias (BIAS), bias-adjusted root square mean error (aRMSE) and 

relative error (RE). They argue that BIAS is the simplest method to assessed while aRMSE is 

implemented to have a more accurate view because it eliminates the systematic error and leaves 

only the random error. In addition, mean absolute error (MAE) calculates the average of the 

absolute difference between observed and simulated data (Katiraie-Boroujerdy et al., 2013). 

According to a study that comparing the performance of RMSE and MAE indicators by 

Willmott and Matsuura (2005), it was concluded that the application of MAE indicators for 

measuring the model performance outperforms the RMSE. Therefore, considering the 

preciseness and simplification of the indicator, only two of the investigated equations will be 

used as listed below. Finally, a chart will be presented as a result to compare the accuracy. For 

all equations: 

 

𝑛 is the total number of time steps (the number of the collected samples) 

𝑃𝑠𝑎𝑡,𝑖 is the satellite precipitation for every 𝑖 

𝑃𝑜𝑏𝑠,𝑖 is the observed precipitation for every 𝑖 

𝑖 is the corresponding daily data 

 

2.2.1.1. BIAS Indicators 

The indicator is calculated by subtracting each observed data from each satellite precipitation 

and summing up all the differences then dividing by the number of days. The output is 

expressed in the same unit as precipitation (𝑚𝑚
𝑑𝑎𝑦⁄ ). For the BIAS indicators, zero is the 
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optimal value that could range between negative infinity and positive infinity (−∞, +∞). The 

formula is as follows: 

 

Equation 1 

𝐵𝐼𝐴𝑆 =
1

𝑛
 ∑ (𝑃𝑠𝑎𝑡,𝑖 − 𝑃𝑜𝑏𝑠,𝑖)

𝑛
𝑖=1   

(Sun et al., 2016) 

 

2.2.1.2. Mean Absolute Error 

Almost the same as the BIAS Indicator, the Mean Absolute Error is calculated by summing up 

the differences between observed precipitation and satellite precipitation and then dividing by 

the total number of days. However, MAE is using absolute value of the differences. The output 

is expressed by precipitation units (𝑚𝑚
𝑑𝑎𝑦⁄ ). 

 

Equation 2 

𝑀𝐴𝐸 =  
1

𝑛
 ∑|(𝑃𝑜𝑏𝑠,𝑖 − 𝑃𝑠𝑎𝑡,𝑖)|

𝑛

𝑖=1

 

 (Katiraie-Boroujerdy et al., 2013)  

 

2.2.2. Modelling: Soil and Water Assessment Tool (SWAT+) 

 

Aligning with the second research question, a hydrological model is needed and must be tested 

using the observed data as input before testing using the satellite precipitation data as the input. 

In this section, the model used in this research will be explained together with the modelling 

process and at the end, the evaluation procedure and the indicators will be described. 

 

The soil and water assessment tool (SWAT) is a hydrological model created by the United 

States Department of Agriculture (USDA). This model is often used for evaluating the 

hydrological processes in specific locations by simulating hydrological, sediment and 

pollutants processes (Aloui et al., 2023). The SWAT+ model is an advanced version of the 

previous SWAT version. This version introduced several features such as integration with 

Geographic Information System (GIS) data and using land use or land cover in the model to 

have a more accurate simulation. The SWAT+ model can be implemented as a plugging in a 

GIS software interface called Quantum GIS (QGIS) which makes it easier to simulate the 
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hydrological processes using GIS databases or shapefiles. In this project, the Quantum GIS 

version 3.28.6 (long-term released is used for the SWAT+ model). 

 

The modelling process of SWAT+ is divided into four main steps. These processes start with 

delineating watersheds, creating hydrologic response units (HRUs) and inputting the 

meteorological data such as precipitation, temperature, humidity and wind speed. Lastly, the 

SWAT+ model is starting to simulate the hydrological processes and generate streamflow as a 

result.  

 

In delineating the watershed, the model needs Digital Elevation Model (DEM) map to define 

and identify the elevation in the area and also the outlet points where the water flows out. The 

DEM maps for the study area were retrieved from the Indonesian Geospatial Information 

Agency or in Indonesian, a governmental organization responsible for providing GIS databases 

in Indonesia (DEMNAS, 2023). This DEM map is called DEMNAS which provides an 

elevation map with a spatial resolutions of 5 m. As seen in Figure 6, the DEMNAS data were 

downloaded and cropped according to the location of the study area.  

 

Figure 6. Elevation map 

 

After the watershed is defined and delineated, the next step is to create the hydrologic response 

units (HRUs). The SWAT+ model will make spatial units for representing the areas that have 

similar hydrological characteristics within the watershed starting with the HRUs based on soil 

classification, land use and slope. In this stage, the data needed are soil classification map and 

land use map. Due to lack of soil data in Indonesia, the model uses the soil classification map 

produced by the Food and Agriculture Organization (FAO) of the United Nations. The FAO 
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database provides the world’s soil classification map which is divided into several contingency 

maps based on the area (FAO/UNESCO Soil Map of the World, 2023). For the model, the 

Southeast Asia map is used. Similar to the DEM map described in the previous part, the soil 

map of Southeast Asia was also cropped according to the location of the study area. As seen in 

Figure 7, based on the FAO database, there are only four types of soils that exist around the 

upstream Bengawan Solo catchment and only three types inside the catchment. 

 

 

Figure 7. Soil map 

 

The next step in creating the HRUs is inputting the land-use map. In this project, the land-use 

map was using the map provided by the University of Indonesia that was made based on field 

observations. As seen in Figure 8, there are nine types of land cover inside the study area.  

 

 

Figure 8. Land use map 
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The SWAT+ model identified 1876 HRUs, 79 water channels and 9 subbasins inside the study 

area which can be seen in Figure 9. 

 

 
Figure 9. The watershed delineated by SWAT+ model 

 

 

Finally, the last step before running the model is to input the weather data. As described in the 

previous section, the input needed is precipitation, humidity, temperature, and wind speed. For 

the precipitation, the input will be the data from both the satellite precipitation products and 

the observed data. Unlike the precipitation, the other meteorological data namely, humidity, 

temperature and wind speeds will be using the climatology data obtained from in-situ 

observation for all of the model scenarios. 

 

2.2.3. Calibration parameters 

In order to increase the performance of the model to simulate actual conditions, the model is 

calibrated using several parameters obtained from previous study from the team of University 

of Indonesia. These parameters are found to be the most sensitive parameters that will directly 

affect the model results. In SWAT+ model there are two types of calibration. The first one is 

the hard calibration which is the technique that normally used for calibrating model using time 

series data. The other one is called soft calibration which refers to the calibration that focused 

on the water balance components based on soft data (Chawanda, 2018). The soft calibration 

was introduced by the SWAT+ contributors aiming to complement the use of hard calibration 

that focused on discharge. However, in this research, the calibration is only deducted using 

hard calibration for simplification. As seen in Table 4, there are seven parameters that will be 
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changed using absolute value (absval) or percentage changes (pctthg). The absolute value 

change means that the default value of the parameter will be changed to fixed value that 

inserted. The percentage change means changing the initial value by increasing or decreasing 

the value using percentage value that inserted. For example, the curve number conditions II 

(CN2) is the only parameter that will use percentage changes and as seen in Table 4, the 

percentage value that inserted to the model is -35,820 which refers to the initial value that will 

be decreased by 35,820 percent from the initial conditions. For the other parameters, fixed 

absolute values are applied. In later stage, these parameters will be applied to all models that 

run use satellite precipitation and observed precipitations. 

 

Table 4. Calibration parameters 

Parameters Description Units 
Change 

Type 

Applied change 

Min Max 

Calibrated 

value 

CN2.hru Curve number conditions II - pctthg 35 95 -35,820 

CN3_SWF.hru Soil water factor for curve number III - absval 0 1 0,988 

K.sol Saturated hydraulic conductivity mm h-1 absval 0,0001 2000 18,204 

LATQ_CO.hru Lateral flow coefficient - absval 0 1 0,562 

LAT_LEN.hru Slope length for lateral subsurface flow m absval 1 150 6,465 

PERCO.hru Percolation coefficient - absval 0 1 0,451 

ESCO.hru Soil evaporation compensation coefficient - absval 0 1 0,015 

 

 

2.2.4. Model testing and performance indicators 

The simulated and the observed streamflow will be compared using the same method as 

proposed in the previous section. BIAS and MAE will be used to determine the performance 

of the model simulating the actual conditions. Additionally, there is another approach to 

evaluate the model performance that is widely applied for hydrological modelling called Nash-

Sutcliffe Efficiency (NSE). The result of the Nash-Sutcliffe Efficiency is shown by a range 

starting from negative infinity to one. The closer the value to one, the more precise the model 

predicts the actual conditions. However, there are some issues regarding the suitability of NSE. 

Gupta et al. (2009) argue that using NSE might lead to an overestimation of the model while 

using a high precipitation value because of the use of the observed mean as the reference. They 

then suggest a new approach called Kling-Gupta Efficiency (KGE) which is a derived formula 

from the Nash-Sutcliffe Efficiency (NSE). However, the NSE is still widely used by many 

researchers. Therefore, for simplification and comparability with other research, Nash-Sutcliffe 

Efficiency might still be a reliable indicator for this model evaluation and will be applied in the 
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study. The NSE value is ranged between minus infinity to one as the most optimal value (−∞ <

𝑁𝑆𝐸 < 1). According to Schaefli and Gupta (2007), the model that obtained an NSE value 

below zero indicates that the model’s predictions are worse compared to the observed data. 

NSE value above the zero and close to one can be considered acceptable. The closer the NSE 

value to one is indicating good fit between the generated streamflow compared to the observed 

data. Finally, the comparison between the simulated and observed discharge will be shown 

using hydrograph to have a better understanding of the results. 

Equation 3 

𝑁𝑆 = 1 −
∑ (𝑄𝑆,𝑖 − 𝑄𝑂,𝑖)

2𝑛
𝑖=1

∑ (𝑄𝑂,𝑖 − 𝜇0)2𝑛
𝑖=1

 

(Nash & Sutcliffe, 1970) 

Where, 

𝑛 is the total number of time steps (the number of the collected samples) 

𝑄𝑠,𝑖 is the simulated streamflow from observed precipitation for every 𝑖 

𝑄𝑂,𝑖  is the observed streamflow for every 𝑖 

𝜇0 is the average of the observed streamflow 

 

2.2.5. Performance of the Hydrological Model Using SPP 

After the model is validated, the next step is to assess whether the satellite product could be 

used as input for the model. The assessment will use both generated streamflow from observed 

precipitation and satellite precipitation where the generated streamflow obtained using 

observed precipitation will be used as the reference. The performance indicators are the same 

as explained in the previous sections namely, BIAS, MAE, and NSE.             

 

2.2.6. Bias Correction 

As described in the introduction, the precipitation obtained from satellite products does not 

directly represent the actual precipitation on the ground. The satellite precipitation is derived 

from an observation on top of the cloud using satellite sensors and estimated using empirical 

formula. Due to this process, the precipitation prediction from satellite data might contain some 

errors or biases. Aiming to increase the accuracy of the satellite precipitation for using it in the 

hydrological model, bias-correction method is needed to improve the quality of the satellite 

precipitation data. The aim of conducting bias correction is mainly to improve the model’s 

performance that uses satellite precipitation. The improvement can be tested by using the 
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indicators described in section 2.2.1.  Firstly, the bias-corrected satellite precipitation will be 

evaluated against the observed precipitation from in-situ measurements. Thereafter, the bias-

corrected precipitation will be applied to the calibrated model. The streamflow output from this 

model will then be evaluated against the streamflow generated by the calibrated model that 

uses the observed precipitation as the input. 

 

There are several methods to reduce the bias in satellite data. As investigated by Ghimire et al. 

(2018), correction methods can be grouped into three categories according to the degree of the 

correction. The first example is delta change and linear scaling where the mean of the modelled 

data (satellite precipitation) is corrected according to observed data. The second category is the 

power transformation method which was found to be the most straightforward method for 

correcting the biases. And the last one is the quantile mapping method. This method evaluates 

the empirical probability function of both the modelled and observed precipitation then 

converts the modelled data using the inverse of the cumulative distribution function (CDF). In 

this project, the temporal resolution for the modelling is looking at the daily data which might 

have a high variability. In a study conducted by Enayati et al. (2020), it was found that the 

quantile mapping approach shows a good performance in correcting satellite precipitation data. 

Therefore, quantile mapping bias correction will be conducted in this project. The formula for 

quantile mapping is as follows: 

Equation 4 

𝑄 =  𝐹𝑌
−1(𝐹𝐹(𝐹̅)) 

(Enayati et al., 2020) 

Where, 

𝑄 is the bias-corrected value. 

𝐹𝑌
−1 is the inverse CDF or the quantile function. 

𝐹𝐹  is the CDF of the modelled precipitation 𝐹̅. 

 

According to Panjwani et al. (2020), the quantile mapping technique could be conducted in R 

programming using the Qmap package called “fitQmapQUANT”. In this package, the observed 

and satellite precipitation will be taken as the input. This package will directly process the 

modelled precipitation using the quantile mapping approach. The output will be the bias-

corrected precipitation that will be compared in further steps.  
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3. Results 

3.1. Performance of SPPs for daily precipitation 

One way to check the performance of each SPP is by comparing the indicators (BIAS and 

MAE) that have been described in the previous section. Consequently, both SPPs were 

compared with the observed precipitation. The comparison was initially conducted per pixel 

against the precipitation data from corresponding in-situ stations. However, the comparison is 

not only comparing one pixel but also comparing the combined pixels with observed 

precipitation from all 12 in-situ stations. The daily time-step starting from 1 January 2008 until 

31 December 2020 was taken for the testing. The results of the comparison can be found in 

Table 5.  Due to different pixel sizes and different in-situ stations that were taken as the 

reference for the comparison, CMORPH and MSWEP could not be directly compared pixel to 

pixel. The only pixels that can be compared side by side are CMORP_2 and MSWEP_3 

because the in-situ station that is taken as the reference is the same (*Cengklik).  

 

Generally observing the BIAS indicators, it can be identified that the CMORPH SPP seems to 

overestimate the daily precipitation in the study area whereas the MSWEP SPP seems to 

underestimate the precipitation data. This is indicated with the BIAS index for CMORPH that 

mostly showing positive values, except for the CMORPH pixel number 5, where a negative 

BIAS value was observed. This means that CMOPRH underestimates the precipitation in this 

area. On the other hand, the MSWEP SPP seems to underestimate the precipitation because 

eleven out of twelve MSWEP pixels are showing negative values for the BIAS indicator. For 

the CMORPH SPP, the most optimal BIAS value was observed in the pixel named 

CMORPH_2, which has BIAS value of 0.28 mm/day. However, the combined data of all five 

pixels shows a better performance with a BIAS value of 0.14 mm/day compared to single pixel 

comparison from CMORPH SPP. On the contrary, MSWEP SPP performance is even better 

even though it was underestimated. Referring to the BIAS indicator, among the nine pixels that 

are compared with the observed precipitation, eight pixels were underestimate the actual 

precipitation. Only pixel MSWEP_6 that slightly overestimate the precipitation with a BIAS 

value of 0.15 mm/day. The most optimal value of BIAS from the MSWEP SPP is observed on 

pixel MSWEP_5 with 0.04 mm/day close to zero. This is indicating MSWEP SPP is quite 

precise in generating precipitation compared to CMORPH SPP.  
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The mean absolute error (MAE) indicates the average magnitude of error from the 

corresponding product. The closer the MAE value to zero, the more accurate the prediction 

estimated by the products. CMORPH SPP has an MAE ranging between 6.26 mm/day to 10.15 

mm/day. On the contrary, MSWEP SPP has a slightly lower range of MAE values, ranging 

between 5.10 mm/day to 8.43 mm/day. This indicates that the MSWEP SPP is producing a 

lower error compared to the CMORPH SPP. It was observed that among these two SPPs, the 

highest MAE value was found in the pixel CMORPH_2 with 10.15 mm/day. The lowest MAE 

was observed in pixel MSWEP_5 with 5.10 mm/day. Moreover, the pixel MSWEP_5 that 

represents three in-situ stations also shows the most optimal BIAS value compared to other 

MSWEP and CMORPH pixels with a value of -0.04 mm/day.  

 

For the comparison between combined all pixels and all 12 in-situ stations, the BIAS for 

CMORPH is observed lower than the BIAS of MSWEP. On the other hand, the MAE of the 

MSWEP has a slightly lower value compared to CMORPH. Therefore, from the combined 

data, it cannot be concluded which SPP performs better. However, generally observing the 

indicators, MSWEP have a more accurate result. This was indicated by the number of pixels 

that represented the in-situ stations.  

Table 5.  Result of the SPPs assessment 

Pixel ID Corresponding in-situ station 
Number of in-

situ stations 

BIAS 

(mm/day) 

MAE 

(mm/day) 

CMORP_1 iPatihan & iKetro 2 1.58 8 

CMORP_2 iCengklik 1 0.28 10.15 

CMORP_3 Delingan, Sukoharjo, Polokarto & Bendosari 4 1.39 6.81 

CMORP_4 Tawangmangu, Jumantono & Kemuning 3 1.58 7.88 

CMORP_5 iNgancar & iKedunguling 2 -0.99 6.26 

Combined All 12 stations 12 0.14 7.82 

          

MSWEP_1 iKetro 1 -0.19 6.70 

MSWEP_2 iPatihan 1 -0.67 8.02 

MSWEP_3 iCengklik 1 -0.96 8.43 

MSWEP_4 Delingan 1 -0.16 7 

MSWEP_5 Sukoharjo, Polokarto & Bendosari 3 -0.04 5.10 

MSWEP_6 Jumantono 1 0.15 7.87 

MSWEP_7 Tawangmangu & Kemuning 2 -1.68 7.36 

MSWEP_8 iKedunguling 1 -0.10 7.81 

MSWEP_9 iNgancar 1 -0.37 5.84 

Combined All 12 stations 12 -0.45 7.13 
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3.2. Performance of the SWAT+ Model in the study area 

In this section, the results generated by the SWAT+ model will be presented. Initially, the 

model results obtained with the observed precipitation will be compared with the reference 

streamflow (Q,Obs) gathered from observations at the outlet of the catchment (upstream 

Bengawan Solo catchment). The comparison will go through several scenarios starting with 

the uncalibrated model, then distinguish the calibration and validation period to have a better 

perspective of the model performance. The indicators used for the assessment are introduced 

in previous section namely, Nash-Sutcliffe Efficiency (NSE) together with the BIAS and MAE. 

The NSE will act as the main indicator that measures the model’s performance.  

 

Firstly, the model is running using the observed precipitation from 12 in-situ stations (P,Obs) 

for the uncalibrated period starting from 1 January 2010 up until 31 December 2020. As seen 

in Table 6, the NSE indicator for the uncalibrated model was 0.21 which can be considered not 

satisfactory. The BIAS indicator is showing a negative value which means that the model 

underestimates the streamflow compared to the observed streamflow. Figure 10 shows the 

hydrograph between the simulated streamflow and observed streamflow before calibration. 

After the calibration, as seen in Figure 11, the performance of the model is much improved 

with NSE value of 0.59 during the calibration period. The BIAS and MAE indicators during 

calibration period are also improved from -0.85 m3/s to 0.05 m3/s and 7.07 m3/s to 4.27 m3/s 

respectively. The BIAS indicator shows the model is no more underestimating the streamflow 

but slightly overestimating it. For the validation period (1 January 2016 until 31 December 

2020) it was monitored that NSE is decreasing compared to the calibration period (0.59 to 0.47) 

but still improving significantly compared to the uncalibrated model results. This indicates that 

the calibration is indeed affecting the model’s performance outstandingly and is vital to be 

conducted. 

  
Table 6.  Model performance using observed precipitation. 

Reference Period Scenario 

Model Output 

Q,P_Obs 

NSE BIAS 

(m3/s) 

MAE 

(m3/s) 

Q,Obs 

10 years (2010 – 2020) Uncalibrated 0.21 -0.85 7.07 

5 years (2010 – 2015) Calibration Period 0.59 0.05 4.27 

5 years (2010 – 2015)  Validation Period 0.47 -0.59 6.19 
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Figure 10. Observed and simulated streamflow using observed precipitation before calibration 

 

 
Figure 11. Observed and simulated streamflow using observed precipitation after calibration 

 

3.3. Performance of SWAT+ model using satellite precipitation products  

After the SWAT+ model is validated with the observed data, this model is used for testing the 

SPPs. In this term, the precipitation input is using the five pixels from CMORPH and nine 

pixels from MSWEP which was the same as the pixels that were used for the comparison with 

the in-situ stations assessed before. These pixels are including the pixels located exactly on the 

study area and also the pixels that located surrounding the study area. The reason of using the 

pixels located surrounding the study area will be explained in the discussion sections. The 

SWAT+ model used in this stage is calibrated using the parameters that obtained in the previous 
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sections when running the observed precipitation. Firstly, the simulated streamflow using both 

SPPs will be compared with the observed streamflow. Then, the simulated streamflow using 

SPPs will also be compared with the simulated streamflow that use observed precipitation as 

the input. 

 

3.3.1. Comparison with observed streamflow 

Initially, CMORPH and MSWEP SPPs are used as the input for the calibrated SWAT+ model. 

Then the simulated streamflow using these SPPs are compared with observed streamflow. 

Figure 12 and Figure 13 shows the hydrograph of the results. As seen in Table 7, it was found 

that the NSE value for the streamflow generated using CMORPH data is 0.31 during the 

calibration period and increasing on validation period with NSE of 0.35. From the BIAS 

indicator, it was observed still underestimate the observed streamflow with value of -2.16 m3/s 

on the calibration period. However, the BIAS is improving during the validation period with 

value of -1.49 m3/s. The MAE was observed to be really high means that the streamflow 

generated by CMORPH precipitation (Q,P_Sat_CMORPH) contains a lot of errors compared 

to the observed streamflow (Q,P_Obs). For the streamflow generated using MSWEP data 

(Q,P_Sat_MSWEP), the NSE is 0.51 during the calibration period which is significantly higher 

compared to the streamflow that used CMORPH SPP. However, during the validation period, 

the NSE for model using MSWEP SPP is decreasing to 0.38. The BIAS of the streamflow using 

MSWEP precipitation is observed still below zero for both calibration and validation periods. 

However, the MAE for streamflow using MSWEP is ranging between 4.65 m3/s to 6.55 m3/s 

which is lower than the MAE range of the streamflow using CMORPH that ranging between 

5.46 m3/s to 7.33 m3/s. This shows that streamflow simulated using MSWEP SPP is producing 

lower error than the streamflow simulated using CMORPH SPP.  

 

From the BIAS indicators, it was shown that the streamflow generated using both products still 

underestimated the actual streamflow because the BIAS value below zero for all scenarios. 

Furthermore, in comparison with the observed streamflow as the reference (Q,Obs), the NSE 

and MAE of the streamflow generated by the model using MSWEP precipitation outperforms 

the model that uses CMORPH precipitation. Therefore, generally observing the performance 

of the model using SPPs, it can be indicated that MSWEP has a better performance in the 

SWAT+ model. 
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Table 7.  Model’s performance using SPPs. 

Reference Scenario 

Model Output 

Q,P_Sat_CMORP Q,P_Sat_MSWEP 

NSE BIAS 

(m3/s) 

MAE 

(m3/s) 

NSE BIAS 

(m3/s) 

MAE 

(m3/s) 

Q,Obs 
Calibration Period 0.33 -2.16 5.46 0.51 -0.87 4.65 

Validation Period 0.35 -1.49 7.33 0.38 -3.29 6.55 

 

 

 
Figure 12. Observed and simulated streamflow using CMORPH SPP 

 

 
Figure 13. Observed and simulated streamflow using MSWEP SPP 
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3.3.2. Comparison with streamflow generated using in-situ precipitation  

In this section, the streamflow generated using SPPs (Q,P_Sat_CMORPH & 

Q,P_Sat_MSWEP) was tested against the streamflow generated using observed precipitation 

(Q_P_Obs). As seen in Table 8, the MSWEP SPP is showing an outstanding result compared 

to the CMORPH SPP with NSE value of 0.75 that obtained during calibration period while 

CMORPH could only reach 0.42. The BIAS and MAE of streamflow using MSWEP SPP also 

shows lower values compared to the streamflow using CMORPH SPP. This could indicate that 

the streamflow generated using MSWEP precipitation is much closer to the streamflow 

generated using observed precipitation. Moreover, as observed in Figure 14, the streamflow 

generated using CMORPH SPP has more errors compared to the streamflow using MSWEP 

SPP in Figure 15. 

 
Table 8.  Results of comparison against the streamflow generated using observed precipitation 

Reference Scenario 

Model Output 

Q,P_CMORPH Q,P_Sat_MSWEP 

NSE BIAS 

(m3/s) 

MAE 

(m3/s) 

NSE BIAS 

(m3/s) 

MAE 

(m3/s) 

Q,P_Obs 
Calibration Period 0.42 -2.20 4.97 0.75 -0.91 3.21 

Validation Period 0.27 -0.90 5.44 0.68 -2.71 3.83 

 

 
Figure 14. Simulated streamflow using observed precipitation and CMORPH SPP 
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Figure 15. Simulate streamflow using observed precipitation and MSWEP SPP 

 

3.4. Performance of the bias corrected SPPs 

According to the assessment conducted in the previous section, the performance of the 

MSWEP satellite precipitation products especially in hydrological modelling, outperformed 

the CMOPRH satellite products. Due to this reason, the bias correction for the precipitation 

data is applied only for the MSWEP product. The bias-correction technique used was called 

Quantile Mapping where the selected satellite precipitation product (P,Sat_MSWEP) will be 

corrected using the in-situ precipitation (P,Obs) as the reference. The correction period was 12 

years, starting from 1 January 2008 to 30 December 2020 using the combined data of nine 

pixels. The date 31 December 2020 was not included because MSWEP does not have the record 

for this period. For the observed precipitation data, the average value of daily precipitation 

from in-situ stations are used for matching the MSWEP pixels that contains more than one in-

situ stations inside the corresponding pixels. After the bias correction is conducted for MSWEP 

datasets, the bias-corrected data will be compared against the observed precipitation using the 

same indicator namely BIAS and MAE. After the evaluation against the observed precipitation, 

the bias-corrected precipitation will be applied to the calibrated SWAT+ to assess the 

performance of this precipitation in generating the streamflow. 

 

3.4.1. Evaluation with in-situ precipitation 

As seen in Table 9, the column called ‘Initial’ refers to the performance of MSWEP 

precipitation products against the observed precipitation before the bias correction. Next to this 
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column is the performance of the MSWEP SPP after the bias correction. For the combined 

pixels, it was observed that the bias correction shows an improvement in the BIAS indicator 

from -0.45 mm/day to 0.02 mm/day which shows MSWEP not underestimate the observed 

precipitation anymore. However, the MAE for the combined data was rather increasing from 

7.13 mm/day to 7.98 mm/day. For the aggregated comparison per pixel, the BIAS is not 

improving for all the pixels. Only five out of nine pixels showed improvement in the BIAS 

indicator. This could be the impact of using the combination of all-stations that was used in 

this quantile mapping correction where the distribution function that will be applied for the 

correction was obtained from the combination of these stations. The distribution function of 

each in-situ station might differ from one another. For the MAE of the aggregated pixels, it 

was observed that the MAE values were increasing for all pixels which indicates the bias-

corrected data containing higher error compared to the initial data.  

 

Table 9.  The results of bias corrected MSWEP SPP against the observed precipitation 

Pixel ID Corresponding in-situ station 

Number 

of in-situ 

station 

Initial Bias-corrected 

BIAS 

(mm/day) 

MAE 

(mm/day) 

BIAS 

(mm/day) 

MAE 

(mm/day) 

MSWEP_1 iKetro 1 -0.19 6.7 -0.14 7.01 

MSWEP_2 iPatihan 1 -0.67 8.02 -0.49 8.59 

MSWEP_3 iCengklik 1 -0.96 8.43 -0.99 8.96 

MSWEP_4 Delingan 1 -0.16 7 0.06 7.48 

MSWEP_5 Sukoharjo, Polokarto & Bendosari 3 -0.04 5.1 0.07 8.84 

MSWEP_6 Jumantono 1 0.15 7.87 0.91 9.52 

MSWEP_7 Tawangmangu & Kemuning 2 -1.68 7.36 0.12 9.52 

MSWEP_8 iKedunguling 1 -0.1 7.81 0.74 9.17 

MSWEP_9 iNgancar 1 -0.37 5.84 0.01 6.17 

Combined All 12 stations 12 -0.45 7.13 0.02 7.98 

 

3.4.2. Performance in SWAT+ model 

Right after the comparison with the observed precipitation, this bias corrected MSWEP 

precipitation was used for the input of the SWAT+ model. As the results of this model, the 

streamflow (Q,P_Sat_Bias_Corrected) was compared with both observed streamflow (Q,Obs) 

and the streamflow generated by the model using in-situ precipitation (Q,P_Obs). The 

performance of this model was also compared to the performance of the model before the bias 

correction obtained in the previous section.  
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In the evaluation using the observed streamflow as the reference, as identified in Table 10 and 

Figure 16, the performance of the model using the bias corrected MSWEP is not satisfactory 

enough and rather decreasing. During the calibration period, the NSE value was dropped from 

initially 0.51 to 0.26. The MAE value was also increasing from 4.65 m3/s to 5.88 m3/s. 

However, the only improvement was observed during the validation periods for BIAS indicator 

from -3.29 m3/s to -1.26 m3/s. 

 

For the evaluation with the streamflow generated using observed precipitation, as observed in 

Figure 17, a similar path was observed where improvement was only on BIAS during the 

validation period from -2.71 m3/s to -0.67 m3/s. For the NSE and MAE indicators, no 

improvements were observed for all scenarios. This could be due to the calibration process that 

using the parameters obtained using observed precipitations. A recalibration process needs to 

be conducted after the bias correction. Both Figure 16 and Figure 17, shows that the streamflow 

generated using bias corrected precipitation yield more errors compared to the streamflow in 

Figure 13 and Figure 15 that use MSWEP SPP before the bias correction. 

 

Table 10.  Performance of the model using bias corrected MSWEP precipitation 

Reference Scenario 

Model Output 

Q,P_Sat_MSWEP Q,P_Sat_Bias_Corrected 

NSE 
BIAS 

(m3/s) 

MAE 

(m3/s) 
NSE 

BIAS 

(m3/s) 

MAE 

(m3/s) 

Q,Obs 
Calibration Period 0.51 -0.87 4.65 0.26 1.28 5.88 

Validation Period 0.38 -3.29 6.55 0.35 -1.26 7.04 

        

Q,P_Obs 
Calibration Period 0.75 -0.91 3.21 0.33 1.23 4.51 

Validation Period 0.68 -2.71 3.83 0.46 -0.67 4.43 
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Figure 16. Observed and simulated streamflow using bias corrected precipitation 

 

 
Figure 17. Simulated streamflow using observed precipitation and bias corrected precipitation 
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4. Discussion 

This study was conducted to investigate the performance of the satellite precipitation products 

(SPPs) in the application of hydrological modelling. The main objective is to support the 

research relating to the application of satellite precipitation in hydrological modelling. This 

study is also aimed to overcome the complexity and data scarcity when using in-situ 

measurements for obtaining precipitation data. However, there are several limitations and key 

findings that were obtained during the research. Moreover, the results of the research will also 

be explained in comparison to the literature discussed in introduction chapter. Together, these 

findings will be explained in this chapter. 

 

4.1. Limitations 

During the study, there are several limitations that could not be avoided. One of the limitations 

is regarding the observed data availability in study area. Even though one of the objectives is 

to overcome the data scarcity in the study area, this limitation still arises during the execution 

of the research. In this research, 12 stations were selected to provide the precipitation data as 

well as the temperature, wind speeds and humidity data from meteorological stations. Among 

these 12 stations there are five meteorological stations selected for the study. Moreover, as seen 

in Figure 2, among the 12 stations, there are only three rainfall stations that are located precisely 

inside the upstream Bengawan Solo catchment. In fact, there are more than three rainfall 

stations that exist inside the catchment. However, these stations do not have complete data for 

the desired modelling period and the quality of these data are questionable. Furthermore, there 

are no meteorological stations existed inside the study area. The meteorological station is an 

important factor for hydrological modelling because the data such as wind speeds, temperature 

and humidity could only be obtained from these stations. Therefore, to overcome this problem, 

the stations located outside the study area are also selected mainly due to the necessity of the 

meteorological data.  

 

To assess whether using the stations located outside the study area affected the streamflow 

generated by the model, during the modelling phase, the SWAT+ model was used to simulate 

the streamflow using the stations located inside and surrounding the study area. For the 

precipitation input, the stations used are Polokarto, Jumantono and Tawangmangu where this 

location are located inside. The surrounding stations used area Delingan and Kemuning which 

located not far on north side of the study area. For the other meteorological data (wind speeds, 
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temperature and humidity) still obtained from the meteorological stations namely Cengklik, 

Kendunguling, Ketro, Ngancar and Patihan which these stations are located approximately 10-

20 km away from the study area. However, the precipitation data from these meteorological 

stations are not included for the SWAT+ model. This model then used to simulate the 

uncalibrated and calibrated scenario. The results shows that all of the BIAS, MAE and NSE 

values of this scenarios are exactly the same as the model that running using all of the 12 

stations for the precipitation input for all scenarios. According to Felix and Jung (2022), within 

the SWAT+ model, there is a build in interpolation method called Nearest Neighbor (NN). It 

was assumed using this method, the SWAT+ model selects the relevant inputs (precipitation) 

for the study area according to the DEM model. Moreover, due to no meteorological data that 

located inside or near the study area, the SWAT+ model might use the data from the 

meteorological stations near the study area. Therefore, it was found that including the stations 

outside the study area does not have an impact towards the simulated results. Furthermore, the 

catchment is only covered by two pixels of CMOPRH SPP and four pixels of MSWEP SPP 

due to the size of the catchment that is relatively small. To have a comparable state with the 

model that use observed precipitation, the model that use SPPs will be simulated using the 

pixels that located outside the study area that matching with the location of the in-situ stations 

that used in model that use observed precipitation. 

 

Moreover, another limitation was found during the comparison of the SPPs, the evaluation 

could not be conducted ‘apple to apple’ due to the different spatial resolutions of these products. 

MSWEP has a higher resolution than CMORPH which makes the reference for testing the 

performance different between these products. The only implementation that could be 

conducted was to merge all the pixels data and compare the general results of these products. 

However, the different grid size makes the MSWEP SPP with higher resolutions has a lower 

BIAS and MAE compared to CMORPH SPP. This could be due to the location of the in-situ 

stations that are located not far from one another which makes there are four pixels from 

CMORPH products that contain more than one in-situ station in a pixel. MSWEP on the other 

hand, have a higher resolution than CMOPRH which makes more in-situ stations can be 

represented using one pixel.  

 

Another limitation that was found during the modelling stage is the performance of the model 

that use CMORPH SPP not improving but rather decreasing. This could be due to the fact that 

these parameters were obtained using observed precipitation. However, the focus of this study 
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is to evaluate the accuracy between the satellite precipitation products and the observed 

precipitation. Therefore, to have a uniform reference for the comparison, the model used for 

running the satellite precipitation will use same calibration parameters that were obtained from 

the analysis that used observed precipitation as the reference. However, in a more detailed 

analysis in the future, it is suggested to redo the calibration obtaining more suitable parameters 

using different inputs for the model. 

 

Lastly, the bias-corrected precipitation conducted at the end of the evaluation does not show a 

good result except for the BIAS indicators. This could be influenced by several factors. One of 

the factors was due to the data from all pixels (9 MSWEP pixels) being merged into one dataset. 

This merged dataset could form a different distribution formula compared to the distribution 

factors that obtained using per pixel data. This could be reason that the quantile mapping 

function might generate the optimal distribution function that is more suitable for the combined 

data and not the aggregated data which is not really accurate. For further study, it also suggested 

that the quantile mapping technique is conducted pixel per pixel to generate a more accurate 

distribution function per area. 

 

4.2. Comparisons with other literature 

The results of the modelling will be compared with various study that conducted to assess these 

SPPs (CMORPH and MSWEP). One of the studies was conducted by Beck et al. (2017) where 

CMORPH and MSWEP SPPs are assessed in tropical area. The NSE value for the CMORPH 

and MSWEP obtained from this study are 0.31 and 0.53 respectively which is almost similar 

to the results that found in this research (0.33 for CMORPH and 0.51 for MSWEP). Another 

study is conducted by N. M. Reddy and Saravanan (2022) at Godavari River basin in India 

where the CMORPH and MSWEP also assessed for their performance. The NSE for CMORPH 

and MSWEP from this study are 0.36 and 0.75 respectively. Clearly, from the results of this 

research and from the literatures, the performance of MSWEP SPP in hydrological modelling 

is higher than CMORPH SPP. 

 

4.3. Potentials for further study 

Apart from the limitations and the uncertainty of the satellite products that found during the 

research, the satellite product could still be a relevant input for the hydrological modelling. 

Considering the data scarcity especially in Indonesia which also faced during the research, the 
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satellite precipitation products especially MSWEP could be one of the alternatives to replace 

the data obtained from the in-situ stations. Using satellite precipitation could reduce the 

complexity and cost that often arise when conducting the field observation to obtain 

precipitation data. From this research, the MSWEP product seems accurate in estimating the 

precipitation in Indonesia. However, there should be a more analysis especially regarding the 

bias correction for this data to obtain a more accurate precipitation data from this product. With 

a proper bias correction method, the MSWEP product could be used for another study area in 

Indonesia. 
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5. Conclusion and Recommendations 

The findings that observed during the study will be explained according to the research 

questions that mentioned in the introduction of this report. Moreover, at the end of this sections 

there are recommendations that will be described for helping further study in this field. 

 

5.1. Conclusion 

In conclusion, this research was conducted mainly to investigate the performance of the 

satellite precipitation products (SPPs) especially in the application for hydrological modelling. 

The satellite products used in this investigation are CMORPH and MSWEP which have been 

discussed by many researchers for their outstanding performance in estimating the actual 

precipitation. The SPPs can be used as an alternative to replacing the gauge observations for 

getting the precipitation data. During the study there are several key findings that were 

observed. The first finding is answering the first research question. It was found that the 

performance of both SPPs in estimating the actual precipitation in the study area is almost 

similar for merged data. However, in the aggregated data per pixel locations, the MSWEP 

product seems to have a lower BIAS and MAE compared to the CMORPH products.  

 

Referring to the second research question, the comparison of the streamflow generated by the 

SWAT+ model using observed precipitation with the observed streamflow has shown a 

promising result. Moreover, it was found that the calibration process of the model has a 

significant impact in determining the results simulated by the model. It was found that the NSE 

value is significantly increasing after the calibration from 0.20 to 0.59 as well as improvement 

in BIAS and MAE from -0.85 m3/s to 0.05 m3/s and from 7.01 m3/s to 4.27 m3/s respectively. 

 

The next finding is relating to the performance of the SPPs in hydrological modelling which 

referring to the third research question. It was proved by using the SWAT+ models, the 

MSWEP-generated streamflow has shown significantly higher performance of NSE, BIAS and 

MAE compared to the streamflow that generated using CMORPH precipitation. The 

streamflow generated using MSWEP has obtained the NSE value of 0.51 during the five years 

of calibration period when compared to the observed streamflow. When compared with the 

streamflow generated by the SWAT+ model using observed precipitation, the MSWEP even 

obtained a higher NSE value of 0.75 during the calibration period. This shows that MSWEP 

SPP and the observed precipitation have almost similar characteristics. Therefore, for 
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hydrological modelling, the MSWEP precipitation product is performs better than the 

CMORPH products. 

 

Lastly, regarding the last research question, the quantile mapping bias correction technique was 

conducted to minimize the bias of MSWEP SPP. However, in the comparison for the 

precipitation data before and after the bias corrections the improvement only observed in the 

BIAS indicators. The MAE indictor for the bias-corrected data is slightly increasing compared 

to before correction. Then, the performance of the SWAT+ model that running this data shows 

a decreasing performance in the NSE and MAE indicators event though the BIAS is showing 

an improvement. 

 

5.2. Recommendations 

During the study, there are several things that could have done better to achieve better results. 

The first recommendation is regarding the performance of SWAT+ model. In this research, it 

was found that the calibration processes have a significant impact that could improve the 

performance of the model. However, due to the objectives of the research that focusing on 

comparing the performance of the satellite precipitation products especially in hydrological 

modelling, the calibration was conducted only for the SWAT+ model that simulating the 

streamflow using observed precipitation. The models that use satellite products are calibrated 

using the parameter that obtained using the observed precipitation. It is recommended that for 

each model that running the satellite products need to be recalibrated to have a better 

performance. As well as after the bias-correction, the model that will use the bias corrected 

data need to be recalibrated to fit the precipitation input. Moreover, as described in section 

2.2.3, SWAT+ has another feature called soft calibration which referring to the calibration 

process that focus more on the soft data. Therefore, for further study, it is recommended to 

recalibrate the model before running the different types of precipitation input. 

 

Another recommendation is regarding the bias correction method as described in previous 

section, the bias correction technique used in this research does not yield a significant 

improvement both for the precipitation data and the model performance. Therefore, further 

research is needed regarding the suitable bias correction technique for the satellite precipitation 

products especially MSWEP to yield a more accurate result. 
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Appendix A – Overview of satellite precipitation products (SPPs) 
 

Table A. 1.  Overview of currently available SPPs 

Satellite 
Product 

Descriptions 
Spatial 

Resolution 
Temporal 
Resolution 

Temporal 
Availability 

Assessment Method 
Temporal Period 
(for hydrological 

modelling) 

Region of 
Application 

(Perform Best at) 
Reference 

CHIRPS v2.0 
Climate Hazards Group InfraRed 
Precipitation with Station Data 

0.05° Daily 1981 - Present Hydrological Modelling 2000 - 2017 Vietnam (Le et al., 2020) 

TMPA 3B42RT 
TRMM Multi-Satellite Precipitation 
Analysis (continuity of TRMM) 

0.25° 3-Hourly 2000 - Present 
Hydrological Modelling 

(SWAT Model) 
2001 - 2012 China (Ren et al., 2018) 

TMPA 3B42V7 
TRMM Multi-Satellite Precipitation 
Analysis v.7(continuity of TRMM) 

0.25° 3-Hourly 2001 - Present Hydrological Modelling 2000 - 2013 China (Jiang et al., 2017) 

PERSIANN-CDR 

Precipitation Estimation from 
Remotely Sensed Information using 
Artificial Neural Networks - Climate 
Data Record 

0.25° 6-Hourly 1983 - Present Hydrological Modelling 1983 - 1992 Malaysia (Tan et al., 2017) 

ARC-2 Academic Research Consortium 0.1° Daily 1984 - Present 
Comparison to rain-gauge 

data 
- Africa (Polong et al., 2022) 

CMORPH  CPC MORPHing Technique 0.25° 30-Minutes 2002 - Present Hydrological Modelling 2003-2008 
Arkansas, United 

States 
(Behrangi et al., 2011) 

MSWEP v1.2 
Multi-Source Weighted-Ensemble 
Precipitation 

0.25° 3-Hourly 1979 - 2015 Hydrological Modelling 2001 - 2012 

Globally 
(Temperate, Cold 

and Tropical 
Regions) 

(Beck et al., 2017) 

MSWEP v2.0 
Multi-Source Weighted-Ensemble 
Precipitation 

0.1° 3-Hourly 1979 - Present Hydrological Modelling 2001 - 2012 

Globally 
(Temperate, Cold 

and Tropical 
Regions) 

(Beck et al., 2017) 

IMERG-F Integrated Multi-satellitE Retrievals 
for GPM - Final run 

0.1° 30-Minutes 2014 - Present Hydrological Modelling 2014 - 2015 South China (Wang et al., 2017) 

GSMaP 
Global Satellite Mapping of 
Precipitation  

0.1° Hourly 2000 - Present 
Comparison to rain-gauge 

data 
2014 - 2016 China (Zhao et al., 2020) 
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