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Abstract

History-dependent muscle properties, i.e. residual force enhancement (rFE) and residual force depression (rFD), are
phenomena that are dependent on the previous state of the muscle, specifically the muscle’s length. rFE is charac-
terized by an increase of steady-state force following active eccentric contraction compared to steady-state isometric
force at the corresponding length, whereas rFD is characterized by a decrease in steady-state force following active
concentric contraction. These history-dependent muscle properties have been extensively investigated. However, in
vivo measurements yielded conflicting outcomes, leading to uncertainties regarding the characteristics of these muscle
properties. This study aimed to quantify the influence of the operation region of the force-length relationship on rFE
and rFD, as well as to quantify the influence of the muscle fiber-type composition of the muscle on rFE and rFD.
Additionally, the occurrence of rFE on the tibialis anterior (TA) is attempted to be predicted with machine learning
classifiers based on the acquired datasets.

Five subjects performed isometric, lengthening, and shortening contractions at 15.0-20.0%MVC of the TA at two
different ankle angles for the assessment of the influence of the operating region. The chosen ankle angles were subject-
specific and ensured that the TA was operating at both the ascending limb and plateau region. For the assessment of
the muscle fiber-type composition, six subjects performed isometric, lengthening, and shortening contractions of the
TA, primarily composed of fiber type II, and the soleus (SOL), primarily composed of fiber type I, at 7.5-12.5%MVC.
The obtained data measured on the TA are all used as input for six different machine learning classifiers to predict
the occurrence of rFE. To assess the influence of the input parameters, one parameter was excluded from the training
data one by one.

No statistical differences were found regarding the influence of both the operating muscle’s region and the fiber-type
composition on the obtained rFE and rFD. However, on average, rFE was 3.98 ± 1.20% higher on the plateau
region and 4.73± 4.67% higher on the TA, respectively. Additionally, more subjects were categorized as responders
measuring on the plateau and on the TA. Regarding the machine learning classifiers, three classifiers, i.e. Linear
Discriminant Analysis (LDA), Logistic Regression (LR), and Support Vector Machine (SVM), exhibited the highest
overall performance, each achieving an f1 score greater than 0.8. Excluding muscle activation parameters from the
training data, resulted in a decrease in performance. When excluding the normalized ankle angle, only LR showed
a decrease in performance. These results indicated no discernible relation between rFD and the operating muscle’s
region or the muscle fiber-type distribution. However, the findings suggested that rFE may be better captured
when measured on the TA and on the plateau region, although further confirmation is required through future
research. Understanding these history-dependent muscle properties contributes to a better overall understanding of
the biomechanics of human movements and could improve biomechanical models and rehabilitation programs.
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1 Introduction

1.1 Background

1.1.1 Muscle structures

Human movement is often associated with health, as it contributes to improving the physical and mental health of an
individual [1]. It is advantageous for preventing diseases and also for rehabilitation. Studying the biomechanics and
kinesiologic components of human movement is essential for, i.e., improving rehabilitation programs and the origin
of biomechanical-related disorders. Skeletal muscles are the essential body structures responsible for generating force
for maintaining posture and generating motion [2]. Due to the importance of human motion, scientists are seeking
to understand the biomechanics of movements, where the first research goes way back in time. Leonardo da Vinci
was the first scientist to dissect a body to study the functional anatomy of the human body [3]. However, it was the
research of Luigi Galvani (1737-1798) that was essential for the origin of muscle contraction and neurosciences [4].
In his research, he found that the legs of a frog twitch due to electrical stimulation.

After years of studying the underlying mechanisms of human movements, knowledge is gained on the anatomical
and biomechanical structures of muscles. Muscle tissue is organized in a hierarchical structure [5]. The muscle
itself contains multiple fascicles, which are bundles containing muscle fibers. A single muscle fiber contains, in turn,
multiple myofibrils, which are accountable for the contractile motion of a muscle. A sarcomere is a specific region
of the myofibril and is the smallest contractile unit of a muscle fiber. A well-accepted theory for skeletal muscle
fiber contraction is the sliding filament model of a sarcomere and the cross-bridge theory [6]. This model consists
of a thick and thin filament called myosin and actin, respectively. A myosin filament contains heads that can form
connections with actin. These connections are called cross-bridges, and the formation of this phenomenon results
in contractile motion. During contraction, the filaments slide past each other, resulting in shortening of the entire
sarcomere. Each sarcomere also contains an elastic filament called titin. It maintains the organizational structure of
myosin and actin and provides passive force production when the sarcomere is excessively stretched [7].

Figure 1: The force-length relationship can be determined by dividing the curve into active force generation, due to
cross-bridge formations, and passive force generation, due to the engagement of titin [8].

The ability of a sarcomere to generate force is, among other things, dependent on its length. The length of the
sarcomere affects the overlap of the myosin and actin, which, in turn, influences the number of cross-bridges that
can be formed. The tension or generated force of the sarcomere increases with the number of cross-bridges. The
force-length relationship (Figure 1) [8] describes the active force generation in relation to the sarcomere length in
activated muscles. This curve has three distinct regions: the ascending limb, plateau, and descending limb region.
The ascending limb region describes an increase in force with increasing sarcomere length. Initially, actin and myosin
are more overlapped, leading to fewer attachment sides for cross-bridge formations. The increase in force with
increasing sarcomere length is the result of an increase in cross-bridge formation as the sarcomere is less overlapped.
The plateau region represents the optimal region, where the produced force is at its maximum and does not change
with the number of cross-bridges as all attachment sides are available. In the descending limb region, the force
decreases with increasing sarcomere length, as fewer cross-bridges can be formed. Actin and myosin are not fully
overlapped, resulting in fewer attachment sides. In this region, passive forces are generated by the engagement of
titin when the sarcomere is stretched.
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Important to note is that not all muscle fibers have the same contraction speed and force generation. In the human
body, in general, three types of muscle fibers can be distinguished: type I (slow-twitch), type IIA (fast-twitch type A),
and type IIX muscle fibers (fast-twitch type X) [9]. While the type I muscle fiber is more fatigue-resistant, both
type II muscle fibers are capable of contracting more quickly than type I muscle fibers. Type I fibers are recruited for
endurance exercises when oxygen is available for energy production. Type II fibers, both type IIA and type IIX, are
recruited for more force-demanding activities in the absence of an adequate amount of oxygen. Type IIA fibers are
often recruited for higher-intensity endurance activities, while type IIX are recruited for explosive events. However,
it appears that type IIX muscle fibers are not easily activated. With this in mind, the subdivision of type II is not
considered in this thesis. Within the different muscle fibers, the properties of titin differ from one another. Previous
research has found that the stiffness of titin is higher for type II muscle fibers [10], which, in turn, influences the
passive force generation. Even though the sliding filaments model and cross-bridge theory are often used to explain
the properties of skeletal muscles, the origin of some specific muscle properties remains unknown. [11].

1.1.2 History-dependent muscle properties

Not all muscle properties are accounted for in the currently accepted muscle models. Among those are history-
dependent muscle properties [12, 13]. History-dependent properties in muscles include residual force enhancement
(rFE) and residual force depression (rFD) (Figure 2).

Both phenomena are dependent on the previous state of the muscle, specifically its length. rFE is characterized
by an increase of steady-state force following active eccentric contraction compared to steady-state isometric force
at the corresponding length [14]. This enhancement is believed to be produced by titin, which exhibits spring-like
properties. During the lengthening of the sarcomere, titin is stretched and consequently increases the passive force
generation. During active lengthening of the muscle, calcium is used for triggering muscle force production. It
is assumed that titin is also calcium-dependent resulting in interactions with other proteins. Presumably, calcium
results in titin binding to actin at specific binding sites. Consequently, the stiffness of titin increases after the binding
to actin [15, 16]. This increase in stiffness and the passive forces generated by titin is thought to be contributing to
rFE [17].

On the other hand, rFD is observed as a decrease of steady-state force following active concentric contraction [18].
Similar to rFE, titin is associated with rFD as well. It is hypothesized that titin directly blocks the formation of new
cross bridges during active muscle shortening. The inhibition of cross-bridge formation is likely to be the primary
mechanism contributing to rFD [18]. However, despite extensive research, the exact physiological origin of both rFE
and rFD remains unknown.

Figure 2: Schematic representation of rFE and rFD. Line A shows an increase in steady-state isometric force following
active lengthening of the muscle (rFE) compared to a purely isometric contraction, which is represented by line C.
Line B shows a decrease in steady-state isometric force following active shortening of the muscle (rFD) compared to
a purely isometric contraction [19].
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1.1.3 Machine learning

The occurrence of rFE has been extensively investigated in both in vitro and in vivo experiments. as will be discussed
in Section 1.2.1. Especially in vivo, the results of the experiments are not consistent, and not all subjects exhibit
rFE [20, 21]. Consequently, it is challenging to predict the occurrence of rFE, especially in vivo. Being able to predict
rFE provides more insight into the nature of rFE, the related parameters, and the reasoning why some subjects do
not exhibit rFE while other subjects do. As the in vivo properties are not yet fully understood, measurement data
can be used to predict the occurrence of rFE. Machine learning is a promising technique for predicting the occurrence
and determining the influencing parameters of history-dependent muscle properties.

Machine learning is a data-driven technique often used to make predictions or classifications. This technique enables
systems to learn and to improve based on measurement data [22]. The general idea of machine learning is that
specific learning algorithms are able to build models given input data, i.e. training data, which is validated against
test data. These models then return predictions of new data. Especially with the increasing complexity of datasets,
i.e. an increasing amount of data and an increasing amount of predicting variables, the demand for machine learning
models increases [23]. While there are multiple different algorithms that can be applied, there is not one common
algorithm that fits all data. The decision of what kind of algorithm to use depends on the dataset itself and the type
of prediction that is required [24]. In this thesis, six machine learning algorithms were investigated. The algorithms
are attempted to be explained by means of an example. Imagine a classification problem where a pill needs to be
classified being either red or blue based on its weight.

Gaussian Naive Bayes
Naive Bayes is an algorithm that uses Bayesian probability to calculate the likelihood of a certain event to happen [25].
This classifier is popular among the anti-spam filters for e-mails [26]. The data is assigned to a certain class, which
is the group the input data belongs to. For the given example, the class is either red or blue. The algorithm is based
on the following formula [24]:

P (c|x) = P (x|c) · P (c)

P (x)
, (1)

with P (c|x) the posterior probability, P (x|c) the likelihood of the weight of the pill given its color, P (c) the probability
of the class, i.e. the pill being either red or blue based on the training data, and P (x) the probability of the prior
predictors. The posterior probability is the eventual outcome that will be used for the classification. First, the
probability of the class is the initial guess of the classification, e.g., the color of the pill being either red or blue. This
initial guess is often the probability calculated based on the training data. Then, this initial guess is multiplied by
the likelihood of the color of the pill being red or blue given a certain weight. This gives two posterior probabilities.
The input data is classified as the same class of the posterior probability with the highest value, e.g. if the probability
of the color being red is higher than the probability of being blue, the pill is classified as the color red.

Gaussian Naive Bayes assumes a Gaussian distribution of the dataset and is often used for handling continuous
data. Moreover, it is assumed that each input parameter is independent of the others. Important to note is that the
performance of the classifier is correlated with this data distribution. The model conducts better predictions on a
normally distributed dataset [27].

Linear- and Quadratic Discriminant Analysis
Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA) are two classification methods
based on statistical and probabilistic learning [28]. These algorithms can be derived for binary and multivariate
classification problems. The formula on which both LDA and QDA are based is the probability density function for
multivariate normal distribution [29]:

f(x|µ,Σ) = 1√
(2π)p|Σ|

exp

(
− (x− µ)TΣ−1(x− µ)

2

)
, (2)

where x = (x1, x2, ..., xp) is the independent variable, µ = (µ1, µ2, ..., µp) is the mean of the independent variable,
and Σ is the covariance matrix.

LDA assumes for binary classifications, i.e. classifying the dataset into two groups, that both covariance matrices
are equal. Given this property and after simplification of Equation 2, the linear discriminant function of binary
classification can be obtained [29]:

δ(x) = 2
(
Σ−1(µ2 − µ1)

)T
x+

(
(µ2 − µ1)

TΣ−1(µ2 − µ1)
)
+ 2 ln

(
π2

π1

)
. (3)
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The classes are determined by the value of δ(x). δ(x) can either be positive or negative each resulting in a different
class, e.g. if δ(x) is positive the pill is classified as red, and if δ(x) is negative the classification is the pill being blue.

QDA assumes unequal covariance matrices for a binary classification, which results in the following formula [29]:

δ(x) = xT (Σ1 − Σ2)
−1

x+ x
(
Σ−1

2 µ2 − Σ−1
1 µ1

)T
x+

(
µt
1Σ

−1
1 µ1 − µt

2Σ
−1
2 µ2

)
+ ln

(
|Σ1|
|Σ2|

)
+ 2 ln

(
π2

π1

)
. (4)

Assumptions for the use of these two classifiers are that the dataset should follow the multivariate normal distribution,
and multi-collinearity, i.e. correlation between the variables, should be excluded [30].

Logistic Regression
Logistic Regression (LR) is often used to calculate the likelihood of something happening based on given input data.
This method uses a regression equation to fit the data by means of logarithmic terms in order to avoid the assumption
of linearity [31]. The formula that will be modeled is given with the following [32]:

log

(
π

1− π

)
= β0 + β1x1 + β2x2 + ...+ βmxm, (5)

where π represents the probability, β the regression coefficients, and x the input variables. The goal is to fit the curve
accurately to minimize the negative log-likelihood, meaning that the likelihood will be maximized [33]. The curve
obtained with LR has an S-shape between zero and one which represents the probability of an event happening. On
default, the boundary of the two groups, e.g. having a pill with the color red or blue, is set on a probability of 0.5. If
the value is smaller than 0.5, the pill is blue based on the input parameters. This technique is also applicable when
more than one predictor is available.

Support Vector Machine
Support Vector Machine (SVM) (Fig. 3) is a commonly used machine learning algorithm in computer science and
engineering communities [34]. SVM is used for classification while mapping the training data. Imagine the blue
cluster of data points, is the data representing the weight of the blue pills, and the red cluster represents the weight
of the red pills. When using this technique the margins between the two classes, i.e. the blue and the red pills,
are determined by support vectors, which are data points on the edge of the clusters. With a maximized margin
between the two data clusters, the optimal hyperplane can be determined. This optimal hyperplane is the boundary
between the data clusters and has an equal distance between the support vectors of both clusters [24]. Considering
Figure 3, the pill is classified as red as the weight is mapped to the right of the optimal hyperplane. In general, SVM
algorithms solve linear problems. In case the analyzed data is non-linear, kernel functions can be used to transform
the data such that linear classifiers can be applied [35].

Figure 3: Schematic overview of the functionality of the machine learning algorithm of SVM. The optimal hyperplane
is the plane that has the maximum margin with respect to the support vectors.

K-Nearest Neighbor
K-Nearest Neighbor (KNN) is also an algorithm often used for classification purposes [24, 36]. The classifier uses the
training data for comparison with the unclassified input. This means the training data will be mapped based on the
weight of the pills. Each training data point is assigned to a classification, i.e. the pill being red or blue. The input
is classified to the value with the training data that shows the most resemblance [36]. The measure that is used, is
called the distance function which is most commonly the Euclidean Distance [36, 37]:
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dEuclidean(x, y) =

√∑
i

(xi − yi)2. (6)

After the determination of the distances between the input data and the training data, the input is assigned to the
class of the nearest neighbors of the training data. In other words, the pill is classified as red if a training data
point with the most similar weight belongs to the class of red pills. The number of neighbors that are considered is
determined by the k -factor. If k is larger than 1, the majority class of the neighbors is assigned to the input [38].
Considering Figure 4, the pill is classified as blue as the majority of the nearest neighbors belong to the blue class
when k is 3.

Figure 4: Schematic overview of the functionality of the machine learning algorithm KNN.

1.2 State of the art

1.2.1 Properties of rFE and rFD

Many experiments have been conducted both in vitro and in situ to establish the properties of rFE and rFD.
Important outcomes from previous in vitro experiments regarding rFE show that this phenomenon is dependent on the
stretch amplitude and is velocity-independent [11]. Moreover, rFE occurs over the entire force-length relationship [11].
Presumably, rFD is dependent on the produced force and stretch amplitude, but also velocity-independent [39].

Currently, research is underway to investigate the effects of rFE and rFD in vivo [11, 18]. It is likely that these
phenomena occur during daily movements in humans. The in vivo measurements are often performed with joint
torque and angle as proxies of muscle force and length, respectively. However, other factors, such as the involvement
of other muscles and tendons, might also influence the measured joint torque and angle. Therefore, the functionality
of the phenomena in the human body is not fully understood yet, while experiments on single muscles and single
sarcomeres yield consistent and clear results [11, 18].

Additionally, while measuring for rFE in vivo, responders and non-responders are observed [40]. On average, 25%
of the participants do not exhibit rFE involving voluntary contractions. However, non-responders are not observed
in situ and in vitro, nor when muscles are electrically stimulated [40, 41]. Moreover, Paternoster et al. (2021) [41]
questioned the existence of true non-responders, as inconsistency is found within individuals. This inconsistency
might be due to other confounding factors, like varying sensor placement or voluntary contraction. It remains
unclear why some participants do not show rFE. Recent articles regarding rFD did not find non-responders or find
a small number of non-responders in their study [42–44].

Some of the findings from in vivo measurements indicate that the magnitude of rFE is likely to depend on the
region of the force-length relationship the muscles are operating on. Evidence suggests that the magnitude of rFE
is decreased in the ascending limb region, while an increase in rFE can be found in the descending limb region [42].
This observation is likely due to the engagement of titin at longer muscle lengths. This research is, however, limited
by the decision to measure two different ankle angles for each subject, not taking into account that the force-length
relationship is subject-specific. This can result in subjects operating in a different region than assumed. Regarding
rFD, current articles do not mention a similar relation between the operating region and rFD [18], suggesting that
this relation is unlikely to influence the magnitude of rFD. Another notable outcome is that the activation level does
not influence the magnitude of rFE or rFD [45].
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Additionally, Ramsay et al. (2010) [46] examined the contribution of non-contractile proteins, e.g. titin, which is
responsible for the passive force generation. Within this research, two rat muscles with different fiber-type compos-
itions were compared, one with relatively more type I fibers and the other with more type II fibers. They found a
significant increase in rFE for the muscle with relatively more type II fibers, most likely due to the higher proportion
of the passive tension that is generated. On the contrary, Fukutani and Herzog (2020 and 2022) [47, 48] also com-
pared two different muscles with distinct fiber-type distributions, specifically the rabbit’s psoas (type II), and the
soleus (type I), but no significant difference was found. Pinnell et al. (2019) [40] investigated rFE on single human
muscle fibers, obtained from the vastus lateralis. However, no difference in the magnitude of rFE was found between
the type I and type II muscle fibers. Therefore, it remains inconclusive whether muscle fiber types indeed influence
the magnitude of rFE.

The influence of different fiber-type compositions on rFD was also examined by Joumaa et al. (2015) [49]. The
rabbit soleus and psoas were assessed. The outcome of this research showed a greater rFD for type II muscle fibers
than type I fibers when measuring at the same absolute speed, i.e. fiber lengths per second. Pinnell et al. (2019)
[40] also measured the occurrence of rFD on single human muscle fibers. This research found no significant difference
between the two fiber types. The conflicting results indicate that the relationship between the muscle fiber-type and
the occurrence of rFD is uncertain.

1.2.2 Predicting models

As said, rFE and rFD have been widely studied in vitro and in situ. Experimental studies have been executed to
gain more insights into the underlying mechanisms of rFE and rFD and the properties of these two phenomena [11].
Most hypotheses are based on the sliding filament and the cross-bridge theory. However, no current model is able to
fully explain the origin and mechanisms responsible for the occurrence of rFE and rFD [50].

Figure 5: Schematic overview of the classic Hill-type muscle model. The force generated by the muscle is described
by the active contractile element (CE) and a passive elastic element (PEE/fPE) at a pennation angle of ϕ. The
tendon force is described as the tendon passive element (TEE/fT ) [8].

Musculoskeletal simulations are often based on the Hill-type muscle model [51]. This phenomenological model
describes the dynamics of a muscle-tendon unit. This model consists of three components, specifically an active
contractile element (CE), a passive elastic element (PEE), and a tendon elastic element (TEE), which describes the
generated muscle force (Figure 5) [8]. The CE is the component that describes the active force generation, specifically
the force-length and the force-velocity relationship. The CE operates in parallel with the PEE, which describes the
passive force generation of the elastic elements within the sarcomere, i.e. titin. The TEE component operates in
series with CE and PEE and describes the passive force generation of the tendon itself [52]. The traditional Hill-type
model is purely based on a single state of the muscle, specifically at the instantaneous muscle length, and neglects
some muscle features, like size-dependency, activation-dependency, and history-dependency [53]. Some articles tried
to improve the Hill-type muscle model by adding history-dependent features [52–54]. McGowan et al. (2013) [54]
included both a rFE and a rFD component to the Hill-type muscle model, where rFE is mainly determined by the
change in muscle length, and rFD is a function of the net work [52]. Ross et al. (2018) [55] also implemented a history-
dependent muscle property within the Hill-type muscle model. The history-dependent component is implemented in
parallel to the CE and the PEE and describes both rFE and rFD. In the case of active lengthening of the muscle,
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the rFE is calculated based on the active stretch. The formula goes as follows:

FFE = F0

[
lm − le

le

]
Ê

(
le
l0

)
, (7)

where F0 represents the maximum isometric force, Ê the normalized elastic modulus dependent on the initial muscle
length, le, and the muscle length after active stretch, lm. In the case of active shortening, the rFD is calculated
based on the net work of the muscle across various scales of muscles, calculated with the following formula:

FFD = −F0ĈFDŴc, (8)

where ĈFD represents the non-dimensional force depression coefficient, and Ŵc the non-dimensional work. The
relationships described in the phenomenological models are mainly based on in situ and in vitro measurements,
whereas the used parameters, i.e. the muscle length and the mechanical work, are challenging to capture in vivo.

Some articles describe the development or application of mathematical muscle models accounting for rFE [50, 56–58].
These models describe the mechanical behavior of skeletal muscles for predicting whether rFE occurs. Campbell et
al. (2011) [50] used a half-sarcomere model that showed rFE. This model confirmed some established properties, like
the independence of stretch velocity and dependence on stretch amplitude. Another predicting model is of Heidlauf
et al. (2016) [57], which is a mechanical model that also considers rFE in static situations based on the mechanical
behavior of titin. The titin model is proposed by Rode et al. (2009) [56], where a sticky-spring mechanism is
integrated into the Hill-type muscle model. This model is useful for simulating both rFE and rFD. Schappacher-Tilp
et al. (2015) [58] proposed a mathematical model of a three-filament sarcomere model which shows both rFE and
rFD to some extent.

These models, however, are specifically used for obtaining insights into mainly rFE on the sarcomere level and the
underlying mechanisms. These models are based on in vitro and in situ measurements with the established properties
of rFE and rFD, but also with input measures, like the muscle length and the number of myosin heads. Seemingly,
no mathematical models are proposed for explaining the phenomena in vivo. Also, no articles are found regarding
the history-dependent muscle properties in combination with machine learning techniques.

Machine learning algorithms, however, have been applied to disease predictions and other biological processes [59].
Several datasets were evaluated by means of machine learning models to either predict the occurrence of certain
diseases or to classify patients. This technique has been applied to many different medical conditions, i.e. asthma [60],
breast cancer [61], cerebral infarction [62], diabetes [63], and Parkingson’s disease [64]. The machine learning models
assessed in the review of Uddin et al. (2019) [59] often showed high performance in terms of classifying diseases. In
the research of Pascual-Valdunciel et al. (2022) [65], machine learning algorithms were utilized for tremor detection
based on electromyography (EMG) and kinematic data, whereas the assessed algorithms all showed high overall
performance. These researches showed the feasibility of applying machine learning algorithms for predicting and
classifying biological processes in humans and also the classification based on EMG- and kinematic data. This
indicates the potential for machine learning algorithms to classify and predict history-dependent muscle properties.

1.3 Research objective

Measuring rFE and rFD in vitro or in situ, the properties of these two phenomena are well-established and consistent.
However, for in vivo measurements, the results are rather conflicting and therefore it is unclear which factors influence
the magnitude and occurrence of these history-dependent properties in vivo. The goal of this research is to quantify
whether the influence of the operating regions of the force-length relationship and the fiber-type distribution within
the muscle affect rFE and rFD. Another research objective is to obtain a predicting classifier capable of predicting
the occurrence of rFE based on given input parameters.

During this research, measurements were conducted for measuring rFE and rFD in relation to the operating region and
the muscle fiber-type distribution. Regarding the influence of the operating region on the force-length relationship,
two ankle angles are chosen per subject, one representing the ascending limb region and the other representing the
plateau region. It is hypothesized that titin is more engaged at longer muscle lengths [8, 17], resulting in a higher
passive force generation. Therefore, it is assumed that rFE is better captured at the plateau region.

Contrarily, it is hypothesized that the occurrence and the magnitude of rFD are independent of the operating region
of the muscle. Unlike the hypothesis for rFE, the occurrence or magnitude seems independent of passive force
generation, i.e. the engagement of titin. As mentioned, cross-bridge inhibition is likely to be the main mechanism
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responsible for the occurrence of rFD [18]. Therefore, it is assumed that no difference in magnitude between the two
ankle angles is found.

Regarding the influence of the muscle fiber-type distribution of the different muscles, measurements are performed on
two different muscles with different compositions of fiber types. It is hypothesized that a muscle with relatively more
type II fibers exhibits more rFE. Due to the fast contraction of these type II fibers, titin is stiffer for maintaining
the structure of the sarcomere. Consequently, more passive force is generated when titin is engaged in these fibers.
Therefore, it is likely that type II muscle fibers exhibit more rFE than type I muscle fibers [10, 46].

Similar to the hypothesis regarding the operating region and rFD, it is assumed that the fiber-type composition does
not influence the magnitude or occurrence of rFD. Presumably, the stiffness of titin, and consequently the passive
force generation, is different for the different muscle fibers. As it is unlikely that the passive forces are influencing
the occurrence or the magnitude of rFD. Therefore, it is hypothesized that the rFD is similar for both conditions.

Understanding these history-dependent muscle properties contributes to a better understanding of the biomechanics
of human movement. Currently, the functionality and relevance of rFE and rFD have not been verified yet. Research
suggests that the occurrence of rFE is beneficial for human movements that require high forces, like fall prevention
[11]. Moreover, rFE contributes to optimizing the neuromuscular economy by reducing activation [66, 67]. Regarding
rFD, some articles propose that rFD could potentially decrease the work needed for active lengthening. This, in turn,
might enhance the overall work performed by a muscle during a complete cyclic shortening/lengthening movement
[46, 68]. Raiteri et al. (2023) [69], however, found in their research that rFD and positive muscle work were only
linearly related to each other in the case when the muscle was preloaded. This indicates that rFD is not always
related to muscle work. Obtaining a better understanding of rFE and rFD could improve biomechanical models for
rehabilitation programs and controllers for orthoses and prostheses. Specifically, EMG-based musculoskeletal models
could be improved by better understanding which in vivo parameters contribute to the occurrence of these history-
dependent muscle properties. Incorporating these muscle properties into EMG-musculoskeletal models can enhance
both the accuracy of the model’s predictions and its ability to replicate real-world daily movements, improving its
resemblance to the desired controller behavior.
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2 Materials and methods

This research project can be divided into two parts: quantification of rFE and rFD and predicting the occurrence
of rFE. For both parts, the data needed to be pre-processed followed by the evaluation of the data, i.e. calculations
and statistical tests. Finally, the processed data was used as input data for predicting models (Figure 6).
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Figure 6: Schematic overview of the workflow of this research. In the first step after the acquisition of the data, the
data was processed such that it was appropriate to use for the quantification and prediction of the history-dependent
properties. Afterward, the data was evaluated followed by the application of a predicting model.

2.1 Participants and data acquisition

2.2 Participants

In total, eleven healthy participants were included in the experiments, who were divided into two different datasets.
The first dataset (dataset A) quantifies the relation between the operating region of the force-length relationship
and the occurrence and magnitude of rFE and rFD. The data acquisition was executed beforehand of this research.
Five subjects with a height of 170.4 ± 8.8 cm and a weight of 68.6 ± 11.0 kg were included in the experiments. The
second dataset (dataset B) was for evaluating the relation between the muscle fiber types, and the occurrence and
magnitude of rFE and rFD. The data acquisition was executed during this research. Six subjects were included in
dataset B, with a height of 176.7± 8.2 cm and weight of 74.7± 16.2 kg. The measurements of subject 01 of dataset
B were excluded from the data analysis due to irregularities during the measurements.

2.3 Equipment

The experimental setup was similar for both datasets, where both EMG and kinetic data were obtained. The
EMG activity of four lower leg muscles of the right leg was measured, which were the Tibialis Anterior (TA), the
soleus (SOL), the Gastrocnemius Medialis (GM), and the Gastrocnemius Lateralis (GL). The TA and SOL were
both measured with 64-channel High-Density surface EMGs (HD-EMG) electrodes (Figure 10), while the GM and
GL were measured with bipolar sensors, using a TMSi Refa amplifier (TMSi, Oldenzaal, The Netherlands) with a
sampling frequency of 2048Hz. The ground electrode was placed on the Lateral Malleolus. The kinetic data for
this research that was measured was ankle torque. The torque and ankle angle was measured at 2048Hz with the
Achilles Rehabilitation Device (MOOG, Nieuw-Vennep, the Netherlands). The Achilles was used to impose a change
in angle to the right ankle. The ankle joint was aligned with the motor of the Achilles, while the foot was secured
with straps to the footplate. The ankle angle of the Achilles was also recorded with a channel of the Refa amplifier.
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(a) (b)

Figure 7: The experimental set-up of the history-dependent measurements. (a) depicts the experimental setup. The
HD-EMG sensors (A) were placed on the TA and the SOL, while the GM and GL were measured with bipolar EMG
sensors. The right foot of the subject was positioned at the footplate of the Achilles (B) for measuring torques. (b)
shows the live activation target (C) of the subject during the trials. In this case, the height of the red bar represented
the magnitude of the activation level of the muscle of interest. Once the red bar reached the grey target, the bar
turned green. This indicated that the activation level was at the required magnitude.

2.4 Experimental protocol

MVC trial

Torque-angle
relationship

Lengthening
trials (3x)

Reference
trials (3x)

Shortening
trials (3x)

Figure 8: A schematic overview of the tri-
als that were executed. First, the trial star-
ted with an MVC trial followed by the trial
to determine the torque-angle relationship.
After the execution of these trials, the history-
dependent muscle property trials were per-
formed threefold: reference, lengthening, and
shortening trials. The reference trial was a
purely isometric contraction. The lengthen-
ing trial initiated active lengthening of the
muscle and the shortening trial initiated act-
ive shortening for measuring rFE and rFD,
respectively.

The data acquisition was executed similarly for both datasets (Fig-
ure8). In both cases, the experiment started by measuring the max-
imal voluntary contraction (MVC) of interest. The test subject was
instructed to sit on the chair with a knee angle of ∼90◦ and either dor-
siflex or plantar flex the ankle, while the instructor provided a coun-
terweight. The subject was then seated on the chair of the Achilles
with the right foot positioned on the footplate. The range of motion
(ROM) was determined for the subject by manually determining the
maximal and minimal ankle angle followed by the placement of hard
stops.

Afterwards, the torque-angle relationship was determined. As the
torque-angle relationship (as a substitution for the force-length rela-
tionship) is subject-specific, one trial was dedicated to the determin-
ation of this relationship (Appendix A). The subject was instructed
to sub-maximally contract the muscle of interest, which was either
the TA or the SOL, for a duration of 5 s. The sub-maximal contrac-
tion was either 15.0-20.0%MVC for dataset A and 7.5-12.5%MVC
for dataset B. Then a transition of 5◦ of the ankle angle was made,
after which the subject was instructed to sub-maximally contract the
muscle again. This trial ensured that ten ankle angles were measured
throughout the ROM of the ankle. The sub-maximally contraction
needed to be consistent throughout the entire measurement. There-
fore, the subject was provided with live visual feedback on the activ-
ation level during the trial. The activation level was determined by
the selection of two 2 × 2-grids of the HD-EMG sensor (Figure 10).
By averaging each 2× 2-grid and subtracting both means from each
other, one EMG signal was obtained. The signal was filtered and normalized with the MVC to provide live feedback.
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Figure 9: Ankle angle transition for the different operating muscle lengths. The positive ankle angles were in the
dorsiflexed ankle position, the negative angles were in the plantar flexed angle position. The ankle angles were
obtained from the experiments of subject 4 of dataset A.

The determination of the torque-angle relationship substantiated the decision on what ankle angle the trials for the
history-dependent muscle properties were executed. The trials for the history-dependent muscle properties consisted
of three conditions, specifically a reference, lengthening, and shortening trial. Each of these conditions was measured
threefold. The first condition was the reference trial, which was an isometric contraction measured at the chosen
ankle angle. The second condition was the lengthening trial. The trial started at a shorter muscle length followed by
active lengthening of the muscle of interest ending at the chosen ankle angle for measuring rFE. The final condition
was the shortening trial, which initiated the active shortening of the muscle of interest, i.e. for measuring rFD. In
this case, the trial started with a longer muscle length followed by the shortening of the muscle ending at the chosen
ankle angle (Figure 9).

Table 1: Overview of the measurement parameters regarding both dataset A and B, where dataset A assessed the
influence of the muscle’s operating region and dataset B assessed the influence of the muscle fiber-type distribution.

Knee ankle
(◦)

Stretch
amplitude (◦)

Stretch
velocity (◦ s−1)

Activation
level (%MVC)

Duration
(s)

Dataset A 150 7.5 and 15.0 10.0 15.0-20.0 38
Dataset B 110 7.5 10.0 7.5-12.5 38

2.4.1 Dataset A - Operating region

While the experimental protocol was almost identical for the operating region- and the fiber-type experiments, some
experimental parameters were different (Table 1). Regarding dataset A, the subject’s knee angle was approximately
150◦ with 180◦ being the fully extended knee position. The knee angle was measured manually by means of a
goniometer. The primary muscle of interest was the TA, as it is the main muscle responsible for dorsiflexing the
foot [5]. The measurements of the phenomena of rFE and rFD were executed at two different muscle lengths, each
representing a distinct operating region of the force-length relationship. By means of the torque-angle relationship,
one angle was selected from the ascending limb and the other from the plateau region. Afterward, the trials, consisting
of three conditions, for measuring the history-dependent muscle properties were executed.

The subjects were instructed to maintain a constant activation level of the TA between 15.0-20.0%MVC throughout
the entire measurement of approximately 38 s by dorsiflexing the ankle. This activation level was determined by
means of trial and error such that fatigue was avoided during measuring. Also, another research has been executed
on 30%MVC while measuring for 30 s and no fatigue has been observed [66]. The stretch velocity was kept consistent
for all trials at 10 ◦ s−1. The stretch amplitude was predominantly kept at 7.5◦, except for the ascending limb trials
of subject 2 and 3, where the stretch amplitude was 15◦.
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2.4.2 Dataset B - Fiber types

Regarding dataset B, the history-dependent properties were measured on two muscles, specifically the TA and the
SOL. In this case, the knee angle was approximately 100◦. This was to minimize the contribution of the GM and
GL during plantarflexion, such that the SOL was the primary muscle producing torque at the ankle [70]. By means
of the torque-angle relationship, an ankle angle for both the TA and the SOL was chosen that operates at the
plateau region of the corresponding muscle. The same trials were executed threefold for both the TA and the SOL,
specifically the reference, lengthening, and shortening trials. For the TA, the subjects were instructed to perform
dorsiflexion, and for the SOL trials plantarflexion needed to be executed. This time, a constant activation level
between 7.5-12.5%MVC during the measurement of approximately 38 s was required, such that the torque will not
exceed the maximum torque that can be applied on the Achilles during the SOL trials. The stretch amplitude and
the stretch velocity were kept constant at 7.5◦ and 10 ◦ s−1, respectively.

2.5 Data processing

The pre-processing of the recorded data, i.e. EMG data and data recorded with the Achilles, was performed in
MATLAB (MathWorks Inc. Natick, Massachusetts, United States, version R2021b). Before the end of the measure-
ment, the Achilles perturbs the ankle with a sinusoidal movement. This motion functions as a recognition point for
synchronizing the torque and EMG data.

2.5.1 EMG data

1 9 17 25 33 41 49 57

2 10 18 26 34 42 50 58

3 11 19 27 35 43 51 59

4 12 20 28 36 44 52 60

5 13 21 29 37 45 53 61

6 14 22 30 38 46 54 62

7 15 23 31 39 47 55 63

8 16 24 32 40 48 56 64

Figure 10: HD-EMG grid channels, seen
from above when attached to the skin.
The colored channels were the channels
chosen for providing live feedback on the
activation level of the muscle of interest.

For analyzing the EMG data, the EMGs were pre-processed by means of
filtering and normalizing the signals for the four measured muscles, i.e.
TA, SOL, GM, and GL (Figure 11). For the pre-processing and analyz-
ing of the signals of the HD-EMGs, the same channels of the grid were
chosen as the live visual feedback during the measurements for consistency
(Figure 10).

The following steps were similar for both the HD-EMGs and the bi-
polar EMGs. After the synchronization and pre-processing of the HD-
EMGs, the EMGs were processed by applying a second-order Butter-
worth high-pass filter with a cut-off frequency of 10Hz, for the removal
of low-frequency contaminants, like movement artifacts [71]. Due to the
presence of powerline interference, the signal was also filtered by means
of a harmonic notch filter of the fourth-order at multiplications of 50Hz.
Following was creating the EMG linear envelope by first rectifying the
signal and then low-pass filtering. The low-pass filter was a second-order
Butterworth filter with a cut-off frequency of 2Hz. Finally, the baseline
that was measured without any muscle activity was removed from the sig-
nals and the EMGs were normalized with the MVC of the corresponding
muscle.

2.5.2 Torque data

The torque data was eventually the data that will be used for the cal-
culation of rFE and rFD. However, the raw torque data was challenging
to analyze due to the presence of noise. To be able to analyze the data
sufficiently, the torque data was smoothed by means of a second-order
Butterworth low-pass filter with a cut-off frequency of 3Hz [72, 73] (Figure 11)

2.5.3 Calculation rFE and rFD

For both datasets, the subjects have all executed three reference, three lengthening, and three shortening trials per
condition. rFE and rFD were calculated as the percentual difference in torque between the reference and either the
lengthening or shortening trial, with the corresponding condition (i.e. ankle angle or muscle). rFE was calculated
with the following formula [41]:

rFE =
τlength − τref

τref
· 100%, (9)
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Figure 11: Schematic overview of the pre-processing of the data, i.e. the EMGs and the torques.

with τlength the measured torque of the lengthening trial, and τref the measured torque of the reference trial.

rFD was calculated with a similar formula as rFE:

rFD =
τshort − τref

τref
· 100%, (10)

with τshort the measured torque of the shortening trial. rFE and rFD were both calculated over the entire time
range, i.e. the torque per time-step. This calculation was used to assess the trend of rFE and rFD. Additionally for
quantifying both rFE and rFD, seven time windows were determined with a length of 0.5 s each. The windows that
were chosen, were 2.5, 5.0, 7.5, 10.0, 12.5, 15.0, and 17.5 s after the transition, i.e. when the ankle angle changes.
These calculations were used for assessing whether someone exhibits rFE and/or rFD.

2.6 Data evaluation

2.6.1 Selection of trials

Some articles choose ’the best trials’ to present their results regarding the magnitude of rFE and rFD [20]. This means
that often the combination of one lengthening, one shortening, and one reference trial is chosen which results in the
highest rFE and rFD [74, 75]. In this research, a similar approach was used. Additionally, other parameters were also
considered in the selection of the trials, specifically the activation level of the trials and the measured muscle activity
of the other muscles. Ideally, the activation level is as similar as possible, as the torque generation is dependent
on the muscle activity [76]. Also, co-contraction should be as small as possible for all trials, as co-contraction also
affects the measured torque [77].

For the assessment of the activation level, the root mean square error (RMSE) was calculated for the activation level
between the reference trial and either the lengthening or shortening trial. The RMSE was a measure to quantify the
difference between two different values. The higher the value, the larger the error between the measured EMGs. The
threshold was set on an error of 2%. In the case, that the RMSE was smaller than 2%, the activation levels of the
different trials were considered equal and comparable.

Finally, the muscle activity of the four measured muscles was assessed. This was accomplished by calculating the
mean of the normalized muscle activation. Ideally, the amount of co-contraction was as small as possible, such
that the measured torque was mainly obtained by the measured muscle. If the muscle activation of the other three
muscles, i.e. GL, GM, and either TA or SOL, was each smaller than 5% then the trials were appropriate to use.

2.6.2 Statistical analysis

To analyze both the influence of the different muscle lengths and the different muscles, the calculated rFE and rFD
of the entire time series were used. To take the time dependency into account, the data was analyzed by means of
statistical parametric mapping (SPM) [78]. The SPM-based statistical testing was conducted on the entire dataset,
which quantifies the probability of significant differences throughout the entire measurement with a specific test
statistic value. By means of SPM a paired sample t-test was used for determining the influence of the muscle length
and muscle itself on the magnitude of both rFE and rFD. The level of significance was set to α < 0.05.

2.6.3 Classification of the trials

The determination of whether a subject exhibits rFE or rFD was determined by means of descriptive statistics. Per
subject were the rFE and rFD per time window calculated and were included in boxplots per subject and condition.
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The boxplots depicted how the rFE or rFD was distributed and if rFE or rFD was observed. If Q1 of the boxplot,
which is the median of the first half of the data points (at 25%), was higher than zero for the lengthening trials,
then the measured difference in torque was classified as rFE. If Q3, which is the median of the second half of the
data points (at 75%), was lower than zero for the shortening trials, then the trial was classified as rFD. In any other
case, the trial was labeled as no observed rFE or rFD.

2.6.4 Classifier

As mentioned, the classifier requires training data and test data. The training data was for the model to calculate
the prediction and/or likelihood of the occurrence of rFE given some input parameters. For increasing the training
dataset, all three repetitions of the lengthening trials were assessed and classified in combination with one reference
trial per subject, specifically the reference trial that was previously chosen in Section 2.6.1.

The first input parameter was the classification of whether rFE was exhibited or not when measuring on the TA.
This was done in the same manner as explained in Section 2.6.3. The other input parameters were the normalized
mean activation level of the lengthening trial, the variance in activation level of the lengthening trial, the stretch
amplitude, the normalized ankle angle, and the differences in the mean of the activation levels of the reference trial
and the lengthening trial. The normalized ankle angle was a value between 0 and 1, with 0 being the angle that
produced the smallest torque and 1 being the angle that produced the highest torque.

By means of the Classification Learner app on Matlab, multiple classification models were trained and validated.
This tool provides the opportunity to assess the performance of different models in the search for the most appro-
priate model for the input data and the predetermined classifications. The model types that were assessed, were
Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Logistic Regression (LR), Support
Vector Machine (SVM), K-Nearest Neighbor (KNN), and Gaussian Näıve Bayes (GNB). This Matlab app generates
predictions as the response based on new data, which was cross-validated five times. After the assessment of the
models, which was described in Section 2.6.5, the input data was varied by excluding one of the five input variables
one by one.

2.6.5 Classifier assessment

The selected classification models were evaluated on their ability to predict the occurrence of rFE on the TA correctly.
The evaluation was based on the accuracy, precision, specificity, recall, and the f1 score, in correspondence with the
research of Pascual-Valdunciel et al. (2022) [65] to assess the classification models. The metrics were determined by
means of true positives (TP), false positives (FP), true negatives (TN), and false negatives (FN).

The equations are as follows [65]:

Accuracy =
TP + TN

TP + FP + TN + FN
, (11)

where accuracy is a measure for assessing how many predictions are correct.

Precision =
TP

TP + FP
, (12)

where precision is a measure for assessing how many of the positive predictions are correct.

Specificity =
TN

TN + FP
, (13)

where specificity is a measure for assessing how many of the actual negative classifications are predicted correctly.

Recall =
TP

TP + FN
, (14)

where recall is a measure for assessing how many of the actual positive classifications are predicted correctly.

f1 = 2 · Precision ·Recall

Precision+Recall
, (15)

where the f1 score summarizes the performance of the model based on both the negative and the positive predictions.
For all metrics, the score ranges between 0 and 1, with 1 being the score indicating the best possible performance.
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3 Results

3.1 rFE and rFD

The results in terms of quantification of the history-dependent muscle properties are presented first. The selected
trials can be found in Appendix B. To quantify both rFE and rFD, the results are presented separately for each
dataset as the mean rFE and rFD across all subjects for the entire measurement period and the mean rFE and rFD
per time window.

3.1.1 Dataset A - Operating region

The results of dataset A are presented in Figure 12 and Table 2. Both provide an overview of the average rFE
and rFD measurements across all subjects. Concerning the rFE measurements, both the rFE measured on the
ascending limb and on the plateau region approached zero over time. Additionally, it is noteworthy that the rFE
measured on the plateau region was consistently higher than the rFE measured on the ascending limb region with an
average difference of 3.98 ± 1.20%. However, the statistical analysis did not reveal a significant difference between
the magnitude of these two operating regions within the force-length relationship.

Considering the results of the rFD measurements, the values remained consistent over time for both regions within
the force-length relationship. Particularly up to the third time window, at 7.5 s, the rFD for both regions were
of similar magnitude. However, after the third time window, the rFD of the plateau region became less negative
compared to the rFD of the ascending limb. On average, the rFD of the ascending limb was greater than the plateau
region, with a mean difference of 2.22 ± 1.96%. Again, the statistical tests did not reveal a significant difference
between the magnitude of the two operating regions within the force-length relationship.

Table 2: The average rFE and rFD across subjects per time window of dataset A.

Time window
1 2 3 4 5 6 7

rFE
(% ± STD)

AL 6.47 ± 7.65 2.56 ± 9.24 2.70 ± 8.47 1.64 ± 8.66 −0.18 ± 7.77 −0.60 ± 8.72 −2.28 ± 9.02
PR 11.85 ± 4.11 8.06 ± 4.09 6.23 ± 4.05 4.26 ± 4.76 4.26 ± 3.92 1.92 ± 3.37 1.54 ± 3.02

rFD
(% ± STD)

AL −4.19 ± 8.99 −5.17 ± 7.47 −8.30 ± 9.06 −9.48 ± 7.50 −8.88 ± 9.50 −8.98 ± 10.76 −9.34 ± 10.51
PR −4.48 ± 5.00 −5.74 ± 6.04 −6.62 ± 8.16 −5.85 ± 6.39 −4.91 ± 6.72 −5.36 ± 5.65 −5.36 ± 6.27

Figure 12: The mean and STD of each condition, i.e. operating muscle length, regarding both rFE and rFD. The
blue line represents the ascending limb region and the red line represents the plateau region. The error bars are in
all four figures the STD.
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The scatterplots (Figure 13) show the relation between the activation level of the lengthening and shortening trial
with the average rFE and rFD of dataset A throughout the entire time series. In general, the average activation level
measured on the plateau region was higher compared to the measurements on the ascending limb for both the rFE
and the rFD measurements. However, visually no clear difference can be seen in the magnitude of rFE with respect
to the activation level. The rFD measured on the plateau region was closer to zero compared to the ascending limb
measurements. The top figure on the right-hand side of Figure 13 shows a slight increase in rFE with increasing
differences in activation level, whereas a positive difference indicates a higher activation level of the lengthening
trial with respect to the reference trial. Regardless of the differences in activation level, the magnitude of rFE was
consistently larger than zero when measured on the plateau region. The spread of the magnitude of rFE was larger
when measured on the ascending limb. With respect to the bottom figure, no clear visual difference can be found
with respect to the differences in activation level.

Figure 13: Scatterplots for assessing the influence of the muscle activation level with respect to the measured rFE
and rFD of dataset A. All lengthening and shortening trials are considered with respect to one of the reference trials
per subject leading to six combinations per subject per condition. A negative difference in EMGs indicates a higher
average EMG of the reference trial compared to either the lengthening or shortening trial.

3.1.2 Dataset B - Fiber types

The results of dataset B, designed for assessing the influence of different fiber type compositions on the magnitude of
rFE and rFD, are presented in Figure 14 and Table 3. Considering the rFE measurements, the TA measurements had
a similar pattern as dataset A where the rFE decreased over time. The rFE of the SOL measurements, on the other
hand, increased gradually until approximately the third time window. After this increase, the measured rFE also
showed a decreasing trend over time. The TA measurements were consistently higher than the SOL measurements
with an average difference of 4.73±4.67%. The performed statistical analysis did not result in a significant difference
between the two muscles.

It was evident that the rFD of the SOL exhibited more fluctuations than the rFD of the TA. However, the rFD
measurements were both relatively consistent over time in terms of the average magnitude. The rFD of the meas-
urements of the TA is only 1.69± 2.09% greater in magnitude than the SOL measurements. The statistical tests did
not yield any significant difference between the rFD of both muscles.

Table 3: The average rFE and rFD per time window of dataset B.

Time windows
1 2 3 4 5 6 7

rFE
(% ± STD)

TA 13.94 ± 5.50 11.59 ± 3.60 7.83 ± 3.75 5.74 ± 2.60 7.21 ± 7.77 4.93 ± 2.82 6.36 ± 4.56
SOL −0.04 ± 5.72 3.63 ± 10.09 4.37 ± 5.88 3.43 ± 8.04 4.51 ± 7.71 3.39 ± 5.49 5.21 ± 6.77

rFD
(% ± STD)

TA −11.59 ± 4.88 −10.60 ± 7.02 −8.60 ± 4.83 −9.88 ± 3.12 −9.77 ± 2.03 −11.12 ± 3.96 −10.12 ± 1.47
SOL −7.96 ± 4.81 −5.71 ± 4.62 −10.10 ± 3.79 −8.57 ± 4.56 −8.06 ± 4.80 −9.67 ± 5.44 −9.77 ± 5.20
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Figure 14: The mean and STD of each condition, i.e. the different muscles, regarding both rFE and rFD. The blue
line represents the TA measurements and the red line represents the SOL measurements. The error bars are in all
four figures the STD.

The scatterplots (Figure 15) show the relation between the activation level of the lengthening and shortening trial
with the average rFE and rFD of dataset B throughout the entire time series. The average activation level has a
higher magnitude measured on the TA compared to the SOL. However, no clear visual difference in the magnitude
of the rFE between the two muscles. The magnitude of rFD measured on the TA is more negative than the SOL.
The scatterplots showing the relation between the differences in the activation level and the magnitude of the rFE
and rFD do not show clear differences. However, the rFE measured on the TA is more consistently measured above
zero compared to the SOL measurements regardless of the differences in EMG.

Figure 15: Scatterplots for assessing the influence of the muscle activation level with respect to the measured rFE
and rFD of dataset B. All lengthening and shortening trials are considered with respect to one of the reference trials
per subject leading to six combinations per subject per condition. A negative difference in EMGs indicates a higher
average EMG of the reference trial compared to either the lengthening or shortening trial.
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3.2 Classification of training data

Regarding dataset A (Figure 16), only subjects 3 and 4 exhibited rFE when measuring on the ascending limb region.
For the plateau region, however, subject 2 was the only subject that did not exhibit rFE in that region. For classifying
the data for rFD, only subject 1 on the ascending limb and subject 3 on the plateau region were classified as trials
without rFD.

Figure 16: Boxplots of dataset A for the determination of whether rFE and rFD are exhibited per subject. The blue
boxplots represent the data measured on the ascending limb region. The grey boxplots represent the data measured
on the plateau region.

For dataset B (Figure 17), the same was done regarding the classification of the trials. While all subjects exhibited
rFE when measuring on the TA, rFE was not observed for all subjects when measuring on the SOL, specifically
subject 2, subject 3, and subject 5. For classifying rFD, only subject 2 on the SOL and subject 4 on the TA did not
exhibit rFD.

Figure 17: Boxplots of dataset B for the determination of whether rFE and rFD are exhibited per subject. The blue
boxplots represent the data measured on the tibialis anterior. The grey boxplots represent the data measured on the
soleus.
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3.3 Machine learning classifier

For the assessment of the classification technique, the data of the rFE measurements of the TA were utilized regardless
of dataset and condition, i.e. operating region of force-length relationship and activation level. This dataset included
all lengthening trials, each paired with one reference trial per subject, resulting in a total of 45 combinations of trials
- comprising 30 of dataset A and 15 of dataset B. In some trials of the dataset, no rFE was observed while in other
trials, even of the same subject, rFE was observed. In total, rFE was observed in 28 trials.

Figure 18 summarizes the classification results when using all variables as described in Section 2.6.4. When comparing
all classification techniques, GNB scored consistently lower than the other algorithms while having scores of less than
0.65. On the other hand, the machine learning classifiers of the LDA and LR yielded the highest scores, each
surpassing 0.70. Both LDA and LR obtained the highest scores for all metrics (Accuracy = 0.78, Precision = 0.82,
Specificity = 0.71, Recall = 0.82). The SVM algorithm also demonstrated good performance, with scores slightly
lower than those of LDA and LR. with an average 0.025± 0.015 smaller considering all metrics.

Additionally, considering the f1 score of these algorithms, which provides an overall assessment of the classifier
performance, the scores of both LDA and LR were 0.82. The SVM classifier obtained an f1 score of exactly 0.80.
The other classifiers had lower values for the validity metrics. Consequently, only LDA, LR, and SVM were considered
for assessing the influence of the different input variables on the performance of the predicting models.

Figure 18: Classification results of the validation metrics: accuracy, precision, specificity, recall, and f1 score. The
training data consisted of all input variables.

To compare the performance of the three machine learning algorithms while excluding one input parameter at a
time, only the f1 score was considered. Considering the results of Figure 19, excluding the variables related to the
muscle activation level resulted in a lower overall performance of the classifier compared to the classifier when all
input parameters were used. Excluding the variable representing the average activation level of the lengthening trial
led to a performance reduction of 12.9 ± 1.3%. Similarly, the variance of the activation level of the lengthening
resulted in a decrease of 3.8±0.9%, and the difference in activation level between the reference and lengthening trial
led to a decrease of 6.2± 1.2%. However, when considering the stretch amplitude, the exclusion of this variable did
significantly impact the performance of any classifier.

Finally, the normalized ankle angle resulted in a distinct outcome for all three classifiers. The LDA and SVM
algorithms showed minor differences in performance, −1.4% and 0.7% respectively, when this variable was excluded.
The LR classifier, on the other hand, showed a decrease of 8.8% in performance when the normalized ankle angle
was omitted from the dataset.
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Figure 19: f1 scores for the classifiers that scored the highest, i.e. LDA, LR, and SVM. The first bar (of all three plots)
represents the f1 score of the classifiers when all input variables are used. The second to the sixth bar excludes each
time one input variable, excluding the mean normalized activation level (meanEMG), the variance of the normalized
activation level (varEMG), the stretch amplitude (SA), the normalized ankle angle (AA), and the mean difference
in activation level of the reference and lengthening trial (diffEMG), respectively.
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4 Discussion

This study consisted of two main parts. The first part aimed to quantify the magnitude of rFE and rFD to investigate
the influence of the muscle’s operating region on the force-length relationship (dataset A) and the muscle fiber type
distribution (dataset B). The second part aimed to predict the occurrence of rFE measured on the TA by means of
machine learning algorithms.

It was hypothesized that the operating region and the muscle-fiber type distribution do influence the magnitude and
occurrence of rFE, but not of rFD. It is expected that the rFE is better captured in the plateau region and when
measuring on muscles with a relatively higher proportion of type II fibers compared to type I fibers. However, when
measuring for rFD, it is hypothesized that no differences between the two conditions would be observed.

4.1 Influence of the operating region

To quantify the magnitude of rFE when measuring different regions of the force-length relationship, the magnitude of
the rFE approached zero over time, although the rFE of the plateau region consistently exceeded that of the ascending
limb region with 3.98± 1.20%. Regarding the measured rFD, both regions exhibited a similar and constant torque
reduction regardless of time. On average, the ascending limb exhibited a higher rFD with 2.22 ± 1.96%. However,
statistical significance was not found for any conditions or time window. This outcome is in agreement with the
hypothesis regarding the rFD, but contradicts the expectations regarding rFE.

The absence of statistical significance in the findings is likely attributable to the considerable variance within this
dataset. The dataset is inconsistent in terms of stretch amplitude (Table 1), a known variable influencing the
magnitude of rFE and rFD [11, 39]. Additionally, voluntary contractions introduce variability, as subjects may not
consistently maintain the required activation level. During submaximal voluntary contractions, subjects have the
ability to compensate using antagonist muscles, thereby influencing the measured ankle torque even if the instructed
activation level is ostensibly achieved. This resulted in intra-individual variances in terms of activation level and
measured torque. Also, a large inter-individual difference in terms of rFE and rFD was present as the torque showed
high variability under the same conditions (Appendix C). These factors likely contributed to the lack of statistical
significance in the results.

The classification of the subjects into responders and non-responders was done by means of boxplots (Figure 16 and 17).
Using this method, two of the five subjects were classified as responders for exhibiting rFE when measuring in the
ascending limb region. On the contrary, four of the five subjects are categorized as responders for exhibiting rFE
when measuring in the plateau region. Even though the rFE of subject 3 and 4 is lower for the plateau region
compared to the ascending limb region, this outcome suggests that rFE might be better captured in the plateau
region. Therefore, the operating muscle’s length still might influence the magnitude and occurrence of rFE, despite
the statistically insignificant results across all subjects. The classification of responders and non-responders on the
rFD measurements did not reveal large differences between the two operating muscle regions. The outcome of the
classification and calculated average across subjects support the hypothesis that the force-length relationship does
not influence the occurrence and magnitude of rFD.

In previous studies, the measured rFE obtained in similar measurements had the magnitude between the 4-25%
when measuring on dorsi- and plantar flexors [45, 75, 79–83]. The average values of the ascending limb region and
plateau region are in accordance with previous studies. Notable is that the found values of this study are relatively
low compared to the literature. However, the difference in magnitude can be explained by the chosen time windows
of the study. As the results showed, the rFE decreased over time, indicating that selecting a time window during
the transition of ankle angle results in a higher rFE compared to a time window after this transition. The further
the time window is from the transition, the smaller the obtained rFE. The rFD that is measured in previous studies
had the magnitude of 9-39% when measuring on dorsi- and plantar flexors [43, 44, 84, 85]. The measured rFD of
this study is smaller in magnitude than found in these previous studies.

The selection of trials is a crucial aspect of calculating the rFE and rFD. As mentioned, some studies select the
trials that result in the highest difference in torque [74, 75, 82] and others remove the non-responders from the
dataset [80]. Both actions result in rFE and rFD that are positively biased [20]. Previous studies also vary in the
criteria regarding the activation level. The scatterplots of Figure 13 and 15 indicated that there might be a relation
between the difference in muscle activation level and the magnitude of rFE. This requires, however, confirmation of
future research with a greater number of subjects. Ideally, the EMG profile and mean of the selected trials are as
similar as possible to exclude this possibility. Therefore, the RMSE of the normalized activation level is included
in the selection of the trials for this study. As both rFE and rFD are considered per subject, choosing the trials
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resulting in the highest rFE might be the combination that results in a smaller rFD. Notable, the selection of the
best trials leads to positively biased results. In this study, a combination of a low RMSE and the highest rFE or
lowest rFD has been used for the selection of the trials. However, this also resulted in relatively lower rFE and rFD
compared to the literature.

4.2 Influence of muscle fiber composition

The rFE measurement, of dataset B, on the TA shows a similar trend as the measurements of dataset A, starting
with an increasing torque and then decreasing torque over time. The rFE measurements on the SOL, first show an
increase in rFE and afterwards slightly following the trend of the TA measurements. The TA measurements were on
average 4.73±4.67% higher than the SOL measurements. The rFD measurements of both muscles showed consistent
torque reduction regardless of time. On average, the ascending limb exhibited a higher rFD with 1.69± 2.09%. For
both rFE and rFD, there was no statistical difference between the two muscles. This outcome supports the hypothesis
regarding the rFD but contradicts the hypothesis of the rFE.

The increase in rFE shortly after the transition of the SOL measurements was due to the challenge of maintaining
the activation level during plantar flexion. All subjects dropped in activation level after the transition, after which it
took some time to reach the target activation level again. Consequently, this resulted in a drop in measured torque,
which could explain the difference in rFE for the TA and the SOL. Regardless of this difference, statistical significance
was not found. Similar to the measurements of dataset A, both rFE and rFD across the subjects of dataset B show
a high variability resulting in a large spread of the data. As mentioned in Section 4.1, the submaximal voluntary
contraction results in high variation. Additionally, the activation level of 7.5-12.5%MVC is lower than reported in
the literature which makes comparing results challenging. Comparing the values of the rFE and rFD of both the
TA and the SOL, all values are in agreement with the literature but are relatively low [45, 75, 79–83, 86–88]. As
mentioned in Section 4.1, the magnitude of the obtained rFE and rFD are dependent on the selection of the trials
and the selection of the time window.

The classification of the subjects categorized the subjects into the classes responders or non-responders. When
measuring the TA, all subjects exhibited rFE, while for the SOL only two subjects exhibited rFE. For both the TA
and the SOL, four of the five subjects exhibited rFD. These results indicate that the rFE when measuring on the TA
is better captured compared to the SOL. However, the measurements on the SOL did not exclude that other factors
are contributing to the measured torque. The experiments when measuring the SOL resulted in discomfort for the
subject due to the footplate pressing the posterior side of the ankle. Consequently, the subjects lifted their heel which
resulted that the ankle was not aligned with the Achilles motor. Additionally, it required much effort to reach the
target activation level of the SOL. The high effort of the SOL trials might be due to the different knee angles while
measuring the history-dependent properties and the MVC trial. Having a more flexed knee, the activation level of
the soleus is smaller compared to when the knee is extended [87]. Additionally, the subjects are instructed to reach
the target activation level of 7.5-12.5%MVC, which might be challenging to capture in the presence of noise.

Comparing two different muscles in vivo requires generalizability. Importantly, the subjects were measured in the
same configuration in order to be consistent with the influence of posture and joint angles. Moreover, the EMGs
were normalized by means of an MVC trial for obtaining comparable EMG amplitudes. Ideally, the MVC of both
the TA and the SOL were measured in the same configuration to exclude the influence of different joint angles on
the normalized EMG amplitudes [89]. However, the amount of force produced by different muscles can vary, whereas
force production also varies with different joint configurations. Generalizability could be improved by measuring
the MVC in the same configuration as the history-dependent measurements. This ensures the functional MVC is
measured for the joint configuration of the experiments, leading to a more accurate normalization of the MVC.

Ankle torque is primarily generated by the TA when dorsiflexing. Regarding the SOL measurements, however, the
gastrocnemeii are also contributing to the ankle torque while plantar flexing. During the trials, the knee angle was
100-110◦ to minimize the effect of the gastrocnemeii on the ankle torque [90]. However, the gastrocnemeii are still
activated despite the flexed knee angle and still contribute to the plantar force production [87]. Additionally, the
influence of the gastrocnemeii on the plantar force production might have influenced the ankle-torque relationship,
as the gastrocnemeii are operating in the ascending limb region [91]. Within the ROM of the ankle, the plateau
region could not be distinguished from this curve (Appendix A). An explanation could be, is that no plateau is
found as both the gastrocnemeii and the SOL are measured simultaneously or because the SOL is merely operating
at the ascending limb [92]. Furthermore, the fiber-type distribution of both the TA and SOL are based on values
found in the literature. The exact composition of muscle fibers is subject-specific [9]. Due to the contribution of the
gastrocnemeii on the ankle torque, and the uncertainty regarding fiber-type composition and the operating region of
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the force-length relationships, no firm conclusion can be drawn from this experiment with regard to the influence of
fiber-type composition on the history-dependent properties.

4.3 Machine learning classifier

This study assessed the feasibility of using machine learning techniques to predict the occurrence of rFE on the TA
based on EMG- and kinetic data. The machine learning models were trained and validated in order to categorize
the input data into the rFE or no rFE classes. Six models were assessed of which only three models, i.e. LDA, LR,
and SVM, showed high classification performance with an f1 score of 0.8 or higher [65]. The difference between the
f1 of the three classifiers was subtle. The highest assessment metrics were found for the precision and recall of 0.82
for both the LDA and LR, indicating good performance in classifying the positive values into the rFE class. The
data that belongs to the no rFE class are predicted less accurately, where the specificity is highest for LDA and LR
with a value of 0.71. The results indicate that rFE on the TA can be predicted to some extent. The results of the
classifier can not be compared to the literature as the performance of the model is dependent on the dataset and to
our knowledge, no other machine learning model is used for predicting history-dependent muscle properties.

The input parameters of the classification models have been altered to investigate the parameters that influence
the occurrence of rFE. The parameter that resulted in the largest decrease of the f1 score for all three classifiers
was the average activation level of the lengthening trials, followed by the difference in activation level between the
reference and lengthening trials and the variance of the activation level. This outcome suggests that the activation
level is an important factor in the occurrence of rFE. However, the exclusion of the variance of the EMGs and the
differences between the EMGs also indicates that the differences in activation level are also affecting the outcome and
the occurrence of rFE. Additionally, the selection of the trials is also affecting the detection of this muscle property.
The stretch amplitude did not result in any difference in model performance. However, the stretch amplitude was
a constant value of 7.5◦ with the exception of 6 of the 45 trials, which was 15◦. The stretch amplitude should
have varied in order to draw firm conclusions on the influence of this variable on rFE. The normalized ankle angle,
however, did not yield clear results as specifically the LR model suggests that the ankle angle, and therefore the
operating region of the force-length relationship, is influencing the occurrence.

4.4 Limitations and future work

In general, in vivo measurements for assessing muscle properties have their limitations due to the complexity of the
human body. Despite these limitations, this research conducted measurements to investigate the influence of the
operating region of the muscle and of the muscle fiber composition. Regarding both experiments, the selection of
trials is critical as it strongly affects the outcome of the research. In agreement with other articles, this research
selected ’the best trials’ in combination with the evaluation of the muscle activation level in order to compare results
with the literature. Consequently, the results are biased to positive values [20].

For future work, it is recommended to have a general approach for assessing the results, specifically the muscle
activation level. It is suggested to select the most suitable trials merely based on the similarities in activation level.
In accordance with the Consensus for Experimental Design of Electromyography (CEDE) project, the activation
level can be evaluated by considering the root mean square (RMS) value [93]. The trials with the highest similarities
in EMGs, with regard to all muscles influencing the measured joint torque, should be considered for the calculation
of history-dependent muscle properties. It is not suggested to choose trials that lead to the highest rFE or the
lowest rFD, as this gives positively biased results. Additionally, the MVC trial should be as similar as possible as it
influences the normalization process. According to the CEDE project, the preferred method is to perform an MVC
trial which corresponds with the task performed during the experiments, if possible, since it represents the true MVC
in the context of the experiments. However, a normalization by means of a standardized isometric MVC trial, which
does not correspond with the task performed during the experiments, is also suitable to use for comparing the same
muscle and different muscles within the same subject [89].

Another limiting factor of the study is the design of the SOL experiments, as discussed in Section 4.2. Ideally, the
ROM of the ankle is less restricted. Therefore, it is recommended to adjust to footplate by lowering the plate located
at the heel. Another recommendation is the adjustment of the MVC trials in order to maintain the same joint
configurations as the history-dependent trials such that reaching the target level is less challenging. The uncertainty
of the muscle fiber type distribution is also limiting the reliability of the research. By means of the decomposition
of HD-EMG signals, the subject-specific fiber type can be estimated [93]. This requires an additional trial, in which
the subject is instructed to perform contractions at multiple different submaximal voluntary contractions. First, the
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contraction is linearly increasing from rest to the target activation level followed by a constant force production at
the target activation level [94].

The overall performance of machine learning classifiers is strongly dependent on the dataset itself, and the dataset
is in this research also the limiting factor. Small datasets contain fewer details, which results in an unreliable and
biased model [95]. Therefore, increasing the size of the dataset could lead to a better performance of the classifiers.
Moreover, the predicting parameters are essential for increasing the model’s performance. Therefore, feature selection
is a method to remove irrelevant parameters from the input variables, leading to less computation time and increased
learning accuracy [96]. Additionally, this method is useful for obtaining insight into which parameters are influencing
the occurrence of rFE in vivo. The used algorithm should suit the dataset and is, therefore, also affecting the overall
performance of the model. Choosing the most appropriate dataset also depends on the dataset and is often chosen
by evaluating multiple models with the assessed dataset [97].
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5 Conclusion

In this research, the influence on the operating region of the force-length relationship and of the muscle fiber type
composition of muscles on the magnitude of history-dependent muscle properties, i.e. rFE and rFD, are quantified.
Moreover, machine learning classifiers are evaluated on their ability to predict the occurrence of rFE when measured
on the TA.

The obtained rFE was on average higher at the plateau region compared to the ascending limb, while the rFD
measured on the ascending limb was larger in magnitude. Categorizing the individual subjects resulted in more
responders for rFE at the plateau region and no clear difference for rFD. Despite the absence of statistical significance,
the results still suggest that a relationship between the operating region and the occurrence of rFE might exist. This
requires future research with a dataset containing less inter-individual variance or a larger dataset. Regarding rFD,
no relation is found with the operating region of the muscle.

Similarly, the rFE measured on the TA was higher in magnitude than the SOL, and more subjects were categorized
as responders. The dataset contained a high variance and the experiments did not exclude the effect of other factors
influencing the measured torque sufficiently. Therefore, the relation between muscle fiber type composition and rFE
should be investigated in future work. Again, no relation is found between rFD and muscle fiber type.

Finally, the results of the classification models suggest that rFE can be predicted, especially by means of muscle
activation data. The models that showed the best results are LDA, LR, and SVM. However, this is strongly dependent
on the available dataset, indicating that for other data a different machine learning technique might provide a better
classification.

Several aspects of these history-dependent muscle properties remain not fully understood. Applying the approach
presented in this thesis in future research could be used to better establish the influencing parameters on the
occurrence and magnitude of the history-dependent muscle properties. The use of machine learning algorithms could
provide useful insights into the influence of EMG- and kinetic-related properties on rFE and rFD. These properties
could be integrated into EMG-drive musculoskeletal models, providing more accurate models with respect to daily
human movement. Further research is required to verify its relevance in daily living, the underlying mechanisms,
and the influencing parameters of these history-dependent muscle properties.
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Appendix

A. Torque-angle relationship

Figure 20: Torque-angle relationship of both the TA and the SOL of subject 2 of dataset B with increasing muscle
length. The trial measured the torque at ten different angle angles while the subject was sub-maximally contracting
at 7.5-12.5%MVC. For dataset B it was attempted to measure rFE and rFD at the plateau region. The selected
ankle angles were for the TA at 0.0311 rad and for the SOL at 0.3340 rad where 0 rad is the natural configuration of
the footplate of the Achilles Perturbator (horizontal).

B. Selected trials

Table 4: Overview of the selected combinations of trials for both datasets.

Dataset A Dataset B
Ascending limb Plateau region Tibialis Anterior Soleus

Ref Length Short Ref Length Short Ref Length Short Ref Length Short
SBJ1 3 3 2 1 1 3 SBJ2 1 2 1 3 1 3
SBJ2 3 3 2 2 1 3 SBJ3 3 2 1 1 1 2
SBJ3 1 2 1 3 1 3 SBJ4 3 2 2 3 2 3
SBJ4 2 2 1 3 1 3 SBJ5 2 1 2 2 2 2
SBJ5 3 3 2 2 1 1 SBJ6 1 2 2 3 1 3
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C. Torque profile

Figure 21: The torque profile of subject 4 of dataset A measured at the ascending limb over the entire times series.
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