
1

Faculty of Electrical Engineering,
Mathematics & Computer Science

Design and Implementation of an
Assessment Method based on
the Capability Maturity Model

Integration (CMMI)

Stylianos Gavriel - s1975412
Master Thesis Business Information and Technology

At Trading Point Holdings Ltd.
March 2023

Supervisors:
Dr. G. Sedrakyan (UT)

Dr. L. Ferreira Pires (UT)
C. Hadjichristodoulou (XM)

W. Zubik (XM)

Faculty of Electrical Engineering,
Mathematics and Computer Science (EEMCS)

University of Twente
P.O. Box 217

7500 AE Enschede
The Netherlands

Preface

After a journey of five and a half years, my student life at the University of Twente
has reached its conclusion. This period has been filled with countless adventures
and opportunities for personal growth. It all began with my Bachelor’s degree in
Business Information and Technology, where I was fortunate to have remarkable
professors who guided me towards becoming a more critical thinker and expanding
my expertise in various domains. Continuing on this path, I pursued a Master’s de-
gree in Business Information and Technology with a specialization in Data Science.
The completion of this thesis marks the culmination of seven months of dedicated
work, and I am genuinely pleased with the outcome. Numerous individuals have
played a significant role in the realization of this thesis, and I would like to express
my gratitude to some of them:

I would like to thank my supervisors Gayane Sedrakyan and Luis Ferreira Pires,
whose guidance and support were invaluable throughout the entire process. I would
like to thank them for the countless hours they must have spent reading my drafts,
and their expertise and insightful feedback which have greatly contributed to the
quality of this thesis.

I would also like to thank my team leader Charalambos Hadjichristodoulou for
the opportunity to work closely at the IT Governance department and gain working
experience. I would like to thank my colleagues and company supervisors of Trad-
ing Point Holdings Ltd, Charalambos Hadjichristodoulou and Waldemar Zubik, who
have been a source of motivation, inspiration and endless support. Their encour-
agement and camaraderie made this journey all the more enjoyable. I would like to
thank them for the time they made for me despite their busy schedules.

I would also like to thank other team members for the introduction and guidance
to the processes within the organization. For keeping me motivated throughout both
coffee breaks as well as stressful periods. I would like to thank the people who
provided me with the tools and data to make this thesis possible.

Most importantly, I would like to thank my friends and family, especially my par-
ents, sister and girlfriend, for always supporting me throughout my studies. This
thesis would not have been possible without the support you provided me in hard
times.

ii

Contents

Preface ii

List of acronyms viii

1 Introduction 1
1.1 Motivation . 2
1.2 Research Goal . 2
1.3 Thesis Organization . 3

2 Background 4
2.1 What is Information Technology (IT) Governance? 4
2.2 IT Maturity Models . 5

2.2.1 The role of maturity models in IT governance 5
2.2.2 Generic structure of maturity models in IS literature 6
2.2.3 Capability Maturity Model (CMM) 7
2.2.4 Capability Maturity Model Integration (CMMI) 8

2.2.4.1 The implications of implementing the Capability Ma-
turity Model Integration (CMMI) model 8

2.3 Conclusion . 9

3 Research Methodology 10
3.1 Research Objective and Motivation . 10
3.2 Design Cycle . 11
3.3 Research Questions . 12
3.4 Research Method . 13

3.4.1 Designing the Assessment Method 13
3.4.2 Treatment Validation . 15

4 Literature Review 18
4.1 Literature Overview . 18
4.2 CMMI Representations . 20

4.2.1 Staged Representation . 20

iii

IV CONTENTS

4.2.2 Continuous Representation . 23
4.3 Process Areas . 25

4.3.1 Process Area Interactions . 26
4.3.1.1 Process Management 27
4.3.1.2 Project Management 28
4.3.1.3 Engineering . 29
4.3.1.4 Support . 30

4.3.2 Modifying the CMMI Model . 31
4.4 Software Development Dimensions . 32

4.4.1 Team Practices . 33
4.4.2 Requirements Management . 33
4.4.3 Development Practices . 34

4.4.3.1 Agile Methods . 34
4.4.4 Development and Operations (DevOps) Practices 35
4.4.5 Quality Assurance Management 35

4.5 Data Presentation . 36
4.5.1 Visualization Tools . 36
4.5.2 Key Considerations for Effective Visualization 37

4.5.2.1 Dashboards . 38
4.6 Performance Measures . 39

4.6.1 Determining measures that will work in an organization 40
4.6.2 Get the measures to drive performance 41

4.7 Conclusion . 41

5 Designing the Assessment Method 43
5.1 Design Plan . 43

5.1.1 Continuous Improvement Plan 44
5.2 The Designed Assessment Method . 46

5.2.1 Capability Levels . 46
5.2.2 Correlation between Software Development Dimensions and

CMMI Process Areas . 47
5.2.3 Dimensions Subcategories . 50

6 Assessment Survey Results 54
6.1 The Assessment Survey Process . 54
6.2 Visualization of Survey Responses . 55

6.2.1 Assessment Survey Progress 56
6.2.2 Timeline of Responses . 57
6.2.3 Average Score per Dimension 57
6.2.4 Team Score Across Dimensions 58

CONTENTS V

6.2.5 Team Score Across Dimensions with Brands 58
6.2.6 Team-Brand Comparison per Dimension 59
6.2.7 Team Deviation from Average 60
6.2.8 Average Score per Category 61
6.2.9 Frequently Answered Questions as No 62
6.2.10 Frequently Answered Questions as Yes 63

6.3 Improvements . 64

7 Validity Analysis 67
7.1 Validation Surveys . 67
7.2 The Software Development Performance. 69

8 Discussion 72
8.1 Implications . 72

8.1.1 Core values of the assessment method 72
8.2 Thesis Validity . 73

8.2.1 Construct Validity . 74
8.2.2 Internal validity . 74
8.2.3 External validity . 75

8.3 Contributions to Research . 76

9 Final Remarks 77
9.1 Conclusions . 77
9.2 Future Work . 80

References 81

A Research Protocol: Literature Protocol 90
A.1 Inclusion and Exclusion Criteria . 90
A.2 Keywords . 90
A.3 Search Process . 91

B Assessment Surveys Questions 92

C Assessment Survey Results Analysis 97

List of Figures

2.1 Design Structure Maturity Model. 7
2.2 Measurement Hierarchy. 8

3.1 Design Cycle from Wieringa [1]. 12
3.2 Template for defining design problems [1]. 12
3.3 Research Model. 14
3.4 Conceptual Map. 16

4.1 The structure of a CMMI staged representation [2]. 21
4.2 The structure of a CMMI continuous representation [3]. 24
4.3 CMMI process areas by Ayyagari and Atoum [4]. 27
4.4 Dashboard Development Process [5]. 38

5.1 Configuration Plan . 43
5.2 Continuous Improvement. 44
5.3 Data Flow. 45

6.1 Survey Progress. 57
6.2 Timeline of Responses. 58
6.3 Average Score per Dimension. 59
6.4 Radar of the Average Score per dimension, taking inspiration by Akki-

raju et al. [6]. 59
6.5 Team Score Across Dimensions. 60
6.6 Team Score Across Dimensions with Brands. 60
6.7 Team-Brand Comparison per Dimension. 61
6.8 Team Deviation from Average. 61
6.9 Average Score per Category. 62
6.10 Frequently Answered Questions as No. 63
6.11 Frequently Answered Questions as Yes. 64

7.1 Average Lead Time in Days . 69
7.2 Average Cycle Time in Days . 70
7.3 Incident Response Time . 71

vi

C.1 Team Performance per Dimension (Team Practices). 97
C.2 Team Performance per Dimension (Requirements Management). . . . 98
C.3 Team Performance per Dimension (Development Practices). 98
C.4 Team Performance per Dimension (DevOps Practices). 99
C.5 Team Performance per Dimension (Quality Assurance Management). 99

List of Tables

2.1 IT governance model foundation [7]. 6
2.2 Implications of implementing the CMMI model [8]. 9

4.1 CMMI staged representation levels and areas [9]. 22
4.2 CMMI continuous representation levels and areas [10]. 26
4.3 Team Practices Constructs identified in reviewing several articles by

Fabrice et al. [11]. 33
4.4 Identified metrics throughout literature. 41

5.1 Capability levels, their description and their result range. 46

A.1 Inclusion and Exclusion criteria. 90
A.2 Keywords List . 91
A.3 Search Results . 91

B.1 Requirements Management Survey Questions. 92
B.2 Team Practices Survey Questions. 93
B.3 Development Practices Survey Questions. 94
B.4 Quality Assurance Management Survey Questions. 95
B.5 DevOps Practices Survey Questions. 96

vii

List of acronyms

IT Information Technology

CMMI Capability Maturity Model Integration

CMM Capability Maturity Model

DevOps Development and Operations

SW-CMM Capability Maturity Model for Software

SECM System Engineering Capability Model

IPD-CMM Integrated Product Development Capability Maturity Model

BPMM Business Process Maturity Model

KPIs Key Performance Indicators

BSC Balanced Scorecard

KRIs Key Result Indicators

RIs Result Indicators

PIs Performance Indicators

CSFs Critical Success Factors

CI/CD Continuous Integration and Development

SLAs Service Level Agreements

viii

Chapter 1

Introduction

Numerous activities can contribute to effective governance within an organization,
spanning across a wide range of internal and external areas. One valuable resource
that software development organizations may find indispensable is the utilization of
maturity models, such as the Capability Maturity Model Integration (CMMI), in their
pursuit of attracting and retaining customers [12]. Maturity models serve as invalu-
able tools for IT governance, facilitating the assessment of an organization’s current
state and the identification of practical improvement measures [13]. Maturity models
are employed for process improvement, their effectiveness is lying into accurately
identifying the appropriate metrics and proposing improvement strategies, allowing
organizations to consistently enhance their engineering proficiency across various
dimensions of software development. These assessments play a pivotal role in the
effective monitoring, management, and enhancement of IT processes and struc-
tures specific to software development [14]. This is enabled by facilitating continuous
monitoring of software development efficiency and effectiveness [15].

Software development processes are regarded as the main area for quality im-
provement and can be broken down depending on the organization into five dimen-
sions. Requirements Management is one of these dimensions and can be charac-
terized as the process of gathering, analyzing, verifying, and validating the require-
ments and needs for a given product or system being developed [16]. It enables to
clearly understand stakeholder expectations and confidently deliver a product that
has been verified to meet the requirements. Quality Assurance Management is an
example of a software development dimension, which refers to the processes and
methods used to prevent any kind of mistakes, inconsistencies, and defects within
software development processes [17]. Furthermore, many organizations follow set
of rules and practices within their development teams (Team Practices dimension),
including healthy and consistent code practices, code quality gates and alignment
with the organization’s enterprise architecture [18]. Numerous organizations adhere
to specific sets of rules for software release, such as (Agile) Development Prac-

1

2 CHAPTER 1. INTRODUCTION

tices [19] and DevOps Practices [20], enabling the achievement of coherence, stan-
dardization, and quality through iterative testing and continuous enhancement of
the software development process. However, there is a need to improve these pro-
cesses and measures for performance. Metrics in the context of system maturity
level can be defined as ”An objective indicator or measure which facilitates system
maturity level improvement.” [21]. In this thesis, the focus was to improve software
development processes applying an assessment method constructed by the CMMI
model.

1.1 Motivation

To meet the increasing and competing demand of software, many organizations
have adopted the CMMI model. CMMI covers 22 key processes which can be over-
whelming and opens the question of how to best implement it, considering the spe-
cific circumstances of an organization [9]. The vast majority of the organizations,
however, seem to have failed because of the high dependence of the quality of a
product to the quality of software development processes that are used to develop
and maintain it [9]. The CMMI can directly emphasize software development prac-
tices, however, there is a lack of transparency and practical usage experience of
such models [12]. Ayyagari and Atoum [4] mentioned that CMMI as a reference
model does not specify a systematic process of how to implement the model in
practice, leaving room for organizational development approaches. Furthermore,
they state that small organizations are having difficulties implementing the model
due to the high costs that come with it. Moreover, Raul Vidal et al. [8] mentioned
that there are differences in performance between CMMI implementations within
organizations, depending on not only of the context of the business, projects and
teams but also on the methodologies used in the implementation of the model.

1.2 Research Goal

The thesis aimed to provide the research community with a method for assessing
and benchmarking an organization’s maturity level of software development pro-
cesses with the CMMI model. By using a consistent set of assessment criteria (five
dimensions), the assessment method helped the organization to compare the level
of maturity within the organization’s teams or with others in the same industry or with
best practices in the field.

In order to enable the above goals, the thesis includes a literature review on the
CMMI model. Several software development dimensions are identified according

1.3. THESIS ORGANIZATION 3

to the organizational experts and literature review helped to get a comprehensive
view. This in turn helped to design and implement an assessment method based
on the CMMI model and the organization’s context. Consequently, multiple assess-
ment surveys have been deployed, which allowed to assess the teams, evaluate
the maturity of development processes across the five identified dimensions, under-
stand what development teams are lacking and what risks they face. The results
obtained with the assessment surveys have been analysed and visualized accord-
ing to the opinion of organizational experts and best practices from the literature.
Therefore, the designed assessment method allowed us to guide the organization
on how to achieve a higher level of maturity by introducing improvements. This
includes recommendations on tools, processes, and techniques that are known to
improve development practices.

This thesis questioned the validity of the assessment method by following two
methods. Firstly, by deploying a validation survey towards the assessment method
for feedback by the participants, and secondly, by examining performance metrics of
software development processes, while comparing performance with historical data
of the organization.

As such, the implementation of the assessment method and analysis of results,
enriches the current literature by introducing an assessment method and steps to-
wards making the method’s used more transparent.

1.3 Thesis Organization

The remainder of this report is organized as follows. Chapter 2, gives the back-
ground of this thesis, in Chapter 3, the research methodology of this paper is
described, defining our methodology used, research questions, and a reflection
on the methods used. In Chapter 4, literature reviews are performed to underpin
the attributes of CMMI models and the software development dimensions found by
the experts to accommodate the organization’s context. Further, literature helped
identify what data presentation techniques help to create an environment of under-
standing the data collected by the assessment surveys enabling the introduction of
improvements, and what metrics are relevant for measuring software development
processes. Chapter 5 addresses the design plan, and the designed assessment
method. Chapter 6 discusses the analysis and interpretation of the assessment sur-
vey results thought data presentation techniques, as well as a discussion of improve-
ments with experts. Chapter 7 includes an analysis of the methods for validating the
assessment method, by both validation surveys and by using software development
metrics. Finally, Chapter 8 and Chapter 9, present the discussion and conclusion of
this thesis, respectively.

Chapter 2

Background

This chapter gives a brief overview of the topics of the thesis by providing what IT
governance is, the role of maturity models in IT governance, and an introduction
of the CMMI model and its implication. This thesis utilizes the CMMI model as a
framework for process improvement to design the assessment method.

2.1 What is IT Governance?

IT governance involves the readiness to formulate and execute decisions related
to objectives, procedures, interested parties, and technology at both tactical and
strategic levels [22]. Wim [23] defined IT Governance as ”the organizational capacity
exercised by the board, executive management and IT management to control the
formulation and implementation of IT strategy and in this way ensuring the fusion of
business and IT”. Although many definitions exist most of them focus on the same
aspects, mainly achieving the link between business and IT and that the primary
responsibility is held by the board of directors [15].

IT governance is an element of corporate governance which aims to improve the
overall management of IT and derive improved value from investments in information
and technology. The main three crucial IT governance questions are concerned with
efficiency, effectiveness and control of IT. Efficiency refers to how efficient business
processes enable high return on investment, risk mitigation and fast and reliable
delivery of services and products. Effectiveness usually concerns the alignment of
business with IT processes. While control in IT refers to the procedures or policies
that provide a reasonable assurance that the IT used by an organization operates
as intended. IT Governance thus reflects broader corporate governance principles,
both pursuing an ongoing questioning of the organization’s governance model’s suf-
ficiency in minimizing risks and maximizing returns [24].

The growing demand for attention in governance responsibility while simultane-

4

2.2. IT MATURITY MODELS 5

ously managing and integrating service contribution to organizational functioning
creates an ever-increasing dependency on effective IT systems and processes [25].
Successful organizations must ensure that they will be able to integrate their IT con-
tributions with strategies, culture and desired ethics in order to achieve their business
objectives, while also capitalizing the utilization of technology and information value.
An effective IT governance initiative needs to provide mechanisms for IT managers
to develop business and IT plans, while allocating responsibilities and accountabili-
ties, prioritise and organise IT initiatives whilst following business requirements, and
track performance and outcomes.

2.2 IT Maturity Models

Maturity models are tools that facilitate internal and external benchmarking while
also identifying future improvements and providing guidelines through evolutionary
processes of organizational development and growth [26]. A maturity assessment
can be used to measure the current maturity level of several aspects of an organi-
zation, enabling concerned stakeholders to clearly identify strengths and improve-
ment points and hence prioritize tasks to increase maturity levels. The term ”ma-
turity” may be defined as ”the state of being complete, perfect or ready” [26]. In
the context of software development processes, ”maturity” is defined as the state of
software following best software engineering practices and compatibility with inter-
nationally accepted standards. Maturity examines the activities of software product
development or service provision and the integrity of how well these activities are
performed, hence the ability of achieving the defined scope, quality goals, cost, and
schedule [27]. Maturity models consist of several maturity levels from lowest to high-
est depending on the domain and the concerns motivating the model [28]. In this
way, they can identify organizational strengths and weaknesses while also providing
benchmark information.

2.2.1 The role of maturity models in IT governance

Maturity models play a crucial role as a tool that can aid in identifying weak points
of an organization towards their efforts to introduce IT governance. IT governance
helps businesses prioritise and organise IT initiatives, while maturity models can
help achieve certain goals within this domain. Smits and Hillegersberg [7], describe
a study to develop an IT governance maturity model. They had built an IT gover-
nance model foundation that characterized the sides of IT governance. They men-
tioned that to advance maturity in an organization, attention is driven on both the

6 CHAPTER 2. BACKGROUND

hard and soft sides of IT governance. The IT governance model depicted in Ta-
ble 2.1, was built as a foundation to develop a maturity model. The hard side is often
related to structure and processes, while the soft side is related to social aspects
like behaviour and culture in organizations.

Governance Domain Focus area

Soft
Behavior

Continuous improvement
Leadership

Collaboration
Participation

Understanding and trust

Hard

Structure
Functions and roles

Formal networks

Process
IT decision-making

Planning
Monitoring

Context
Internal

Culture
Informal organization

External Sector

Table 2.1: IT governance model foundation [7].

2.2.2 Generic structure of maturity models in IS literature

The purpose of maturity models is to outline the path to maturation in an organi-
zation, including the definition of stages and relationship between them [29]. The
assumption of these models is that enabling a higher score or degree of maturity
also increases positive change in a variety of dimensions, so that the model cap-
tures the maturation process while providing a construct or an artifact to measure
progression.

Lester et al. [30] identified five important components to describe a maturity
model: (i) Maturity levels: used to describe the overall maturity of an entity and the
level of abstraction at the highest level, (ii) Dimensions: termed as benchmark vari-
ables, process areas, capability and critical success factors [31], (iii) Sub-categories:
second level variables that the dimensions depend on, (iv) Path to maturity : most
maturity models following in a linear path from lowest to highest maturity and (v)
Assessment questions: usually linked to the sub-categories with the maturity score
visualized most often as a graphical representation. According to the above compo-
nents, Lester et al. [30] presented the generic structure of a maturity model depicted
in Figure 2.1 and Figure 2.2, which visualize the measurement hierarchy.

2.2. IT MATURITY MODELS 7

Figure 2.1: Design Structure Maturity Model.

Methods for assessing the maturity of an organization acknowledge the impor-
tance of measuring quality, control, and management of the software development
process, while each technique has elements to measure processes.

2.2.3 Capability Maturity Model (CMM)

Capability Maturity Model (CMM) was created in 1986 has been widely accepted
as a standard and has been used in a wide array of problem areas [30]. CMM fo-
cuses on improving processes in an organization. These models address elements
of effective processes for one or more disciplines, describing an improvement path
from immature processes to mature processes with improved quality and effective-
ness [32]. Further, they can be a tool and a mechanism towards both ensuring
the production of high-quality indicators in terms of data, but also for standardizing
key processes around the production of Sustainable Development Goals (SDGs),
and for facilitating interoperability within the data ecosystem [33]. However, CMM
application in software development has sometimes been problematic, by applying
multiple models that are not integrated across the organization, which can be costly
in training and improvement activities [32].

8 CHAPTER 2. BACKGROUND

Figure 2.2: Measurement Hierarchy.

2.2.4 Capability Maturity Model Integration (CMMI)

Following the emergence of CMM, CMMI emerged at the start of 2000s as an im-
proved framework of CMM, in order to improve software development processes to
achieve higher quality [34]. CMMI comes with general guidelines and models that
transcend disciplines, addressing the entire cycle of a service or product, includ-
ing development, delivery, and maintenance [35]. CMMI was introduced to avoid
the problem of having to use multiple CMMs, with a combination of the Capability
Maturity Model for Software (SW-CMM), the System Engineering Capability Model
(SECM), and the Integrated Product Development Capability Maturity Model (IPD-
CMM) [32]. The purpose is to provide a CMM that covers both product and service
development as well as maintenance, together with a framework for adding new
bodies of knowledge. In 2007, four main bodies of knowledge have been identified:
(i) system engineering, (ii) software engineering, (iii) integrated product and process
development and (iv) supplier sourcing them [32]. These knowledge bodies are
addressed by the process areas associated with them and by components called
discipline amplifications. A process area is a set of best practices in an area that
when implemented correctly, should satisfy a set of important goals, which in turn
allow for significant improvements in the area [32]. An additional feature of CMMI
with respect to CMM model is the introduction of a continuous representation of the
model which allows the option to assess and grade each process individually [34].
The success of CMMI inspired many researchers to develop several maturity models
in other domains including the Business Process Maturity Model (BPMM).

2.2.4.1 The implications of implementing the CMMI model

Raul Vidal et al. [8] identified three main problems when it comes to implementing
the CMMI model in an organization: Inadequate Metrics Deployment, CMMI Pro-

2.3. CONCLUSION 9

gram Management Issues, and CMMI Understanding Issues. Inadequate metrics
could result from improperly deploying the indicators to control a project, and fre-
quently CMMI implementation is ineffective, and people misinterpret the process.
Table 2.2, lists the problems with their description, according to [8].

Type of Problem Description

Inadequate Metrics Deployment

Meaningless, useless and non goal-driven indicators
Inexperienced implementers
Complex solutions, hard to maintain
Same indicators for all situations
Outdated measurement plans

CMMI Program Management Issues

Senior management not involved in establishing
objectives, policies and the need for processes
Software Engineering Performance Group not managed
Sponsor not playing its role and delegating authority

CMMI Understanding Issues

Lack global view of the model
Do not understand several Generic Practices
Do not understand difference between capability
and maturity level

Table 2.2: Implications of implementing the CMMI model [8].

2.3 Conclusion

In conclusion, maturity assessments play a crucial role into enabling IT governance
efforts in an organization. CMMI models can help organizations guide performance
of their software development teams to a more capable state. With the continu-
ous representation the model can assess and grade each software development
process individually, while also following a continuous improvement plan. However,
several implications are identified and need attention when attempting to implement
the CMMI model, from understanding, managing and deploying metrics.

Chapter 3

Research Methodology

This chapter describes the research objective of this thesis, along with the process of
achieving the objective. It also includes the research questions that were designed
to assist the entire process, followed by a detailed walk-through and reflection on
the methods used.

3.1 Research Objective and Motivation

This thesis is performed following the Design Science Research by Wieringa [1].
The objective is to develop an assessment method as an artifact which is essentially
a conceptual model designed to evaluate the management of software develop-
ment processes. Design Science Research provides a structured and systematic
approach for creating such artifacts, by designing and refining solutions iteratively
using validation cycles.

The need for an assessment method arose from the increasing complexity of
software development processes, which resulted by the growing customer base and
market size. However, current assessment methods are limited in their ability to
provide a systematic and transparent method of how to implement an assessment
for an organization. Therefore, this gap hinders the ability to provide accurate and
reliable assessments. This thesis fills the gap by creating a robust method that
enhances processes management within the software development domain.

To construct the design artifact, namely the assessment method, this thesis
draws upon established theories and concepts, such as process improvement, as-
sessment methods, the software engineering concepts behind the five dimensions(Team
Practices, Development Practices, DevOps Practices, Requirements Management
and Quality Assurance Management), measurement theory, and data-driven deci-
sion making. These theories and concepts provide a solid foundation for under-
standing the underline principles of assessment methods which helped to design

10

3.2. DESIGN CYCLE 11

the artifact. The design and validation process is explained further in Section 3.2
which delves into the research questions, and in Section 3.4 which provides a re-
flection on the methods used.

3.2 Design Cycle

The Design Science Research emphasizes on the Design Cycle as stated by Wieringa,
who provides an iterative problem-solving process and consists of several tasks:
problem investigation, treatment design, treatment validation, treatment implemen-
tation, and implementation evaluation. This thesis follows a structured iterative cycle
process where initial designs of the assessment method are created and refined by
evaluating against received feedback, which inform the subsequent design adapta-
tions.

The initial design treatment according to the Design Cycle, includes the assess-
ment method as an artifact. In the context of our organization, we utilize five key
software development dimensions as a reference framework, which were decided
by experts. These dimensions served as the foundation for our designed assess-
ment method, and form the assessment criteria against which the organization’s
software development processes are evaluated. The assessment method is based
on the CMMI model, which is a comprehensive framework for process improvement
and is a core component of our assessment approach. The assessment method
further includes the assessment surveys in order to collect work information about
the organization’s processes, an analysis of the results of these surveys with data
presentation techniques, and the implementation of improvements.

The treatment validation phase includes two evaluation methods: validation sur-
veys which would provide feedback on the designed artifact and enable the iterative
cycle process, and an analysis of software development metrics to measure the
impact of the assessment method.

It is worth noting that the evaluation methods played a significant role in redesign-
ing the assessment method. However, conducting additional iterations for treatment
implementation and validation of the cycle process was not feasible. This is because
implementing improvements often requires a substantial amount of time, sometimes
up to a year or two. Therefore, a second iteration of the process was not feasible
within the given time-frame.

Figure 3.1 showcases the steps of this thesis following the Design Cycle. A more
detailed explanation of the steps and reflection on the methods used can be found
in Section 3.4.

12 CHAPTER 3. RESEARCH METHODOLOGY

Figure 3.1: Design Cycle from Wieringa [1].

3.3 Research Questions

The template depicted in Figure 3.2, allowed the formulation of our main research
question.

Figure 3.2: Template for defining design problems [1].

Hence, we aimed to improve the performance of software development pro-
cesses, in order to cope with the ever increasing complexity of the organization’s
processes. In order to achieve this, an assessment method that satisfies the organi-
zation’s context has been carefully designed. Therefore, the main research question
is:

How can we improve the software development processes of the organization by
applying an assessment method, in order to help the organization cope with the

ever increasing complexity of their processes?

To address this research question, three sub-questions are answered. The first
sub-question focused on understanding the first two components of the assessment
method. To design the method, we conducted a literature review to understand the
CMMI model’s attributes and the five dimensions that serve as assessment criteria
for the organization’s software development processes. Therefore, the first sub-
question is as follows:

3.4. RESEARCH METHOD 13

1. What are the attributes of CMMI models, that aid to design an assessment
method for software development processes in the context of the organization?

Based on insights from sub-question one, we proceeded to design the initial as-
sessment method. This method includes criteria from the five software development
dimensions, the CMMI model, and input from experts who helped design the assess-
ment surveys. To effectively analyze survey results and implement improvements,
we conducted a literature review to explore data presentation techniques. Thus, the
second sub-question is as follows:

2. What data presentation techniques can be used to effectively visualize the
assessment surveys results and support the implementation of improvements?

To evaluate the implementation of the designed assessment method, two ap-
proaches were employed. First, we create a validation survey to gather feedback
qualitatively of the assessment method and its relevance to the organization. Sec-
ond, we identified software development metrics from literature to validate the as-
sessment method. Analyzing these metrics enabled us to quantitatively validate the
assessment method’s effect by comparing the organization’s software development
performance with historical data. Therefore, the final sub-question is formulated as
follows:

3. How does our assessment method affect the performance of the organization’s
software development processes?

The combination of the research and sub-questions lead to the research model
presented in Figure 3.3.

3.4 Research Method

This section provides a comprehensive overview of the steps taken in this thesis. We
further reflect on the methods used for the components of the assessment method,
as well as the validation techniques.

3.4.1 Designing the Assessment Method

As mentioned earlier, our assessment method is comprised of five software devel-
opment dimensions, the CMMI model, assessment surveys, survey results visual-
ization, and implementation of improvements. These dimensions were established
by experts who possess deep knowledge of the organization’s context and software

14 CHAPTER 3. RESEARCH METHODOLOGY

Figure 3.3: Research Model.

development processes. To make the assessment process more efficient, we di-
vided these dimensions into categories. The main goal of using these software
development dimensions was to ensure that our assessment method aligns with the
organization’s context and establishes the assessment criteria.

On the other hand, the CMMI model was utilized since it provides a compre-
hensive framework for process improvement, and guided the assessment method.
Khoshgoftar and Osman [36], compared several maturity models, however, most of
them either focus on project management or business. CMMI models are primar-
ily designed for software, with a focus on software development processes, making
them a suitable framework to follow in this thesis. Literature review enabled us to
find two representations of the CMMI model, the staged and the continuous repre-
sentation which is followed in this thesis. Literature further enabled us to understand
the process areas of the model which fall under four categories: Project Manage-
ment, Support, Engineering, and Process Management, and are used as guidelines
for process improvement.

Once an understanding of the five dimensions and process areas of CMMI mod-
els was acquired, together with experts we designed assessment surveys. The idea
behind the assessment surveys was to help us collect quantitative data regarding the
organization’s software development processes. Iqbal et al. performed in a similar
fashion a survey where participants where asked to score the process areas of the
CMMI model using percentages [37]. Pikkarainen and Mäntyniemi discussed about
three case studies that have been studied to determine how the CMMI model could
be used in assessing agile software development [38]. Amongst these cases, two of
them have performed interviews while the third one had a combination of interviews

3.4. RESEARCH METHOD 15

and surveys. In this thesis we conducted surveys for assessing in a quantitative
matter. Using quantitative analysis instead of qualitative analysis for this component
allowed us to employ questions in a binary response format, where participants pro-
vided a straightforward ”Yes” or ”No” answer. Closed questions provided us with a
quick and easy way of collecting a huge number of responses opposed to interviews
and open-ended questions, which require much more effort.

The survey results involved the allocation of scores to questions answered as
”Yes”. The scoring process follows the maturity score of each question, which was
assigned during the design of the assessment method, which followed the frame-
work depicted by the CMMI model. This is elaborated on further in Chapter 4, which
delves into the CMMI model, as well as in Chapter 5, which presents the assessment
method. This scoring method is selected to create a quantitative representation of
the maturity across the organization’s processes.

To derive actionable insights from the outcomes of the assessment surveys, a
data presentation tool (Power BI) was used. Literature review provided us with sev-
eral other tools that feature similar functionalities, however Power BI is a very power-
ful tool and provides the means to data pre-processing, analysis and visualization.
By utilizing the data presentation tool and its charts, it was possible to effectively
communicate the results, and prioritize processes for improvement.

Moving forward, we designed a conceptual map to organize the thesis’ con-
cepts. Conceptual maps visually depict connections between ideas around a cen-
tral theme. In contrast, a theoretical framework summarizes concepts and theories
from established research knowledge [39]. Since this thesis reflects operational el-
ements, we opted for a conceptual framework.

We also identified two types of conceptual variables: independent and depen-
dent. The five software development dimensions and the corresponding CMMI
model process areas are independent variables. Introducing improvements allowed
us to control these dimensions and observe their impact on dependent variables.
These dependent variables, are represented by various software development met-
rics, which measure the assessment method’s effects on the organization’s perfor-
mance. Figure 3.4 depicts the conceptual map.

3.4.2 Treatment Validation

The final step of Wieringa’s Design Cycle, is treatment validation. Two steps ensure
that this thesis follows a proper treatment validation:

Firstly, a validation survey was created as a qualitative approach. Qualitative re-
search, compared to a quantitative research, collects stronger information, because
it is possible to pinpoint exact concerns, and details. Surveys facilitate prompt re-

16 CHAPTER 3. RESEARCH METHODOLOGY

Figure 3.4: Conceptual Map.

sponses through open-ended questions opposed to interviews, thereby streamlining
the process of collecting the opinions of the participants. Therefore, a validation sur-
vey was conducted in order to gain feedback from the participants of the assessment
method which mainly included team leaders, as they can provide a big picture of their
teams. Team leaders were chosen, in contrast to team members to have a concise
response of the team from people who have the whole picture instead of individual
responsibilities and thoughts. The use of open-ended questions served the purpose
of capturing the participants’ perspectives on the assessment method and acquired
contextual insights that might remain inaccessible through closed questions [40].
The survey has questions related to the assessment method’s structure, practicality,
and relevance to the teams and their specific concerns.

Secondly, following the conceptual map this thesis adopted also a quantitative
approach with software development metrics, where data is extracted from the or-
ganization’s existing databases. The advantages of quantitative research over quali-
tative in this instance is that it reduces research bias, enables repeatability, and facil-
itates easy comparisons and interpretation of results [41]. This choice was practical

3.4. RESEARCH METHOD 17

because of the large data volume and the availability of historical data of the orga-
nization’s processes. The selection of metrics was based on both established best
practices in the literature and the limitations of available data from the organization.
These metrics, like average lead time, average cycle time, and incident response
times of software developers, were then visualized to provide quantitative insights
into the impact of the assessment method.

Chapter 4

Literature Review

This chapter introduces the literature review, first, we include an overview which
describes how this literature review was performed. Then we include the literature
review which demonstrates knowledge on the components of assessment methods
which helped us bridge the knowledge gap. First, by reviewing the CMMI model,
its process areas and representations. Then by gaining knowledge on the five soft-
ware development dimensions, and on the data presentation techniques. Finally,
we include a literature review on software development metrics used to validate the
assessment method.

4.1 Literature Overview

In order to gain a comprehensive grasp of the relevant literature concerning the
subjects addressed in this thesis, a systematic literature review was performed, fol-
lowing the approach outlined by Carnwell and Daly [42]. The approach suggested
by Carnwell and Daly follows five steps: defining the scope of the review, identifying
the sources of relevant information, reviewing the literature, writing the review, and
applying the literature to the proposed study.

The first step is defining the scope of the literature review. In this thesis the
scope of the literature review is to get an understanding of assessment methods,
which relate to the theories and concepts behind process improvement, concepts of
the dimensions, measurement theory, and data-driven decision making. In order to
design the assessment method, we get an understanding of the components such
as the attributes of CMMI models, the software development dimensions, and meth-
ods for data presentation. Finally, for validation purposes we get an understanding of
what metrics can be used to measure performance of software development. In this
sense this thesis mostly attempts to capture theories and concepts specific to the
study. However, some empirical works have been considered but mostly to gain the

18

4.1. LITERATURE OVERVIEW 19

perspectives out of these topics. In a nutshell, this literature review tried to collect
relations between theory and concepts, rather than attempting to empirically com-
pare outcomes. This was done since concepts used during this thesis have provided
wide evidence amongst the research community on the benefits they provide to an
organization, therefore it was seemed unnecessary to explore them empirically.

To ensure the quality of the chosen papers, only scholarly databases were used
which included Google Scholar, IEEE, Springer Link, and Science Direct. The cri-
teria for inclusion encompassed journal articles, conference papers, books, and pa-
pers from esteemed institutions. Furthermore, efforts were exerted to concentrate
on up-to-date papers published after 2015. Nonetheless, in certain instances, locat-
ing recent literature on specific topics posed a challenge, necessitating the inclusion
of older papers to attain an understanding. An example is the article published by
the Software Engineering Institute, on CMMI for development version 1.3 [3] in 2010
since this was the last version of the model published as of the execution of this
thesis.

The second step of Carnwell and Daly’s approach is identifying and selecting
the sources of relevant information. The search terms are devised through an ex-
ploratory literature review with manual input, and are included in Table A of the
Appendix, as a research protocol. In essence, papers included where definitions on
the concepts of the thesis, in the IT domain, and papers with little to no counter argu-
ments. On the other hand, we excluded papers that had no theoretical consensus,
and papers that have multiple viewpoints or positions regarding the topics.

The third step is reviewing the literature. The exploratory process of choosing
research papers went through several phases. First, keywords were selected ac-
cording to the topics of this thesis: the CMMI model, Team Practices in software
development, Quality Assurance Management, Software Development Practices,
DevOps Practices, Requirements Management in software development, Data Vi-
sualization or Presentation, Software Development metrics. A list of keywords can
be found in Table A.2 of the Appendix. Then the outcomes were screened based
on their titles to eliminate clearly irrelevant papers. Subsequently, the abstracts and
key sections of the remaining papers were reviewed, resulting in the exclusion of
additional non-relevant ones. Papers that still remained uncertain in terms of rele-
vance were included in the subsequent step, during which they were carefully read
to make a final determination regarding their inclusion or exclusion. The total num-
ber of the remaining papers was 50, considering the topics discussed earlier, 15 of
them for the CMMI model, 15 for the five dimensions, 9 for data presentation, and 11
for software development metrics. A detailed break down of the number of papers
for each step can be found in Table A.3 of the Appendix.

The final step is constructing the review in the subsequent sections, which demon-

20 CHAPTER 4. LITERATURE REVIEW

strate insights into the current knowledge in the fields and help to answer the sub-
questions defined in Chapter 3.

4.2 CMMI Representations

According to Chaudhary and Chopra [10], the model follows two sets of representa-
tions. The staged representation is well known and follows a structure of five levels
of organizational maturity. It thus enables comparison between organizations and
offers a proven road map for improvement initiatives. Moreover, the continuous rep-
resentation of CMMI allows organizations to specify the order of improvement initia-
tives that best fit the organizational objectives and mitigate areas of high risk at the
time [4]. There are usually five levels of maturity within an organizational plateau for
the overall capability of that organization, with each level having a predefined set of
processes that are assigned to it. This section describes the staged and continuous
representations of the model.

4.2.1 Staged Representation

The staged representation focuses on best practices that an organization can use
to improve their processes in the areas that are within the maturity level it chooses
to achieve [43]. Maturity levels organize the process areas, which in turn include
generic and specific goals as well as generic and specific practices. While the com-
mon features organize the generic practices. It is important however, that organiza-
tion map their processes to the associated process areas of the model. Therefore,
enabling to control process improvement by tracking the organization’s maturity level
of conformance to the model. It is imperative however that not every organizational
process can be mapped to a specific process area [3]. The structure of the CMMI
staged representation is depicted in Figure 4.1.

Specific Goals apply to a process area and deal with the unique characteristics
that describe what must be implemented to satisfy the process area. They are a
required model component and are used in appraisals to determine if requirements
of a process area are met [2]. Specific Practices are activities that are considered
important in meeting the requirements of the associated specific goal. They are ex-
pected model components and describe activities expected to result into achieving
the specific goals of the process areas. Common Features organize the generic
practices of each process area and they are not rated in any way. Generic Goals as
the name implies are called generic because the same goal statements can appear
in many process areas. In a staged representation each process area includes only

4.2. CMMI REPRESENTATIONS 21

Figure 4.1: The structure of a CMMI staged representation [2].

one generic goal. They are required model components and through their achieve-
ment signifies improved control in planning and implementation of processes associ-
ated with that process area [3]. Generic Practices provide categorization to ensure
that the processes associated with the process areas will be repeatable, lasting and
effective. They are expected components of the maturity models and are catego-
rized by generic goals and common features.

Usually the staged representation of CMMI organizes process areas into five Ma-
turity Levels. These levels include, Initial (ML1), Managed (ML2), Defined (ML3),
Quantitatively Managed (ML4), and Optimizing (ML5) [28] [10]. They describe an
evolution of improvements for software development processes, beginning with ba-
sic improvement practices and progresses through a predefined set of success lev-
els [28]. For a staged model these levels provide the organizations with a recom-
mended order of approaching process improvement. As the name implies for the
staged representation, maturity levels provide a recommended order of approach-
ing process improvement in stages. The maturity levels of an organization can be
measured by the achievement of the specific and/or generic goals that do apply to
each set of process area. Table 4.1 depicts the focus of each maturity level and the
corresponding set of process area.

At maturity level 1 (ML1) processes are usually ad hoc and chaotic, where the
organization usually does not provide a stable environment. Competences and hero-

22 CHAPTER 4. LITERATURE REVIEW

Maturity level (ML) Focus Process area
ML 1: Initial ad hoc process None of the process areas
ML 2: Managed Basic project management Requirements management

Project planning
Project monitoring and control
Supplier agreement management
Measurement and analysis
Process and product quality assurance
Configuration management

ML 3: Defined Process standardization Requirements development
Technical solution
Product integrated
Verification
Validation
Organizational process focus
Organizational process definition
Organizational training
Integrated project management
Risk management
Decision analysis and resolution

ML 4: Quantitatively managed Quantitative management Organization process performance
Quantitative project management

ML 5: Optimizing Continuous process improvement Organization innovation and deployment
Causal analysis and resolution

Table 4.1: CMMI staged representation levels and areas [9].

ics of people in the organization being the key enabler of its success, rather than the
use of proven processes and practices [4]. Organizations at maturity level 1 (ML1)
are usually over committing and would abandon processes in times of crisis [3].
At maturity level 2 (ML2) organizations achieve all the generic and specific goals
of that process area. Meaning that organizations have ensured that requirements
are managed and processes are planned, performed, measured and controlled [2].
Furthermore, commitments are established amongst relevant stakeholders and are
revised as needed, while ensuring that requirements, standards and objectives of
those stakeholders are met. At maturity level 3 (ML3) all generic and specific goals
have been achieved by process areas defined in the previous levels as well as level
3. Processes are well understood and characterized and are described in standards
and methods. A critical distinction between level 2 and 3 is the scope of standards,
processes descriptions and procedures, which usually are tailored from the orga-
nization’s set of standards to suit a particular project or organizational unit at level
3 [3]. Another differentiation is that processes at level 3 are typically described in a
more detailed manner while also being more rigorously. At maturity level 4 (ML4)
organizations have achieved all specific goals of previously defined process areas
as well as the generic goals assigned to level 2 and 3 process areas. An establish-

4.2. CMMI REPRESENTATIONS 23

ment of quantitative objectives for quality and process performance are established
and used as criteria in managing processes. These objectives are are based on
the needs of the customers, end users, and the organization. A distinction form
other levels is that the performance of processes is controlled using statistical and
other quantitative techniques [9]. Maturity level 5 (ML5) focuses on continually im-
proving software development process performance through both incremental and
innovative improvements.

There are perhaps many reasons of selecting the staged representation for an
organization. The selection is usually dependent on the familiarity of the CMMI
model by the organization [44]. Some of the positive advantages of the staged rep-
resentation is that it provides a proven sequence of improvements. This sequence
begins with basic management practices and progresses through a predefined and
proven set of successive levels which serve as a foundation for the next level [10].
The staged representation allows organizations to permit comparisons amongst and
across organizations by the use of maturity levels and the level to be achieved. Fur-
ther it enables to create a single rating that summarizes appraisal results and allows
organizations to compare one another.

4.2.2 Continuous Representation

For a continuous representaion model generic goals and generic practices apply to
multiple process areas, which define a sequence of capability levels that represent
improvements in the implementation and effectiveness of the improvement initia-
tives. Similarly to the staged representation, the continuous also focuses on best
practices for improving process performance while also organizational processes
need to be mapped to process areas of the CMMI model. The structure of the
CMMI continuous representation is depicted in Figure 4.2.

Specific Goals are applicable to a process area and cope with the unique char-
acteristics that describe what must be implemented to achieve the requirements of
a process area. They are required model components and are used to determine
whether a process area is satisfied. Each goal has at least one capability level 1
practice linked to it. Specific Practices are activities that are considered important
into achieving the associated specific goals. Specific practices can be associated
at different capability levels linked to the same goal and are expected components
of the maturity model [3]. Each capability level has only one Generic Goal that
describes the maturation that the organization must achieve at the capability level.
Therefore having only a determined amount of generic goals equal to the number
of capability levels excluding number zero (five in total). Achieving requirements
of generic goals in a process area implies improved control in planning and imple-

24 CHAPTER 4. LITERATURE REVIEW

Figure 4.2: The structure of a CMMI continuous representation [3].

mentation of the processes associated with that process area. They are required
maturity model components and signify the satisfaction of a process area. Generic
Practices ensure that the processes associated with the process area are effective,
lasting and repeatable [44]. They are expected components and are linked one to
one to each generic goal.

The continuous representation uses six Capability Levels to measure the achieve-
ment of a specific process area for an organization [10]. These capability levels are:
Incomplete (CL0), Performed (CL1), Managed (CL2), Defined(CL3), Quantitatively
Managed(CL4), and Optimizing (CL5). A capability level is comprised of related
generic and specific practices for a process area that aid in improving the organiza-
tion’s software development processes associated with that area. These capability
levels are build upon one another, providing a recommended order for process im-
provements [45]. Hence, capability levels represent process improvement paths by
illustrating an evolution of improvements for each of the process areas. The con-
tinuous representation CMMI consists of the same 22 process areas as the staged
representation. However, no process area is categorized into a particular maturity
level [44]. All process areas are organized into four categories, which are: Project
management, Process management, Engineering, and Support as shown in Ta-
ble 4.2.

At capability level 0 (CL0) the process areas are deemed incomplete, which is a
process that is either not performed or partially performed. This is caused by one
of the specific goals not being satisfied. At capability level 1 (CL1) processes are
characterized as a being performed, which is a process that satisfies the associ-
ated specific goal of the process area. It enables and supports the work needed
to produce recognized output work products using recognized input work products.

4.3. PROCESS AREAS 25

A difference from an incomplete process is that a performed process satisfies all
of the specific goals at that particular process area. A capability level 2 (CL2) is
characterized as a managed process. These processes are planned and executed
in accordance to policies, employee skills and people having adequate resources
to produce controlled outputs. These processes further involve relevant stakehold-
ers, are monitored controlled and reviewed, and are evaluated according to their
process descriptions [3]. A capability level 3 (CL3) is characterized as a defined
process which is a managed capability level 2 process. These level 3 processes are
tailored form the organization’s set of standard processes according to its guidelines
and contributed work products, measures and other process-improvement informa-
tion [45]. At capability level 4 (CL4) processes are characterized as quantitatively
managed, which are defined capability level 3 processes that are controlled using
statistical and other quantitative techniques [46]. Their quality and process perfor-
mance are justified in statistical terms and are managed throughout the life of these
processes. At capability level 5 (CL5) processes are characterized as optimized,
and are quantitatively managed processes at capability level 4. These processes
are changed and adapted to meet relevant current and project business objectives,
while also focusing on continually improving the processes performance through
both incremental and innovative technological improvements. These address root
causes of process variation and measurably improve the organization’s processes
that are identified, evaluated and deployed as appropriate [44].

An important advantage of the continuous over the staged representation is that
it gives software development organization the flexibility to select process areas they
want to improve. This in turn enables the organization to select the order that best
suits their business objectives [10]. In turn minimizing and mitigating the organiza-
tion’s areas of risk [3]. Furthermore, it enables comparisons amongst and across
organizations from a process area to process area basis, or by comparing results
throughout the use of equivalent staging. Continuous representation provides an
easy comparison of improvement initiatives to the International Organization for
Standardization and Electrotechnical Commission (ISO/IEC) 15504, since the cate-
gories of process areas are similar to ISO/IEC 15504 [44].

4.3 Process Areas

CMMI and similar process capability models have been popularized and long stud-
ied, with many papers giving emphasis on the benefits and cost savings [10]. Or-
ganizations constantly engage into process improvement which empowers project
management all over the projects’ lifetime. Decisions are taken based on measure-
ments and analysis of the current situation throughout several process areas that the

26 CHAPTER 4. LITERATURE REVIEW

Category Process area Maturity level
Project management Project planning ML 2

Project monitoring and control ML 2
Supplier agreement management ML 2
Integrated project management ML 3
Risk management ML 3
Quantitative project management ML 4

Process management Organizational process focus ML 3
Organizational process definition ML 3
Organizational training ML 3
Organizational process performance ML 4
Organizational performance management ML 5

Engineering Requirements management ML 2
Requirements development ML 3
Technical solution ML 3
Product integration ML 3
Verification ML 3
Validation ML 3

Support Configuration management ML 2
Process and product quality assurance ML 2
Measurement and analysis ML 2
Decision analysis and resolution ML 3
Causal analysis and resolution ML 5

Table 4.2: CMMI continuous representation levels and areas [10].

CMMI focuses on. The CMMI has identified and categorized 22 process areas (PAs)
that have to be managed in order to succeed into improving software development
practices [9]. These 22 areas are discussed further in this section.

Ayyagari and Atoum [4] differentiated between a set of CMMI interacting areas,
which include Process Management, Support, Engineering, and Project Manage-
ment. Figure 4.3 depicts these process areas which finally entail on the overall
increase of performance across the organization. A process area is a cluster of re-
lated practices in a group that, when performed together would satisfy a set of goals
which are important for making significant improvements in that area [3].

4.3.1 Process Area Interactions

This section describes the interactions between process areas that aid on under-
standing the organizational view of process improvement. The categorization of

4.3. PROCESS AREAS 27

Figure 4.3: CMMI process areas by Ayyagari and Atoum [4].

process areas mentioned by Ayyagari and Atoum [4], is showcased in this way to
enable clear discussions. However, process areas often interact and have an effect
to each other regardless of their categorization.

4.3.1.1 Process Management

The Process Management process area contains activities related to definitions,
plans, resources, deployments, implementations, monitoring, controls, appraisals,
measurements, and process improvements. As depicted in Figure 4.3, process area
that fall under Process Management are: Organizational Process Focus, Organiza-
tional Process Definition, Organizational Training, Organizational Process Perfor-
mance, and Organizational Performance Management. To understand their inter-
actions amongst process areas, it is useful to categorize them into two groups, the
Basic Process Management Areas, and the Advanced Process Management
Areas [47].

The Basic Process Management Areas provide the organization with a capa-
bility document and share best practices, learning across the organization and or-
ganizational process assets [3]. The Organizational Process Focus area helps the
organizations to plan and implement software development process improvements
based on the understanding of the strengths and weaknesses of the organization’s
processes. Improvement initiatives are obtained thought a set of process improve-
ment proposals, measurement of processes, lessons learned in implementation of
processes, and results obtained for process and product evaluation activities [47].
The Organization Process Definition area establishes and maintains the organiza-
tion’s standard processes based on the process requirements and objectives of the

28 CHAPTER 4. LITERATURE REVIEW

organization [2]. Assets are also established and maintained which includes descrip-
tions of processes, process elements, and life-cycle models, as well as processing
tailoring guidelines, process related documentation and data [10]. Performing these
defined processes is enabled via experiencing and work products including mea-
surement data, process descriptions, process artifacts, and lessons learned, which
are in turn incorporated into the organization’s set of standards [44]. While lastly
the Organizational Training area pinpoints the strategic training needs of the orga-
nization as well as training in part of accommodating across projects and support
groups. This is done to acquire the skill required to perform the organization’s set of
standards.

The Advanced Process Management Areas provide the organization with a
capability to achieve its quantitative goals for quality and process performance [47].
These areas are strongly dependent on the ability to develop and deploy processes
and supporting assets. Quantitative objectives for quality and process performance
are derived by the Organizational Process Performance area [10]. Organizations
provide teams with projects and support groups that have common metrics, process
performance baselines, and process performance models. These support assets
provide quantitative project management and decision making of critical processes.
The organization analyzes the data collected from these tasks and develops a quan-
titative understanding of software quality, and software development performance.
The Organizational Innovation and Deployment process area identifies and deploys
proposed improvements that improve the organizational ability to meet its quality
and software development performance objectives [3]. Improvements to deploy are
selected according to quantitative understanding of the potential benefits and costs
from deploying improvement initiatives.

4.3.1.2 Project Management

The Project Management category covers the project management activities which
relate to planning, monitoring, and controlling. As depicted in Figure 4.3, process
area that fall under Project Management are: Project Planning, Project Monitoring
and Control, Supplier Agreement Management, Risk Management, Requirements
Management, Quantitative Project Management. Similarly to Process Management
to get a clear understanding of the Project Management areas two categories are
identified: Basic Project Management areas and Advanced Project Management
areas.

The Basic Project Management areas address basic activities related to estab-
lishing and maintaining a project plan, commitments, monitoring progress against
the plan, making correct decisions, and managing supplier agreements. Project

4.3. PROCESS AREAS 29

Planning area includes processes to develop the project plan, involve the stakehold-
ers appropriately, obtain the commitment to the plan and maintain it. Stakeholders
not only represent the technical expertise for software and process development, but
also the business implications of the product and process development [10]. Plan-
ning includes requirements that define the software and project and covers the vari-
ous project management and engineering activities that will be performed [48]. The
Project Monitoring and Control process area includes monitoring activities and mak-
ing correct decisions. The plan identifies the level of project monitoring, the number
of times progress is reviewed, and the metrics used to monitor progress [3]. The
Supplier Agreement Management process area identifies the need for the project to
acquire work that is produced by suppliers. Management of the supplier that is going
to produce the identified software component is being made possible by the supplier
agreement that is established and maintained and will be used to manage the work.
Both progress and performance of the supplier is monitored and acceptance reviews
and tests are being conducted on the work done [46].

The Advanced Project Management areas include activities such as establish-
ing a process that is tailored from the organization’s set of standards, as well as
coordinating and collaborating with relevant stakeholders. The Quantitative Project
Management process area set quantitative and statistical techniques to govern pro-
cess performance and software quality. The objectives of the quality and processes
performance are identified by the organization [48].

4.3.1.3 Engineering

The Engineering process areas cover development and maintenance of activities
that are included across engineering disciplines. As depicted in Figure 4.3, process
area that fall under Engineering are: Requirements Development, Technical Solu-
tion, Product Integration, Verification, and Validation. This areas integrate software
engineering and system engineering practices into a product oriented process for
improvement initiatives. In order to enable this focus is given on essential business
objectives, rather than specific disciplines [49].

The Requirements Development area encompasses the identification of require-
ments from customers. The software requirements are analyzed to produce a high
level conceptual solution [2]. Those requirements are also supplied in the Product
Integration process area. They are then combined and interfaces are ensured to
meet the requirements supplied by the Requirements Development process area.
Requirements Management process area describes activities for obtaining and con-
trolling requirement changes and ensures that data and relevant plans are kept up
to date [44]. Moreover, it ensures that changes in requirements are reflected in

30 CHAPTER 4. LITERATURE REVIEW

project plans, activities and work products. It is a dynamic and often recursive se-
quence of events and usually its processes impact other Engineering process areas.
The Technical Solution area is responsible to develop technical data packages for
product components that will be used by the Product Integration area [2]. Alterna-
tive solutions are examined with the purpose of selecting the optimal design based
upon the established requirements and criteria. The Decision Analysis and Resolu-
tion process area under the Support category is responsible for selecting the final
solution. The Technical Solution process area is reliant upon specific practices in
the Verification process area in order to perform design verification and peer re-
views during design [3]. This process area ensures that selected working products
are meeting the specified requirements, by selecting work products and verification
methods that are used to verify these products against the requirements. Verification
further addresses peer reviews which are a proven way for removing defects early
on and provide valuable insights. The Validation process area on the other hand
validates software against the customer’s requirements. It is performed either in an
operational environment or a simulated environment [49]. The Product Integration
process enables the establishment of specific practices which are associated with
generating the best possible integration sequence, integrating product components
and delivering the software to the customer [3].

4.3.1.4 Support

The Support process areas cover activities that support the software development
processes and maintenance of them, while also address the processes that are
used in the context of performing other activities for different process areas. The ad-
dressed processes can cover processes that are applied more generally towards the
organization [44]. Such process areas include Process and Product Quality Assur-
ance that can be used with all the process areas to provide an objective evaluation
of the processes and work products. As depicted in Figure 4.3, process area that
fall under Support are: Configuration Management, Process and Product Quality
Assurance, Measurement Analysis, Decision Analysis and Resolution, and Causal
Analysis and Resolution. To understand their interactions amongst process areas,
it is useful to categorize them into two groups, the Basic Support Areas, and the
Advanced Support Areas [50].

The Basic Support Areas address the basic supporting functionalities that are
used by all process areas. The Measurement and Analysis area aids all process
areas by providing specific practices that direct projects and organizations into align-
ing measurement needs and goals with a measurement approach that will provide
these objective results [2]. These results aid on taking the appropriate decisions

4.3. PROCESS AREAS 31

and actions. The Process and Product Quality Assurance area aids all process ar-
eas by providing practices for evaluating performed processes, work products and
services. It ensures that any concerns identified during these evaluations are appro-
priately resolved. This process area facilitates the delivery of superior-quality prod-
ucts and services by granting the project team and management at all levels suitable
insight and input regarding the processes and related work products throughout the
project’s duration [50]. The Configuration Management process area reinforces all
other process areas by establishing and upholding the integrity of work products
through configuration identification, configuration status accounting, configuration
control, and configuration audits. Configuration Management process area encom-
passes a wide range of work products, including deliverables for customers, internal
work products, acquired products, tools, and various items used in the creation and
description of these work products. Examples of work products that can be subject
to configuration management include plans, process descriptions, requirements, de-
sign data, drawings, product specifications, code, compilers, product data files, and
technical publications for products [44].

The Advanced Support areas offer the projects and organization an enhanced
support capability, where each of these process areas depends on specific inputs
or practices derived from other process areas. By utilizing the Causal Analysis and
Resolution area, the project endeavors to comprehend the underlying causes of
variation that naturally occur within processes and eliminate them from the project’s
operations. Moreover, this knowledge is applied to continuously enhance the or-
ganization’s processes. The improvement activities encompass both the defined
processes specific to the project and the organization’s established set of standard
processes [3]. The Decision Analysis and Resolution process area reinforces all
other process areas by implementing a formal evaluation process. This process
guarantees that alternatives are thoroughly assessed and the most optimal one is
chosen to effectively achieve the goals set by the process areas [50].

4.3.2 Modifying the CMMI Model

This section explores the significance of making modifications to the CMMI model to
better align with an organization’s specific context, goals, and industry requirements.
Modifying any CMMI model can be done for the purpose of utilizing a subset of
the model in order to fit with the needs of specific domains within the organization.
This includes modifying evaluation methods that involve a selection of options to
use in evaluating performance. This is done to aid the organization in aligning the
model with its business needs and objectives, by focusing on aspects of software
and services that are beneficial to the organization [46].

32 CHAPTER 4. LITERATURE REVIEW

As described by the Software Engineering Institute [44], there are two distinct
perspectives when it comes to modifying the model to the organization for: inter-
nal process improvement, and benchmarking purposes. An internal process
improvement addresses disciplines, maturity levels, process areas and capability
areas. Modifying the model in the context of the organization rises attention on
identifying the process areas and practices that support the organization throughout
it’s business needs and objectives. As an example a maturity model modification
has been proposed by Wangenheim et. al. [51] in order to meet certain aspects
and requirements of the health domain. The model focuses on the essential ele-
ments of an effective process, and it is generally recommended to address most of
the process areas and practices in the model. Therefore, it is important to exercise
caution when it comes to deciding of whether to exclude parts of a CMMI model. Ex-
cluding fundamental processes or specific practices entirely is discouraged because
evidence suggests that following CMMI based improvement efforts significantly en-
hances the achievement of business objectives, such as meeting cost and schedule
targets [4]. It is acknowledged that organizations may not be able to adopt every
aspect of the model due to various factors. However, organizations and projects can
still derive significant value from the model even if they implement a partial set of
process areas, goals, or practices.

The utilization of CMMI models for benchmarking purposes enables the com-
parison of process performance evaluation across an organization, either through
state-of-the-practice reports or amongst a group of organizations such as poten-
tial suppliers. However, when applying modifications in this context, it is crucial
to ensure consistency in the ratings obtained from the use of models in multiple ap-
praisals. Consequently, the ability to modify models for benchmarking is significantly
restricted, especially when maturity levels resulting from appraisals are publicly dis-
seminated for marketing purposes. It should be noted that the chosen scope of a
performance evaluation also has an impact on the context of benchmarking. If one
organization decides to evaluate solely software engineering, while another chooses
to appraise both software and systems engineering, a fair or accurate comparison
between the two would not be feasible [44].

4.4 Software Development Dimensions

Identifying the dimensions that construct initiatives of software development is of
high importance aiding both in identifying areas for improvement and the configura-
tion of the assessment method.

4.4. SOFTWARE DEVELOPMENT DIMENSIONS 33

4.4.1 Team Practices

Organizations use a set of teams to perform the processes mentioned above and
it is important to note that many practices within a team context can contribute to
performance. The abundance of teams within an organization focuses on the impor-
tance of team performance measurement. Effective teamwork creates knowledge,
minimizes errors, enhances productivity, promotes innovation, increases job satis-
faction, and ensures success [18]. Deployed teams that have the adequate training
and led correctly can be very powerful. However, ensuring that teams perform, learn,
and develop is not an easy task. In order to enable these goals, performance mea-
surement tools can be really useful. These tools allow measurements of collective
and individual performance. A paper by Fabrice et al. [11] reviewed several articles
through a combination of teams and four processes within a conceptual catego-
rization of attitude, behavior, and cognitive team constructs. The reviewed articles
identified several attitudes, behaviors and cognition that can be measured included
in Table 4.3.

Categories Constructs
Attitudes Openness

Trust
Cohesion
Team Viability

Behaviors Collaboration
Communication
Leadership

Cognition Transactive Memory System
Shared Mental Model
Information Sharing
Knowledge Exchange

Table 4.3: Team Practices Constructs identified in reviewing several articles by Fab-
rice et al. [11].

4.4.2 Requirements Management

Requirements management in the context of software development is the process
of identifying what is required of the software when it is developed. It is usually
executed before the development of that software. Requirement is a condition or
capability needed by the users to solve a problem or achieve an objective [52]. Re-

34 CHAPTER 4. LITERATURE REVIEW

quirements must be met with the system or components of a system that satisfy a
contract or a standard, specification set by users or the organization [53]. Software
developed must conform to the set of requirements defined by a set of require-
ments which in turn define the success and failure of that software. It must further
specify what requirements are, write the requirements in an organized way to elicit
them, and document them. Moreover, requirements are changing throughout the
development of software hence requirement management is a systematic way to
elicit those requirements and document them while also establishing and maintain-
ing agreements between customers and stakeholders [53]. Requirement engineer-
ing activities include requirements elicitation, requirements analysis, requirements
specifications, requirements verification, and requirements management. Where re-
quirements management belongs to planning and controlling of these activities [52].

4.4.3 Development Practices

Software development practices play a crucial role in the quality of the final prod-
uct [12]. Software development practices is the process of dividing software de-
velopment into smaller, parallel, or sequential steps or sub-processes to improve
design and product management [12]. Development practices refer to the method-
ologies, frameworks, techniques, and standards deployed during the software devel-
opment life-cycle. These practices encompass an array of activities and approaches
that software development teams use to design, code, test, and deliver software so-
lutions [54]. Therefore, following best software development practices is a way to
improve performance and productivity of an organization. Keeping best practices
in mind also enhances efficiency, enables better decision making and provides em-
ployees with an internal knowledge base [54].

4.4.3.1 Agile Methods

Agile methods have been widely used in software development practices over the
last decades [55]. Agile development is used as a term that advocates working
software over comprehensive documentation, responding to change over following
static plans, and customer collaboration over contract negotiation. Teams are opted
to work closely together while having more frequent communication, being aware of
other team member’s work efforts and being able to split workload equally among
peers. Agility requires that best architectures, requirements, and design emerge
from self-organizing teams [12]. Collaboration and communication are key in agile
literature [56]. The agile manifesto is supported behind the following processes:

• Teamwork quality: refers to the performance of interactions, task strategy, task

4.4. SOFTWARE DEVELOPMENT DIMENSIONS 35

process, and task activities.

• Communication: describes the quality of communication throughout team mem-
bers [57].

• Coordination: management of dependencies between activities, such as shared
resources, task assignments, and task relationships [55].

• Balance of contribution: contribution of task relevant knowledge of all members
to the decision-making process [55].

• Competitive attitude: self interest in the expense of the team’s performance [19].

• Effort: prioritization of team’s tasks [55].

• Cohesion: the ability of the team to stay together and remain united for the
completion of its goals [19].

4.4.4 DevOps Practices

DevOps are a set of practices, tools and cultural philosophy which automates and
integrates the processes between software development and IT teams. DevOps
stands for development and operations, and is a practice that aims at merging de-
velopment, quality assurance and operations deployment and integration into a sin-
gle and continuous set of processes and procedures [58]. This methodology is
an extension of Agile and Continuous delivery approaches from the software engi-
neering paradigm [59]. The advantage of this approach is that it does not require
fundamental technical changes and is being rather oriented to changing a way a
team works. The main principles of DevOps are automation, continuous delivery
and fast reaction to feedback. DevOps require a delivery cycle which comprises of
planning, development, testing, deployment, release, and monitoring with an active
cooperation between the different stakeholders of a team [59]. Continuous delivery,
is a technique which merges development, testing and deployment into a streamline
process [60].

4.4.5 Quality Assurance Management

Quality Assurance refers to a systematic process which ensures the excellence of
software and services [17]. Nowadays, almost every organization uses software in
running its business operations. This has increased the need to have software de-
pendent products and services that are reliable, useful, and secure every time during
their operations [61]. It is reported that attaining the required software quality within

36 CHAPTER 4. LITERATURE REVIEW

the dynamic and short duration of deployment is a challenge to many organizations.
Organizations that fail to overcome these challenges translate to organizations that
accept high risks of product failures which leads to considerable impacts to not only
the organization’s image, but also to its business operations. Furthermore, it has
consequences to business operations, or the organization has accepted a lower
speed implementation of current technologies, which shows that the organization
risk to lose in the current competitive industry [61]. It is therefore imperative that
software and services have the appropriate quality checks before deployment.

4.5 Data Presentation

Data presentation is a very important step towards analyzing the data and identify-
ing points for improvement for software development processes. Visualizing of an
organization’s performance is the basis for monitoring, controlling, and improving of
the operations within. Hence it is the foundation of our collective scientific knowl-
edge therefore, figures are important because they allow showcasing the data that
supports key findings [62]. In the following sections visualization tools and state of
the art data presentation techniques are presented.

4.5.1 Visualization Tools

Various tools have emerged during the years to aid presentation and analysis of
information. One of the most important features a visual must have, is that it should
be interactive, it must be able to display relevant information when hovered over it,
zoom in and out panel should be there. Some of these tools are discussed in a
paper by Ali et al. [63], these include:

• Tableu: is an interactive visualization tool which is focused on Business Intelli-
gence, it provides custom techniques, it is fast, flexible and supports most data
formats and connections to servers.

• Microsoft Power BI: is a powerful cloud-based business analytics service, in-
teractive, rich, flexible and persuasive with the consisting elements: Power BI
Desktop, Software as a Service (SaaS) and Apps.

• Plotly : is build using Python and Django framework, free to use but with limited
features, can be used in Ipython, jupyter notebook and panda library.

• Gephi : is an open-source network analysis tool, build to handle large, and
complex data sets.

4.5. DATA PRESENTATION 37

• Excel 2016: it is a spreadsheet developed by Microsoft, can be used for Big
Data, statistical analysis, and visualization purposes, and can be connected to
many services such as SaaS and HDFS a distributed file system that handles
big data sets.

4.5.2 Key Considerations for Effective Visualization

Information collection just for the sake of displaying information is very time con-
suming and expensive [64]. Data can sometimes have a barrier on displaying useful
information. Meaningful information must be able to show a pattern over time and
the user must be able to understand the displayed information [65]. Furthermore,
the way measurements have been derived must be completely understandable by
the viewers, while also providing enough insights for viewers to identify important
items that need attention. Firstly, attention should be given to the data that can aid
in decision making when designing dashboards avoiding any redundant information
that can complicate processes and remove user friendliness. The dashboard should
display information in a single page allowing viewers to gain the big picture [64].

Visualizing survey results is a critical step in harnessing the power of data and
transforming it into actionable insights within the context of the CMMI model. Explor-
ing the key considerations that can greatly enhance the effectiveness of visualizing
survey results for the CMMI model is of great importance. Effective visualization
goes beyond simply presenting data in visually appealing formats, which involves
understanding the nuances of the data, identifying meaningful patterns, and uncov-
ering valuable insights [66]. By adopting a strategic and purposeful approach to
visualization, organizations can make informed decisions, drive improvements, and
align their efforts with the model’s objectives.

According to Aigner et al. [67], there are three major criteria that have to be met
in order to utilize the outstanding capabilities of the human visual perception and
the computational power of computers to analyse, understand, and communicate
results. These criteria are expressiveness referring to the requirement of show-
ing nothing less or more of what the data contains, effectiveness which is that it
considers the degree of cognitive capabilities of the human visual system. Finally
appropriateness which considers the cost-value ratio to assess the benefits of the
visualization process in respect to achieving a given task [67]. Given the meaningful
insights that survey results can offer, it is essential to consider various factors when
creating visualizations from the data, including: clarifying the goals of the visual-
ization, and determining the most appropriate visual representation techniques as
explored.

Grappling with the processing and interpretation of the collected data, particu-

38 CHAPTER 4. LITERATURE REVIEW

larly when dealing with a substantial number of responses, presents a formidable
challenge. Visualizing survey questionnaire responses addresses this challenge by
presenting data in a concise and easily comprehensible format. This approach al-
lows organizations to explore trends, identify areas of strength and improvement,
and facilitate effective decision-making [65]. By converting raw data into visual rep-
resentations such as charts, graphs, and infographics, stakeholders can swiftly dis-
cern the software development processes of the organizations [68].

4.5.2.1 Dashboards

Dashboards are often used for the purpose of visualizing data as they are a powerful
tool to interpret information in a single view providing a graphical representation of
the current situation [5]. A dashboard is defined by Staron [5] as an easy way to
read real time user interfaces, depicting graphical representations of the current sta-
tus and any historical trends of an organization’s Key Performance Indicators (KPIs)
to enable decision making. The development process of a dashboard is contacted
iteratively in close collaboration with the users the dashboards or the people rep-
resenting the users. Figure 4.4 included showcases the stages of the dashboard
development. Dashboards provide mechanisms to visualize information in an oper-
ationally oriented measurement system, that measures performance against targets
and thresholds using right time data [64].

Figure 4.4: Dashboard Development Process [5].

The process includes:

• Requirements elicitation: to collect stakeholder expectations and create the
first mock-ups of the dashboard.

• Dashboard type selection: find the technology to obtain the dashboard.

• Impact evaluation: to observe what is the impact of the dashboard for the
organization.

• Dashboard maintenance: to monitor the correct operation of the dashboard
and that it shows the information required.

The process of selecting the right type of dashboard follows the selection model
described in a paper by Staron [69], it includes the following:

4.6. PERFORMANCE MEASURES 39

• Visualization type: defining the type of charts and graphs to be used.

• Data acquisition: determine how the data is input in the visualization tool by
making an assessment.

• Stakeholders: defining who are the stakeholders.

• Delivery: define how to provide the data to the users.

• Update: define how often the data will be updated.

• Aim: defining what the purpose of the dashboard is.

• Data flow: determining how much processing of the data will be executed
within the dashboard.

4.6 Performance Measures

Measuring the performance of software development processes has become a cen-
tral issue in both the scientific as well as the business world, since organizations
are opting to achieve effective and efficient results. The recognition of performance
measurement models for this purpose ensures both alignment with a business strat-
egy and processes hence determining that the choice of performance indicators is
organizational dependent [70]. The Balanced Scorecard (BSC) among other perfor-
mance measurement models aid to translate an organization’s strategy into opera-
tional indicators or otherwise metrics and objectives.

Metrics are used to measure performance, although most organizations seem to
have a poor understanding of what constitutes a good metric [65]. Not all metrics
have the same time frames, which in turn impacts the frequency at which they are
measured. Most of the times performance does not improve immediately and can
fluctuate throughout a project’s life cycle [68]. Some can be measured in real time
while others once per week or even a month. Harold [65] has categorized metrics
according to the following time frames for measurement purposes:

• Full project duration metrics: exist throughout the duration of a project while
collecting data in a weekly or monthly basis.

• Life cycle phase metrics: exist through a particular phase within a project.

• Limited life metrics: exist during an element of work or work package.

• Moving window metrics: the starting and finishing dates can shift as the project
progresses.

40 CHAPTER 4. LITERATURE REVIEW

• Alert metrics: exist until a condition is met.

David [71], categorized different performance measurements into four categories:

• (i) Key Result Indicators (KRIs): Giving an overall summary to the board as to
how the organization is performing.

• (ii) Result Indicators (RIs): Which tells how teams are combined to produce
results.

• (iii) Performance Indicators (PIs): Which tells management what teams are
delivering.

• (iv) KPIs: Which tells how the organization is performing in their Critical Suc-
cess Factors (CSFs), and by monitoring them it enables to increase perfor-
mance.

However, many organizations that have operated with key performance indica-
tors have found that little or no difference has been made. In most cases this was
caused by a fundamental misunderstanding of the lack of preparations indicated in
the seven foundational stones proposed by David [71]. The foundational steps are
used as a preparation in implementing the six stage process that an organization
can follow in a sixteen week process and it includes: (i) Getting the CEO and se-
nior management committed to change, (ii) Up-skill in house resource to manage
the KPI project, (iii) Leading and selling the change, (iv) Finding your organization’s
operational CSFs, (v) Determining measures that will work in your organization, (vi)
Get the measures to drive performance [71]. In this section stages (iv), (v) and (vi)
are of interest. The seven foundational stones as a preparation for implementing
performance indicators include: (i) Partnership with staff, unions, and third parties,
(ii) Transfer of power to the front line, (iii) Measure and report only what matters, (iv)
Source KPIs from CSFs, (v) Abandon processes that do not deliver, (vi) Appointment
of a home-grown chief measurement officer, (vii) Organization wide understanding
of the winning KPIs definition [70].

4.6.1 Determining measures that will work in an organization

Agile methods like Scrum, Lean Software Development, and Kanban have become
popular in the software industry [72]. These methods support lightweight practices,
continuous deliveries, and customer collaboration instead of lengthy planning, exten-
sive documentation, and rigid development phases. Table 4.4, illustrates a variety of
common software development metrics identified throughout several papers used in
these methods.

4.7. CONCLUSION 41

Metric Description
Velocity [72] [73] Indicates the amount of work a software development team can complete in a given timeframe.
Effort estimate [74] [72] Forecasts how much effort is required to develop or maintain a software application.
Defect count [75] Shows the number of bugs found .

Technical debt [76]
The number of features and functionality that is postponed, taking shortcuts, or accept
less-than-optimal performance to advance the project.

Lead time [77] [72] [78] Is the time required from creating a work item until it is completed.
Cycle time [65] [72] Is the time required from staring to work on an item until it is completed.
Test coverage [72] The number of tests compared to the existing amount of code.
Number of unit tests [72] The number of tests performed on code.
Incident response time [72] The time required for a bug to be fixed once it is acknowledged.

Table 4.4: Identified metrics throughout literature.

4.6.2 Get the measures to drive performance

Getting measures to drive performance usually requires a reporting framework to be
developed at all levels within the organization [71]. The reporting framework must
fit in with the requirements of different levels in the organization and the real time
data that supports decision making. As suggested by David the key tasks for devel-
oping such a framework includes: providing teams with the appropriate training on
reporting, establishing meaningful visuals that are easy to understand, developing a
hierarchy of reports to management, the stuff and the board of directors. However,
performance measurements are directly involved with the unresolved problems of
defining measures, their quality, and the culture of both cataloging and reporting [79].

4.7 Conclusion

In conclusion, the CMMI model has two main representations, the staged and the
continuous representation. The staged representation has five maturity levels, guid-
ing organizations from chaotic to mature processes. However, the continuous rep-
resentation has six capability levels, offering flexibility in selecting process areas
for improvement. In the staged representation, maturity levels range from Initially
(chaotic processes) to Optimized. On the other hand, continuous representation’s
capability levels span from Incomplete to Optimizing. Both representations focus
on process improvement, however the staged representation offers a structured ap-
proach, while the continuous representation provides flexibility. CMMI models cover
22 process areas, divided into Process Management, Support, Engineering, and
Project Management categories. These process areas interact between them to
contribute to the organization’s performance. Modifications on the model serve in-
ternal improvement or benchmarking, with a caution against excluding crucial parts.

Moreover, software development dimensions play a pivotal role in enhancing

42 CHAPTER 4. LITERATURE REVIEW

software development processes. Team practices are crucial for knowledge shar-
ing, effective collaboration, and innovation within an organization. Requirements
management ensures that software aligns with user objectives and needs. Develop-
ment practices, including Agile and DevOps methods, contribute to efficient design,
coding, testing, and delivery of software solutions. Quality assurance management
guarantees reliable and excellent software performance. These dimensions collec-
tively foster improved teamwork, optimized software development life cycles, and
enhanced software quality, addressing the evolving demands of the industry and
ensuring successful outcomes.

Finally, effective data presentation techniques are essential for converting infor-
mation into insights through visualization. Dashboards offer real-time snapshots,
requiring a simplistic design. Performance measurement in software development is
crucial for optimization. Several software development metrics are identified which
range from project duration to limited life metrics.

Chapter 5

Designing the Assessment Method

This chapter delves into the critical steps involved in designing the assessment
method according to the CMMI model and software development dimensions. This
chapter encompasses two essential components: the formulation of a design plan
and the designed assessment method that suits the organization’s five software de-
velopment dimensions.

5.1 Design Plan

This section proposes the design plan for the assessment method. As discussed
previously in Section 3.3, the CMMI model serves as a framework for process im-
provement. With the principles and guidelines outlined in the previous sections,
we have established a structured approach to improve the organization’s software
development processes and practices. We therefore follow the plan outlined in Fig-
ure 5.1.

Figure 5.1: Configuration Plan

The initial phase is Representation Selection, where the suitable CMMI represen-
tation is chosen. This decision involves opting for either the staged representation,
focusing on maturity levels, or the continuous representation, which emphasizes on
capability levels. The choice is based on the organization’s objectives, context, and
desired level of process improvement. Subsequently, we determine the appropri-
ate maturity or capability levels that align with their context. Afterward, the step
titled ”Determine and Structure a Matrix for Process Areas”, we identify the relevant
process areas within the CMMI model that align with the organization’s business

43

44 CHAPTER 5. DESIGNING THE ASSESSMENT METHOD

objectives and priorities. This step entails mapping the identified process areas to
the corresponding maturity or capability levels. This entails a framework which aids
to design the assessment surveys discussed later on in Chapter 6

5.1.1 Continuous Improvement Plan

The organization considers a continuous improvement plan as a pivotal component,
as it fosters ongoing enhancements of an organization’s processes and practices.
This plan acts as a well-structured roadmap, enabling the systematic identification
of areas that need improvement, the implementation of changes, and the measure-
ment of performance growth [80]. The organization has set its sights on utilizing
continuous improvement by introducing assessment surveys to be completed by
team leaders for various software development dimensions. These surveys will then
be used to generate reports, propose improvement recommendations, and subse-
quently implement them. Therefore, embracing the path of continuous improvement,
the organization progresses through iterative quartiles, each spanning four months,
within a yearly cycle. The proposed continuous improvement plan for the organiza-
tion is illustrated in Figure 5.2.

Figure 5.2: Continuous Improvement.

Step 1: Team leaders are provided with maturity assessment surveys, care-
fully crafted to encompass closed-type questions that span across the five vital di-

5.1. DESIGN PLAN 45

mensions of software development: Requirements Management, Team Practices,
Development Practices, DevOps Practices, and Quality Assurance Management.
The possible responses to these questions are either ”Yes,” indicating a positive re-
sponse where the aspect being asked is true, or ”No,” indicating a negative response
where the aspect being covered is false. These thoughtfully categorized questions
within each dimension accurately reflect the maturity levels, ranging from one to five.

Step 2: Based on the responses received from the teams, a maturity level is
calculated. These results are transferred from Microsoft surveys to SharePoint, and
subsequently, captivating visualizations are generated using PowerBI. Figure 5.3,
depicts the data flow.

Figure 5.3: Data Flow.

Step 3: Thorough analysis of the results is conducted, leading to the creation of
tailored recommendations for each team. These recommendations are designed to
be incremental, considering the current impact on team productivity, as well as the
short-term value and quality they bring. Moreover, potential risks that may arise dur-
ing the implementation phase of these recommendations are carefully considered.

Step 4: The implementation phase encompasses the creation, prioritization, es-
timation, and clarification of all recommendations. Regular catch ups are diligently
scheduled to monitor the team’s progress, ensuring transparency and alignment.
Once a significant amount of work has been accomplished, the next iteration is ex-
ecuted, paving the way for continuous improvement.

46 CHAPTER 5. DESIGNING THE ASSESSMENT METHOD

5.2 The Designed Assessment Method

Based on the organization’s goal of implementing a continuous improvement plan,
the most suitable CMMI representation would be the continuous. This represen-
tation aligns with the organization’s objective of fostering a culture of ongoing en-
hancement and iterative progress. The upcoming sections present the design of the
assessment method according to the CMMI continuous representation.

5.2.1 Capability Levels

Drawing upon the knowledge presented in Section 4.2.2 and considering the organi-
zation’s context, the identified capability levels include: Undefined, Initial, Develop-
ing, Defined, Managed, and Leading. These capability levels provide a structured
framework to assess and gauge the organization’s maturity and progress in its con-
tinuous improvement journey. Table 5.1, includes the description and resulting range
of each capability level.

Capability Level Description Result Range
Undefined No assessment was executed so far for this area. Not Available

Initial

At this capability level, engineering practices are characterized
as unpredictable, poorly controlled, and reactive. They lack
stability, which can result in increased inefficiency and hinder
the overall effectiveness of the team.

<40%

Developing
At this capability level, engineering practices are defined by
development teams and often exhibit a reactive approach.

40-60%

Defined

At this capability level, all engineering practices are thoroughly
defined and well-understood. Development teams demonstrate
a proactive approach rather than a reactive one. Furthermore,
the organization has established comprehensive standards that
offer guidance across all five dimensions, fostering a culture of
consistency and continuous improvement.

>60-75%

Managed

At this capability level, all engineering practices are meticulously
measured and controlled. The organization relies on quantitative
data to implement changes in a predictable manner, ensuring they
align with organizational standards.

>75-90%

Leading

At this capability level, all processes within the development
organization are both stable and flexible. The organization
maintains stability by establishing reliable and consistent
processes, while also fostering flexibility to adapt and respond
effectively to changes in the environment.

>90%

Table 5.1: Capability levels, their description and their result range.

5.2. THE DESIGNED ASSESSMENT METHOD 47

5.2.2 Correlation between Software Development Dimensions
and CMMI Process Areas

This section describes the correlation between the software development dimen-
sions and the process areas of the CMMI model. The purpose of this section is
to ensure that we follow the process areas of the CMMI model while creating the
assessment criteria.

Team Practices refer to the collective efforts and coordinated actions undertaken
by software development teams. Effective teamwork, communication, and coordina-
tion within the team enable increased productivity, enhanced creativity, and improved
problem-solving capabilities [18]. These practices are designed to aid teams in ex-
ecuting their tasks and responsibilities effectively and efficiently. While the specific
team practices may vary depending on the process area, they generally align with
the goals and objectives of the CMMI model. The process area of the CMMI model
that involve Team Practices are:

• Organizational Training: Involves conducting training needs assessments,
creating training plans, delivering training sessions, and evaluating the effec-
tiveness of training programs [18].

• Organizational Process Focus: This area emphasizes the importance of pro-
cess improvement, standardization, and measurement to enhance the overall
performance and productivity of teams [81].

• Organizational Process Definition: This area involves identifying, document-
ing, and standardizing processes to ensure consistency and repeatability across
projects and teams within the organization [82].

• Configuration Management: It involves ensuring that the correct versions of
software artifacts are used, maintaining configuration baselines, and conduct-
ing configuration audits [81].

• Project Planning: This area is a critical aspect of team practices that involves
defining project objectives, determining the scope, identifying tasks and re-
sources, establishing timelines, and creating a roadmap for successful project
execution [81].

• Project Monitoring and Control: This area is an essential component of
team practices which involves tracking project progress, comparing it against
the project plan, identifying deviations, and taking corrective actions to keep
the project on track [83].

48 CHAPTER 5. DESIGNING THE ASSESSMENT METHOD

• Risk Management: It is an essential part of team practices as it aids iden-
tifying, assessing, and mitigating potential risks that could impact the team’s
objectives and success [83].

• Requirements Management: It involves identifying, mitigating, and monitor-
ing risks throughout the project life cycle. Furthermore it aids teams to antic-
ipate and proactively address potential issues that could impact project suc-
cess [83].

• Quantitative Project Management: This area emphasizes the use of data,
measurements, statistical and mathematical models to plan, monitor, and con-
trol projects [11].

Requirements Management aims at capturing, analyzing, and documenting the
software requirements from stakeholders. An effective Requirements Management
process ensures that software solutions align with customer needs and business
objectives, reducing the risk of duplicating work, scope creep, and misunderstand-
ings [16]. The linked process areas are:

• Requirements Development: Requirements Management within this area
includes conducting stakeholder interviews, using collaborative techniques to
capture requirements, and maintain traceability between requirements and
project deliverables [18].

• Requirements Management: This area is direclty linked to this dimension as
the name suggests, which is the set of best practices for process improvement
in software development [83].

• Project Planning: Project planning does not solely focus on requirements
management but rather incorporates the considerations of requirements within
the project planning activities [16].

• Verification and Validation: These areas are closely linked to Requirements
Management as they are essential activities within the broader context of en-
suring the quality and correctness of a software or a system [84].

Development Practices integrate the methodologies, frameworks, and techniques
employed during the software development life cycle. These practices include the
selection of appropriate programming languages, architectural patterns, coding stan-
dards, code reviews, testing methodologies, and debugging techniques [85]. The
related process areas are:

5.2. THE DESIGNED ASSESSMENT METHOD 49

• Requirements Development: It involves selecting appropriate programming
languages, architectural patterns, and design principles that align with the
specified requirements [86].

• Technical Solution: In this area they might involve performing architectural
design, implementing coding standards and best practices, conducting code
reviews, and using tools for version control for code and configuration man-
agement [87].

• Verification and Validation: Development Practices play a crucial role in test
planning, test case design, and test execution [86]. These areas include creat-
ing test plans, executing test cases, performing inspections and walk throughs,
conducting peer reviews, and analyzing test results [88].

• Configuration Management: It establishes version control mechanisms, defin-
ing branching and merging strategies, and ensuring the integrity and consis-
tency of the software configuration items [87].

• Product Integration: This area is a crucial aspect of development practices
as it involves combining individual components or subsystems into a complete,
functioning product, while ensuring that the different parts of the product work
together seamlessly and as intended [89].

• Decision Analysis and Resolution: This area is a development practice that
helps teams make informed decisions by systematically analyzing and evalu-
ating various alternatives. It is particularly useful in complex projects where
multiple options need to be considered before making a decision [85].

• Causal Analysis and Resolution: This area is a development practice that
aims to identify the root causes of problems or issues and develop effective
resolutions to prevent their re-occurrence, it involves analyzing the underlying
causes rather than just addressing the symptoms of a problem [82].

DevOps Practices aim on streamlining the collaboration between software devel-
opment and IT operations by fostering a culture of continuous integration, delivery,
and deployment [90]. The linked process areas are:

• Project Management: It ensures collaboration between development and op-
erations teams, which facilitates better project planning, resource allocation,
and risk management, resulting in more effective project management [20].

• Verification and Validation: It enhances the verification and validation pro-
cess by enabling the automation of testing and quality assurance activities [91].

50 CHAPTER 5. DESIGNING THE ASSESSMENT METHOD

• Technical Solution: It fosters a seamless integration of development and op-
erational activities, enabling the development of technical solutions that are
optimized for efficient deployment, scalability, and performance [87].

• Configuration Management: DevOps enhance the use of version control sys-
tems, configuration management tools, and infrastructure as code approaches [81].

Quality Assurance Management aims at the implementation of strategies, pro-
cesses, and activities to guarantee that the developed software meets the required
standards and customer expectations [17]. The related process areas are:

• Organizational Process Focus: It focuses on establishing and maintaining
effective organizational processes and involves defining quality objectives, im-
plementing quality assurance practices, and ensuring compliance with organi-
zational standards and policies [61].

• Organizational Process Definition: It includes establishing quality criteria,
guidelines, and templates to be followed throughout the development life cycle.

• Project Planning: It defines quality goals, identifies quality risks, and estab-
lishes quality assurance processes and techniques.

• Technical Solution: It implements processes to assess and improve the qual-
ity of the technical solution [87].

• Verification and Validation: It includes developing test plans, conducting
functional and non-functional requirements, and ensuring that software prod-
ucts meet the specified quality criteria [86].

• Measurement and Analysis: Involves defining key performance indicators
(KPIs), establishing data collection processes, conducting data analysis, and
sharing insights with teams to drive improvements [70].

• Process and Product Quality Assurance: This area involves translating re-
quirements into design, code, and test cases for quality. It ensures that it
enables engineering practices to follow specific activities to requirements [53].

5.2.3 Dimensions Subcategories

This section aims to outline the subcategories of the dimensions as assessment cri-
teria, enabling the design of survey questions. Subdivision aids on achieving greater
clarity, organization, and granularity within the dimensions. By subdividing the di-
mensions into smaller, more specific subcategories, it becomes easier to capture

5.2. THE DESIGNED ASSESSMENT METHOD 51

and analyze nuanced aspects of the subject being assessed. This further aids to
design targeted and focused survey questions, ensuring both that the data collected
is relevant and meaningful. Subsections of each dimension are included below:

The Team Practices dimension includes:

• Roles and Team Composition: Assesses the team’s organizational structure
to ensure that all roles are properly defined and present.

• Artefacts & Definitions: Verifies the presence and adherence to crucial def-
initions such as Definition of Ready and Definition of Done, as well as the
establishment of key artifacts like agile dashboards, burn-down charts, and
release scope.

• Events: Ensures that the team has established and regularly conducts es-
sential events, including stakeholder meetings, retrospectives,sprint reviews,
demos, and daily stand-ups.

• Collaboration: Evaluates the presence of comprehensive communication chan-
nels and the implementation of a structured collaboration approach between
the team and other teams.

• Continuous Learning: Verifies the existence of individualized learning plans
for team member and assesses their alignment with relevant technologies.

The Requirements Management dimension includes:

• Backlog Management (including acceptance criteria): Examines the struc-
ture and ongoing maintenance of the backlog, ensuring that it is well- orga-
nized, regularly updated, and refined. Additionally, verifies if user stories and
epics have clear acceptance criteria that are measurable, and if stories are
appropriately estimated.

• Documentation Management: Verifies the comprehensive documentation
and continuous updating of all requirements to ensure clarity and accuracy
throughout the project life cycle.

The Development Practices dimension includes:

• Knowledge Sharing: Assesses the presence of structured documentation,
encompassing both software-related and architectural documentation, within
the team’s practices.

• Code Quality Management: Verifies the implementation of quality gates for
code, which include adherence to guidelines, best practices, and the utiliza-
tion of static analysis tools to evaluate aspects such as cyclomatic complexity,
coupling, code duplication, and other relevant metrics.

52 CHAPTER 5. DESIGNING THE ASSESSMENT METHOD

• Code Review Management: Evaluates the team’s adherence to mandatory
code review practices during commit or pull requests,including the presence of
a review strategy, checklist,and coding standards. Additionally, verifies if code
reviews encompass the validation of business logic, ensuring that the code
aligns with the intended functional requirements.

• Unit Testing: Verifies whether the team is actively writing unit tests and if
these tests are considered as one of the quality gates for code.

• Technical Debt Management: Assesses whether the team is actively track-
ing and estimating technical debt, and if they are allocating development time
specifically for addressing and managing technical debt within their schedule.

• Secure Development: Evaluates the team’s adherence to security standards
by examining their implementation of practices such as static and dynamic
code analysis, tracking vulnerabilities, and the establishment of defined secu-
rity coding practices.

• Architecture Foundations: Verifies whether the team is adhering to company
architecture standards, patterns, and best practices, including the presence
of architecture reviews. Additionally, assesses if the code is designed to be
cloud-ready, considering cloud architecture principles and requirements.

The Quality Assurance Management dimension includes:

• Test Organization: Checks if Quality Assurance organization is structured.

• Testing Strategy: Checks if team has defined strategy.

• Test Design: Evaluates the team’s implementation of defined test cases, in-
cluding positive and negative scenarios, as well as the establishment of test
suites. Additionally, checks if test cases are appropriately prioritized and cover
both functional and non-functional requirements.

• Defect Management: Verifies if the team is effectively tracking, prioritizing,
and estimating all defects encountered during development. Additionally, as-
sesses whether there are specific Service Level Agreements (SLAs) in place
for different defect types and priorities, ensuring timely resolution and adher-
ence to defined response times.

• Automation: Assesses the presence of test automation within the team’s
practices and verifies if it is integrated into the Continuous Integration and
Development (CI/CD) pipeline.

5.2. THE DESIGNED ASSESSMENT METHOD 53

• Reporting: Verifies the existence of reporting mechanisms for testing activities
and assesses if the reporting follows a unified template, ensuring consistency
and standardized documentation of testing results and findings.

The DevOps Practices dimension includes:

• CI/CD: Verifies the implementation of a CI/CD pipeline within the team’s work-
flow. Additionally, checks if there is a well-defined process in place to handle
and address any disruptions or issues when the pipeline breaks or fails.

• Release Management: Assesses whether the team is adhering to the release
standards established by the company.

• Monitoring and Alerting: Verifies if the team has implemented monitoring
and alerting systems and assesses whether they align with the company’s
standards.

• Incident Management: Assesses whether the team has implemented an in-
cident management process and has defined escalation policies.

• Infrastructure Management: Verifies the presence of a well-established envi-
ronment infrastructure and the availability of infrastructure deployment scripts.

• Access Management: Assesses whether the team has a defined access
management process in place. This involves evaluating if there are estab-
lished procedures and protocols for granting, revoking, and managing access
to systems, applications, and sensitive data.

Chapter 6

Assessment Survey Results

This chapter describes the assessment survey process, along with visualizing the
assessment survey results and determining the capability levels of the organization
across the five software development dimensions. Finally, we describe the discus-
sions made with team leaders of the organization and agreements made for intro-
ducing improvements to processes that exhibit low performance.

6.1 The Assessment Survey Process

The design of assessment survey is made according to the design of the assess-
ment survey in Chapter 5. Currently the organization uses internal as well as ex-
ternal tools such as Release and Task Tracking systems, Code Quality systems,
Build and Pipeline systems, and Source Code Management systems. The Release
and Task Tracking systems include software tools or platforms that aid organizations
to track and coordinate tasks, bugs and other project-related activities [92]. The
organization uses Jira as the main system for Release and Task Trucking activities.
Sonar Qube used by the organization is a Code Quality system which includes static
code analysis tools that analyse source code to identify potential issues, coding vio-
lations, and adherence to coding standards [93]. Build and pipeline systems such as
Jenkins and GitLab CI/CD used by the organization are software tools or platforms
that automate the process of building, testing and deploying software applications.
Source Code Management systems such as GitLab used by the organization, is a
version and control system or revision control system which aid development teams
manage changes to source code files over time. The surveys are designed accord-
ing to the concepts of these systems.

Each team out of 23 in total within the organization is led by a team leader who
serves as a representative. We acquired responses from team leaders which are
the representatives of the of their team. The surveys are designed according to ex-

54

6.2. VISUALIZATION OF SURVEY RESPONSES 55

perts and the knowledge acquired from the literature review. The survey questions
can be found in Appendix B. Each question in the assessment surveys is assigned
a capability level, and it is scored accordingly. The assessment surveys questions
are evaluated using a binary system, where respondents can provide either a ”Yes”
or ”No” answer. This binary system simplifies the evaluation process by categorizing
the responses into two distinct options, allowing for straightforward analysis and in-
terpretation of the data. A ”Yes” answer indicates the representative level associated
with that question, while a ”No” answer receives a score of zero. After the assess-
ment surveys are conducted, team leader’s responses are recorded and stored in
a PowerShare Excel file for each dimension. The subsequent chapter focuses on
presenting the results of the collected data, following best practices for visualization
and analysis.

6.2 Visualization of Survey Responses

Introducing the surveys to team leaders is a crucial step-by-step process that takes
into consideration the inherent complexity of team structures across different brands
within the organization. Recognizing the diverse composition of teams and their
unique characteristics, a systematic approach is adopted to ensure the surveys are
completed effectively and accurately. The goal of visualizing is to gain a compre-
hensive understanding of maturity across teams and dimensions of software devel-
opment processes. The key visualizations to be considered therefore are:

• Survey progress: Monitoring the progress of surveys completed by teams
within brands, this provides valuable insights into the level of survey partici-
pation and completion.

• Timeline of responses: A timeline of responses provides valuable info for track-
ing the progress and evolution of survey completion over time.

• Average score per dimension: Analyzing the average score per dimension
provides a perspective on survey responses by dissecting and evaluating data
at a dimensional level.

• Team score across dimensions: Examining team results across dimensions of-
fers a comprehensive and detailed overview of the performance of each team.

• Team score across dimensions with brands: This approach allows for a com-
prehensive understanding of how teams perform across dimensions within
each specific brand.

56 CHAPTER 6. ASSESSMENT SURVEY RESULTS

• Team-Brand comparison per dimension: This approach allows for a detailed
assessment of how each brand performs in specific areas or aspects mea-
sured by the survey.

• Team deviation from average: This approach provides insights into the extent
to which teams’ performance differs from the average.

• Average score per category: Analyzing the average score per category pro-
vides a valuable perspective on survey responses by dissecting and evaluating
data at a deeper level.

• Frequently answered questions as No: Highlighting common negative responses
in the surveys.

• Frequently answered questions as Yes: Highlighting common positive responses
in the surveys.

Timelines are used when studying the execution and evolution aspects of any
process. Although visualization of survey progress and the timeline of responses
may not directly pinpoint areas for improvement within software development teams,
they serve a vital purpose in monitoring the survey process itself. These visuals
provide insightful information on the overall progress and completion rate of surveys,
ensuring that the survey is on track and that teams are actively participating and
completing the survey [94].

By assessing the capabilities along the CMMI maturity level on various parts of
the organization and take steps to improve areas of weaknesses and capitalize on
their strengths [6]. Hierarchies, structures, and relationships are frequently used and
play a significant role [66]. In data presentation complexity and hierarchical nature
of the assessment surveys it is important to introduce visuals that can cope with
hierarchically structured data. Amongst others, graph based data presentation tech-
niques are in line with hierarchical structures, where color, shape and size usually
play the role of presenting categorical data [66].

6.2.1 Assessment Survey Progress

This chart aids in underpinning the completion of the surveys that has been achieved
and the representative population depicted in Figure 6.1.

By examining the table on the right-hand side of the figure, we can gain insights
into the survey completion status of 23 teams. Each team is categorized under
two distinct brands, namely the United States (Trading.com) and European-based
(XM) teams. By leveraging the dynamic features of Power BI, it becomes possible
to select a specific team from the table and visualize its survey completion progress

6.2. VISUALIZATION OF SURVEY RESPONSES 57

Figure 6.1: Survey Progress.

on the bar chart displayed on the left side. The bar chart not only showcases the
completion status of surveys but also provides a clear distinction between the two
brands. Teams with two green check marks across the table indicate that they have
successfully completed all five surveys for both brands. On the other hand, the grey
dash showcases that teams have completed a specific number of surveys based on
their relevance and applicability to the respective area.

6.2.2 Timeline of Responses

The timeline of responses provides an insightful view of the cumulative number of
surveys completed by the teams over a designated period. This timeline is repre-
sented as a percentage of the total surveys that need to be completed. Conducting
the survey followed a circular approach, where teams were engaged in the survey
process throughout the span of a month, as depicted in Figure 6.2.

6.2.3 Average Score per Dimension

The bar chart and radar chart serve a crucial role in determining the overall perfor-
mance of the organization by providing the average score for each dimension across
all teams. As showcased by Figure 6.3 and Figure 6.4, mostly all dimension scores
are above 50%, and the average of the organization is 54.15%.

The organization currently operates at the ”Developing” capability level, as ev-
idenced by an average score of 54.15% across the five dimensions. This score

58 CHAPTER 6. ASSESSMENT SURVEY RESULTS

Figure 6.2: Timeline of Responses.

indicates that there is significant room for improvement, placing the organization
at the third capability level according to Table 5.1. The ”Developing” capability level
proposes that the organization has made progress in implementing certain practices
and processes but still has ample opportunity to enhance its overall maturity.

6.2.4 Team Score Across Dimensions

The visualization in Figure 6.5, offers a comprehensive overview of all teams across
the dimensions. Teams such as Plugins, and jTools have the lowest score in Re-
quirements Management and Quality Assurance Management respectively. Ap-
pendix C, includes a drill down view of each dimension for more details, including
the maximum, average and lowest scores.

6.2.5 Team Score Across Dimensions with Brands

This visualization in Figure 6.6, provides a comprehensive overview of all teams
across their respective brands, encompassing multiple dimensions.

6.2. VISUALIZATION OF SURVEY RESPONSES 59

Figure 6.3: Average Score per Dimension.

Figure 6.4: Radar of the Average Score per dimension, taking inspiration by Akki-
raju et al. [6].

6.2.6 Team-Brand Comparison per Dimension

In Figure 6.7, a deeper analysis of the relation between brands for each team is
presented, with the Websocket pusher team serving as an example.

60 CHAPTER 6. ASSESSMENT SURVEY RESULTS

Figure 6.5: Team Score Across Dimensions.

Figure 6.6: Team Score Across Dimensions with Brands.

6.2.7 Team Deviation from Average

The visualization depicted in Figure 6.8, illustrates the deviation of each team’s score
from the overall average. Teams located on the right hand side with negative values
are below average, while teams on the left-hand side are above average. Notably,
the Plugins team stands out as it consistently under performs across all dimensions.

The chart on the right-hand side further illustrates the deviation of scores, con-

6.2. VISUALIZATION OF SURVEY RESPONSES 61

Figure 6.7: Team-Brand Comparison per Dimension.

Figure 6.8: Team Deviation from Average.

sidering the brands associated with each team.

6.2.8 Average Score per Category

Figure 6.9 illustrates the average scores per category within their respective dimen-
sions, throughout the organization’s software development teams.

In the initial stages of implementing the assessment method, it is generally con-
sidered ideal for teams to strive for a score of 50% in each category. This score
suggests that teams have achieved a moderate level of adherence to the practices

62 CHAPTER 6. ASSESSMENT SURVEY RESULTS

Figure 6.9: Average Score per Category.

and processes outlined in the CMMI model. The analysis of the figure reveals that
nine out of twenty-six categories have a score below 50%, making them a good
starting point for the organizations improvement initiatives. The ultimate aim of im-
plementing the assessment method is to continuously improve and advance beyond
the initial target scores. A more precise identification of specific questions and cor-
responding areas of interest is carried out through further analysis in the following
sections.

6.2.9 Frequently Answered Questions as No

Figure 6.10 showcases a table, which focuses on the questions that received the
highest number of ”No” responses within each category of the dimensions, where
the corresponding scores are below the desired threshold of 50%.

Although Team Practices have received an average score of 53%, its category
Artifacts & Definitions had questions that had the most negative answers. In Devel-
opment Practices the category Secure Development is under performing. In Quality
Assurance Management most categories under perform, these include Automation,
Reporting, and Testing Strategy. Automation in quality assurance for software devel-
opment refers to the use of automated tools, frameworks, and processes to stream-
line and enhance the testing and quality assurance activities throughout the software
development life cycle. Reporting in Quality Assurance includes the process of doc-

6.2. VISUALIZATION OF SURVEY RESPONSES 63

Figure 6.10: Frequently Answered Questions as No.

umenting and communicating information about the quality of software being tested.
For Testing Strategy it is ideal that teams have to adhere to key components of test-
ing. Testing involves determining the scope and objectives of testing, which includes
identifying the specific features, functionalities, and scenarios that will be tested [95].

In Requirements Management, Documentation Management has a score of 41%.
It includes whether teams document all requirements in the release and task tracking
system, whether teams defines non-functional requirements, and whether require-
ments are kept up to date. Key aspects of Requirements Management discussed
previously in Section 4.4.2.

In DevOps Practices categories that under perform are Incident Management,
and Release Management. Incident Management concerns activities for incident
monitoring, such as defects and bugs found through out the software. These activi-
ties as seen by Figure 6.10 are, having standard Service Level Agreements (SLAs)
for the processes, and policies for escalating incidents. Release Management con-
cerns planning, coordinating, and overseeing the release of software products or
updates [96].

6.2.10 Frequently Answered Questions as Yes

Similarly, Figure 6.11 displays a table extracted from Power BI, highlighting the top
questions that received the most ”Yes” responses across dimension categories iden-

64 CHAPTER 6. ASSESSMENT SURVEY RESULTS

tified with scores lower than 50%.

Figure 6.11: Frequently Answered Questions as Yes.

This table can be a useful tool for guiding less mature teams to adopt practices
followed by teams with higher maturity levels. This approach can help bridge the
gap between different maturity levels and facilitate knowledge sharing and growth
across the organization.

6.3 Improvements

This section provides an overview of the key issues identified and suggests possible
improvements for teams to consider. These findings and recommendations were
derived through coordinated discussions involving team leaders, and by referencing
the results of the assessment surveys. The proposed improvements incorporate
best practices from relevant literature reviewed and insights shared by experts within
the organization. Additionally, improvements have been tailored to align with each
team’s specific processes and ways of working. We first prioritize subcategories of
dimensions that have scores less than 50%, and second by examining questions
with high number of negative responses.

Testing strategy with a score of 31% shows that teams actually do not follow
standard techniques, do not perform risk analysis, and fail to frequently update pro-
duction snapshots. They further seem to fail on evaluating their test strategy, define

6.3. IMPROVEMENTS 65

a test coverage and test depth according to analyzed risks. Together with these
items we would suggest the team to clearly document requirements, and test pro-
cedures.

Reporting has a score of 32% and shows that teams do not include bi-weekly
reports, do not have regular reviews for quality assurance reports in terms of infor-
mational value, transparency and ease of use. We would recommend that teams
try to improve these things together with introducing templates for Quality assur-
ance reports, as this could introduced a standardized way of reporting avoiding any
inconsistencies and ensuring all tests are covered.

Automation with a score of 34% shows that teams are lacking when it comes to
reviewing areas for autonomous testing, including coding standards, and prioritizing
test cases to meet test execution schedules. The quality assurance teams do not
develop test cases in parallel to the development cycle. Automated testing tools and
frameworks can significantly enhance efficiency, accuracy, and coverage, freeing up
valuable time for testers to focus on more complex scenarios [95].

Secure development with a score of 38%, shows that teams have a high number
of negative answers when asked about the inclusion of service level agreements
(SLAs) for fixing security issues. We suggest that teams create a list of security
coding practices that should be adopted by projects and make it publicly available to
developers providing them the appropriate training.

Documentation management has a score of 41% and shows that teams do not
use any formal language to describe business requirements such as sequence dia-
grams. Most of the teams also fail to keep their requirements up to date, and have
not defined their non-functional requirements for their projects.

Test design has a score of 43%, shows that teams are lacking the ability to link
test cases with requirements, and teams do not evaluate and adjust test design
techniques for further use. It was observed that teams often rely on manual testing
methods, such as checking if a button works or verifying changes after deployment,
without a comprehensive approach to testing. To address this issue, it is recom-
mended that teams adopt more robust testing procedures and embrace automation
where applicable.

Release Management has a score of 44% showing that teams do not have the
appropriate documentation as a checklist that serves as a guide for decision mak-
ing about releases. The teams further do not write down any release notes, or a
rollback strategy written down. Therefore, it is crucial for teams to have well-defined
procedures, transparency, and standardized templates, which can be introduced by
a motivated senior person.

Artefacts and definitions show a score of 47% and determines that teams do not
document, keep up to date and validate their definition of ready. Teams further fail

66 CHAPTER 6. ASSESSMENT SURVEY RESULTS

to perform a production release at the end of every iteration or track releases in Jira.
Moreover, they do not have a definition of done, or keep it up to date. However,
during the discussions, teams highlighted a common practice of starting work and
facing unexpected issues. Teams can aim to provide approximate time estimates
for completing work items and establish requirements that closely align with actual
expectations. It was also noted that the problem lies in the absence of agreed and
documented requirements, rather than attempting to overly specify every detail.

Events with a score of 47% shows that team does not have feedback on their
deliverable. Teams do not put effort on improving, or have demo meeting for ev-
ery sprint. Without receiving feedback from customers, teams are unable to learn
from their experiences and address potential errors effectively. It is essential to in-
corporate customer feedback loops to foster continuous learning and improvement.
To enhance the testing process, several improvement points were identified, includ-
ing scope identification, approach enhancement, risk assessment, and addressing
limitations in requirements.

A suggested overall improvement is to establish a minimal viable guideline that
teams should follow while allowing for flexibility and decentralization in certain as-
pects. This approach recognizes that each team may have unique implications and
ways of working, and it promotes a culture of adaptability and ownership. The guide-
line can provide a baseline set of principles and best practices that all teams are
expected to adhere to. This could include overarching agile principles, such as col-
laboration, iterative development, and continuous improvement. The purpose of the
guideline is to ensure a common understanding and alignment across teams, while
still allowing room for autonomy and customization. The responsibilities of these
guidelines can be assigned to teams in order to introduce motivation and further
address team needs.

Chapter 7

Validity Analysis

This chapter provides a comprehensive overview of the validation surveys con-
ducted, which determined the relevance and validity of the assessment method.
Moreover, this chapter establishes a concrete understanding of the validity of the as-
sessment method, by examining several software development metrics historically
and determining any performance gains.

7.1 Validation Surveys

In order to ensure the validity of this thesis and facilitate a potential redesign of the
assessment method, a targeted survey has been distributed among participants of
the assessment process. This validation survey serves as a critical tool to validate
the accuracy and applicability of the assessment method. This iterative process
plays a crucial role in strengthening the foundation of the research, as it allows for a
thorough examination and validation of assessment method and criteria.

Based on the feedback received, respondents provided insights on various as-
pects of the assessment process. They shared their opinions on the overall per-
ception of the assessment method, clarity and comprehensibility of the questions in
the assessment surveys, and whether the questions effectively capture the relevant
aspects of the organization.

Due to the number of responses acquired, we decided to showcase the overall
context and group the questions with similar context. The subset was selected based
on the answers comprehensibility, their perceived usefulness, and how insightful
they are.

The feedback from participants regarding their overall experience can be cate-
gorized as follows: There were 10 promoters who expressed positive satisfaction, 5
passives who were neutral in their assessment, and 3 detractors who had concerns
or negative feedback. The answers in this regard were:

67

68 CHAPTER 7. VALIDITY ANALYSIS

”It is a very good measure to see what processes we are lacking and could be
improved.”

”I think is a nice check we have to do once or twice a year. Sometimes our
reminders getting ignored for many of these issues”

”I dont see the value, what we need to do is have direct line from the IT
Governance team with each of the teams. These kind of everybody

answer-all-questions are pointless”

Overall, there is a positive opinion on the value that this assessment process
can yield, others however where skeptical on the number of improvement points
that could be discussed and the guidance that the teams should have.

Questions in maturity assessment surveys where clear and easy to understand:
with 8 promoters, 7 passives and 3 detractors. The open-question answers, to spec-
ify what was unclear are:

”The questions where clear enough.”

”Would prefer if some examples were also mentioned in some questions. For
instance, it was not clear to me what ’key stakeholders’ meant.”

Questions in maturity assessment covering the right aspects had 9 promoters, 6
passives and 3 detractors. With open-question specifying which questions are not
valid answered with:

”Quality Assurance questions to teams that do not have a Quality Assurance.
Questions about scrum to teams that do not use scrum.”

”The questions about releases as our team is not working with releases but
continuous deploys.”

Another question for this survey included was whether team leaders would in-
clude any other questions in the maturity assessment. Answers are:

”I think we should include less questions not more.”

”I think this covers most important topics.”

”You should include questions such as: Is there a standard process for making
change requests to teams?”

In summary, the survey results highlight a generally positive perception of the
value provided by the assessment process, although there were concerns and dif-
fering viewpoints. The feedback received has been invaluable in refining the survey
questions and ensuring they effectively capture the relevant aspects of the organi-
zation. Moving forward, these insights will guide further improvements to enhance
the accuracy, applicability, and efficiency of the maturity assessment surveys.

7.2. THE SOFTWARE DEVELOPMENT PERFORMANCE. 69

7.2 The Software Development Performance.

The goal of this section is to determine whether the implemented assessment method
aids the organization into achieving better performance. The analysis of these met-
rics show a quantitative performance timeline and hence the applicability of the
assessment method in the organization’s software development teams. While the
CMMI model itself outlines a set of best practices, it is essential to assess its impact
and effectiveness within the organization to ensure that the intended benefits are
being realized. To assess the success of the assessment method, the organization
can rely on various software development metrics. These metrics serve as quantifi-
able indicators, providing valuable insights into the performance and progress of the
organizations improvement initiatives.

Teams agreed to work with their own practices according to the specific require-
ments and goals of each team. The purpose of the thesis is to introduce a minimal
set of procedures for each team to follow in order to achieve higher performance in
software development processes. With improvement initiatives discussed previously
a transition has led to performance increase as shown in Figure 7.1. The average
lead time showcases the time that software development task has been committed
to the backlog until the time that it has been completed. Lead time is a commonly
used metric which showcases the amount of time it takes to complete a process or
service from the moment it is requested or initiated. It is a metric used by organiza-
tions to measure software development performance [77]. Ideally, the lead time of
tasks should decrease which can be seen by the bar chart in a monthly basis.

Figure 7.1: Average Lead Time in Days

Moreover, Figure 7.2 depicts the average cycle time which is the time it takes to

70 CHAPTER 7. VALIDITY ANALYSIS

complete a single cycle of a task. It starts from the beginning of one unit of work
and ends with its completion. Cycle time is a measure of process efficiency and is
often used to evaluate and improve productivity [65]. The figure showcases that the
cycle time has been decreased overall, confirming that improvement initiatives have
played a role.

Figure 7.2: Average Cycle Time in Days

Incidents refer to unexpected events or issues that occur during the development
process or after the software has been deployed. Ideally the number of incidents
for an organization should stay low. Figure 7.3, showcases the time of responding
and resolving an unexpected event. Although, the bars in the figure fluctuate be-
tween months there is a noticeable decrease in incidents in July. The number of
incidents include bugs, security vulnerabilities, performance issues, and integration
failures. This directly impacts software development performance and management
of incidents is a requirement.

7.2. THE SOFTWARE DEVELOPMENT PERFORMANCE. 71

Figure 7.3: Incident Response Time

Chapter 8

Discussion

This chapter describes the objective of this research, core values of the designed
assessment method, the validity of this method as well as the thesis contribution to
research.

8.1 Implications

The objective of this research was to design an assessment method as an approach
to help organizations improve their software development processes. The need for
an assessment method arose from the increasing complexity of software develop-
ment processes. However, current assessment methods are limited in their ability
to provide a systematic method of how to assess an organization. This gap hinders
the ability to provide accurate and reliable assessments, therefore, this thesis fills
this gap by providing a transparent assessment method.

8.1.1 Core values of the assessment method

The assessment method designed as an artifact consists of the CMMI model, the
software development dimensions, data presentation, and the introduction of im-
provements. The CMMI model is a framework for process improvement and con-
stitutes of two representations with 22 process areas. Ultimately, the continuous
representation was chosen. The selection process took into consideration the spe-
cific business context, and goals for continuous improvement of the organization.
While, the software development dimensions have been identified by experts of the
organization and have been used as a reference framework for the assessment
criteria. The software development dimensions used in this thesis are Team Prac-
tices, Requirements Management, Development Practices, DevOps Practices, and
Quality Assurance Management. The objective was to ensure that the software de-
velopment dimensions align closely with the process areas outlined in the CMMI

72

8.2. THESIS VALIDITY 73

model. We then create the assessment surveys to assess the organization pro-
cesses. Consequently, we collect the data and visualize it with the use of Power BI,
giving a path towards implementing the improvements. Finally, we ensure validity
of the assessment method with two methods. Firstly, we conduct a validation sur-
vey which provided feedback on the designed artifact, and an analysis of software
development metrics to measure the impact of the assessment method.

When it comes to applying this assessment method other organizations should
not ask themselves how they can implement a fixed assessment method but rather
on how they can tailor this method to their needs in order to leverage their improve-
ment processes through the CMMI model and experience the maximum amount of
benefits via minimizing risks out of change. While the selection of software develop-
ment dimensions has been associated with specific areas, it is crucial to acknowl-
edge that these dimensions may not be universally applicable to every organization.
The process of selecting these dimensions must consider the unique context and
goals of each organization.

The thesis provides an assessment method that allows organizations to effec-
tively assess their software development processes, even in the absence of univer-
sally defined software development dimensions. The assessment method outlined in
the thesis aligns with the process areas defined by the CMMI model, highlighting the
importance and value of such an approach. Additionally, the thesis acknowledges
the significance of various domains, such as soft, hard, and context governance,
as identified in the IT governance model foundation by Smits and Hillegersberg [7].
These domains play a crucial role in the success of improvement initiatives, further
emphasizing the nature of the method presented in the thesis.

However, this thesis has its limitations due to the fact that the Design Cycle by
Wieringa provides an iterative process of (re)designing an artifact, and has not been
followed on its full potential. An initial design was created and one cycle was per-
formed which included the treatment validation step, which could ideally provide the
means to proceed with a second iteration. However, due to the complex human fac-
tor, change management, and the time required for improvements to take effect, it
was not possible.

8.2 Thesis Validity

Validity refers to whether the artifact that is designed to measure a certain concept
really does measure the indented concept [1]. According to Wieringa, the object
of study that supports an inference also supports the validity requirements of this
object of study. Wieringa uses several types of validity and categorizes them as
follows.

74 CHAPTER 8. DISCUSSION

8.2.1 Construct Validity

Wieringa defined construct validity as the degree at which the implementation of
constructs to phenomena is warranted with respect to the research goals and ques-
tions [1]. Construct validity in general is a matter of degree, they can be valid up to
a certain level and never be totally valid.

Considering this thesis construct to improve the software development processes
of an organization, validation is warranted by four criteria. Firstly, the literature re-
view helps to identify and incorporate relevant practices and findings from existing
literature into the assessment method. By aligning with established frameworks,
the research methodology becomes more rigorous and systematic, enhancing the
construct validity of the thesis findings. This approach ensures that the assessment
method developed in the research accurately reflects the current knowledge and
practices identified in the literature. Pattern matching was utilized by studying the
software development dimensions and the CMMI model’s process areas across sev-
eral research papers, as well as their effects and best practices. Mainly speaking
the CMMI model provides a framework for process improvement, and the software
development dimensions are concepts which are widely known in the research com-
munity and industry.

Secondly, experts were constantly in close proximity contributing their thoughts
and expertise in the identification of the software development dimensions and their
categories as well as designing the questions for the assessment surveys.

The third criteria was the validation surveys that where directed to the assess-
ment method. This was to ensure that the assessment method captured the right
essence, making it relevant to improving the processes of the organization.

Finally, this thesis is utilizing the concept of goal setting theory, which deter-
mines goals that are specific, measurable, achievable, relevant and time bound [97].
By measuring previous performance and tracking performance after the implemen-
tation of the assessment method. Indicators such as lead time, cycle time, and the
number of incidents are used to ensure that poor operationalization is mitigated in
a quantitative manner. This was done with the comparison of the software develop-
ment metrics throughout a period of six months.

8.2.2 Internal validity

Andrade [98] determined internal validity as the way to examine whether the subject
of study that was designed, conducted, and analyzed allows trustworthy answers
to research questions in the study. It checks whether it is based on judgement
and is not a computed statistic and whether there is systematic bias. There is a
need to contextualize the use of the assessment method within the context of the

8.2. THESIS VALIDITY 75

organization.

However, the internal validity of this thesis is somewhat uncertain due to con-
cerns regarding the control of confounding variables. In particular, many variables
can contribute to the observed increase of performance in the organization’s soft-
ware development processes, which are not controlled by this thesis. These vari-
ables could include the nature of a large organization, the extensive number of em-
ployees and teams the organization encompasses and the changes in team size,
or team dynamics. Moreover, the months that software development metrics were
measured could have specific attribute such as bank holidays where work is de-
creased. A way to accommodate this would be to measure performance throughout
several years.

8.2.3 External validity

Wieringa [1] defines external validity as the degree of support for the generalization
of a theory beyond the cases or population on which it was studied. An object
of study should be repeatable in the sense that other researchers will be able to
acquire similar results. For the object of study to support external validity it should
ensure that it satisfies the population predicate [1]. The object of study might include
more than one predicates, hence it should be enabling representative sampling. The
treatment’s ability to generalize, can be ensured by following similar treatments [1].

The literature review throughout the research project ensures external validity to
a degree. The design of the assessment method is studied as well as techniques
for data presentation. This would ensure that reapplying the methods used in this
research for analyzing the maturity of an organization would be as effective and
applicable to a degree in other organizations as well. By incorporating the process
areas of the CMMI model, we enhance the thesis’ credibility and relevance to the
broader community.

However, the dimensions identified and questions of the assessment surveys are
directly applicable to the organization’s context. The external validity to this extend
is questionable and needs to be researched in other organizations to get a final
observation. Furthermore, the survey sample does include multiple teams within
the organization however these teams are part of the same organization. However,
due to the international structure of the organization one can argue that the diversity
of participants is met.

76 CHAPTER 8. DISCUSSION

8.3 Contributions to Research

The existing literature on maturity assessment models is extensive, but there is a
lack of a transparent method and practical usage experience for their implementa-
tion. While research on assessment methods has increased significantly, it often
remains focused on case studies or conceptual analysis rather than analytical im-
plementations. This study provided a systematic process of how to implement an
assessment method based on the CMMI model as a framework for process im-
provement in practice. Consequently practical experience necessitates the ability of
assessment methods to align with the organization’s context and internal structures
giving rise to the software development dimensions which are used as assessment
criteria and provide relevance to the CMMI model’s process areas. In addition to
designing the assessment surveys and applying improvements, this study also ex-
amines the impact based on quantitative data from the organization, achieved by
introducing an analysis of software development metrics.

Chapter 9

Final Remarks

This Chapters covers the final remarks of the thesis, what conclusions were made
answering the research question and sub-questions, as well as a discussion about
the future work.

9.1 Conclusions

With the ever increasing complexity of software development processes, manage-
ment becomes more and more challenging. IT governance is a corporate gover-
nance body which aims to improve the overall management of software development
processes, while utilizing a plethora of methods. Such methods are maturity assess-
ments which serve as invaluable tools to assess an organization’s current maturity
state and consequently introduce improvements. In order to advance maturity and
overall introduce changes we need to drive attention on both the hard and soft gov-
ernance. Therefore, this thesis designed an assessment method as an approach to
help organizations improve their software development processes. An assessment
method was necessary due to the gap of current literature which does not provide a
systematic way and practical use of how to assess an organization.

Therefore, the main research question of this thesis was:

How can we improve the software development processes of the organization by
applying an assessment method, in order to help the organization cope with the

ever increasing complexity of their processes?

To answer the main research question, we answered three sub-questions, all of
which are addressed in the subsequent discussion. The first sub-question was:

1. What are the attributes of CMMI models, that aid to design an assessment
method for software development processes in the context of the organization?

77

78 CHAPTER 9. FINAL REMARKS

To address this sub-question we got an understanding of the first two compo-
nents of the assessment method. Namely, the attributes of the CMMI model which
is used as a reference framework for process improvement, and the software devel-
opment dimensions as a guiding framework for assessment criteria. The literature
has shown that CMMI models use four categories which are comprised of 22 pro-
cess areas in total. These process areas represent key practices and activities that
need to be performed effectively to achieve a particular level of maturity. We have
further recognized the significance of modifying the CMMI by utilizing a subset of
the model to better align with the organization’s specific context and goals. This
gives rise to the software development dimensions which are used as a reference
framework to determine assessment criteria, and are key building components for
any assessment method, indicated by Table 2.1 from Chapter 2. Experts possess-
ing expertise and knowledge about the organization were involved to identify the five
software development dimensions. Literature has provided us with the knowledge
about the dimensions which in turn enabled us to follow the CMMI model, ensur-
ing that we cover as many process areas as possible. In the assessment method,
we covered 19 out of 22 process areas, leaving behind the, ”organizational perfor-
mance management”, ”organizational process performance”, and ”supplier agree-
ment management” areas. This is due to the fact that these process areas are not
covered by the software development teams.

The second sub-question was:

2. What data presentation techniques can be used to effectively visualize the
assessment surveys results and support the implementation of improvements?

Upon conducting the assessment surveys, answers were visualized according
to best practices. To accomplish this, the thesis utilized insights from literature re-
view that provided guidance on best practices for visualizing. This entails selecting
appropriate chart types and layouts that effectively convey the intended message.
Additionally, scales were utilized that accurately represent the magnitude of the data
being presented. Proper scaling ensured that the visualizations accurately reflected
the relationships and patterns within the data. Color and size were also employed
strategically to convey information. Careful color choices were used to differenti-
ate categories or highlight specific data points, while size variations were utilized to
represent magnitude.

Following the analysis, software development processes were identified with a
particular focus on low scores for dimensions Team Practices, and Quality Assur-
ance Management. However, the areas for improvement extend beyond these spe-
cific dimensions and encompass various categories within each dimension. In re-
sponse to identifying process areas we have set a goal of 50% score in order to

9.1. CONCLUSIONS 79

prioritize subcategories of the dimensions. Furthermore, we looked at individual
questions to determine the root cause of low scores, by prioritizing questions with
a high number of negative answers. Team leaders were responsible to implement
improvements on testing strategy, reporting, automation, secure development, docu-
mentation management, test design, release management, artefacts and definitions,
and events. A key improvement was the introduction of guidelines which provide a
baseline set of principles and best practices that teams are expected to follow.

The third sub-question was:

3. How does our assessment method affect the performance of the organization’s
software development processes?

The final sub-question focused on validating the assessment method, firstly by
examining the feedback received from the validation survey, and secondly by ana-
lyzing the software development metrics. The validation surveys provided us with
an overall positive feedback regarding the applicability of the assessment method,
the opinions of stakeholders (team leaders) about the perception and values de-
livered by the assessment method, and the clarity of the assessment criteria and
questions. The assessment method was perceived as valuable by the participants
in most cases, in others they where skeptical and instead proffered to have a direct
guidance from the governance bodies of the organization. In terms of the clarity of
questions participants have found it clear enough, while some would have preferred
including some examples. In terms of the relevance there was an overall positive
response, while others pointed out that some questions were not applicable to their
team’s context. With all this in mind the validation surveys provided us with feedback
and the means to redesign the assessment method.

To assess the impact of the assessment method on software development per-
formance, various metrics were identified based on best practices from the literature.
Lead times, cycle times, and incident response times showed some impact as in-
dicative measures. It was observed that the assessment method had contributed to
the improvement of software development processes to an extend. However, it was
found that establishing a strong causal relationship with the independent variables
(software development dimensions) on the dependent variables (software develop-
ment metrics). External variables, such as bank holidays, changes in team size, or
team dynamics, may have contributed to the observed improvement. These factors
were beyond the control of the thesis and could potentially influence the measured
outcomes. Recognizing the influence of these external variables is important for a
comprehensive understanding of the findings and constitute the limitations of the
thesis. It highlighted the need to consider and account for such variables in the
analysis and interpretation of the results in future research.

80 CHAPTER 9. FINAL REMARKS

9.2 Future Work

The focus of this thesis was to design an assessment method, according to the
organization’s context and by utilizing the CMMI model. We have used the contin-
uous representation of the CMMI model, and therefore a pertinent question arises
regarding the applicability of a similar assessment method using the staged rep-
resentation. Mainly, it is worth considering how organizations that do not follow
a continuous improvement approach can apply this assessment method. Further
research, would involve analyzing and comparing the effects of implementing the
assessment method using the continuous and staged representations of the CMMI
model, as a comparative approach.

Furthermore, this thesis was conducted within a specific organization that oper-
ates in the trading industry. The external validity of the thesis is indeed subject to
scrutiny due to the contextual constraints of this particular scenario. In order to ad-
dress this limitation and broaden the generalizability of the findings, future research
endeavors could undertake an analysis that compares and examines the applicabil-
ity of the assessment method across multiple organizations and industries.

Further, an examination of the implementation was performed utilizing the exist-
ing quantitative data of the organization. This analysis was performed with limited
number of software development metrics. Further research could give more insights
about the effects of this assessment method with other software development met-
rics, such as agile velocity, sprint goal success rate, number of software releases,
throughput, response time, and reliability, availability and serviceability.

Moreover, external variables, including factors like team members’ annual leave,
changes in team size, and team dynamics, may have played a role in the observed
improvement of software development processes. The nature of the dynamic work
environment, bank holidays and many more variables were not under the control
of the research and had the potential to impact the measured outcomes. Taking
into account and exercising control over these variables is a crucial step in ensuring
both the validity of the thesis and accurately attributing the assessment method’s
contribution to the observed improvements.

Bibliography

[1] R. J. Wieringa, Design Science Methodology for Information Systems and Soft-
ware Engineering. Springer Berlin, Heidelberg, 2014.

[2] C. P. Team et al., “Cmmi for software engineering, version 1.1, staged repre-
sentation (cmmi-sw, v1. 1, staged),” Software Engineering Institute, Pittsburgh,
PA, 2002.

[3] S. C. P. Team, CMMI for Development v1. 3. Lulu. com, 2010.

[4] M. R. Ayyagari and I. Atoum, “Cmmi-dev implementation simplified,” Interna-
tional Journal of Advanced Computer Science and Applications, vol. 10, no. 4,
2019.

[5] M. Staron, “Dashboard development guide how to build sustainable and useful
dashboards to support software development and maintenance,” 2015.

[6] R. Akkiraju, N. Nayak, R. Torok, and J. von Kaenel, “A practitioner’s tool for en-
terprise risk management capability assessment,” in Proceedings of 2010 IEEE
International Conference on Service Operations and Logistics, and Informatics.
IEEE, 2010, pp. 369–374.

[7] D. Smits and J. van Hillegersberg, “It governance maturity: Developing a matu-
rity model using the delphi method,” in 2015 48th Hawaii International Confer-
ence on System Sciences, 2015, pp. 4534–4543.

[8] I. L. Margarido, J. P. Faria, M. Vieira, and R. M. Vidal, “Challenges in imple-
menting cmmi high maturity: lessons learnt and recommendations,” 2013.

[9] S. Mahmood and D. C. Kundian, “Capability maturity model integration cmmi,”
The Virtual University of Pakistan, 2015.

[10] M. Chaudhary and A. Chopra, CMMI for Development. Springer, 2017.

[11] F. Delice, M. Rousseau, and J. Feitosa, “Advancing teams research: What,
when, and how to measure team dynamics over time,” 2019.

81

82 BIBLIOGRAPHY

[12] F. Selleri Silva, F. S. F. Soares, A. L. Peres, I. M. de Azevedo, A. P. L.
Vasconcelos, F. K. Kamei, and S. R. de Lemos Meira, “Using cmmi
together with agile software development: A systematic review,” Information
and Software Technology, vol. 58, pp. 20–43, 2015. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950584914002110

[13] J. Becker, R. Knackstedt, and J. Poeppelbuss, “Developing maturity models
for it management,” Business & Information Systems Engineering, vol. 1, pp.
213–222, 06 2009.

[14] M. Simonsson, P. Johnson, and H. Wijkström, “Model-based it governance ma-
turity assessments with cobit,” 2007.

[15] S. De Haes and W. van grembergen, “It governance and its mechanisms,” In-
formation Systems Control Journal, vol. 1, pp. 27–33, 01 2004.

[16] “Ieee standard computer dictionary: A compilation of ieee standard computer
glossaries,” IEEE Std 610, pp. 1–217, 1991.

[17] G. Kaur, I. Kaur, S. Harnal, and S. Malik, “Factors and techniques for software
quality assurance in agile software development,” Agile Software Development:
Trends, Challenges and Applications, pp. 257–272, 2023.

[18] E. Salas, D. L. Reyes, and A. L. Woods, “The assessment of team performance:
Observations and needs,” Innovative assessment of collaboration, pp. 21–36,
2017.

[19] Y. Lindsjørn, D. I. Sjøberg, T. Dingsøyr, G. R. Bergersen, and T. Dybå,
“Teamwork quality and project success in software development: A survey
of agile development teams,” Journal of Systems and Software, vol. 122, pp.
274–286, 2016. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S016412121630187X

[20] I. Karamitsos, S. Albarhami, and C. Apostolopoulos, “Applying devops practices
of continuous automation for machine learning,” Information, vol. 11, no. 7, p.
363, 2020.

[21] R. Gove and J. Uzdzinski, “A performance-based system maturity assessment
framework,” Procedia Computer Science, vol. 16, pp. 688–697, 2013,
2013 Conference on Systems Engineering Research. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1877050913000732

https://www.sciencedirect.com/science/article/pii/S0950584914002110
https://www.sciencedirect.com/science/article/pii/S016412121630187X
https://www.sciencedirect.com/science/article/pii/S016412121630187X
https://www.sciencedirect.com/science/article/pii/S1877050913000732

BIBLIOGRAPHY 83

[22] M. Simonsson and P. Johnson, “Defining it governance-a consolidation of liter-
ature,” in The 18th conference on advanced information systems engineering,
vol. 6. Citeseer, 2006.

[23] W. Van Grembergen, “Introduction to the minitrack ”it governance and its mech-
anisms” hicss 2002,” in Proceedings of the 35th Annual Hawaii International
Conference on System Sciences, 2002, pp. 3097–3097.

[24] S. Hamaker and A. Hutton, “Principles of it governance.” Information Systems
Control Journal, vol. 2, 2004.

[25] N. Kakabadse and A. Kakabadse, “Is/it governance: Need for an integrated
model,” Corporate Governance, vol. 1, pp. 9–11, 12 2001.

[26] T. Mettler, P. Rohner, and R. Winter, “Towards a classification of maturity models
in information systems,” in Management of the Interconnected World, A. D’Atri,
M. De Marco, A. M. Braccini, and F. Cabiddu, Eds. Heidelberg: Physica-Verlag
HD, 2010, pp. 333–340.

[27] S. Peldzius and S. Ragaisis, “Comparison of maturity levels in cmmi-dev and
iso/iec 15504,” Applications of Mathematics and Computer Engineering, pp.
117–122, 2011.

[28] D. Proença and J. Borbinha, “Maturity models for information systems - a state
of the art,” Procedia Computer Science, vol. 100, pp. 1042–1049, 12 2016.

[29] M. Röglinger, J. Pöppelbuß, and J. Becker, “Maturity models in business pro-
cess management,” Business process management journal, 2012.

[30] L. A. Lasrado, R. Vatrapu, and K. N. Andersen, “Maturity models development
in is research: a literature review,” in IRIS Selected Papers of the Information
Systems Research Seminar in Scandinavia, vol. 6, no. 6. IRIS New York, NY,
USA, 2015.

[31] T. Mettler and P. Rohner, “Situational maturity models as instrumental artifacts
for organizational design,” http://www.alexandria.unisg.ch/Publikationen/67758,
01 2009.

[32] R. Constantinescu and I. M. Iacob, “Capability maturity model integration,” Jour-
nal of Applied Quantitative Methods, vol. 2, no. 1, pp. 31–37, 2007.

[33] I. Marcovecchio, M. Thinyane, E. Estevez, and P. Fillottrani, “Capability maturity
models as a means to standardize sustainable development goals indicators
data production,” Journal of ICT Standardization, vol. 6, no. 3, pp. 217–244,
2018.

84 BIBLIOGRAPHY

[34] F. Yucalar and S. Z. Erdogan, “A questionnaire based method for cmmi level 2
maturity assessment.” Journal of Aeronautics & Space Technologies/Havacilik
ve Uzay Teknolojileri Dergisi, vol. 4, no. 2, 2009.

[35] A. Tarhan, O. Turetken, and H. A. Reijers, “Business process maturity
models: A systematic literature review,” Information and Software Technology,
vol. 75, pp. 122–134, 2016. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0950584916300015

[36] M. Khoshgoftar and O. Osman, “Comparison of maturity models,” in 2009 2nd
IEEE International Conference on Computer Science and Information Technol-
ogy, 2009, pp. 297–301.

[37] J. Iqbal, R. B. Ahmad, M. H. N. M. Nasir, M. Niazi, S. Shamshirband, and M. A.
Noor, “Software smes’ unofficial readiness for cmmi®-based software process
improvement,” Software Quality Journal, vol. 24, pp. 997–1023, 2016.

[38] M. Pikkarainen and A. Mäntyniemi, “An approach for using cmmi in agile soft-
ware development assessments: experiences from three case studies,” in
SPICE 2006 conference, Luxemburg, 2006, pp. 4–5.

[39] C. Kivunja, “Distinguishing between theory, theoretical framework, and concep-
tual framework: A systematic review of lessons from the field.” International
journal of higher education, vol. 7, no. 6, pp. 44–53, 2018.

[40] C. Neuert, K. Meitinger, D. Behr, and M. Schonlau, “The use of open-ended
questions in surveys,” Methods, data, analyses: a journal for quantitative meth-
ods and survey methodology (mda), vol. 15, no. 1, pp. 3–6, 2021.

[41] N. Basias and Y. Pollalis, “Quantitative and qualitative research in business &
technology: Justifying a suitable research methodology,” Review of Integrative
Business and Economics Research, vol. 7, pp. 91–105, 2018.

[42] R. Carnwell and W. Daly, “Strategies for the construction of a critical review of
the literature,” Nurse education in practice, vol. 1, no. 2, pp. 57–63, 2001.

[43] D. Proença, “Methods and techniques for maturity assessment,” in 2016 11th
Iberian Conference on Information Systems and Technologies (CISTI). IEEE,
2016, pp. 1–4.

[44] C. Team, “Capability maturity model® integration (cmmi), version 1.1–
continuous representation,” Software Engineering Institute, Pittsburgh, PA,
2002.

https://www.sciencedirect.com/science/article/pii/S0950584916300015
https://www.sciencedirect.com/science/article/pii/S0950584916300015

BIBLIOGRAPHY 85

[45] N. Kerzazi, “Conceptual alignment between spem-based processes and cmmi,”
in 2015 10th International Conference on Intelligent Systems: Theories and
Applications (SITA). IEEE, 2015, pp. 1–9.

[46] J. Aguiar, R. Pereira, J. Braga Vasconcelos, and I. Bianchi, “An overlapless in-
cident management maturity model for multi-framework assessment (itil, cobit,
cmmi-svc),” Interdisciplinary Journal of Information, Knowledge, and Manage-
ment, vol. 13, pp. 137–163, 2018.

[47] wibas, “Process management (cmmi-dev),” 2021, retrieved: 08/06/2023. [On-
line]. Available: https://www.wibas.com/cmmi/process-management-cmmi-dev

[48] ——, “Project management (cmmi-dev),” 2021, retrieved: 08/06/2023. [Online].
Available: https://www.wibas.com/cmmi/project-management-cmmi-dev

[49] ——, “Engineering (cmmi-dev),” 2021, retrieved: 08/06/2023. [Online].
Available: https://www.wibas.com/cmmi/engineering-cmmi-dev

[50] ——, “Support (cmmi-dev),” 2021, retrieved: 08/06/2023. [Online]. Available:
https://www.wibas.com/cmmi/support-cmmi-dev

[51] C. G. von Wangenheim, A. von Wangenheim, F. McCaffery, J. C. R. Hauck,
and L. Buglione, “Tailoring software process capability/maturity models for the
health domain,” Health and Technology, vol. 3, no. 1, pp. 11–28, 2013.

[52] D. Ionita, C. van der Velden, H.-J. K. Ikkink, E. Neven, M. Daneva, and
M. Kuipers, “Towards risk-driven security requirements management in agile
software development,” in Information Systems Engineering in Responsible In-
formation Systems: CAiSE Forum 2019, Rome, Italy, June 3–7, 2019, Proceed-
ings 31. Springer, 2019, pp. 133–144.

[53] M. A. Ahmed, M. Anwar, and T. Hassan, “Requirements management pro-
cesses; an insight into the rmp activities in software industry and literature (a
case study),” 2023.

[54] A. A. Khan, J. Keung, M. Niazi, S. Hussain, and M. Shameem, “Gsepim: A
roadmap for software process assessment and improvement in the domain
of global software development,” Journal of software: Evolution and Process,
vol. 31, no. 1, p. e1988, 2019.

[55] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta, “Agile software de-
velopment methods: Review and analysis,” arXiv preprint arXiv:1709.08439,
2017.

https://www.wibas.com/cmmi/process-management-cmmi-dev
https://www.wibas.com/cmmi/project-management-cmmi-dev
https://www.wibas.com/cmmi/engineering-cmmi-dev
https://www.wibas.com/cmmi/support-cmmi-dev

86 BIBLIOGRAPHY

[56] D. E. Strode, S. L. Huff, B. Hope, and S. Link, “Coordination in co-located ag-
ile software development projects,” Journal of Systems and Software, vol. 85,
no. 6, pp. 1222–1238, 2012.

[57] S. Wagner and M. Ruhe, “A systematic review of productivity factors in software
development,” arXiv preprint arXiv:1801.06475, 2018.

[58] S. Badshah, A. A. Khan, and B. Khan, “Towards process improvement in de-
vops: a systematic literature review,” in Proceedings of the 24th International
Conference on Evaluation and Assessment in Software Engineering, 2020, pp.
427–433.

[59] M. Zarour, N. Alhammad, M. Alenezi, and K. Alsarayrah, “A research on devops
maturity models,” Int. J. Recent Technol. Eng, vol. 8, no. 3, pp. 4854–4862,
2019.

[60] G. Rong, H. Zhang, and D. Shao, “Cmmi guided process improvement for de-
vops projects: an exploratory case study,” in Proceedings of the International
Conference on Software and Systems Process, 2016, pp. 76–85.

[61] A. Mishra and Z. Otaiwi, “Devops and software quality: A systematic mapping,”
Computer Science Review, vol. 38, p. 100308, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1574013720304081

[62] T. L. Weissgerber, N. M. Milic, S. J. Winham, and V. D. Garovic, “Beyond bar
and line graphs: time for a new data presentation paradigm,” PLoS biology,
vol. 13, no. 4, p. e1002128, 2015.

[63] S. M. Ali, N. Gupta, G. K. Nayak, and R. K. Lenka, “Big data visualization:
Tools and challenges,” in 2016 2nd International Conference on Contemporary
Computing and Informatics (IC3I), 2016, pp. 656–660.

[64] H. Kerzner, Project management metrics, KPIs, and dashboards: a guide to
measuring and monitoring project performance, 2017.

[65] ——, Project management metrics, KPIs, and dashboards: a guide to measur-
ing and monitoring project performance. John Wiley & Sons, 2022.

[66] A.-L. Mattila, P. Ihantola, T. Kilamo, A. Luoto, M. Nurminen, and H. Väätäjä,
“Software visualization today: Systematic literature review,” in Proceedings of
the 20th International Academic Mindtrek Conference, 2016, pp. 262–271.

[67] W. Aigner, S. Miksch, H. Schumann, and C. Tominski, Visualization of time-
oriented data. Springer, 2011, vol. 4.

https://www.sciencedirect.com/science/article/pii/S1574013720304081

BIBLIOGRAPHY 87

[68] A. Shamim, V. Balakrishnan, and M. Tahir, “Evaluation of opinion visualization
techniques,” Information Visualization, vol. 14, no. 4, pp. 339–358, 2015.
[Online]. Available: https://doi.org/10.1177/1473871614550537

[69] M. Staron, K. Niesel, and W. Meding, “Selecting the right visualization of indi-
cators and measures–dashboard selection model,” in Software Measurement:
25th International Workshop on Software Measurement and 10th International
Conference on Software Process and Product Measurement, IWSM-Mensura
2015, Kraków, Poland, October 5-7, 2015, Proceedings 25. Springer, 2015,
pp. 130–143.

[70] A. Van Looy and A. Shafagatova, “Business process performance measure-
ment: a structured literature review of indicators, measures and metrics,”
SpringerPlus, vol. 5, no. 1, pp. 1–24, 2016.

[71] D. Parmenter, Key performance indicators: developing, implementing, and us-
ing winning KPIs. John Wiley & Sons, 2015.

[72] E. Kupiainen, M. V. Mäntylä, and J. Itkonen, “Using metrics in agile and
lean software development – a systematic literature review of industrial
studies,” Information and Software Technology, vol. 62, pp. 143–163,
2015. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S095058491500035X

[73] P. Rodrı́guez, M. Mäntylä, M. Oivo, L. E. Lwakatare, P. Seppänen, and P. Ku-
vaja, “Advances in using agile and lean processes for software development,”
in Advances in computers. Elsevier, 2019, vol. 113, pp. 135–224.

[74] A. Idri, F. azzahra Amazal, and A. Abran, “Analogy-based software develop-
ment effort estimation: A systematic mapping and review,” Information and
Software Technology, vol. 58, pp. 206–230, 2015.

[75] M. K. Thota, F. H. Shajin, P. Rajesh et al., “Survey on software defect prediction
techniques,” International Journal of Applied Science and Engineering, vol. 17,
no. 4, pp. 331–344, 2020.

[76] W. N. Behutiye, P. Rodrı́guez, M. Oivo, and A. Tosun, “Analyzing the concept
of technical debt in the context of agile software development: A systematic
literature review,” Information and Software Technology, vol. 82, pp. 139–158,
2017.

[77] P. Olivia H, “Development of a framework for achieving internal control and
effectively managing risks in a devops environment,” 2019.

https://doi.org/10.1177/1473871614550537
https://www.sciencedirect.com/science/article/pii/S095058491500035X
https://www.sciencedirect.com/science/article/pii/S095058491500035X

88 BIBLIOGRAPHY

[78] S. Tyagi, A. Choudhary, X. Cai, and K. Yang, “Value stream mapping to
reduce the lead-time of a product development process,” International Journal
of Production Economics, vol. 160, pp. 202–212, 2015. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0925527314003521

[79] W. Van Dooren, G. Bouckaert, and J. Halligan, Performance management in
the public sector. Routledge, 2015.

[80] H. M. Alfaraj and S. Qin, “Operationalising cmmi: integrating cmmi and cobit
perspective,” Journal of Engineering, Design and Technology, 2011.

[81] L. Linsbauer, A. Egyed, and R. E. Lopez-Herrejon, “A variability aware config-
uration management and revision control platform,” in Proceedings of the 38th
International Conference on Software Engineering Companion, 2016, pp. 803–
806.

[82] B. Fitzgerald and K.-J. Stol, “Continuous software engineering: A roadmap and
agenda,” Journal of Systems and Software, vol. 123, pp. 176–189, 2017.

[83] A. Tereso, P. Ribeiro, G. Fernandes, I. Loureiro, and M. Ferreira, “Project
management practices in private organizations,” Project Management Journal,
vol. 50, no. 1, pp. 6–22, 2019.

[84] A. Chahin and K. Paetzold, “Planning validation & verification steps accord-
ing to the dependency of requirements and product architecture,” in 2018
IEEE International Conference on Engineering, Technology and Innovation
(ICE/ITMC). IEEE, 2018, pp. 1–6.

[85] T. W. Malone and K. Crowston, “The interdisciplinary study of coordination,”
ACM Computing Surveys (CSUR), vol. 26, no. 1, pp. 87–119, 1994.

[86] L. Dubé and D. Robey, “Software stories: three cultural perspectives on the
organizational practices of software development,” Accounting, Management
and Information Technologies, vol. 9, no. 4, pp. 223–259, 1999.

[87] P. Abrahamsson, A. Hanhineva, and J. Jäälinoja, “Improving business agility
through technical solutions: A case study on test-driven development in mobile
software development,” in Business Agility and Information Technology Diffu-
sion: IFIP TC8 WG 8.6 International Working Conference May 8–11, 2005,
Atlanta, Georgia, USA. Springer, 2005, pp. 227–243.

[88] K. Kakimoto, K. Sasaki, H. Umeda, and Y. Ueda, “Iv&v case: empirical study of
software independent verification and validation based on safety case,” in 2017

https://www.sciencedirect.com/science/article/pii/S0925527314003521

BIBLIOGRAPHY 89

IEEE International Symposium on Software Reliability Engineering Workshops
(ISSREW). IEEE, 2017, pp. 32–35.

[89] R. G. Cooper, “The drivers of success in new-product development,” Industrial
Marketing Management, vol. 76, pp. 36–47, 2019.

[90] L. Zhu, L. Bass, and G. Champlin-Scharff, “Devops and its practices,” IEEE
software, vol. 33, no. 3, pp. 32–34, 2016.

[91] M. Gokarna and R. Singh, “Devops: a historical review and future works,” in
2021 International Conference on Computing, Communication, and Intelligent
Systems (ICCCIS). IEEE, 2021, pp. 366–371.

[92] S. Saito, Y. Iimura, A. K. Massey, and A. I. Antón, “How much undocumented
knowledge is there in agile software development?: Case study on industrial
project using issue tracking system and version control system,” in 2017 IEEE
25th International Requirements Engineering Conference (RE). IEEE, 2017,
pp. 194–203.

[93] M. Seiler and B. Paech, “Using tags to support feature management across
issue tracking systems and version control systems: A research preview,” in
Requirements Engineering: Foundation for Software Quality: 23rd International
Working Conference, REFSQ 2017, Essen, Germany, February 27–March 2,
2017, Proceedings 23. Springer, 2017, pp. 174–180.

[94] S. Bresciani and M. J. Eppler, “Choosing knowledge visualizations to augment
cognition: The managers’ view,” in 2010 14th International Conference Infor-
mation Visualisation. IEEE, 2010, pp. 355–360.

[95] W. E. Lewis, Software testing and continuous quality improvement. CRC press,
2017.

[96] S. M. Mohammad, “Devops automation advances it sectors with the strategy of
release management,” International Journal of Computer Trends and Technol-
ogy (IJCTT)–Volume, vol. 67, 2019.

[97] E. A. Locke and G. P. Latham, “Goal setting theory,” in Motivation: Theory and
research. Routledge, 2012, pp. 23–40.

[98] C. Andrade, “Internal, external, and ecological validity in research design, con-
duct, and evaluation,” Indian journal of psychological medicine, vol. 40, no. 5,
pp. 498–499, 2018.

Appendix A

Research Protocol: Literature
Protocol

A.1 Inclusion and Exclusion Criteria

Inclusion Criteria Exclusion Criteria

Papers about the structure of CMMI models.
Papers about maturity models outside the domain
of software development.

Papers that investigate the implementation of a
staged and continuous representation of CMMI.

Papers about other maturity models.

Papers about Team Practices in software
development.

Papers of the dimensions that have very specific
concepts not used in this thesis.

Papers about Requirements Management in
software development.

Papers about data presentation techniques with
no reflection on presentations used.

Papers about Software Development Practices.
Papers about software development metrics which
require special access or permissions for data
collection.

Papers about DevOps Practices.
Papers about Quality Assurance Management.
Papers about data presentation techniques.
Papers about software development performance
metrics.

Table A.1: Inclusion and Exclusion criteria.

A.2 Keywords

To perform the literature review we searched on the key words found in Table A.2.

90

A.3. SEARCH PROCESS 91

Keywords
CMMI model Software Development Practices
CMMI in IT governance DevOps Practices
CMMI staged representation Agile Software Development
CMMI continuous representation Quality Assurance Management
CMMI implementation Data presentation techniques
CMMI in software development Data visualization techniques
Team Practices in software
development

Software development metrics

Requirements Management in
software development.

Software development performance

Table A.2: Keywords List

A.3 Search Process

The search key for CMMI was:

”CMMI model” AND (”Staged Representation” OR ”Continuous Representation” OR
”Implementation” OR ”Representations” OR ”IT Governance”)

For data presentation techniques the search key was:

”Software development” AND ”Improvement” AND ”Performance” AND (”data
presentation techniques” OR ”Data Visualization techniques”)

CMMI model
Software Development
Dimensions

Data Presentation
Software Development
Metrics

Total

Unique results 1,180 285 261 277 2,003
After filtering on title 38 41 25 26 130
After filtering on abstract 25 23 14 19 81
After filtering on full text 15 15 9 11 50

Table A.3: Search Results

Appendix B

Assessment Surveys Questions

Category Question Maturity level
Do you estimate your work in backlog? CMMI 3
Do you group work into epics in your backlog when necessary (i.e. large topics
should be grouped into epic)?

CMMI 2

Do you have backlog in task management tool? CMMI 2
Do you link all stories/epics in backlog with requirements? CMMI 4
Do you link defects (i.e. bugs) with stories/epics/tasks if such relation exist? CMMI 5
Do you refine backlog before each iteration? CMMI 3
Do you review priorities in backlog in each iteration? CMMI 5
Do you set acceptance criteria for all stories/epics in backlog? CMMI 4
Do you set priority for all issues in backlog? CMMI 4
Do you set single responsibility for all issues in backlog (one person is
responsible and accountable for output)?

CMMI 4

Do you specify relation between issues if such exists? CMMI 5
Do you use man-days to estimate work in backlog? CMMI 3
Do you use poker planning for estimation? CMMI 4

Backlog management

Do you use story points to estimate work in backlog? CMMI 4
Do you document all business requirements in confluence? CMMI 2
Do you have non-functional requirements defined for Your project/team? CMMI 3
Do you include other specific non-functional requirements for each story/epic
(i.e. non-functional reqs that are only valid for particular story/epic and they
are not generic)?

CMMI 4

Do you keep business requirements up to date? CMMI 4
Documentation management

Do you use any formal language to describe your business requirements
(i.e. BDD, sequence diagrams, etc)?

CMMI 5

Table B.1: Requirements Management Survey Questions.

92

93

Category Question Maturity level
Do you have defined team leader role in your team? CMMI 2
Do you have onboarding buddy (mentor) for each new comer in your team? CMMI 3
Do you have defined role of devops champion in your team? CMMI 2
Do you have a Security Champion assigned in your team? CMMI 3
Do you have a dedicated scrum master? CMMI 4
Do you have a dedicated product owner? CMMI 4
Do you have people rotation plan defined for incident management? CMMI 3

Roles and team composition

Do you have process defining deputies in case people are absent? CMMI 5
Do you have documented Definition of Ready? CMMI 2
Do you validate each user story against your Definition of Ready? CMMI 5
Do you keep Definition of Ready up-to-date? CMMI 4
Do you have documented Definition of Done? CMMI 2
Do you validate each user story against your Definition of Done? CMMI 5
Do you keep Definition of Done up-to-date? CMMI 4
Does your Definition of Done include criteria that testing is done and at least all critical
defects are fixed and verified?

CMMI 3

Do you track all team work (tasks, defects, user stories, improvements, spikes) in a task
management tool (i.e. jira)?

CMMI 2

Do you estimate all work that the team committed to? CMMI 3
Do you track progress of items on a board (might be physical board or jira one)? CMMI 3
Do you track blockers on your board (special status, flags, blocked by task relationships etc.)? CMMI 4
Do you track release scope for each iteration (are you able to explain at any point in time
what is your plan for next release)?

CMMI 3

Do you use versioning for releases? CMMI 3
Do you track releases in a task management tool (i.e. do you use releases feature in jira)? CMMI 4
Do you link relevant team work (tasks, issues, etc.) with particular release in jira? CMMI 4
Do you perform a production release at the end of every iteration? CMMI 5
Do you have a guide or handbook for on-boarding newcomers (i.e. project materials to be read,
introduction to technology, etc...)?

CMMI 2

Do you have a guide or handbook that contains information about setting up development
environment to work?

CMMI 2

Artefacts & definitions

Do you update frequently your guide or handbook so it’s always reflecting current project
situation?

CMMI 4

Do you have daily meetings? CMMI 2
Do you include qa members in daily meetings when required? CMMI 3
Do you include product stakeholders in daily meetings when required? CMMI 4
Do you always use a board to faciliate daily meetings? CMMI 4
Do you always perform planning meeting for iteration (i.e. sprint planning session)? CMMI 2
Do you have review meetings for each iteration (i.e. a meeting with stakeholders to discuss
output from sprint)?

CMMI 3

Do you have demo meetings for each iteration (i.e. a meeting where you present new API, new
features, etc)?

CMMI 5

Do you have retrospective meetings for each iteration? CMMI 4
Do you plan iteration in accordance to team capacity (member leaves etc.. . .)? CMMI 3
Do you include key stakeholders in planning meetings? CMMI 3
Do you always include qa members in planning meetings? CMMI 4
Do you include bug fixing when planning capacity for iteration? CMMI 5
Do you use specific tool for retrospectives? CMMI 3
Do you track retrospective improvements? CMMI 4
Do you execute at least 2 improvements from each retrospectives during the next iteration? CMMI 5

Events

Are key stakeholders reviewing iteration output and providing feedback to the team? CMMI 5
Do you have dedicated communication channel(s) for the team (i.e. slack, teams; can be multiple
channels as well)?

CMMI 2

Do you have external channel(s) for communication so other teams can reach you at any point
of time?

CMMI 3

Do you have a process defined for communicating impediments to other teams (i.e. escalation via
Project Management Organization (PMO), Business Analysts (BA), etc. to report and discuss
impediments with other teams)?

CMMI 4

Do you actively monitor your dependencies with other teams if such were discovered (i.e. have
dedicated person that tracks the
status, sync-ups, discussing deadlines, etc.)?

CMMI 4
Collaboration

Do you specify and communicate risks to stakeholders that are related with impediments that were
discovered?

CMMI 5

Do you as a team leader create list of training needs for all your team members at least on a yearly
basis?

CMMI 4

Do you create personal development plan (grow plan, succession plan) for all team members? CMMI 4
Do you actively track personal development plan for all team members (i.e. regular goals evaluation,
helping with materials,
answering questions, etc)?

CMMI 5
Continuous learning

Do you evaluate regularly products and services that are used by the team (i.e. new frameworks, new
libraries, new development approach or architecture patterns)?

CMMI 5

Table B.2: Team Practices Survey Questions.

94 APPENDIX B. ASSESSMENT SURVEYS QUESTIONS

Category Question Maturity level
Do you have knowledge base (e.g. wiki, confluence)? CMMI 2
Does knowledge base have an up-to-date dedicated section for software related documentation
(i.e. info about software we write, purpose, etc.)?

CMMI 3

Does knowledge base have an up-to-date dedicated section for architecture documentation (i.e.
deployment diagrams, component diagrams, etc.)?

CMMI 4

Does knowledge base have an up-to-date dedicated section for coding standards, best practices,
Dos, Don’ts, etc.?

CMMI 4

Do you use pair programming? CMMI 3
Do you distribute tasks between developers in a way they can learn all areas of the system? CMMI 4

Knowledge sharing

Do you have practice of mentoring inside of the team? CMMI 5
Do you have coding standards as a set of guidelines, best practices, programming styles and
conventions that all developers adhere to when writing source code?

CMMI 2

Do you enforce coding standards automatically with tool? CMMI 3
Do you use static code analysis tools? CMMI 4
Do you measure code quality metrics (e.g. cyclomatic complexity, coupling, class hierarchy,
code duplications, method cohesion)?

CMMI 5
Code quality management

Do you have quality metric targets to identify whether code quality is on an accepted level? CMMI 4
Are you in a position to quickly assess that particular code committed to repo is linked
with task in Jira (i.e. by adding task number to commit, name feature branches with task
numbers, etc.)?

CMMI 3

Do you have commit message template defined? CMMI 2
Do you enforce commit message standards with automated tool? CMMI 4
Do you practice mandatory peer code review on Pull/Merge Request basis? CMMI 2
Do you have code review strategy, which identify how to choose and assign reviewers? CMMI 3
Do you have a code review checklist as a guidance what must be reviewed? CMMI 3
Do you validate that the team follows coding standards as part of code review process? CMMI 2
Do you validate security aspects as part of code review process? CMMI 4
Do you validate business logic as part of code review process? CMMI 3

Code review management

Do you validate unit tests for changed logic as a part of code review process? CMMI 3
Do you measure technical debt (e.g. code smells) using static code analysis tools? CMMI 4
Do you regularly allocate time to address technical debt found by static code analysis
(e.g. every iteration, every several iterations)?

CMMI 5

Do you track intentional technical debt (reasoned architecture and development short-cuts
to meet project deadlines)?

CMMI 4

Do you estimate your intentional technical debt? CMMI 4
Technical debt management

Do you regularly allocate time to reduce intentional technical debt? CMMI 5
Do you create unit tests as a part of working on development task? CMMI 2
Do you create unit tests for part of code that was fixed? CMMI 4
Do you measure code coverage for unit tests? CMMI 3
Do you have unit test coverage below 50%? CMMI 2
Do you have unit test coverage between 50 and 75%? CMMI 3
Do you have unit test coverage between 76 and 90%? CMMI 4

Unit testing

Do you have unit test coverage above 90%? CMMI 5
Do you perform regular static security scan? CMMI 3
Do you perform regular dynamic security scan? CMMI 3
Do you have SLAs for fixing security issues? CMMI 3
Do you have Security Quality Gates that can stop the release? CMMI 4
Do you have a list of security coding practices adopted on the project and published? CMMI 5
Do you have a backlog of security issues tracked in bug tracking system? CMMI 4
Do you scramble production data (remove sensitive info and names) when creating a
test data?

CMMI 3

Secure development

Do you obfuscate your code? CMMI 2
Do you perform architecture review as part of preparation for implementation (i.e.
checking if services are following standards, if the communication protocol is
following standards, etc.)?

CMMI 3

Do you have architecture practices/patterns defined in your team (i.e. you follow
IOC, synchronous vs asynchronous communication, using MVP, MVVM, MVC etc.)?

CMMI 3

Do you build your solution in a way it has cloud native architecture? CMMI 4
Do you engage your team in dedicated architectural activities (review of new API
standards, etc)?

CMMI 5

Are you aware of what is the desired enterprise architecture in the company? CMMI 3
Is your project compliant with desired enterprise architecture? CMMI 5
Is your project at the minimum supported language version and framework that is defined
by company policy?

CMMI 2

Architecture foundations

Do you feel that your project is at desired supported language version and framework
and no upgrades are needed?

CMMI 3

Table B.3: Development Practices Survey Questions.

95

Category Question Maturity level
Do you have test automation strategy that defines what test scope will be automated to what degree,
when, by whom, by which methods, by what test tools, in what kind of environment?

CMMI 3

Do you have guidelines on how to design and execute automated tests? CMMI 3
Do you include coding standards and test-data handling methods in automated test guidelines? CMMI 4
Do you include processes for reporting and storing test results in automated test guidelines? CMMI 4
Do you include general rules for test tool usage and/or information on how to access external
resources in automated test guidelines?

CMMI 4

Do you cover all critical areas defined by business with automated tests? CMMI 3
Do you achieve pass rate of over 95% for valid cases with automated tests? CMMI 3
Do you prioritise test cases for the automation in order to meet the test execution schedule? CMMI 4
Do you create automation tests in parallel to the relevant development cycle? CMMI 4
Do you track status and progress of automation testing in task management tool? CMMI 3
Do you track all the test executions? CMMI 3
Do you generate report for different test results to create a big picture of automation testing? CMMI 4

Automation

Do you regularly review critical areas for auto tests coverage? CMMI 5
Do you have defined defect lifecycle (there are step by step rules how we handle every defect
including jira workflow)?

CMMI 2

Are all defects following the same lifecycle? CMMI 3
Do you assign priority to every single defect? CMMI 3
Do you assign severity to every single defect? CMMI 3
Do you include information about the subsystem, program and version, root cause in every single
defect?

CMMI 4

Do you analyse defects for common properties and make recommendations to avoid same defect in
future? (CAPA)

CMMI 5
Defect management

Do you include leaked defects (i.e. defects leaked to production, not discovered before prod) into
regression suite?

CMMI 5

Do you create Bi-weekly testing reports? CMMI 2
Do you receive QA Sign off in written form for releases? CMMI 3
Do you include test progress, test results and product risks in the bi-weekly reporting? CMMI 2
Do you include metrics in bi-weekly reporting? CMMI 3
Do you have templates defined for all QA reports? CMMI 3

Reporting

Do you regularly review QA reports in terms of informational value, transparency and easy to use
characteristics?

CMMI 4

Do you create test cases in a way they are directly reflecting all requirements? CMMI 2
Do you document test cases? CMMI 2
Do you create test cases according to company standards, including steps to reproduce, test data,
expected result?

CMMI 3

Do you use formal test design techniques to design test cases? CMMI 3
Are test cases checked and evaluated independently on validity and maintainability by QA team? CMMI 3
Do you use test cases peer review process? CMMI 4
Do you trace/link test cases with requirements? CMMI 4

Test design

Do you evaluate and adjust test design techniques for further re-use? CMMI 5
Do you have dedicated QA resources in your team? CMMI 3
Do you know as a team who is responsible for testing the part of the system you are working on? CMMI 2
Do you know the scope and approach for test activities in your team? CMMI 2
Do you include QAs in assessing the impact and risk analysis of change requests and defects? CMMI 2
Do you track QA tasks in task management tool with corresponding links to related sources? CMMI 3

Test organization

Do you have QA documentation standards defined and introduced to team? CMMI 3
Do you have test strategy defined and documented? CMMI 2
Do you consider product risk analysis when creating test strategy? CMMI 2
Do you define test levels and test types according to analysed risks? CMMI 4
Do you define test coverage and test depth according to analysed risks? CMMI 4
Do you include test design techniques in test strategy? CMMI 3
Do you evaluate test strategy regularly and, where necessary, adapted for future use according to
business needs?

CMMI 3

Do you create testing data in a way is the same or similar to production data? CMMI 4
Do you create snapshot of production like data? CMMI 3
Do you keep your production snapshot data up to date (i.e. frequently and when extra data is
needed)?

CMMI 4

Do you regularly evaluate test strategy against metrics from incidents that occurred in production? CMMI 4
Are all functional tests automated? CMMI 5

Testing strategy

Are all non-functional tests automated (i.e. performance, accessibility, security, etc)? CMMI 5

Table B.4: Quality Assurance Management Survey Questions.

96 APPENDIX B. ASSESSMENT SURVEYS QUESTIONS

Category Question Maturity level
Do you restrict access to sensitive information (i.e. artefacts, api keys, private keys,
usernames and passwords)?

CMMI 2

Do you use tools dedicated to store sensitive information (i.e. azure key storage,
AWS kms)?

CMMI 3

Do you have roles defined in code repository? CMMI 2
Do you have roles defined in CI/CD tool? CMMI 2

Access management

Do you restrict access to software artifactory? (i.e. docker repository, etc) CMMI 2
Do you use centralized continuous integration tool? CMMI 2
Do you use centralised continuous delivery tool? CMMI 2
Are your builds triggered automatically upon pull request? CMMI 3
Do you have CD pipelines defined for lower environments (DEV, TEST)? CMMI 3
Do you have CD pipelines defined for higher environments (STAGING, PROD)? CMMI 4
Are unit tests executed automatically as part of the CI pipeline? CMMI 3
Are integration tests executed automatically as part of the CD pipeline? CMMI 4
Are security tests executed automatically as part of CD pipeline? CMMI 5
Is CI pipeline blocked in case of unit test failure? CMMI 2
Is CI pipeline blocked in case of static code analysis error (criteria is met also if
this is part of linking orcompilation phase)?

CMMI 3

Continuous Integration/
Continuous Development

Is CI pipeline blocked in case of a security test (i.e. twistlock, owasp) error? CMMI 4
Do you have alerting escalation policies defined? CMMI 3
Do you have primary and secondary contact defined for each escalation policy? CMMI 4
Do you use a dedicated tool for defining escalation policies (i.e. PagerDuty)? CMMI 4
Do you have runbook defined in case alert policy would be triggered? CMMI 4
Do you have a process for keeping your runbooks up to date? CMMI 5

Incident management

Do you have SLAs in place for responding to incidents? CMMI 2
Do you create infrastructure for lower environments via automation scripts? CMMI 3
Do you create infrastructure for higher environments via automation scripts? CMMI 3
Do you store infrastructure management scripts in repository? CMMI 3Infrastructure management
Do you have 4 separate environments set-up for your system (Development/
Test/Staging/Prod)?

CMMI 4

Do you use tool for automated logs collection (i.e. elastic, kibana, etc.)? CMMI 2
Do you use tool for infrastructure and application monitoring? CMMI 3
Do you have alert policies defined for infrastructure? CMMI 3
Do you have alert policies defined for errors in the app (i.e. 5xx issues)? CMMI 3

Monitoring and alerting

Do you have alert policies defined for application performance monitoring
(CPU, memory, disk usage, etc.)?

CMMI 3

Do you have rollback strategy defined and written? CMMI 2
Did you test your rollback strategy? CMMI 3
Do you have release readiness check process defined (i.e. checklist that
you are going through before making decision about release)?

CMMI 3

Do you have notification policy for your release process (i.e. email to business,
other teams, etc)?

CMMI 3

Do you store release artefacts in artefact repository or are in a position to
deploy any version of your software at any point of time without unnecessary
delays (i.e. nexus, firebase, etc.)?

CMMI 2
Release management

Do you use release notes for each release? CMMI 3

Table B.5: DevOps Practices Survey Questions.

Appendix C

Assessment Survey Results Analysis

Figure C.1: Team Performance per Dimension (Team Practices).

97

98 APPENDIX C. ASSESSMENT SURVEY RESULTS ANALYSIS

Figure C.2: Team Performance per Dimension (Requirements Management).

Figure C.3: Team Performance per Dimension (Development Practices).

99

Figure C.4: Team Performance per Dimension (DevOps Practices).

Figure C.5: Team Performance per Dimension (Quality Assurance Management).

	Preface
	List of acronyms
	Introduction
	Motivation
	Research Goal
	Thesis Organization

	Background
	What is IT Governance?
	IT Maturity Models
	The role of maturity models in IT governance
	Generic structure of maturity models in IS literature
	Capability Maturity Model (CMM)
	Capability Maturity Model Integration (CMMI)
	The implications of implementing the CMMI model

	Conclusion

	Research Methodology
	Research Objective and Motivation
	Design Cycle
	Research Questions
	Research Method
	Designing the Assessment Method
	Treatment Validation

	Literature Review
	Literature Overview
	CMMI Representations
	Staged Representation
	Continuous Representation

	Process Areas
	Process Area Interactions
	Process Management
	Project Management
	Engineering
	Support

	Modifying the CMMI Model

	Software Development Dimensions
	Team Practices
	Requirements Management
	Development Practices
	Agile Methods

	DevOps Practices
	Quality Assurance Management

	Data Presentation
	Visualization Tools
	Key Considerations for Effective Visualization
	Dashboards

	Performance Measures
	Determining measures that will work in an organization
	Get the measures to drive performance

	Conclusion

	Designing the Assessment Method
	Design Plan
	 Continuous Improvement Plan

	The Designed Assessment Method
	Capability Levels
	Correlation between Software Development Dimensions and CMMI Process Areas
	Dimensions Subcategories

	Assessment Survey Results
	The Assessment Survey Process
	Visualization of Survey Responses
	Assessment Survey Progress
	Timeline of Responses
	Average Score per Dimension
	Team Score Across Dimensions
	Team Score Across Dimensions with Brands
	Team-Brand Comparison per Dimension
	Team Deviation from Average
	Average Score per Category
	Frequently Answered Questions as No
	Frequently Answered Questions as Yes

	Improvements

	Validity Analysis
	Validation Surveys
	The Software Development Performance.

	Discussion
	Implications
	Core values of the assessment method

	Thesis Validity
	Construct Validity
	Internal validity
	External validity

	Contributions to Research

	Final Remarks
	Conclusions
	Future Work

	References
	Research Protocol: Literature Protocol
	Inclusion and Exclusion Criteria
	Keywords
	Search Process

	Assessment Surveys Questions
	Assessment Survey Results Analysis

